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Abstract
Data-parallel array languages, like Accelerate, provide data-parallel operations as
high-level functions for which no low-level programming mastery is required. Per-
mutation and flattening by expansion are two of such operations that are useful for
handling irregular nested data. Accelerate transforms the high-level code written
by the user to low-level code. Because many programs are inherently memory-
bound, it is beneficial to minimise the number of repeated memory loads and the
number of temporary, intermediate arrays generated by this process. In this thesis,
we study whether the number of temporary arrays can be reduced when perform-
ing a permutation after an expansion. Moreover, we will study the performance
benefits of such a reduction.
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1 Introduction
Declarative, combinator-based languages like Accelerate [1], Futhark [2], Nikola
[3] and Obsidian [4] specialise on performing data-parallel array operations. They
provide a higher-level interface for expressing parallel computations over arrays,
so that programmers are not required to have extensive low-level knowledge to
execute parallel operations efficiently on hardware. This is facilitated by the
combinator-based nature of these languages, as complex operations can be cre-
ated by combining multiple primitive ones.

Accelerate works by generating low-level machine code, that corresponds with
the high-level Accelerate code that is written. It provides the option to generate
machine code for various architectures. The specifics of this code generation are
discussed in further detail in section 2.4.

To further optimise code, Accelerate incorporates an optimisation known as
array fusion [5]. Fusion is a code transformation that combines operations, so that
less sequential operations are needed during the execution of parallel code. This
is discussed in more detail in in section 2.3.

Two particular operations are permutation and flattening by expansion [6].
These operations are discussed in the respective sections 1.1 and 1.3. Permu-
tation and flattening by expansion play an important role in the parallel array-
programming model, as they are useful in many different algorithms. As far as we
know, the fusion of these two operations has not yet been explored in the context
of functional array languages. The aim of this thesis is to develop and evaluate a
technique for the fusion of the permutation and expansion operations.

We choose to analyse this by expanding a language that already supports fu-
sion and permutation. The system of choice is Accelerate, which is a language
embedded in Haskell [7]. It has the benefit that it provides a robust framework
in which experimentation will be easy. To do the evaluation, we use the GPU
backend of Accelerate.

1.1 Permutation

Sometimes, it is useful to rearrange values in an array. A useful operation for this
is the forward permutation operation, also known as the scatter operation. This
permutation is defined as an index mapping from a source index to a result index
[8]. In Accelerate, the type of this operation is as follows:

1 permute ::
2 (Exp a -> Exp a -> Exp a) -- Combination function
3 -> Acc (Array sh' a) -- Array of default values
4 -> (Exp sh -> Exp (Maybe sh')) -- Index permutation
5 -> Acc (Array sh a) -- Array of source values
6 -> Acc (Array sh' a) -- Array after permutation
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Permute works by moving elements from the array of source values to a copy
of an array of default values1. To accommodate this, permute takes the following
four arguments:

1. The combination function, that defines how to combine the element in the
defaults array2 with the source element that is permuted to the same index.

2. The array of default values, that contains default values for the result. This
is necessary, because the permutation may not be surjective. That is, the
index permutations may not cover all possible target indices.

3. The index permutation function, which is the index mapping that defines
the target index for every source index. Not all source indices have to map
to a target, therefore the result is a Maybe. Elements that map to Nothing
are discarded. There are no restrictions on the used mapping. It may be
partial, non-surjective and/or non-injective.

4. The array of source values, that defines the elements that are permuted into
the resulting array.

Since the index permutation function may not be injective, it is possible that
one element in the result array depends on multiple elements from the source array.

Figure 1 gives an overview of how the different arguments cooperate to build
the resulting array. In this figure, a permutation using index mapping p and
combination function ⊕ of values from the source array v to defaults array d is
visualised. In this example, source index 0 is mapped to target index 0, source
indices 1 and 2 are both mapped to target index 1 and source index 2 is mapped
to Nothing.

As only one element is mapped to target index 0, the result is ⊕ applied to
v1 and d1. Because two elements are mapped to index 1, the result becomes ⊕
applied to the default value v3, v2 and d2. This means that to assure that the result
is deterministic, ⊕ must be associative and commutative if it is not injective. As
nothing is mapped to target index 2, the value remains the default value d3.

1.2 Segmented Scan

A segmented scan is a very useful operation to perform multiple scans within one
array. Specifically, the scans are performed on different, disjoint parts/segments of
the array. In Accelerate, the type of a (left to right) segmented scan is as follows:

1Sometimes the array of defaults is not used anywhere else. In this case, the elements can be
moved to the original array instead of to a copy.

2This is not necessarily the element that was originally in the defaults array. If multiple
elements are permuted to the same index, it can be another source element that was already
permuted.
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v1 v2 v3 v4

v1 ⊕ d1
v3 ⊕
v2 ⊕ d2

d3

p(0) p(1) p(2) p(3)

Figure 1: Example of permutation into an array of default values di, using index
mapping p and combination function ⊕.

1 scanlSeg ::
2 (Exp e -> Exp e -> Exp e) -- Combination function
3 -> Exp e -- Initial value
4 -> Acc (Array (sh :. Int) e) -- Array of source values
5 -> Acc (Vector Int) -- Array of segment lengths
6 -> Acc (Array (sh :. Int) e) -- Array after segmented scan

Note that the combination function should be associative, so that the result
of the scan can be computed in parallel. An example of where a segmented scan
can be useful is calculating multiple prefix sums within one array. This is shown
in the following example:

1 >>> l e t source = use $ fromList (Z:.10) [1 ,1..] :: Acc (Vector Int)
2 >>> l e t segments = use $ fromList (Z:.4) [1, 2, 3, 4]
3 >>> run $ scanlSeg (+) 0 source segments)
4 Vector (Z :. 14) [0,1,0,1,2,0,1,2,3,0,1,2,3,4]

The result indeed consists of the prefix sums of the segments in the source array.
All prefix sums for all segments start with the initial value that we set to 0. Note
that as scan prepends the initial value to the front of the result, the final result
has four more elements than the source array.

1.3 Flattening by Expansion

The expand operation, as introduced by Elsman et al. [6], is useful for flattening
a certain form of nested data where the inner data structures may have different
sizes. The expand operation can do this flattening while masking some of the
low-level abstractions. Efficient flattening of nested parallelism is important, as
flattening can sometimes lead to unnecessary overhead [9]. The form of irregular
nested parallelism that can be flattened by expansion, is one where all data in a
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nested collection can be accessed using a one-dimensional index. An example of
this form of irregular nested parallelism, can be found in figure 2. In this example,
the array e contains arrays of various sizes. The data in any array vi can be
accessed using regular array indexing.

Elsman et al. [6] defined the expand operation to have the following type3:
1 expand :: (a -> Exp Int)
2 -> (a -> Exp Int -> b)
3 -> Acc (Vector a)
4 -> Acc (Vector b)

The expand operation flattens the input array to a target array. To do this, it
uses three arguments.

1. The size function that specifies how many target elements every element of
the input array will expand to.

2. The get function that takes an element a from the input array and an index
i ∈ {0, . . . , (size a) − 1}, and returns the target element that will be at
position i of the expansion of a.

3. The input array, which is the array of source values that are used by the
above functions.

Consider the following example.
1 expand (\a -> 3) (\a i -> a * i) [1, 2, 3, 4]

In this example, every element has three target elements. For an element in the
input, the target element at index i will be the original element multiplied by i.
Which results in the following.
1 [0, 1, 2, 0, 2, 4, 0, 3, 6, 0, 4, 8]

1.3.1 Implementation

Flattening by expansion can be defined using basic data-parallel primitives and
therefore can be directly translated to Accelerate. A possible implementation in
Accelerate is given in listing 1.

Both idxs and iotas are temporary arrays, used to create the result array.
The idxs array dictates the source index that an element in the result array comes
from. That is, the element at index i of the idxs array defines the source index
for the element at index i of the result. The iotas array stores an index that is
combined with an element in the get function. Concretely, in the example from
the previous section the two arrays would be as follows:
1 idxs = [0,0,0,1,1,1,2,2,2]
2 iotas = [0,1,2,0,1,2,0,1,2]

3This is the corresponding type in Accelerate, ignoring type class constraints.

7



1 segmScan
2 :: (Exp b -> Exp b -> Exp b) -> Exp b
3 -> Acc (Vector Bool) -> Acc (Vector b) -> Acc (Vector b)
4 segmScan op ne flags as = map snd scan
5 where zp = zip flags as
6 scan =
7 postscanl (\(T2 x_flag x) (T2 y_flag y)
8 -> T2 ( x_flag || y_flag) ( i f (y_flag) then y
9 e l se (x `op` y))) (T2 False_ ne) $ zp

10

11 replIota :: Acc (Vector Int)
12 -> (Acc (Vector Int), Acc (Vector Bool))
13 replIota reps =
14 l e t s1 = scanl (+) 0 reps
15 fld = s1 !! ( length s1 - 1)
16 tmp = scatter s1 (fill ( I1 fld) 0)
17 $ (enumFromN (shape reps) 0)
18 flags = map (>0) tmp
19 in (segmScan (+) 0 flags tmp , flags)
20

21 segmIota :: Acc (Vector Bool) -> Acc (Vector Int)
22 segmIota flags = map (\x -> x-1)
23 $ segmScan (+) 0 flags (fill (shape flags) 1)
24

25 expand size get arr =
26 l e t sizes = map size arr
27 (idxs , flags) = replIota sizes
28 iotas = segmIota flags
29 in zipWith (\i j -> get (arr !! i) j) idxs iotas

Listing 1: Implementation of expand in Accelerate
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v1,1

v2,1

v3,1

v1,2

v3,2

v1,3e1

e2

e3

e4

Figure 2: Example of irregular nested data, where the flat vector e generates the
arrays v1, v2 and v3. Note that nested data can also be of length 0, as shown by
e4.

1.4 Permute after Expand

In many use cases of expand, permutation operations appear directly after flatten-
ing by expansion. In fact, half of the examples from the paper introducing expand
[10] perform a permutation after an expansion. Examples of this are finding primes
using the Sieve of Eratosthenes and rendering a 3D terrain. They even note the
fusion of permutation with expansion as a possibility for future work. Another
example of a permutation occurring after an expansion is updating distances in a
shortest path algorithm. As noted in the previous section, this currently requires
multiple kernels in Accelerate.

Looking at the purpose of the temporary arrays idxs and iotas in the im-
plementation of the expand operation leads us to believe that while the expand
operation is already data-parallel, optimisations may be possible in certain cases.
Namely, if we permute directly after expanding, the scans may be redundant.
When an expanded array is permuted instantly, we could directly generate an in-
dex and then write the element to its position in the new array. This would take
away the overhead of generating three intermediate arrays: idxs, iotas and the
result of expand. This thesis studies whether this leads to speedups.

1.5 Research Question

Research question. Does the fusion of expansion and permutation offer an in-
crease in performance?

Previous work on fusion in the context of different kernels has shown that fusion
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can lead to reduced overhead. We study if this is also possible when performing a
permutation after flattening by expansion. Our chosen metric for performance is
the run time.

1.6 Contributions

We extend the work of Elsman et al. [6], by providing a way to reduce some of the
overhead that is introduced by instantiating intermediate arrays when a permuta-
tion is performed directly after an expansion. Moreover, we discuss different ways
in which the code generation for such a kernel can be implemented. The effective-
ness of the discussed kernels is evaluated, and possible reasons for the results are
given. Concretely, the contributions of this thesis are the following:

1. A custom method for the fusion of the expand and permute operations is
described, and implemented in Accelerate.

2. A method to generate low-level code for the fusion transformation of expand
with permute is discussed and implemented.

3. Benchmarks assessing the effectiveness of the fusion of expand with permute
are performed.
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2 Preliminaries

2.1 An Embedded Language

Programming languages often support many different mechanisms like classes,
modules and higher-order functions. When developing a particular application,
this high level of abstraction is not strictly necessary. The only mechanisms neces-
sary are those that are useful for the domain that the application is targeted at. For
this reason, domain-specific languages (DSLs) [11] are developed. A DSL provides
the user with basic constructs that are useful for a certain domain. A very basic
example is the Excel formula language, targeted at the domain of mathematics.

A programming language that is written within a different host language is
called an embedded language. Such a language is written using the generic mech-
anisms provided by the host language. There are two embedding techniques [12,
13]. In a shallow embedding, terms in the embedded language are translated to
the semantics of the host language. Evaluation of terms is often done by the host
language. In a deep embedding, terms in the embedded language construct a rep-
resentation of a computation. This representation then needs to be traversed for
the evaluation. This evaluation is usually done at run-time.

Accelerate is a deeply embedded, domain-specific language. Since it is deeply
embedded, it stores the representation of a parallel computation in a custom data
type. This representation is called an abstract syntax tree. Concretely, it stores
this in the Acc data type. The expressions that are used to form sequential com-
putations are also deeply embedded. They have the type Exp t, where t is the
result type of the expression. Both of these data types are Generalised Algebraic
Data Types (see section 2.4). This helps to ensure type safety within the embedded
language.

The parallel computations in Accelerate work on arrays. An array has the
type Array sh t. It has a shape sh that describes how many and what form of
dimensions it has. The type variable t defines what the type of the elements in
the array is.

An example of this embedded representation can be seen when we look at map
in Accelerate. We provide the Haskell type of map as a reference, denoting it as
Prelude.map. The types of Prelude.map and map in Accelerate are as follows.

1 Prelude.map :: (a -> b)
2 -> [a]
3 -> [b]

1 map :: (Exp a -> Exp b)
2 -> Acc (Array sh a)
3 -> Acc (Array sh b)

In Accelerate, the evaluation of computations happens at run-time. The run
function can be used to perform this evaluation. This function has the following
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type:
1 run :: Arrays a
2 => Acc a
3 -> a

The following is an example of the difference between the evaluation of Prelude.map
and map. In the example, we compute the squares of the numbers 1, 2, 3 and 4.
1 >>> l e t xs = [1, 2, 3, 4]
2 >>> Prelude.map (\e -> e * e) xs
3 [1,4,9,16]
4 >>> map (\e -> e * e) (use $ fromList (Z:.4) xs)
5 map (\x0 -> x0 * x0) (use (Vector (Z :. 4) [1,2,3,4]))
6 >>> run $ map (\e -> e * e) (use $ fromList (Z:.4) xs)
7 Vector (Z :. 4) [1,4,9,16]

The type of map ... is Acc (Vector Int). We see that it is indeed the repre-
sentation of a computation, as it outputs the abstract syntax tree (AST) that is
generated by Accelerate. The type of run $ map ... is Vector Int, thus the
evaluation of the aforementioned computation.

2.2 GPUs

In the very beginning, computations on a computer used to be performed by one
component: the central processing unit (CPU). This component is set up to be
versatile; capable of performing many different tasks. Since then, new hardware
components have been introduced that are focused on achieving better performance
for a specific task. An example of a component that specialises on a task is the
graphics processing unit (GPU). It was introduced as a more efficient way to render
graphics. Due to developments like the release of the CUDA API [14] for NVIDIA
graphics cards, GPUs are utilised in more generic computations as well. Accelerate
is also able to use the GPU to perform its array computations. A GPU is able
to achieve this specialisation, because its chip layout differs from that of a CPU.
Figure 3 shows such a difference in layout. In this figure we see that a GPU has
many more compute cores, and dedicates less chip space to caches and controllers.
It can thus process more data at the same time, but at the expense of fast-to-access
memory.

2.2.1 NVIDIA GPU Architecture

A GPU is focused on providing a higher instruction throughput and a higher
memory bandwidth than a CPU. This is possible because the GPU hardware is
specifically designed for highly parallel computations. A GPU thus tries to per-
form as many operations in parallel as possible. This is realised by devoting more
transistors to processing instead of devoting them to data caching and flow con-
trol, as can be seen in the schematic in figure 3. By devoting more transistors to
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Figure 3: Distribution of resources on a multicore CPU chip versus distribution of
resources on a GPU chip. Image from CUDA C++ Programming Guide [15].

processing, the latency of memory accesses can be hidden by performing compu-
tations of threads that do not need data from memory (yet). These computations
can be performed while other threads await their requested memory access.

2.2.2 Kernels

To perform computations on the GPU, the programmer has to write a special GPU
program. In OpenCL [16] and CUDA, such a program is called a kernel [15, 17].
A kernel is a Single Program Multiple Data (SPMD) program. This means that
the same program is executed on multiple sets of data.

2.2.3 Threads

The computations on a GPU are performed by threads. The threads are divided
into groups of 32 threads called warps. These warps are then grouped into so-called
thread blocks. The amount of threads in a thread block depends on the amount of
resources required by a thread, however there is an upper limit of 1024 threads4,
thus 32 warps per block. Finally, the blocks are divided over multiple multi-
threaded Streaming Multiprocessors (SMs). The collection of all thread blocks is
called a grid.

The SMs contain the actual hardware for running threads. Figure 3 shows
the general layout of a SM. In this figure, we see that a SM consists of compute
cores (green). Moreover, it has two types of memory (purple) and some schedulers
(yellow). A SM also has load/store units that handle global memory access. These

4This is the upper limit for compute capability 9.0.
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resources are shared by all blocks running on the SM. Every row of cores, L1 caches
and controllers is shared by a warp. This is why the amount of blocks that can
run on one SM depends on the amount of memory and registers required by the
assigned thread blocks. The SMs employ a Single-Instruction, Multiple-Thread
(SIMT) structure. This is done by grouping threads from a warp that are able to
execute into SIMT units. In this way, all threads that want to perform the same
instruction can run this instruction simultaneously. This is possible because of
Independent Thread Scheduling [15], where each thread keeps a program counter
and call stack. In architectures before Volta, this worked differently. Prior to
Volta, one program counter was kept per warp, and that instruction would be
executed in all threads that were on that same instruction.

2.2.4 Memory

A GPU has several basic types of memory. The first is global memory. This is
available to all threads on all SMs. This memory is not on a multiprocessor chip,
and therefore is the slowest to access. It can be used to share data between threads
that are not part of the same block. Shared memory is available on the chip, and is
shared by all threads in the same block. It can be used to do basic communication
between threads in a block. Every thread in a block is able to read from and write
to it. Finally, there are local memory and registers. These are only accessible by
one thread. They can be used to temporarily store variables that a thread needs
later on in its execution. This hierarchy of GPU memory is also shown in figure
4.

2.2.5 Synchronisation

For some programs, it may be necessary that all threads have run all instructions
up to a certain point. Because threads run independently of each other, they are
not guaranteed to be at the same place in the program at the same time. In
order to ensure that all threads have executed certain instructions, it is possible
to synchronise threads using barriers. When a thread hits such a barrier, it waits
until all other threads have also reached this barrier. There are different levels
of synchronisation. Threads can be synchronised within a warp, within a thread
block, or globally within the grid. Synchronisation can lead to deadlocks when one
of the threads is not able to hit the barrier.

Synchronisation is also needed to guarantee that all threads agree on the state
of shared and global memory. This is because there is no implicit thread synchro-
nisation when memory is accessed, thus barrier synchronisation should be used
if it is important that the state of the memory is the same for all threads. For
example, when the permute operation combines a value with the value present in
the array of defaults and writes it to memory, all threads should read the new
(combined) value.
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Figure 4: Memory hierarchy of a GPU. Shows at what level a given type of memory
is available. Image from CUDA C++ Programming Guide [15].
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2.2.6 Compute Capability

The capabilities of GPUs have changed over the years. For example, specifications
like the available memory have changed. The capabilities of a GPU are indicated
by its compute capability. This number is like a version number given to the archi-
tecture. At the time of writing, the latest compute capability is 9.0. It is important
to take this compute capability into account, because some optimisations may not
be possible on certain GPUs. For example, it is not possible to use warp shuffling
[18] on a GPU with a capability below 3.0. Furthermore, programs may behave
differently when ran on a GPU that targets a different compute capability. An
example of this is implicit thread synchronisation within a warp, which was no
longer available from capability 7.0 (the Volta architecture) [15] onward.

2.3 Fusion

To make programs run faster, they need to be optimised. This can be done manu-
ally by the programmer, or automatically by the compiler. When the programmer
optimises by hand, they are able to use certain information about the program
(e.g. invariants) to make functions more efficient. On the other hand, the com-
piler might recognise some patterns used by the programmer, and transform them
into more efficient code.

A number of compiler optimisations combine operations. By combining oper-
ations, some of the overhead for storing and reading instructions can be avoided.
Early examples of this are super-combinators [19] and superoperators [20].

Another way to optimise a program is by combining loops. When the compiler
sees two adjacent loops, that loop over the same range, it can choose to move the
loop bodies into a single loop body if there is no data-dependence between the
loop bodies. This transformation is known as loop fusion [21]. The advantages of
loop fusion are that:

• The overhead of keeping track of the loop condition is reduced

• The code space is reduced

• More instructions are exposed for parallel execution and for local optimisa-
tion

Loop fusion is a so-called source-to-source [22] transformation. This means that
the source code is optimised by slightly modifying it, rather than by introducing
new primitive operations for the language that the compiler compiles to.

2.3.1 List fusion

In the functional programming model, programs are split into multiple smaller
operations. An example of this is shown in listing 2. In this example, the sum of
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squares is computed using multiple small steps. First, an array of integers from 1
to n is constructed. Next, the square is computed for all elements of this array.
Finally, the sum function is used on the array containing the squared numbers.

Some overhead is introduced because all small operations produce an inter-
mediate result. This is less of a problem in imperative languages, as the same
algorithm can be expressed as a single for loop like the one in listing 3. In this
program, the steps of computing squares and summing are both done in the same
loop operation. There are no intermediate results because of this; the final result
is computed by the main loop.

1 sum (map square (1 `upto` n))

Listing 2: Sum of squares in a func-
tional language.

2 result = 0
3 for i in range (1, n):
4 result += i * i

Listing 3: Sum of squares in an im-
perative language.

When running list combinators consecutively, as is done in the functional pro-
gramming model, intermediate lists are generated. For the program in listing 2,
three lists have to be constructed. One for the result of upto 1 n, one for the
result of map square and one for the result of sum. Because it costs time to allo-
cate, examine and deallocate the intermediate lists, it is beneficial if they can be
omitted. In some cases, this can be done by transforming a functional program
into a imperative one, where the imperative one is listless [23]. An example of this
is the transformation of listing 2 into listing 3.

Another possibility is to perform deforestation [24]. In this source-to-source
transformation, combinators are merged to form a recursive definition that reduces
the number of required intermediate lists. The program in listing 4 is a deforested
version of the program in listing 2. Over the years, deforestation has been refined
[5, 24, 25]. An additional benefit of the method by Chakravarty and Keller [25], is
that it it generalises to a parallel context. This makes it relevant for Accelerate.
Fusion is also beneficial for machine learning applications, as it exposes a number
of optimisation opportunities like fewer scans of input data [26].

5 h O 1 n
6 where
7 h a m n = i f m > n
8 then a
9 e l se h (a + square m) (m + 1) n

Listing 4: Deforested version of the program in listing 2.

17



2.3.2 Array Fusion

One of the refinements of deforestation that combines operations and reduces the
amount of memory needed for storing temporary, intermediate values is called
array fusion [5]. This is a useful optimisation, as many programs are inherently
memory-bound. Array fusion works as follows. In essence, a naive implementation
of an array language generates at least one kernel for every operation. As every
kernel generates an array containing its output5, this can lead to a large overhead.
A way to optimise this is by combining kernels. When kernels are combined, the
temporary output array that would otherwise be generated after the first kernel,
is handled implicitly in the combined kernel. This removes some of the memory
access required, thereby speeding up code execution. This process of combining
kernels is called vertical fusion.

Another way to reduce the number of memory accesses, is by reducing the
amount of traversals over the same array. This can be achieved by combining the
different traversals over the same array into a single traversal as with loop fusion.
The process of combining traversals in this way is called horizontal fusion.

2.3.3 Fusion in Accelerate

In the current implementation of fusion in Accelerate, only vertical fusion is per-
formed. To do this, array operations are separated into two categories [5]:

1. Element-wise operations (Producers in [5])
Operations where each element of the result array depends on at most one
element of the input array.

2. Collective operations (Consumers in [5])
Operations where each element of the result array depends on multiple ele-
ments of the input array.

The fusion of kernels is then performed in two stages. First, sequences of element-
wise operation are fused into one cumulative element-wise operation. This can
be done using a source-to-source transformation on the AST. Then, element-wise
operations that are followed by a collective operation are merged into the collective
operation.

Element-wise operations can be rewritten to a special representation: one that
keeps track of the size of an array, and stores a function that maps indices to
corresponding values [5]. This is facilitated using the data structure given in
listing 5.

The Done constructor embeds a manifest array into the AST. The Yield and
Step constructors contain functions that form a structured traversal over an array.
This is because Yield contains a function that returns an element given an index,

5This output array may be used as the input array for the following kernel.
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10 data DelayedAcc a where
11 Done :: Acc a
12 -> DelayedAcc a
13 Yield :: (Shape sh, Elt e)
14 => Exp sh
15 -> Fun (sh -> e)
16 -> DelayedAcc (Array sh e)
17 Step :: (Shape sh, Shape sh' , Elt e, Elt e')
18 => Exp sh'
19 -> Fun (sh' -> sh)
20 -> Fun (e -> e')
21 -> Idx (Array sh e)
22 -> DelayedAcc (Array sh' e')

Listing 5: Special representation of element-wise operations, to aid fusion.

and Step contains an index- and value-space transformation, that can be applied
to the array that the given index points to.

In the DelayedAcc data structure, subsequent element-wise operations can
then further build on the mapping function of the previous element-wise opera-
tions. Collective operations need to stay intact however, because it is necessary
to know how computations depend on each other to generate the most efficient
implementation of a collective operation. This is why it is only possible to do
element-wise/element-wise and collective/element-wise fusion and why it is not
possible to do collective/collective fusion.

2.3.4 Fusion of Permute with Expand

As seen in section 1.3.1, replIota and segmIota are implemented in terms of
a segmented scan. The same thus goes for expand, which is defined in terms
of the aforementioned operations. Both segmented scans and permutations are
seen as collective operations [5]. Fusion of these two operations is therefore not
possible using the existing algorithm for fusion in Accelerate, as it does not support
collective/collective fusion. Since expand is implemented using a segmented scan,
it is currently not possible to fuse expand with permute.

2.4 Code Generation

The code generation in Accelerate is based around a concept known as algorithmic
skeletons [27]. An algorithmic skeleton is the computational skeleton of an algo-
rithm, where problem-specific details can be plugged in later. To the programmer,
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a skeleton is represented as a higher-order function6 in functional languages, or a
program "template" in an imperative language. The applied skeleton can then be
compiled to its most efficient implementation for a given target language.

Algorithmic skeletons work because of the observation that any operation (e.g.
map), will always be implemented using similar code, but will use different values
for its arguments. It is thus possible to write a template for what an operation
should look like, where only the specific values corresponding with the arguments
should be filled in.

In Accelerate, the array operations are regarded as skeletons [28]. A code gen-
erator will then instantiate the implementation of those array operation-skeletons,
so that runnable machine code is generated. This code generator is dynamic, so
that code is generated at run-time. Because of this, it is possible to perform device-
specific optimisations. Currently, Accelerate compiles to the LLVM [29] language,
which is further compiled using the LLVM compiler to multi-core CPU code or
GPU code.

Using the typed LLVM language as an intermediate language has the advantage
that it helps to ensure compiler correctness [30]. To make full use of this, Gen-
eralised Algebraic Data Types (GADTs) [31] are used to define expression types.
This way, the type of an Accelerate expression can be embedded into the Haskell
type system. In GADTs, a data type contains a type variable that is not used by
a constructor. The constructor can however instantiate a more explicit version of
the data type. This way, basic type checking can be performed. See listing 6 for
an example of a small expression language, defined using GADTs.

The code generation is the final step in the Accelerate pipeline. It thus happens
after the fusion of operations. Because of this, we have to introduce a representa-
tion of fused operations in the AST, so that code generation is possible for fused
operations.

1 data Expr a where
2 LitInt :: Int -> Expr Int
3 LitBool :: Bool -> Expr Bool
4 IfThenElse :: Expr Bool -> Expr a -> Expr a -> Expr a

Listing 6: A small language of expressions, defined using GADTs.

2.5 Nested Data-Parallelism

Performing one operation in parallel over an array of data is called data-parallelism
[32, 33]. Data-parallelism is very useful on GPUs, as they are designed to run
one set of instructions on large amounts of data. There are two types of data-
parallelism. In flat data-parallelism (FDP), the operation that is performed on
every element of the data must be sequential.

6A higher-order function is a function that takes other functions as its arguments.
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The second type of data-parallelism, is nested data-parallelism (NDP). In a
language that supports nested data-parallelism, the function that is applied to
every element of data can be any function, even a parallel one. In languages that
support NDP it is thus possible to apply a parallel function multiple times in
parallel [34]. A simple example of this is a list of lists. Take the list xs defined as
[[0,1,2], [2,1], [3]]. This is a list containing lists of integers. We can then
apply the sum function over all inner lists of xs. The result of this would be [3,
3, 3].

In this example, the nested parallelism is as follows. The function sum is
mapped over xs. This map can be performed as a parallel operation. The sum
function can also be a parallel function, for example it can be implemented as a
parallel fold. Thus, the parallel map launches a different parallel function. This
can also be seen as a nested loop, where the map is the outer loop, and the sum is
calculated by an inner loop.

When the length of the inner loop depends on the current element of the outer
loop, we speak of irregular nested parallelism [34]. In the example of mapping
sum over xs, the complexity of the sum depends on the amount of elements in the
current list that is being mapped. Therefore, it is an example of irregular nested
parallelism.

Nested (irregular) parallelism is useful in divide-and-conquer algorithms. In
divide-and-conquer algorithms, the input is split into multiple smaller problems,
each of which are then solved. The results of the smaller problems are then merged,
to form the result of the original problem. In cases where the sub-problems can
be solved in parallel and are solved using a parallel function, nested parallelism
can be used to benefit from highly parallel execution. An example of this is the
following algorithm for calculating a the sum of an array:

1 sum [] = 0
2 sum (x:[]) = x
3 sum xs =
4 l e t (firstHalf , secondHalf) = sp l i t xs
5 firstSum = sum firstHalf
6 secondSum = sum secondHalf
7 in firstSum + secondSum

The function split, splits a given list into two halves. This is the ’divide’-
step. Running the sum functions is the ’conquer’-step. Note that we can run
sum firstHalf and sum secondHalf in parallel, as they are independent of each
other. Moreover, sum itself is a parallel function, as it can perform this parallel
computation. We thus conclude that sum is an example nested parallelism, because
it executes parallel operations in parallel.
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2.5.1 Flattening

Because the inner collections in irregular nested parallelism can have different sizes,
it is hard to balance the workload [10]. One possible solution is to turn the nested
structure into a flat structure, thus to turn the NDP program into a FDP program.
This process is called flattening. Flattening is well understood in the context of
regular data-parallelism [35]. It is still difficult to flatten irregular data-parallelism
so efficiently that it competes with hand-optimised code.

GPUs favour regular data. This is why it is important to transform irregular
data into regular data to improve efficiency. One way to do this is by flattening
the irregular nested data, before performing operations on the data.
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3 Language Design
To introduce the fusion of expansion with permutation, the front- and backend of
Accelerate require changes. The front-end needs support for Expand as a node in
the AST and the type of the Permute node has to be adapted for easier fusion with
Expand. Moreover, a node that contains information about the fused Permute and
Expand nodes has to be introduced into the AST. The changes to the AST will be
discussed in section section 3.1. A new function should be exposed in the language
that can be used to generate the new Expand node. Moreover, the actual fusion
of the Permute and Expand needs to be implemented in the existing algorithm for
fusion. This is discussed in section 3.2.

In order to evaluate the execution, a kernel needs to be generated in the Ac-
celerate backend. In section 4.1 we will propose a number of possible skeletons,
together with their strengths and weaknesses.

3.1 Primitives

The first step in adding code generation, is to extend the AST. This is necessary,
because code generation only happens for primitives in the AST. We start with
a constructor for expansion. In this constructor, we need to store all relevant
information for the expansion, so that it can be used later on. This is the basic
information, like the size function, the get function, and the source array. More-
over, we want to store the result type of the expansion. The concrete constructor
is found below in listing 7.

We also need to add a primitive that represents the fusion of expansion with
permutation, as we want to generate code for it. This primitive will only be used
internally, like the Transform primitive, and will not be exposed to the user. In it,
we store the information of the expansion that is fused, as well as the information
of the permutation that it is fused with. We do not need to store the source array
of the permutation, as this is embedded within the data we store for the expansion.
In listing 7, we see that PermutedExpand is indeed a combination of the Permute
and Expand primitives.

Finally, the Permute primitive is changed, to better accommodate the fusion.
The Permute primitive used to receive a combination function, an array of default
values, an index permutation function and an array of source values. When fusing
the permute operation with the expand operation, the expand operation should
provide the permutation indices as part of the result of the expand operation. We
a number of options:

1. Traverse the result of the expansion, to create a permutation function.

2. Make the permutation function get the indices from the result of the expan-
sion directly.
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3. Change the Permute primitive, so that it takes an array of permutation
indices.

4. Change the Permute primitive, so that it takes an array of source values,
combined with their permutation indices.

The first option is not ideal, as it would require an extra pass over the source
array. This could add an O(n) overhead. The second option and third options are
also not ideal, because that would mean that the result of the expansion has to be
split into an array of permutation indices and an array of source values. This would
introduce a let-binding of the form let e = (expand ...) in permute ...
(map fst e) (map snd e). This would make the result infusible. Therefore, the
last option is the best. This is because we can easily combine an array of source
values and an index permutation values, into a combined array of source values
and permutation indices. The concrete changes to the AST are also found in listing
7 below.

As the AST has been changed, functions that pattern match on it need to be
adapted so that they also match on the newly introduced primitives. Moreover,
all occurrences of the Permute primitive have to be updated, so that they use the
correct constructor again.

3.2 Fusion

In the fusion algorithm, we need to introduce some method that fuses the Permute
and Expand kernels. We choose to implement this as an extra pass over the tree, as
not to interfere with the current fusion that is based on collective and element-wise
operations. In essence, the new function will recurse through the AST. For specific
primitives, it will fuse them with Expand. The extra pass is implemented as the
fuseExpand function. A part of the implementation is given below in listing 8.
The full set of changes can be found on GitHub7.

Accelerate also contains a special primitive that represents a while-loop. This is
the Awhile primitive. It contains a function that is the loop condition, a function
that is the loop body and an initial value. At every iteration, the loop condition
is checked. If it returns True, the loop body is run. If it returns False, the loop
stops. The loop body is a function that takes one argument. The value that is
initially passed is the initial value. The value that is passed to the loop body in
iteration i+1 is the result that is returned by the loop body in iteration i. At the
end of the loop, the value that awhile returns is the value returned by the loop
body in the last iteration.

The loop body also contains array computations. This means that during a
fusion pass, the loop body must also be traversed to see if it contains any primitives
that can be fused. The fusion algorithm thus needs to recurse on this function. We

7https://github.com/goedestudent/accelerate
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1 data PreOpenAcc (acc :: Type -> Type -> Type) aenv a where
2

3 Expand ::
4 TypeR e'
5 -> Fun aenv (e -> Int) -- size function
6 -> Fun aenv (e -> Int -> e') -- element creation
7 -- function
8 -> acc aenv (Vector e) -- source array
9 -> PreOpenAcc acc aenv (Vector e')

10

11 PermutedExpand ::
12 -- Data for the expand
13 TypeR e'
14 -> Fun aenv (e -> Int) -- size function
15 -> Fun aenv (e -> Int -> (PrimMaybe sh' , e'))
16 -- element creation
17 -- function
18 -> acc aenv (Vector e) -- source array
19

20 -- Data for the permute
21 -> Fun aenv (e' -> e' -> e') -- combination function
22 -> acc aenv (Array sh' e') -- default values
23 -> PreOpenAcc acc aenv (Array sh' e')
24

25 Permute ::
26 Fun aenv (e -> e -> e) -- combination function
27 -> acc aenv (Array sh' e) -- default values
28 -> acc aenv (Array sh (PrimMaybe sh' , e))
29 -- source array
30 -> PreOpenAcc acc aenv (Array sh' e)

Listing 7: Additions to the Accelerate AST.
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also need to do this in our additional pass to fuse Expand, so that any applicable
primitives in the body of the while are also fused with Expand. Concretely, this
leads to the implementation found in listing 8. In this listing, the fuseExpandFun
function is used to fuse expansions that occur within the loop body function.

1 fuseExpandFun :: OpenAfun aenv t -> OpenAfun aenv t
2 fuseExpandFun fun = case fun of
3 Abody b -> Abody (fuseExpand b)
4 Alam lhs b -> Alam lhs (fuseExpandFun b)
5

6 fuseExpand :: OpenAcc aenv arrs -> OpenAcc aenv arrs
7 fuseExpand acc@(OpenAcc pacc) = OpenAcc $ case pacc of
8 -- Special cases for fusion with expand
9 Permute f d a -> case fuseExpand a of

10 OpenAcc (Expand (TupRpair _ e) size get arr)
11 -> PermutedExpand e size get arr f d
12 a' -> Permute f (fuseExpand d) a'
13 Map tp f a -> case fuseExpand a of
14 OpenAcc (Expand _ size get arr)
15 -> Expand tp size (f `compose2` get) arr
16 a' -> Map tp f a'
17

18

19 -- Continuation of AST traversal
20 Awhile p f a
21 -> Awhile (fuseExpandFun p)
22 $ (fuseExpandFun f) (fuseExpand a)
23 Backpermute shr sh f a
24 -> Backpermute shr sh f (fuseExpand a)
25 [...]

Listing 8: The fusion of expansion with permutation and function mapping.

The fuseExpand function is then called as the first step in the fusion pipeline.
This is to prevent Map primitives being transformed into their delayed representa-
tion, making it impossible to fuse them with the Expand primitive.
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4 Code Generation
With the fusion of kernels in place, we now need to provide the code generator
in the backend with a skeleton implementation for the PermutedExpand kernel.
While this thesis is aimed specifically at generating and evaluating CUDA code,
the discussed adaptations can also be applied to generate code for other multi-core
target devices. The general strategy is discussed in section 4.1. This section will
also discuss some strategies that can be used to divide the work. Some details
regarding permutation are discussed in section 4.2. After this, an optimisation in
the binary search algorithm is discussed in section 4.3. Finally, adaptations to the
execution engine are discussed in section 4.4. An implementation of the discussed
concepts is given in Accelerate. This implementation can be found on GitHub8.

4.1 Kernel Generation

We start by giving a high-level overview of what the generated kernel for a fused
expansion should look like. In essence, we have to perform a nested loop: the
outer loop goes over all elements of the input, and the inner loop goes over the
indices required for that element. The size of the inner loop can differ for every
element, as the size function might return a different value for every element. We
thus operate over irregular nested data. This is why it is hard to divide work over
the available threads: the workload for an element is not known in advance. In
pseudo-code, the kernel is as follows:

1 for element in input:
2 for i2 in range(0, size(element)):
3 index, value = get(element, i2)
4 if isJust(index):
5 write(index, value)

As this code is ran on multiple threads, we need to come up with a strategy to
balance the workload between the threads. There are multiple ways in which this
can be done. At one end of the spectrum, one thread can fully process one element
of the input. At the other end is to have one element of the input cooperatively
processed by many individual threads. This results in every thread generating one
element of the expansion output, and permuting that result. In such a case, we
would likely want some sort of inter-thread communication, to prevent the costly
operation of reading from the input for every thread. We now describe a number
of different kernels that correspond with different workload distributions, ranging
between the aforementioned extremes. These distributions all have their own ad-
vantages and disadvantages, which will be discussed. The upcoming sections use
some GPU-specific variables. The definitions of these variables can be found in
table 1.

8https://github.com/goedestudent/accelerate-llvm
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Variable Description Uniqueness
lane_id Identifier of thread within the warp Within 1 warp

thread_idx Global identifier of the thread Globally
thread_bidx Identifier of thread within the block Within 1 block

warp_id Identifier of the warp Within 1 block
block_id Global identifier of the block Globally
num_size Number of warps in a block N/a

block_size Number of threads in a block N/a
num_blocks Number of thread blocks running this kernel N/a
num_threads Total number of threads running this kernel N/a

Table 1: Variables available to GPU programs.

4.1.1 1-per-thread Division

In the simplest implementation, one thread processes one element of the input. In
pseudo-code, every thread will run the following kernel. Note that thread_idx
refers to the global thread index.

1 def 1_per_thread():
2 # This for-loop assigns every index to only one thread
3 start, end, step = (thread_idx, len(input), num_threads)
4 for i in range(start, end, step):
5 element = input[i]
6 for i2 in range(0, size(element)):
7 index, value = get(element, i2)
8 if isJust(index):
9 write(index, value)

The main advantage of this kernel is its simplicity. No special checks or allocation
logic is required, apart from pairing every input element with one thread.

Disadvantages of this kernel include that the workload of threads could become
heavily unbalanced, as every element in the input can be expanded to an arbitrary
amount of values. Moreover, not all threads will be utilised for small inputs. For
example, a machine with 1024 available threads would have half of them idling on
an input of 500 elements, even though those 500 elements are potentially expanded
to millions of values.

One way to mitigate this, is by having multiple threads work on the same
element of the input. This can be done in various granularities, the simplest of
which are block-level and warp-level, which we discuss in the next sections.

4.1.2 1-per-block Division

First, we consider a strategy where one element of the input is processed by one
block. To divide the input elements at a block-level, the kernel looks as follows:
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1 def 1_per_block():
2 # This for-loop assigns every index to only one block
3 for i in range(block_id, len(input), num_blocks):
4 element = input[i]
5 for i2 in range(thread_bidx, size(element), block_size):
6 index, value = get(element, i2)
7 if isJust(index):
8 write(index, value)

In this kernel, every input element is processed by one thread block. Every thread
in the block then performs one expansion and permutation. This kernel is less
susceptible to unbalanced workloads, albeit by a small amount. All threads are
likely to perform an (about) equal amount of work, given that they all perform an
expansion and the following permutation. Imbalance can still arise when one input
element expands to a greater number of elements than others. In such a case, one
block will need to perform more operations than the others. Moreover, when all
input elements expand to less elements than the block size, there are threads that
will be idle.

Furthermore the kernel is inefficient, as every thread will read the input ele-
ment. This results in a lot of memory accesses, which can become costly for bigger
inputs. To mitigate this, we can share the value between threads that work on the
same input element.

4.1.3 1-per-block Division With Shuffling

One way to share data between threads, is by shuffling data within warps. By
shuffling data in a warp, every element needs to be read block_size/warp_size
times instead of block_size times. Recall that a warp consists of 32 threads, thus
we reduce the amount of global memory accesses by a factor of 32. This sharing
is easily added, as can be seen in the following kernel.

1 def 1_per_block_with_shuffle():
2 for i in range(block_id, len(input), num_blocks):
3 if lane_id == 0:
4 element = input[i]
5 __sync_warp()
6 element = __shfl_idx(element, 0)
7 for i2 in range(thread_bidx, size(element), block_size):
8 index, value = get(element, i2)
9 if isJust(index):

10 write(index, value)

This approach does not work old GPUs, as the shuffle operation was not always
available. The shuffle operations became available with the Kepler architecture,
which corresponds with compute capability 3.0.
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4.1.4 1-per-block Division With Shared Memory

When using shuffles, an element in the input is still read more than once. With
thread blocks of 1024 threads, every element is still read 32 times when the warp
size is 32 threads. One possibility to remedy this is by using shared memory, as this
is shared by the whole thread block. While using shared memory is slower than
shuffling as it uses three operations as opposed to one [36, 37], this may be balanced
out due to the reduced amount of total memory access required. Moreover, this
is the method recommended by NVIDIA when multiple threads in a block use
the same data from global memory [38]. Moreover, this is a better way when the
shuffle operation is not available on a GPU.

Implementing the sharing of input elements via shared memory would require
the following insignificant change to the kernel from the previous section. Note
that because shared memory is allocated per thread block [38], every thread in a
block can write to and read from index 0. An obvious drawback of this approach
is that if the input element expands to a very small amount of elements (e.g. if
we use the expand as a filter), the writing to and reading from shared memory
only adds additional overhead. However, using one thread block to expand the
elements would also be inefficient in such a case.

1 def 1_per_block_with_shared_memory():
2 for i in range(block_id, len(input), num_blocks):
3 # The if now only runs for one thread per block, instead
4 # of one thread per warp
5 if thread_bidx == 0:
6 element = input[i]
7 shared[0] = element
8 __sync_threads()
9 element = shared[0]

10 for i2 in range(thread_bidx, size(element), block_size):
11 index, value = get(element, i2)
12 if isJust(index):
13 write(index, value)

4.1.5 1-per-warp Division

Another approach to reduce the number of global reads when using shuffles is by
spreading the input over warps. This too is a relatively small change to the kernel
that performs multiple shuffles of the same element. A drawback of this approach
is that an element is expanded by only 32 threads. If an element expands to many
values, it will take longer to compute because there are fewer threads (i.e. 32
instead of 1024) available to work on it concurrently compared to the situation
where the input is spread over thread blocks.
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1 def 1-per-warp():
2 # Loop using warps instead of blocks
3 for i in range(warp_id, len(input), num_warps):
4 if lane_id == 0:
5 element = input[i]
6 __sync_warp()
7 element = __shfl_idx(element, 0)
8 for i2 in range(lane_id, size(element), warp_size):
9 index, value = get(element, i2)

10 if isJust(index):
11 write(index, value)

4.1.6 n-per-block Division

Thus far, we have introduced various algorithms aimed at expanding one input
element using one or more thread blocks. We can however also take the opposite
approach. That is, we use one block to expand multiple input elements. This will
be especially beneficial in situations where the source elements expand to a small
number (less than the number of threads in a block) of elements.

In this approach, every block is assigned n input elements. Every block will
then calculate how many target elements its assigned input elements are expanded
to. Next, all blocks determine how to balance their workload over their available
threads. This is done under the assumption that all expansions will take about
the same time. Every block balances the expansions such that one expansion, that
is running the get function, is done by one thread in the block.

The loop will then look as in listing 9. Note that there are certain important
edge-cases that we need to take into account. In listing 9, NUM_ELTS refers to
the number of elements n that one block will process. The calls that synchronise
threads are necessary at their points in the listing, because we do not want threads
to read old values from shared memory, or to overwrite values while other threads
are still using them.

It is also important to note that in the loop that loads in the sizes, we need
to take the case into account in which the input has a size that is not a multiple
of n. If this is the case, the loop will start reading out-of-bound values. It must
therefore be checked if i + j is still within bounds of the input array.

A Parallel Sum The prefix sum in listing 9 is calculated sequentially. This may
impact the performance of the kernel, especially for larger n. We have therefore
also implemented a version of the Sklansky prefix sum. The original algorithm
from Grimshaw and Merrill [39] has been implemented in Haskell and has had its
outer loop unrolled for further efficiency.
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1 def n_per_block():
2 for i in range(block_id * NUM_ELTS, len(input), num_blocks * NUM_ELTS):
3 __sync_threads()
4 # Load in all sizes
5 for j in range (thread_bidx, NUM_ELTS, 1):
6 value = input[i + j]
7 smem_value[j] = value
8 smem_size[j] = size(value)
9 __sync_threads()

10

11

12 # Calculate the prefix sum
13 if thread_bidx == 0:
14 for j in range (1, NUM_ELTS, 1):
15 smem_size[j] += smem_size[j - 1]
16 __sync_threads()
17

18 total_elements = smem_size[NUM_ELTS - 1]
19 for i2 in range(thread_bidx, total_elements, block_size):
20 input_index = binary_search(i2, smem_size)
21 element = smem_value[input_idx]
22 get_index = 0 if input_index == 0
23 else smem_size[input_idx - 1]
24 index, value = get(element, get_index)
25 if isJust(index):
26 write(index, value)

Listing 9: Implementation of the n-per-block kernel.
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4.2 Permutation

In the previous subsection, we have discussed ways to expand the input in a par-
allel manner. We now present some important concepts that are needed for the
permutation. First, recall that permutation requires a combination function ⊕.
When we permute an expansion to the result array, we combine it with the value
that was already in that location. That means that in the above kernels, the
permutation is performed as follows.

1 def write(index, value):
2 index = fromJust index
3 output[index] = output[index] ⊕ value

This leads to the next problem: since all kernels run in parallel, it is possible
that two kernels need to permute to the same index at the same time. They
may then both read the same old value, and write their own new value. This
is unwanted behaviour, because the read and writes should happen in one step.
We want such a read-modify-write to happen atomically. There are two ways
to implement this. The first is using CUDAs built in atomics. These are only
available when the combination function is a primitive function like addition or
multiplication. The second method is by using locks. This requires an auxiliary
array in which it is indicated whether an element in the output is currently being
read and modified (locked) or not. When we want to permute, we first acquire the
lock. We then perform the read-modify-write and release the lock so that other
threads can perform their own read-modify-writes.

4.3 Binary Search

In the n-per-block kernels we use binary search to find the input element that a
given thread needs to work on. Therefore, the binary search should return the first
element that is greater than or equal to the target value. This can be implemented
in multiple ways. The simplest is using a simple loop as follows.

1 def binary_search(target, array):
2 left, right = (0, len(array) - 1)
3 while right > left:
4 delta = left + right
5 mid = (delta `quot` 2) + 1
6 value = array[mid]
7 if value < i:
8 left, right = (mid, right)
9 else:

10 left, right = left, mid

This adds overhead, because the program now needs to keep track of the loop
condition. This is unnecessary, as we know that the binary search will always
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perform log2(n) steps until the condition is true. We can thus unroll the loop,
removing the need to check the condition at every step. We can do this efficiently
if we first look for the last element that is smaller than the target value. We then
know that the element after that must be the first element that is greater than or
equal to the target value. Note that the binary_search_unroller function is not
part of the kernel, but is used to generate the kernel.

1 def binary_search_unroller(target, arr, bit, res):
2 bit -= 1
3 if bit == -1:
4 return res
5 mask = 1 << bit
6 mid = res + mask
7 if arr[mid] <= target:
8 res = res | mask
9 return binary_search_unroller(target, arr, bit, res)

1 def binary_search(i, arr):
2 n_bits = math.floor(math.log(len(arr), 2))
3 target = i - 1
4 res = binary_search_unroller(target, arr, n_bits, 0)
5 if res == 0 and arr[0] > target:
6 res =- 1
7 return res + 1

4.4 Run-time Evaluation

Thus far we discussed the steps necessary to fuse the expand and permute op-
erations and to generate code for the resulting fused kernel. The final step in
making the kernel available to the user is providing the backend with the correct
information to execute the kernel. In Accelerate, the kernel requires most of the
information that permutation also requires. The execution function is therefore
implemented as an adaptation of the execution function for forward permutation.

In essence, we start by creating array representations that can be used to
allocate the necessary memory on the remote device. We then check if the defaults
array can be modified in place. If it cannot be modified in-place, we create a copy
of that array. If we need to run the kernel that requires an array of locks, we
also allocate memory to store those locks. Finally, we copy the input array to the
remote and execute the kernel using the allocated arrays.
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5 Results
To test the effect of different methods for fusing permutation with expansion,
several benchmarks have been ran to test their performance. We use micro-
benchmarks, as well as some realistic use cases where permutation would be used
after flattening by expansion. In this section we will discuss the benchmarks and
the different results found after running the benchmarks. The benchmarks are run
using the Criterion. This is a performance measurement framework for Haskell.
Every benchmark is first executed 10 times as a warm-up. Performance is not
yet measured during these runs. The benchmark is then run repeatedly for 5 sec-
onds. The reported run time is the average over these runs. The benchmarks are
run on a Linux machine with a GeForce RTX 2080 Ti graphics card, that has
12 gigabytes of VRAM. The system also has an AMD Ryzen Threadripper 2950X
16-Core processor and 64 gigabytes of system memory. This is less relevant for
the benchmarks as they are targeted at measuring the GPU performance.

5.1 Micro-benchmarks

We perform a number of micro-benchmarks. They aim to test the performance of
the different kernels in certain specific cases. They should provide an idea for the
speedup that can be gained by using the proposed fusion in an algorithm of the
same category as the benchmark. In these benchmarks, we take several factors into
account that may influence the performance of the load balancing of the kernels.
These factors are the expand size, the permutation index distribution and the use of
permutation as a filter. In the following paragraphs, we will describe the rationale
behind the concrete micro-benchmarks. The naming scheme of the benchmarks is
as follows. The term (p1% l1 − u1; . . . ) denotes that with probability pi, the size
that a source element expands to comes from the uniform distribution U(li, ui).
For the permutation targets, we use the following abbreviations:

• R: The index is chosen randomly from U(0,min(total_elements, 1000)).

• N : The index is Nothing, thus the result is not permuted to the result array.

• r ·R + n ·N : The index is R with probability r and N with probability n.

• U : The index will be unique, thus permutation never has to sequentialise
two permutations.

(100% 0-10) 7→ R In this benchmark, a source element always expands to a
small size. This is to give an insight into what kernel performs best in an algorithm
where the expansion size is always small. The results are plotted in figure 5.

The first observation we can make using these results, is that the fused kernels
are more than four times as fast as the unfused version. The next observation is
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Figure 5: Average run time of kernels on the ‘(100% 0-10) -> R’ benchmark,
relative to the run time of the kernel without fusion.

that the n-per-block kernels are faster on the input of 200000 elements than the
other kernels. Moreover, the n-per-block kernels are faster than the 1-per-block
kernel for most inputs. This could be explained by the fact that all elements
expand to a small size. Because a block has 1024 threads, it is very inefficient to
process only one input element on one block. This is because at most 10 threads
are utilised, in which case 1014 threads will not be utilised. Since an n-per-block
kernel processes n times more elements than a 1-per-block kernel, it is able to do
n times the amount of work that the 1-per-block kernel would be able to do. Note
that this is only true if the amount of expansions done by the n-per-block kernel
does not exceed 1024. Given that the expected expansion size for every element is
5, the ideal n would be ⌊1024/5⌋ = 204. We do indeed see that the 512-per-block
kernel performs worse than the other n-per-block kernels.

(100% 0-100) 7→ R In this benchmark, a source element always expands to
a moderate size. This is to give an insight into what kernel performs best in an
algorithm where the expansion size is moderately sized. The results are plotted
in figure 6. In this figure, we again see that a speedup of around five times was
achieved.

(100% 1000-3000) 7→ R In this benchmark, a source element always expands
to a large size. This is to give an insight into what kernel performs best in an
algorithm where the expansion size is always large. The results are plotted in
figure 7.
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Figure 6: Average run time of kernels on the ‘(100% 0-100) -> R’ benchmark,
relative to the run time of the kernel without fusion.

Figure 7: Average run time of kernels on the ‘(100% 1000-3000) -> R’ benchmark,
relative to the run time of the kernel without fusion.
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Figure 8: Average run time of kernels on the ‘(75% 1-1; 25% 0-0) -> R’ benchmark,
relative to the run time of the kernel without fusion.

As with the previous benchmark, we see that there are kernels that have a
better run time than the kernel without fusion. Two things stand out:

1. The last column contains very small values.

2. The bottom three kernels are slower than the situation without fusion for
some inputs.

Both of these observations can be explained. The last column contains very low
values, because the absolute run time of the kernel without fusion is very large.
This indicates that there is a bottleneck in the kernel without fusion, that is not
present in the kernels with fusion.

The reason that the some kernels are slower can be explained by looking at the
expansion sizes again. The expected expansion size for an input element is 1500.
This means that an ideal division over thread block threads would be ⌈1024/1500⌉
= 1. This is also visible in figure 7; the 1-per-block kernel has the best run time
of all n-per-block kernels. The 128-per-block kernel has to perform 128 · 1500 =
192, 000 expansions. As every thread does one expansion, ⌈192, 000/1024⌉ = 188
passes are required per thread block per input.

(75% 1-1; 25% 0-0) 7→ R In this benchmark, the expand operation is used
as a filter. Since this is one of the use-cases for expand, it is interesting to see
whether there is an increase in performance in the fused kernel. The results are
plotted in figure 8.
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Figure 9: Average run time of kernels on the ‘(90% 0-10; 10% 3000-3500) -> R’
benchmark, relative to the run time of the kernel without fusion.

From the results it is clear that all kernels have a run time that is about
five times better than the situation without fusion. An interesting observation
for this benchmark is that the 1-per-thread kernel performs very well.This makes
sense, because every input element does at most one expansion. Moreover, most
n-per-block kernel do not make efficient use of the available threads, because some
threads will be idle if n is less than 1024.

(90% 0-10; 10% 3000-3500) 7→ R In this benchmark, an element has a 90%
chance to expand to a small size, and a 10% chance to expand to a large size.
All elements are permuted to a random target index. This probabilistic expansion
size makes it so that some thread blocks have much more work to do than others.
Therefore, it is expected that a kernel that takes on multiple elements of the input
(i.e. a n-per-block kernel) performs better on this benchmark. The results are
plotted in figure 9.

The first observation we can make from the results is that, again, all kernels
offer a speedup compared to the situation without fusion. The next observation
we can make is that the 1-per-thread kernel is the slowest of the kernels. This
is likely because this kernel is not able to handle the irregular expansion pattern
present in this benchmark. As one in ten elements will expand to a large size, a
tenth of all threads will have a lot of work. All smaller threads then need to wait
for the thread with the large expansion size to finish. Since smaller expansions
take much less time, 90% of threads will be waiting about two-thirds of the time.
This especially becomes a bottleneck on bigger input sizes, on which the kernel
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Figure 10: Average run time of kernels on the ‘(90% 0-10; 10% 3000-3500) ->
0.75R + 0.25N’ benchmark, relative to the run time of the kernel without fusion.

needs to do multiple passes to fully process all input elements.
Finally, we see that the 128-, 256- and 512-per-block have a larger run time

than the other n-per-block kernels. The reason for this is likely analogous to that
of the 1-per-thread kernel. Focussing on the 128-per-block kernel, there will be
about 12 input elements expanding to a large size in every thread block. This
means that every thread block has an expected amount of total expansions of
12 · 3250 + 116 · 50 = 44800, divided over 1024 threads. All threads thus need to
process at least ⌊44800/1024⌋ = 43 expansions. This amount of passes could slow
down the kernel.

(90% 0-10; 10% 3000-3500) 7→ 0.75· R + 0.25· N In this benchmark, an
element has an 90% chance to expand to a small size, and a 10% chance to expand
to a large size. Moreover, some elements are permuted to an index of Nothing,
thus filtered out. This is to evaluate performance when the permute operation is
also used to filter. Note that the expand operation is also used as a filter, as the
expansion size can become zero. The results are plotted in figure 10.

In this figure, we see that the results are quite similar to those in 9. This leads
us to believe that the performance for this benchmark is mostly influenced by the
expansions.

(100% 0-10) 7→ 0.01· R + 0.99· N This benchmark is created specifically to
analyse the performance of the expanding part of the kernel. Because almost all
elements are permuted to Nothing, the writes performed by a permutation should
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Figure 11: Average run time of kernels on the ‘(100% 0-10) -> 0.01R + 0.99N’
benchmark, relative to the run time of the kernel without fusion.

not lead to any overhead. Moreover, because the expected expansion size is 5,
all expansion computations should mostly fit within one thread block when the
n-per-block kernels. The results of this benchmark are plotted in figure 11. We
see that these results are quite similar to those in figure 5. This indicates that the
permutation has a small effect on the total run time of the kernel.

5.2 Realistic Benchmarks

In the following paragraphs, we discuss some realistic benchmarks that perform
a permutation after an expansion. These benchmarks should give an idea of the
performance increase that the fusion is able to achieve in a real algorithm.

Sieve of Eratosthenes The first benchmark is the Sieve of Eratosthenes, which
is also used in the paper “Data-parallel flattening by expansion” [6]. The algorithm
calculates the primes smaller than some given n. In listing 10 of appendix A, an
adaptation of the Accelerate implementation that can be found in the Accelerate
documentation is given. This adaptation uses the new permute’ function. The
results of this benchmark can be found in figure 12.

Inspecting the results of this benchmark, we can observe the following. For a
limit of at most 100,000, all kernels are faster than the situation without fusion.
However, for a limit of 1,000,000 and up, only the 1-per-block kernel is faster than
the situation without fusion. This is likely because the input of the expand is
heavily unbalanced; the expansion size of later elements is many times smaller

41



Figure 12: Average run time of kernels on the ‘Sieve of Eratosthenes’ benchmark,
relative to the run time of the kernel without fusion.

than the expansion size of earlier elements. This can be easily calculated when
taking a concrete example.

Consider the 2-per-block kernel, with a limit of 10,000,000. As we see in listing
10, the size function is size p = (c2 - p) ‘quot‘ p. The array of source values
for the expand operation will contain all primes up to c1. We can compute the
sizes for the last iteration, in which case c2 will equal n + 1. Some of these sizes
are as follows:

size 2 = (10, 000, 001− 2)/2 ≈ 5, 000, 000

size 3 = (10, 000, 001− 3)/3 ≈ 3, 333, 333

size 5 = (10, 000, 001− 5)/5 ≈ 2, 000, 000

size 7 = (10, 000, 001− 7)/7 ≈ 1, 428, 570

size 11 = (10, 000, 001− 11)/11 ≈ 909, 090

size 13 = (10, 000, 001− 13)/13 ≈ 769, 229

We know that the primes 2 and 3 will be expanded by the first thread block, the
primes 5 and 7 will be expanded by the second block and that the primes 11 and
13 will be expanded by the third block. This means that the total number of
expansions si for block i will be:

s0 = 5, 000, 000 + 3, 333, 333 = 8, 333, 333

s1 = 2, 000, 000 + 1, 428, 570 = 3, 428, 570

s2 = 909, 090 + 769, 229 = 1, 678, 319
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Figure 13: Average run time of kernels on the ‘Single-Source Shortest Path using
BFS’ benchmark, relative to the run time of the kernel without fusion.

This shows that the first thread block needs to do 2.4 times as much work as the
second block, and 5 times as much work as the third thread block. We thus see that
some thread blocks will form a big bottleneck, because the input is pathologically
unbalanced. The 1-per-block kernel however, does the most expansions in its first
thread block, namely 5,000,000. While this also cannot be processed in one pass
using only 1,024 threads, the first block should be able to process its elements
about 40% faster, which is in line with the benchmark results.

BFS in a Graph The second benchmark is a graph algorithm. It is an imple-
mentation of a single-source multiple-destination shortest path algorithm, using
breadth-first search. In this algorithm, the expand-operation is used to find neigh-
bours of explored nodes. We can then use the permute’-operation to update the
parent value of these neighbouring nodes, thereby marking them as explored. The
loop runs until the vector of parents is no longer updated. The code can be found
in listing 11 of appendix A. From the results of in figure 13, we see that for various
graph structures, the fused kernel is faster than the unfused kernel.

Rendering 3D Models The third benchmark is an algorithm for rendering in
3D. This use case is mentioned in the paper introducing expand [6], but not imple-
mented as the Futhark implementation of scatter does not have a combination
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Figure 14: Average run time of kernels on the ‘3D Rendering’ benchmark, relative
to the run time of the kernel without fusion.

function. As the Accelerate implementation of permute’ does provide this, we can
use the following process for rendering 3D objects.

The benchmark first projects a set of 3D triangle corner coordinates onto a
screen, resulting in a set of 2D triangle corner coordinates. These coordinates
now form the 2D triangles that should be drawn on the canvas. The projection
is implemented using the theory from Fundamentals of Computer Graphics (4.
ed.) [40]. Using the expand operation, we can find the endpoints of the horizontal
lines that make up the triangles. Using yet another expand operation, the end-
points of these lines can be translated to all points on the horizontal lines. This
results in all 2D points that make up all 2D triangles. We then use permute’ to
plot these points on the canvas, where the point with the lowest z-index is drawn
on top. An example of such a rendering can be found in figure 15.

As a benchmark, we have rendered multiple models. We have used the Utah
teapot, consisting of 6,200 faces. We have also used the Stanford dragon, consisting
of 100,000 faces. Furthermore, the Stanford armadillo consisting of 345,944 faces
was used. These models are well-known 3D test models. The results of this
benchmark are plotted in figure 14. In this figure, we can see that the run time
improves when using the fused kernel. The reason that the increase is so much
bigger for the armadillo model, is because the absolute time that it takes the
unfused version is much greater. All other absolute kernel times stay in the same
range as for the other inputs.

Moreover, we see that it is beneficial to use to use a kernel that expands multiple
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Figure 15: Stanford dragon, rendered using the expand and permute operations.
The dragon is white, and shaded with Lambertian shading.

input elements using one thread block. This indicates that most input elements
expand to a small number of target elements. This makes sense, as the canvas
size is 1080 by 1080. Most triangles take up only a small portion of this canvas,
otherwise the model would not fully fit on the visible part of it. Because triangles
expand to a small number of pixels, it is beneficial to handle multiple triangles in
one thread block.

Note that models with more faces will result in smaller expansions. This is
because more triangles are rendered on a canvas of the same size. To fully show
the model, all triangles must thus be drawn smaller. Given that a pixel has a static
size, every triangle spans less pixels. In the case of a larger model, the expansion
size will thus be smaller, however the number of source elements will be higher.
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Figure 16: Average run time of kernels on the ‘(100% 1000-3000) -> R’ benchmark,
relative to the run time of the kernel without fusion. The results contain some
overlap with figure 7.

5.3 Unrolling Binary Search

To test the effectiveness of unrolling the binary search loop, we have performed
some benchmarks using the kernel that unrolls the binary search and also using
the kernel that uses a loop. From the results of all benchmarks, we can see that
the unrolled version always performs equally as well as the rolled version of binary
search. In some benchmarks, the performance of the unrolled version is better.

One benchmark in which this is visible is in the benchmark that expands to
big sizes, that is (100% 1000-3000) 7→ R. In figure 16, the same results as in figure
7 are plotted, but the run times for the kernel with a rolled binary search are also
shown. In this table we see that the unrolled version is always faster than the
rolled version.

5.4 Parallel Prefix Sum

To test the effectiveness of using a parallel version of the prefix sum, we have
performed the benchmarks using a kernel that uses a sequential sum and using
a kernel that uses a parallel version. It is not tested for the 2-per-block kernel,
given that it does not make sense to parallelise the sum of two elements. From the
results in figure 17, we see that the difference in performance seems negligible in
most cases. In cases with a reasonable amount of input elements and where there
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Figure 17: Average run time of kernels on the ‘(100% 0-10) -> 0.01R + 0.99N’
benchmark, relative to the run time of the kernel without fusion. The results
contain some overlap with figure 11.

is a small amount of variance, and a distinction can thus be made, we see that
when a parallel version of the prefix sum is used the performance is increased by
a small amount.
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6 Conclusions
This thesis has brought several contributions to the field of data-parallel array
languages. The first contribution, the fusion of expand with permute in an AST,
merely builds on previous work, yet provides a fundamental starting point for the
code generation of the fusion.

The second contribution is the generation of low-level code that performs a
permutation after an expansion without producing an intermediate result. We
have discussed several possible implementations for such low-level code, as well as
their advantages and drawbacks. The discussion should be applicable to generic
parallel array languages that compile to a different low-level language. An ex-
ample implementation of this low-level code generation is given in the Accelerate
language.

Finally, benchmarks have been run on the implementation in Accelerate. Using
the results from these benchmarks, it is possible to draw conclusions about the
effectiveness of the fused kernel. As can be seen in the benchmark results, using a
fused kernel is always better than using two operations. Moreover, in most cases
the performance was twice as good. In many cases the performance was even up
to five times as good as the situation without fusion. Especially the 1-per-block
kernel seems to be an improvement over the version without fusion.

The reason that the n-per-block kernels become slower on big inputs, is likely
because the amount of work they need to do depends heavily on the chosen n.
When the n increases, the increased amount of work still is done by only 1024
threads. This is a problem if the total amount of work exceeds this number.

6.1 Future Work

There are a number of possibilities for future work. One option is to randomise the
order in which input elements are assigned to blocks in the n-per-block kernels.
This might reduce the effect that pathological inputs like the Sieve of Eratosthenes
have on the total run time. This randomisation should not influence the outcome
of a program, given that that every expanded element will be permuted and that
the permutation index is generated during the expansion.

Another option is to see whether performance is increased when every thread
performs one expansion. To divide work like this, a prefix sum over all input
elements will be necessary, after which all expansions of all input elements can
be divided over all available threads. This could lead to a ’perfect’ balancing of
workload, but does require an intensive scan that uses global memory. It will also
require an extra pass over the input, to compute the expansion sizes of all input
elements.

48



Appendix A Benchmark Implementations

A.1 Sieve of Eratosthenes

1 primes :: Exp Int -> Acc (Vector Int)
2 primes n = afst loop
3 where
4 c0 = unit 2
5 a0 = use $ fromList (Z:.0) []
6 limit = truncate $ sqrt $ fromIntegral (n+1)
7 loop = awhile
8 (\(T2 _ c) -> map (< n+1) c)
9 (\(T2 old c) ->

10 let c1 = the c
11 c2 = c1 < limit ? ( c1*c1, n+1 )
12 --
13 sieves =
14 let size p = (c2 - p) `quot` p
15 get p i = (2+i)*p
16 put x = x >= 0 && x < m
17 ? (Just_ (I1 x), Nothing_))
18 in
19 map (\x -> T2 (put x) 0)
20 $ map (subtract c1)
21 $ expand size get old
22 --
23 new =
24 let m = c2-c1
25 in
26 afst
27 $ filter (> 0)
28 $ permute' const
29 (enumFromN (I1 m) c1)
30 $ sieves
31 in
32 T2 (old ++ new) (unit c2))
33 (T2 a0 c0)

Listing 10: Sieve of Erastosthenes.
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A.2 BFS in a Graph

1 bfs :: Exp Int -> Exp Int -> (Exp Int -> Exp Int)
2 -> (Exp Int -> Exp Int -> Exp Int)
3 -> Acc (Vector (Maybe Int))
4 bfs src totalNodes numNeighbours getNeighbour = afst loop
5 where
6 parentsI =
7 generate (I1 totalNodes)
8 (\(I1 i) -> cond (i == src) (Just_ src) Nothing_)
9 parentsN = fill (I1 totalNodes) Nothing_

10 loop =
11 awhile
12 (\(T2 parents oldParents) ->
13 map not $ and $ zipWith (==) parents oldParents)
14 (\(T2 parents oldParents) ->
15 let
16 known = afst $ compact
17 (map (not . (match isNothing)) parents)
18 (enumFromN (I1 totalNodes) 0)
19 e = expand (match numNeighbours)
20 (\elem i -> T2 (Just_ $ I1 $
21 (match getNeighbour) elem i)
22 (Just_ elem)) known
23 (neighbours, newParents) = unzip e
24 perm (I1 i) = neighbours !! i
25 p = permute (match (<|>)) parents perm
26 newParents
27 in T2 p parents
28 )
29 (T2 parentsI parentsN)
Listing 11: Single-source multiple-destination shortest path algorithm using BFS.
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