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Abstract

Our ability to collect data is rapidly surpassing our ability to store it. As a result, organizations are

faced with difficult decisions about what data to retain, and in what form, to meet their business

goals while complying with storage restrictions. We address this retention issue in the context of

relational data by exploiting continuous stochastic submodular maximization technology. Given a

relational dataset D, a query-log Q, and a budget B, the objective of our problem, data forgetting, is

finding a subset D∗ ⊆ D with at most B tuples, such that it is still possible to compute, based solely

on D∗, approximate answers to the expected workload of queries. We formalize data forgetting as a

stochastic subset selection exercise and consider two variants: independent (ignoring the topology

of D), and dependent (taking it into account). Independent (resp. Dependent) data forgetting can be

cast an instance of the 0-1 Knapsack problem (resp. the discrete stochastic submodular maximiza-

tion problem). Capitalizing on this connections, two routines are proposed: IndepDF and DepDF.

The former solves the independent variant exactly in pseudo-polynomial time, and the latter approx-

imately solves, in expectation, the dependent variant within a (1− 1/e− ϵ) factor. Experimentally,

IndepDF (resp. DepDF) it’s shown to fetch high quality solutions when Q retrieves homogeneous

(resp. heterogeneous) views of D. Furthermore, time performance-wise, both routines are mildly

affected by increases in |D|, not affected at all by increases in |Q|, and completely unaffected by

increases in B. This almost-perfect independence wrt the input’s size, allows them to operate in

data intensive environments.
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Chapter 1

Introduction

Over the past two decades, Big Data has become the prism through which we look at almost every

aspect of the world. Data-driven solutions have enabled revolutionary advances in critical industries,

profoundly transforming our lives. Big Data is characterized for being varied, very large and gener-

ated at an ever-growing speed. Nonetheless, it’s raw and therefore must be stored and subsequently

analyzed to extract knowledge out of it.

To date, advances in storage technology have allowed organizations to accumulate data with al-

most no restriction. However, it’s estimated that the size of the global datasphere (i.e., the digital uni-

verse) will surpass storage production by an order of magnitude as soon as 2025 [Reinsel et al.(2018)].

Moreover, as pointed out by the recent General Data Protection Regulation (GDPR) [EU(2016)],

uncontrolled data storage could jeopardize the privacy and security of individuals. To mitigate this

danger, such law confers any resident of a protected region the right to enforce a company the

deletion of his personal data.

Consequently, the luxury of unconstrained data storage is coming to an end, forcing data-driven

enterprises and research institutes to face the data reduction problem: retaining the information

hidden in the data while respecting regulatory, storage, and processing constraints [Milo(2019)]. In

other words, data reduction involves deciding what data to keep and in what form, to comply with

legal data regulations and storage restrictions, while minimizing information loss. Furthermore, due

to the vast and ever-growing nature of Big Data, automating the reduction exercise becomes vital to

avoid flooding.

This research tackles the data reduction problem in the context of (traditional) relational data by

exploiting (less traditional) stochastic submodular maximization technology. We formalize data

reduction as an optimization subset selection exercise which we’ve named data forgetting. Given

a relational database D and a query-log Q, we aim at finding a succinct subset of tuples D∗ ⊆ D

(storage constraint) that allow to faithfully answer queries sampled from the underlying distribution

Q which generated query-log Q (processing constraint). That is, subset D∗ retains the information

hidden in D when the former is understood as the ability to cope with the expected query workload.

8



CHAPTER 1. INTRODUCTION 9

Example 1.0.1. Consider the toy database shown in table 1.1. Assume that of the three tuples in D

we can only keep two (storage constraint). Furthermore, suppose that the only information we have

about the usage of D is query-log

Q = {q1 : Age = 25, q2 : City = Amsterdam ∧ Job = Teacher, q3 : Name = Olivia}.

That is, three unique queries occurring with equal probability, each retrieving a different part of

D (processing constraint). Query q1 retrieves the complete database, q2 retrieves d1 and d3, and

q3 retrieves d3. In other words, the answer set of q1 (resp. q2, q3) in D, denoted q1(D) (resp.

q2(D), q3(D)), is equal to {d1, d2, d3} (resp. {d1, d3}, {d3}). Consequently, d3 is accessed three

times, d1 is accessed twice, and d2 is accessed once.

id Name Last name Age City Job Married Children
d1 James Smith 25 Amsterdam Teacher Yes 2

d2 Wade Brown 25 Paris Firefighter No 0

d3 Olivia Smith 25 Amsterdam Teacher Yes 2

Table 1.1: Toy database D = {d1, d2, d3}.

Considering this information, which two tuples should be kept? Given that |D| = 3, there exist

only
(
3
2

)
= 3 possible combinations. Namely,

D′ = {d1, d3}, D′′ = {d1, d2}, D′′′ = {d2, d3}.

Arguably, the most natural election would be D′ (i.e, keeping the two most frequently accessed

tuples). However, by making this choice, we are overlooking the structure of the data. That is, the

fact that tuples in the database may be similar or dissimilar to each other.

It’s natural to conceive D as a graph GD where each tuple corresponds to a node, and there

exist a weighted edge between any two nodes reflecting their degree of similarity (see figure 1.1).

Furthermore, the level of fulfillment of any given query q should take into account the fact that if a

requested tuple d is not retained, its information may be totally/partially encompassed by another

retained tuple d′ that’s similar to the former.

Interestingly, upon taking into account the topology of the data and measuring query satisfia-

bility in the aforementioned way, subset D′′′ (i.e, a subset containing the least frequently accessed

datapoint!) turns out to be the best possible election when maximizing the expected query work-

load fulfillment. Intuitively, this is because tuples d1 and d3 are very similar to each other and

very dissimilar to d2. Hence, every answer set q(D), q ∈ Q is more diversely covered by a subset

containing d2 and one of d1 or d3 exclusively.
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Figure 1.1: Graph representation of database D = {d1, d2, d3} as in table 1.1, denoted GD. Each
node corresponds to a tuple in D. An edge exists between any two nodes if the (Jaccard) similarity
between the corresponding tuples (when understood as sets) is strictly positive. For example, tuples
d1 and d3 are identified with sets

Constrs(d1) = {Name = James, Last name = Smith, Age = 25, City = Amsterdam, Job = Teacher,Married = Yes, Children = 2},

Constrs(d3) = {Name = Olivia, Last name = Smith, Age = 25, City = Amsterdam, Job = Teacher,Married = Yes, Children = 2}

respectively. Consequently,

Jaccard(d1, d3) =
|Constrs(d1) ∩ Constrs(d3)|
|Constrs(d1) ∪ Constrs(d3)|

= 6/8 = 3/4,

depicted in red.

We considered two variants of the data forgetting problem: independent and dependent. In the

former, independence between the tuples’ content is assumed, and consequently, query fulfillment

is understood as query precision. For the contrary, the latter takes into account the structure of the

data as described by means of the toy example, and hence, query fulfillment is measured via the

facility location function.

Independent data forgetting can be proven to be an instance of the 0-1 Knapsack problem. As

a consequence, computational complexity-wise, independent data forgetting lies in weak-NP and

can be exactly solved in pseudo-polynomial time. On the other hand, dependent data forgetting

can be cast as an instance of the stochastic submodular maximization problem under a coverage
function (namely, the facility location function). Maximization of submodular coverage functions

can be reduced to max-cover, which belongs to strong-NP and it’s NP-hard to approximate beyond

(1 − 1/e). Therefore, regarding the computational complexity, dependent data forgetting lies in

strong-NP and it’s NP-hard to approximate beyond (1− 1/e).

We developed two data forgetting routines with strong theoretical guarantees to address both

variants of the problem: IndepDF and DepDF. IndepDF exactly solves independent data forget-

ting by resorting on the 0-1 Knapsack solver. Furthermore, DepDF approximately solves dependent

data forgetting with a factor of (1 − 1/e − ϵ), in expectation, by: lifting the problem into the con-

tinuous domain using multilinear continuation; solving the continuous version of problem with

Stochastic Continuous Greedy, a continuous stochastic submodular maximization algorithm; and
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last, maping the continuous solution back into the discrete domain via randomized pipage round-
ing. The extensive experimental evaluation on both real and synthetic data confirm the theoretical

guarantees, and showcase the feasibility of the proposed routines in data intensive environments.

Our contributions can be summarized as follows.

1. We formulate the data forgetting problem (a unifying framework) and it’s two most natural

variants.

2. We study the theoretical computational complexity of both variants and prove their NP-

hardness.

3. We propose two very efficient and highly scalable algorithms (IndepDF and DepDF) to

solve the two variants of the problem.

4. We present an extensive experimental evaluation, based on real and synthetic data, demon-

strating the effectiveness, efficiency, and scalability of our proposed data forgetting routines.

Outline. Chapter 2 provides an extensive literature review on data reduction, covering data

summarization and the seminal work on of what we have named data forgetting. Chapter 3 formally

introduces the data forgetting problem in its two flavours as well as the IndepDF and DepDF

routines. Finally, chapter 4 presents the experimental results and some concluding remarks.



Chapter 2

Related Work

Data preservation is the act of conserving and maintaining the safety and integrity of data over

time [Divjak(2022)]. An important affair that arises in the context of Big Data preservation is

data reduction. Data reduction involves retaining the information hidden in massive data while

respecting storage, regulatory, and processing constraints [Milo(2019)]. In other words, if a dataset

has become too large to be stored, data reduction seeks deciding what data to keep and in what form

to minimize the loss of information while meeting storage restrictions and complying with legal

data regulations.

It is worth noting that legal data regulations should always be followed independent of the ability

or inability to store a given dataset. Regulatory constraints simply force the retention or deletion

of certain data records over time (e.g., the “right to be forgotten”, appearing in article 17 of the

General Data Protection Regulation (GDPR) [EU(2016)], confers any resident of a protected region

the right to require a company the deletion of his personal data within one month of the formal

request). Consequently, regulatory constraint enforcement is a non-algorithmic task within the data

reduction exercise.

Algorithmic data reduction essentially boils down to minimizing information loss while adher-

ing to storage constraints. The simplest way of meeting a strict storage budget in a data intensive

environment is to discard most of the data at the source where it is produced. Despite being a

bad practice, upstream data discarding is still a commonly used procedure. Sensors in scientific

instruments frequently transmit with smaller rates than what they are capable of, and devices like

security cameras or sensor networks oftentimes resort on ad hoc decision rules to throw away most

of the received input [Kersten and Sidirourgos(2017), Milo(2019)]. However, blindly rejecting data

at the source often leads to information loss, as valuable observations may be injudiciously dis-

carded. Data reduction routines deal with this shortcoming by seeking simultaneous minimization

of storage needs and information loss. This chapter aims to survey the main techniques the scientific

community has proposed to address the data reduction problem to date.

12
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2.1 Data summarization

A summary of a dataset D is a brief synopsis that has a modest size compared to that of the latter.

Summaries come in one of two flavours: as subsets of the original dataset D, or as collections of

objects that jointly retain the fundamental traits of D. That is, as reduced collections of the original

dataset (see figure 2.1b), or as representative values that replace the original data records (see figure

2.1a).

(a) Summary consisting of representative values that replace the records in the
original dataset.

(b) Summary consisting of a reduced collection of the original dataset. That is, a subset of
the original dataset.

Figure 2.1: Illustrative example of both summary types. (a) Example of relational data summariza-
tion. Given a dataset D containing the name and age of 7 students (left), two summaries can be
extracted. The first one is an assembly of summary statistics (upper right), and the second one is a
histogram (lower right). We see that both the collection of aggregates and the histogram replace the
original records by representative values that convey global information about the data. (b) Exam-
ple of image collection summarization extracted from [Mirzasoleiman(2017)]. Given a dataset of
30 unique images D (left), the summary is a subset of 3 images that is as representative as possible
of the complete dataset (right). The particular summary shown in the figure is the result of applying
the GREEDI algorithm [Mirzasoleiman et al.(2013)] (see sec 2.1.2.5) to dataset D.
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Following, we provide an overview of existing summarization techniques, each of which, given

a dataset D, yield an outcome that falls within one of the two aforementioned categories.

2.1.1 Statistical data summarization

The first group of techniques we’ll dive into are those that rely on statistics to create a summary of

a given dataset. Three approaches stand out: aggregation, histograming, and sampling.

2.1.1.1 Aggregation

Arguably, the simplest form a summary can take is being a collection of constants α ∈ R. Given a

dataset D, aggregation involves replacing the original dataset with an assembly of summary statis-
tics. That is, numerical constants that convey information about the central tendency, dispersion or

shape of the dataset’s distribution [Upton and Cook(2002)].

The aggregation process is very simple: Fixed a dataset D (e.g., containing names and ages

of students as in the example figure depicted in figure 2.1a), the records are replaced by summary

statistics like the arithmetic mean, standard deviation, skewness or kurtosis. Following, we

recall each one of these concepts.

Arithmetic mean The arithmetic mean is a measure of central tendency. Given a finite dataset

D = {d1, . . . , dn} consisting of n numeric records, the arithmetic mean, denoted µ, is the sum of

the entries divided by the total number of them. That is

µ =
1

n

n∑
i=1

di.

In our running example, the numerical values di correspond to the age of the students. Hence, as

shown in figure 2.1a, the mean µ = 21.86.

Standard deviation The standard deviation is a measure of dispersion that indicates how far away

from the mean the values in the dataset tend to lie. A small standard deviation indicates that the

values concentrate around the mean, while a large standard deviation indicates that the values are

spread out far away from the mean. Given a finite dataset D = {d1, . . . , dn} made up of n numeric

values, the standard deviation, denoted σ, is the square root of the sum of squared differences

between each value and the mean. That is,

σ =

√√√√ 1

n

n∑
i=1

(di − µ)2.

In our running example, as shown in figure 2.1a, the standard deviation σ = 3.24.
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Skewness The skewness indicates the degree of asymmetry that a numeric dataset has with respect

to its mean. It takes a positive value if the datapoints are concentrated towards the left of the mean,

a negative value if the datapoints are concentrated towards the right of the mean, and it’s equal to 0

if there exist approximately the same amount of values at both sides of the mean. Mathematically,

given a numeric dataset D = {d1, . . . , dn}, it’s skewness, denoted µ̃3, is defined as the sum of

differences between each value and the mean to the power of 3 divided by the total number of

values times the standard deviation to the power of 3. Formally,

µ̃3 =
1
n

∑n
i=1(di − µ)3

σ3
.

In our running example, since there is one more datapoint to the right of the mean than to the left,

the skewness takes a negative value. Namely, µ̃3 = −0.19.

Kurtosis The kurtosis reflects the likelihood that a given numeric dataset contains outlier values.

Those datasets whose underlying distribution has slow asymptotically-approaching zero tails (posi-

tive kurtosis), will produce more outliers than those whose tails quickly vanish (negative kurtosis).

Fixed a numeric dataset D = {d1, . . . , dn}, the kurtosis, denoted µ̃4, has a similar expression to

that of the skweness. Namely,

µ̃4 =
1
n

∑n
i=1(di − µ)4

σ4
.

In our running example, as can be observed from the histogram in the lower right of figure 2.1a,

the tails from the underlying distribution seem to vanish very close to the mean. Consequently, the

skewness has a negative value. Namely, µ̃4 = −2.22.

2.1.1.2 Histogramming

A more intricate version of the idea behind aggregation is histogramming. Histograms are simple

tools that allow to compactly represent large volumes of data. A histogram summarizes a dataset

by splitting it along any attribute (or attribute group) into a set of buckets. For each, a small set

of summary statistics that approximately represent the data in such bucket is computed. The most

basic version of this technique, divides a single attribute’s domain into equi-width buckets and

simply keeps the total number of data points that fall within each one [Ahmed(2019)].

A good example is depicted in the lower right of figure 2.1a. The input dataset D containing

the name and age of students, is divided along the “age” attribute, assumed to range between 18

and 26, into the following equi-width buckets: [18, 20), [20, 22), [22, 24), [24, 26). Subsequently,

the frequency of datapoints belonging to each one is computed and presented in form of vertical

bars of said height. The first interval contains 2 students, the second and third contain 1, and the

fourth contains 3. As can be appreciated from this example, a histogram is a type of summary that

provides insights into the shape of the dataset’s underlying distribution. Furthermore, in combina-

tion with carefully chosen aggregates, it provides an almost unequivocally characterization of such
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distribution using low storage space.

Despite its cost-effectiveness, histogramming and aggregation alone could lead to information

loss. In fact, after summarizing a dataset using these techniques, any query that aims at retriev-

ing specific datapoints will return an empty answer when ran against the summary. Nevertheless,

when combined with sampling, powerful procedures have been developed for efficiently computing

approximate answers to complex queries over the retained synopsis [Orr et al.(2020)].

2.1.1.3 Sampling

Sampling involves selecting a representative subset (or sample) S from a given dataset D =

{d1, . . . , dn} via a stochastic mechanism. Sampling techniques include: simple random, system-
atic, stratified, and clustering/multistage sampling [Cochran(1977)]. Next, a brief description of

each one is provided for completeness.

Simple random sampling Given a dataset D and a sample size s ∈ N, sample S is built by

selecting s datapoints di ∈ D with equal probability (i.e., with uniform probability 1
n ).

As an example, consider the image dataset D displayed in figure 2.1b. Summarizing D via a

simple random sample with sample size s = 3 amounts to drawing 3 images out of the 30 that

conform D, each with a probability of 1/30.

Systematic sampling Given a dataset D and a sample size s ∈ N, an element dj ∈ D is chosen

at random. Starting from this element, the dataset is split into s equal-length intervals. That is, D

is divided into subsets {dj , . . . , dj+L}, {dj+L, . . . , dj+2·L}, . . . , {d(n−1)/L, . . . , dn/L} ⊆ D, such

that

{dj , . . . , dj+L} ∪ {dj+L, . . . , dj+2·L} ∪ · · · ∪ {d(n−1)/L, . . . , dn/L} = D,

where L = n/s, and all indices are taken modulo n. Thereafter, S is built by randomly choosing

one element from inside each one of the s subsets. In other words, any element within each subset

has equal probability 1
L of being chosen for inclusion in the sample S.

Going back to our running example, if s = 3 and dj happens to be the left uppermost picture

in dataset D (assumed to be ordered top-down and from left to right), the 3 equal-length intervals

will be each 10-image row in D (see figure 2.2 for a visual representation). The systematic sample

is then built by selecting one image from inside each row with uniform probability 1/10.

Stratified sampling Given a dataset D = {d1, . . . , dn} and a sample size s ∈ N, D is partitioned

into s disjoint subsets G1, . . . , Gs ⊆ D called stratas. Subsequently, the sample S is obtained by

randomly selecting one element from within each strata Gi with probability 1
|Gi| .

The essential difference between systematic and stratified sampling stems from the way dataset

D is partitioned. In the former, the partition is always created in the same “systematic” manner

starting from a seed element dj ∈ D. For the contrary, there is no requirement with respect to the

partition creation procedure in the latter. Refer to figure 2.2 for an example.
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Figure 2.2: Systematic vs stratified sampling. On the left, the figure shows the 3 equal-length
intervals corresponding to the systematic sampling scheme in the case where dj is the left uppermost
picture in the image dataset D. The sample of size 3 is obtained by choosing one element from
within each interval. On the right, the figure shows an example of 3 possible stratas, denoted
G1, G2, G3, corresponding to the stratified sampling scheme. The sample of size 3 is built by
selecting one element from inside each strata.

Clustering/Multi-stage sampling Given a dataset D = {d1, . . . , dn} and a sample size s ∈
N, the dataset is organized into a fixed number of groups (clusters) G1, . . . , Gk ⊆ D such that⋃k

i=1Di = D. Subsequently, m < k clusters are selected from G1, . . . , Gk with probability 1
k .

Following, the sample S is obtained by randomly selecting s/m elements inside of each of the m

groups.

Similar to stratified sampling, multi-stage sampling partitions the dataset into subsets without

any constraint on the subset creation process. However, instead of generating a sample from such

groups directly, it first selects a smaller pool of subsets from which to build the sample S.

Due to its simplicity, sampling is a popular choice for data reduction. Furthermore, as aforestated,

it enables approximate query answering when combined with techniques like aggregation and his-

togramming. Nevertheless, as a consequence of its stochastic nature, it does not allow controlling

the characteristics of the selected subset. In fact, two runs over the same dataset of any sampling

technique could (in general) yield outcomes with antipodal features. A deterministic alternative that

crystalizes the sought subset traits in the form of an objective is optimization-based subset selection,

often cast as a submodular maximization task.
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2.1.2 Submodular data summarization

In order to summarize a dataset D via a subset D∗ ⊆ D in a deterministic fashion, it’s vital defining

a notion of subset utility. That is, a function f : P(D) 7→ R which measures the amount of

representativeness that lies within each subset D′ ∈ P(D). This way, given a budget B ∈ N, the

summarization task boils down to choosing a subset D∗ ⊆ D with cardinality at most B that reaches

the highest utility. That is,

D∗ = argmax
D′⊆D, |D′|≤B

f(D′).

Sadly, this optimization exercise is intractable for arbitrary functions. However, as we will

shortly see, in the case of non-negative monotone submodular objectives, there exists a very

simple approximation algorithm that enjoys strong theoretical guarantees.

Definition 2.1.1. Fixed D, a set function f : P(D) 7→ R is:

· non-negative if ∀A ⊆ D, f(A) ≥ 0.

· monotone if ∀A ⊆ B ⊆ D , f(A) ≤ f(B).

· submodular if ∀A,B ⊆ D,

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B).

Equivalently, f is submodular if ∀A ⊆ B ⊆ D, and d ∈ D \B,

∆f (d|B) ≤ ∆f (d|A),

where ∆f (d|D′) := f(D′ ∪ {d}) − f(D′) is the discrete derivative of f at D′ ⊆ D with

respect to d.

The second definition of submodularity reveals a very intuitive interpretation of this property:

given nested subsets A ⊆ B ⊆ D and a datapoint d ∈ D \ B, the marginal gain of including d in

the bigger one (i.e., in B) can’t be greater than the marginal gain of including it in the smaller one

(i.e., in A). That is, the larger the subset, the smaller the marginal gain provided by adding a new

datapoint d to it. Therefore, submodularity is at heart a diminishing returns property that resembles

a discrete version of concavity [Krause and Golovin(2014)].
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2.1.2.1 Summarization objectives

Set functions that capture desirable features in a summary such as diversity and coverage over D

are generally non-negative, monotone, and submodular. Intuitively, given D′′ ⊆ D′ ⊆ D, since D′

contains D′′, the former should have at least the same overall diversity and coverage as the latter

(monotonicity). For the same reason, fixed d ∈ D \ D′, it is more likely to encounter a datapoint

that’s similar to d within D′ than within D′′. Consequently, adding d to D′′ should provide greater

marginal gain than including it in D′ (submodularity).

Following, we present some examples of non-negative monotone submodular mappings that

have been used as objectives in scene summarization [Simon et al.(2007)], document summarization

[Lin and Bilmes(2012)], and image collection summarization [Tschiatschek et al.(2014)].

· Facility location: Given D′ ⊆ D,

ffacility location(D
′) :=

∑
d∈D

max
d′∈D′

sim(d, d′),

where sim(·, ·) measures the similarity between any two elements of D. That is, the utility of

D′ ⊆ D is the sum of similarities between each element in D and its closest neighbour inside

D′.

· Sum coverage: Given D′ ⊆ D,

fsum coverage(D
′) :=

∑
d∈D

∑
d′∈D′

sim(d, d′),

where sim(·, ·) measures the similarity between any two elements of D. That is, the utility of

D′ ⊆ D is the sum of all pairwise similarities between elements in D and D′.

· Thresholded sum coverage: Given D′ ⊆ D,

fthresh. sum coverage(D
′) :=

∑
d∈D

min

{ ∑
d′∈D′

sim(d, d′), α ·
∑
d′∈D′

sim(d, d′)

}
,

where α ∈ R, and sim(·, ·) measures the similarity between any two elements of D. The

utility of a subset D′ ⊆ D is measured in a similar fashion as by the sum coverage function.

However, in this case, the inner sum is thresholded with the purpose of preventing any element

d ∈ D from being overly covered by D′.

· Cluster diversity: Given D′ ⊆ D,

fcluster diversity(D
′) :=

k∑
j=1

g(D′ ∩ Pj),

where g(·) is a non-negative monotone submodular function, and P1, . . . , Pk are different
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clusters yield by a clustering algorithm. According to this measure, subsets D′ ⊆ D that have

the most diversity over the different clusters are those with the highest utility.

2.1.2.2 The greedy algorithm

As previously mentioned, cardinality-constrained set function maximization is intractable for ar-

bitrary mappings. Even though the task remains NP-hard in the case of submodular non-negative

monotone objectives, the GREEDY algorithm (see algorithm 1) provides a solution with
(
1− 1

e

)
approximation guarantee to the optimal one in polynomial time [Nemhauser et al.(1978)].

Algorithm 1: GREEDY
Data: Dataset D, submodular monotone objective f : P(D) 7→ R+, and budget B ∈ N.
Result: Subset D∗ ⊆ D such that |D∗| = B and f(D∗) ≥ (1− 1

e ) ·OPT , where OPT is
the value of the optimal (intractable) solution.

D0 ← ∅;
for t = 1, . . . , B do

dt ← argmaxd∈D (f(Dt−1 ∪ {d})− f(Dt−1));
Dt ← Dt−1 ∪ {dt};
D ← D \ {dt};

end
return D∗ = DB

The GREEDY algorithm strikes for its simplicity. The solution is built up incrementally from the

empty set through a series of rounds. At round t, an element dt ∈ D that maximizes the marginal

gain ∆f (d|Dt−1) gets included in the solution (breaking ties arbitrarily). Despite its simplicity,

GREEDY requires O(n ·B) function evaluations to extract a summary D∗ of size B out of a dataset

D of size n. Consequently, if n is large or evaluating f is costly, running this procedure will be

computationally expensive. To address this shortcoming, faster variants of the greedy algorithm

have been developed.

2.1.2.3 The lazy greedy algorithm

The LAZY-GREEDY algorithm [Minoux(1978)] (see algorithm 2), exploits the submodularity of

the objective to speed up GREEDY. The algorithm keeps an order-descending list of size n = |D|
where each element is an upper bound δd (initially∞) on the marginal gain of a datapoint d ∈ D.

At iteration t, LAZY-GREEDY computes ∆f (d
∗|Dt−1) for the datapoint d∗ corresponding to the

head of the list, and updates δd∗ to hold such value. If after the update δd∗ is still the head of the

list (i.e., δd∗ ≥ δd ∀ d ̸= d∗ ), then the submodularity of f guarantees that d∗ is the element with

the largest marginal gain. For the contrary, if after the update ∃ d ∈ D such that δd∗ < δd, δd∗ is

inserted back into the list and the process is repeated.
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Algorithm 2: LAZY-GREEDY
Data: Dataset D, submodular monotone objective f : P(D) 7→ R+, and budget B ∈ N.
Result: Subset D∗ ⊆ D such that |D∗| = B and f(D∗) ≥ (1− 1

e ) ·OPT , where OPT is
the value of the optimal (intractable) solution.

D0 ← ∅; forall d ∈ D, δd ←∞;
for t = 1, . . . , B do

forall d ∈ D \Dt−1, curd ← False;
while True do

d∗ ← argmaxd∈D\Dt−1
δd; /* Get d∗ st δd∗ head of the list */

if curd∗ then
Dt ← Dt−1 ∪ {d∗};
break

end
else

δd∗ ← f(Dt−1 ∪ {dt})− f(Dt−1); /* Update δd∗ */
if (δd∗ ≥ δd ∀d ∈ D \Dt−1) then

curd∗ ← True; /* δd∗ is still head of the list */
end

end
end

end
return D∗ = DB

It is important to remark that although lazy evaluation enables LAZY-GREEDY to run orders

of magnitude faster than GREEDY in practical scenarios, both manifest the same (superlinear) com-

putational complexity. In fact, it is unknown the number of function evaluations performed by

LAZY-GREEDY in arbitrary cases, but it is certain that it matches that of GREEDY in the worst one.

2.1.2.4 The stochastic greedy algorithm

The STOCHASTIC-GREEDY algorithm [Mirzasoleiman et al.(2015)] (see algorithm 3), was the

first linear-time approximation algorithm for cardinality-constrained monotone submodular set func-

tion maximization. STOCHASTIC-GREEDY is a randomized routine capable of producing a solu-

tion with
(
1− 1

e − ϵ
)

approximation guarantee, in expectation, to the optimal one inO
(
n · log

(
1
ϵ

))
time. That is, in linear time in the size of the database |D| = n and independent of the cardinality

constraint B.

The crux behind the speed up lies in the inclusion of randomness through the use of sampling.

Similar to GREEDY, the algorithm starts with an empty set and builds the solution incrementally by

adding a new datapoint at each iteration. In contrast with GREEDY, the algorithm embeds a degree

of randomness by including a sub-sampling step at the beginning of each round. At the start of

round t, a subset R of size s := n
B · log

(
1
ϵ

)
is sampled from D \Dt−1 uniformly at random (i.e.,

via simple random sampling, see section 2.1.1.3). Subsequently, an element dt ∈ R that maximizes

the marginal gain ∆f (d|Dt−1) gets included in the solution (breaking ties arbitrarily).
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Algorithm 3: STOCHASTIC-GREEDY
Data: Dataset D, submodular monotone objective f : P(D) 7→ R+, and budget B ∈ N.
Result: Subset D∗ ⊆ D such that |D∗| = B and E[f(D∗)] ≥ (1− 1

e − ϵ) ·OPT , where
OPT is the value of the optimal (intractable) solution.

D0 ← ∅;
for t = 1, . . . , B do

R← a subset obtained by sampling s random elements from D \Dt−1;
dt ← argmaxd∈R (f(Dt−1 ∪ {d})− f(Dt−1));
Dt ← Dt−1 ∪ {dt};

end
return D∗ = DB

To further boost the time performance of STOCHASTIC-GREEDY in practical scenarios, lazy

evaluation can be leveraged. The lazy version of the algorithm maintains an order descending list

of size n = |D| where each element is an upper bound δd (initially ∞) on the marginal gain of

a datapoint d ∈ D. At iteration t, the algorithm samples a subset R of size s := n
B · log

(
1
ϵ

)
,

and computes ∆f (d
∗|Dt−1) for the datapoint d∗ ∈ R closest to the top of the list (instead of

∆f (d|Dt−1), ∀d ∈ R). Subsequently, δd∗ is updated to hold such value. If after the update, δd∗

remained in the same position within the list (i.e., δd∗ ≥ δd ∀ d ̸= d∗ s.t. d ∈ R), then the

submodularity of objective f guarantees that d∗ is the element with the largest marginal gain inside

the set R. Again, as in the case of GREEDY, lazy evaluation does not improve the time complexity

but often leads to faster executions in practice.

2.1.2.5 The price of scaling up, distributed and streaming paradigms

Despite producing good approximate solutions, the GREEDY algorithm and its accelerated vari-

ants (LAZY-GREEDY and STOCHASTIC-GREEDY) lack scalability. That is, their execution often

becomes infeasible when running in data intensive environments. The impracticability of polyno-

mial time algorithms in large scale data settings has motivated the scientific community to explore

alternatives like the distributed and streaming paradigms.

The distributed paradigm A feasible way of maximizing a cardinality-constrained submodular

objective in a data intensive context is to distribute the data among several machines and exploit

parallel computation models like MapReduce.

MapReduce [Dean and Ghemawat(2004)], is a style of computing that has been implemented in

several systems, including the popular open-source Apache Hadoop [Apache Hadoop(2005)]. Any

implementation of MapReduce can be used to manage many parallel computations in a hardware-

fault tolerant way. All the user has to do is write two functions: Map and Reduce. Data chunks
from the surrounding distributed file system (DFS) are processed in parallel within independent

machines via map tasks that produce key-value pairs. The way such key-value pairs are generated

is determined by the user code written inside the Map function. Thereafter, pairs are grouped by
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key and feed to the reduce tasks which combine all values associated with each one. The way such

combination is carried out is utterly determined by the user code written inside the Reduce function.

After termination, the outcome of the MapReduce job is saved back into the surrounding DFS.

A simple distributed protocol for maximizing monotone submodular functions under cardi-

nality constraints is GREEDI [Mirzasoleiman et al.(2013)]. The GREEDI algorithm (algorithm 4),

schematically depicted in figure 2.3, is a two-round parallel routine that’s easily implementable

using MapReduce style computations. First, dataset D is partitioned uniformly at random into dis-

joint subsets D1, . . . , Dm that get distributed over m independent machines. Second, each machine

i ∈ {1, . . . ,m} performs a first round of greedy selection over Di (in parallel) to obtain solution

set D∗
i . Third, solution sets are merged into D′ = ∪mi=1D

∗
i , and a second round of greedy selection

is performed over D′ yielding D∗
0. Last, the highest-scoring set D∗ among the m + 1 produced

solutions gets returned.

Figure 2.3: Illustration of GREEDI: D is the dataset, f is a non-negative monotone submodular
function to be optimized, B is the maximum budget, m the number of independent workers, and
D∗ is the solution produced by the algorithm.

The GREEDI algorithm yields a solution with 1−1/e
2 approximation guarantee in expectation to

the optimal one [Barbosa et al.(2015)]. However, it’s important to highlight that in case dataset D

exhibits certain geometric structure and objective f belongs to the class of Lipschitz-continuous
functions, a sharper bound can be derived. Namely, the approximation guarantee will approach

1 − 1
e in expectation as |D| = n 7→ ∞. Consequently, under such hypothesis, GREEDI attains a

competitive solution to the intractable optimum in data intensive scenarios.
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Algorithm 4: GREEDI
Data: Dataset D, submodular monotone objective f : P(D) 7→ R+, budget B ∈ N,

number of machines m ∈ N.
Result: Subset D∗ ⊆ D such that |D∗| = B and E[f(D∗)] ≥ 1−1/e

2 ·OPT , where OPT
is the value of the optimal (intractable) solution.

Partition D into m subsets D1, . . . , Dm uniformly at random;
Run GREEDY on each Di (in parallel) producing solutions D∗

i of size B for i = 1, . . . ,m;
/* Observation 1: GREEDY can be replaced by any of its
accelerated versions like LAZY-GREEDY or STOCHASTIC-GREEDY.

*/
Merge the resulting sets D′ ← ∪mi=1D

∗
i ;

Run GREEDY on D′ to obtain solution D∗
0 of size B; /* Observation 1. */

return D∗ = argmaxA{f(A) : A ∈ {D∗
0, D

∗
1, . . . , D

∗
m}};

The streaming model The use of streaming algorithms is another strategy to successfully max-

imize cardinality-constrained submodular functions in big data environments. When the dataset D

becomes too large to store in memory, algorithms that pass once through the data constructing the

solution set on the fly, have proven to be an effective alternative to distributed routines for massive

data summarization.

In the streaming model, depicted in figure 2.4, the input dataset is assumed to arrive as a

data stream. That is, as a partitioned permutation of D that’s presented to the algorithm at times

t ∈ {1, . . . , T} in form of a set succession D1, D2, . . . , DT . Depending on the nature of such

permutation, the data stream is said to be random or adversarial. In the random setting, D is

permuted uniformly at random, and in the adversarial one, D is permuted without restrictions by an

evil “adversary/enemy”. At each time step t, the streaming routine must decide without knowledge

about the future which datapoints d ∈ Dt should be added to the partial summary residing in

memory. This way, the algorithm sequentially summarizes the input dataset on the fly by traversing

it exactly once.

Streaming cardinality-constrained monotone submodular function maximization was addressed

for the first time by SIEVESTREAMING [Badanidiyuru et al.(2014)]: A simple 1/2− ϵ approximation

streaming protocol capable of extracting a summary D∗ of size B out of a dataset D by exclusively

using O(B · log(B/ϵ)) memory (i.e., independent of the dataset’s size). Moreover, such algorithm

attains the best possible approximation factor in the adversarial stream context. However, a sharper

approximation factor can be reached in the random setting [Norouzi-Fard et al.(2018)]. Namely, by

the MONOTONESTREAM algorithm [Liu et al.(2021)]. Such procedure is the fist streaming routine for

cardinality-constrained monotone submodular function maximization able to guarantee a (1− 1
e−ϵ)

approximation using O(B/ϵ) memory. Again, independent of the dataset’s size but larger than that

required by SIEVESTREAMING.
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Figure 2.4: Illustration of the streaming model: D is the dataset, {D1, D2, . . . , DT } is a partition
of D (i.e., D = ·∪Ti=1Di, where ·∪ denotes the disjoint union), and D∗ is the solution produced by
the algorithm.

2.1.3 Geometric data summarization

Apart from statistical and submodular approaches, summarization techniques originating from com-

putational geometry have also received attention lately. Geometric data summarization has be-

come a vital tool to tackle problems that lie at the intersection between geometry and Big Data.

Among geometric summaries, coresets and sketches stand out.

2.1.3.1 Coresets

A coreset is a small representation of a dataset used to perform fast approximate inference with

strong theoretical guarantees [Phillips(2017)]. Coresets are designed so that the result produced

when running mining algorithms on such summaries closely resembles the outcome obtained when

ran on the full dataset (see figure 2.5). This way, knowledge discovery tasks can be carried out

orders of magnitude faster without provably sacrificing accuracy.

Formally, given a dataset D, a coreset is a weighted subset of D or the space where D resides.

That is, fixed D ⊆ U for some finite universe U , a coreset is a subset D∗ ⊆ D or a subset D∗ ⊆
U , where each datapoint d ∈ D∗ gets assigned a weight w(d) ∈ R. A good example where

both variants arise naturally stems from the clustering framework. If k−medoids and k-means are

executed on a dataset D ⊆ U , the former will return a coreset D∗
medoids ⊆ D, while the latter will

yield a coreset D∗
means ⊆ U , both with unitary weights (i.e, w(d) = 1, ∀ d ∈ D∗

means ∪D∗
medoids).
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Figure 2.5: Illustrative example to demonstrate the use of coresets extracted from [Feldman(2020)].
D is the full dataset, D∗ is a coreset of D, and f is a function (algorithm) that receives a set of
points and outputs its clustering into linear segments. Running f on the coreset D∗ should ideally
produce the same result as that yield when ran on D, but faster.

2.1.3.2 Sketching

Sketching allows summarization of streaming data on the fly. A sketch is a brief synopsis of a

dataset D ⊆ U that gets updated as new instances are received. More formally, a sketch is the

image of D via a function f whose co-domain is a compact, easily updatable data structure.

Sketches are designed so that the update caused by each new piece of data is largely independent

of the current state of the sketch. Despite this favorable behaviour, each sketch family only allows

answering very limited questions about the data. Therefore, prior to the summarization exercise,

the user must specify the type of queries the summary should be able to answer, as this will utterly

determine the employed sketching technique.

Sketching techniques include: Bloom filters, Count-Min sketching, and HyperLogLog sketch-
ing [Cormode et al.(2011), Cormode(2017)]. Next, a brief description of each one is provided for

completeness.

Bloom filters A Bloom filter is a binary string B of length m << n = |D|, along with k hash

functions h1, . . . , hk : U → {1, . . . ,m} that independently map each element of the universe U to

an index in B. Initially, B is the all zero string, but upon receiving D ⊆ U , entry B[hj(d)] is set to

1 for each d ∈ D and 1 ≤ j ≤ k.

Bloom filters are designed to precisely answer membership queries. That is, given a datapoint

d ∈ U they allow to efficiently find out whether d ∈ D using a simple decision process: If ∃ j ∈
{1, . . . , k} such that B[hj(d)] = 0, then d /∈ D, and otherwise d ∈ D. The sketch ensures no false

negatives, but it may report some false positives. Nonetheless, with a careful choice of k (namely,

k = m
n · ln 2), the probability of the latter is minimized.



CHAPTER 2. RELATED WORK 27

Count-Min sketches A Count-Min sketch is an array C of dimension w×m, together with w hash

functions h1, . . . , hw : U → {1, . . . ,m} (one for each row) that map each element of the universe

U to an index inside their assigned row. Initially, C is the all zero matrix, but upon receiving a

multi-set D ⊆ U , each entry D[i, j] is set to the number of elements in D mapped to position j by

function hi.

Count-Min sketches are designed to precisely answer frequency queries. Given a datapoint

d ∈ U the sketch estimates the number of occurrences of d within D as min1≤i≤w{hi(d)}. Due to

the nature of hash functions, the frequency count of any datapoint may be overestimated. However,

upon choosing m = 2/ϵ and w = log 1
δ , the estimate produced by the summary will have at most

an error of ϵ ·
∑

d∈U freq(d) with probability at least 1− δ, where freq(d) is the true frequency of d

in D.

HyperLogLog sketches A HyperLogLog sketch is an array H of length m that holds numeric

counters, initially set to 0. HyperLogLog sketches are designed to accurately answer cardinality

queries. That is, they allow to approximately count the number of distinct elements in a multi-set

D ⊆ U . Every element in D is hashed to a binary string of fixed length, and subsequently hashed

again into one of H’s m buckets. Then, counter H[i] becomes 2 to the power of the longest sequence

of consecutive zeros found in any binary string inside bucket i. Since a sequence of k consecutive

zeros will occur on average once in every 2k entries, each counter holds an estimate of the number

of distinct elements in D. Last, the harmonic mean of the counters is returned as the final estimate.

2.2 Data forgetting

All summarization techniques discussed up to this point share a similar philosophy when addressing

data reduction. Namely, every datapoint in the input dataset D is treated as a first class citizen. Since

the ultimate goal of summarization is building a synopsis that’s as representative as possible of the

complete dataset, summarization routines assume that every single record in D conveys a certain

degree of valuable information. However, it’s natural to wonder whether such an assumption is

always reasonable. If a part of the dataset is never used / queried, will it still be beneficial to

summarize it? Even more, will it still be worth keeping in any form?

Data forgetting provides a satisfactory answer to such questions by taking a different perspec-

tive towards data reduction. Forgetting methods acknowledge that value is not equally distributed

among all regions in the given dataset. That is, upon fixing a notion of value / importance, there

exist some portions in D that contain higher value than others. Hence, such routines seek identify-

ing the dataset’s relevant regions and “forgetting” everything that lies outside of them. Following,

we provide an overview of existing forgetting techniques, each of which, given a datset D aim to

exclusively retain a valuable subset of it.
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2.2.1 Amnesia algorithms - Probabilistic data forgetting

Amnesia algorithms created a paradigm shift in the conception of the role of databases. Amnesia-

scheme equipped databases have the power to controllably forget data entries. Hence, unlike tra-

ditional ones, they are not conceived as static objects whose sole purpose is storing data indef-

initely, but as dynamic entities able to dispose of datapoints that won’t be useful in the future

[Kersten and Sidirourgos(2017)].

The amnesia model is very simple: Data arrives at successive time steps in form of equally-sized

batches, and only B datapoints are held inside the database at any point in time. That is, at each

time step t, m new records arrive and m extisting entries in the database are forgotten to meet the

storage budget B. The way such removal is executed depends on the specific amnesia strategy. In

general, the m least useful datapoints are deleted at each step t.

It is important to note that usefulness is an extremely domain-dependant concept. Depending

on the type of data and case application, it can vary unimaginably. Three notions of data usefulness

have been proposed, each of which result in a different amnesia scheme.

2.2.1.1 Temporal based amnesia algorithms

Temporal based amnesia schemes understand usefulness as a temporal dimension. The highest

utility entries in the database are either recently added ones (retrograde amnesia) or anciently

added ones (anterograde amnesia). At each time step, retrograde (resp. anterograde) based am-

nesia schemes randomly remove items proportionally (resp. inverse-proportionally) to the amount

of time they have been part of the database. That is, in the case of retrograde amnesia, newer en-

tries have lower probability of being forgotten than older ones; while for anterograde amnesia, the

opposite holds.

Examples of amnesia routines include FIFO-amnesia, uniform-amnesia, and ante-amnesia
algorithms. The first boils down to a (deterministic) temporal sliding-window. At each time step,

the (retrograde) FIFO-amnesia algorithm stores the m newly received records and evicts the m old-

est ones, exclusively remembering the latest entries inserted into the databse. For the contrary, the

second is able to retain datapoints spread over a larger segment of the time line by using a random-

ized procedure. At each time step, the (retrograde) uniform-amnesia algorithm stores the m newly

received records and forgets m other entries uniformly at random. Hence, at any step, all datapoints

have the same probability of being forgotten, but older ones have been candidates multiple times.

Last, at each time step t, the (anterograde) ante-amnesia algorithm stores the m newly received dat-

apoints, and forgets m entries uniformly at random among the latest stored records including those

received at time t.

2.2.1.2 Query based amnesia algorithms

Query based amnesia schemes conceive usefulness as frequency of retrieval. The highest utility

datapoints are the most requested ones according to a query-log Q. Every entry in the database is
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extended with a frequency counter that indicates the number of times it has been accessed by a query

in Q. At each time step, the m newly received records get stored in the database with an assigned

frequency count of zero, while m other datapoints are randomly removed inverse-proportionally to

their frequency counter. That is, entries with a higher frequency of retrieval (i.e., those that have

been requested by queries up to that point the most) have lower probability of being forgotten than

those with a lower one (i.e., those that have not been asked so often up to that point).

It is worth remarking that the query-log Q dynamically increases over time, and consequently,

frequency counters change between time steps. That is, all queries taken place between time steps

t and t+ 1 cause updates on the counters of the B datapoints present in the database between such

times. Hence, a point that had a low frequency counter at time t may have a very high counter

at step t + 1 if many queries showed interest in the former during that portion of the timeline.

Consequently, the most historically requested datapoints tend to be the ones retained by query based

amnesia schemes.

2.2.1.3 Spatial based amnesia algorithms

Spatial based amnesia algorithms perceive usefulness as freshness. Under this interpretation, non-

“infected with mold” datapoints are those with the highest utility. Every newly entry in the database

is assigned a freshness value of 1 that decreases over time upon infection or direct contact with an

infected entry (much like mold spots spread on cheese). At each time step, spatial based amnesia
schemes assign a freshness score of 1 to the m newly received records, randomly infect a certain

number of records in the database, and decrease the freshness score of every infected entry as

well as that of all its neighbouring records. After this process, the m datapoints with the lowest

freshness value get forgotten. Alternatively, if there are no budget concerns, datapoints can be

simply forgotten when their freshness reaches 0.

Freshness is tightly related with rotting [Kersten(2015), Kersten(2016)]. Data rotting is in-

spired in nature’s own rotting process: over time, objects rot away; hence, so should data. In fact,

spatial based amnesia schemes essentially rot the database away over time.

2.2.2 Data valuation - Score based data forgetting

A deterministic alternative to probability-reliant amnesia algorithms are data valuation routines.

Given a dataset D, each datapoint d ∈ D is assigned a numerical score, and only the most valuable

instances are retained. That is, fixed a threshold θ ∈ R (resp. a budget B ∈ N), only the entries

whose value exceed θ (resp. the top B-highest-scoring records) are kept.

The quality of a datapoint can be assessed based on a number of metrics including its acces-
sibility, age, completeness, consistency, currency, heterogeneity, interpretability, objectivity,

provenance, relevancy, and uniqueness [Wang and Strong(1996)]. A function f : D 7→ R that

maps each datapoint d ∈ D to a numerical score f(d) ∈ R representing its value within D, can be

easily constructed by exploiting such quality metrics.
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2.2.3 Submodular maximization - Optimization based data forgetting

Apart form data valuation, the latest direction in (deterministic) data forgetting has been casting the

problem as an optimization-based subset selection exercise. That is, given a dataset D and some

measure of subset utility f : P(D) → R, retaining a subset D∗ ⊆ D that attains the highest utility

according to f . Two recent works steaming from the field of e-commerce, exploit submodular

function maximization for data forgetting in the context of graph and image data.

2.2.3.1 Graph data

Given a dataset D, a weighted directed graph G = (V = D,E,WV ,WE), a budget B, and a utility

function f : P(D)→ [0, 1], a solution to the preference cover problem [Gershtein et al.(2020)] is

a subset D∗ ⊆ D of size B with maximal utility. That is,

D∗ = argmax
D′⊆D, |D′|=B

f(D′).

Each vertex v ∈ V corresponds to an item in D, and its weight, WV (v) ∈ [0, 1], indicates the

probability of v being requested by a costumer. Moreover, the set of neighbours of v, Rv(D) :=

{u | (v, u) ∈ E, u ∈ D}, comprises those items in D considered as feasible alternatives to v.

Directed edge (v, u) ∈ E indicates that a consumer is willing to buy, with probability WE(v, u),

item u as an alternative to v in case the latter is missing. Given a retained subset D′ ⊆ D and a

costumer request for v ∈ D, the request is meet if v ∈ D′. Otherwise, the request may be meet by a

neighbour u ∈ Rv(D
′) with probability of WE(v, u). Utility function f : P(D) 7→ [0, 1] maps each

subset D′ ⊆ D to the probability that a request drawn from the distribution indicated by the node

weights is satisfied. Naturally, the goal is selecting a subset D∗ that maximizes such probability.

An illustrative example is shown in figure 2.6.

The preference cover problem comes in two flavours: independent and normalized. The in-

dependent variant assumes independence between all edge weights. That is, for a retained subset

D′ ⊆ D and a requested item v /∈ D′, the probability that a neighbour u1 ∈ Rv(D
′) matches

the request is not affected by whether or not a different neighbour u2 ∈ Rv(D
′) matches it.

For the contrary, the normalized variant assumes dependence between edge weights, and thus,∑
u∈Rv(D)WE(v, u) = 1, ∀v ∈ V . Each variant comes with a different instantiation of f . Namely,

findependent(D
′) =

∑
v∈D′

WV (v) +
∑

v∈V \D′

WV (v) ·

1−
∏

u∈Rv(D′)

(1−WE(v, u))

 ,

fnormalized(D
′) =

∑
v∈D′

WV (v) +
∑

v∈V \D′

WV (v) ·

 ∑
u∈Rv(D′)

WE(v, u))

 .

Since findependent is non-negative, monotone, and submodular, the GREEDY algorithm (algorithm

1) is resorted on to address the independent variant of the problem. Sadly, fnormalized does not
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exhibit submodularity. Nonetheless, this version of the problem is equivalent to vertex cover, and

consequently, GREEDY still provides a good approximation factor.

Figure 2.6: Toy example extracted from [Gershtein et al.(2020)]. The full dataset is
{A,B,C,D,E} and the budget is B = 2. The most popular item is A, appearing in 33% of
the requests. The least popular item is D, appearing in 6% of the requests. Items C and B are per-
fect substitutes, item D is an almost perfect substitute for E, and C is an almost perfect substitute
of D. Upon fixing f = fnormalized (formula provided below), D∗ = {B,D}.

2.2.3.2 Image data

Given an image dataset D, a budget B, and a set of photo albums Q ⊆ P(D), a solution to the

photo archive reduction problem (PAR) [Davidson et al.(2022)] is a subset

D∗ = argmax
D′⊆D,C(D′)≤B

fPAR(D
′)

where,

fPAR(D
′) =

∑
q∈Q

W (q) ·
∑
p∈q

R(q, p) · SIM(q, p,NN(q, p,D′)).

Even though the objective seems very intricate, the individual components that conform it are

quite simple. First, function C : P(D) 7→ R+ maps each subset D′ ⊆ D to its storage cost.

Second, mapping W : Q 7→ R+ assigns a positive weight to each album q ∈ Q that reflects its

importance. Third, function R : Q × D 7→ [0, 1] gives a normalized score to each image d ∈ q

that indicates how relevant it is for album q ∈ Q. Fourth, SIM : Q × D × D 7→ [0, 1] produces

a normalized measure of similarity between any given pair of images in the context of q ∈ Q.

Last, NN(q, d,D′) = argmaxd′∈D′∩q(D) SIM(q, d, d′) is the nearest neighbour of d in D′ in the

context of q. As a consequence, the solution D∗ contains the most relevant images for the most

important albums.

Despite its intricacy, utility function fPAR(·) is non-negative, monotone, and submodular. Hence,

the PAR problem can be seen as an instance of the knapsack-constained submodular function max-
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imization problem, for which, a cost-aware variant of the GREEDY algorithm (see algorithm 5)

guarantees a 1−1/e
2 approximation factor [Leskovec et al.(2007)].

Algorithm 5: COST-BENEFIT-GREEDY
Data: Dataset D, submodular monotone objective f : P(D) 7→ R+, cost function

C : P(D) 7→ R+, and budget B ∈ N.
Result: Subset D∗ ⊆ D such that C(D∗) ≤ B and f(D∗) ≥ 1−1/e

2 ·OPT , where OPT is
the value of the optimal (intractable) solution.

D0 ← ∅, t← 1;
while ∃ d ∈ D \Dt−1 : C(Dt−1 ∪ {d}) ≤ B do

dt ← argmaxd∈D; C({v})≤B−C(Dt−1) [f(Dt−1 ∪ {d})− f(Dt−1)] /C({d});
Dt ← Dt−1 ∪ {dt};
D ← D \ {dt};
t← t+ 1;

end
T ← t;
return D∗ = argmaxA{f(A) : A ∈ {DT ,GREEDY(D)}}; /* Note that the
COST-BENEFIT-GREEDY algorithm returns the best solution
between the cost-aware solution and that produced by the
cost-oblivious GREEDY algorithm (algorithm 1). */

2.3 Summarization vs Forgetting, a bird’s-eye view

As previously mentioned, summarization algorithms conceive every datapoint as equally valuable.

Consequently, they often address the data reduction problem by carving out representative subsets

of the input dataset guided by value-unaware submodular objectives. For the contrary, forgetting

routines understand data-value as an unequally distributed feature within the dataset. Therefore,

they seek identifying such worthy regions by embedding the notion of data-importance as an es-

sential ingredient in the algorithmic exercise. A hierarchical schema of all the summarization and

forgetting techniques discussed in the chapter is illustrated in figure 2.7.
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Chapter 3

Stochastic submodular data forgetting

3.1 Preliminaries

3.1.1 Relational datasets and conjunctive queries

LetA = {A1, . . . , Am} be a collection of attributes, each of which is associated with a finite domain

DomAi . A tuple is an m−dimensional vector d = (v1, . . . , vm) where vi ∈ DomAi . Equivalently,

d can be expressed as a conjunction of conditions Ai = vi, for 1 ≤ i ≤ m. That is,

d =
m∧
i=1

Ai = vi.

For any tuple d, Constrs(d) = {A1 = v1, . . . , Am = vm} denotes the set of conditions of d. The

set of all possible tuples U = DomA1 × · · · ×DomAm constitutes the universe. A dataset is a set

D ⊆ U (i.e., a finite collection of tuples).

A query q is a conjunction of atomic conditions of the form Ai = vi, where Ai ∈ A and

vi ∈ DomAi . That is,

q =
∧
i∈I

Ai = vi,

where Ai ∈ A, vi ∈ DomAi , and I ⊆ {1, . . . ,m}. For any query q, Constrs(q) = {Ai =

vi : i ∈ I} denotes the set of conditions of q. A tuple d ∈ U is said to satisfy a query q if

Constrs(q) ⊆ Constrs(d). The universe of a query q, denoted as Uq, is the set of all the tuples

in the universe U that satisfy the query q. The answer set of a query q on a dataset D, denoted

as q(D), is the set of tuples in D that satisfy query q. Furthermore, given a query q and datasets

D′ ⊆ D ⊆ U , the precision of q in D′ with respect to D, is the fraction of tuples shared by answer

sets q(D′) and q(D). Formally,

Precision(q,D′, D) =
|q(D′)|
|q(D)|

∈ [0, 1].

Alternatively, a query q can be conceived as a function that maps any given dataset D ⊆ U to its

34
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unique answer set. That is,

q : P(U)→ P(Uq),

D → q(D).

Under this functional interpretation, queries are monotone and distribute over set union and inter-

section. In other words, the following expressions hold ∀ q and ∀D′
1 ⊆ D1 ⊆ U , D2 ⊆ U :

q(D′
1) ⊆ q(D1), q(D1 ∪D2) = q(D1) ∪ q(D2), q(D1 ∩D2) = q(D1) ∩ q(D2).

3.1.2 Set similarity functions

Set similarity functions play a central role in data forgetting, as they allow measuring the extent to

which answer sets q(D′) and q(D) are alike for any query q and datasets D′ ⊆ D ⊆ U . Formally,

Definition 3.1.1. Given a dataset D ⊆ U , a set similarity function is a mapping S : P(D) ×
P(D) 7→ R such that ∀A,B,C ⊆ D:

(1) 0 ≤ S(A,B) ≤ 1 (Normalized non-negativity),

(2) S(A,A) = 1 (Self-similarity),

(3) S(A,B) = S(B,A) (Symmetry).

Arguably, the most famous set similarity function is the Jaccard similarity [Leskovec et al.(2020)].

Given a dataset D and subsets A,B ⊆ D, the Jaccard similarity between sets A and B is defined as

Jaccard(A,B) :=
|A ∩B|
|A ∪B|

.

3.2 Data forgetting

Data forgetting is a novel approach towards big data reduction. Given a massive dataset D, the

forgetting paradigm acknowledges that value is not equally distributed among all regions of D.

That is, upon fixing a notion of data-value/importance, there exist some portions in the dataset that

are more valuable than others. Data forgetting algorithms seek reducing D by identifying its

relevant regions and forgetting (i.e., deleting) everything that lies outside of them.

Clearly, there is no single best definition for data-relevance. Nonetheless, a reasonable way of

assigning value to data is by considering the expected workload of queries. This way, the most

valuable regions of a given dataset D are those that allow answering the expected query workload

in the most faithful manner. We formalize this intuitive notion of data-importance by means of the

objective (objective (3.1)) of an algorithmic subset selection exercise (problem 1).
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Problem 1 (Data forgetting). Given:

· A dataset D = {d1, . . . , dn};

· A set of queries Q together with a probability distribution Q defined on Q;

· A set similarity function S : P(D)× P(D) 7→ R+;

· A budget B ∈ N;

find a subset D∗ ⊆ D such that

D∗ = argmax
D′⊆D, |D′|≤B

Eq∼Q[fq(D
′)], (3.1)

where fq(D
′) = S(q(D), q(D′)).

Solution D∗ is a subset of D composed of at most B tuples for which the most likely queries

q ∈ Q according to distribution Q, have answer sets q(D∗) of maximal resemblance to q(D) under

set similarity function S. That is, D∗ comprises those (no more than B) tuples in D that best allow

coping with the expected query workload; aligning with our desired notion of data-importance.

Both distribution Q and similarity function S are crucial ingredients that utterly determine D∗.

On the one hand, distribution Q reflects the relative frequency of usage of each query q ∈ Q, and

consequently, usually corresponds to the empirical distribution built from a query-log with records

in Q. On the other hand, similarity function S quantifies the discrepancy between the query results

achieved on the retained dataset D∗ and those obtained on the full dataset D (i.e., between answer

sets q(D∗) and q(D)).

3.2.1 Independent data forgetting

The simplest version of the problem arises upon assuming pairwise disjointness between the content

of tuples in the input dataset D. That is, upon assuming that the information residing in any d ∈ D

cannot be totally/partially found within other tuples in D. In this scenario, fixed q ∈ Q, since the

topology of D is ignored, every datapoint d ∈ q(D) is of equal importance to the answer set. For

this reason, given D′ ⊆ D, the most natural way of measuring the discrepancy between answer

sets q(D′) and q(D) is by looking at the fraction of tuples that both share. In other words, via the

precision of query q in D′ with respect to D.

Given that query precision is the most natural way of measuring the discrepancy between answer

sets in the independent setting, it remains checking whether Precison(q,D′, D) can be written as

S(q(D), q(D′)), for a set similarity function S. The following proposition provides a satisfactory

answer and unveils a beautiful connection between query precision and the Jaccard similarity.

Proposition 3.2.1. Given a dataset D and a query q,

Precison(q,D′, D) = Jaccard(q(D), q(D′)).
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Proof. The result essentially follows from the monotonicity of conjunctive queries when understood

as mappings (i.e., the fact that ∀ q, and D′ ⊆ D =⇒ q(D′) ⊆ q(D)).

Precision(q,D′, D) =
|q(D′)|
|q(D)|

=
|q(D′) ∩ q(D)|
|q(D′) ∪ q(D)|

= Jaccard(q(D), q(D′)).

We refer to problem 1 under the Jaccard similarity as the independent data forgetting prob-
lem. Interestingly, as we will soon prove, the former is an instance of the classic 0-1 Knapsack
problem; and consequently, it’s in weak-NP and it has an exact solution that can be found in pseudo-

polynomial time.

Problem 2 (0-1 Knapsack). Given a set of n items numbered from 1 to n, each with an assigned

weight wi and value vi, along with a maximum weight capacity W ; maximize

n∑
i=1

vi · xi, (3.2)

subject to { ∑n
i=1wi · xi ≤W,

xi ∈ {0, 1}.

In order to show that independent data forgetting is an instance of 0-1 Knapsack, we rely on the

following lemma concerning answer set cardinality decomposition.

Lemma 3.2.2. For any given datasets D′ ⊆ D and query q,

|q(D′)| =
∑
d∈D′

|q({d})|.

Proof.

D′ = ·∪d∈D′{d} =⇒
(1.1)

q(D′) = q( ·∪d∈D′{d})

=⇒
(1.2)

q(D′) = ·∪d∈D′q({d})

=⇒
(1.3)

|q(D′)| = | ·∪d∈D′ q({d})|

=⇒
(1.4)

|q(D′)| =
∑
d∈D′

|q({d})|.

(Note: ·∪ denotes the disjoint union).

(1.1) holds because the answer set of any query q on any subset D′ ⊆ D is unique.

(1.2) holds because when q is understood as a mapping it distributes under set union.
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(1.3) holds because equal sets have the same cardinality.

(1.4) holds because of the inclusion-exclusion principle in the case of a disjoint union.

It’s worth noting that the above result has a very intuitive combinatorial interpretation: Fixed any

query q and datasets D′ ⊆ D, the cardinality of answer set q(D′) can be computed by sequentially

checking whether each datapoint d ∈ D′ belongs to q(D). Next, we proceed to the main result of

the section where the aforementioned result plays a central role.

Theorem 3.2.3. Independent data forgetting is an instance of 0-1 Knapsack.

Proof. If S(q(D), q(D′)) = Jaccard(q(D), q(D′)) = Precision(q,D′, D), objective (3.1) be-

comes finding a subset D∗ ⊆ D such that

D∗ = argmax
D′⊆D, |D′|≤B

Eq∼Q

[
|q(D′)|
|q(D)|

]
= argmax

D′⊆D, |D′|≤B

∑
q∈Q

PQ(q) ·
|q(D′)|
|q(D)|

=
Lemma 3.2.2

argmax
D′⊆D, |D′|≤B

∑
q∈Q

PQ(q) ·
∑

d∈D′ |q({d})|
|q(D)|

= argmax
D′⊆D, |D′|≤B

∑
q∈Q

PQ(q) ·
∑
d∈D′

|q({d})|
|q(D)|

= argmax
D′⊆D, |D′|≤B

∑
q∈Q

∑
d∈D′

PQ(q) ·
|q({d})|
|q(D)|

= argmax
D′⊆D, |D′|≤B

∑
d∈D′

∑
q∈Q

PQ(q) ·
|q({d})|
|q(D)|

= argmax
D′⊆D,

∑
d∈D′ 1≤B

∑
d∈D′

Eq∼Q

[
|q({d})|
|q(D)|

]
.

Hence, the independent version of the data forgetting problem is an instance of the 0-1 Knapsack

problem where the set of n items corresponds to the dataset D, vd = Eq∼Q

[
|q({d})|
|q(D)|

]
, wd = 1, and

W = B.

It’s worth mentioning that this result extends beyond the simple cardinality constraint. In partic-

ular, it holds for the (more general) Knapsack constraint. If the cost of each tuple d ∈ D is given by

a cost function C : D → R+ where C(D′) :=
∑

d∈D′ C(d) ∀D′ ⊆ D, the problem reduces to the

0-1 Knapsack problem where the set of n items corresponds to the dataset D, vd = Eq∼Q

[
|q({d})|
|q(D)|

]
,

wd = C(d), and W = B.

Despite being exactly solvable in pseudo-polynomial time, the independent model has a draw-

back: Since pairwise disjointness between tuples’ content is assumed, the inner relationships be-

tween tuples in D are ignored. As we shall see next, a (dependent) version of the data forgetting

problem that takes into account the topology of D, follows naturally under basic assumptions.
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3.2.2 Dependent data forgetting

Toy example 1.0.1 exhibits a somewhat general principle: If a requested tuple d is not retained (i.e.,

d ∈ q(D) but d /∈ D′), its information may be totally/partially encompassed by another retained

tuple d′ that’s similar to the former (i.e., one such that d′ ∈ D′∩q(D)). This topology-aware notion

of similarity between answer sets can be formalized via mapping

S(q(D), q(D′)) =
1

|q(D)|
·

∑
d∈q(D)

max
d′∈q(D′)

sim(d, d′), (3.3)

where sim(·, ·)1 indicates the degree of similarity between any given pair of data points. That is, the

similarity between answer sets q(D) and q(D′) is the sum of similarities between each element in

q(D) and its closest neighbour inside q(D′), according to sim(·, ·). Generally, if D is categorical,

it’s natural to consider

sim(d, d′) = Jaccard(d, d′) :=
|Constrs(d) ∩ Constrs(d′)|
|Constrs(d) ∪ Constrs(d′)|

, (3.4)

(see figure 1.1). For the contrary, if D is numerical, it’s reasonable to choose

sim(d, d′) = cos(d, d′) :=
d · d′

||d|| · ||d′||
. (3.5)

Furthermore, in the particular case where

sim(d, d′) =

1 if d = d′,

0 if d ̸= d′,

(3.3) reduces to the independent variant’s objective.

We refer to problem 1 under function (3.3) as the dependent data forgetting problem. Not

surprisingly, taking into account the inner relationships between tuples in D makes the algorith-

mic task significantly harder. In fact, the problem cannot longer be mapped into an instance

of the 0-1 Knapsack problem, and function (3.3) can’t be identified with any proper set sim-

ilarity function (see appendix A.1). Fortunately, dependent data forgetting can be seen as an

instance of the discrete stochastic submodular maximization problem, recently introduced in

[Karimi et al.(2017), Hassani et al.(2017)].

Problem 3 (Discrete stochastic submodular maximization). Given a ground set of items V and

a probability distribution D; find a subset S∗ ⊆ V such that

S∗ = argmax
S′∈I

f(S′) := argmax
S′∈I

Eθ∼D[fθ(S
′)], (3.6)

where functions fθ : P(V )→ R+ are non-negative, monotone, and submodular; and I is a general

1sim(·, ·)satisfies the axioms of 3.1.1 at the data level
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matroid constraint. That is, I ⊆ P(V ) is a collection of subsets of V satisfying the following two

properties:

· A ⊆ B ⊆ V and B ∈ I =⇒ A ∈ I,

· A,B ∈ I and |B| > |A| =⇒ ∃e ∈ B \A such that A ∪ {e} ∈ I.

Collection I = {D′ ⊆ D : |D′| ≤ B} ⊆ P(D) is a matroid for any dataset D and budget

B. Furthermore, functions as in (3.3) are members of a normalized thresholded variant of the

well known (non-negative, monotone, submodular) family of facility location data summarization

objectives (introduced in section 2.1.2.1). In other words, for any query q, set function fq(D
′) as in

(3.3) satisfies that

fq(D
′) =

1

|q(D)|
· ffacility location(q(D

′)).

Consequently,

Proposition 3.2.4. The objective of the dependent data forgetting problem can be written as

f(D′) = E(d,q)∼D [fq,d(D
′)],

where functions

fq,d(D
′) = max

d′∈q(D′)
sim(d, d′). (3.7)

are non-negative, monotone and submodular; and D is the probability distribution with mass func-

tion PD(d, q) =
|q({d})|
|q(D)| · PQ(q).

Proof. See appendix A.2 and A.3.

All in all, we have cast dependent data forgetting as an instance of the discrete stochastic sub-

modular maximization problem. Even more, we have observed that the problem’s objective is a

stochastic variant of the facility location function, and thus doubly stochastic (proposition 3.2.4).

3.2.3 A solution to the dependent data forgetting problem

Naturally, due to the aforementioned connection, existing stochastic submodular maximization tech-

nology should be exploited to solve dependent data forgetting. For this reason, we have decided to

lift the problem into the continuous domain via multilinear continuation; solve the continuous

version of the problem using a continuous stochastic submodular maximization procedure called

Stochastic Continuous Greedy (SCG); and map the continuous solution back into the discrete

domain via randomized pipage rounding. This process yields a solution with (1 − 1/e − ϵ) ap-

proximation guarantee, in expectation, to the optimal (intractable) solution. A bird’s eye view of the

solution’s workflow is depicted in figure 3.1. The technical details will be provided in the following.
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Figure 3.1: Workflow of the solution to the dependent data forgetting problem. Input: dataset
D, query-log Q, and budget B. Query-log Q is pre-processed to extract (Q,Q), where Q refers
to the unique queries in the query-log (abusing notation), and Q to the empirical distribution. The
objective is f(D′) = E(d,q)∼D fq,d(D

′) with fq,d(D
′) as in (3.7), and F (x) its multilinear extension.

Vector x∗ refers to the outcome of the SCG algorithm; and eD∗ that of the pipage rounding scheme.
Output: Subset D∗ ⊆ D containing element di ∈ D if the i-th coordinate of eD∗ takes the value
1. The retained subset D∗ is such that f(D∗) ≥ (1− 1/e− ϵ) ·OPT , in expectation, where OPT
denotes the optimal (intractable) solution of the dependent data forgetting problem.

3.2.3.1 Multilinear continuation

Multilinear continuation is a technique that allows to continuously extend any set function while

preserving its monotonicity and submodularity. More precisely, given a dataset D = {d1, . . . , dn} ⊆
U , and a set function f : P(D)→ R, by identifying subsets D′ ⊆ D with binary vectors eD′ ∈ Rn

in which the i-th component takes value 1 if tuple di ∈ D′ and 0 otherwise, f can be re-written as a

function f̃ defined over the corners of the unit cube in Rn, n = |D|. Namely, f̃ : [0, 1]n → R such

that f̃(eD′) = f(D′). The multilinear extension of f [Vondrák(2008)], denoted F , extends f̃ to

the entire unit cube [0, 1]n ⊆ Rn as follows: ∀ x = (x1, . . . , xn) ∈ [0, 1]n,

F (x) =
∑
D′⊆D

f(D′)
∏

di∈D′

xi
∏

dj /∈D′

(1− xj).

Multilinear continuation preserves monotonicity and submodularity. That is, for any monotone

submodular set function f , its multilinear extension F is (continuous) submodular, (continuous)

monotone, and DR-submodular. Formally, a continuous function F : X ⊆ Rn
+ → R+ is said to be

(continuous) submodular if ∀ x,y ∈ X ,

F (x) + F (y) ≥ F (x ∨ y) + F (x ∧ y),

where x∨y := max(x,y) (component wise) and x∧y := min(x,y) (component wise). Moreover,
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a (continuous) submodular function F is (continuous) monotone if ∀ x,y ∈ X ,

x ≤ y =⇒ F (x) ≤ F (y).

Furthermore, a differentiable submodular function F is called DR-submodular if ∀ x,y ∈ X ,

x ≤ y =⇒ ∇F (x) ≥ ∇F (y).

3.2.3.2 The Stochastic Continuous Greedy algorithm

The Stochastic Continuous Greedy (SCG) algorithm, recently introduced in [Mokhtari et al.(2018)],

is a stochastic variant of gradient ascent originally designed to solve the continuous stochastic
submodular maximization problem.

Problem 4 (Continuous stochastic submodular maximization). Given a probability distribution

D; find a vector x∗ ∈ Rn
+ such that

x∗ = argmax
x∈C

F (x) := argmax
x∈C

Eθ∼D[Fθ(x)], (3.8)

where F is submodular, monotone, DR-submodular; and C ⊆ Rn
+ is a convex set.

Since multilinear continuation preserves monotonicity and submodularity, SCG can be exploited

to solve the continuous counterpart of the dependant data forgetting problem. That is, finding x∗ ∈
Rn
+, n = |D|, such that

x∗ = argmax
x∈C

F (x),

where

C = {x ∈ [0, 1]n :

n∑
i=1

xi ≤ B},

and F (x) = E(d,q)∼D Fq,d(x), with Fq,d(x) the multilinear extension of fq,d(D′) as in (3.7)2. Both

formulations lead to the same optimal value3. In other words,

max
x∈[0,1]n :

∑n
i=1 xi≤B

F (x) = max
D′⊆D : |D′|≤B

f(D′) = OPT.

Hence, solving dependent data forgetting boils down to solving its continuous counterpart and prop-

erly rounding the solution.

The SCG routine (algorithm 6) yields a solution within a (1 − 1/e − ϵ) approximation factor

to the optimal one, in expectation, by just using O(1/ϵ3) oracle calls to the stochastic gradients of

2Objective F (x) is simply the multilinear extension of set function f(D′) = E(d,q)∼D fq,d(D
′), with fq,d(x) as in

(3.7). However, since the multilinear extension of any set function is itself linear, it “jumps” over the expected value
operator. Consequently, F (x) = E(d,q)∼D Fq,d(x), with Fq,d(x) the multilinear extension of fq,d(D′) as in (3.7).

3This is simply due to the fact that problems 3 and 4 lead to the same optimal value for arbitrary matroids when the
latter is the derived from the former via multilinear continuation [Calinescu et al.(2011)].



CHAPTER 3. STOCHASTIC SUBMODULAR DATA FORGETTING 43

objective F . The algorithm builds a solution x∗ inside the feasible set C starting from the origin

0 ∈ Rn
+ through a series of (gradient ascent) rounds. Each round t = 1, . . . , T, consists of three

simple steps: First, the estimated gradient of F at time t, denoted dt, is computed via the recursion

dt = (1− ρt)dt−1 + ρt∇Fθt(xt),

where ρt = 4
(t+8)2/3

, and d0 = 0. Second, the gradient ascent direction inside of C at time t,

denoted vt, is defined as

vt = argmax
v∈C

{⟨dt,v⟩};

(i.e., as the solution to a linear program in v over the convex set C). Last, the partial solution at time

t, denoted xt, is updated as

xt+1 = xt +
1

T
vt,

with x0 = 0.

Fortunately, calculating the stochastic gradients of F and solving the linear program over C are

extremely simple tasks in the case of the continuous version of dependent data forgetting. Refer to

appendix B for the complete details on such computations.

Algorithm 6: Stochastic Continuous Greedy (SCG)

Data: Monotone, DR-submodular function F (x) = Eθ∼D(Fθ(x)), convex set C, and T .
Result: x∗ ∈ C such that E[F (x∗)] ≥ (1− 1/e) ·OPT −O( 1

T 1/3 ), where OPT is the
value of the optimal (intractable) solution of problem 4.

d0 ← 0, x0 ← 0;
for t = 1, . . . , T do

dt ← (1− ρt)dt−1 + ρt∇Fθt(xt), where ρt =
4

(t+8)2/3
;

vt ← argmaxv∈C{⟨dt,v⟩};
xt+1 ← xt +

1
T vt;

end
return x∗ = xT

3.2.3.3 The pipage rounding scheme

SCG outputs a vector x∗ ∈ C such that F (x∗) ≥ (1− 1/e− ϵ) ·OPT , in expectation. To map said

solution back into the discrete domain without losing the approximation factor, we resort on the

(value-preserving4) randomized pipage rounding scheme (algorithm 7)[Calinescu et al.(2011)].

Randomized pipage rounding discretizes x∗ into a feasible corner eD∗ of the unit cube that attains a

higher utility in expectation (i.e., E[F (eD∗)] ≥ F (x∗)). Due to the nature of multilinear extensions,

F (eD∗) = f(D∗) where D∗ contains tuple di ∈ D if the i-th component of eD∗ is equal to 1.

4A value-preserving rounding technique is one such that the rounded vector has at least the same utility as the contin-
uous one.
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Hence,

f(D∗) = F (eD∗) ≥ F (x∗) ≥ (1− 1/e− ϵ) ·OPT,

in expectation.

Consequently, dependent data forgetting can be solved within a (1− 1/e− ϵ) factor, in expec-

tation, by solving its continuous counterpart through SCG and rounding the latter’s output with the

randomized pipage scheme.

Algorithm 7: Randomized pipage rounding

Data: Fractional vector x ∈ C ⊆ [0, 1]n.
Result: Binary vector eD∗ ∈ C ⊆ [0, 1]n such that E[F (eD∗)] ≥ F (x).

while x is fractional do
Find two fractional coordinates xp, xq;
dx ← ep − eq /* Note: ei is the i-th canonical vector of

Rn, i.e., the binary vector of dimension n with all 0’s
and a 1 in position i. */

αx ← min{1− xp, xq};
βx ← min{1− xq, xp};
p← αx

αx+βx
;

p′ ← random number between 0 and 1;
if p′ < p then

x← x− βxdx /* i.e., with probability p move in the
direction −βxdx */

end
else

x← x+ αxdx /* i.e., with probability 1− p move in the
direction αxdx */

end
end
return eD∗ ← x;

3.2.4 Demonstration of the data forgetting algorithms

All in all, we have showed that independent data forgetting can be exactly solved in pseudo-

polynomial time via the the knapsack solver with input vd = Eq∼Q

[
|q({d})|
|q(D)|

]
, wd = 1, W = B.

Furthermore, we have proved that dependent data forgetting can be solved within a (1 − 1/e − ϵ)

factor, in expectation, by lifting the problem into the continuous domain via multilinear continu-

ation, solving its continuous counterpart through SCG, and rounding the latter’s output with the

randomized pipage scheme. In the following, we will refer to the independent (resp. dependent)

data forgetting routine as IndepDF (resp. DepDF). Finally, we exhibit the execution of both rou-

tines on toy example 1.0.1 to provide the reader an even crisper understanding.
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3.2.4.1 Setting:

Input

1. Database D = {d1, d2, d3} where

id Name Last name Age City Job Married Children

d1 James Smith 25 Amsterdam Teacher Yes 2

d2 Wade Brown 25 Paris Firefighter No 0

d3 Olivia Smith 25 Amsterdam Teacher Yes 2

2. Query-log Q = (q1, q2, q1, q3, q3, q3, q2, q1, q2), where

· q1 : Age = 25,

· q2 : City = Amsterdam ∧ Job = Teacher,

· q3 : Name = Olivia.

The order of appearance of the queries in Q indicate the order in which they have been posed.

In this case, the first query in the query-log is q1 and the last one q2.

3. Budget B = 2.

Input pre-processing Query-log Q is pre-processed to extract the set of unique queries, also

denoted Q (notation abuse), together with their relative frequencies (i.e., empirical distribution Q).

In this simple case, the set of unique queries contains only three elements (namely, q1, q2, q3), and

Q is the uniform distribution U with domain {q1, q2, q3}. That is,

(Q,Q) = ({q1, q2, q3}, U(q1, q2, q3)).

The relevant answer sets are q1(D) = {d1, d2, d3}, q2(D) = {d1, d3}, q3(D) = {d3}.

Optimization objective We aim finding a subset D∗ ⊆ D such that

D∗ = argmax
D′⊆D, |D′|≤2

f(D′), (3.9)

where

f(D′) = E(d,q)∼D fq,d(D
′) = E(d,q)∼D max

d′∈q(D′)
sim(d, d′)

with sim(d, d′) = Jaccard(d, d′) as in (3.4).

3.2.4.2 DepDF

Multilinear continuation The multilinear extension of f(D′) is the continuous function F (x) =

E(d,q)∼D Fq,d(x), where Fq,d(x) is the multilinear extension of fq,d(D′) = maxd′∈q(D′) sim(d, d′).
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SCG The SCG algorithm is ran 100 times for T = 100 iterations on the multilinear extension

F (x) and convex set C = {x ∈ [0, 1]3 :
∑3

i=1 xi ≤ 2}. Figure 3.2 exhibits the partial solutions

x0,x1, . . . ,xT = x∗ generated by each one of the SCG executions.

The power set of D = {d1, d2, d3} is identified with the corners of the unit cube in R3 as

follows: (0, 0, 0) = ∅, (1, 0, 0) = {d1}, (0, 1, 0) = {d2}, (0, 0, 1) = {d3}, (1, 1, 0) =

{d1, d2}, (0, 1, 1) = {d2, d3}, (1, 0, 1) = {d1, d3}, and (1, 1, 1) = D. Starting from the ori-

gin x0, SCG navigates through the continuous space by making very small steps in the estimated

direction of the gradient∇F (x). Namely, steps of size 1/T = 1/100 in the direction parallel to the

estimated gradient dt inside of C, i.e., vector vt (see algorithm 6) 5.

Figure 3.2: Depiction of 100 partial solutions x0,x1, . . . ,x100 (in orange) generated by each one
of the 100 executions of the SCG algorithm given F (x) = E(d,q)∼D Fq,d(x), where Fq,d(x) is the
multilinear extension of fq,d(D′) as in (3.7), and C = {x ∈ [0, 1]3 :

∑3
i=1 xi ≤ 2}. Vector

eD∗ denotes the outcome of the Pipage rounding scheme. Vector eD∗ = (0, 1, 1) for executions
3, 11, 89, 91, and eD∗ = (1, 0, 1) for the remaining runs.

5The fact that each step is taken in the direction of vt is a vital requirement to guarantee that xT = x100 = x∗ will
be inside of the feasible set C.
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Pipage rounding Each one of the SCG runs returns a solution x∗ = xT in the border of C,

represented by the diagonal line on the top face of the cube in figure 3.2. Pipage rounding discretizes

x∗ into a corner of the unit cube without losing utility in expectation. Out of the 100 runs, vector

eD∗ = (0, 1, 1) for executions 3, 11, 89, 91, and eD∗ = (1, 0, 1) for the remaining runs.

Output Solution D∗ can be read from the non-zero entries of eD∗ . In the case of executions

3, 11, 89, 91, as only the second and third components of eD∗ are non-zero, the retained subset of

tuples would be

D∗ = {d2, d3} ⊆ D.

For the contrary, in the rest of the executions, as only the first and third components of eD∗ are

non-zero, the retained subset of tuples would be

D∗ = {d1, d3} ⊆ D.

According to objective (3.9),

f({d2, d3}) = 0.9306,

and

f({d1, d3}) = 0.8974.

3.2.4.3 IndepDF

Value computations Each tuple d ∈ D is assigned value vd = Eq∼Q

[
|q({d})|
|q(D)|

]
. That is,

vd1 =
1

3
· 1
3
+

1

3
· 1
2
= 0.28,

vd2 =
1

3
· 1
3
= 0.11,

vd3 =
1

3
· 1
3
+

1

3
· 1
2
+

1

3
= 0.61.

Knapsack solver The Kanapsack solver is feed input vd1 = 0.28, vd2 = 0.11, vd3 = 0.61 (val-

ues); wd1 = wd2 = wd3 = 1 (weights); and W = 2 (capacity). Since all weights are equal, the two

most valuable points get returned.

Output The retained subset of tuples correspond to the two most frequently retrieved datapoints

(recall example 1.0.1). That is,

D∗ = {d1, d3} ⊆ D,

which, according to objective (3.9), has a utility of 0.8974.



Chapter 4

Experimental evaluation

4.1 Experimental setup

We tested IndepDF and DepDF on real and synthetic datasets against a baseline algorithm using a

server with 250 GB RAM and 112 cores.

4.1.1 Baseline algorithm

· LAZY GREEDY: Our problem’s objective (in both flavours) is the expected value of a non-

negative monotone submodular function, and hence, it’s non-negative monotone submodular

itself. Consequently, the classic GREEDY algorithm (algorithm 1)[Nemhauser et al.(1978)] or

its popular accelerated version LAZY GREEDY (algorithm 2) [Minoux(1978)] guarantees a

solution with a (1− 1/e) approximation factor.

4.1.2 Datasets

4.1.2.1 Synthetic data

With respect to the data, we created the nested sequence of datasets D1K ⊆ D10K ⊆ D50K ⊆
D100K . Dataset D1K is made up of 1.000 tuples of size 101 organized into 10 groups. Tuples are

approximately 100% dissimilar between groups and approximately 100% similar within groups.

More precisely, group i ∈ {0, . . . , 9} contains 100 tuples of the form tiα where

tiα = (i, . . . , i, α) ∈ R101, α = random([0, 1]). (4.1)

Furthermore, datasets D10K , D50K , D100K are simple extensions of D1K . Specifically, D10K (resp.

D50K , D100K) shares the first 1.000 tuples with D1K . The remaining 9.000 (resp. 49.000, 99.000)

tuples correspond to 9.000 (resp 49.000, 99.000) tuples of the form t10α as in (4.1).

Regarding the queries, we generated the nested sequence of query-logs Q1 ⊆ Q100 ⊆ Q1K ⊆
Q10K . Log Q1 contains a single query q with probability one retrieving every tuple in D1K . More-

over, Q100, Q1K , Q10K extend Q1. Specifically, Q100 (resp. Q1K , Q10K) shares the first query with

48
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Q1. The remaining 99 (resp 999, 9.999) queries retrieve 100 random points of D1K with probability

ϵ ≈ 0. That is, they are of the form

q(D1K) = {α1, . . . , α100} ⊆ D1K , αi = random int([1, 1.000]).

4.1.2.2 Real data

We exploited real datasets coming from three different sources with corresponding real query-logs.

· Flights: As a small-size real database instance, we considered the flights.csv file inside

the flight 2 folder of the spider dataset 1. Its query-log corresponds to all of the queries

that refer to the flights.csv table in files dev gold.sql and train gold.sql, also

from the spider dataset.

· SkyServer: As a medium-size real database instance, we selected the subset of the PhotoTag

table in sky server retrieved by the queries made by users between 01/01/2023−31/01/2023
via the sky server SQL query service. Naturally, the query-log corresponds to the portion of

queries executed between 01/01/2023−31/01/2023 that refer to the PhotoTag table. The

latter con be downloaded from the sky server SQL log2.

· Wikidata: As a large-size real database instance, we choose the portion of wikidata re-

trieved by the SPARQL queries 3 executed by users via the wikidata query service between

12/06/2017 − 09/07/2017 4. Due to the nature of the data, some pre-processing was re-

quired: Every webpage is identified by a unique id, and any two webpages only share the

“label” and “description” fields. Hence, given any id, we concatenated its corresponding

webpage label and description texts into a single sentence and embedded the latter using

the “all-MiniLM-L6-v2” sentence transformer. This way, every webpage is identified with a

vector in R384.

Dataset name Number of rows Number of columns Number of queries Nature
Dflights 1.200 4 37 categorical
Dskyserver 11.058 97 11.058 numeric
Dwikidata 131.148 384 14.723 numeric

Table 4.1: Characteristics of the considered real datasets.

1https:drive.google.comuc?export=download&id=1TqleXec OykOYFREKKtschzY29dUcVAQ
2https://skyserver.sdss.org/log/en/traffic/sql.asp
3We only kept those queries whose answer sets were smaller than 100
4https:analytics.wikimedia.orgdatasetsone-offwikidatasparql query logs2017-06-12 2017-07-09/2017-06-12 2017-

07-09 organic.tsv.gz

https://skyserver.sdss.org/dr7/en/help/docs/tabledesc.asp#O
https://skyserver.sdss.org/dr12/en/tools/search/sql.aspx
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://query.wikidata.org/
https://www.sbert.net/index.html
https://drive.google.com/uc?export=download&id=1TqleXec_OykOYFREKKtschzY29dUcVAQ
https://skyserver.sdss.org/log/en/traffic/sql.asp
https://analytics.wikimedia.org/datasets/one-off/wikidata/sparql_query_logs/2017-06-12_2017-07-09/2017-06-12_2017-07-09_organic.tsv.gz
https://analytics.wikimedia.org/datasets/one-off/wikidata/sparql_query_logs/2017-06-12_2017-07-09/2017-06-12_2017-07-09_organic.tsv.gz
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4.2 Experimental results

4.2.1 Quality

The objective of the first group of experiments threefold: First, checking whether DepDF is able

to fetch a solution with maximal utility in a scenario where such solution exits; Second, studying

how the quality of the produced solutions by IndepDF,DepDF, and LAZY GREEDY increase as

the budget size increases; Third, comparing the quality of the produced solutions by DepDF for

different configurations of its hyperparameter T , and that of IndepDF and LAZY GREEDY.

4.2.1.1 Recovering ground truth

Recall that dataset D1K is made up of 1.000 tuples organized into 10 groups where tuples are

approximately 100% dissimilar between groups and approximately 100% similar within groups.

Furthermore, Q1 contains a single query that retrieves the full dataset (i.e., q(D1K) = D1K). In

this fabricated setting, any subset of D1K that includes at least one tuple from each one of the 10

groups is an optimal solution to the dependent data forgetting problem for sim(·, ·) = Jaccard(·, ·)
as in 3.4. Hence, for any budget B ≥ 10, there exists at least one optimal solution. Table 4.2 shows

the utility of the solutions constructed by IndepDF, DepDF, and LAZY GREEDY in this artificial

setting for budget B = 20 = 2% · |D1K |.

IndepDF DepDF LAZY GREEDY
Best utility 0.1965 0.9808 0.9808

Average utility 0.1965 0.9709 0.9808

Standard deviation 0 0.0295 0

Table 4.2: Utility of IndepDF, DepDF (with T = 2.000), and LAZY GREEDY for dataset D1K ,
query-log Q1, and budget B = 20. As the theoretical guarantees of DepDF are given in expectation,
the reported results are provided over 100 runs of the algorithm.

4.2.1.2 Solution quality when increasing budget size

Four scenarios were considered:

(a) Dataset D1K , query-log Q1, and B = 10%, 25%, 50%, 75% of |D1K | = 1.000.

(b) Real dataset Dflights, query-log Qflights, and B = 10%, 25%, 50%, 75% of |Dflights| = 1.200.

(c) Dataset Dskyserver,query-log Qskyserver, and B = 10%, 25%, 50%, 75% of |Dskyserver| = 11.058.

(d) Dataset Dwikidata, query-log Qwikidata, and B = 1%, 10%, 25%, 50% of |Dwikidata| = 131.148.

The results are depicted in figure 4.1
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(a) Synthetic data. (b) Flights.

(c) Skyserver. (d) Wikidata.

Figure 4.1: Utility of IndepDF, DepDF (with T = 2.000), and LAZY GREEDY when changing
budget size. Due to the nature of the data, sim(·, ·) = Jaccard(·, ·) as in 3.4 for scenarios (a) and
(b), and sim(·, ·) = cos(·, ·) as in 3.5 for scenarios (c) and (d). As the theoretical guarantees of
DepDF are given in expectation, the best quality solution over 100 runs of the algorithm is reported.
All graphs are plotted on logarithmic scale.

4.2.1.3 Solution quality when increasing the number of iterations T

Four scenarios were considered:

(a) Dataset D1K , query-log Q1, B = 20, and T = 2K, 10K, 50K, 100K.

(b) Dataset Dflights, query-log Qflights, B = 300 = 25%·|Dflights|, and T = 2K, 10K, 50K, 100K.

(c) Dataset Dskyserver, query-log Qskyserver, B = 2764 = 25%·|Dskyserver|, and T = 2K, 10K, 50K, 100K.

(d) Dataset Dwikidata, query-log Qwikidata, B = 1311 = 1%·|Dwikidata|, and T = 2K, 10K, 50K, 100K.

Figure 4.2 depicts the results.
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(a) Synthetic data. (b) Flights.

(c) Skyserver. (d) Wikidata.

Figure 4.2: Utility of IndepDF, DepDF (with increasing values of hyperparameter T ), and LAZY
GREEDY. Due to the nature of the data, sim(·, ·) = Jaccard(·, ·) as in 3.4 for scenarios (a) and (b),
and sim(·, ·) = cos(·, ·) as in 3.5 for scenarios (c) and (d). As the theoretical guarantees of DepDF
are given in expectation, the best quality solution over 100 runs of the algorithm is reported. All
graphs are plotted on logarithmic scale.

4.2.2 Time performance

The objective of the second group of experiments is studying how the time performance of our

proposed data forgetting routines compares to that of LAZY GREEDY as the dataset, query-log, and

budget size increases.

4.2.2.1 Time performance when increasing dataset size

Four scenarios were considered:

(a) Datasets D1K ⊆ D10K ⊆ D50K ⊆ D100K , query-log Q1, and budget B = 20.

(b) Datasets 25%, 50%, 75%, 100% of Dflights, query-log Qflights, and budget B = 120.

(c) Datasets 25%, 50%, 75%, 100% of Dskyserver, query-log Qskyserver, and budget B = 1105.
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(d) Datasets 25%, 50%, 75%, 100% of Dwikidata, query-log Qwikidata, and budget B = 1311.

The results are depicted in figure 4.3.

(a) Synthetic data. (b) Flights.

(c) Skyserver. (d) Wikidata.

Figure 4.3: Time performance of IndepDF, DepDF (with T = 2.000), and LAZY GREEDY when
increasing the dataset size. Due to the nature of the data, sim(·, ·) = Jaccard(·, ·) as in 3.4 for
scenarios (a) and (b), and sim(·, ·) = cos(·, ·) as in 3.5 for scenarios (c) and (d). As the theoretical
guarantees of DepDF are given in expectation, the average time performance over 100 runs of the
algorithm is reported. All graphs are plotted on logarithmic scale.

4.2.2.2 Time performance when increasing query-log size.

Four scenarios were considered:

(a) Dataset D1K , query-logs Q1 ⊆ Q100 ⊆ Q1K ⊆ Q10K , and budget B = 20.

(b) Dataset Dflights, query-logs 25%, 50%, 75%, 100% of Qflights, and budget B = 120.

(c) Dataset Dskyserver, query-logs 25%, 50%, 75%, 100% of Qskyserver, and budget B = 1105.

(d) Dataset Dwikidata, query-logs 25%, 50%, 75%, 100% of Qwikidata, and budget B = 1311.
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The results are plotted in figure 4.4.

(a) Synthetic data. (b) Flights.

(c) Skyserver. (d) Wikidata.

Figure 4.4: Time performance of IndepDF, DepDF (with T = 2.000), and LAZY GREEDY when
increasing the query-log size. Due to the nature of the data, sim(·, ·) = Jaccard(·, ·) as in 3.4 for
scenarios (a) and (b), and sim(·, ·) = cos(·, ·) as in 3.5 for scenarios (c) and (d). As the theoretical
guarantees of DepDF are given in expectation, the average time performance over 100 runs of the
algorithm is reported. All graphs are plotted on logarithmic scale.

4.2.2.3 Time performance when increasing budget size

Four scenarios were considered:

(a) Dataset D1K , query-log Q1, and B = 10%, 25%, 50%, 75% of |D1K | = 1.000.

(b) Dataset Dflights, query-log Qflights, and B = 10%, 25%, 50%, 75% of |Dflights| = 1.200.

(c) Dataset Dskyserver,query-log Qskyserver, and B = 10%, 25%, 50%, 75% of |Dskyserver| = 11.058.

(d) Dataset Dwikidata, query-log Qwikidata, and B = 1%, 10%, 25%, 50% of |Dskyserver| = 131.148.

The results can be found in figure 4.5.
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(a) Synthetic data. (b) Flights.

(c) Skyserver. (d) Wikidata.

Figure 4.5: Time performance of IndepDF, DepDF (with T = 2.000), and LAZY GREEDY when
increasing the budget size. Due to the nature of the data, sim(·, ·) = Jaccard(·, ·) as in 3.4 for
scenarios (a) and (b), and sim(·, ·) = cos(·, ·) as in 3.5 for scenarios (c) and (d). As the theoretical
guarantees of DepDF are given in expectation, the average time performance over 100 runs of the
algorithm is reported. All graphs are plotted on logarithmic scale.

4.3 Discussion

4.3.1 Quality

First, we observe that answer set diversity plays a significant role in the quality performance of

our proposed data forgetting routines. As shown in table 4.3, answer sets are heterogeneous in the

smallest synthetic dataset and homogeneous in all three real datasets. We note that DepDF per-

forms equal to LAZY GREEDY and significantly better than IndepDF when answer sets are very

diverse (see table 4.2 and figure 4.1 (a)). For the contrary, if answer sets are not diverse, IndepDF

performs equal to LAZY GREEDY5 and slightly better than DepDF (see figure 4.1 (b),(d)). Despite

surprising, this behaviour was expected. If answer sets are heterogeneous, seeking a solution that
5Experiments were left running for 3 days. LAZY GREEDY did not finish in some of the experiments.
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diversely covers them, as DepDF or LAZY GREEDY, should attain the highest utility. For the con-

trary, if answer sets are homogeneous, each datapoint within the answer set is (essentially) of the

same importance to the latter. Hence, in this scenario, the optimization objective converges to that

of independent data forgetting; and, consequently we expect IndepDF to perform the best.

Data (D1K , Q1) (Dflights, Qflights) (Dskyserver, Qskyserver) (Dwikidata, Qwikidata)

av std(q(D)) 0.2961 0.0744 0 0.0965

Table 4.3: Average standard deviation of pairwise similarities between tuples inside answer sets.
Given a dataset D and a query-log Q, answer set diversity can be measured as follows: Compute
q(D) for all q ∈ Q; next, compute all pairwise similarities between tuples d ∈ q(D) collecting them
in a list; subsequently, compute the standard deviation of each one of the |Q| lists; last, average over
all computed standard deviations. This final quantity, denoted av std(q(D)), indicates the average
diversity over all answer sets q(D) for a given dataset D and query-log Q.

Second, we notice that budget size B has a major impact on the quality performance of the

three algorithms. We observe that the quality of the produced solution approaches 1 as B → |D|
for all routines across all datasets (see figure 4.1). Again, this is expected behaviour, and simply a

consequence of the monotonicity of our optimization objective (i.e, the fact that f(D′′) ≤ f(D′) if

D′′ ⊆ D′).

Third, we note that hyperparameter T significantly affects the quality performance of DepDF.

Specifically, the quality of the produced solution grows as T →∞ in a diminishing returns fashion

(see figure 4.2). Said conduct agrees with the fact that DepDF produces an approximate solution

with an error term that decreases inO(1/T 1/3), where T is the number of SCG iterations inside the

DepDF routine.

Last, it’s worth pointing out that input (Dskyserver, Qskyserver) is a bit peculiar. Each tuple in

Dskyserver is retrieved exactly once by a query of the form “q : id = n” for 1 ≤ n ≤ |Dskyserver|.
Consequently, |q(D)| = 1 for all q ∈ Qskyserver and every subset of Dskyserver with cardinality B

attains the same (optimal) utility (see the overlapping graphs in figures 4.1 (c), and 4.2 (c)).

4.3.2 Time performance

First, we observe that IndepDF and DepDF enjoy an extremely superior time performance to that

of LAZY GREEDY across all datasets (see figure 4.3). Nonetheless, the time performance of all

three algorithms decreases as the size of the database increases. This result should come as no

surprise. In fact, IndepDF performs a value-assigning operation for each d ∈ D. Hence, the

larger the database the more operations such algorithm conducts. Moreover, DepDF performs T

iterations each requiring the computation of ∇F (x), where x ∈ R|D| and F is the multilinear

extension of f . Therefore, the larger the database, the more partial derivatives must be computed

per iteration. Furthermore, LAZY GREEDY performs B rounds, each requiring at most |D| oracle

calls to objective f . Consequently, the bigger the database, the longer the routine will take per

iteration.
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Second, we notice that query-log size has a major impact on the time performance of LAZY

GREEDY, a minor impact on that of IndepDF, and no impact on that of DepDF (refer to figure

4.4). Again, a very natural result. LAZY GREEDY requires oracle access to objective f(D′) =

Eq∼QEd∼U(D)maxd′∈q(D′) sim(d, d′) several times per round. Due to the Q-dependence, such

function evaluations become increasingly expensive as |Q| grows. Similarly, IndepDF carries

out computations that depend on the size of Q. Namely, each d ∈ D gets assigned a value

vd = Eq∼Q

[
|q({d})|
|q(D)|

]
. Nonetheless, the evaluation of this value-assigning operations is orders of

magnitude faster than that of objective f , explaining the time difference between the two routines.

For the contrary, DepDF’s computation time is completely unaffected by changes in |Q|. The algo-

rithm performs T rounds, each requiring the computation of ∇F (x), where x ∈ R|D| and F is the

multilinear extension of f . However, as detailed in appendix B, (approximately) calculating∇F (x)

boils down to sampling one query q ∼ Q, one tuple d ∼ U(q(D)), and computing∇Fq,d(x), where

Fq,d(x) is the multilinear extension of fq,d(D′) = maxd′∈q(D′) sim(d, d′). Hence, DepDF is time

performance-wise-oblivious to changes in Q.

Last, we note that budget size B heavily affects the time performance of LAZY GREEDY and

has no effect at all on our proposed data forgetting routines (see figure 4.5). Indeed, an expected

outcome. As aforementioned, LAZY GREEDY requires B iterations. Therefore, an increase in the

budget size results in an increase on the number of iterations; and by default, in the overall com-

putation time. Conversely, IndepDF and DepDF perform the exact same number of computations

independent of B. In particular, IndepDF performs |D| operations involving Q exclusively, and

DepDF conducts T rounds that only require access to a single query and its answer set.

4.4 Concluding remarks

In this paper we address the data reduction challenge that many organizations are inevitably facing.

We formalize the problem (in the context of relational data) as a stochastic subset selection exercise,

and study its two most natural variants: independent, where the topology of D is ignored, and de-

pendent, where the structure of the data is taken into account. Our contribution revolves around two

key observations. First, independent data forgetting is an instance of the 0-1 Knapsack problem;

and second, dependent data forgetting can be cast as an instance of the discrete stochastic submod-

ular maximization problem under the facility location function. Capitalizing on this connections,

two novel data forgetting routines with strong theoretical guarantees are proposed: IndepDF and

DepDF.

The experimental results confirm our proposed data forgetting routines’ theoretical guarantees.

IndepDF (resp. DepDF) has proven to produce the best quality solutions in contexts of low (resp.

high) answer-set diversity. But, most importantly, both routines generate solutions as good as those

yield by LAZY GREEDY quality-wise, but significantly faster in terms of time. In fact, LAZY

GREEDY failed to complete any of the experiments involving Wikidata over the course of three

days, whereas IndepDF and DepDF only took a few minutes. In addition, our algorithms enjoy
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some very desirable properties that allow them to scale up quite well. Specifically, IndepDF’s

(resp. DepDF’s) time performance is only mildly affected by increases in the database size, mildly

affected (resp. completely unaffected) by increases in the query-log size, and completely unaf-

fected by budget size increases. To the best of our knowledge, IndepDF and DepDF are the first

ever procedures that allow forgetting relational data in data-intensive environments, based on solid

theoretical foundations.



Appendix A

Supplementary material of section 3.2.2.

A.1 Properties of function (3.3)

Proposition A.1.1. Given a dataset D and subsets A,B ⊆ D,

S(A,B) =
1

|A|
·
∑
d∈A

max
d′∈B

sim(d, d′)

is normalized, non-negative, self-similar, but non-symmetric. That is, it satisfies all the axioms from

definition 3.1.1 except symmetry. Hence, it can be regarded as a weak set similarity function.

Proof.

· Normalized non-negativity: The non-negativity follows from the fact that sim(·, ·) is non

negative. Furthermore, since sim(·, ·) ∈ [0, 1], each term in the sum is bounded by 1. Since

there are |A| terms, the total sum is bounded by |A|. Dividing by this very quantity, the

complete expression is bounded by 1. Hence, 0 ≤ S(A,B) ≤ 1.

· Self similarity:

S(A,A) =
1

|A|
·
∑
d∈A

max
d′∈A

sim(d, d′)

=
1

|A|
·
∑
d∈A

sim(d, d)

=
1

|A|
·
∑
d∈A

1 =
|A|
|A|

= 1.

· Non-symmetry: It suffices to consider input subsets such that B ⊆ A. In this case S(A,B) ≤
1, while S(B,A) = 1. Hence, symmetry is not guaranteed.
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A.2 Non-negativity, monotonicity and submodularity of fq,d(D′)

Proposition A.2.1. For any query q and datasets D′ ⊆ D, set functions

fq,d(D
′) = max

d′∈q(D′)
sim(d, d′),

are non-negative, monotone, and submodular.

Proof.

· Normalized non-negativity: This is an immediate consequence of the fact that

sim(d, d′) ∈ [0, 1] ∀ d, d′.

· Monotonicity: If A ⊆ B ⊆ D =⇒ q(A) ⊆ q(B) ⊆ q(D) =⇒

fq(A) = max
d′∈q(A)

sim(d, d′) ≤
q(A)⊆q(B)

max
d′∈q(B)

sim(d, d′) = fq(B).

· Submodularity: We rely on the definition in terms of the discrete derivative. Given any

A ⊆ B ⊆ D and d∗ ∈ D \B, we distinguish two cases:

· Case 1: q({d∗}) = ∅. In this scenario,

∆fq(d
∗|B) = max

d′∈q(B∪{d∗})
sim(d, d′)− max

d′∈q(B)
sim(d, d′)

=
q(B∪{d∗})=q(B)∪q({d∗})=q(B)

0

=
q(A∪{d∗})=q(A)∪q({d∗})=q(A)

∆fq(d
∗|A).

· Case 2: q({d∗}) = d∗. In this scenario,

∆fq(d
∗|B) = max

d′∈q(B∪{d∗})
sim(d, d′)− max

d′∈q(B)
sim(d, d′)

= max
{
0, sim(d, d∗)− max

d′∈q(B)
sim(d, d∗)

}
.

Now, for any d ∈ D,

A ⊆ B =⇒ q(A) ⊆ q(B) =⇒ max
d′∈q(A)

sim(d, d′) ≤ max
d′∈q(B)

sim(d, d′)

=⇒ − max
d′∈q(B)

sim(d, d′) ≤ − max
d′∈q(A)

sim(d, d′)

=⇒ sim(d, d∗)− max
d′∈q(B)

sim(d, d′) ≤ sim(d, d∗)− max
d′∈q(A)

sim(d, d′).

Hence, ∆fq(d
∗|B) ≤ ∆fq(d

∗|A)
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An alternative way of proving all three properties is simply by observing that the facility loca-

tion function is non-negative, monotone, and submodular because it’s a non-negative sum of non-

negative, monotone and submodular terms. In our particular case, functions fq,d constitute such

terms, hence, said properties must hold.

A.3 The double stochasticity of the dependent data forgetting objec-
tive f .

This property is a direct consequence of the (hidden) stochasticity of the facility location function.

Namely, the fact that

1

|D|
· ffacility location(D

′) =
∑
d∈D

1

|D|
max
d′∈D′

sim(d, d′) = Ed∼U(D) max
d′∈D′

sim(d, d′),

where U(D) denotes the uniform distribution over D. Hence, the objective of the dependent data

forgetting problem can be re-written as

f(D′) = Eq∼QEd∼U(q(D)) max
d′∈q(D′)

sim(d, d′).

This beautiful observation arises a very important question: Can we write objective f as a single

expectation over (d, q) ∼ D for some distribution D? The answer is yes. Namely, for distribution

D with probability mass function

PD(d, q) =
|q({d})|
|q(D)|

· PQ(q), ∀ (d, q) ∈ D ×Q.

Note that the probability distributionQ is part of the input of the dependent data forgetting problem.

Proposition A.3.1. PD(d, q) =
|q({d})|
|q(D)| · PQ(q), (d, q) ∈ D ×Q is a probability mass function.

Proof.

1. PD(d, q) ≥ 0: This is true since |q({d})|
|q(D)| ≥ 0 and PQ(q) ∈ [0, 1]. Note that queries are

assumed to be non-empty (i.e., q(D) ̸= ∅, so no division by 0 takes place).
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2.
∑

(d,q)∈D×Q PD(d, q) = 1:

∑
(d,q)∈D×Q

PD(d, q) =
∑
d∈D

∑
q∈Q

PD(d, q)

=
∑
q∈Q

∑
d∈D

PD(d, q)

=
∑
q∈Q

∑
d∈D

|q({d})|
|q(D)|

· PQ(q)

=
∑
q∈Q

PQ(q)
∑
d∈D

|q({d})|
|q(D)|

=
∑
q∈Q

PQ(q)

∑
d∈D |q({d})|
|q(D)|

=
Lemma 3.2.2

∑
q∈Q

PQ(q)
|q(D)|
|q(D)|

=
∑
q∈Q

PQ(q) = 1.

Proposition A.3.2. (Proposition 3.2.4 of the main text) The objective of the dependent data forget-

ting problem can be written as

f(D′) = E(d,q)∼D fq,d(D
′)

where, D is the distribution with probability mass function PD(d, q) =
|q({d})|
|q(D)| · PQ(q) and

fq,d(D
′) = max

d′∈q(D′)
sim(d, d′).
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Proof.

f(D′) = Eq∼QEd∼U(q(D)) fq,d(D
′)

=
∑
q∈Q

PQ(q)
∑

d∈q(D)

1

|q(D)|
· fq,d(D′)

=
∑
q∈Q

PQ(q)
∑

d∈q(D)

1

|q(D)|
· fq,d(D′)

=
∑
q∈Q

PQ(q)

 ∑
d∈q(D)

1

|q(D)|
· fq,d(D′) +

∑
d∈D\q(D)

0


=

∑
q∈Q

PQ(q)
∑
d∈D

I{d∈q(D)}(d)

|q(D)|
· fq,d(D′)

=
∑
q∈Q

PQ(q)
∑
d∈D

|q({d})|
|q(D)|

· fq,d(D′)

=
∑
q∈Q

∑
d∈D

PQ(q) ·
|q({d})|
|q(D)|

· fq,d(D′)

=
∑
q∈Q

∑
d∈D

PD(d, q) · fq,d(D′)

=
∑
d∈D

∑
q∈Q

PD(d, q) · fq,d(D′)

= E(d,q)∼D fq,d(D
′).
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Supplementary material of section 3.2.3.

B.1 The gradient computations in SCG for the continuous counter-
part of dependent data forgetting.

SCG builds a solution vector x∗ starting from the origin through a series of rounds. The first step of

each round t involves (approximately) computing ∇F (xt), where F is the multilinear extension of

the dependent data forgetting objective f , and xt is the partial solution at time t. Computing the gra-

dient ∇F exactly is extremely expensive, however, its estimation becomes simple upon observing

that f is doubly stochastic (appendix A.3).

B.1.1 Estimating∇F (x)

Objective F (x) is the multilinear extension of set function f(D′) = E(d,q)∼D fq,d(D
′). Nonethe-

less, since the multilinear extension of any set function is itself linear,

F (x) = E(d,q)∼D Fq,d(x),

where Fq,d(x) is the multilinear extension of fq,d(D′). Furthermore, ∇ is a linear operator, and

hence,

∇F (x) = E(d,q)∼D ∇Fq,d(x).

The standard way of approximating ∇F (x) is using a minibatch of size N . That is, building a

sample by drawing N pairs (d, q) ∼ D, and estimating

∇F (x) ≈ 1

N

∑
∇Fq,d(x).

However, this technique is very computationally expensive. Nonetheless, SCG is very efficient

as it does not require using a minibatch to estimate ∇F . Instead, at each step t = 1, . . . , T , it

simply averages over the stochastic estimates of previous steps. That is, the estimated gradient of F

64



APPENDIX B. SUPPLEMENTARY MATERIAL OF SECTION 3.2.3. 65

evaluated at the partial solution at time t (i.e., point xt), denoted dt, is computed via the recursion

dt = (1− ρt)dt−1 + ρt∇Fq,d(xt),

where ρt =
4

(t+8)2/3
, and d0 = 0. It can be shown that

E[||dt −∇F (xt)||2] −→
t→∞

0,

[Mokhtari et al.(2018)]. Consequently, in our case, estimating ∇F (xt) boils down to sampling a

single pair (d, q) ∼ D and computing∇Fq,d(xt).

B.1.1.1 Sampling (d, q) ∼ D

Due to the product rule, sampling (d, q) ∼ D can be broken down into two simple steps:

1. Sampling a single query q ∼ Q.

2. Sampling a single datapoint d ∼ U(q(D)). In other words, sampling a single tuple d uni-

formly at random from answer set q(D).

B.1.1.2 Computing∇Fq,d(xt)

It suffices computing an unbiased estimate of ∇Fq,d(xt) =
(
∂Fq,d(xt)

∂x1
, . . . ,

∂Fq,d(xt)
∂xn

)
. Luckily,

computing an unbiased estimate of ∂Fq,d(xt)
∂xi

is quite straightforward in the case of multilinear ex-

tensions [Mokhtari et al.(2018)]. An unbiased estimate of ∂Fq,d(xt)
∂xi

is given by

fq,d(D
′ ∪ {di})− fq,d(D

′ \ {di}), (B.1)

where D′ is a (sampled) subset of D that includes each tuple di ∈ D independently with probability

(xt)i. Since fq,d(D
′) = maxd′∈q(D′) sim(d, d′), equation (B.1) further simplifies. We distinguish

two cases:

· Case 1: di /∈ q(D). In this scenario, q({di}) = ∅. Hence (B.1) = 0.

· Case 2: di ∈ q(D). In this scenario, q({di}) = {di}. Hence,

(B.1) = max

{
0, sim(d, di) − max

d′∈q(D)∩D′
sim(d, d′)

}
.

B.2 Solving the linear program

The second step of each round t of SCG involves solving the linear program

vt = argmax
v∈C

{⟨dt,v⟩}, (B.2)
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where, in the case of the continuous counterpart of dependent data forgetting,

C = {x ∈ [0, 1]n :
n∑

i=1

xi ≤ B}.

In this particular case, the solution vt to the linear program is simply the binary vector with B

1s and n − B 0s, where the 1s are in the position of the B largest coordinates of dt. Since vector

dt has dimension n = |D|, (B.2) can be solved in O(n) time.
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