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Layman’s summary 

Virtual screening and molecular docking are important techniques used in computer-aided drug 

design. They help find potential drugs by using computer programs to simulate how different 

molecules interact with proteins in the body. However, the accuracy of these methods depends on the 

algorithms and scoring systems used. Search algorithms are like search engines that look for the best-

fitting molecule and protein shapes. Scoring functions, on the other hand, help evaluate how well a 

molecule binds to a protein and how strong that binding is. They help determine which molecules are 

most likely to be effective as drugs. Despite a lot of research in this area, accurately predicting how 

molecules and proteins interact is still a challenge. This review looks at the basic elements of the 

databases of molecules, the search algorithms, and the scoring systems used in virtual screening and 

molecular docking. It also discusses the difficulties scientists face in this field and explores ideas for 

future research to improve these methods.  
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Abstract 

Virtual screening and molecular docking play crucial roles in computer-aided drug design. The 

reliability of these methods relies on the precision of the search algorithms and scoring functions 

employed. Search algorithms are responsible for identifying the most appropriate ligand and protein 

conformations, while scoring functions determine the binding mode, site, and affinity of the ligand, 

enabling the identification of potential drug leads. Despite extensive research, accurately and rapidly 

predicting ligand-protein interactions remains a challenge. Therefore, this review examines the 

fundamental aspects of libraries, search algorithms, and scoring functions employed in virtual 

screening and molecular docking. Additionally, it discusses the challenges encountered and explores 

potential future research directions in this field. 

Introduction 
Since its development in the early 1990s, high-throughput screening (HTS) has played a crucial role 

in drug discovery and screening processes (Putatunda et al., 2023). HTS enables the characterization 

of 10,000 to 100,000 compounds based on their biological activity, selectivity, bioavailability, and 

toxicity (Mayr & Bojanic, 2009). However, identifying effective drugs requires significant time and 

financial investment, limiting the discovery and optimization of lead compounds (Suay-García et al., 

2022). To mitigate these challenges, computer-aided drug design (CADD) has emerged as a practical 

approach, significantly reducing costs and time in the drug discovery process. One prominent CADD 

method is virtual screening (VS), which employs in silico screening of compound libraries to identify 

potential drug leads for specific targets. The first publication on VS dates back to 1997 (Horvath, 

1997) and has since contributed to the approval of at least 69 commercial drugs (Sabe et al., 2021). 

VS can be broadly classified into two categories based on the type of information utilized. Ligand-

based virtual screening relies on the concept that chemically similar structures exhibit similar 

biological effects (Lill, 2013). The second category is structure-based virtual screening, which 

involves docking multiple ligands onto a target protein to assess their affinity (Zhu et al., 2022). 

Consequently, a 3D structure of the target protein is required, and the ligands are ranked based on 

their affinity with the protein. This process entails selecting ligands from a library and employing 

algorithms to determine the optimal conformation for both the ligand and the protein. Subsequently, 

molecular docking software utilizes scoring functions to evaluate the binding affinity of the ligand-

protein complex (Sabe et al., 2021). While VS significantly contributes to drug development, it still 

has certain limitations. Libraries may suffer from incomplete data sets, ligands and proteins employed 

in molecular docking are often limited to a single rigid conformation, and scoring functions may yield 

false positives and negatives. 

This review overviews various databases/libraries, algorithms, and scoring functions utilized in 

molecular docking. Furthermore, future directions and potential enhancements to the existing 

molecular docking workflow will be discussed. 

Structure-based Virtual Screening 
Structure-based virtual screening (SBVS) uses hundreds of ligands from a dataset and determines the 

affinity with a specified protein in a 3D environment. To start, 3D structures of the target proteins and 

ligands must be available. The ligands and proteins need to be in the correct configuration, and lastly, 

algorithms determine the binding affinity between the ligand and protein. The following sections 

discuss the most used libraries and databases, configuration algorithms, and docking/scoring 

functions.  
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Libraries and Databases  
As mentioned previously, a necessary condition is access to a 3D structure of the target protein, and 

the ligands are being docked (N. Cavasotto, 2011). There are some commercially available databases, 

but most are accessible without cost. Below is a summary of existing databases primarily used for 

SBVS: 

• Drugbank (Wishart et al., 2018): Drugbank started in 2006 at Dr. David Wishart’s lab at the 

University of Alberta to help academic researchers get detailed drug information. Drugbank 

has since grown into an online database covering detailed drug data with comprehensive drug 

target information. The database contains over 11,900 drug entries, including FDA-approved 

small molecule and biotechnology drugs and investigational and nutraceuticals. 

 

• ZINC (Irwin et al., 2020): Maintained by Irwin and Shoichet Laboratories, Zinc is a free 

database of commercially and annotated compounds for VS. Together, it has nearly 2 billion 

compounds, which can be searched on explicit atomic-level graph-based methods.   

 

• PubChem (Kim et al., 2023): Maintained by the National Institutes of Health (NIH), Pubchem 

is a public database where scientific data can be stored for others to use. It contains 

information about 114,823,599 unique chemical compounds, 186,035 protein targets, and 

more(Statistics - PubChem, n.d.).  

 

• Protein Data Bank (PDB) (Burley et al., 2023): The Protein Data Bank is an extensive archive 

of 3D structure data for proteins, DNA, and RNA. It is one of the most widely used libraries 

fundamental for research and education in health, biology, and biotechnology. PDB grows by 

10% each year, going from 48,169 entries in 2008 to 204,826 admissions at the beginning of 

2023 (PDB Statistics: PDB Data Distribution by Experimental Method and Molecular Type, 

n.d.). 

 

• ChEMBL (Mendez et al., 2019): The European Institute of Bioinformatics sustains a database 

of bioactive molecules with medicinal properties. Over the years, they collected around 2.3 

million compounds with 15.2 million known biological activities. 

 

• PDBBind Database (Z. Liu et al., 2015): The PDBBind database, developed by Prof. 

Shaomeng Wang’s group at the University of Michigan, is valuable. Its purpose is to 

comprehensively compile experimentally measured binding affinity data for all biomolecular 

complexes available in the Protein Data Bank. The latest release (version 2020) encompasses 

binding affinity data for a total of 23,496 biomolecular complexes.  

 

• ChemSpider (Pence & Williams, 2010): Owned by the Royal Society of Chemistry, 

ChemSpider has a chemical structure database of over 100 million structures with associated 

properties. Just like PubChem, ChemSpider collects data from high-quality data sources. Up 

to 1000 structure downloads are allowed daily; further contact is needed for more downloads, 

thus not 100% free of charge (Maia et al., 2020). 
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Search Algorithms 
Once a target protein and ligands are selected from a library, search algorithms are employed to 

explore the orientation and conformation of the ligands within the docking site. In rigid docking, 

search algorithms explore different positions of the ligands by considering translational and rotational 

degrees of freedom. In the case of flexible docking, additional conformational degrees of freedom are 

introduced (Maia et al., 2020). Various techniques are utilized to predict the ligands’ correct 

conformation and can be can be classified into three distinct classes: meta-heuristic algorithms, 

machine learning-based algorithms, and other technique-based algorithms (Table 1). 

• Meta-heuristic algorithms belong to the class of optimization algorithms specifically designed 

to tackle complex optimization problems that are challenging or infeasible to solve using 

traditional mathematical approaches. These algorithms prove particularly useful when dealing 

with situations where only partial or incomplete information is available. They often possess a 

probabilistic nature and are characterized by their efficiency in exploring and exploiting the 

search space, effectively striking a balance between exploration and exploitation to discover 

optimal solutions (Abdel-Basset et al., 2018; Bianchi et al., 2009). 

 

• Machine learning-based algorithms leverage the vast amount of available molecular structural 

information and biological activity datasets. These algorithms utilize the datasets to learn, 

make decisions, and recognize patterns. The significant advantage of machine learning lies in 

its ability to leverage acquired knowledge during the learning process, eliminating the need 

for computationally expensive simulations. By leveraging existing data, machine learning 

algorithms can predict and infer interactions between ligands and proteins, leading to efficient 

and accurate predictions (Oliveira et al., 2023). 

 

• Other technique-based algorithms encompass approaches that do not fit neatly into the meta-

heuristic or machine learning-based classifications. These algorithms often incorporate a 

range of diverse methodologies and techniques to address specific challenges in molecular 

docking. These may include approaches based on statistical analysis, physics-based models, 

or hybrid methods that combine elements from multiple algorithmic strategies. The 

distinguishing characteristic of these techniques is their unique and specialized nature, 

tailored to tackle specific aspects or problems encountered in the molecular docking 

process(Maia et al., 2020). 

Overall, these three classes of algorithms provide a diverse toolkit for tackling different aspects of 

molecular docking, each bringing its strengths and advantages to the table. 

  



 Tim van den Nobelen (6487149) 

 

Page 6 of 25 

 

Table 1 Algorithms used in virtual screening 

Class Type Algorithm 

Meta-Heuristic 

Algorithms: 

Evolutionary 

Algorithms: 
• Genetic Algorithms (Xia et al., 2017) 

• Differential evolution (Friesner et al., 2004),  

• Ant Colony Optimization (Korb et al., 2006) 

• Tuba search (Baxter et al., 1998) 

• Particle Swarm Optimization (Gowthaman et al., 2015) 

• PSOVina (Ng et al., 2015) 

 Statistical Methods: • Simulated Annealing (SA) (Doucet & Pelletier, 2007), 

Hatmal and Taha (Hatmal & Taha, 2017) 

• Conformational Space Annealing (CSA) (Shin et al., 2011) 

 

Machine Learning-

based Algorithms: 

Machine Learning: • Artificial Neural Networks (ANNs) (Ashtawy & 

Mahapatra, 2018) 

• Support Vector Machines (Sengupta & Bandyopadhyay, 

2012) 

• Bayesian Techniques (Abdo et al., 2010) 

• Decision Tree (Tin Kam Ho, 1998) 

• k-Nearest Neighbor (kNN) (Peterson et al., 2009) 

• Kohonen;’s SOMs and Counterpropagation ANNs 

(Schneider et al., 2009) 

• Ensemble Methods using Machine Learning (Korkmaz et 

al., 2015) 

 

Other Techniques-

Based Algorithms 

Statistical Methods: • Monte Carlo (Harrison et al., 2010) 

 Similarity-based 

Algorithms: 
• Based on Substructures (Tresadern et al., 2009) 

• Pharmacochemical (Cruz-Monteagudo et al., 2014) 

• Overlapping Volumes (Leach et al., 2010) 

• Molecular Interaction Fields (MIFs) (Willett, 2006) 

• Hybrid Approach (H. Haga et al., 2016; Morris et al., 

2009) 

 Incremental 

Construction: 
• FlexX complex construct algorithm (Rarey et al., 1996) 

• Surflex-Dock approach (Spitzer & Jain, 2012) 

 Local Search: • Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (Trott 

& Olson, 2009) 

 Exhaustive Search: • eHiTS (Zsoldos et al., 2007) 

 Linear programming 

method: 
• Simplex Method (Ruiz-Carmona et al., 2014) 
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Scoring Functions 
During the docking process, while search algorithms explore various conformations of each ligand 

from the compound library, scoring functions play a crucial role in assessing the quality of these 

conformations. Scoring functions aim to achieve three primary objectives: determining the binding 

mode or site of a ligand within a protein, predicting the absolute binding affinity, and identifying 

potential drug leads for the specific protein target (J. Li et al., 2019). 

Scoring functions can be broadly classified into four major classes, as illustrated in Figure 1: Physics-

based, Empirical, Knowledge-based, and machine learning-based scoring functions. The first three 

classes, often called “classical” scoring functions, primarily employ linear regression methods for 

their calculations. On the other hand, the machine learning-based scoring functions utilize non-linear 

regression methods. 

In the subsequent chapters, we will provide a concise overview of each of these scoring functions, 

highlighting their distinctive characteristics and methodologies. 

 

Figure 1 Four categories of scoring functions for structure-based virtual screening (obtained from (J. Li et al., 2019)) 
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Classical-based Scoring Functions 

Physics-based 

Physics-based scoring functions rely on the intermolecular interactions between the ligand’s atoms 

and the target. These interactions encompass Van Der Waals forces, electrostatic interactions, bond 

stretching, bending, and torsional forces. The parameters for these interactions are obtained from 

experimental data and developed following the principles of molecular mechanics (Ferreira et al., 

2015). However, the accuracy of predicting the binding energy is heavily dependent on the functional 

form of the potential energy and its associated parameters, which can be challenging to determine due 

to the nature of physics-based scoring functions. In response to the challenges posed by covalent 

interactions, polarization, and charge transfer in docking (Raha et al., 2007; Senn & Thiel, 2009), 

recent studies have introduced a new scoring function based on quantum mechanics. However, it 

should be noted that quantum mechanics-based scoring functions offer higher accuracy but have 

increased computational costs compared to physics-based scoring functions. A hybrid quantum 

mechanical/molecular mechanics approach has been developed to balance computational efficiency 

and predictive accuracy. This approach aims to provide a compromise solution for addressing these 

challenges (Chaskar et al., 2014).  

Physics-based scoring functions have the advantage of directly calculating interactions between 

protein and ligand atoms. They are particularly suitable for estimating binding free energy and offer 

higher predictive accuracy than other scoring functions. This is because physics-based scoring 

functions consider enthalpy, solvation, and entropy factors.  

Empirical 

Empirical scoring functions are utilized to estimate the binding affinity of a protein-ligand complex by 

considering essential energetic factors such as hydrogen bonds, hydrophobic effects, and steric clashes 

(Eldridge et al., 1997; Friesner et al., 2006; Zheng & Merz, 2011). These scoring functions are 

typically optimized by employing a training set with known binding affinities, and the weights of the 

energetic factors are determined through linear regression analysis (Kadukova & Grudinin, 2017). 

Empirical scoring functions involve two main research directions. The first direction focuses on 

utilizing large, high-quality training datasets to optimize protein-ligand structures. This consists in 

employing comprehensive data to enhance the accuracy of the scorings function. The second direction 

involves selecting suitable energy terms through stepwise variables and systematic selection specific 

to the target protein (Fornabaio et al., 2004; Kerzmann et al., 2006). Considering these research 

directions, empirical scoring functions have become widely adopted in protein-ligand docking 

programs. These scoring functions are crucial in facilitating the study of protein-ligand interactions 

and have found extensive use in the field.  

Empirical scoring functions share the characteristic of decomposing protein-ligand binding affinities 

into single energy terms, similar to physics-based scoring functions. However, empirical scoring 

functions often adopt a flexible and intuitive functional form, deviating from the well-established 

models utilized by physics-based scoring functions. The simplicity of energy terms in empirical 

scoring functions enables efficient prediction of binding affinity, ligand pose, and virtual screening, all 

while maintaining low computational costs (Y. Li, Liu, et al., 2014). 

Knowledge-based 

In knowledge-based scoring functions, the binding affinity is determined by adding the interactions 

between the atoms of a protein and the molecular target (Ferreira et al., 2015). These functions 

leverage statistical observations from large databases and utilize pairwise energy potentials derived 

from known ligand-receptor complexes, using the inverse Boltzmann statistical principle, to create a 

general scoring function (Muegge & Martin, 1999). The underlying principle is that intermolecular 

interactions occurring near specific types of atoms or functional groups, which are more frequently 

observed, are more likely to contribute positively to the binding affinity. The final score is computed 
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as the sum of individual interaction scores. The major advantage of knowledge-based scoring 

functions is their ability to balance computational cost and predictive accuracy compared to physics-

based and empirical scoring functions. However, locating the reference state poses a challenge for 

knowledge-based scoring functions. The reference state represents the expected distribution or 

behavior of atomic pairs in a given system, serving as a baseline for comparison in the scoring 

process. By comparing the observed atomic pairs in the target system with the reference state, the 

scoring function can evaluate the compatibility and likelihood of the observed interactions. Currently, 

two classical strategies are employed for determining the reference state. One approach involves 

approximating the reference state using a random distribution of atomic pairs in the training set (Velec 

et al., 2005). The other approach introduces correction methods based on the first strategy to enhance 

the accuracy of knowledge-based scoring functions (Huang & Zou, 2006). 

Since the training sets for knowledge-based scoring functions solely rely on structural information and 

are independent of experimental binding affinity data, they avoid potential ambiguities associated 

with experimental conditions that could influence binding affinity. This suggests that knowledge-

based scoring functions are more suitable for predicting binding poses than precise binding affinities 

(Zheng & Merz, 2013).  

Machine Learning-Based Scoring Functions 
The use of predictive models based on machine learning has become increasingly prevalent in virtual 

screening due to the availability of large databases containing molecular information and the 

advantages offered by machine learning techniques, such as accuracy, expanded chemical libraries, 

new molecular descriptors, and similarity search techniques (Hönig et al., 2023). Machine learning 

algorithms utilize datasets to learn and, based on the knowledge acquired, make decisions, 

predictions, and recognize patterns. Additionally, the performance of a machine learning system is 

expected to improve over time and adapt to changes (Leguizamón, 2011). 

In contrast to classical scoring functions with assumed mathematical functional forms, machine-

learning-based scoring functions utilize various machine-learning algorithms such as support vector 

machines, random forests, neural networks, and deep learning. While machine-learning-based scoring 

functions have shown superior performance to classical scoring functions (Ma et al., 2013), they are 

typically not directly integrated into docking software but instead employed for rescoring purposes 

(Zhang et al., 2017). Machine-learning-based scoring functions rely heavily on the training dataset 

(Zhang & Zhang, 2017). By docking the protein and ligand using classical docking software and 

subsequently rescoring the docked structure with machine-learning-based scoring functions, the 

overall accuracy of the process can be improved. 

Scoring Function Evaluation 
Various search algorithms and scoring functions have been devised and integrated into VS software 

applications, as outlined in Table 2. Due to the multitude of available methods, it is crucial to conduct 

a comparative evaluation of these scoring functions. In 2009, Renxiao Wang and colleagues 

introduced the comparative assessment of scoring functions (CASF) benchmarks as a standardized 

framework (Cheng et al., 2009). These benchmarks utilize the PDBbind database and have evolved, 

starting with CASF-2007 (based on PDBbind version 2007)  and progressing to CASF-2013 and 

CASF-2016 (Y. Li, Han, et al., 2014; Y. Li, Liu, et al., 2014; Su et al., 2019). The scoring process is 

dissociated from the conformational sampling process to assess the performance of scoring functions. 

Evaluating scoring function effectiveness encompasses multiple aspects, including scoring power, 

ranking power, docking power, and screening power. By employing this comprehensive approach, the 

scoring functions can be rigorously scrutinized and compared 
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Table 2 Overview of the critical features of widely utilized VS software options. The first column contains the 

software used and its reference. The second column contains the type of license of the software. The last two columns 

list the algorithm used for docking and the scoring function. (adapted from (Maia et al., 2020)) 

Software License Protein 

Flexibility 

Docking Algorithm Scoring Function 

AutoDock4 (Morris et al., 

2009) 

Free for academic 

use 

Yes Genetic Algorithm 

Simulated Annealing 

Hybrid (Physics-based and 

Empirical 

Autodock Vina (Trott & Olson, 
2009) 

Open-source Yes Genetic Algorithm 
Simulated Annealing 

Local Search  

Particle Swarm 

Hybrid (Empirical and 
Knowledge-based) 

DOCK 6 (Allen et al., 2015) Free for academic 

use 

Yes Shape Fitting (Sphere Sets) 

Lowest energy binding 

Physics-based 

SwissDock/EADock DSS 
(Grosdidier et al., 2011) 

Free for academic 
use 

No Stochastic (Tabu search based) 
Local Search 

Combination of broad and local search 

of the conformational space 

Empirical 

eHiTS (Zsoldos et al., 2007) Freeware for 

academic use 

No Exhaustive Search Physics-based 

FITTED (Corbeil et al., 2007) Commercial Yes Genetic Algorithm Hybrid (Empirical and 
Knowledge-based) 

FlexX (Rarey et al., 1996) Commercial  No Incremental Construction Physics-based 

FLIPDock (Zhao & Sanner, 

2007) 

Freeware for 

academic use 

Yes Genetic Algorithm Empirical 

Fred (McGann, 2011) Free for academic 

use 

No Exhaustive Search Algorithm Physics-based 

GalaxyDock2 (Shin et al., 
2013) 

Freeware Yes Conformational Analysis 
Genetic Algorithm 

Hybrid 

GeauxDock (Fang et al., 2016) Open-source Yes Monte Carlo Physics-based 

GlamDock (Tietze & 

Apostolakis, 2007) 

Freeware No Monte Carlo 

Simulated Annealing 
Local Search 

Conformational Analysis 

Hybrid (Empirical and 

Knowledge-based) 

Glide (Friesner et al., 2004) Commercial Yes Conformational Analysis 
Monte Carlo Sampling 

Empirical 

Gold (Verdonk et al., 2003) Commercial  Yes Genetic Algorithm Empirical 

ICM (Abagyan et al., 1994) Commercial Yes Monte Carlo Minimization Physics-based 

iGEMDOCK/GEMDOCK (Hsu 

et al., 2011) 

Freeware Yes Genetic Algorithm Physics-based 

LigandFit (Montes et al., 2007) Commercial Yes Monte Carlo Empirical 

MOE (Vilar et al., 2008) Commercial Yes Conformational Analysis Hybrid (Empirical and Physics-
based) 

ParaDockS (Meier et al., 2010) Freeware No Genetic Algorithm Hybrid (Empirical and Physics-

based) 

rDOCK (Ruiz-Carmona et al., 

2014) 

Open-source Yes Genetic Algorithm 

Monte Carlo 

Simplex Minimization 

Hybrid (Empirical and 

Knowledge-based) 

SLIDE (Schnecke & Kuhn, 
2000) 

Free for academic 
use 

Yes Conformational Analysis Empirical 

Surflex (Spitzer & Jain, 2012) Commercial Yes Incremental Construction Empirical 

Sybyl-X (Certara Software | 
Accelerated Drug Process 

through Software, n.d.) 

Commercial Yes Incremental Construction Physics-based 

vLifeDock (Chopade, 2015) Commercial Yes Genetic Algorithm Empirical 
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In a study by Su et al. in 2019, the CASF-2016 benchmark was employed to evaluate a panel of 25 

scoring functions utilized in various VS software (Table 3). This assessment aims to analyze the 

scoring functions’ “average” performance using a test set comprising 285 diverse protein-ligand 

complexes with well-established crystal structures and binding affinities (Su et al., 2019). Consistent 

processing methods were applied to all protein-ligand complex structures and the decoy ligand 

binding poses. The evaluation of the scoring functions was based on four distinct criteria: 

• Scoring power: This criterion measures the capability of a scoring function to generate 

binding scores that exhibit a linear correlation with experimental binding data. 

 

• Ranking power: The ranking power criterion focuses on the ability of a scoring function to 

accurately rank the known ligands of a specific target protein based on their binding affinities, 

assuming precise knowledge of the binding poses of these ligands. 

 

• Docking power: The docking power criterion assesses the capacity of a scoring function to 

identify the native binding pose of a ligand among a set of computer-generated decoys. 

Ideally, the native binding pose should be ranked as the top-scoring pose. 

 

• Screening power: This criterion evaluates the ability of a scoring function to discern true 

binders to a given target protein from a pool of random molecules during the screening 

process. 

 

This study utilizes ΔSAS as the reference model for comparing other scoring functions. Figure 2 

illustrates the overall performance of the scoring functions across four distinct criteria. The results 

reveal good docking power among the tested scoring functions, with several achieving success rates 

exceeding 70%. However, even the top-ranked scoring functions (excluding ΔVinaRF20) only yield 

moderate correlation coefficients of approximately 0.60 in both the scoring power and ranking power 

tests. The screening power of the scoring function is notably weaker, with the highest-ranked 

functions achieving success rates of around 40%. While most scoring functions excel in one or two 

specific aspects, certain functions, such as ΔVinaRF20 and ChemPLP@GOLD, exhibit a more balanced 

performance across all evaluated aspects. Highlighting ΔVinaRF20 utilizes a combination of the 

empirical scoring function in Autodock Vina and a machine-learning model. 
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Table 3 Summary of scoring functions tested in CASF-2016 (Adapted from (Su et al., 2019)) 

Scoring Function Source Classification Reference 

Jain Discovery Studio (Version 

4.1) 

Empirical scoring function (Jain, 1996) 

LigScore1/Ligscore2  Empirical scoring function (Krammer et al., 2005) 

PMF/PMF04  Knowledge-based potential (Muegge, 2006; 

Muegge & Martin, 

1999) 

LUDI1/LUDI2/LUDI3  Empirical scoring function (H. J. Böhm, 1998; H.-

J. Böhm, 1994) 

PLP1/PLP2  Empirical scoring function (G. Verkhivker et al., 

1995; G. M. Verkhivker 

et al., 2000) 

GoldScore GOLD (Version 5.2) Physics-based function (Jones et al., 1997) 

ChemScore  Empirical scoring function (Baxter et al., 1998; 

Eldridge et al., 1997) 

ChemPLP  Empirical scoring function (Korb et al., 2009) 

ASP  Knowledge-based potential (Mooij & Verdonk, 

2005) 

G-Score SYBYL (Version 8.1) Physics-based function (Jones et al., 1997) 

PMF  Knowledge-based potential (Muegge, 2006; 

Muegge & Martin, 

1999) 

D-Score  Physics-based function (Meng et al., 1992) 

ChemScore  Empirical scoring function (Baxter et al., 1998; 

Eldridge et al., 1997) 

GlideScore-SP Schrodinger (Version 2016) Empirical scoring function (Friesner et al., 2004, 

2006; Halgren et al., 

2004) 

GlideScore-XP  Empirical scoring function (Friesner et al., 2004, 

2006; Halgren et al., 

2004) 

London-dG MOE (Version 2015) Empirical scoring function MOE User Manual 

ASE  Empirical scoring function  

Affinity  Empirical scoring function  

Alpha-HB  Empirical scoring function  

GBVI-WSA-dG  Physics-based function  

Autodock vina Autodock Vina (Version 

1.1.12) 

Empirical scoring function (Trott & Olson, 2009) 

X-Score (HP/HM/HS) X-Score (Version 1.3) from 

the author 

Empirical scoring function (R. Wang et al., 2002) 

VinaRF20 From the author Descriptor-based Machine-

learning model 

(C. Wang & Zhang, 

2017) 

DrugScore2018 From the author Knowledge-based potential (Dittrich et al., 2019) 

DrugScoreCSD  Knowledge-based potential (Velec et al., 2005) 

    

SAS In-0house software Single descriptor NA. 
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Figure 2 Performance evaluation of scoring functions in various tests. (A) Scoring Power Test: Pearson correlation 

coefficients (represented by short white lines) and their 90% confidence intervals (blue bars) for each scoring 

function. (B) Ranking Power Test: Average Spearman correlation coefficients (ρ) and their 90% confidence intervals 

(blue bars) were obtained on 57 target proteins. (C) Docking Power Test: Success rates of each scoring function for 

detecting native ligand binding poses (RMSD < 2.0 Å). Blue, green, and red bars represent success rates for the top 

one, top two, and top three binding poses, respectively. (D) Forward Screening Test: Success rates of each scoring 

function in detecting the highest-affinity ligand for a given target protein. Blue, green, and red bars represent success 

rates for considering the top 1%, 5%, and 10% candidates in screening, respectively. Scoring functions are ranked in 

descending order in all figures. (Figures obtained from (Su et al., 2019)) 
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Future Directions 
The utilization of CADD has significantly enhanced the drug development process. However, scoring 

functions still give crude approximations even with the advancements made in VS and molecular 

docking. Therefore, further development is needed to improve the outcome of scoring functions. 

Bellow, advancements and possible suggestions are given to improve scoring functions and mitigate 

false positives/negatives in VS and molecular docking.  

Molecular Dynamics and DFT Calculations 
As mentioned above, physics-based scoring functions offer higher accuracy than other scoring 

functions. Molecular dynamics (MD) and density functional theory (DFT) calculations can further 

improve the outcome of physics-based scoring functions.  

MD simulations are crucial calculations that come after virtual screening simulations. They should be 

viewed as an advanced and complementary technique to docking. Additionally, they can be employed 

before docking to explore the conformational dynamics of a protein molecule and facilitate the 

sampling and clustering of different conformations relevant to ligand binding (Menchon et al., 2018). 

Overall, molecular dynamics plays a vital role in the discovery and development of commercial drugs 

by offering valuable insights into the dynamic behavior of biological molecules and the interactions 

between drugs and their targets. 

DFT has emerged as a successful and promising approach. Extensive evidence supports the accuracy 

of DFT in describing the electronic and structural properties of small molecules through the 

computation of their electronic structures. DFT makes it possible to calculate orbital energies, such as 

the highest occupied molecular orbital and lowest unoccupied molecular orbital (Sakkiah & Lee, 

2012). 

MD and DFT calculations are applied on a limited scale in VS and molecular docking. The main 

obstacle in using these calculations is computational cost and time (J. Li et al., 2019; Maia et al., 

2020). Quantum computers may be the solution to these limitations. Using superpositions, 

entanglement, and quantum gates, quantum computers can cut the computational cost by the square 

root a traditional supercomputer would take (H. Liu et al., 2022). Although quantum computers are 

not fully there yet, the development of quantum hardware and algorithms promises positive prospects 

for virtual screening and molecular docking (H. Liu et al., 2022). 

Ligand Conformations and Protein Flexibility 
Within contemporary docking software, search algorithms are employed to determine the optimal 

conformation of a ligand by minimizing its energy state. Similarly, protein targets are often treated as 

rigid entities, utilizing known conformations. However, relying solely on scoring the ligand and 

protein in these static states introduces a biased assumption. Ligands will not always adopt their 

optimal configuration, and target proteins exhibit inherent flexibility. Consequently, it is imperative to 

account for the dynamic nature of ligands and proteins to avoid potential limitations and inaccuracies 

in docking studies.  

One potential approach to address this challenge is to evaluate a diverse range of ligand 

conformations, calculate their respective scores, and then average them. The Boltzmann distribution 

can be employed to enhance this strategy, assigning higher weights to conformations with greater 

probabilities. By incorporating this probabilistic weighting, a more realistic representation of the 

ligand’s activity can be achieved, considering the dynamic nature of ligand binding. This refined 

approach holds the potential to provide improved insights into ligand behavior and enhance the 

accuracy of activity predictions in docking studies. 

Moreover, to account for the flexibility of protein targets, docking programs have incorporated 

techniques such as soft potentials or ensemble docking. Soft potentials are modifications of the 
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Lennard-Jones potential, commonly used to describe the intermolecular interactions between atoms in 

docking calculations. The Lennard-Jones potential comprises short-range attractive and long-range 

repulsive terms (van der Waals interactions) (Adams, 2001). The repulsive term prevents atoms from 

overlapping and accounts for steric clashes. However, strict adherence to the Lennard-Jones potential 

in protein-ligand interactions can result in overly rigid docking poses and unrealistic structures. To 

address this limitation, soft potentials are introduced to modify the repulsive term of the Lennard-

Jones potential. Soft potentials allow for limited overlaps between the ligand and protein molecules, 

providing more flexibility and accommodating minor distortions or deformations in the binding 

interface. By incorporating soft potentials, docking programs can generate more realistic 

representations of molecular interactions and improve the accuracy of ligand binding predictions. This 

modification enables exploring a broader range of binding modes and increases the chances of 

capturing relevant binding poses (Guedes et al., 2018).  

Ensemble docking, on the other hand, takes into consideration the flexibility of the protein by docking 

the ligand onto multiple protein conformations. This approach explores a range of potential binding 

modes and accounts for the conformational variability of the protein (Guedes et al., 2018). 

Furthermore, a flexible docking method has been developed, incorporating experimentally derived 

protein conformations and integrating Boltzmann-weighted energy penalties associated with protein 

flexibility into the scoring function. This strategy enables a more comprehensive assessment of ligand 

binding and protein-ligand interactions by considering the dynamic nature of both the ligand and the 

protein target (Fischer et al., 2014). 

While these implementations enhance scoring outcomes, they also necessitate higher computational 

costs. However, there are potential solutions to address this challenge, namely through advancements 

in computational power or quantum computing. 

Consensus Scoring and Tailored Scoring Functions 
As illustrated in Table 2, there exists a multitude of docking software encompassing various 

algorithms and scoring functions, each with varying performance characteristics. Ideally, a universal 

program capable of accurately predicting all ligand-protein interactions would be desirable. To foster 

advancements in CADD, the Drug Design Data Resource (D3R) has organized four Grand Challenges 

to date. These challenges provide a platform for participants to benchmark and compete with their 

docking tools against a diverse set of pertinent protein targets (Parks et al., 2020). By participating in 

these challenges, researchers are driven to enhance existing methods, pushing the boundaries of 

innovation and vying to establish their tools as leading contenders in the field of CADD.  

To enhance the accuracy of scoring outcomes, consensus scoring approaches have been employed, 

wherein multiple scoring functions are combined using statistical methods or voting schemes. Wang 

and Wang (2001) provided a theoretical foundation for the efficacy of affinity predictions, 

demonstrating that the mean value of repeated samplings converges toward the actual value (R. Wang 

& Wang, 2001). This concept suggests that by aggregating multiple scoring functions, a more reliable 

estimation of ligand-protein affinity can be achieved, resulting in improved predictive performance in 

virtual screening and drug discovery endeavors. 

Lastly, target-specific scoring functions have led to significant advancements in VS and docking 

studies. Numerous investigations have been conducted to evaluate the performance of docking 

software under specific conditions, such as charged binding pockets (Deng & Verlinde, 2008) or 

DNA-ligand systems (de Oliveira et al., 2022), as well as overall performance assessments (Onodera 

et al., 2007; Z. Wang et al., 2016). By employing specific data training sets, scoring functions can 

better account for the specific interactions associated with a particular target class. 

While target-specific scoring functions have demonstrated promising outcomes, it is essential to 

acknowledge the potential limitations and sources of inaccuracy that arise from the requirement for a 
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substantial training set to develop a robust scoring function. The necessity for an extensive training set 

can present challenges, mainly when the availability of experimental structures is limited. To 

overcome this limitation, protein-ligand conformations obtained from docking experiments are 

frequently employed for training target-specific scoring functions. This approach enables the 

utilization of a more extensive dataset, facilitating the derivation of reliable scoring functions. 

Consequently, the issue of limited experimental data is mitigated, thereby supporting the development 

of accurate and effective scoring functions for virtual screening and drug discovery endeavors. 

Conclusion 
The accurate prediction of protein-ligand binding affinity is of utmost importance in CADD. 

Developing precise search algorithms and scoring functions has been a critical focus in this field. In 

recent years, the availability of an expanding array of data sources comprising measured binding 

affinities and datasets containing active, decoy, and true inactive compounds has facilitated the 

derivation of more effective scoring functions. Although significant progress has been made, further 

enhancements are necessary to achieve a comprehensive and robust search algorithm and scoring 

function suitable for hit-to-lead optimization and de novo design studies. By continuously refining 

these computational tools, CADD researchers aim to enhance the accuracy and reliability of 

predicting protein-ligand binding affinities, ultimately facilitating the discovery and optimization of 

novel drug candidates. 

Finally, The CADD tools necessitate a diverse range of expertise from researchers to navigate through 

the various steps of the process successfully. This includes selecting and preparing targets and ligands, 

analyzing the results, and comprehensively understanding computational methods, chemistry, and 

biology. Therefore, researchers with multidisciplinary expertise are essential in harnessing the full 

potential of CADD tools. Their proficiency in various fields enables them to make informed 

decisions, optimize the drug discovery process, and ultimately contribute to advancing pharmaceutical 

research and development.  
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