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Abstract 
This review explores the challenge of treating over 10,000 global genetic disorders by 
targeting their root cause; DNA mutations. Using CRISPR technology as a basis for treating 
genetic diseases, we review publicly available databases and CRISPR gene editing prediction 
algorithms for their suitability to screen for diseases with the correct technical, medical and 
ethical properties that could be considered for gene correction therapy. We discuss the 
potential for an ethical scoring system to identify disorders most suitable for gene correction 
therapy. The system, in its conceptual stage and is envisioned to lay the groundwork for a 
more comprehensive database that could facilitate various applications. These applications 
could include creating a priority list of diseases for preclinical research, identifying a gene 
therapy window of opportunity for each disease, proposing a disease list for neonatal 
screening, and potentially conducting a cost-reduction analysis per disease when treated with 
gene correction therapy. 

Layman’s summary 
With over 10,000 genetic diseases worldwide, many remain untreatable or significantly 
downgrade quality of life. This is largely due to current treatments focusing on disease 
symptoms, rather than their root cause, DNA errors. Often, these errors involve only a few 
nucleotide alterations, leading to defective proteins and, in some cases, severe diseases that 
worsen quality of life. 
 
In 2020, Emmanuelle Charpentier and Jennifer A. Doudna received the Nobel Prize for their 
discovery of CRISPR, a revolutionary technology capable of locating specific DNA sequences 
and making precise changes (Zhao et al., 2023). This technology has evolved into CRISPR-
prime editing, offering the potential to correct pathogenic mutations in DNA. This advancement 
could theoretically correct many genetic errors, but it remains unclear which genetic diseases 
are most suitable to be corrected by this technique. 
 
Several factors determine the potential curability of a disease: technically, the efficiency 
limitations of DNA correction, delivery of the prime editing machinery to the correct cells in 
affected organs, and off-target editing risks; medically, the number of cells in an organ that 
need DNA correction, the reversibility of disease symptoms with treatment, and treatment 
timing; and ethically, decisions such as when pre-symptomatic treatment should commence 
and if the disease severity justifies gene editing treatment. 
 
To navigate these complex technical, medical, and ethical considerations, we propose a 
scoring system to initially screen genetic diseases for potential gene correction therapy 
treatment. This involves combining various public databases and algorithms. This review 
presents the concept of our initial version, which could incorporate several databases and 
demonstrates a hypothetical scoring system. An envisioned version 2 would be more 
comprehensive and include a scoring system validated by among others fundamental 
researchers, medical doctors, ethicists, and patients. 



    
 

Main 
Background information 
Genetic disorders, which come from small to large changes in DNA, are a big and complex 
problem for today's healthcare systems. Diseases like Duchenne muscular dystrophy (Duan 
et al., 2021), cystic fibrosis (Ong & Ramsey, 2023), or sickle cell disease (Kavanagh et al., 
2022), despite their origins in minute genetic changes, can lead to severe manifestations, 
critically impacting individuals' quality of life. The prospect of treating these diseases using 
gene therapy has stimulated significant interest, leading to a surge of innovative gene therapy 
tools and the use of public databases that gather vital genetic, phenotypic, and epidemiological 
data. 
 
One of these gene therapy tools are prime editors. Prime editors are a novel gene correction 
therapy tool, offering unprecedented precision. Unlike conventional CRISPR genome editing 
techniques that are dependent on homology-directed repair and often lead to genotoxic 
double-stranded breaks, prime editing allows for precise, targeted modifications to the 
genome. These editors can correct a broad range of pathogenic variants, like point mutations, 
deletions and insertions. The precision and versatility of prime editing offer significant potential 
for genetic research and therapeutic applications (Zhao et al., 2023). 
 
To understand the potential and limitations of gene correction therapy as a therapeutic 
application, we must first address a series of technical questions: Can we precisely correct 
the pathogenic variants for each disease? Can the current tools reach the affected organs and 
cells, and can these tools correct the genetic defects without causing unacceptable off-target 
editing? And most important for this research, can we predict the efficiency of these technical 
processes? 
 
Furthermore, medical considerations are equally critical: Is there a need for new medications 
given the existing treatment landscape? How confident can we be that the identified gene is 
the main factor causing the disease? What organs and cells do we need to target, and do 
these targets align with the available gene correction therapy delivery techniques? Can gene 
correction therapy reverse the damage already caused by the disease? What is the optimal 
window of opportunity for treating each disease, and can we run clinical trials in our own 
medical center? 
 
Lastly, ethical considerations must be considered: Can we develop a standardized scoring 
system to prioritize diseases for pre-clinical research? Can we compile a list of known genetic 
diseases suitable for gene correction therapy? Can we determine the window of opportunity 
for each disease, given that the treatment decisions sometimes need to be made without 
patient consent due to their young age? Can we expand neonatal screening programs based 
on the output of our window of opportunity analysis? Can we conduct a cost-benefit analysis 
of one-time gene correction therapy costs versus the recurrent costs of symptom treatment, 
such as enzyme replacement therapy? 
 
In the initial version of our research, we explore these questions by reviewing data available 
in public databases and algorithms (Figure 1). We propose a flexible scoring system that can 
be adapted in collaboration with stakeholders such as researchers, medical doctors, ethicists, 
and patients. The initial version aims to propose a list of diseases that, based on an adaptable 
scoring system, may be suitable for gene correction therapy. The approach and sources for 
the second version are more comprehensive and will be explained in this review, thereby 
guiding future research and potentially transforming the treatment landscape for genetic 
disorders. 



    

 
Figure 1: Graphical abstract of proposed technical, medical, and ethical data output. Information without an 
asterisk * is currently incorporated in the initial version. Information with an asterisk * is not included yet and will 
potentially be included in version 2.  
 
Publicly available databases and algorithms 
Our review incorporates a variety of publicly accessible databases and algorithms, as 
explained in Table 1. The combined use of these sources supports our primary goal of 
establishing an understanding of various genetic diseases and their potential for treatment 
with gene correction therapy.  
 
We collect information from these disparate platforms to develop a scoring system aimed at 
pinpointing diseases that may be effectively treatable with gene correction therapy. It is 
important to note that the sources marked with an asterisk (*) are planned for inclusion in the 
second version of our study and are not part of the initial version. This staged approach allows 
us to progressively expand and refine our data sources, ensuring progression of our research. 
 
Table 1: Publicly available databases and algorithms used in this research. 

Source Explanation 
MONDO Ontology database that integrates multiple sources to provide a single, up to-date, and 

coherent disease description. (Vasilevsky et al., n.d.) 
OMIM Online Mendelian Inheritance in Man (OMIM) is an authoritative compendium of human 

genes and genetic disorders. (Hamosh et al., 2021) 
OrphaNet Information on rare diseases such as disease classifications explaining the type of disease, 

prevalence and geographic information, average age of onset and death, and inheritance 
data. (Pavan et al., 2017) 

OrphaNet* Pathogenic Variants Databases, Orphan Drugs, Biobanks Networks, Biobanks, Patients 
Registries Networks, Patients Registries, Multinational Clinical Trials Networks, National 
Clinical Trials, Multinational Research Projects Networks, National Research Projects, 
Patient Organisations Networks, Patient Organisations, Tests Diagnostic & Clinical 
Laboratories, Expert Centers Networks, Expert Centers, Textual Information datasets.  

DisGeNET A disease-gene platform for discovery of human genes that are associated with diseases 
and for studying the genetic underpinnings of human diseases. (Piñero et al., 2020) 

Ensembl A resource for reference genomes, genetic variation, gene regulation and functional 
annotation of genes. (Cunningham et al., 2022) 

PRIDICT A pegRNA algorithm predicting its sequence, on-target, and off-target efficiency based on 
pathogenic variants as input data. (Kim et al., 2021) 

VWS VWS is the Dutch health ministry that provides the naming of diseases that fall under the 
heel prick diagnosis. (De Ziekten Die de Hielprik Opspoort, 2022) 



    
HPO* The Human Phenotype Ontology (HPO) is a standardized vocabulary of phenotypic 

abnormalities happening in human diseases, providing a platform for computational analysis 
of genetic and clinical data. (Köhler et al., 2021) 

GTEx* The Genotype-Tissue Expression (GTEx) project is an extensive resource that provides 
insights into the mechanisms of gene regulation by studying human gene expression and 
regulation across multiple tissues and individuals. (Lonsdale et al., 2013) 

* Will be integrated in version 2 
 
Data extraction and inclusion 
Application Programming Interfaces (APIs) are sets of rules and protocols that enable different 
software applications to communicate and share data. APIs define the methods and data 
formats that a program can use to communicate with other software, serving as a bridge 
between different software systems. GitHub, a popular platform for version control and code 
sharing, provides a robust API allowing users to interact programmatically with its services, 
including accessing repositories or user profiles. By using these APIs, it is possible to extract 
data from platforms like OMIM, Orpha, Disgenet, Ensembl, and PRIDICT (a pegRNA 
prediction algorithm from GitHub), and information from websites like MONDO, DisGeNET, 
and VWS, enabling you to retrieve specific data sets, automate tasks, and integrate different 
data sources into your research (Figure 2). 
 

 
Figure 2: Visualization of data extraction. Databases and algorithms are explained in Table 1.  
 
We collected 9,573 rare diseases from MONDO and OMIM. 7,266 disease numbers 
correspond to OrphaNet diseases, of which 3,907 are unique. OrphaNet provides 
epidemiology data generalized per disease rather than disease-subtypes, explaining why 
duplicate values exist. DisGeNET API links OMIM numbers to 7,326 disease IDs containing 
the related pathogenic variants. For each variant ID, DisGeNET API provides the chromosome 
number and coordinate, gene symbol, and allele frequencies. Furthermore, DisGeNETs gene 
symbol contains more data, such as gene-disease relationships. By combining DisGeNETs 
pathogenic variant details with Ensembl Rest API sequence, an input sequence for the 
PRIDICT algorithm was generated. PRIDICT algorithm was modified to process all pathogenic 
variants to determine pegRNA efficiencies and off-target effects. From the 9,573 diseases, 
only 2,249 rows (read: diseases) in the database contain information of all the relevant 
databases (Mondo, OMIM, OrphaNet, DisGeNET, Ensembl, and PRIDICT), resulting in 654 
ophthalmic, 116 immunologic, 145 hematologic, and 108 hepatic diseases (Figure 3). 
Nonetheless, all 9,573 diseases were used in the prioritization scheme, since diseases 
containing less information are ranked lower anyway. 
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Figure 3: Visualization of data extraction. n is number of input or output diseases. Input databases point towards 
the box. Output diseases point away from the box (Ophthalmic, Immunologic, Hematologic, Hepatic).  
 
Technical considerations 
Technical considerations embody if the prime editor machineries can correct the pathogenic 
variants in the affected cells and if the machineries can be delivered to the related organs. 
The initial model should provide the gene editing efficiency and the affected organs. Version 
2 should provide in the future, as output, one or more delivery methods that reach the affected 
organs and cell types, including the predicted versus the required editing and delivery 
efficiency.  
 
To repair the DNA error, the initial version will employ prime editing, while in future versions 
other gene editing mechanisms can be included as well. The PRIDICT algorithm is designed 
to generate prime editor guide RNAs (pegRNAs), predict editing efficiency, and anticipate 
unintended editing for second-generation prime editors (PE2-NGG). While PE2-NGG is an 
older prime editor and suboptimal due to the constraints of the protospacer adjacent motif 
(PAM), newer prime editors like SpRY and SpG, which are nearly PAM-less, have improved 
flexibility and performance (Liang et al., 2022). However, prediction algorithms are not yet 
available for these newer versions. 
 
Gene correction therapy delivery to the affected organs is another critical technical aspect but 
will not be included into the first version. The PRIDICT algorithm predicts the editing efficiency 
based on a lentiviral delivery vector, but these predictions are based on in vitro delivery to the 
human cell lines, HEK293T and K562, and may not be representative of an in vivo setting 
(Kim et al., 2021). Many different delivery systems exist, including multiple viral vectors, virus-
like particles, extracellular vesicles, lipid nanoparticles, and more systems, each with varying 
delivery efficiencies. Since delivery techniques differ in their efficiency to reach specific areas, 
new literature studies should be done to incorporate them into the next version of our system 
(Butt et al., 2022). The number of cells needed to be corrected for phenotype restoration is a 
topic that will be discussed under medical considerations; however, this information will be 
excluded in the initial version. In an ideal second version, we would measure the total 
effectiveness of in vivo gene correction therapy by considering factors such as the efficiency 
of drug delivery and gene editing, the capabilities of drug delivery systems, and the number of 
cells in each affected organs that need successful gene correction.
 
While the initial version of our model does not include in vivo drug delivery efficiency, we will 
focus on diseases that affect cells in the bone marrow, liver, and/or eye. This is because these 
organs are amenable to ex vivo gene editing, which is less controversial and potentially safer 
(Ferrari et al., 2021; Newby et al., 2021; Suh et al., 2022; Zabaleta et al., 2022). For example, 
hematopoietic stem cells and liver cells can be treated outside the body and then 
retransplanted, offering a potential advantage. The eye is also a target that is expected to 
cause fewer systemic effects (Suh et al., 2022). This strategic focus will allow us to make 
meaningful progress with our research, while laying the groundwork for more complex and 
comprehensive models in the future. 
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Technical output
Version 1 
Ü pegRNA sequence (DisGeNET, Ensembl, PRIDICT) 
Ü pegRNA editing efficiency (DisGeNET, Ensembl, PRIDICT) 
Ü Unintended editing (DisGeNET, Ensembl, PRIDICT) 
Ü Affected organs (OrphaNet) 
 
Version 2 
Ü Advised delivery methods (Unknown) 
Ü Delivery efficiency to specific organs and cell types (GTEx, Unknown) 
Ü Required editing efficiency to reverse phenotype (Unknown
 
Medical considerations 
Medical considerations for disease correction primarily focus on the patients benefit for being 
treated with gene correction therapy and the feasibility of initiating clinical trials in a specific 
medical center. This necessitates an understanding of several key aspects. These include the 
current treatment options available, the relationship between the specific gene and the 
disease, the potential for reversing the disease phenotypes, and the window of opportunity for 
effective intervention. Also, the likeliness that a gene correction therapy clinical trial can be 
started in a specific medical center will be investigated. By considering these factors, we can 
identify the diseases that our medical center, UMC Utrecht, should prioritize for the 
development of gene therapies. 
 
For identifying those diseases, we aim to determine the likeliness of having potential clinical 
trial participants. The initial step is to assess the probability of finding patients at the UMC 
Utrecht. This process in our system involves an examination of medical centers worldwide for 
their expertise in specific diseases. Since we are still waiting for this data, this will be included 
in version 2. We will develop a list of diseases where the UMC Utrecht has established 
expertise. Then, we include disease prevalence data (OrphaNet) with related pathogenic 
variant frequencies (DisGeNET) to evaluate the likelihood that the UMC Utrecht will have 
patients of a specific disease with a specific mutation (preferably with a founder mutation or 
‘homogeneity of mutations’) who could participate in clinical trials, assuming that one gene 
editing machinery will be used per clinical trial (included in version 1). Furthermore, early 
detection is a beneficial factor in disease prioritization, leading us to prioritize diseases 
included in the neonatal heel prick screening, which are obtained from the Dutch Health 
Ministry (VWS) and implemented in version 1. Also, to understand if it is beneficial for patients 
to join a gene correction therapy clinical trial, we must consider the existing treatments for this 
disease, however these are excluded in version 1.  
 
Next, we proceeded to evaluate the likeliness that a disease will initiate for a specific 
pathogenic variant. This is an important factor to determine whether it should be considered 
to treat a patient pre-symptomatically with gene correction therapy. We investigated the 
relationships between genes and diseases to ascertain if a specific gene is a valid target for a 
given disease by using DisGeNET data. This process involved assessing the likelihood that a 
pathogenic variant in the gene would result in a loss of function, known as the Probability of 
Loss-of-function Index (PLI). A high PLI score suggests that the gene cannot tolerate loss-of-
function mutations without causing disease. However, it is important to note that while PLI 
gives us insight into the potential for a mutation to cause disease, it does not directly measure 
the concept of penetrance; the probability that a person carrying a particular genetic variant 
will develop the disease. Penetrance is influenced by a range of factors, including other 
genetic variants, and environmental influences. Therefore, we aim to prioritize genes with a 
high disease specificity index (DSI), since this explains that the pathogenic variant is the 
primary factor causing the disease and other genetic variants become less important. 



    
Therefore, we assume a high DSI score would indicate that the gene is closely linked to one 
disease. We included in the initial version that high PLI and high DSI scores may imply a 
higher likelihood of a disease. Nonetheless, it does not guarantee disease initiation, 
strengthening the motivation to search for better penetrance models for future versions.  
 
The disease-organ-cell relationship is another critical consideration; therefore, we analyze 
which organs and cell types are affected by the disease. In the first version, affected organs 
are derived from diseases listed in Orphanet, which are classified based on a hierarchical 
disease classification system. In the second version, affected organs and cells will be identified 
based on gene expression levels sourced from GTEx (or more recent sources), as local 
production may also contribute to the damage. Also, it will be important information to estimate 
the minimal number of cells that should be corrected with gene correction therapy to restore 
the phenotype. Unfortunately, this type of information is not available yet. If this information 
will be available in the future, we will compare this with the editing capacity as determined in 
the technical section, to ensure that the required number of cell corrections can be achieved. 
 
Simultaneously, we must ascertain whether the damage is permanent or reversible. Since 
genetic diseases can cause permanent damage, we strive to identify the frequency of such 
specific phenotypes and estimate the likelihood of phenotype damage reversibility using a 
machine learning-based scoring system. Reversibility is not directly available information; the 
Human Phenotype Ontology database tracks the frequency of certain phenotypes for all 
diseases using phenotype IDs. In a potential future project, a machine learning model, 
potentially assisted by an artificial intelligence tool, could be trained by medical doctors or 
researchers to score phenotypes based on the permanence of the damage. Low scores would 
indicate irreversible damage, such as bone deformities, and high scores would indicate 
reversible damage. However, this approach also has limitations, such as reliance on machine 
learning-determined information that, without verification by doctors or scientists, could be 
hard to rely on. This methodology could be incorporated in version 2. 
 
Lastly, information on disease severity (age of death) and age of onset can be extracted from 
OrphaNet. By combining this data with the phenotype reversibility scoring and phenotype 
frequency, we can estimate the window of opportunity for treating patients with gene correction 
therapy before irreversible damage begins to accumulate. In summary, these medical 
considerations form an important part of our research, providing a roadmap for further 
enhancing our understanding of the complex dynamics between medical considerations and 
prioritization of diseases for gene therapies.
 
Medical output  
Version 1: 
Ü Medical expertise centers per disease (OrphaNet) 
Ü Disease prevalence (OrphaNet) 
Ü Allele prevalence or homogeneity (DisGeNET and GNOMAD) 
Ü PLI: Probability of Loss-of-function (DisGeNET) 
Ü DSI: Disease Specificity Index (DisGeNET) 
Ü Affected organs – Classifications (OrphaNET) 
Ü Age of onset/death (OrphaNet) 
 
Version 2: 
Ü Affected cell types (GTEx) 
Ü Percentage of cells to target (Unknown) 
Ü Phenotype reversibility (HPO) 
Ü Phenotype frequency (HPO)
 
 
 



    
Ethical considerations & Score system 
The integration of ethical considerations with database information can serve several 
objectives, one of which is the development of a scoring system to assess which diseases 
should be prioritized for gene correction therapy research (Table 1). As shown in the table, 
assigning scores to technical and medical aspects includes an ethical dimension. The creation 
of ethical guidelines for gene correction therapy should be a collective decision undertaken by 
a diverse group of stakeholders, including ethicists, patients, researchers, and medical 
doctors. This collaborative decision-making process ensures that the guidelines embody a 
range of perspectives and address all potential ethical concerns. Given that the collective 
decision has not yet taken place, provisional values are currently assigned to the scoring 
model, allowing the associated graph to be more illustrative (Figure 4). 
 
Table 2: Example scoring system for genetic diseases with affected in bone marrow, eye and/or liver. 

 
Technical considerations 

Parameter Data (score) Total Status Source 
Gene editing: Efficiency Between 0 – 100 * ** Included PRIDICT 
Gene editing: Off-target score Between 0 – 100 * ** Included PRIDICT 
Drug Delivery: Efficiency  n/a Excluded Various 

sources 
Drug Delivery: Stem cell 
transplantation related disease 
(Classifications) 

Included in ‘stem cell related disorder’ 
classification. 

10 Included OrphaNet 

 
Medical considerations 

Parameter Data (score) Max 
score 

Status Source 

Clinical Trial: Medical expertise 
center for the disease 

n/a n/a Excluded OrphaNet 

Clinical Trial: Prevalence <1 / 1 000 000 (0.5), 1-9 / 1 000 000 (5), 1-
9 / 100 000 (7.5), 1-5 / 10 000 (10), 6-9 / 10 
000 (10), >1 / 1 000 (10) 

10 Included OrphaNet 

Clinical Trial: Allele Frequency 
(and ‘homogeneity of mutations’) 

Between 0 – 1 (multiplied by X) 10 Included DisGeNET 

Clinical Trial: Heel Prick disease Included in heel prick screening 5 Included VWS 
Treatment options: Existing drugs n/a n/a Excluded OrphaNet 
Treatment options: Ongoing 
clinical trials 

n/a n/a Excluded OrphaNet 

Gene-Disease: PLI Between 0 – 1 * ** Included DisGeNET 
Gene-Disease: DSI Between 0 – 1 * ** Included DisGeNET 
Gene-Disease: Type of 
Inheritance 

X-Linked Recessive (?), X-Linked 
Dominant (?), Autosomal Recessive (5), 
Autosomal Dominant (0.5) 

n/a Included OrphaNet 

Affected organs: Classifications If bone marrow, liver, and/or eyes (10). For 
every other organ -2.5 (per organ).  

10 Included OrphaNet 

Affected organs: Gene expression 
per organ 

n/a n/a Excluded GTEx 

Affected organs: Number of cells 
to target 

n/a n/a Excluded Unknown 

Disease severity: Age of death Antenatal (2.5), Neonatal (12.5), Infancy 
(25), Child (22.5), Adolescent (12.5), Adult 
(2.5), Elderly (0) 

25 Included OrphaNet 

Disease severity: Phenotype 
severity score 

n/a n/a Excluded HPO 

Disease severity: Phenotype 
prevalence 

n/a n/a Excluded HPO 

Disease reversibility: Embryonal 
damage (Classifications) 

n/a 10 Included OrphaNet 

Disease reversibility: Phenotype 
reversibility 

n/a n/a Excluded HPO 

Disease reversibility: Age of 
onset 

Antenatal (1), Neonatal (5), Infancy (10), 
Child (7.5), Adolescent (5), Adult (1), 
Elderly (0) 

10 Included OrphaNet 



    
* We used a fictive number and combined all the parameters with an asterisk. 
** The combined score with all the parameters with a double asterisk is maximum of 20.  
 
By applying this scoring system to our database of 10,000 diseases, we have created a 
sidebar plot that prioritizes these diseases for gene-editing research (Figure 4). One limitation 
is that only 2,249 out of the 10,000 diseases have complete data, and of these, 1,023 diseases 
affect the eye, liver, and/or bone marrow. This figure indicates that the top diseases have the 
highest priority. However, these outcomes are debatable as they are based on provisional 
scores. Currently, factors such as early age of death, indicative of disease severity, carry 
significant weight in our model. However, this may not be the most relevant considering gene 
correction therapy, as disease severity for example does not necessarily correlate with how 
treatable a disease is with gene correction therapy. Another example; Very long-chain acyl-
coa dehydrogenase deficiency (VLCADD) is ranked at the top but has been scored lower 
because it damages organs other than the liver, eye, and bone marrow, such as the heart and 
neurons (data not shown). Therefore, it raises the question of whether this disease can even 
be treated with gene correction therapy if we are unable reach the neurons and heart. Another 
example is ranked fifth position, namely peroxisome biogenesis disorder, which presents 
embryonic anomalies that are potentially irreversible. Therefore, it raises the question if this 
disease deserves the fifth place in the priority list. Importantly, now that the scores are more 
illustrative, it is crucial to develop a suitable scoring setup with an ethicist and perhaps a 
mathematician. This setup could be filled out by all stakeholders (ethicists, patients, 
researchers, and medical doctors) via a survey, ensuring that the most critical diseases appear 
at the top. 
 

 



    
Figure 4: Top 50 prioritized diseases based on the current scoring system. 10,000 diseases are prioritized 
according to the scorings in Table 1. The top 50 diseases illustrated in this side bar plot contain the highest scores 
suggesting that they should be most suitable for gene correction therapy treatment (according to the provisional 
score system).   
 
The timing of disease detection plays a crucial role in making informed treatment decisions. 
Numerous genetic diseases initiate symptoms early in life and can cause irreversible damage 
if not treated before this damage starts accumulating. Consequently, early detection methods 
like the heel prick test, despite their current limitation of screening only 26 conditions, are 
crucial for preventing this kind of damage. The timing of treatment also presents ethical 
dilemmas. In certain circumstances, there may be situations where the optimal treatment 
window coincides with an age when the patient cannot provide informed consent. In these 
cases, the decision falls on others, such as parents. Besides, sometimes presymptomatic 
treatment might be ethically justified. Such an approach, however, demands a robust 
understanding of the person's likelihood to develop the disease. Also, the reversibility of the 
disease is an important factor. These predictions are challenging; however, we aim to include 
these in version 2. Thus, a key goal for the second version of our model is to incorporate an 
understanding of the optimal window for gene correction therapy treatment per disease, as 
depicted in our proposed figure 5. 
 

 
Figure 5: Example figure for data output VLCADD. Optional format for output data per disease containing 
epidemiological data, window of opportunity data (this is fictive data), and pegRNA data.  
 
Considering the additional capabilities of this database opens a wealth of intriguing 
possibilities. For instance, neonatal screenings could be enhanced through the inclusion of 
genetic testing, enabling us to provide a genetic disease list that are treatable at young ages 
via gene correction therapy. Additionally, the database could serve as a tool in cost-reduction 
studies, where we could analyze and compare the financial implications of managing genetic 
diseases with and without gene correction therapy. By providing insights into these areas, the 
database might hold significant potential to guide both medical practices and healthcare 
economics. 
 
 



    
Discussion 
 
Our comprehensive review of the gene correction therapy landscape has shown several key 
challenges and considerations that span technical, medical, and ethical dimensions. One of 
the central challenges in gene correction therapy is the lack of public databases, limiting the 
range and depth of data available for research. This issue is further complicated when we 
need to compare thousands of diseases with minimal overlapping characteristics, often 
leading to reliance on less specific properties such as age of onset, age of death, and 
prevalence. To overcome these hurdles, we utilized various extra resources like OrphaNet, 
OMIM, DisGeNET, and MONDO. However, this strategy is not without its complications. For 
instance, the use of genotype-phenotype interactions poses a risk for errors. Efforts have been 
made to cross-reference and correlate data, such as Orphanet data, but it is not always the 
optimal approach, especially for single orpha diseases involving multiple OMIM or DisGeNET 
diseases.  
 
In terms of technical considerations, the application of PRIDICT, a prime editing algorithm, is 
crucial for genetic correction. PRIDICT offers insights into the potential of CRISPR prime 
editing by designing pegRNA sequences and predicting both intended and unintended editing 
efficiencies. But PRIDICT has its limitations, particularly as it was designed for second-
generation prime editors, which carry restrictions related to the protospacer adjacent motif 
(PAM). This situation underscores the need for its updating ability to incorporate newer 
pegRNA prediction algorithms. Additionally, drug delivery, a significant aspect of gene 
correction therapy, is not included in the current version of PRIDICT. Future updates should 
incorporate this aspect for a more holistic approach to genetic diseases. 
 
In a medical perspective, several questions require attention. Although the included data can 
provide insights, there is much room for improvement in areas like current treatment options, 
disease reversibility, the identification of affected organs, estimating the number of cells to 
target for effectively reversing disease phenotypes, and identifying medical expertise centers 
to conduct clinical trials for gene correction therapy studies. Details included in our initial 
version like age of onset, death, anomalies during embryogenesis, and transplant related 
disorders are helpful, but if there is need for new medications remains unclear to determine 
the disease severity using our initial version. Furthermore, the current databases, such as 
DisGeNET, provide insights in gene-disease relationships but are insufficient to address 
current complex issues such as penetrance, whether gene correction therapy can reverse 
existing disease damage, or identify the optimal treatment window of opportunity. To 
accomplish these tasks, proposed methods should be developed as explained earlier.  
 
Ethically, the use of a scoring system assessed by stakeholders should be validated by 
comparing the top diseases in the results with other genetic diseases that have (nearly) 
approved gene-editing therapies. These diseases would ideally rank highly, thus lending 
credibility to the scoring systems.  
 
In conclusion, while our initial version serves as a starting point for prioritizing gene correction 
therapy, there remains a clear necessity for further refinement. We recognize that multiple 
disease parameters are currently partly data deficient due to a lack of information from publicly 
available databases. Despite these challenges, the applications of current and future versions 
carry the potential that may revolutionize the gene correction therapy landscape. As gene 
editing techniques evolve, our model will also advance, offering a fundamental tool to simplify 
and address the wide array of upcoming technical, medical, and ethical questions related to 
treating gene therapies.    
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