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Abstract

The importance of Soft Collinear Effective Theory (SCET) arises from its ability to address
the challenges posed by phenomena involving disparate energy scales, where fixed/finite
order perturbation theory fails due to the emergence of large logarithms. SCET provides
a useful framework for breaking down the calculations into different components that de-
pend on single energy scales, i.e. for derivations of factorisation theorems. The all-order
expressions can then be obtained using scale evolution by solving the renormalization group
equations (RGEs) for each of the pieces appearing in the factorisation formula. This step
is known as resummation. In this master thesis presentation, I delve into the construction
of SCET, focusing on the derivation of the leading power Lagrangian and the calculation of
leading power jet functions with the SCET Lagrangian as well as regular QCD Lagrangian
and compare the results.
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Chapter 1

Introduction

The Standard Model (SM) is composed of the electroweak (EW) and strong sectors, with
Quantum Chromodynamics (QCD) describing the strong interactions. The Large Hadron
Collider (LHC) accelerator complex at CERN collides protons made up of quarks and
gluons at very high energies (∼ 13TeV), and thus a large part of the effort to increase
the precision of theoretical predictions is devoted to improving the understanding of QCD
process which inevitably features in the experiment.

Due to the phenomenon of Asymptotic Freedom, the strong coupling αs becomes weak
for processes involving large momentum transfers. Concretely, αs becomes perturbative
already at a few GeV. Therefore, theoretical calculations can be organised in a perturbative
series and systematically improved by computations of higher and higher order corrections
in the αs expansion

M
!
αs, {pi}, {po}

"
=

∞#

n=1

αn
sM(n)

!
{pi}, {po}

"
. (1.1)

Here, M is the quantity we are interested in calculating, and M(n) are corresponding
n-loop diagrams, both of which depend on the incoming and outgoing particles’ momenta.

Naturally, the calculation of the higher order corrections becomes increasingly more
complex. However, with the value of the strong coupling at αs ∼ 0.1, the first order
correction, so-called next-to-leading order (NLO), is around 10% of the leading order value.
The next-to-next-to-leading order (NNLO) ∼ 1%, and so on. Therefore, the key point
is that precise predictions can be obtained through calculation of the first few orders
in perturbation theory, as these already describe the physical process well (fixed-order
perturbation theory).

Enhanced Logarithms

Despite the clear success of the fixed-order calculations approach, there exist noteworthy
drawbacks. It is a well-known fact that fixed-order perturbation theory is unreliable in
application to precesses which involve widely separated scales. Example of such processes
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include production of particles near kinematic threshold. In such regions of the phase space,
close to singular limits of the theory, the higher-order corrections are sumpplemented by
large logarithms of the scale ratios, say ξ. These large logarithms multiply the small
coupling constants which is a priori the expansion parameter of the theory. This leads to a
dangerous situation that threatens the convergence of the perturbative series on which the
predictive power of the theoretical calculations is based. Namely, the coupling constant
αs is no longer a reliable expansion parameter, since each next order in the perturbative
expansion is numerically as important as the previous one. Hence, to make a reliable
prediction we have to capture he all-order behaviour of these terms.

Factorisation theorems

The solution to this issue is to divide the problem into pieces which each depend only on one
physical scale. This is known as derivation of a factorisation theorem. Most factorisation
theorems are easy to understand intuitively. For example, the most basic factorisation
theorem for the production of lepton pairs in proton-proton collisions (Drell-Yan) has the
form

σ =
#

ij

σ̂ij ⊗ fi/P ⊗ fj/P (1.2)

Here, the partonic cross section σ̂ij describes the production of the two lepton from the two
initial state partons i and j, while the parton distribution functions fi/P and fj/P express
the probability of finding the partons i and j in each proton with certain momentum
fractions in respect to the hadrons. The ⊗ denotes the convolution of all these functions.
For more complicated processes, such as jet production, the factorisation formula exists
and is more complicated. In particular, for the N–jet production in hadronic collisions, the
cross section factorises into a partonic cross section σ̂ij,k1,...,kN (hard function), describing
the underlying partonic process to produce N partons, convoluted with N jet functions,
Jki , a soft function, S, and parton distribution functions, fi,j/P ,

σ =
#

i,j,kl

σ̂ij,k1,...,kN ⊗ Jk1 ⊗ · · ·⊗ JkN ⊗ S ⊗ fi/P ⊗ fj/P . (1.3)

The jet functions Jki are the final-state analog of the parton distribution functions. They
describe how the final partons from the hard interactions evolve into the observed jets.

Resummation

The all-order expressions can then be obtained using scale evolution by solving the renor-
malization group equations (RGEs) for each of the pieces appearing in the factorisation
formula. This step is known as resummation.

dσ

dξ
=

∞#

n=0

$αs

π

%n
2n−1#

m=0

&
c(−1)
nm

'
logm ξ

ξ

(

+

+ c(0)nm logm ξ + · · ·
)
. (1.4)
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Figure 1.1: Two jet process

We see that the most singular terms in the ξ → 0 are the ones with the coefficients c
(−1)
nm .

We refer to these terms as leading power (LP) singular terms. Accordingly, the terms with

coefficient c
(0)
nm are known as next-to-leading power (NLP) contributions and so on for the

terms in the ellipses. For the purposes of the resummation, instead of counting orders
in αs (LO, NLO, NNLO, etc.) as is done in the fixed-order calculations, we count which
towers of logarithms are included in the all order result. For instance, the terms with
coefficient cn(2n−1) constitute the leading logarithms (LL). Terms suppressed by one power
in logarithmic counting are reffered to as next-to leading logarithms (NLL), and so on.

The current state-of-the-art is the resummation of LP threshold logarithms up to next-
to-next-to-next-to leading logarithm (N3LL) accuracy [4][10]. This has been achieved
with diagrammatic methods as well as effective theories for QCD. Specifically, the ”Soft
Collinear Effective Theory (SCET)”, which is the content of this thesis, is one of the
youngest and most successful effective theories constructed specifically for this task. Good
resources for further studying on SCET are [3][7].

Chapter 2 of this thesis is dedicated to the step-by-step construction of the leading
power SCET Lagrangian. Moving forward to chapter 3, we delve into the computation
of the leading power jet functions, which arise from the factorisation of processes such as
B → Xsγ. This computation is carried out using two different approaches: first, employing
the SCET Lagrangian, and second, utilizing the regular QCD Lagrangian. Lastly, in
chapter 4, we consolidate the key findings and present a summary, while also offering
insights into potential avenues for future research.
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Chapter 2

Soft-Collinear Effective Theory
(SCET)

This chapter comprises the primary theoretical content of this thesis. In Section 2.1,
we provide a concise overview of the rationale behind constructing effective field theories
(EFTs), highlighting their advantages over more fundamental theories and emphasizing the
essential components of an EFT. Moving forward, Section 2.2 initiates the development of
SCET by delineating the kinematic regions it encompasses. Then, in Section 2.3, we outline
the construction of the leading power SCET Lagrangian. Specifically, we commence with
defining the relevant degrees of freedom and establish a power counting scheme for these
fields. Additionally, we briefly explore the Multiple Expansion technique in 2.3.3, keeps
the fields with the proper scaling in the soft-collinear interaction terms. The remainder
of this section concludes the construction of the leading power Lagrangian. Next, Section
2.4 delves into the symmetries upheld by the leading power SCET Lagrangian, specifically
gauge invariance and parametrization invariance. Lastly, Section 2.5 provides an in-depth
elucidation of Wilson lines remarking their necessity and highlighting their role in the
decoupling transformation.

2.1 Effective Field Theories

A remarkable fact about nature is that interesting phenomena occur over a wide range
of energy, length, and time scales. The immense success of physical sciences is that they
have managed to describe physical systems and make predictions in this huge range of
scales; from down to quarks and leptons at the smallest scales, up to the universe as a
whole at the largest, with qualitatively new kinds of structures – nuclei, atoms, molecules,
everyday objects, planets, galaxies and so on. Given that all this complexity arises from a
set of fundamental laws, it seems weird that one can understand what goes on at one scale
without having to understand everything all at once. This fortunate fact, reflects a deep
property of Nature called decoupling, which states that most (but not all) of the details of
very small-distance phenomena tend to be largely irrelevant for the description at much
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larger scales.
For instance, in quantum mechanics, we are not concerned with the value of the top

quark mass when we calculate the energy levels of a hydrogen atom. Of course, given
certain precision of an experimental measurement, we might want to be concerned about
that. Having this in mind, however, we would still insist that only degrees of freedom
relevant to the problem in hand are needed to perform the calculation. In the language
of quantum field theory, this implied that operators that are responsible for experimental
observables only include fields describing light degrees of freedom. This realisation leads
to the concept of effective field theories.

Effective field theories (EFTs) are a model building tool that explicitly implements the
strategy outlined above and turns it into a precise, quantitative framework. We usually
think of EFTs in terms of energy scales, but EFTs can be built by leveraging hierarchies
between all sorts of dimensionful quantities: lengths, time, moments etc.

Main advantages of EFTs

EFTs (Effective Field Theories) serve various purposes in understanding physical systems.
They are employed when a more fundamental theory is unavailable, or when extracting
precise predictions from a strongly coupled theory is challenging. Additionally, even when
not strictly necessary, EFTs offer a convenient framework. The key advantages of an EFT
approach can be summarized as follows:

• Simplified Calculations: EFTs greatly simplify calculations by focusing on relevant
degrees of freedom and disregarding nonessential aspects for the specific problem at
hand.

• Unveiling Symmetries: Isolating relevant degrees of freedom in an EFT can reveal
previously obscured symmetries. These symmetries often enable drawing general
conclusions without extensive calculations.

• Modular Approach: EFTs facilitate modular calculations by dividing them into two
parts. The first part involves the degrees of freedom retained in the EFT calculation,
while the second part relates to the neglected physics (matching calculation). This
modular approach eliminates unnecessary repetition.

• Resolving Scale-Dependent Issues: Problems involving multiple scales may generate
observables dependent on logarithms of their ratios. Perturbative calculations can
suffer from decreased accuracy when dealing with large logarithms. EFTs address
this by focusing on one scale at a time and employing RG (Renormalization Group)
running to sum up the significant logarithms.

Types of EFTs

One can group different EFTs in one of three categories, based on what degrees of freedom
they include. The category that will be of interest in this thesis will be the newest and
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also the most controversial construction. This is an attempt to describe objects that have
large energy-momentum transfers, but only in a given, fixed direction.

2.1.1 Main ingredients of EFTs

Now that we have hinted why using an effective theory will be useful in our study, we
determine what are the key ingredients for every EFT, and explain their meaning and
importance.

1. Degrees of freedom. The first step when building an EFT is to figure out what are
the degrees of freedom that are relevant to describe the physical system one is inter-
ested in. These are the variables that will appear in the effective action. The key word
here is ”relevant”: you can always complicate the description of any phenomenon by
adding additional structure, but you will soon reach a point of diminishing returns.
Conversely, you can strive for the most economical description but, everything should
be made as simple as possible, but not simpler. Sometimes, the degrees of freedom
to be used are suggested by symmetry considerations. More often though, the choice
of degrees of freedom is an independent input.

2. Symmetries. The second step in building an EFT consists in identifying the sym-
metries that constrain the form of the effective action, and therefore the dynamics of
the system. Any term that is compatible with the symmetries of the system should
in principle be included in the effective action. As a result, effective actions generally
contain an infinite number of terms.

3. Expansion parameters & Power counting scheme. The key to handling an
action with an infinite number of terms lies in the fact that all EFTs feature one or
more expansion parameters. These are small quantities controlling the impact that
the physics we choose to neglect could potentially have on the degrees of freedom
we choose to keep. For example, in particle physics these expansion parameters are
often ratios of energy scales E/Λ, where E is the characteristic energy scale of the
process one is interested in, and Λ is the typical energy scale of the UV physics one is
neglecting. For this strategy to work, it is crucial to have an explicit power counting
scheme, meaning that we should be able to assign a definite order in the expansion
parameter to each term in the effective action. This ensures that only a finite number
of terms contribute at any given order in perturbation theory, and that we can decide
upfront which terms to keep in the action base on the desired level of accuracy.

2.2 Kinematics

As mentioned above, the main interest of this thesis is the Soft Collinear Effective Theory
(SCET), which is the newest kind of EFT. In contrast to the other categories, its expansion
parameter is not defined as a ratio of energies or masses, but ratios of momenta in certain
directions.
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Reference Vectors

Before going any further, we need to introduce some notation that is used in SCET. In
order to describe the dynamics, it is convenient to choose lightlike reference vectors nµ

i−
and nµ

i+ for each collinear direction i. These vectors are given by

nµ
i− = (1,ni) ≈ pµi /p

0 and nµ
i+ = (1,−ni) (2.1)

The ni are three-vectors, and the lightlike reference vectors satisfy ni− · ni+ = 2 and
n2
i+ = n2

i− = 0. Using these reference vectors, the metric tensor is decomposed in the
following way

gµν = nµ
i+

nν
i−
2

+ nµ
i−
nν
i+

2
+ gµνi⊥ (2.2)

which defines gµνi⊥ . This leads to the realisation that a general four-vector can be written
in terms of its light-cone components

pµ = pνg
µν = (ni+p)

nµ
i−
2

+ (ni−p)
nµ
i+

2
+ pµi⊥, pµ = (ni+p*+,-

−

, ni−p*+,-
+

, pi⊥*+,-
⊥

) (2.3)

where we have written the four-vector in the component notation. It is immediate to show
that the inner product of a four-vector p with itself and another four-vector q take the form

p2 = (ni+p)(ni−p) + p2i⊥, p · q = 1

2
(ni+p)(ni−q) +

1

2
(ni+q)(ni−p) + pi⊥ · qi⊥ (2.4)

Momentum Regions & Expansion Parameter λ

One of the three main ingredients of EFTs is their expansion parameters. In SCET, the
expansion parameter λ, expresses the ratio of momenta magnitudes that flow in different
direction. To define it more explicitly, let’s consider

λ2 ∼ −p2i
Q2

∼
−p2j
Q2

and p2i ∼ p2j ∼ λ2Q2 (2.5)

which vanishes in the limit in which we are interested in. Here pi and pj are the large
momenta flowing in the i and j collinear direction respectively. With the definition of the
expansion parameter, we can define the momentum regions that will be of interest to us.

• Hard Region where the components of the momentum scale kµ ∼ (1, 1, 1)Q;

• i-th Collinear Region where k scales as kµ ∼ (1,λ2,λ)Q; The momenta in this
region are close to the collinear direction, i.e. kµ ≈ Q · nµ

i−/2

• Soft Region where k scales as kµ ∼ (λ2,λ2,λ2)Q.

In SCET, each low-energy region listed above is represented by a different field as will
become apparent in the next section.
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2.3 The SCET Lagrangian to Leading Power

2.3.1 Degrees of Freedom

In this section, we are going to describe the first main ingredient of our effective theory,
namely, the relevant degrees of freedom. We will consider the general case where there
exist N collinear directions. Then, the quark and gluon fields split into N collinear and
one soft fields.

ψ(x) → ψ1(x) + · · ·+ ψN(x)* +, -
N collinear fields

+ ψs(x)* +, -
soft field

(2.6)

Aµ(x) → Aµ
1(x) + · · ·Aµ

N(x)* +, -
N collinear fields

+ Aµ
s (x)* +, -

soft field

, (2.7)

where ψs(x) is the soft part of the fermion field and Aµ
s (x) is the soft part of the gluon

field. Note that it is not necessary to introduce fields for other regions, like the hard re-
gion, since their contributions will be absorbed into the prefactors of the operators built
from soft and collinear fields. These prefactors are called Wilson coefficients and are the
coupling constants of the effective theory. By writing down the most general set of opera-
tors and by adjusting their Wilson coefficients, as is well illustrated in [3] with exapmles.
Here is where SCET differs from traditional effective field theories; here we integrate out
a mode of the full theory instead of a full heavy field. When constructing the effective
Lagrangian, we assume that the momenta of the different fields scale in the proper way.
For the construction to make sense, it is important that the external momenta are chosen
properly. For example, one must choose the external momentum flowing into a soft field
to be soft.

The fermion field in each collinear sector is further split into two components

ψi(x) = ξi(x) + ηi(x) (2.8)

where the fields ξi(x) and ηi(x) are defined using projection operators on the full collinear
fields:

ξi(x) = Pi+ψi(x) ≡
/ni−/ni+

4
ψi(x) and ηi(x) = Pi−ψi(x) ≡

/ni+/ni−
4

ψi(x). (2.9)

The reason we make this decomposition is that, as we will see below, the two components
scale differently in respect to the expansion parameter λ, because the collinear momentum
scales differently along the collinear and anti-collinear directions.

2.3.2 Power Counting Scheme

To determine the power of λ with which the different components of each SCET field scales,
we look at the two-point correlators.
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Collinear Quark Field

We start with the ξi(x) component

〈0|T{ξi(x)ξ̄i(0)|0〉 = 〈0|T{Pi+ψi(x)Pi+ψi(0)}|0〉 = 〈0|T{Pi+ψi(x)ψ̄i(0)Pi−}|0〉

= Pi+ 〈0|T{ψi(x)ψ̄i(0)}|0〉Pi− = Pi+

'.
d4pi
(2π)4

/pi
p2i + iε

e−ipi·x
(
Pi−

=

.
d4pi
(2π)4

1

p2i + iε
e−ipi·x Pi+/piPi− =

.
d4pi
(2π)4

1

p2i + iε
e−ipi·xni+ · pi

2
/ni−

(2.10)

where in the first line we have used the property ... and the last line the property ... Now,
since pi is a collinear momentum in four dimensions, where the components in the collinear
direction scale as λ0, the component anti-parallel to the collinear direction scales as λ2,
and the two transverse directions scale proportionally to λ. Therefore, the momentum
integration measure scales as λ4. It is immediate to see that (p2i + iε)−1 scales as λ−2 and
ni− · pi scales proportionally to λ0. Combining all the scalings together in Eq. we find that

〈0|T{ξi(x)ξ̄i(0)}|0〉 ∼ λ4 1

λ2
= λ2 (2.11)

and therefore, ξi(x) ∼ λ.
Similarly, the correlator for the ηi component is

〈0|T{ηi(x)η̄i(0)}|0〉 = 〈0|T{Pi−ψi(x)Pi−ψi(0)}|0〉 = 〈0|T{Pi−ψi(x)ψ̄i(0)Pi+}|0〉

= Pi− 〈0|T{ψi(x)ψ̄i(0)}|0〉Pi+ = Pi−

'.
d4pi
(2π)4

/pi
p2i + iε

e−ipi·x
(
Pi+

=

.
d4pi
(2π)4

1

p2i + iε
e−ipi·x Pi−/piPi+ =

.
d4pi
(2π)4

1

p2i + iε
e−ipi·xni− · p

2
/ni+

(2.12)

Following the same logic as before, for a collinear momentum pi,

〈0|T{ηi(x)η̄i(0)}|0〉 ∼ λ4 1

λ2
λ2 = λ4 (2.13)

which means that ηi(x) ∼ λ2. Thus, the ηi(x) component is suppressed by one power of λ
with respect to the component ξi(x).

Soft Quark Field

For the soft quark field, since p is soft, it scales as λ2 in all four directions and p2 ∼ λ4.
Therefore one finds that

〈0|T{q(x)q̄(0)}|0〉 =
.

d4p

(2π)4
/p

p2 + iε
e−ip·x ∼ (λ2)4λ2 1

λ4
= λ6 (2.14)

and therefore q(x) ∼ λ3.
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Gluon Field

For the gluon field, the two-point function is

〈0|T{Aµ(x)Aν(0)}|0〉 =
.

d4p

(2π)4
i

p2 + iε
e−ip·x

&
gµν + ξ

pµpν

p2

)
(2.15)

If we take the two point-function of the projections of the gluon field along the direction
v, we find that

〈0|T{(v · A(x))(v · A(0))}|0〉 = 〈0|T{(vµAµ(x))(vνA
ν(0))}|0〉

=

.
d4p

(2π)4
i

p2 + iε
e−ip·x

&
vµvνg

µν + ξ
(vµp

µ)(vνp
ν)

p2

)

=

.
d4p

(2π)4
i

p2 + iε
e−ip·x

&
v2 + ξ

(v · p)(v · p)
p2

)
(2.16)

Let us now consider the case where v = ni− for the collinear gluon field Aµ
i (x). Since ni−

is light-like (n2
i− = 0),

〈0|T{(ni− · Ai(x))(ni− · Ai(0))}|0〉 =
.

d4pi
(2π)4

iξ

p2i + iε
e−ipi·x (ni− · pi)2

p2i
∼ λ4 1

λ2

λ4

λ2
∼ λ4

(2.17)

which means that ni− · Ai(x) ∼ λ2. Similarly, one finds that ni+ · Ai(x) ∼ λ0. For any
direction v on the ⊥ plane, v2 ∼ λ0 and therefore the quantity inside the bracket of (2.16)
scales as λ0 and thus A⊥(x) ∼ λ. Finally, for the soft gluon field, since the momentum
scales as λ2 in any direction, and it’s norm as λ4 from (2.15)

〈0|T{Aµ
s (x)A

ν
s(0)}|0〉 ∼ (λ2)4

1

λ4

&
λ0 +

(λ2)2

λ4

)
∼ λ4 (2.18)

Therefore, Aµ
s ∼ λ2.

We collect here these results, making also the useful observation that the gluon field
scales like its momentum.

ξi(x) ∼ λ ηi(x) ∼ λ2 Aµ
s ∼ λ2 (2.19)

ni− · Ai ∼ λ0 ni+ · Ai ∼ λ2 Ai⊥ ∼ λ (2.20)

We can already make the observation that only the ni+As(x) components are not power
suppressed with respect to their counterparts in the collinear gluon fields Aµ

i (x).

2.3.3 Multipole Expansion

In the next section we will present the leading term Lagrangian for strong interactions. It
is easy to forsee that because of momentum conservation and how momenta scale, fields
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belonging to different collinear sectors do not directly interact with each other; only soft
exchanges are permitted between the collinear sectors. Therefore, only interaction terms
that are a mixture of collinear and soft fields must be considered. An example of such a
term is

.
ddx ξ̄c(x)A

µ
s (x)ξc(x) (2.21)

Taking the Fourier transform of this interaction we get
.

ddx

.
ddp1
(2π)d

ddp2
(2π)d

ddps
(2π)d

e−i(p1+p2+ps)·x ¯̃ξc(p1)Ã
µ
s (ps)ξ̃c(p2) (2.22)

where p1, p2 are collinear momenta and ps is soft. Focusing on the exponent, we note
that the total momentum scales as pµ1 + pµ2 + pµs ∼ (1,λ2,λ)Q, which implies that the
position variable xµ scales as xµ ∼ (1/λ2, 1, 1/λ)(1/Q). By construction, both the collinear
terms contribute equally. However, if we consider the scalar product of xµ with the soft
momentum, we find that not all components contribute equally

ps · x =
1

2
(n−ps)(n+x)* +, -

O(λ0)

+
1

2
(n+ps)(n−x)* +, -

O(λ2)

+ ps⊥ · x⊥* +, -
O(λ1)

. (2.23)

The dominant term is clearly (n−ps)(n+x) ∼ λ0, and the remaining terms are power
suppressed in respect to it. If we Taylor expand the soft field arount xµ

− = (n+x)n
µ
−/2 we

get

Aµ
s (x) = Aµ

s (x−) + x⊥ · ∂⊥* +, -
O(λ1)

Aµ
s (x−) + x+ · ∂−* +, -

O(λ2)

Aµ
s (x−) +

1

2
x⊥ρx⊥σ∂

ρ∂σ

* +, -
O(λ2)

Aµ
s (x−) + · · ·

= Aµ
s (x−)

'
1 +O(λ)

(
(2.24)

This is the so-called multipole expansion. The interaction term (2.21) then becomes
.

ddx ξ̄c(x)A
µ
s (x)ξc(x) =

.
ddx ξ̄c(x)A

µ
s (x−)ξc(x) +O(λ) (2.25)

Hence, the soft fields multiplying collinear fields in the SCET Lagrangian are evaluated at
a position xµ

−, rather than the full xµ position. It is important to stress that the evaluation
at xµ

− is done after the derivatives have acted on the field.

2.3.4 The Lagrangian to Leading Power

Now that we have found the scaling properties of the fields we can move on to determin-
ing the effective Lagrangian. The starting point of our discussion is the massless QCD
Lagrangian:

LQCD = ψ̄i /Dψ − 1

4
(F a

µν)
2, (2.26)
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where

Dµ = ∂µ − igAa
µt

a. (2.27)

The SCET Lagrangian for strong interactions is separated into a soft and N collinear parts
as follows

LSCET = Ls +
N#

i=1

Li, (2.28)

where each of the collinear sectors is systematically power expanded in the small power
counting parameter λ

Li = L(0)
i*+,-

O(λ0)

+ L(1)
i*+,-

O(λ1)

+ L(2)
i*+,-

O(λ2)

+ · · · . (2.29)

The term L(0)
i in the expansion is called the leading term contribution, and the re-

maining terms denote the power corrections, with the number in the superscript denoting
the power suppression in λ with respect to the leading power term.

2.3.5 The soft Lagrangian

Let us first deal with the soft Lagrangian at leading power, which is simply given by

Ls = ψ̄si /Dsψs −
1

4
(F a

s )µν(F
a
s )

µν , (2.30)

with the soft covariant derivative being

iDµ
s (x) = i∂µ + gsA

µ
s (x) = i∂µ + gsA

a,µ
s ta, (2.31)

in terms of which we define the soft field strength tensor

igsF
µν
s =

&
iDµ

s , iD
ν
s

)
. (2.32)

The reason we have included only soft gluon fields in the covariant derivative of course is
because, soft fermionic fields remain soft only if they interact with soft gluons.

2.3.6 The Collinear Lagrangian

The collinear fermion Lagrangian has a special form since the ηi component of the fermion
field is power suppressed with respect to ξi, and thus can be integrated out. The covariant
derivative in the ith collinear direction is defined as usual by

iDiµ(x) = i∂µ + gsAiµ(x) = i∂µ + gsA
a
iµ(x)t

a (2.33)
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with ta being the generators of SU(3) in the adjoint representation. For the time being,
we keep both the collinear components of the gluon field and the soft, even though As⊥
and As− are power suppressed with respect to the collinear gluon field. We will come
back to this point when discussing the soft-collinear interactions. Again, starting from the
full QCD Lagrangian for the fermionic field in the ith collinear direction we find that the
leading power contribution term is

L(0)
i fermion = ψ̄ii /Diψi = (ξ̄i + η̄i)i

&
/ni+

2
(ni− ·Di) +

/ni−
2

(ni+ ·Di) + /Di⊥

)
(ξi + ηi)

= ξ̄i
/ni+

2
i(ni− ·Di)ξi + ξ̄ii /Di⊥ηi + η̄ii /Di⊥ξi + η̄i

/ni−
2

i(ni+ ·D)ηi. (2.34)

We use the full covariant derivative where both soft and i-collinear gluon fields are included,
because such interactions are allowed. If a collinear fermion absorbs or emits a soft gluon
its momentum scales collinearly.

Integrating out ηi

Since the action is quadratic, one can integrate out ηi exactly. A standard and easy way
of obtaining the Lagrangian after the ηi field is integrated out consists of employing the
equations of motion for the ξi field derived from (2.34). The Euler-Lagrange equations of
motion for ξ̄i is

0 = ∂µ
∂Li

∂(∂µξ̄i)
− ∂L

∂ξ̄i
= −

/ni+

2
ini− ·Dξi − i /D⊥ηi, (2.35)

or equivalently

/ni+

2
ni− ·Dξi = − /D⊥ηi. (2.36)

Similarly, for η̄i one finds

/D⊥ξi = −
/ni−
2

ni+ ·Dηi. (2.37)

Solving for ηi and η̄i one obtains

ηi = −
/ni+

2ni+ ·D
/D⊥ξi and η̄i = −ξ̄i /D⊥

/ni+

2ni+ ·D, (2.38)

and when replaced in (2.34), one ends up with

L(0)
ξ,i = ξ̄i

/ni+

2

&
ini−Di + i /Di⊥

1

ini+Di

i /Di⊥

)
ξi. (2.39)
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Irrelevance of the Determinant

The same result is reached when we explicitly integrate out the ηi component in the path
integral. When we follow that approach, we get an extra factor, the determinant

det

'
/ni−
2

ini+ ·D
(

(2.40)

We are now going to show that the determinant is irrelevant and therefore can be ignored.
First, we demonstrate that the determinant is gauge invariant. If V ∈ SU(N) so that the
quark field transforms according to ψ → V ψ under gauge transformation, the determinant’s
covariant derivative will transform as D → V DV †. Therefore,

det

'
/ni−
2

ini+ ·D
(

→ det

'
/ni−
2

ini+ · V DV †
(

= det(V ) det

'
/ni−
2

ini+ ·D
(
det(V †)

= det

'
/ni−
2

ini+ ·D
(

(2.41)

Since the determinant is gauge invariant, it can be computed in any gauge. In the light
cone gauge where ni+ ·Ai = 0, ni+ ·Di = ni+ · ∂ and the determinant is independent of the
gluon field. Therefore, the determinant remains independent of it in any gauge and is thus
an irrelevant multiplicative factor. From the diagramatic point of view, the determinant
corresponds to a series of vacuum diagrams of the form

While the collinear quark Lagrangian has somewhat complicated structure, the collinear
gluon Lagrangian is simply a copy of the QCD Lagrangian in which the gluon field Aµ is
replaced by the collinear gluon field Aµ

i . That is,

Lg,i = −1

4
(F µν

i )2 (2.42)

where the covariant derivative and the field strength tensor are defined as

iDµ
i = i∂µ + gAµ

i t
a, (2.43)

and

igsF
µν
i =

&
iDµ

i , iD
ν
i

)
. (2.44)

2.3.7 Soft-Collinear Interactions

Next, we consider the soft-collinear interaction terms, that is terms that describe the
interactions between soft and collinear fields, at leading power. To obtain leading power
interactions, we remind ourselves of the scalings of the fields

!
ni+ · Ai, ni− · Ai, Ai⊥

"
∼ (1,λ2,λ) ξi ∼ λ

!
ni+ · As, ni− · As, As,⊥

"
∼ (λ2,λ2,λ2) ψs ∼ λ3
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In the SCET Lagrangian for strong interactions, soft-collinear interactions involving soft
quarks do not appear at leading order, since ψs is power suppressed with respect to ξi.
Furthermore, only the ni+ · As component of the soft gluon field is not power suppressed
with respect to the corresponding component of the collinear gluon field, so only this
component is relevant for the leading soft-collinear interactions. Therefore one can make
the replacements

Aµ
i (x) →

&
ni− · Ai(x) + ni− · As(x−)

)
nµ
i+

2
+ ni+ · Ai(x)

nµ
i−
2

+ Aµ
i⊥(x)

/
(2.45)

in the collinear quark and gluon Lagrangians discussed in the previous subsection. With
this substitution one arrives at the final expression of the leading power i-collinear SCET
Lagrangian, reading

L(0)
i = ξ̄i

/ni+

2

&
ini−Di + gsni−As(xi−) + i /Di⊥

1

ini+Di

i /Di⊥

)
ξi −

1

4

!
F µν
i

"2
, (2.46)

where we made the dependence on ni−As(xi−) explicit, and we made the decomposition

Dµ
i = (ni− ·Di)

nµ
i+

2
+ (ni+ ·Di)

nµ
i−
2

+Dµ
i⊥. (2.47)

The field strength tensor is normally defined by

igsF
µν
i =

&
iDµ

i + gsni−As(xi−)
nµ
i+

2
, iDν

i + gsni−As(xi−)
nν
i+

2

)
(2.48)

With the addition of soft-collinear interactions we have completed the construction of
the leading power SCET Lagrangian. Its final form is

L = ψ̄si /Dsψs +
N#

i=1

0
ξ̄i
/ni+

2

&
ini−Di + gsni−As(xi−) + i /Di⊥

1

ini+Di

i /Di⊥

)
ξi −

1

4

!
F µν
i

"2
/
− 1

4
(F µν

s )2.

(2.49)

2.4 Symmetries

We now discuss two important symmetries of SCET. Both are not symmetries of nature but
redundancies in our description. The first one is gauge symmetry which arises because we
use four-component fields to describe the two physical polarisations of gauge bosons. The
second one is called reparametrisation invariance and arises because we have introduced
reference vectors nµ

i− and nµ
i+, in the construction of the effective theory. The choice of

these is not unique and physics is independent of their choice.
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2.4.1 Reparametrisation Invariance

First, we are briefly discuss reparametrisation invariance. In SCET, one can change the
direction of the reference vectors by a small amount, but one can also rescale the light-like
reference vectors. The most general infinitesimal transformation is a linear combination of
these three types of transformation

(I)

1
nµ
i+ → nµ

i+ +∆µ
⊥

nµ
i− → nµ

i−
, (II)

1
nµ
i+ → nµ

i+

nµ
i− → nµ

i− + εµ⊥
(III)

1
nµ
i+ → (1 + α)nµ

i+

nµ
i− → (1− α)nµ

i−
(2.50)

with ∆⊥ · ni+ = ∆⊥ · ni− = ε⊥ · ni+ = ε⊥ · ni− = 0. For the purpose of this thesis it is not
necessary to delve deeper into the details of this symmetry, and we point the interested
reader to [9] for more details.

2.4.2 Gauge Symmetries

The original QCD Lagrangian is SU(3) gauge invariant and therefore, the effective La-
grangian has to also be gauge invariant. In this section we will only briefly touch on the
gauge transformation properties of the non-abelian gauge Lagrangian; a more involved and
detailed discussion can be found in [5]

To accomplish SU(3) gauge invariance, we have to extend the gauge transformations
making sure they respect the scaling of the fields. That is to say, after the gauge transfor-
mation, each field has to scale in the same fashion as before. For example, transforming a
soft field by means of a gauge function α(x) with collinear scaling would turn the soft field
into a collinear field. We will consider two types of gauge transformations; the soft gauge
transformation

Vs(x) = exp

&
iαa

s(x)t
a

)
, (2.51)

and the collinear gauge transformation along the ith collinear direction

Vi(x) = exp

&
iαa

i (x)t
a

)
. (2.52)

The function αa
s(x) has soft scaling, i.e. ∂α

a
s(x) ∼ λ2αa

s(x), while aai (x) has collinear scal-
ing, meaning ∂αi(x) ∼ (λ2, 1,λ)αi(x). We analyse the soft transformations first.

Under a soft gauge transformation the fields transform in the standard way

ψs(x) → Vs(x)ψs(x) (2.53)

Aµ(x) → Vs(x)A
µ
s (x)V

†
s (x) +

i

g
Vs(x)

&
∂µ, V †

s (x)

)
. (2.54)
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The collinear fields transform instead as follows

ξi(x) → Vs(x−)ξi(x) (2.55)

Aµ
i (x) → Vs(x−)A

µ
i (x)V

†
s (x−) (2.56)

The gauge transformation matrices in Equations (2.55) and (2.56) depend only on x− from
the multipole expansion. The collinear gauge transformations involve a field that scales
collinearly, and therefore, the soft fields cannot be transformed under them. That is

ψs(x) → ψs(x) Aµ
s (x) → Aµ

s (x) (2.57)

Instead, for a i-collinear gauge transformation, the collinear fields transform as follows

ξi(x) → Vi(x)ξi(x)

Aµ
i (x) → Vi(x)A

µ
i (x)V

†
i (x) +

1

gs
Vi(x)

&
i∂ + gs

nµ
i+

2
ni− · As(x−), V

†
i (x)

)

Aµ
j (x) → Aµ

j (x) i ∕= j (2.58)

It is straightforward to demonstrate that the SCET Lagrangian is manifestly invariant
under both collinear and soft gauge transformation (see [5]).

2.5 Wilson Lines

In SCET, as in other EFTs, we encounter non-local operators. In a gauge theory, a product
of fields at different space time points is only gauge invariant if the fields are connected by
Wilson lines, defined as

W (z, y)A = P
0
exp

&
ig

.

c

dxµAµ(x)

)/
, (2.59)

where Aµ(x) is the gauge field, and c is the path that connects y with z. The operator P
indicates the path ordering if the colour matrices ta. The conjugate Wilson line is defined
with the opposite ordering prescription. If we parametrise the path c with the parameter
s, such that x(sy) = y and x(sz) = z, then we can write the Wilson line as:

W (z, y)A = P
0
exp

&
ig

. sz

sy

ds
dxµ

ds
Aµ

!
x(s)

")/
(2.60)

With this parametrised form, the operator P indicates the path ordering of the matrix-
valued integrals in such a way that an integrand evaluated at a given value s appears to
the right of integrands evaluated at larger values of s, while it appears on the left of the
integrands evaluated at smaller values of the parameters. We will first write the Wilson
lines in a more succinct form by setting the integrands

F(s) =
dx

ds
· A

!
x(s)

"
=

dxµ

ds
Ab

µ

!
x(s)

"
tb (2.61)
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Then,

W (z, y)A = P
0
exp

& . sz

sy

ds F(s)
)/

=
∞#

n=0

(ig)n

n!

. sz

sy

ds1

. sz

sy

ds1 · · ·
. sz

sy

dsn P
2
F(s1)F(s2) · · ·F(sn)} (2.62)

The path ordering prescribes that the non-commuting functions F should be ordered con-
sidering decreasing order of the arguments. Therefore, if s1 > s2 > · · · > sn

P
2
F(s1)F(s2) · · ·F(sn)

3
= F(s1)F(s2) · · ·F(sn) (2.63)

The integration region is a hypercube. It is possible to subdivide the integration region in
n! subregions, which correspond to the n! possible orderings of the elements {s1, s2, . . . , sn}.
The n! integration regions are simplices, as it easy to see by considering the simple case in
which n = 2. We can also set sy = 0 and sz = 1 for simplicity.

. 1

0

ds1

. 1

0

ds2 P
2
F(s1)F(s2)

3
=

. 1

0

ds1

. s1

0

ds2 F(s1)F(s2) +
. 1

0

ds1

. s1

0

ds2 F(s2)F(s1)

= 2

. 1

0

ds1

. s1

0

ds2 F(s1)F(s2) (2.64)

where in the second line we redefined s1 ↔ s2, since they are only dummy variables. This
procedure can be generalised to n dimensions

. 1

0

ds1

. 1

0

ds2 · · ·
. 1

0

dsn P
2
F(s1)F(s2) · · ·F(sn)

3
=

= n!

. 1

0

ds1

. s1

0

ds2 · · ·
. sn−1

0

dsn F(s1)F(s2) · · ·F(sn)

(2.65)

Therefore,

W (z, y)A =
∞#

n=0

(ig)n
. 1

0

ds1

. s1

0

ds2 · · ·
. sn−1

0

dsn F(s1)F(s2) · · ·F(sn) (2.66)

Now, we will prove a proposition of Wilson lines that will be very important in demon-
strating a key feature of the leading power SCET Lagrangian, namely the decoupling
transformation.
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Proposition 2.5.1. The covariant derivative of a Wilson line along the parametrised
path vanishes. That is,

dxµ

ds
DµW

!
x(s), x(0)

"
A
= 0 (2.67)

Proof First, we start by setting z = x(s) and y = x(0), and then we take the derivative
of a Wilson line in respect to s:

d

ds
W

!
x(s), x(0)

"
A
=

d

ds

&
1 +

∞#

n=1

(ig)n
. s

0

ds1

. s1

0

ds2 · · ·
. sn−1

0

dsn F(s1)F(s2) · · ·F(sn)
)

=
∞#

n=1

(ig)n
. s

0

ds2

. s2

0

ds3 · · ·
. sn−1

0

dsn F(s)F(s2)F(s3) · · ·F(sn)

= igF(s)
∞#

n=0

(ig)n
. s

0

ds2

. s2

0

ds3 · · ·
. sn−1

0

dsn F(s)F(s2)F(s3) · · ·F(sn)

= igF(s)W
!
x(s), x(0)

"
A
= ig

dxµ

ds
Aµ

!
x(s)

"
W

!
x(s), x(0)

"
A

(2.68)

Now, we can see that

0 =

'
d

ds
− ig

dxµ

ds
Aµ

!
x(s)

"(
W

!
x(s), x(0)

"
A
=

dxµ

ds

'
∂µ − igAµ

!
x(s)

"(
W

!
x(s), x(0)

"
A

or equivalently,

dxµ

ds
DµW

!
x(s), x(0)

"
A
= 0 (2.69)

!
While in principle the path c is arbitrary, in SCET we define the i-th collinear Wilson

line along the straight paths x(s) = x0+sni+, with the large component of the correspond-
ing gauge field in the exponent by

Wi(x) = [x,−∞ni+] = P
0
exp

&
igs

. 0

−∞
ds ni+ · Ai(x+ sni+)

)/
, (2.70)

and the soft Wilson lines along the straight paths x(s) = x0 + sni+ given by

Si(x) = P
0
exp

&
igs

. 0

−∞
ds ni− · As(x+ sni−)

)/
. (2.71)

The limits of the integrals in the exponents of Equations (2.70) and (2.71), namely from
−∞ to 0, arise from the fact that we are considering incoming particles. In Wilson lines
that describe outgoing particles the limits extend from 0 to ∞.
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The usefulness of Wilson lines in the construction of SCET becomes apparent upon
consideration of the behaviour of these objects under gauge transformations. Namely,
taking as an example the collinear gauge transformations we find that the Wilson lines
transform as follows

Wi(x) → Vi(x)Wi(x)V
†
i (−∞ni+), (2.72)

where we consider gauge functions which vanish at infinity V †
i (−∞ni+) = 1.

Since Wilson lines appear ubiquitously in SCET, we briefly comment on their contri
bution to calculation of Feynman diagrams. A Wilson line may source any number of
gluons by keeping higher orders in the expansion of the exponential in equations (2.70)
and (2.71). The higher number of emissions are suppressed by corresponding powers of.
For illustration, we consider the O(gs) term. The momentum-space Feynman rule can be
obtained Fourier transforming the gauge field and performing the ds integral. By requiring
that the Wilson line is well-behaved at infinity, we can fix the iδ prescription. For example,
considering the soft Wilson line in equation (2.70) and expanding to firs order we find the
following

Wi(x) = P
0
exp

&
igs

. 0

−∞
ds ni+ · Ai(x+ sni+)

)/

= 1 + igs

. 0

−∞
ds ni+ · Ai(x+ sni+) +O(g2s)

= 1 + igs

. 0

−∞
ds

.
ddk

(2π)d
e−ik·(x+sni+)nµ

i+Ãi,µ,a(k)T
a +O(g2s)

= 1 +

.
ddk

(2π)d
e−ik·x

&
− gs

nµ
i+

(ni+ · k)− iδ
T a

)

* +, -
momentum space Feynman rule

Ãi,µ,a(k)T
a +O(g2s) (2.73)

where the termo in the square bracket is the momentum space Feynman rule. This Feynman
rule has an eikonal form as expected, namely, it contains a linear dependence on the
momentum. The same holds for the soft Wilson lines.

2.6 Decoupling Transformation

Here, we introduce one of the core features of SCET that allows it to be so successful. More
details on the decoupling transformation can be found in [6]. The interaction between each
i-collinear fermionic sector and the soft bosonic sector are contained in the term

Li+s = ξ̄i(x)
/ni+

2
ini− ·D(i)ξi(x) = ξ̄i(x)

/ni+

2
ini− ·

&
∂ + gsAi(x) + gsAs(x−)

)
ξi(x), (2.74)
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An important feature of the SCET Lagrangian is that the soft-collinear interactions can
be completely removed at leading power. This is achieved by the so-called decoupling
transformation [71], which is defined by the field redefinitions

ξi(x) → Si(x−)ξ
(0)
i (x), (2.75)

Aµ
i (x) → Si(x−)A

(0)µ
i (x)S†

i (x−), (2.76)

for each collinear direction. As a consequence of these field redefinitions (2.75) and (2.76),
one finds that ini− ·Diξ(x) becomes

→ ini− ·
&
∂ − igSi(x−)A

(0)
i (x)S†

i (x−)− igAi(x−)

)
Si(x−)ξ

(0)
i (x)

=

&
ini− · ∂−Si(x−) + ini− · Si(x−)∂ + gsni− · Si(x−)A

(0)
i (x)

+ gsni− · A(0)
s (x)Si(x−)

)
ξ
(0)
i (x)

=

&
ini− ·

!
∂− − igsAs(x−)

"
Si(x−) + Si(x−) ini− · ∂ + Si(x−)gsni− · A(0)

i (x)

)
ξ
(0)
i (x)

=

&
ini− ·Ds−Si(x−)* +, -

0

+Si(x−)ini− · ∂ + Si(x−)gsni− · A(0)
i (x)

)
ξ
(0)
i (x)

=

&
Si(x−)ini− · ∂ + Si(x−)gsni− · A(0)

i (x)

)
ξ
(0)
i (x)

= Si(x−)

&
ini− · ∂ + gsni− · A(0)

i (x)

)
ξ
(0)
i (x) ≡ Si(x−)ini− ·D(0)

i ξ
(0)
i (x). (2.77)

To arrive to this result, in the second line we used the fact that

ni− · ∂Si(x−) = na
i−

∂

∂xa
Si(x−) = na

i−
∂xβ

−
∂xa

∂

∂xβ
−
Si(x−) =

na
i−ni+a

2
nβ
i−

∂

∂xβ
−
= ni− · ∂−Si(x−),

(2.78)

since

xβ
− =

ni+ · x
2

nβ
i− ⇒ ∂xβ

−
∂xa

=
ni+a

2
nβ
i−. (2.79)

Furthermore, in the fourth equation we made use of the property that the covariant deriva-
tive along the Wilson line is zero (Proposition 2.5.1).

Thus, under the field transformations (2.75) and (2.76) the interaction term Lagrangian
(2.74) transforms like

Li+s → ξ̄
(0)
i

/ni+

2
ini− ·D(0)

i ξ
(0)
i (x), (2.80)
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so that the soft field no longer appears in the collinear Lagrangian.
The same decoupling happens in the kinetic part of the collinear gluon Lagrangian (see

[3]). This kind of transformation is called decoupling transformation, since it decouples
the soft gluon from the leading power collinear Lagrangian, effectively removing all soft-
collinear (at leading power).

The superscript (0) on the decoupled fields is customarily dropped after the field redef-
inition is performed. This convention is followed in this work, unless for clarity we make
this superscript explicit in which case this will be noted.

It is important to stress, however, that at subleading power soft collinear interactions
are still present in the Lagrangian. Instead there, one starts from the leading power
Lagrangian, where the states can be considered also to be factorised, and considers the
sub-leading terms of the Lagrangian as perturbations, or insertions to the the diagrams
that are of interest.
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Chapter 3

Calculation of Leading Power Jet
Functions

In this chapter, our main focus revolves around the assessment of the partonic jet functions
denoted as J in the factorisation formula (1.3). To accomplish this, we divide our exami-
nation into two sections. Initially, we delve into the evaluation of the leading power SCET
jet function, as defined in [2][6], employing the regular QCD Lagrangian. Subsequently,
we carry out the same calculations using the SCET Lagrangian in the following section.
It is important to note that in both cases, the derivation of the factorisation theorem is
performed within the framework of SCET. Once SCET has provided the matrix element
definition of the jet functions, we proceed to employ either the QCD or SCET Lagrangian
to finalize the calculations.

3.1 Calculation with the QCD Lagrangian

In this section, we employ the standard QCD Feynman rules to compute the SCET jet
function, as defined in [6][2]. The key to working in this manner lies in the decoupling
transformation, which effectively separates the degrees of freedom in a particular collinear
direction from the soft and other collinear components at the leading power. It is worth
noting that, in the subsequent analysis, we consider two distinct collinear directions. To
maintain consistency with the notation used for light-like reference vectors in Chapter 2,
we have the following relationships:

n1− = n2+ = n n1+ = n2− = n̄. (3.1)

[6][2] define the jet function with

/n

2
(n̄ · p)J (p2, µ) =

.
ddx e−ipx 〈0|T{χ(0)χ̄(x)}|0〉 , (3.2)

with χ(x) being the jet fields defined as W †(x)ξ(x). These fields are frequently met in
SCET because they are used to construct gauge invariant operators because of their trans-
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formation properties (gauge invariant building blocks, see [5]). After the decoupling trans-
formation this definition reads

/n

2
(n̄ · p)J (p2, µ) =

.
ddx e−ipx

4
/n/̄n

4
W †(0)ψ(0)ψ̄(x)W (x)

/̄n/n

4

5

=
/n/̄n

4

& .
ddx e−ipx 〈W †(0)ψ(0)ψ̄(x)W (x)〉

)
/̄n/n

4
, (3.3)

where the Wilson line is defined by

W (x) = P
0
exp

&
igs

. 0

−∞
ds n̄ · A(x+ sn̄)

)/
(3.4)

The jet function J is the discontinuity of the propagator, i.e.

J(p2, µ) =
1

π
Im

&
iJ (p2, µ)

)
= δ(p2) +O(αs). (3.5)

By Lorentz invariance and invariance under rescaling of n̄, the jet function can only depend
on p2, as ew have written. Physically, as we outlined in the Introduction, the jet function
gives something close to the probability of finding a jet with invariant mass p2; it is not
exactly this probability since soft radiation also contributes to the jet masses. This same
jet function appears in the factorisation formulas of many processes, like B → Xsγ, deep
inelastic scattering and direct proton production. Note that the jet function is only useful
when evaluated for values of p2 ≪ Q2, for Q some hard scale.

To compute the jet function up to next-to-leading orer, our approach involves inserting
the interaction term (in the interaction picture) and subsequently expanding both the
Wilson line and the interaction term using a series expansion based on the strong coupling
constant. Utilizing Wick’s theorem, we identify the various diagrams that are equivalent to
this expression. However, we disregard the disconnected graphs as well as those containing
closed loops that can be disconnected from the rest of the graph through a cut. The
rationale behind this omission is that, in dimensional regularization, these graphs are
defined to vanish.

More specifically, below we calculate the contributions to J (p2, µ), regularising the
divergences with dimensional regularisation, with dimension d = 4− 2ε.

A =

.
ddx e−ipx

4
W †(0)ψ(0)ψ̄(x)W (x) exp i

.
d4y Lint(y)

5
. (3.6)

The Wilson lines expanded read

W (x) = 1 + igs

. 0

−∞
ds n̄ · A(x+ sn̄)− g2s

. 0

−∞
ds

. s

−∞
dλ

6
n̄ · A(x+ sn̄)

76
n̄ · A(x+ λn̄)

7
,

(3.7)
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and the conjugate

W †(0) = 1− igs

. 0

−∞
ds n̄ · A(sn̄)− g2s

. 0

−∞
ds

. 0

s

dλ
6
n̄ · A(s2n̄)

76
n̄ · A(s1n̄)

7
. (3.8)

In a similar fashion, the interaction term

exp

&
i

.
dy4 gsψ̄(y)γ

µAµ(y)ψ(y)

)
= 1 + igsT

a

.
d4y ψ̄(y)γµAa

µ(y)ψ(y)

− g2s
2
T aT b

.
d4y

.
d4z ψ̄(y)γµAa

µ(y)ψ(y)ψ̄(z)γ
µAb

µ(z)ψ(z). (3.9)

With this expansion we find that

A =

.
ddx e−ipx

&
g2s

. 0

−∞
ds

. 0

−∞
dλ 〈[n̄ · A(sn̄)][n̄ · A(x+ λn̄)]ψ(0)ψ̄(x)〉

+ gs

. 0

−∞
ds

.
ddy 〈[n̄ · A(sn̄)]Lint(y)ψ(0)ψ̄(x)〉

− gs

. 0

−∞
ds

.
ddy 〈[n̄ · A(x+ sn̄)]Lint(y)ψ(0)ψ̄(x)〉

− g2s

. 0

−∞
ds

. 0

s

dλ 〈[n̄ · A(sn̄)][n̄ · A(λn̄)]ψ(0)ψ̄(x)〉

− g2s

. 0

−∞
ds

. s

−∞
dλ 〈[n̄ · A(x+ sn̄)][n̄ · A(x+ λn̄)]ψ(0)ψ̄(x)〉

− 1

2

.
ddy

.
ddz 〈Lint(y)Lint(z)ψ(0)ψ̄(x)〉

)
. (3.10)

By following this procedure, we obtain four distinct contributions. The first contribution
corresponds to the leading order and can be attributed to the quark propagator. Moving
to the next order, the first contribution is associated with the exchange of a gluon among
the Wilson lines, which we refer to as the NLO (next-to-leading order) contribution. The
second and third corrections, which we will now refer to as ”vertex” terms, involve the
exchange of a gluon between a Wilson line and the fermion. Moving further, we encounter
the ”eikonal self-energy” corrections as the next two terms, where a gluon is emitted and
absorbed by the same Wilson line. Lastly, we consider the quark self-energy correction,
completing the set of contributions.

⊗ ⊗
p

Figure 3.1: Leading order jet diagram

For the leading order contribution we set the Wilson lines to 1. Therefore, the leading
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order J (0) function can is calculated

/n

2
(n̄ · p)J (0)(p2, µ) =

.
ddx e−ipx /n/̄n

4
〈ψ(0)ψ̄(x)〉

/̄n/n

4
=

.
ddx

.
ddk

(2π)d
ei(k−p)x /n/̄n/k/̄n/n

16k2

=

.
ddk

(2π)d
(k · n̄)
k2

/n

2

.
ddx eix(k−p) =

.
ddk

(k · n̄)
k2

/n

2
δd(k − p)

= (p · n̄) /n
2

1

p2
, (3.11)

or

J (0)(p2, µ) =
1

p2
. (3.12)

p

k

Figure 3.2: ”Eikonal self-energy” diagram

For the NLO corrections, first, we calculate the ”eikonal self energy” correction diagram
depicted in Figure 3.2, which is given by

A(1)
E1 = −g2s n̄

µn̄νT aT b

.
ddx e−ipx

. 0

−∞
ds

. s

−∞
dλ 〈ψ(0)ψ̄(x)Aa

µ(x+ sn̄)Ab
ν(x+ λn̄)〉

= −g2s n̄
µn̄νT aT b

.
ddx e−ipx

. 0

−∞
ds

. s

−∞
dλ 〈ψ(0)ψ̄(x)〉 〈Aa

µ(x+ sn̄)Ab
ν(x+ λn̄)〉

= −g2s n̄
µn̄νT aT b

.
ddx

.
ddk

(2π)d

.
ddq

(2π)d

.
ddl

(2π)d

. 0

−∞
ds

. s

−∞
dλ

× i/k

k2
〈Ãa

µ(q)Ã
b
ν(l)〉 e−ix(p−k+q+l)e−iqn̄s

e−iln̄λ

(3.13)

The gluon field propagator gives the metric tensor which contracts n̄ with itself. For light-
like n̄, n̄2 = 0, and therefore A(1)

E1 = 0. The same holds true for the second eikonal self

energy correction, that is, A(1)
E2 = 0, and hence, these terms don’t contribute to the jet

function.
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p

k

Figure 3.3: Wilson line - Wilson line interaction diagram

The next contribution we calculate is the interaction between the two Wilson Lines,
depicted in Figure 3.3, and given by

A(1)
ww = g2sT

aT bn̄µn̄ν

.
ddx e−ipx

. 0

−∞
ds

. 0

−∞
dλ 〈Aa

µ(sn̄)ψ(0)ψ̄(x)A
b
ν(x+ λn̄)〉

= g2sT
aT bn̄µn̄ν

.
ddx e−ipx 〈ψ(0)ψ̄(x)〉

. 0

−∞
ds

. 0

−∞
dλ 〈Aa

µ(sn̄)A
b
ν(x+ λn̄)〉

= g2sT
aT bn̄µn̄ν

.
ddx e−ipx 〈ψ(0)ψ̄(x)〉

.
ddq

(2π)d

.
ddk

(2π)d
〈Ãa

µ(q)Ã
b
ν(k)〉

. 0

−∞
ds

. 0

−∞
dλ ei(sq+λk+x)n̄

= ig2sCF

.
ddx e−ipx 〈ψ(0)ψ(x)〉

.
ddk

(2π)d
n̄2

k2(n̄ · k)2 . (3.14)

Again, because n̄ is lightlike, Aww vanishes, and it does not contribute to the jet function.

p p− k p

k

Figure 3.4: Quark self energy diagram

Now, we calculate the fermion self-energy contribution, shown in Figure 3.4

A(1)
P = −g2s

.
ddx e−ipx

.
ddy

.
ddz 〈ψ(0)ψ̄(y)〉 γν 〈ψ(y)ψ̄(z)〉 γµ 〈ψ(z)ψ̄(x)〉 〈Aν(y)Aµ(z)〉

= −g2s

.
ddx

.
ddy

.
ddz

.
ddk

(2π)d

.
ddq

(2π)d

.
ddl

(2π)d

.
ddj

(2π)d
/jγµ/qγµ/l

k2q2l2j2
eix(l−p)eiy(j−q−k)eiz(q−l−k).

After we carry out the space integrations and the momentum integrations over q, l and j,
we find that

A(1)
P (p2, µ) = g2sµ

2εCF
/p

p2

& .
d̃k

γµ(/p− /k)γµ

k2(k − p)2

)

* +, -
Ik

/p

p2
. (3.15)
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p+ k p

k

p p+ k

k

Figure 3.5: ”Vertex” diagrams.

The momentum integral, gives the quark self energy, and it evaluates as

Σ(p) =

.
ddk

(2π)d
γµ(/p− /k)γµ

k2(p− k)2
=

. 1

0

dx

.
ddk

(2π)d
γµ(/p− /k)γµ

&
(1− x)k2 + x(k2 + p2 − 2k · p)

)2

=

. 1

0

dx

.
ddk

(2π)d
γµ(/p− /k)γµ

&
(k − xp)2 − (−p2)x(1− x)

)2 . (3.16)

We first focus on the denominator, which can be rewritten as

(k − xp)2 + p2x(1− x) → k2 + p2x(1− x), (3.17)

where the loop momentum has been shifted kµ → kµ + xpµ. The numerator in turn is
shifted to

γµ
6
(1− x)/p− /k

7
γµ = −(d− 2)

6
(1− x)/p− /k

7
→ −2(1− ε)(1− x)/p, (3.18)

where we have ignored the term proportional to /k, since the integral remains invariant
under the transformation kµ → −kµ. Combining the two calculations, we find that

A(1)
P (p2, µ) =

−αsCF

4π

/p

p2

'
4πµ2

−p2

(ε

(1− ε)
Γ(1− ε)2Γ(ε)

Γ(2− 2ε)
. (3.19)

From (3.3) and the fact that P+/pP− = (n̄ · p)/n/2, we arrive at

J (1)
P (p2, µ) =

−αsCF

4πp2

'
eγEµ2

−p2

(ε

(1− ε)
Γ(1− ε)2Γ(ε)

Γ(2− 2ε)
= −αsCF

4π

&
1

ε
− log

−p2

µ2
+ 1

)
.

(3.20)

in MS.
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Finally, we solve for the contribution of the two ”vertex terms” (Figure 3.5) combined.
In explicit, one of the amplitudes that contribute is

A(1)
V0

= −g2sµ
2εn̄µT aT b

.
ddx e−ipx

.
ddy

. 0

−∞
ds 〈Aa

µ(x+ sn̄)ψ̄(y)γνAb
ν(y)ψ(y)ψ(0)ψ̄(x)〉

= −g2sµ
2εn̄µT aT b

.
ddx e−ipx

.
ddy

. 0

−∞
ds 〈Aa

µ(x+ λn̄)Ab
ν(y)〉 〈ψ(0)ψ̄(y)〉 γν 〈ψ(y)ψ̄(x)〉

= ig2sµ
2εCF

.
ddx

.
ddy

.
ddk

(2π)d

.
ddl

(2π)d

.
ddq

(2π)d
e−ix·(p+k−q)e−iy·(l+q−k)

l2q2k2(n̄ · k)
/l /̄n/q

=
−ig2sµ

2εCF

p2

.
ddk

(2π)d
/p/̄n(/p+ /k)

(p+ k)2k2(n̄ · k) . (3.21)

Similarly, we find that

A(1)
Vx

= gs

. 0

−∞
ds

.
ddy 〈[n̄ · A(sn̄)]ψ̄(y)γνAν(y)ψ(y)ψ(0)ψ̄(x)〉

=
−ig2sµ

2εCF

p2

.
ddk

(2π)d
(/p+ /k)/̄n/p

(p+ k)2k2(n̄ · k) . (3.22)

We proceed now to calculate the sum of (3.21) and (3.22)

A(1)
V ≡ A(1)

V0
+A(1)

Vx
=

2ig2sCFµ
2ε

−p2

.
ddk

(2π)d
(/p+ /k)/̄n/p+ /p/̄n(/p+ /k)

(p+ k)2k2[2(n̄ · k)] . (3.23)

As always, first we parametrise the denominator, introducing Feynman parameters (A.3).
Specifically,

A(1)
V =

4ig2sµ
2εCF

−p2

. 1

0

dx

. 1

0

dy

.
ddk

(2π)d
y−2

6
(/p+ /k)/̄n/p+ /p/̄n(/p+ /k)

7
&'

k + xp+ 1−y
y
n̄

(2

− 2x1−y
y
(n̄ · p) + x(1− x)p2

)3 .

(3.24)

The next step is to make the shift in the loop momentum kµ → kµ − xpµ − 1−y
y
n̄µ keeping
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in mind that n̄2 = 0.

A(1)
V =

8ig2sµ
2εCF

−p2
/p/̄n/p

. 1

0

dx

. 1

0

dy

.
ddk

(2π)d
(1− x)y−2

&
k2 − 2x1−y

y
(n̄ · p) + x(1− x)p2

)3

=
4gsµ

2εCF

−p2(4π)d/2
/p/̄n/p

Γ(1 + ε)

ε

. 1

0

dx

. 1

0

dy (1− x)y−2

&
2x

1− y

y
(n̄ · p)− x(1− x)p2

)−1−ε

=
4gsµ

2εCFΓ(ε)

−p2(4π)d/2
/p/̄n/p

. 1

0

dx

. ∞

0

dz (1− x)

&
2xz(n̄ · p)− x(1− x)p2

)−1−ε

=
gsµ

2εCFΓ(ε)

−p2(n̄ · p)(4π)d/2/p
/̄n/p

. 1

0

dx (1− x)x−1

&
− x(1− x)p2

)−ε

=
αsCF/p/̄n/p

−4πp2(n̄ · p)

'
4πµ2

−p2

(ε

Γ(ε)

. 1

0

dx (1− x)1−εx−1−ε (3.25)

Lastly, we take into account the equation /p/̄n/p = /p
6
2(n̄ · p) − /p/̄n

7
= 2(n̄ · p)/p − p2 /̄n. The

term proportional to /̄n can be dropped because it will vanish when we place AV between
the projection operators. Thus, we find that, in MS

J (1)
V (p2, µ) =

αsCF

−πp2

'
eγEµ2

−p2

(ε
Γ(ε)Γ(−ε)Γ(2− ε)

Γ(2− 2ε)
. (3.26)

If we expand in ε

J (1)
V (p2, µ) =

αsCF

−πp2

&
− 1

ε2
− 1

ε

'
1− log

−p2

µ2

(
−

'
2− π2

24
− log

−p2

µ2
=

1

2
log2

−p2

µ2

()
,

(3.27)

where we see the emergence of double poles that are connected to soft and collinear diver-
gences, as expected.

3.2 Calculation with the SCET Lagrangian

In this section, we perform the calculation of the jet function defined in (3.28)

/n

2
(n̄ · p)J (p2, µ) =

.
ddx e−ipx 〈W †(0)ξ(0)ξ̄(x)W (x)〉 (3.28)

with the SCET Lagrangian. Below, in Figure 3.6 we present the corresponding Feynman
rules [1], which are evidently more complicated than the ones for regular QCD.

The leading order contribution to our calculations is simply given by the collinear quark
propagator over i

/n

2
(n̄ · p)J (0)(p2, µ) =

(n̄ · p)
p2

/n

2
, (3.33)
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y x
p

〈0|ξ(x)ξ̄(y)|0〉 =
.

d4p

(2π)4
eip(x−y) i(n̄ · p)

p2
/n

2
(3.29)

(a) Collinear fermionic propagator

x y
k

〈0|Aa
µ(x)A

b
ν(y)|0〉 =

.
d4p

(2π4)
eip(x−y)−igµνδ

ab

p2
(3.30)

(b) Collinear gluon propagator

p k

V µ,a
1 (p, k) = igsT

a

&
nµ +

γµ
⊥/p⊥
n̄ · p +

/k⊥γ
µ
⊥

n̄ · k −
/k⊥/p⊥

(n̄ · k)(n̄ · p) n̄
µ

)
/̄n

2
(3.31)

(c) Collinear fermion – collinear gluon single vertex

p k

q

V µ,ν,a,b
2 (p, k, q) =

ig2sT
aT b

n̄ · (p− k)

&
γµ
⊥γ

ν
⊥ −

γµ
⊥/p⊥
n̄ · p n̄ν −

/k⊥γ
ν
⊥

n̄k
n̄µ +

/k⊥/p⊥
(n̄ · p)(n̄ · k) n̄

µn̄ν

)
/̄n

2

+
ig2sT

bT a

n̄ · (p+ k)

&
γν
⊥γ

µ
⊥ −

γν
⊥/p⊥
n̄ · p n̄ν −

/k⊥γ
µ
⊥

n̄ · k n̄ν +
/k⊥/p⊥

(n̄ · p)(n̄ · k) n̄
µn̄ν

)
/̄n

2
(3.32)

(d) Collinear fermion – collinear gluon double vertex

Figure 3.6: Feynman rules for the SCET Lagrangian
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and therefore

J (0)(p2, µ) =
1

p2
. (3.34)

For the next to leading order corrections, first, we calculate the fermionic self energy
correction diagrams, given in Figure 3.7. For the one on the left, we find that its expression
is

⊗ ⊗
p p+ k p

k

⊗ ⊗
p p

k

Figure 3.7: Self energy corrections to the jet function

iΣc(p) =

.
ddk

(2π)d
−g2sCF

6
n̄ · (p+ k)

7

8k2(p+ k)2

&
nµ +

γµ
⊥/p⊥
n̄ · p +

(/p⊥ + /k⊥)γ
µ
⊥

n̄ · (p+ k)
−

(/p⊥ + /k⊥)/p⊥
[n̄ · (p+ k)](n̄ · p) n̄

µ

)
/̄n/n

×
&
nµ +

γ⊥
µ (/p⊥ + /k⊥)

n̄(p+ k)
+

/p⊥γ
⊥
µ

n̄ · p − /p⊥(/p⊥ + /k⊥)

(n̄ · p)[n̄ · (p+ k)]
n̄µ

)
/̄n.

(3.35)

A useful property of /n and /̄n is that they anti-commute with any /v⊥, i.e. {/n, /v⊥} =
{/̄n, /v⊥} = 0. With this remark, we can drag all /n and /̄n to the left, keeping in mind that
/̄n/n/̄n = 4/̄n, ending up with

iΣc(p) = −g2sCF

/̄n

2

.
ddk

(2π)d

&
nµ +

γµ
⊥/p⊥
n̄ · p +

(/p⊥ + /k⊥)γ
µ
⊥

n̄ · (p+ k)
−

(/p⊥ + /k⊥)/p⊥
[n̄ · (p+ k)](n̄ · p) n̄

µ

)

×
&
nµ +

γ⊥
µ (/p⊥ + /k⊥)

n̄(p+ k)
+

/p⊥γ
⊥
µ

n̄ · p − /p⊥(/p⊥ + /k⊥)

(n̄ · p)[n̄ · (p+ k)]
n̄µ

)
.

(3.36)

Now, we distribute the terms in the square brackets keeping in mind that n2 = n̄2 =
nµγ

µ
⊥ = n̄γµ

⊥ = 0. Σc(p) then becomes

iΣc(p) =− g2sCF

/̄n

2

.
ddk

(2π)d
n̄ · (p+ k)

(p+ k)2

0
− (n̄ · n) /p⊥(/p⊥ + /k⊥)

(n̄ · p)[n̄ · (p+ k)]
+

γµ
⊥/p⊥γ

⊥
µ (/p⊥ + /k⊥)

(n̄ · p)[n̄ · (p+ k)]
+

p2⊥γ
µ
⊥γ

⊥
µ

(n̄ · p)2

+
(/p⊥ + /k⊥)γ

µ
⊥γ

⊥
µ (/p⊥ + /k⊥)

[n̄ · (p+ k)]2
+

(/p⊥ + /k⊥)γ
µ
⊥/p⊥γ

⊥
µ

[n̄ · (p+ k)](n̄ · p) − (n̄ · n)
(/p⊥ + /k⊥)/p⊥

(n̄ · p)[n̄ · (p+ k)]

/
.

(3.37)
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The first and last term can be combined to give

−(n̄ · n) /p⊥(/p⊥ + /k⊥)

(n̄ · p)[n̄ · (p+ k)]
− (n̄ · n)

(/p⊥ + /k⊥)/p⊥
(n̄ · p)[n̄ · (p+ k)]

=− (n̄ · n)
{/p⊥, /p⊥ + /k⊥}

(n̄ · p)[n̄ · (p+ k)]

=
−4(p2⊥ + p⊥ · k⊥)
(n̄ · p)[n̄ · (p+ k)]

. (3.38)

To simplify the rest of the expression, first we have to calculate the contractions γµ
⊥γ

⊥
µ and

γµ
⊥/p⊥γ

⊥
µ . We start with γµ

⊥γ
⊥
µ .

γµ
⊥γ

⊥
µ =

'
γµ − nµ

2
/̄n− n̄µ

2
/n

(
γ⊥
µ = γµγ⊥

µ = γµγµ −
1

2
{/̄n, /n} = d− 2. (3.39)

As for γµ
⊥/p⊥γ

⊥
µ , first we calculate the commutator {/p⊥, γ

µ
⊥}

{/p⊥, γ
µ
⊥} =

0
/p⊥, γ

µ − nµ

2
/̄n− n̄µ

2
/n

/
= {/p⊥, γ

µ} = 2pµ⊥. (3.40)

With this result, it is easy to calculate

γµ
⊥/p⊥γ

⊥
µ = γµ

⊥{/p⊥, γ
⊥
µ }− γµ

⊥γ
⊥
µ /p⊥ = −(d− 4)/p⊥. (3.41)

The first to fifth term in (3.37) then become

− (d− 4)
/p⊥(/p⊥ + /k⊥)

(n̄ · p)[n̄ · (p+ k)]
+ (d− 2)

p2⊥
(n̄ · p)2 + (d− 2)

(p⊥ + k⊥)
2

[n̄ · (p+ k)]2
− (d− 4)

(/p⊥ + /k⊥)/p⊥
(n̄ · p)[n̄ · (p+ k)]

= −(d− 4)
{/p⊥, /p⊥ + /k⊥}

(n̄ · p)[n̄ · (p+ k)]
+ (d− 2)

&
p2⊥

(n̄ · p)2 +
(p⊥ + k⊥)

2

[n̄ · (p+ k)]2

)
. (3.42)

Putting (3.38) and (3.42) in (3.37) we get that

iΣc(p) = g2sµ
2εCF

/̄n

2

.
ddk

(2π)d

0
2(d− 2)

p2⊥ + p⊥ · k⊥
(n̄ · p)(p+ k)2k2

− (d− 2)

&
(p⊥ + k⊥)

2

[n̄ · (p+ k)]2
+

p2⊥
(n̄ · p)2

)
n̄ · (p+ k)

(p+ k)2k2

/

The result can be found readily in [1], in MS,

Σc(p) =
αsCF

4π

p2

(n̄ · p)
/̄n

2

'
eγEµ2

−p2

(ε

(1− ε)
Γ(1− ε)2Γ(ε)

Γ(2− 2ε)
. (3.43)

The next step is to put the self-energy between two collinear propagators

IP (p
2) =

i(n̄ · p)
p2

/n

2
Σc(p)

i(n̄ · p)
p2

/n

2
= −−αsCF

4πp2

'
eγEµ2

−p2

(ε

(1− ε)
Γ(1− ε)2Γ(ε)

Γ(2− 2ε)
. (3.44)
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⊗ ⊗
p+ k p

k

(a) Diagram for V1

⊗ ⊗
p p+ k

k

(b) Diagram for V2

Therefore, we find that

J (1)
P (p2, µ) =

−αsCF

4πp2

'
eγEµ2

−p2

(ε

(1− ε)
Γ(1− ε)2Γ(ε)

Γ(2− 2ε)
. (3.45)

Next, we calculate the vertex diagrams

iIV1 = g2sµ
2εCF

.
ddk

(2π)d
[n̄ · (p+ k)]n̄µ

k2(n̄ · k)(p+ k)2
/n

2

&
nµ +

γµ
⊥(/p⊥ + /k⊥)

n̄ · (p+ k)
+

/p⊥γ
µ
⊥

n̄ · p

− /p⊥(/p⊥ + /k⊥)

[n̄ · (p+ k)](n̄ · p) n̄
µ

)
/̄n

2

i(n̄ · p)
p2

/n

2

iIV1 =
ig2sµ

2εCF (n̄ · p)
p2

.
ddk

(2π)d
[n̄ · (p+ k)]

k2(n̄ · k)(p+ k)2
/n/̄n/n

8

=
ig2sµ

2εCF (n̄ · p)
p2

/n

2

.
ddk

(2π)d
[n̄ · (p+ k)]

k2(n̄ · k)(p+ k)2* +, -
Ik

(3.46)

First, we are solving the integral over the loop momentum k. Using the parametrisation
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(A.3)

Ik =

. 1

0

dx

. 1

0

dy

.
ddk

(2π)d
4y[n̄ · (p+ k)]

&
yk2 + 2xy(p · k) + 2(1− y)(n̄ · k) + xyp2

)3

=

. 1

0

dx

. 1

0

dy

.
ddk

(2π)d
4y−2[n̄ · (p+ k)]

&'
k + xp+ 1−y

y
n̄

(2

−
'
xp+ 1−y

y
n̄

(2

+ xp2
)3

=

. 1

0

dx

. 1

0

dy

.
ddk

(2π)d

4y−2

&
(1− x)(n̄ · p) + (n̄ · k)

)

&
k2 − 2x1−y

y
(n̄ · p) + x(1− x)p2

)3

=
−2iΓ(1 + ε)(n̄ · p)

(4π)d/2

. 1

0

dx

. 1

0

dy y−2(1− x)

&
2x

1− y

y
(n̄ · p)− x(1− x)p2

)−1−ε

=
−2iΓ(1 + ε)(n̄ · p)

(4π)d/2

. 1

0

dx

. ∞

0

dz (1− x)x−1

&
2xz(n̄ · p)− x(1− x)p2

)−1−ε

=
−i(−p2)−ε

(4π)d
Γ(ε)

. 1

0

dx (1− x)1−εx−1−ε

=
−i

(4π)2

'
4π

−p2

(ε

Γ(ε)
Γ(2− ε)Γ(−ε)

Γ(2− 2ε)
(3.47)

We can put this result back in (3.46) and get back

IV1 = −αsCF

2π

(n̄ · p)
p2

/n

2

'
eγEµ2

−p2

(ε
Γ(ε)Γ(−ε)Γ(2− ε)

Γ(2− 2ε)
(3.48)

We find the same contribution for the vertex V2 and thus, the contribution for both ”vertex”
corrections to J is

JV (p
2, µ) = −αsCF

πp2

'
eγEµ2

−p2

(ε
Γ(ε)Γ(−ε)Γ(2− ε)

Γ(2− 2ε)
(3.49)

Finally, we have the diagram in 3.9, which vanishes.

We see that the contributions for J (p2, µ) to leading order are the same when they are
calculated with the SCET Feynman rules and the regular QCD Feynman rules. From (3.5)
we can find the jet function J(p2, µ). More explicitly,

J(p2) = δ(p2)− αsCF

4πp2

'
eγEµ2

−p2

(ε&
4
Γ(ε)Γ(−ε)Γ(2− ε)

Γ(2− 2ε)
+ (1− ε)

Γ(1− ε)2Γ(ε)

Γ(2− 2ε)

)
+ (α2

s)

(3.50)
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⊗ ⊗
p

k

Figure 3.9: Diagram for interaction between Wilson lines.
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Chapter 4

Conclusions & Outlook

In this thesis, we have observed that the leading power jet functions, derived through fac-
torisation theorems within SCET, can be computed using either the SCET Lagrangian or
the regular QCD Lagrangian. The rationale behind this lies in the decoupling transforma-
tion, which effectively separates the soft and collinear sectors. Following this transforma-
tion, the collinear fermions can be regarded as fermions within full QCD, but constrained
to move in specific directions.

Looking ahead to future work, there is an opportunity to place greater emphasis on
the definition and computation of sub-leading jet functions. While these jet functions have
received less attention compared to their leading power counterparts, they play a crucial
role in achieving high precision in collider physics experiments.
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Appendix A

Useful Formulas

A.1 Parametrisations

To evaluate loop integrals in quantum field theory, it is often helpful to introduce Feyn-
man or Schwinger parameters [8]. The Feynman parameters are based on easily verifiable
mathematical identities. The simplest is

1

AB
=

. 1

0

dx
1

[A+ (B − A)x]2
=

. 1

0

dx

. 1

0

dy δ(1− x− y)
1

[xA+ yB]2
(A.1)

A parametrisation that is really useful when we have terms linear in momenta in the
denominator is derived below.

1

ABC
=

. 1

0

dx

. 1

0

dy δ(1− x− y)
1

(xA+ yB)2
1

C

=

. 1

0

dx

. 1

0

dy δ(1− x− y)
1

α2C

= − ∂

∂α

. 1

0

dx

. 1

0

dy δ(1− x− y)
1

αC

= − ∂

∂α

. 1

0

dx

. 1

0

dy

. 1

0

dz
δ(1− x− y)

[zα + (1− z)C]2

=

. 1

0

dx

. 1

0

dy

. 1

0

dz δ(1− x− y)
2z

[zα + (1− z)C]2
, (A.2)

where α = xA+yB. We now perform the integration over y and change the variable name
z → y to get the final form of the parametrisation

1

ABC
=

. 1

0

dx

. 1

0

dy
2y

&
y

'
x(A− B) +B

(
+ (1− y)C

)3 . (A.3)
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A.2 Loop integration

Two really useful formulas that are used throughout this thesis repeatedly are the results
of the following loop momentum integrals [11]

.
ddl

(2π)d
1

(l2 −∆)n
=

(−1)ni

(4π)d/2
Γ
!
n− d

2

"

Γ(n)
∆d/2−n (A.4)

.
ddl

(2π)d
lµlν

(l2 −∆)n
=

(−1)n−1i

(4π)d/2
gµν

2

Γ(n− d/2− 1)

Γ(n)
∆1+d/2−n (A.5)
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Appendix B

Gamma Matrices Properties

B.1 Properties of Gamma Matrices

1. γµγµ = 414

2. γνγµγν = −2γµ

3. γνγµγργν = 4ηµρ14

4. γνγργµγσγν = −2γσγµγρ

Proposition B.1.1. The Gamma matrices satisfy the following anti-commutation
relations:

1. {γµγν , γρ} = 2(ηνργµ + ηµργν)

2. {γµγν , γργσ} = 2(ηνργµγσ + ηµργνγσ + ηµσγργν + ηνσγργµ)

3. γµγνγρ = −γργνγµ + 2(ηµνγρ − ηµργν + ηνργµ)

Proof

1. We start from the the anti-commutation relation {γµ, γν} = 2ηµν1 and we find that

{γµγν , γρ} = γµ{γν , γρ}+ {γµ, γρ}γν = 2(ηνργµ + ηµργν) (B.1)

2. Using the previous two relations above, we can easily calculate that

{γµγν , γργσ} = {γµγν , γρ}γσ + γρ{γµγν , γσ}
= 2(ηνργµγσ + ηµργνγσ + ηµσγργν + ηνσγργµ) (B.2)

3. To prove this result, we use the commutation relations of gamma matrices repeatedly.

!
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B.2 Fermionic Projection Operators

In the followin, n ≡ ni− and n̄ ≡ ni+.

Proposition B.2.1. The operators P+ := /n/̄n/4 and P− := /̄n/n/4 are projection oper-
ators.

Proof
For a set of two operators to be projection operators, they have to satisfy the conditions

P 2
± = P±, P++P− = 1 and P+ ·P− = 0. A necessary result for the proof of these conditions

is the anti-commutator {γµγν , γργσ}. The calculation goes as follows, keeping in mind that
.

Then,
Using this result then for P+

16P 2
+ = /n/̄n/n/̄n = nµn̄νnρn̄σγ

µγνγργσ

= −nµn̄νnρn̄σγ
ργσγµγν + 2nµn̄νnρn̄σ(η

νργµγσ + ηµργνγσ + ηµσγργν + ηνσγργµ)

32P 2
+ = 2

'
(n̄ · n)nµn̄σγ

νγσ + (n2)n̄νn̄σγ
νγσ + (n · n̄)nρn̄νγ

ργν + (n̄)2nµnργ
ργµ

(

16P 2
+ = 4nµn̄σγ

νγσ = 16P+ (B.3)

Therefore, indeed P 2
+ = P+. Similarly one can show easily that P 2

− = P−. Next, we show
that

4(P+ + P−) = /n/̄n+ /̄n/n = nµn̄ν(γ
µγν + γνγµ)

= nµn̄ν{γµ, γν} = 2nµn̄νη
µν1

= 2(n · n̄)1 = 41 (B.4)

Therefore, P+ + P− = 1.
!

Proposition B.2.2. The operators defined in Proposition B.2.1 satisfy the following
properties:

1. /nP+ = /̄nP− = 0

2. P+/n = /nP− = /n and P− /̄n = /̄nP+ = /̄n

3. P+ψ = ψ̄P− and P−ψ = ψ̄P+

Proof
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1. For the first property, we prove it for P+ and the proof for P− is similar. It is
straightforwad to show that

/nP+ =
1

4
/n/n/̄n =

1

4
nµnνn̄ργ

µγνγρ =
1

4
nµnνn̄ρ

'
2ηµνγρ − γνγµ

(
⇒ 2/nP+ =

1

2
n2 /̄n

(B.5)

Because n2 = 0, we get that /nP+ vanishes as well.

2. For the second property, we are going to use first property. Namely,

/̄n = /̄n(P+ + P−) = /̄nP+ + /̄nP− = /̄nP+ (B.6)

Similarly for P−. Also, it is straightforward to show

P+/n = /n
/̄n/n

4
=

/̄n/n

4
/n = P−/n = /n (B.7)

The same for P− /̄n.

3. To prove this property, we need another result for the

γµγνψ = (γµγνψ)†γ0 = ψ†(γν)†(γµ)†γ0 (B.8)

Since (γ0)2 = 1 we can enter it between terms without changing the result, and we
get

γµγνψ =
!
ψ†γ0

"!
γ0(γν)†γ0

"!
γ0(γµ)†γ0

"
(B.9)

Using the result γ0(γµ)†γ0 = γµ, this equation becomes

γµγνψ = ψ̄γνγµ (B.10)

Now, since nµ, n̄ν ∈ R, it is straightforward to show that

P+ψ =

'
/n/̄n

4
ψ

(
=

nµn̄ν

4
γµγνψ =

nµn̄ν

4
ψ̄γνγµ = ψ̄

'
/̄n/n

4

(
= ψ̄P− (B.11)

The proof for the second part is exactly the same.

!

Proposition B.2.3. For the components of the collinear fermion field we have the
following properties:

1. /nξ = ξ̄/n = 0

2. /̄nη = η̄ /̄n = 0

3. ξ̄ /D⊥ξ = η̄ /D⊥η = 0
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Proposition B.2.4. For any vector v ∈ R4

/n/v/n = 2(n · v)/n and /̄n/v/̄n = 2(n̄ · v)/̄n (B.12)

Proof By B.1.1(3) we have that

/n/v/n = nµvνnργ
µγνγρ = nµvνnρ

6
− γργνγµ + 2(ηµνγρ − ηµργν + ηνργµ)

7

= −/n/v/n+ 2
6
(n · v)/n− (n2)/v + (n · v)/n

7
⇒ 2/n/v/n = 4(n · v)/n (B.13)

Which gives the desired result. We work similarly for the second one. !

Proposition B.2.5. For any vector v ∈ R4

P+/vP− =
(v · n̄)

2
/n and P−/vP+ =

(v · n)
2

/̄n (B.14)

Proof Using Proposition B.2.4 it is straightforward to calculate

P+/vP− =
1

16
/n/̄n/v/̄n/n =

(v · n̄)
8

/n/̄n/n =
(v · n̄)(n · n̄)

4
/n =

(v · n̄)
2

/n (B.15)

!

Proposition B.2.6. For any v, u ∈ Rd

{/v⊥, /u⊥} = 2(v · u)− (v · n)(u · n̄)− (v · n̄)(u · n) (B.16)

Proposition B.2.7. For any v ∈ Rd

γµ
⊥ /̄n/nγ

⊥
µ = (d− 2)/̄n/n (B.17)

Proof
We start from writing

γµ
⊥ /̄n/nγ

µ
⊥ =

'
γµ − nµ

2
/̄n− n̄µ

2
/n

(
/̄n/nγ⊥

µ (B.18)

Since, n̄µγ⊥
µ = nµγ⊥

µ = 0, from the first parenthesis we keep only γµ

γµ
⊥/v/̄n/nγ

⊥
µ = γµ /̄n/n

'
γµ −

nµ

2
/̄n− n̄µ

2
/n

(

(B.19)
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We can observe that we can ignore the term that is proportional to /n inside the parenthesis,
since its contribution vanishes immediately. Therefore,

γµ
⊥/v/̄n/nγ

⊥
µ = γµ /̄n/n

'
γµ −

nµ

2
/̄n

(

= γµ /̄n/nγµ −
1

2
/n/̄n/n/̄n

= (d− 4)/̄n/n+ 8− 2/n/̄n (B.20)

Remembering also that /n/̄n+ /̄n/n = 4, we arrive to the desired result.
!

Proposition B.2.8. For any v ∈ Rd

1.

γµ
⊥/v/̄n/nγ

⊥
µ = (d− 4)/v/̄n/n− 4(n̄ · v)/n (B.21)

2. if v has only components in the perpendicular direction, i.e. v = v⊥, then

γµ
⊥/v⊥ /̄n/nγ

⊥
µ = (d− 4)/v⊥ /̄n/n (B.22)

Proof

1. Similarly to the proof of the previous result, we start from the equation

γµ
⊥/v/̄n/nγ

⊥
µ = γµ/v/̄n/n

'
γµ −

nµ

2
/̄n

(

= γµ/v/̄n/nγµ −
1

2
/n/v/̄n/n/̄n

= (d− 4)/v/̄n/n− 2/n/̄n/v − 2/n/v/̄n

= (d− 4)/v/̄n/n− 2/n{/̄n, /v}
= (d− 4)/v/̄n/n− 4(n̄ · v)/n (B.23)

2. For the second part the result is immediate from the first part, noticing that (n̄·v⊥) =
0. What remains to be shown is that

γµ
⊥/v⊥ /̄n/nγ

⊥
µ = −γµ

⊥ /̄n/n/v⊥γ
⊥
µ . (B.24)

To that end, we calculate first that

{/v⊥, /̄n/n} = {/v⊥, /̄n}/n+ /̄n{/v⊥, /n} = 2(n̄ · v⊥)/n+ 2(n · v⊥)/̄n = 0, (B.25)

which means that /v⊥ /̄n/n = −/̄n/n/v⊥.

!
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Proposition B.2.9. For any v ∈ Rd

1.

γµ
⊥/v/̄n/n/vγ

⊥
µ = −2(d− 4)(n · v)/̄n/v + 2(d− 4)(n̄ · v)/n/v + v2(d− 2)/̄n/n

+ 2(n̄ · v)(n · v)(/n/̄n− /̄n/n) (B.26)

If v has components only in the perpendicular direction, i.e. v = v⊥, then

γµ
⊥/v⊥ /̄n/n/v⊥γ

⊥
µ = (d− 2)v2⊥ /̄n/n (B.27)

Proof
Our starting point is the equation

γµ
⊥/v/̄n/n/vγ

⊥
µ = γµ/v/̄n/n/v

'
γµ −

nµ

2
/̄n− n̄µ

2
/n

(

= γµ/v/̄n/n/vγµ −
1

2
/n/v/̄n/n/v/̄n− 1

2
/̄n/v/̄n/n/v/n

= −2(d− 4)(n · v)/̄n/v + 2(d− 4)(n̄ · v)/n/v + v2
&
(d− 2)/̄n/n+ 2/n/̄n

)

− 1

2
/n/v/̄n/n/v/̄n− 2(n̄ · v)(n · v)/̄n/n (B.28)

Finally, with repeated commutations we find that

−1

2
/n/v/̄n/n/v/̄n = −2

&
v2 − (n · v)(n̄ · v)

)
/n/̄n (B.29)

Then, the final result becomes

γµ
⊥/v/̄n/n/vγ

⊥
µ = −2(d− 4)(n · v)/̄n/v + 2(d− 4)(n̄ · v)/n/v + v2(d− 2)/̄n/n

+ 2(n̄ · v)(n · v)(/n/̄n− /̄n/n) (B.30)

!
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