
MASTER’S THESIS

Semi-supervised learning for
Technology Assisted Review

Author:
E. (Ercan) Öz
7974523

Project Supervisor:
Dr. A.J. (Ad) Feelders

Second Examiner:
Dr. ing. G.M. (Georg) Krempl

Daily Supervisor:
M.P. (Michiel) Bron MSc

A thesis presented for the Artificial Intelligence master

Graduate School of Natural Sciences (GSNS)
Utrecht University

June 11, 2023

mailto:e.oz@students.uu.nl
mailto:e.oz@students.uu.nl
https://www.uu.nl/staff/AJFeelders
https://www.uu.nl/staff/GMKrempl
https://www.uu.nl/staff/MPBron
https://www.uu.nl/en/organisation/graduate-school-of-natural-sciences
https://www.uu.nl/en

i

Contents

1 Introduction and research question 2
1.1 Introduction . 2
1.2 Research question . 3

2 Technology Assisted Review 4
2.1 Continuous active learning (CAL) . 4
2.2 AutoTAR . 5
2.3 One-phase workflows and two-phase workflows 5

3 Related work 6
3.1 Autostop . 6
3.2 ASReview . 9
3.3 FAST2 . 10
3.4 Comparative analysis of semi-supervised learning for relevant article

selection . 11

4 Semi-Supervised Learning strategies 14
4.1 Wrapper methods . 14
4.2 Graph-based models . 17
4.3 Mixture models and Expectation Maximization 19
4.4 Semi-supervised support vector machines (S3VM) 26

5 Experimental evaluation setup 30
5.1 Datasets . 30
5.2 Document representation . 31
5.3 Evaluation metrics . 31
5.4 Model algorithms . 33
5.5 Hyper-parameter tuning . 37
5.6 Experiments . 41
5.7 Ethics and Privacy . 42

6 Results 43
6.1 Experiment 1: Semi-supervised Multinomial Naive Bayes and

Multinomial Naive Bayes models . 44
6.2 Experiment 2: Semi-supervised Multinomial Naive Bayes with sub-

topics and Multinomial Naive Bayes models 45

ii

6.3 Experiment 3: SVM with self-training and SVM models 47
6.4 Experiment 4: Label spreading and AutoTAR models 47
6.5 Experiment 5: CombiTAR and AutoTAR models 50

7 Discussion 55
7.1 Research questions . 55
7.2 Findings and interpretation . 56
7.3 Limitations . 58
7.4 Future research . 60
7.5 Conclusion . 61

References 62

A Hyper-parameter values 65

B Graphs of all the TAR trials 67
B.1 Experiment 1: Semi-supervised Multinomial Naive Bayes and

Multinomial Naive Bayes models . 67
B.2 Experiment 2: Semi-supervised Multinomial Naive Bayes with sub-

topics and Multinomial Naive Bayes models 71
B.3 Experiment 3: SVM with self-training and SVM models 76
B.4 Experiment 4: Label spreading and AutoTAR models 79
B.5 Experiment 5: CombiTAR and AutoTAR models 83

C Ethics and Privacy Quick Scan 91

1

Abstract

Finding all documents relevant to a specific information need in a potentially large
collection of documents is essential for many researchers. This is essential not
only for researchers who need to sift through thousands of studies to determine
which studies are relevant for their meta-analysis but also for clinicians, policy-
makers, journalists, and even the general public. Technology Assisted Review (TAR)
incorporates machine learning algorithms and human feedback to find all relevant
documents to achieve complete recall at a minimal cost. This study investigates
methods to enhance the performance of TAR.

The availability of labeled data is often limited due to the high costs associated
with labeling the data in terms of time and resources. A lack of labeled data can limit
a model’s capacity for generalization. Semi-supervised learning (SSL) techniques,
which use unlabeled data to improve model performance, were examined to address
this limitation. This thesis studies various SSL techniques for binary classification
and evaluates their contributions to the TAR process.

We compared the performance of five semi-supervised learning classifiers within
TAR against their supervised equivalents. The findings highlight that the semi-
supervised Multinomial Naive Bayes classifier, with many-to-one correspondence
via sub-topics, was able to improve the performance over its supervised counterpart
multiple times, particularly in the two datasets with the lowest percentage of
relevant documents. Significant improvements were also demonstrated for some
datasets by combining AutoTAR and semi-supervised Multinomial Naive Bayes
with sub-topics, compared to the supervised AutoTAR model. In contrast,
label spreading and Support Vector Machines with self-training less frequently
outperformed their supervised counterparts.

Although semi-supervised models did not consistently outperform their
supervised counterparts, this research demonstrates the potential for improved
performance using semi-supervised models. This was most notably observed
with the semi-supervised Multinomial Naive Bayes model with many-to-one
correspondence.

Keywords: Technology Assisted Review · Semi-supervised learning · Multinomial
Naive Bayes · Label spreading · Support Vector Machine · Work Saved over
Sampling · Self-training · Active learning

2

Chapter 1

Introduction and research question

1.1 Introduction

Consider the task of finding all documents relevant to an information need in a
(potentially large) collection of documents. An example of such a task is scholars
who have to screen thousands of studies by hand to determine which studies
are relevant for their review or meta-analysis. To determine whether any given
document is relevant is non-trivial. Therefore, screening a collection of documents
by hand is error-prone and inefficient, as only a tiny part of the documents are
relevant. This makes the data highly imbalanced. However, this is not only a
problem for scholars. It is also a problem for clinicians, policy-makers, journalists,
and even the general public and occurs in various domains, like electronic discovery,
systematic review, investigation, research, and information retrieval evaluation
(Schoot et al., 2021; Li and Kanoulas, 2020).

As screening a collection of documents by hand is error-prone and inefficient,
Technology Assisted Review (TAR) is used. TAR aims to speed up the process of
determining whether a document is relevant or not. The goal of TAR is to find
all the relevant information given a specific information need. Missing a single
relevant document could have a significant impact on, for example, a lawsuit or
investigation. Therefore, achieving 100% recall is desired, preferably with low
costs. The documents that TAR reviews can consist of various types of texts,
like medical articles, legal documents, etc. Speeding up the process is done by
incorporating machine learning algorithms and human feedback on the relevance
of the documents. Currently, continuous active learning (CAL) algorithms show
superior performance in efficiently finding the relevant documents in a set of
documents (Li and Kanoulas, 2020).

Training data is needed to train the machine learning algorithms used in TAR.
Due to rapid development in various technologies, it has become easier to collect
large datasets. Typically there are more unlabeled data available than labeled data.
This is because labeling data can be expensive in both time and resources. When
labeled data are sparse, the model would not be strong in generalization as the
amount of labeled data is often crucial for the system to generalize well. That is

Chapter 1. Introduction and research question 3

why utilizing the unlabeled data is an important step (Søgaard, 2013; Ding, Zhu,
and Zhang, 2017).

Semi-supervised learning (SSL) does precisely this. SSL uses unlabeled data to
create better models by exploiting the marginal distribution of unlabeled data. This
way, the machine learning algorithms can utilize unlabeled data without manually
labeling it. Because SSL has only been researched extensively in recent years, most
classification algorithms still use supervised learning exclusively (Søgaard, 2013;
Ding, Zhu, and Zhang, 2017).

This thesis aims to study different techniques for SSL for binary classification and
evaluate the added value of these techniques in the TAR process.

The following section (Section 2) discusses TAR, the different measurements
used in TAR, and the default settings. Section 3 discusses related works in which
TAR and SSL are used for text classification. The different SSL methods will be
discussed in Section 4. Then the experimental evaluation setup of this research will
be described in Section 5. In Section 6, the results of the experiments will be shown.
Finally, in Section 7, the findings and interpretation of the results are discussed.

1.2 Research question

The research question of this thesis is:

RQ. Can semi-supervised learning be used within Technology Assisted Review to
improve the work saved over sampling score?

Based on the literature review (Sections 3 and 4), the SSL methods have been
narrowed down to label spreading, semi-supervised Multinomial Naive Bayes (with
sub-topics), and Support Vector Machine (SVM) with self-training. Label spreading
is chosen based on the study of Liu, Timsina, and El-Gayar (2018). They showed
that label spreading worked best in their experiments to classify medical articles
as relevant or not (Section 3.4.4). The study of Nigam, McCallum, and Mitchell
(2006) found high-probability models, which are then correlated with high-accuracy
classifiers using Expectation Maximization. This semi-supervised Multinomial
Naive Bayes with many-to-one correspondence method is chosen as their study
focuses on text classification and shows much promise (Section 4.3.4). Finally, SVM
with self-training is chosen as SVM is the state-of-the-art active learning approach
at the moment (Ding, Zhu, and Zhang, 2017; Yu and Menzies, 2019). This way,
one graph-based SSL method, one generative model, and one SVM method are
compared to investigate the research question.

4

Chapter 2

Technology Assisted Review

Technology Assisted Review (TAR) aims to find all relevant documents, including
a few non-relevant documents. This maximizes recall, while the reviewer’s effort
to find all relevant documents is minimized (Cormack and Grossman, 2015). The
type of documents used in the TAR process can be, for example, correspondence,
memos, emails, electronic business records, medical articles, legal documents, and
even balance sheets (Li and Kanoulas, 2020).

2.1 Continuous active learning (CAL)

The best results of TAR are achieved through continuous active learning (CAL).
First, the prediction of document relevance is made using classification or ranking
algorithms. Through CAL, the documents that are most likely relevant are presented
to a reviewer in batches. In turn, the reviewer assigns a label to these documents
as either relevant or non-relevant. Through this process, the reviewer labels the
unlabeled documents, which are then fed back to the learning method to (re-)train
the ranking algorithm (Cormack and Grossman, 2015; Liu, Timsina, and El-Gayar,
2018; Li and Kanoulas, 2020).

The CAL process adds more labeled documents to the training data each
iteration, improving the ranking algorithm. TAR tries to identify relevant documents
based on feedback from the reviewer until all or a substantial number of relevant
documents have been found. This makes it a total recall problem. In order to achieve
a high recall, a depth-first search is used instead of a breadth-first search (Cormack
and Grossman, 2015; Liu, Timsina, and El-Gayar, 2018; Li and Kanoulas, 2020).

The state-of-the-art active learning approaches use support vector machines
(SVM). The SVM is updated after each time a human has labeled a data point to be
relevant or non-relevant. The SVM then returns a new (batch of) the most relevant
papers or papers that can improve the classifier most to the reviewer for labeling (Yu
and Menzies, 2019).

A downside of the CAL approach is that there is much emphasis on the
documents classified as most likely relevant. This greedy method could introduce
a bias into the system to prefer documents similar to those found at the start of the

Chapter 2. Technology Assisted Review 5

TAR process. This could prevent finding classes of relevant documents dissimilar to
those classified as relevant at the beginning (Cormack and Grossman, 2015).

2.2 AutoTAR

AutoTAR is currently considered the state-of-the-art method for total recall tasks
like TAR. AutoTAR improves recall by repeatedly selecting documents for users to
review. The documents are ranked, and the most relevant documents are selected
for review first (Li and Kanoulas, 2020).

2.3 One-phase workflows and two-phase workflows

There are two TAR workflows, the one-phase workflow and the two-phase
workflow. With one-phase TAR workflows, the review is a single iterative process.
This means that all reviewed documents are also used for training the model.
Continuous active learning uses the one-phase workflow, as the model uses the
relevance feedback of the reviewer on the top-ranked documents for training.
In two-phase workflows, assigning different reviewers to the different phases
is possible. In the legal domain, attorneys can choose to assign reviewing the
documents in phase one to senior attorneys, as the labels of these documents will
affect many other documents. In turn, the reviewing of documents in phase two
could be done by contracted attorneys, as they are not used for training the model
(Yang, Lewis, and Frieder, 2021).

6

Chapter 3

Related work

In this chapter, we discuss the related works in which Technology Assisted Review
and semi-supervised learning are used for text classification. First, the autostop
framework is discussed (Section 3.1), followed by ASReview (Section 3.2) and FAST2

(Section 3.3). Lastly, a comparative analysis of semi-supervised learning for relevant
article selection is discussed (Section 3.4).

3.1 Autostop

Autostop aims to find the stopping point of TAR. This is done by training a ranking
model to rank all the documents and by conducting a sampling method to estimate
the total number of relevant documents in the dataset. The total number of relevant
documents can be used to calculate the level of recall transparently (see Section 5.3
and Table 5.3 for more information about recall). If the goal is to achieve a certain
level of recall, e.g., 95%, then the estimated level of recall can be used to know when
to stop the TAR process. The Autostop framework consists of a ranking module,
a sampling module, an assessment module, an estimation module, and a stopping
module. The framework’s output is an estimator of the total number of relevant
documents and an estimator of the estimator’s variance (Li and Kanoulas, 2020).

The main difference between CAL and Autostop is that Autostop allows random
sampling from all documents instead of only sampling the most relevant documents.
This random sampling is done with-replacement sampling design to achieve an
unbiased estimation of the number of relevant documents with low variance (Li and
Kanoulas, 2020).

Autostop proposes two stopping strategies: the first is an optimistic stopping
strategy, which stops the TAR process when more relevant documents have been
collected than the estimated target number. The second strategy is the conservative
strategy. This strategy stops when a higher confidence than the target recall is
reached. The difference is that the estimated variance should also be reached
on top of the optimistic strategy before stopping. When it is essential that no
relevant documents are missed, and the costs are not the primary concern, then the
conservative strategy is recommended (Li and Kanoulas, 2020).

Chapter 3. Related work 7

Autostop uses TF-IDF, logistic regression, and a ranking model trained topic-
wise, which means that the ranking model needs to be trained from scratch for each
topic (Li and Kanoulas, 2020).

3.1.1 Knee, Target and Budget Methods

In practice, it can be problematic to measure recall. This is because it is challenging
to specify an absolute threshold that should be considered high (Cormack and
Grossman, 2015). Also, in practice, the total number of relevant documents in the
dataset is not known. Due to this, it is difficult to stop at a certain level of recall in
practice.

Three methods are used to find the moment to stop the TAR process. These three
methods are the Knee, Target, and Budget methods. These methods are inspired by
the gain curve. The gain curve has recall as a function of the number of documents
reviewed. This gain curve shows diminishing returns at a certain point. This means
that after finding a certain number of relevant documents with high precision, the
precision starts to drop, showing that the majority of relevant documents are likely
to be found (Li and Kanoulas, 2020).

The Knee method uses geometric algorithms to find a knee in the gain curve.
When this knee is found, the TAR process is stopped after a certain amount of
diminishing results has occurred compared to before the knee. The Target method
reviews a randomly sampled set of documents until a pre-specified number of
relevant documents are found. This number is set as the target beforehand. Then,
AutoTAR continues to review documents until all the relevant documents from the
target set are found. The budget method combines the knee and target methods (Li
and Kanoulas, 2020).

AutoTAR uses the Knee method for automatic stopping. No extra assessment
costs are needed for the Knee method. However, this method does not provide
insights into how many relevant documents are missed by stopping the TAR
process. The findings of Li and Kanoulas (2020) show that there is a trade-off of
15% recall to learn how many relevant documents are missed through Autostop. (Li
and Kanoulas, 2020).

3.1.2 Scalability of Continuous Active Learning

Scalability of Continuous Active Learning (SCAL) is designed to achieve high recall
for large to infinite document collections. This is achieved by using a large fixed-size
sample of the dataset. This fixed-size sample of the dataset is used to generate the
ranker to estimate the prevalence and to determine the cutoff for a particular target
recall. SCAL saves human effort by not exponentially increasing the batch size that
needs to be reviewed. Only a stratified sample of the dataset needs to be reviewed
(Li and Kanoulas, 2020).

Chapter 3. Related work 8

3.1.3 Evaluation metrics

Autostop uses the following evaluation metrics: recall, cost, relative error (RE), and
Losser. Recall = r

R , where r is the number of relevant documents found, and R
is the total number of relevant documents. Cost = n

N , where n is the number of
documents shown to a human reviewer, and N is the total number of documents.
Relative error (RE) is the difference between achieved and target recall. Losser is
used in information retrieval (IR) and combines the recall and cost metrics. Losser =

(100% − recallc)2 + (100
N)2(n

R+100)
2. Here, recallc is the achieved recall when TAR

is stopped. So, 100%− recallc represents the loss based on the inability to find all
relevant documents. The 100% represents the goal to find 100% of the documents. n

R

is the total number of sampled documents divided by the total number of relevant
documents. This represents the effort spent in assessing the relevant and non-
relevant documents. All these evaluation metrics can be calculated using the open
source script tar_eval from https://github.com/CLEF-TAR/tar (Li and Kanoulas,
2020).

3.1.4 Datasets

Conference and Labs of the Evaluation Forum (CLEF) Technology-Assisted Reviews
in Empirical Medicine datasets, Text Retrieval Conference (TREC) Total Recall
datasets, and TREC legal datasets are used in the paper of Li and Kanoulas (2020).

The term prevalence defines the percentage of relevant documents in a dataset.
For these datasets, the prevalence is low. It ranges from 0.10% to 2.15% (Li and
Kanoulas, 2020)

3.1.5 Results of Autostop

The knee method performs best when the methods are compared to each other based
on achieving high recall and low costs. However, the Autostop method performs
better when the goal is to stop the TAR process on time. Besides the knee method,
Autostop also performed better than the other baselines in terms of high recall and
low cost. However, apart from the high recall and low cost, Autostop also provides
a transparent, accurate, and effective stopping point, which the other methods do
not (Li and Kanoulas, 2020).

A downside of Autostop is that the framework is designed for small-scale
datasets. To deal with the larger datasets, Li and Kanoulas (2020) adapted the
framework by randomly splitting the datasets and running the algorithms on the
split data. Afterward, the sampled documents are concatenated for final review.
However, this is not the optimal solution (Li and Kanoulas, 2020).

https://github.com/CLEF-TAR/tar

Chapter 3. Related work 9

3.2 ASReview

ASReview aims to help scholars and practitioners get an overview of the most
relevant works (documents) as efficiently as possible. This is done by prioritizing
relevant studies via active learning. The aim is to balance recall and precision,
meaning that the aim is to find as many relevant documents as possible while
limiting the number of documents retrieved. Through CAL, the goal is also to
minimize the number of labeling tasks by a human. The algorithm aims to find the
most relevant documents instead of finding the most accurate model (Schoot et al.,
2021).

ASReview aims to be transparent in this process, which is the reason ASReview
is an open-source project. ASReview also implemented a benchmark mode,
which helps in comparing different algorithms and helps to understand real-world
performance. ASReview focuses on systematic reviews, but according to the
creators, ASReview can be used for any text source (Schoot et al., 2021).

3.2.1 Features of ASReview

The process of ASReview starts with at least one document labeled in both the
relevant and non-relevant classes. Starting with more labeled documents can lead
to improved efficiency of the active learning process. In the active learning process,
the system shows one document to the human users to be labeled. After labeling,
this document is used in training a new model. Then the cycle repeats until a user-
defined stopping criterion is met. The default settings for ASReview are a naive
Bayes classifier, TF-IDF feature extraction, dynamic resampling balance strategy,
and certainty-based sampling for the query strategy. These settings are chosen
because they achieve consistently high performance and low computation time. The
documents are converted into a document-term matrix, and terms are converted
to lowercase. ASReview does not remove stop words by default. Users can
change these settings and add new classifiers, feature extraction techniques, query
strategies, and balance strategies. More information about the different selectable
settings can be found in Table 2 of Schoot et al. (2021).

3.2.2 Balance strategies

The data is usually unbalanced, as is the case with TAR. In a systematic review,
most documents are excluded as non-relevant in the title and abstract phases. In
this phase, only the titles and abstracts are screened on relevance. A recent study
excluded 9,847 documents out of 10,115 in the title and abstract phase, meaning that
roughly 97.4% was excluded as non-relevant in this phase.

ASReview has implemented three balance strategies to rebalance the training
data: full sampling, undersampling, and dynamic resampling. Full sampling
uses all the labeled documents, undersampling excludes a part of the non-relevant

Chapter 3. Related work 10

class to balance the classes, and dynamic resampling is similar to undersampling.
However, dynamic resampling also increases the relevant class size by duplicating
documents (Schoot et al., 2021).

Previous research showed that with skewed datasets, resampling methods
dealing with class imbalance, such as under-sampling, can significantly improve the
performance of machine learning classifiers (Liu, Timsina, and El-Gayar, 2018).

3.2.3 Evaluation metrics

ASReview uses three evaluation metrics. The first two evaluation metrics are based
on work saved over sampling (WSS). This measures the percentage of reduction in
the number of documents a human has to read compared to a random sampling
method (see Section 5.3.1 for more in-depth information about WSS). The first
evaluation metric used is WSS@95%, meaning that the work saved is measured at a
recall of 95%. WSS@100% is the second evaluation metric used. The third evaluation
metric is RRF10%, which is an evaluation metric proposed by Schoot et al. (2021).
This metric shows the number of relevant documents found after having screened
10% of the documents (Schoot et al., 2021).

3.2.4 Results of ASReview

On average, ASReview achieved a WSS@95% of 83%. This means that, on average,
95% of the relevant documents were found after screening 17% of the documents.
The RRF10% ranged between 70% to 100% (Schoot et al., 2021).

3.2.5 Datasets of ASReview

ASReview has constructed multiple publicly available datasets, which can be found
on https://github.com/asreview/systematic-review-datasets (Schoot et al.,
2021). See Section 5.1 and Table 5.1 for more information on these datasets.

3.2.6 Other related works

A few other related works are abstrackr (using an SVM classifier), Colandr (using
an SVM with stochastic gradient descent learning classifier), FASTREAD (using an
SVM classifier), Rayyan (using an SVM classifier), RobotAnalyst (using an SVM
classifier), which use a variety of inputs, feature extraction, and label options. More
information about these related works can be found in Schoot et al. (2021).

3.3 FAST2

FAST2 has a similar goal as TAR. FAST2 aims to optimize and reduce the human
effort to find relevant papers. Yu and Menzies (2019) tried to optimize finding the
95% most relevant engineering papers. In their approach, they focused on three key

https://github.com/asreview/systematic-review-datasets

Chapter 3. Related work 11

innovations, namely (1) a way to apply external domain knowledge, (2) a way to
estimate the number of remaining relevant papers, and (3) an algorithm to correct
human error. A full reproduction package is also available at https://zenodo.org/
record/1184123.

The approaches to find the relevant documents in the FAST2 domain can
be divided into three approaches, namely: (1) search-query-based methods, (2)
reference-based methods similar to snowballing, and (3) abstract-based methods (Yu
and Menzies, 2019). FAST2 focuses mainly on abstract-based methods.

3.4 Comparative analysis of semi-supervised learning for
relevant article selection

Liu, Timsina, and El-Gayar (2018) compared different semi-supervised learning
methods for relevant document selection to automate the process in systematic
reviews. Their research goal is to apply semi-supervised learning (SSL) to overcome
the labeling bottleneck, i.e., the little availability of labeled data. The process of
systematic review consists of three steps. The first step is a keyword search to
identify potentially relevant articles. Step two is to identify the articles that need
to be included (article triage). The third and final step is to summarize the selected
articles.

Article triage (step two of the systematic review) consists of two steps. The first
step is called abstract triage. During this step, only the title and abstract of articles
are considered during the review to decide whether the articles are relevant or not.
In the next step, named full-text triage, the relevant articles from abstract triage
are fully inspected to determine whether these articles should be included in the
systematic review or not (Liu, Timsina, and El-Gayar, 2018).

In the article triage, supervised learning has been used in almost all research to
classify the documents. However, supervised learning with small labeled datasets
often leads to overly simple prediction functions. The study of Liu, Timsina, and
El-Gayar (2018) is one of the first researches that compare and analyze SSL methods
to address small-sized datasets for classification algorithms in medical systematic
review creation (Liu, Timsina, and El-Gayar, 2018).

3.4.1 Data and class imbalance

The classes within systematic review are skewed, as is the case with TAR. In the
systematic review of the U.S. preventive services task force in 2013, 16,179 articles
were found in the keyword research. From this set of articles, 1,190 articles were
selected as relevant during the abstract triage. In the final phase, the full-text triage,
only 253 articles were included in the systematic review. This is 7.36% relevant
articles found in the abstract triage and 1.56% after full-text triage. Such a systematic
review requires a significant investment in time and funds, namely 1139 hours of an

https://zenodo.org/record/1184123
https://zenodo.org/record/1184123

Chapter 3. Related work 12

expert and 250,000 dollars. Also, on average, a systematic review takes 2.4 years. The
bottleneck is abstract triage, where scientists screen titles and abstracts of thousands
of articles (Liu, Timsina, and El-Gayar, 2018).

A dataset is considered imbalanced when the classes are not equally represented.
As only 1.56% of the articles were used after full-text triage, this dataset is
imbalanced. As stated before, undersampling can deal with imbalanced data by
sampling fewer data from the larger category. This approach can discard valuable
data points, and with highly imbalanced data, it may even lead to a lack of data.
Oversampling, on the other hand, replicates data points in the minority class. The
downside of this approach is that it only increased the weight of random data
points in the minority class. Therefore, Synthetic Minority Oversampling Technique
(SMOTE) has been used to resolve class imbalance issues that are ubiquitous for
medical review datasets. SMOTE aims to overcome overfitting by oversampling.
This is done by creating new minority class data points through interpolation
between data points of the same class in the neighborhood. This way, it introduces
synthetic examples instead of replications (Chawla et al., 2002; Fernandez et al., 2018;
Liu, Timsina, and El-Gayar, 2018).

A Unified Medical Language System (UMLS) was used to help boost
classification performance when bag-of-words (BOW) is used. However, UMLS is
used to extract medical terms. Therefore, it is a technique specific to medical terms
and not directly applicable to TAR. Liu, Timsina, and El-Gayar (2018) used the term
frequency-inverse document frequency (TF-IDF) to assign weights to each UMLS
term. The TF-IDF increases a term (t) when it appears more in a document. However,
when it appears in many documents, then it is decreased. More information about
TF-IDF can be found in Section 5.2 and Table 5.2.

3.4.2 Semi-supervised learning methods

Liu, Timsina, and El-Gayar (2018) investigated and compared the following semi-
supervised learning methods: label spreading, label propagation, and semi-
supervised support vector machine (S3VM). Label spreading and label propagation
are both graph-based SSL techniques. With label spreading, the labeled data
points are used to label the neighboring unlabeled data points based on their
proximity. The difference between label spreading and label propagation is that
label propagation uses a raw similarity matrix. Through label propagation, the data
itself is not modified. However, through label spreading, each iteration uses the
modified versions of the graph. This normalized the edge weights by computing
the normalized graph Laplacian. S3VM is an extension of support vector machine
(SVM), which is a supervised learning technique. S3VM tries to label the unlabeled
data so that a linear boundary can be found with the maximum margin on both
the labeled data and the unlabeled data that has been labeled in the process. This
function is non-convex, which makes it harder to optimize. More information about
these SSL methods can be found in Section 4.

Chapter 3. Related work 13

3.4.3 Wrapper methods

Apart from these SSL techniques, Liu, Timsina, and El-Gayar (2018) also compared
two wrapper methods: self-training and active learning. In short, self-training uses
a classifier trained on the labeled data to label the unlabeled data. Usually, this
happens in batches. First, the most confident unlabeled points are labeled. Then the
classifier is re-trained. After this, the procedure is repeated until no unlabeled data
points remain. See Section 4.1.1 for more information on self-training.

Like self-training, active learning is also an iterative process where the newly
labeled instances are added to the training set on which it is re-trained.

The following evaluation metrics were used: recall, precision, and F1. More
information about these evaluation metrics can be found in Section 5.3.

3.4.4 Results of SSL methods

The research of Liu, Timsina, and El-Gayar (2018) showed lower results for SVM and
S3VM compared to the two graph-based SSL methods. S3VM did achieve a higher
recall score than SVM, but S3VM scored lower on precision and F1. Label spreading
and label propagation found more relevant articles than S3VM and SVM. However,
label propagation and label spreading also found more False Positives, leading to a
lower precision score. As recall is essential, they chose to proceed with the graph-
based methods. Label spreading performed better than label propagation for both
precision and recall. Therefore, label spreading was selected as the SSL method.

3.4.5 Results of wrapper methods

When experimenting with the self-training in combination with label spreading,
they performed 9 to 18 iterations of selecting the top and bottom 8 data points,
which for one dataset added 40.44% of the data points to the training set, increasing
it from 5% to 45.44%. On this final training set, they trained a supervised SVM
to classify the remaining unlabeled data instances, combining both supervised and
unsupervised learning. Through this, they significantly increased the precision
while still achieving comparable recall scores. This worked exceptionally well on
datasets with a small number of seeds (Liu, Timsina, and El-Gayar, 2018).

Active learning resulted in higher recall and precision than self-training and
supervised SVM. This could be explained as roughly an equal number of relevant
and non-relevant articles being added in each iteration (this was not the case with
SVM). Active learning helps identify more relevant articles and achieve a higher
recall than supervised learning with random samples (Liu, Timsina, and El-Gayar,
2018).

14

Chapter 4

Semi-Supervised Learning
strategies

Semi-supervised learning (SSL) uses unlabeled data to create better models. SSL can
do this by exploiting the marginal distribution of unlabeled data (Søgaard, 2013).
Within data mining, SSL has received more attention in the past years due to the
potential to reduce the effort to label the unlabeled data (Liu, Timsina, and El-Gayar,
2018).

In SSL, there are two different classification goals. The first goal is to use the
current labeled and unlabeled data to predict the labels of future test data. This is
called inductive semi-supervised learning. The second goal is to predict the labels
of the unlabeled instances in the dataset. This is called transductive learning (Zhu
and Goldberg, 2009). For TAR, the latter is most relevant, as our goal is to find the
relevant documents in a set of unlabeled documents.

Each semi-supervised model has assumptions about the link between the
marginal distribution p(x) and the conditional distribution p(y|x). Due to these
different assumptions, choosing the correct semi-supervised learning method for a
specific task is essential. Otherwise, including the unlabeled data can decrease the
performance compared to a supervised learning method (Zhu and Goldberg, 2009).

In this chapter, we discuss the different semi-supervised learning methods to
find the SSL methods suitable for TAR. The SSL methods are grouped into wrapper
methods (Section 4.1), graph-based models (Section 4.2), mixture models, and
Expectation Maximization (Section 4.3) and lastly semi-supervised support vector
machines (Section 4.4). See Table 4.1 for an overview of the different SSL methods
that will be discussed.

4.1 Wrapper methods

The wrapper methods discussed in this section can be applied to any existing
supervised learning method. Due to this, the choice of which learner we apply is
entirely open. The wrapper method wraps around the chosen supervised learner
and does not change the inner workings of the supervised learner. The supervised
learning method changes into a semi-supervised learning method by applying the

Chapter 4. Semi-Supervised Learning strategies 15

Wrapper methods Section
Self-training 4.1.1
Co-training 4.1.2
Tri-training 4.1.3
Soft self-training (EM) 4.1.4
Multiview learning 4.1.5
Cluster-as-features 4.1.6

Graph based models Section
Label propagation 4.2.1
Semi-supervised nearest neighbor editing 4.2.2
Semi-supervised condensed nearest neighbor 4.2.3
Mincut 4.2.4
Harmonic function 4.2.5

Mixture models and Expectation Maximization Section
Hidden Markov Models 4.3.1
Cluster-then-label methods 4.3.2
Semi-supervised Multinomial Naive Bayes 4.3.3
Expectation Maximization with the many-to-one correspondence 4.3.4
Expectation Maximization with deterministic annealing 4.3.5

Semi-supervised support vector machines (S3VM) Section
Transductive support vector machines 4.4.2
Laplacian support vector machines 4.4.3
meanS3VM 4.4.4
S3VM based on cluster kernels 4.4.5

TABLE 4.1: Overview of the different semi-supervised learning strategies.

wrapper method (Zhu and Goldberg, 2009; Søgaard, 2013). This section will discuss
self-training, co-training, tri-training, soft self-training, multiview learning, and
cluster-as-features.

4.1.1 Self-training

The self-training wrapper uses the chosen supervised classifier trained on the
labeled data to label the unlabeled data. The main downside of self-training occurs
when the supervised classifier mislabels some data. The common way to combat this
downside is by implementing the strategy to only label an unlabeled data instance
when the classifier’s confidence is greater than 90% (Søgaard, 2013).

There are multiple ways to make self-training more robust. It is possible to
implement throttling, ensuring that only k data points will be selected per pass over
the unlabeled data. Balancing ensures that only the k most confidently unlabeled
data points are selected per class. Lastly, when pooling is implemented, the
unlabeled data selected per pass is a randomly selected subset of the unlabeled data.

Chapter 4. Semi-Supervised Learning strategies 16

Pooling often leads to the best results when only a single data point is pooled per
pass over the unlabeled data. However, this is very time-consuming (Søgaard, 2013).

4.1.2 Co-training

Co-training was introduced as another attempt to make self-training more robust.
It provides an alternative and second perspective to the unlabeled data (Søgaard,
2013). Co-training represents each data point through two views. The two views
can be two (different) sets of features. This is notated as x = [x(1), x(2)]. Co-training
is similar to self-training, with the main difference being that co-training uses two
different classifiers. The first view teaches the second view and vice versa. This
happens when the k most confident predictions over the unlabeled data from the first
classifier are added to the second classifier, and again, vice versa (Zhu and Goldberg,
2009).

It is common to split the features randomly between the two views. When
random co-training is implemented, a random view is selected when labeling an
unlabeled data point (Søgaard, 2013).

The creators of co-training, Blum and Mitchell, proved that co-training could
be successful when both views are sufficient, redundant, and conditionally
independent of each other. However, later research showed that co-training can
still be guaranteed to be successful with a weak dependence. Co-training can work
even with sufficiently diverse classifiers trained on the same view. It is possible to
use different learning algorithms as different views or two different samples of the
labeled data (Søgaard, 2013).

4.1.3 Tri-training

Tri-training utilizes the same concept as co-training. However, now three learners
inform each other. Majority voting is applied when an unlabeled data point is
labeled by the three learners (Søgaard, 2013).

Generally, tri-training is more robust than self-training. Tri-training also
improves significantly over the supervised baseline when less unlabeled data is
used. Søgaard (2013) only used the 500 features that correlated best with class
according to a χ2 test.

4.1.4 Soft self-training

With soft self-training, we not only add a label to the unlabeled data points that
we are confident about, but we also assign weights to the newly labeled data based
on the confidence. Through delible soft self-training (also called generalization of
Expectation Maximization), we can run over all unlabeled data each round and
refine the weights to the labels (Søgaard, 2013).

Chapter 4. Semi-Supervised Learning strategies 17

4.1.5 Multiview learning

Multiview training is a generalization of co-training. With multiview learning, it is
assumed that the algorithm has k different learners. Each learner can be of a different
type. It is possible to give each learner access to the whole set of features or use only
a subset of them. When the learners are of different types but have access to the
same features, it will be similar to the ensemble method. The goal is to minimize
its own empirical risk but also agree with all other hypotheses (Zhu and Goldberg,
2009).

4.1.6 Cluster-as-features

The cluster-as-feature, like the wrapper methods discussed above, can be applied
to any supervised learning algorithm. Through cluster-as-features, a clustering
algorithm learns a clustering model from either the unlabeled data points or from
both labeled and unlabeled points. Then, every labeled data point is augmented
with a variable that takes mU(xn). This new variable encodes the marginal
distribution of the unlabeled data and may enable us to better generalize beyond
our labeled sample (Søgaard, 2013).

4.2 Graph-based models

In graph-based models, the distance between two data points is measured. The edge
weight is typically large when the two data points are close to each other. The model
assumes that when two data points are connected with a large weight, the two data
points tend to have the same label (Zhu and Goldberg, 2009).

Usually, the graphs are undirected. The usual edge weights used for graph
models are fully connected graphs with Euclidean distance, k-Nearest Neighbor
graphs based on Euclidean distance, and ϵ Nearest Neighbor graphs, where the
edges will connect if the Euclidean distance is smaller than ϵ (Zhu and Goldberg,
2009).

The semi-supervised learning algorithms in the first 3 subsections below,
label propagation, semi-supervised nearest neighbor editing, and semi-supervised
condensed nearest neighbor are all tied to the supervised algorithm nearest neighbor
(Søgaard, 2013). After those subsections, Mincut and harmonic function will be
discussed, which are both transductive learning algorithms.

4.2.1 Label propagation

Label propagation is one of the earliest graph-based semi-supervised algorithms.
It uses a k-nearest neighbor kernel. This makes it similar to self-training with k-
nearest neighbor when using weighted voting. With label propagation, the edges
are weighted so that when two vertices are close to each other, their edge weight is

Chapter 4. Semi-Supervised Learning strategies 18

high. The distance between two vertices is calculated with the Euclidean distance
(E) and a heuristic (σ). The weight (w) between vertice xi and xj is

wij = exp
−E(xi, xj)2

σ2 .

In each iteration, all nodes collect votes on which class they belong. This includes
their own label if it is a labeled data point (Søgaard, 2013).

4.2.2 Semi-supervised nearest neighbor editing

As with support vector machines (SVM), many data points can be disregarded
without affecting the classification performance. Nearest neighbor editing is an
outlier detection technique that can be used to make the nearest neighbor methods
more efficient. This is done by disregarding all the data points that their k-
nearest neighbors can predict. This technique tries to improve the speed, not the
performance. This is useful since a brute-force nearest neighbor search will take a
long time on large data sets since it runs time linear in the size of the training set
(Søgaard, 2013).

The downside of semi-supervised nearest neighbor editing is that performance
can dramatically drop when the data is biased. This is the case because outliers are
often essential to classify instances from new domains (Søgaard, 2013).

4.2.3 Semi-supervised condensed nearest neighbor

The condensed nearest neighbor (CNN) aims to return a single point in the center
of each cluster. The problem that can occur with CNN is that the labeled data
does not necessarily include data points near the center of each cluster. Semi-
supervised condensed nearest neighbor (SCNN) labels the unlabeled data points,
which increases the chance of including data points near the cluster center. The
unlabeled data is labeled through the k-nearest neighbor classifier on the original
dataset. Only the cases with a confidence greater than 90% are labeled (Søgaard,
2013).

Søgaard (2013) discusses two papers that show that CNN performs roughly
the same as nearest neighbor. However, the SCNN sometimes leads to substantial
improvements over the k-nearest neighbor methods.

4.2.4 Mincut

Both Mincut and the harmonic function are transductive learning algorithms. In
Mincut, positively labeled vertices are called source vertices, and negatively labeled
vertices are called sink vertices. The objective of Mincut is to find the minimum
set of edges that need to be removed to block all flows from source nodes to sink
nodes. After splitting the graph, the vertices that are connected to source nodes are

Chapter 4. Semi-Supervised Learning strategies 19

labeled positive, and the vertices connected to the sinks are labeled negative (Zhu
and Goldberg, 2009).

A flaw of the formulation of Mincut is that it is possible to have multiple equally
good solutions. Due to this, some vertices can be positive or negative based on
which solution is chosen (Zhu and Goldberg, 2009).

4.2.5 Harmonic function

In harmonic function, the labeled vertices have the same values as their label. The
unlabeled vertices receive the value of the weighted average of their neighbors’
values. This satisfies the weighted average property on the unlabeled data. Now,
the function f can produce real values. However, this can be addressed by applying
a threshold at f (x) = 0. So, when f (x) ≥ 0, then we assign label 1, and when
f (x) < 0, we assign label 0. The function f has a closed-form solution that is unique
(under mild conditions) and is globally optimal (Zhu and Goldberg, 2009).

The harmonic function is computed in an iterative procedure. The first step is
to set f (xi) − yi for all the labeled vertices. The unlabeled vertices start with an
arbitrary value. In each iteration, the labels of the unlabeled vertices are calculated
by the weighted average of the neighbors. This is done through

f (xi) =
∑l+u

j=1 wij f (xj)

∑l+u
j=1 wij

.

Regardless of the starting values of the unlabeled vertices, this procedure is
guaranteed to converge to the harmonic function. This iterative procedure is also
called label propagation, since it propagates labels from the fixed labeled vertices to
the unlabeled vertices (Zhu and Goldberg, 2009).

4.3 Mixture models and Expectation Maximization

With mixture models, the aim is to use unlabeled data to learn how the mixed
instances from the different classes are distributed. After the model has learned
how each separate class is distributed, we may be able to decompose the mixture
into individual classes (Zhu and Goldberg, 2009).

This is done by selecting the parameters that maximize the probability of
generating the training data through the proposed model. The p(y|x) can be
computed through the generative model, which uses the Bayes rule:

p(y|x) = p(x|y)p(y)
∑y′ p(x|y′)p(y′)

.

This formula contains the class conditional distributions and the prior probabilities
(Zhu and Goldberg, 2009).

Chapter 4. Semi-Supervised Learning strategies 20

It is possible to use the maximum likelihood estimate (MLE) for supervised
methods. This is no longer possible with semi-supervised learning methods.
However, when working with semi-supervised learning, it is possible to find a local
maximum through the EM algorithm (Zhu and Goldberg, 2009).

In the subsections below, a short description of Hidden Markov models, and
cluster-then-label models will be given, followed by semi-supervised Multinomial
Naive Bayes which uses Expectation Maximization (EM).

4.3.1 Hidden Markov Models (HMM)

The Hidden Markov model is a generative model. However, this model is
commonly used to model sequences of data (Zhu and Goldberg, 2009). Text is
inherently sequential. However, this is ignored in the BOW representation. As the
BOW representation is used in this research, we will not look further into Hidden
Markov Models.

4.3.2 Cluster-then-label methods

Unsupervised clustering algorithms can identify clusters from unlabeled data.
Through this, it is possible to cluster the data and then label the unlabeled
data for semi-supervised classification. This method does not necessarily involve
probabilistic mixture models. Different types of linkage can be used. When single
linkage is used, the clusters become longer and more skinny. With complete
clustering, the clusters tend to be rounder (Zhu and Goldberg, 2009).

4.3.3 Semi-supervised Multinomial Naive Bayes

Assumptions

The theoretical basis of Expectation-Maximization (EM) shows that it is possible to
find a more probable model when there is a large enough set of unlabeled data. A
more probable model will also result in a more accurate classifier. However, this
depends on whether the assumptions of the generative model are correct.

There are three assumptions with a probabilistic generative model with a naive
Bayes classifier: (1) The data are produced by a mixture model, (2) there is a one-to-
one correspondence between mixture components and classes, and (3) the mixture
components are multinomial distributions of individual words (Nigam, McCallum,
and Mitchell, 2006).

Representation of the documents

The commonly used naive Bayes represents each document as a bag of words
(BOW). BOW is a simple document representation, as it disregards all word ordering
information (Nigam, McCallum, and Mitchell, 2006).

Chapter 4. Semi-Supervised Learning strategies 21

Nigam, McCallum, and Mitchell (2006) found that when the optimization of the
naive Bayes model probability is strongly correlated with the classification accuracy,
the naive Bayes model is sufficient for text classification, as EM optimizes on
posterior model probability. When there is a correlation between model probability
and accuracy, EM can indirectly optimize accuracy. However, when the naive Bayes
generative model is not well correlated with the classification accuracy, adopting a
more expressive generative model can restore this correlation.

As stated in Section 4.3.3, it is assumed that documents are generated by a
mixture of multinomials model, where each mixture component corresponds to a
class. Every document is generated according to a probability distribution. The
parameters of the probability distribution are denoted as θ. Parameters in the
mixture model define this probability distribution. It is assumed that the class label
for a document is a one-to-one correspondence with the mixture component. So,
when a mixture component (cj) generates a document, then the class label of this
document is also yi = cj. It is also assumed that the words of a document are
conditionally independent of the other words in the document (Nigam, McCallum,
and Mitchell, 2006).

Text classification

Naive Bayes commonly uses the maximum a posteriori (MAP) estimate to estimate
the parameters in the mixture model. This is the most probable given the evidence
of training data and a prior. With the estimates of the parameters based on the
labeled documents, we can turn the generative model backward and calculate the
probability that a mixture component generated an unlabeled document (xi). The
class of a document is then equal to the class with the highest posterior probability
(Nigam, McCallum, and Mitchell, 2006).

As the labels of the unlabeled data points are unavailable, it is impossible to
use closed-form equations. Through Expectation Maximization (EM), we can find
local MAP parameter estimates for the generative model (Nigam, McCallum, and
Mitchell, 2006).

Downside of Expectation Maximization

A downside of EM is that it only guarantees the discovery of local maxima.
This is especially an issue within the text classification domain because there are
many parameters. To combat this, deterministic annealing and another modeling
estimation find more probable and more accurate classifiers (Nigam, McCallum, and
Mitchell, 2006).

EM algorithm for semi-supervised Multinomial Naive Bayes

The algorithm of the EM technique starts with building a naive Bayes classifier
based on only the labeled documents. This happens in a supervised fashion. Then,

Chapter 4. Semi-Supervised Learning strategies 22

all the unlabeled documents are classified by this naive Bayes classifier. While
classifying the unlabeled documents, not only the most likely class is noted. Instead,
the probabilities associated with each class are noted. First, the word probability
estimate per class is calculated through Formula 4.1.

θ̂
(t+1)
wt|cj

≡ p(wt|cj; θ̂(t)) =
1 + ∑xi∈X δijxit

|X |+ ∑|X |s=1 ∑xi∈X δijxis

(4.1)

Here, the probability of a word wt is calculated, given the mixture component cj

and the estimate of the model parameters θ̂. The 1 in the numerator and the |X | in
the denominator, which represents the vocab size, are added for smoothing. In the
numerator, for each document (xi ∈ X), the number of times the word wt occurs in
document xi, represented as xit, is summed. This is only done for the documents
where the component equals the given cj. This is done by δij, which equals 1 when
the documents component is equal to the given cj, else it is 0. In the denominator,
the same summation happens, but now for all words (∑|X |s=1) (Nigam, McCallum, and
Mitchell, 2006).

Formula 4.2 is used to calculate the class probabilities.

θ̂
(t+1)
cj ≡ p(cj|θ̂(t)) =

1 + ∑|X|i=1 δij

M + |X| (4.2)

The 1 in the numerator and the M in the denominator, which represents the
total number of classes, are added for smoothing. In the numerator, the number
of documents that belong to component cj are summed. This is represented through
δij, which is only equal to 1 when the document class equals the given component cj.
In the denominator, the total number of documents (|X|) are added to the smoothing
(Nigam, McCallum, and Mitchell, 2006)

Lastly, Formula 4.3 calculates the probability that a document class label yi equals
the selected component cj, given the document xi and the estimate of the model
parameters θ̂.

δij = p(yi = cj|xi; θ̂) =
p(cj|θ̂)∏wt∈X p(wt|cj; θ̂)xit

∑M
k=1 p(ck|θ̂)∏wt∈X p(wt|ck; θ̂)xit

(4.3)

In the numerator, the class probability of cj (Formula 4.2) is multiplied by
the word probability estimate (Formula 4.1) of each word in the vocabulary. xit

represents the number of times word wt occurs in document xi. In the denominator,
the same calculation is made. However, here it is summed over all classes (Nigam,
McCallum, and Mitchell, 2006).

Through Formula 4.3, all the unlabeled documents have estimated class
probabilities. These estimated class probabilities are used as true class labels and
train the naive Bayes classifier based on both labeled and unlabeled data. Unlabeled
data is handled as fractional documents similar to their estimated class probabilities.
This process is iterated until it converges (Nigam, McCallum, and Mitchell, 2006).

Chapter 4. Semi-Supervised Learning strategies 23

During the E-Step, the unlabeled documents are labeled. A new MAP estimate
for the parameters (θ) is calculated in the M-Step. As the parameters lead to one
of the local maxima, many instantiations of EM will be chosen. Instead of using a
random starting point, it is possible to use the labeled data to select a starting point
(Nigam, McCallum, and Mitchell, 2006).

In case the assumptions of the generative model do not hold, then the benefits
of unlabeled data become less clear. Naive Bayes tends to produce extreme class
probabilities when the word independence assumption does not hold. However,
accuracy can still be high, even if these estimates are extremely high or low.
However, it is important to note that SSL leans more on the correctness of modeling
assumptions than supervised learning (Nigam, McCallum, and Mitchell, 2006).

Results of EM compared to naive Bayes

In an experiment of Nigam, McCallum, and Mitchell (2006), naive Bayes achieved
52% accuracy, while EM achieved 66% accuracy. This was especially the case when
labeled data was sparse. When there is already enough labeled data, the unlabeled
data does not help as much (it only improved from 76% to 78%). The significantly
higher accuracy is achieved by optimizing the posterior model probability instead of
directly optimizing the classification accuracy. Generative models are representative
enough for text classification when the model’s probability and accuracy are
correlated. This allows EM to optimize accuracy indirectly. The correlation
coefficient was 0.9798, which shows a very strong correlation between the accuracy
and model probability (Nigam, McCallum, and Mitchell, 2006).

4.3.4 Expectation Maximization with many-to-one correspondence

Correspondence between mixture component and classes

The assumption of one-to-one correspondence between classes and components in
the mixture model is dangerous in text classification and, thereby, in TAR. It will
lead to an unrepresentative model when all documents in the non-relevant class are
modeled as only a single multinomial distribution. This is because the non-relevant
documents can contain documents of a variety of different sub-topics. Therefore,
a many-to-one correspondence between the mixture component and classes would
increase the representativeness of a model. This replaces the one-to-one assumption
with a less restrictive one (Nigam, McCallum, and Mitchell, 2006).

Through this new approach, we miss the class and sub-topic of the unlabeled
data. From the labeled data, we only miss the sub-topic (represented by zi). This
changes the way of calculating the class membership of a document. The formula
for the word probability is still identical to Formula 4.1.

θ̂
(t+1)
wt|cj

≡ p(wt|cj; θ̂(t)) =
1 + ∑xi∈X δijxit

|X |+ ∑|X |s=1 ∑xi∈X δijxis

(4.4)

Chapter 4. Semi-Supervised Learning strategies 24

The formula for the class probabilities is comparable to Formula 4.2. The only
difference is the notation for classes (ta) instead of components (cj).

θ̂
(t+1)
ta

≡ p(ta|θ̂(t)) =
1 + ∑|X|i=1 δia

M + |X| (4.5)

The calculation for the sub-topic probabilities (Formula 4.6) is comparable to the
formula for class probabilities (Formula 4.5).

θ̂
(t+1)
cj|ta

≡ p(cj|ta; θ̂(t)) =
1 + ∑|X|i=1 δijδia

∑N
j=1 qaj + ∑|X|i=1 δia

(4.6)

In the numerator, the term δij is now equal to 1 when the sub-topic equals cj,
and δia equals 1 when the document belongs to class ta. So, ∑|X|i=1 δijδia represents the
number of documents belonging to sub-topic j of class a, as only the documents with
the correct sub-topic and class are summed. In the denominator, similar to the class
probabilities, the ∑N

j=1 qaj part represents the number of sub-topics of class a, as qaj is

only 1 if sub-topic j belongs to class a. This is added for for smoothing. The ∑|X|i=1 δia

part represents the number of documents belonging to class a, as δia equals 1 when
the document belongs to class ta (Nigam, McCallum, and Mitchell, 2006).

Finally, Formula 4.7 calculates the sub-topic membership of a given document
xi.

δij = p(zi = cj|xi; θ̂) =
∑a∈[M] qaj p(ta|θ̂)p(cj|ta; θ̂)∏wt∈X p(wt|cj; θ̂)xit

∑r∈[N] ∑b∈[M] qbr p(tb|θ̂)p(cr|tb; θ̂)∏wt∈X p(wt|cr; θ̂)xit
(4.7)

Here ∑a∈[M] qaj sums over each class, but only if the sub-topic cj belongs to class
ta. p(ta|θ̂) is the class prior (Formula 4.5). p(cj|ta; θ̂) is the sub-topic probability
(Formula 4.6). Finally, the product of the word probability (Formula 4.4) for each
word wt is taken in ∏wt∈X p(wt|cj; θ̂)xit . The denominator has the same calculation
as the nominator, except now it sums over all the sub-topics through ∑r∈[N].

So, through Formula 4.7, the sub-topic membership of a document is calculated.
As a final step, Formula 4.8 is used to calculate the overall class membership of a
document. This is done by summing the probabilities of all sub-topics for the given
class ta. (Nigam, McCallum, and Mitchell, 2006).

δia = p(yi = ta|xi; θ̂) = ∑
j∈[N]

qaj p(zi = cj|xi; θ̂) (4.8)

EM with the many-to-one correspondence

As we still do not have all the class and sub-topic labels, we will again use EM.
The M-step still builds the maximum a posteriori parameter estimates for the
multinomials and priors. The difference is that it now uses the probabilistic class and
sub-topic estimates. The E-Step calculates the probabilistically-weighted sub-topic

Chapter 4. Semi-Supervised Learning strategies 25

and class membership for the unlabeled documents. For the labeled documents,
only the sub-topic is calculated. However, only the sub-topics belonging to the
known class need to be considered (Nigam, McCallum, and Mitchell, 2006).

For model selection, cross-validation is used as a limited amount of labeled
documents are available. Another plus of using multiple mixture components per
class is that the model can now capture some dependencies between words on the
class level. One multinomial can now cover two words that co-occur within a sub-
topic (Nigam, McCallum, and Mitchell, 2006).

Finding the best number of mixture components

The next step is to find a method to find the best number of mixture components
without having access to the labels. The number of sub-topics chosen is part of
the tension between the complexity of the model and data sparsity. With a too
large number of sub-topics, we can perfectly model the training data. However, the
generalizability will suffer due to data sparsity. The multinomials will have many
parameters estimated from only a few documents. When too few sub-topics are
chosen, we will have accurate estimations of the multinomials. However, the model
will not represent the true document distribution. This is due to the too-restrictive
model.

Cross-validation can be used to select a good compromise in this tension. This
can be done through leave-one-out cross-validation. However, in the experiments
of Nigam, McCallum, and Mitchell (2006), it is shown that leave-one-out cross-
validation does not choose the best number of components. In their research, leave-
one-out cross-validation chose a smaller number of components than was best on
the test set.

4.3.5 Expectation Maximization with deterministic annealing

Deterministic annealing

In text classification tasks, convergence is usually fast. This means we can trade
some convergence speed for an improved local maxima situation. This brings us to
deterministic annealing (Nigam, McCallum, and Mitchell, 2006).

Deterministic annealing starts with a simple surface and changes this step by
step to become bumpier and, thereby, closer to the true probability surface. When it
starts with the simple surface’s original maximum, a highly probable maximum will
be found when the surface gets more complex. Through this, many local maxima
are avoided. This can be set with a single parameter β. When β is 1, the surface
space correlates well to the classification accuracy. However, when β approaches 0,
the surface becomes convex with a single global maximum (Nigam, McCallum, and
Mitchell, 2006).

The idea is to initialize the search with the old maximum while gradually raising
β. When β = 1, a good local maximum will be found. However, the computational

Chapter 4. Semi-Supervised Learning strategies 26

costs of deterministic annealing are significantly higher than EM. An example of
Nigam, McCallum, and Mitchell (2006) needed 390 iterations with deterministic
annealing while only needing 7 iterations for EM. The iterations of deterministic
annealing and EM take the same computation. This makes deterministic annealing
take 55.7 times longer to compute than EM in their experiment.

The high-probability models produced through deterministic annealing
correspond with high-accuracy classifiers, showing that deterministic annealing
makes good use of unlabeled data for text classification (Nigam, McCallum, and
Mitchell, 2006).

Results of deterministic annealing

The experiments of Nigam, McCallum, and Mitchell (2006) showed that
deterministic annealing indeed could improve classification when the class-to-
component correspondence was solved. It finds high-probability models, which
are then correlated with high-accuracy classifiers. Humans could trivially solve
the class-correspondence problem. Humans could identify a class given the most
indicative words in almost all cases. It was a small amount of human effort to correct
the class correspondence after deterministic annealing. This could be part of the
CAL. Through this, the class labels would be mapped to the cluster components and
lead deterministic annealing to be successful in finding more probable and more
accurate models than EM alone (Nigam, McCallum, and Mitchell, 2006).

Using EM to fix the correspondence of deterministic annealing

EM should also be able to fix the correspondence of the deterministic annealing
model, as EM usually has the correct class correspondence. This can be achieved by
training an EM alongside deterministic annealing. The correspondence can be fixed
by measuring the distance between the EM class multinomial and the deterministic
annealing class multinomial. The matrix of distances can then be used to assign the
class labels found in EM to the closest match in the deterministic annealing model
(Nigam, McCallum, and Mitchell, 2006).

4.4 Semi-supervised support vector machines (S3VM)

The standard form of SVM is a supervised learning method that can not make good
use of unlabeled data points. The strong points of SVM are that it has a good
theoretical foundation, it finds the global maximum instead of the local maximum,
the sparsity of the solution, it is nonlinear, and it has good generalization. However,
when there is sparsity in labeled data, SVM would not be strong in generalization.
This is where a semi-supervised learning method can help improve SVM. S3VM is
a semi-supervised method that introduces SSL with SVM and, therefore, can make
good use of these unlabeled data points (Ding, Zhu, and Zhang, 2017). Previous

Chapter 4. Semi-Supervised Learning strategies 27

research concluded that the generalization of a classifier can be improved with a
significant increase of unlabeled data (Ding, Zhu, and Zhang, 2017).

In short, SVM tries to find an optimal classification hyperplane. When H is the
classification hyperplane, then H1 and H2 are planes that go through the closest
data points to hyperplane H. These data points are called support, and the distance
between H1 and H2 is the maximum margin. Both H1 and H2 are parallel to H.

Originally, S3VMs were called Transductive Support Vector Machines (TSVMs).
S3VMs need another loss function than SVMs. This is because the labels of the
unlabeled data points are not known. Therefore, it is not known whether an
unlabeled data point is on the right or wrong side of the decision boundary. The
loss function used for S3VM is the hat loss function. This loss function penalizes
unlabeled instances when −1 < f (x) < 1. So, it penalizes instances around
f (x) ≈ 0, i.e., around the decision boundary. S3VM is non-convex and non-
probabilistic. It does not compute the label posterior probability p(y|x) (Zhu and
Goldberg, 2009).

The goal of S3VM is to utilize both labeled and unlabeled data points to build a
classifier. S3VM tries to find the maximum margin when separating the labeled and
unlabeled data. The new optimal classification boundary must also satisfy that the
classification on original unlabeled data and have the smallest generalization error
(Ding, Zhu, and Zhang, 2017).

S3VM’s can be used in the case of two-class problems, which is the case within
TAR. The performance of the classifier would be better if a semi-supervised SVM
were used when there is a small amount of labeled data and a large amount of
unlabeled data available. S3VM’s were initially used in text classification, where
it achieved good results (Ding, Zhu, and Zhang, 2017).

There are two assumptions on which a variety of SSL algorithms are based. The
first one is the cluster assumption. This means that when two data points in the
same cluster have a higher probability of belonging to the same class. The second
assumption is the Manifold assumption. The Manifold assumption entails that two
data points close to each other along the manifold flat have a similar nature or similar
label. (Ding, Zhu, and Zhang, 2017).

In the subsections below, the assumptions, transductive support vector
machines, laplacian support vector machines, meanS3Vm, and S3VM based on
cluster kernels will be discussed, followed by a conclusion, where the different
S3VMs are compared to each other.

4.4.1 Assumptions

There are two assumptions on which a variety of SSL algorithms are based. The
first one is the cluster assumption. This means that when two data points in the
same cluster have a higher probability of belonging to the same class. The second
assumption is the Manifold assumption. The Manifold assumption entails that two

Chapter 4. Semi-Supervised Learning strategies 28

data points close to each other along the manifold flat have a similar nature or similar
label. (Ding, Zhu, and Zhang, 2017).

4.4.2 Transductive support vector machines

The transductive support vector machine (TSVM) was proposed in 1999 and is based
on the cluster assumption mentioned in section 4.4.1. TSVM focuses on a particular
working set. Due to this, it is able to achieve the optimal classification within this
working set. However, due to this, TSVM also has poor generalization. TSVM also
has high time complexity. Lastly, for TSVM to work, the number of positive labels
in the workset need to be appointed before training (Ding, Zhu, and Zhang, 2017).

4.4.3 Laplacian support vector machines

The Laplacian support vector machine (LapSVM) is a graph-based SSL method.
The manifold assumption mostly reflects the graph-based SSL methods (see Section
4.4.1). In the graph, the similarities between two data points can be represented by
edge weights. In turn, the labeled data points can be used to label the unlabeled
data. LapSVM is applied in image classification (Ding, Zhu, and Zhang, 2017).

When LapSVM is compared to S3VM, it is shown that LapSVM is more
outstanding in solving and time complexity. LapSVM reflects the local structure
information of the dataset, as it is based on the manifold assumption. This
assumption can be too broad for some classification problems (Ding, Zhu, and
Zhang, 2017).

4.4.4 meanS3VM

The meanS3VM was proposed in 2009. Here, the label mean is used to build the
SSL. The label mean is a simple statistic. The goal of meanS3VM is to maximize the
margin between the label means of the unlabeled data.

The first step is to estimate the label mean of the unlabeled data set. After making
this estimation, meanS3VM is similar to SVM. This makes meanS3VM more efficient.
This turned out to be the case, as meanS3VM is 100 times faster in training time than
TSVM and 10 times faster than LapSVM with relatively large datasets. (Ding, Zhu,
and Zhang, 2017).

4.4.5 S3VM based on cluster kernels

Kernel functions are constructed by using labeled and unlabeled data to improve the
kernel function in reflecting the similarity between samples. In 2002, a framework
was proposed for constructing kernels that rely on the cluster assumption. This
framework allowed for an S3VM based on cluster kernels. The kernel function,
which is constructed by using both labeled and unlabeled data, is then used to train
the SVM (Ding, Zhu, and Zhang, 2017).

Chapter 4. Semi-Supervised Learning strategies 29

When the objective function of an SVM is adjusted, solving and low efficiency
would become more difficult. An advantage of S3VM based on cluster kernels is
that it does not modify the objective function of SVM. S3VM based on cluster kernels
only needs to create a new kernel function. The downside of this is that it has high
time complexity and may have poor performance with large datasets (Ding, Zhu,
and Zhang, 2017).

4.4.6 Conclusion

According to Ding, Zhu, and Zhang (2017), lapSVM and meanSVM are the
outstanding algorithms. When considering the solving process, lapSVM and S3VM
are easier than the others. They are based on the cluster kernel. When comparing
time complexity, lapSVM and meanSVM have good performance. However, on
large datasets, especially meanSVM had a good performance. When comparing
based on accuracy, it becomes more difficult. This is because the algorithms have
their promise in different datasets. This prevents an accurate estimation of which
algorithm is the best.

The upside of S3VM is that it inherits the solid theory of SVM, which improves
the method’s generalization ability. The downside, however, is the high time costs.

30

Chapter 5

Experimental evaluation setup

In this chapter we discuss the setup of the experimental evaluation. First, the
different datasets are discussed. Then, the features and evaluation metrics are
discussed. After that, the implementation of the four semi-supervised models is
discussed. Finally, the parameter tuning and experiment setup is discussed.

5.1 Datasets

The datasets provided by ASReview are used for this research. These
datasets are publicly available at https://github.com/asreview/systematic

-review-datasets. From the 27 available datasets, 12 were chosen that were already
usable within the framework from the National Police Lab AI (Bron, 2021b). The
framework’s existing dataset import function cannot import the other datasets yet.
The dataset sizes of the 12 chosen datasets vary between 1704 and 10953 documents,
and the number of relevant documents varies between 11 and 280. An overview of
these datasets can be found in Table 5.1.

The datasets of ASReview have already been preprocessed. The datasets are
retrieved from the Open Science frame (OSF) or Zenodo and the documents are
already labeled as either relevant or irrelevant (ASReview, 2022).

Name Topic Size Rel # Rel %
Appenzeller-Herzog_2020 Wilson disease 3453 29 0.84%
Bannach-Brown_2019 Animal Model of Depression 1993 280 14.05%
Bos_2018 Dementia 5746 11 0.19%
Hall_2012 Software Fault Prediction 8911 104 1.17%
Kitchenham_2010 Software Engineering 1704 45 2.64%
Kwok_2020 Virus Metagenomics 2481 120 4.84%
Nagtegaal_2019 Nudging 2019 101 5.00%
Radjenovic_2013 Software Fault Prediction 6000 48 0.80%
Wahono_2015 Software Defect Detection 7002 62 0.89%
Wolters_2018 Dementia 5019 19 0.38%
van_Dis_2020 Anxiety-Related Disorders 10953 73 0.67%
van_de_Schoot_2017 PTSD Trajectories 6189 43 0.69%

TABLE 5.1: Overview of the 12 ASReview datasets

https://github.com/asreview/systematic-review-datasets
https://github.com/asreview/systematic-review-datasets

Chapter 5. Experimental evaluation setup 31

5.2 Document representation

Documents are represented as term frequency-inverse document frequency (TF-IDF)
vectors. TF(t, d) stands for Term Frequency and is calculated by dividing the number
of times a term (t) appears in document (d) by the total number of terms in document
(d). IDF stands for Inverse Document Frequency and is calculated by dividing the
total number of documents by the number of documents containing the term (t). TF-
IDF is TF(t, d) multiplied by IDF(t) (Cohen et al., 2006). The TF-IDF score increases
for a term (t) when it appears more often in a document. However, when it appears
in many documents, then it is decreased. The formulas for TF-IDF can be found in
Table 5.2

Metric Formula

TF(t, d)
The number of times a term (t) appears in a document (d)

The total number of terms in (d)

IDF(t) The total number of documents
The number of documents containing the term (t)

TF-IDF(t, d) TF(t, d)× IDF(t)

TABLE 5.2: Formulas of the document representation.

5.3 Evaluation metrics

5.3.1 Recall and work saved over sampling (WSS)

We use recall and work saved over sampling (WSS) as evaluation metrics. The
formulas of these evaluation metrics are shown in Table 5.3. These evaluation
metrics are based on True Positives (TP), False Negatives (FN), and False Positives
(FP). TP are data instances correctly classified as positive, in our case, relevant
documents. False represents a miss-classification. Therefore, FP are data instances
that are miss-classified as positive (relevant), while they were negative (irrelevant
documents). FN are instances that are miss-classified as negative (irrelevant
documents), while they are positive (relevant documents).

Using this terminology, recall is the proportion of relevant documents that has
been classified correctly. So, this represents how many of the relevant documents
were found and labeled as relevant by the algorithm.

The main goal of TAR is to maximize recall while minimizing the reviewer’s
effort (Cormack and Grossman, 2015). So, TAR has to save the human reviewer’s
work of reading all the documents. We measure the work saved as a percentage of
documents the reviewer does not have to read due to the use of TAR. This percentage
needs to be higher than a method that uses random sampling. Therefore, work saved

Chapter 5. Experimental evaluation setup 32

over sampling (WSS) measures the work saved compared to random sampling,
given a required level of recall (Cohen et al., 2006).

The WSS score is calculated by first summing the True Negatives (TN) with
the False Negatives (FN). This represents the number of documents predicted to
be irrelevant and, thereby, the number of documents the reviewer did not have to
read. The (TN + FN) value is then divided by the total number of documents (N)
to make it a proportion. Achieving a recall of 95% through a random sampling
method would, on average, result in the reviewer not having to read 5% of the
documents. Therefore, if the required level of recall is 95%, this 5% is deducted from
the percentage of documents the reviewer did not have to read. This is represented
in the formula as −(1.0 − R). This way, the WSS score represents the percentage
of documents the reviewer does not have to read compared to a random sampling
method. See Table 5.3 for the WSS formula.

Metric Formula Description

Recall TP
TP+FN

Proportion of correctly classified
relevant documents compared to all
relevant documents.

WSS TN + FN
N −(1.0− R)

Work saved compared to simple
sampling.

WSS@95% TN + FN
N −0.05

Work saved compared to simple
sampling at the moment when the
recall score is 95%.

TABLE 5.3: Formulas of the evaluation metrics. TP stands for True Positives, TN stands for True
Negative, FP for False Positives, FN for False Negatives, R stands for the required recall value and

N stands for the total number of documents.

5.3.2 Exclusion of evaluation metrics

This research excluded accuracy and Area under the ROC curve (AUC) as evaluation
metrics. This is because evaluation metrics based on accuracy, i.e., TP+TN

TP+FP+FP+FN do
not work properly when there is a class imbalance. As discussed in Section 3.2.2, this
is the case with TAR. For example, when there are only 0.19% relevant documents (as
with the van_Dis_2020 dataset), 99.81% accuracy can be achieved by simply labeling
all documents as non-relevant. Accuracy also assumes an equal misclassification
cost (Liu, Timsina, and El-Gayar, 2018). This is not the case with TAR, as it is more
costly to have a relevant document labeled as irrelevant than an irrelevant document
classified as relevant. In the first case, the relevant document will never be shown
to a human reviewer, meaning that the document will not be found. In contrast, the
second case means that the human reviewer has to read a non-relevant document,

Chapter 5. Experimental evaluation setup 33

which is only costly in time. This is why recall is an important evaluation metric in
this research (Liu, Timsina, and El-Gayar, 2018).

5.4 Model algorithms

This research will compare six semi-supervised learning models to their supervised
learning counterparts. The models used in this thesis are Labelspreading, semi-
supervised Multinomial Naive Bayes, semi-supervised Multinomial Naive Bayes
with sub-topics, SVM with self-training, Logistic Regression (used in AutoTAR),
Multinomial Naive Bayes, SVM, and two models where Logistic Regression is
combined with semi-supervised Multinomial Naive Bayes with sub-topics, which
we will call CombiTAR.

The framework of the National Police Lab AI (Bron, 2021b) already uses
supervised learning methods in its TAR implementation. The implemented
supervised models are models imported from scikit-learn. Since the framework of
the National Police Lab AI already has functionalities implemented to work with
scikit-learn models, mainly scikit-learn models are used.

5.4.1 The semi-supervised learning models

Label spreading

For label spreading, the scikit-learn model is imported (Pedregosa et al., 2011).

Multinomial Naive Bayes (with sub-topics)

The semi-supervised Multinomial Naive Bayes with sub-topics model is based on
the paper of Nigam, McCallum, and Mitchell (2006). There was no publicly available
implementation of this semi-supervised model. Therefore, the Multinomial Naive
Bayes with sub-topics model is built based on the paper. Scikit-learn did also not
have a comparable semi-supervised learning model available, as they currently only
have three semi-supervised learning methods available, namely: Label propagation,
Label spreading, and Self-training (Scikit-learn, 2023a).

As the basis of the Multinomial Naive Bayes with sub-topics model, the scikit-
learn model Multinomial Naive Bayes is used (Pedregosa et al., 2011). Adjustments
are made to both the fit, predict, and predict_probabilities functions of the
Multinomial Naive Bayes model. The algorithm of the Multinomial Naive Bayes
with sub-topics model is shown in Algorithm 1.

In line 2 of Algorithm 1, the user specifies the number of sub-topics. As
TAR is a 2-class problem, the number of sub-topics needs to be at least 2. When
the number of sub-topics is equal to 2, then the algorithm becomes the semi-
supervised Multinomial Naive Bayes model. When the number of sub-topics is 3
or higher, it becomes a semi-supervised Multinomial Naive Bayes with sub-topics.
In line 5, the labeled documents are separated from the unlabeled documents. The

Chapter 5. Experimental evaluation setup 34

predefined number of sub-topics are created in line 8. In the case of more than
2 sub-topics, this divides the irrelevant class into subclasses, which is the many-
to-one correspondence. In lines 10 to 16, the subclass values are created for the
labeled documents. When a document is relevant, only the subclass belonging to
the relevant class is assigned a 1. When a document is irrelevant, all subclasses
belonging to the irrelevant class get a random probability distribution over the sub-
topics, which all sum up to 1. In line 19, the model is fitted based on the labeled
documents, including their sub-topics. Following this up, in line 20, the unlabeled
documents get their subclass assignment based on the predicted class probability of
the fitted model.

Starting from line 23 in Algorithm 1, the unsupervised loop starts, containing the
E- and M-steps of Expectation Maximization. The theory of this model is discussed
in Section 4.3.4. First, the labeled and unlabeled data are combined in lines 25
and 26. In line 28, the joint log-likelihood score is calculated based on the entire
dataset. In line 31, the model is fitted based on the (new) estimated sub-topic
assignments (M-Step). In lines 34 to 42, the retrained model estimates the subclass
assignments again (E-Step). Here, the labeled documents are handled separately
from the unlabeled documents. This is because the class label is already known
for the labeled documents. This allows us to set the relevant sub-topic to 1 and all
irrelevant sub-topics to 0 if the document is relevant (line 38) or to set the relevant
sub-topic to 0 and normalize the irrelevant sub-topic assignments (line 40). Finally,
the joint log-likelihood score is calculated again in line 44. Now we can calculate
the change in the log-likelihood score for this EM iteration (line 45). After this, the
Expectation Maximization loop starts again if the change is larger than ϵ (line 23).
When this is the case, the newly predicted subclass assignments (E-Step) are used to
retrain the model (M-Step).

When the EM loop has converged, the Multinomial Naive Bayes with sub-topics
model is used in the TAR cycle to calculate the class probabilities of the unlabeled
documents. This is done through Formula 4.8, where the class probability of a
document is calculated by summing all the sub-topic probabilities for the irrelevant
class. The relevant class only has one sub-topic, so this sub-topic probability is used
for the relevant probability of the document.

SVM with self-training

The ideal situation would be implementing a Semi-Supervised SVM (S3VM) model,
especially meanSVM. Unfortunately, as of our knowledge, no implementations
based on a research paper of these models are available. Furthermore, the SVM
implementation of scikit-learn is based on LIBSVM, which makes it infeasible to
adjust this implementation into meanSVM (Pedregosa et al., 2011). Therefore, the
wrapper method self-training is implemented to turn the SVM model into a semi-
supervised learning model.

Chapter 5. Experimental evaluation setup 35

Algorithm 1 Expectation Maximization with many-to-one correspondence

1: Initialize Parameters:
2: number_of_subtopics← number of sub-topics. ▷ specified by user
3:
4: Data Preparation:
5: X_labeled, X_unlabeled, y_labeled, y_unlabeled← X, y
6:
7: Create many-to-one correspondence:
8: Create a total of number_of_subtopics classes, which represent the sub-topics.
9:

10: for each document in X_labeled do
11: if y_labeled = irrelevant then
12: y_subtopic ← Assign random values to all the irrelevant sub-topics and

assign 0 to the relevant sub-topic.
13: else if y_labeled = relevant then
14: y_subtopic← Assign 1 to relevant sub-topic and 0 to irrelevant sub-topics.
15: end if
16: end for
17:
18: Model Initialization:
19: Fit the model on the labeled data (X_labeled, y_subtopic). ▷ Formula 4.4, 4.5 & 4.6
20: y_unlabeled← Predicted sub-topic probabilities of X_unlabeled. ▷ Formula 4.7
21:
22: EM (semi-supervised learning) loop:
23: while change > ϵ do
24: Combine labeled and unlabeled data:
25: X← X_labeled + X_unlabeled
26: y← y_subtopic + y_unlabeled
27:
28: jll_before← joint log likelihood score of the entire dataset
29:
30: M-Step:
31: Fit the model on the combined data (X, y). ▷ Formula 4.4, 4.5 & 4.6
32:
33: E-Step:
34: y_unlabeled← Predicted sub-topic probabilities of X_unlabeled. ▷ Formula 4.7
35: y_subtopic← Predicted sub-topic probabilities of X_labeled. ▷ Formula 4.7
36: for each label in y_labeled do ▷ Correcting labeled probabilities
37: if label = relevant then
38: y_subtopic[index of label] ← Set relevant sub-topic to 1 and irrelevant

sub-topics to 0.
39: else if label = irrelevant then
40: y_subtopic[index of label] ← Set relevant sub-topic to 0 and normalise

irrelevant sub-topics.
41: end if
42: end for
43:
44: jll_after← joint log likelihood score of the entire dataset
45: change← jll_after - jll_before
46: end while

Chapter 5. Experimental evaluation setup 36

The self-training loop adds the top k documents as relevant documents due to the
imbalance in the data. When the model is allowed to calculate the class probabilities
and add the top k documents to the predicted class, then most, if not all, unlabeled
documents would be added to the irrelevant class, as in most cases, less than 1%
of the documents are relevant. The implementation of self-training can be seen in
Algorithm 2).

In line 2 of Algorithm 2, the user specifies the number of self-training iterations.
In line 3, the user specifies the number of unlabeled documents that will be added
to the labeled set per iteration. The labeled and unlabeled data are separated in line
6. In line 9, the SVM classifier is fitted on the labeled data. Starting from line 12,
the self-training loop starts. In line 13, the decision boundary found by fitting the
model on the labeled data is used to calculate the distance between the unlabeled
documents and the decision boundary. These values are used in line 14 to find the
top k documents with the highest distance to this decision boundary in the direction
of the relevant class. Lines 17 to 19 add the top k documents to the labeled documents
with a relevant label and remove these top k documents from the unlabeled set.
Finally, in line 21, the model is fitted again on the expanded labeled data.

Algorithm 2 SVM with self-training

1: Initialize Parameters:
2: number_of_iterations← number of self-training iterations. ▷ specified by user
3: k← number documents added per iteration. ▷ specified by user
4:
5: Data Preparation:
6: X_labeled, X_unlabeled, y_labeled← X, y
7:
8: Model Initialization:
9: Fit the model on the labeled data (X_labeled, y_labeled).

10:
11: Self-training Loop:
12: for each iteration in number_of_iterations do
13: decision← distance of unlabeled documents to the decision boundary
14: top_k← top k documents of relevant class with highest decision value
15:
16: Adding the top k documents to the labeled set as relevant documents
17: X_labeled← X_labeled + top_k
18: y_labeled← y_labeled + relevant labels for the top_k documents
19: X_unlabeled← X_unlabeled without the top_k documents
20:
21: Fit the model on the expanded labeled data (X_labeled, y_labeled).
22: end for

CombiTAR

The final semi-supervised learning model combines AutoTAR, which uses logistic
regression, with semi-supervised Multinomial Naive Bayes with sub-topics. The

Chapter 5. Experimental evaluation setup 37

model with Multinomial Naive Bayes with sub-topics is chosen instead of the
Multinomial Naive Bayes model because it should perform better with many
irrelevant documents, which is the case in the experimental evaluation. This is
done by using the supervised AutoTAR classifier at the start of the TAR process and
switching to the semi-supervised Multinomial Naive Bayes with sub-topics model
when a certain threshold is reached. Through this approach, the semi-supervised
learning model can start with more labeled documents, which should help the
performance of the semi-supervised learning method.

CombiTAR is implemented with two different thresholds. The first
implementation is CombiTAR (50%), which runs AutoTAR until 50% of the
relevant documents are found. After this, the Multinomial Naive Bayes with
sub-topics model takes over until all relevant documents are found. The second
implementation is CombiTAR (90%), which has a threshold of 90%. So, the only
difference with the first implementation is that AutoTAR finds 90% of the relevant
documents. When 90% of the relevant documents are found, semi-supervised
Multinomial Naive Bayes with sub-topics model takes over again until all relevant
documents are found

5.4.2 The supervised learning models

In order to be able to answer the research question, the semi-supervised learning
models are compared to their corresponding supervised learning models. The
following supervised learning models are used in this research: Logistic Regression
(used in AutoTAR), Multinomial Naive Bayes, and SVM. Table 5.4 shows an
overview of the semi-supervised and supervised models.

Semi-supervised model Supervised model
Labelspreading Logistic Regression (AutoTAR)
Multinomial Naive Bayes Multinomial Naive Bayes
Multinomial Naive Bayes with sub-topics Multinomial Naive Bayes
SVM with self-training SVM
CombiTAR (50%) Logistic Regression (AutoTAR)
CombiTAR (90%) Logistic Regression (AutoTAR)

TABLE 5.4: Overview of the semi-supervised and supervised models

5.5 Hyper-parameter tuning

Performing hyper-parameter tuning during a TAR cycle is challenging, especially as
TAR is an iterative process where the active learning component adds new (labeled)
data into the train set each cycle. Due to this, splitting the data into a train and test
set within the TAR process is impossible. Finding the optimal hyper-parameters
by running the whole TAR experiments with different hyper-parameters is not

Chapter 5. Experimental evaluation setup 38

scientifically sound. This can bias the results, overly optimize the model, and cause
overfitting. Therefore, we have chosen to search for the optimal hyper-parameter
values for the classifiers used in the TAR process. This way, it is possible to split the
data into a train and test set through k-fold cross-validation. Through this approach,
we aim to preserve the robustness of our models and the validity of our results.

For our experimental evaluation, we will compare the performance of two
classifiers with each other in the TAR process. As both classifiers have utilized the
same k-fold cross-validation on the same data to find their best hyper-parameters,
evaluating their relative performance should still be as fair as possible.

Stratified 5-fold cross-validation in combination with gridsearch is used to find
the best hyper-parameter values per model per dataset. The stratified approach is
chosen to ensure that each fold has both relevant and irrelevant documents. This is
important as there are datasets with less than .2% relevant documents.

Since we are dealing with supervised and semi-supervised models, the train set
in each fold contains labeled and unlabeled data, with a .8 and .2 ratio, respectively.
The supervised models ignore the unlabeled data in the gridsearch. The folds and
the unlabeled documents are fixed and, therefore, the same between all different
models.

For the SVM models, an exception is made. The SVM models take longer to
train than the other models. Therefore, for the SVM models, a stratified 3-fold cross-
validation is used. Also, the best hyper-parameter values for the SVM models are
only searched for the first dataset, Appenzeller-Herzog_2020. The hyper-parameter
values found for this dataset are used for all datasets. As we do this for both the
supervised SVM and the semi-supervised SVM model, we keep the performance
comparison as fair as possible.

Gridsearch is used to find the best hyper-parameter values per model per dataset.
For the scoring, the logistic loss (neg_log_loss) is used. This is done as our data is
highly imbalanced. Due to this, using a scoring metric like accuracy would directly
result in high accuracy if the model classifies all documents as irrelevant (see Section
5.3.2). In the TAR scenario, a document can be either relevant or irrelevant. This
makes the y ∈ {0, 1}. The probability estimate is p = Pr(y = 1). The logistic loss is
then calculated as follows. If y = 1, then Logloss(y, p) = −log(p). When y = 0, then
Logloss(y, p) = log(1− p). This scoring is better suited for an imbalanced dataset, as
this scoring does not use the (ratio of) correctly classified documents but compares
the difference between the log probability estimate of the model with the true label
(Scikit-learn, 2023b).

5.5.1 Logistic Regression

Multiple gridsearches are conducted to identify the optimum parameters. The
first gridsearch is performed on the dataset "Appenzeller-Herzog_2020". In this
gridsearch, all solvers are used (’lbfgs’, ’liblinear’, ’newton-cg’, ’newton-cholesky’,
’sag’, ’saga’), combined with all C values ∈ [.1, .2, .3, ..., .7, .8, .9] and all C values ∈

Chapter 5. Experimental evaluation setup 39

[1, 2, 3, ..., 98, 99, 100] (Zhu et al., 2011; Fan et al., 2008; Yu, Huang, and Lin, 2011;
Schmidt, Le Roux, and Bach, 2017; Defazio, Bach, and Lacoste-Julien, 2014). The
results showed that the solver liblinear was the highest-scoring solver. Based on this
result and the fact that lbfgs is the default solver, only the liblinear and lbfgs solvers
are used in the gridsearch of the following datasets. So, for all remaining datasets,
the gridsearch is performed with the solvers ’lbfgs’ and ’liblinear’ in combination
with the same C values as before. The results of the gridsearches are shown in Table
5.5. For more detailed gridsearch results per dataset, see Table A.2 in Appendix A.

5.5.2 Labelspreading

For label spreading, the first gridsearch is performed on all datasets with the kernels
’k-nearest neighbors’ (knn) and ’radial basis function’ (rbf), and all gamma values
between 1 and 50 in the case of kernel rbf and all n_neighbors values between 1 and
50 in the case of knn kernel. On two datasets, the best results were n_neighbor values
49 and 50. Due to this being very close to the edge of the gridsearch, an additional
gridsearch was performed on these datasets with kernel knn and n_neighbors values
between 50 and 70. See Table 5.5 for an overview of the results.

5.5.3 Multinomial Naive Bayes

The Multinomial Naive Bayes model had no hyper-parameters that needed to be
tuned. The model uses Laplace smoothing, which is set by the parameter α = 1.
Still, the gridsearch was run once per dataset. This way, the results of the logistic
loss score can still be compared.

5.5.4 Semi-supervised Multinomial Naive Bayes

The semi-supervised Multinomial Naive Bayes model has no hyper-parameters that
need to be tuned. Like the Multinomial Naive Bayes model, the semi-supervised
Multinomial Naive Bayes uses Laplace smoothing, and the gridsearch is run once
per dataset.

5.5.5 Semi-supervised Multinomial Naive Bayes with sub-topics

As a first step, a gridsearch is done with various number of sub-topics (2, 5, 10,
15, 20, ..., 140, 145, 150). Two datasets showed an optimal number of sub-topics of
150, which is on the edge of our gridsearch. Therefore, an additional exploratory
gridsearch was done for these two datasets with varying number of sub-topics (150,
160, 170, ..., 480, 490, 500). Then, a final fine gridsearch was performed on all datasets
around the highest-scoring number of sub-topics. The results are shown in Table 5.5.
An overview of the best number of sub-topics for each dataset can be found in Table
A.1 in Appendix A.

Chapter 5. Experimental evaluation setup 40

5.5.6 SVM

As mentioned in Section 5.5, the gridsearch is only performed on the first dataset
for the SVM models because they take a long time to train. However, by applying
the same strategy for both SVM and SVM with self-training, the performance
comparison should be as fair as possible, given the time restrictions.

For the SVM model, a gridsearch is done with all C’s between ∈ [1, 2, 3, ..., 98, 99,
100] and gamma equal to ’auto’ or ’scale’. When gamma is set to ’auto’, then gamma
is calculated by 1/number of features. When ’scale’ is selected, gamma is calculated
by 1/(number of features× variance of the dataset). The results are shown in Table
5.5.

5.5.7 SVM with self-training

The gridsearch of SVM with self-training is also only performed on the first dataset
"Appenzeller-Herzog_2020". However, a different gridsearch strategy was applied
since more parameters needed to be tuned. In the first gridSearch, various C values
have been (1, 10, 20, 30, ..., 80, 90, 100), combined with gamma equal to ’auto’ or
’scale’ and the number of iterations ∈ [1, 2, 3, 4, 5].

The best result was C equal to 100, gamma equal to ’auto’, and the number
of iterations equal to 1. As a C of 100 is on the edge of our gridsearch, a second
gridsearch is done with various higher values for C (100, 110, 120, ..., 180, 190, 200),
with gamma equal to ’auto’ and the number of iterations equal to 1. Again, a C of
100 returned the best results. Therefore, a final, more fine gridsearch is performed
with all C values ∈ [90, 91, 92, ..., 108, 109, 110]. The results can be seen in Table 5.5.

Model Parameter Mean SD # Datasets
Logistic Regression (solver = lbfgs) C 9.50 2.29 4
Logistic Regression (solver = liblinear) C 14.25 2.11 8

Label spreading (kernel = rbf) gamma 11.50 1.50 2
Label spreading (kernel = knn) n_neighbors 26.00 13.59 10

MNB - - - 12

SS MNB - - - 12

SS MNB with sub-topics nr_subtopics 118.83 114.55 12

SVM (gamma = scale) C 3.00 0.00 1

SVM with self-training (gamma = auto) C 100.00 0.00 1
k_best 1.00 0.00 1
nr_iterations 1.00 0.00 1

TABLE 5.5: Overview of the gridsearch results with best parameters per model. SS stands for
semi-supervised, MNB stands for Multinomial Naive Bayes, and SVM stands for Support Vector

Machine.

Chapter 5. Experimental evaluation setup 41

5.6 Experiments

The research question of this master’s thesis is "Can semi-supervised learning be
used within Technology Assisted Review to improve the work saved over sampling
score?". In order to answer this research question, we will compare the performance
of different supervised learning classifiers with their semi-supervised counterparts
in TAR. More information about the chosen SSL methods can be found in Section
5.4.

5.6.1 Framework

The framework used for the TAR experiments is the framework of Bron (2021b),
which uses the active learning package allib (Bron, 2021a). This is a framework
currently being developed by the National Police Lab AI. This police lab is
a collaborative initiative of the Dutch Police, Utrecht University, University of
Amsterdam, and Delft University of Technology (ICAI, n.d.). The allib package is,
as of this moment, not publicly available.

The framework implements different TAR systems, like AutoTAR, ASReview,
and TAR systems based on different Machine Learning methods. However, these are
all based on supervised learning methods. The different semi-supervised learning
methods discussed in section 5.4.1 are implemented into this framework.

5.6.2 Technology Assisted Review

The TAR experiments within the framework of Bron (2021b) work as follows.
First, one relevant and one irrelevant document are randomly selected as labeled
documents. When a supervised learning method is chosen, the classifier is trained
on only these two labeled documents. In the case of a semi-supervised learning
method, the classifier is trained on both these two labeled documents and the
remaining unlabeled documents. After training the classifier, the classifier predicts
the class probability for all unlabeled documents. This returns a probability per
document on whether it belongs to the relevant or irrelevant class. The top 100
documents with the highest probability of being relevant are simulated to be shown
to a human expert. As we already know all the labels in our experiments, we directly
return the correct labels of these 100 documents. After this point, the loop starts
again. The now 102 labeled documents are used to train the classifier, after which the
classifier predicts the class probability of all unlabeled documents again. This loops
until all relevant documents are found. Afterward, the work saved over sampling
score is measured when the recall is 95% and when the recall is 100%.

It is important to note that the experimental results depend on the two labeled
documents selected at the start. Due to this, the experiments are performed ten times
per dataset for all classifiers, except for both SVM classifiers. The experiments are
performed six times for the SVM classifiers because they need more training time.

Chapter 5. Experimental evaluation setup 42

By performing the experiments multiple times and averaging the results, we ensure
the reliability of the results. Also, the same ten seeds are used for each classifier.
This way, the various classifiers that are compared start with the same two labeled
documents in each experiment to ensure a fair comparison (Liu, Timsina, and El-
Gayar, 2018).

5.7 Ethics and Privacy

The Ethics and Privacy Quick Scan of the Utrecht University Research Institute of
Information and Computing Sciences was conducted (see Appendix C). It classified
this research as low-risk with no fuller ethics review or privacy assessment required.

43

Chapter 6

Results

In this chapter, we present the results of the experimental evaluations to answer
the research question, "Can semi-supervised learning be used within Technology
Assisted Review to improve the work saved over sampling score?". In order to be
able to answer this question, we will have to answer the following sub-questions:

SQ 1. Does the semi-supervised Multinomial Naive Bayes model improve the work
saved over sampling score compared to Multinomial Naive Bayes model in
Technology Assisted Review?

SQ 2. Does the semi-supervised Multinomial Naive Bayes model with sub-topics
improve the work saved over sampling score compared to Multinomial Naive
Bayes model in Technology Assisted Review?

SQ 3. Does the SVM with self-training model improve the work saved over sampling
score compared to the SVM model in Technology Assisted Review?

SQ 4. Does the label spreading model improve the work saved over sampling score
compared to AutoTAR in Technology Assisted Review?

SQ 5. Does combining AutoTAR with semi-supervised Multinomial Naive Bayes
with sub-topics improve the work saved over sampling score compared to
AutoTAR in Technology Assisted Review?

Each sub-question compares one of the implemented semi-supervised learning
models to their corresponding supervised learning variant or the state-of-the-art
AutoTAR method.

In order to answer the sub-questions, a statistical test is needed to test whether
the differences in performance of the two classifiers are different from zero. The
experimental evaluations that will be compared across different machine learning
models use the same random samples each trial, which allows for a paired test
(Demšar, 2006).

The paired t-test should not be used, as the assumption that the differences in
scores follow a normal distribution is not guaranteed. Also, the t-test is affected
by outliers. Therefore, a non-parametric alternative is used. The Wilcoxon signed-
ranks test is a more robust, non-parametric test, as it does not assume normal

Chapter 6. Results 44

distributions, and outliers have less effect on the Willcoxon test than the t-test. The
Wilcoxon signed-ranks test compares the ranks and the two classifiers’ performance
differences. The W-Statistic represents the lowest sum of ranks value. First, the
differences are ranked according to their absolute values. Then the ranks are
summed for the cases where the second model outperformed the first (R+). The
ranks are also summed for the cases where the first model outperforms the second
(R−). Whichever of these two values is lower is reported as the W-statistic value.
Through the Wilcoxon signed-ranks test, we attempt to reject the null hypothesis
that there is no difference in performance (Demšar, 2006).

6.1 Experiment 1: Semi-supervised Multinomial Naive
Bayes and Multinomial Naive Bayes models

For each of the twelve datasets, the semi-supervised Multinomial Naive Bayes and
Multinomial Naive Bayes models were used to run ten TAR trials. Each of the ten
trials started with the same initial two documents. A Wilcoxon signed-ranks test
was performed to identify whether there is a significant difference in performance
between the two models. This was done for both the work saved over sampling
scores at a recall of 95% (see Table 6.1) and at a recall of 100% (see Table 6.2). The
Wilcoxon signed-ranks test revealed a significant difference on all datasets at a recall
of 95% (WSS@95%). For the recall of 100% (WSS@100%), the Wilcoxon signed-ranks
test revealed a significant difference for all datasets except the Bannach-Brown_2019
(Ban) dataset. On all the datasets where a significant difference was found, the semi-
supervised Multinomial Naive Bayes model scored lower in all ten trials than the
Multinomial Naive Bayes model (W = 0.0, p = .002).

Figure 6.1 illustrates the performance of the ten trials for the first dataset.
The three blue dotted lines each represent a different benchmark. The highest
horizontal line represents the threshold for a recall of 100%, the second horizontal
line represents the threshold for a recall of 95%, and the diagonal line represents
the expected performance of a random sampling strategy. Figure 6.1 shows that
the Multinomial Naive Bayes model (6.1(b)) was able to identify more relevant
documents earlier in the TAR process and achieved a recall of both 95% and 100%
sooner than the semi-supervised model. Detailed graphs for all experiments are
available in Appendix B.

Chapter 6. Results 45

(a) Semi-supervised Multinomial Naive Bayes (b) Multinomial Naive Bayes

FIGURE 6.1: All trials for Semi-supervised Multinomial Naive Bayes (a) and Multinomial Naive
Bayes (b) for the dataset Appenzeller-Herzog_2020.

6.2 Experiment 2: Semi-supervised Multinomial Naive
Bayes with sub-topics and Multinomial Naive Bayes
models

For each of the twelve datasets, the semi-supervised Multinomial Naive Bayes with
sub-topics and the Multinomial Naive Bayes models were used to run ten TAR trials.
Again, each of the ten trials started with the same initial two documents. A Wilcoxon
signed-ranks test was performed to identify whether there is a significant difference
in performance between the two models. This was done for both the work saved
over sampling scores at a recall of 95% (see Table 6.3) and at a recall of 100% (see
Table 6.4). The Wilcoxon signed-ranks test revealed a significant difference on all
datasets for the WSS@95%. It also revealed a significant difference for 11 out of 12
datasets for the WSS@100%.

For the WSS@95%, the semi-supervised Multinomial Naive Bayes with sub-
topics model outperformed the Multinomial Naive Bayes model three times. In
the remaining nine datasets, its performance was worse. For the WSS@100%, the
semi-supervised Multinomial Naive Bayes with sub-topics model outperformed the
Multinomial Naive Bayes model five out of eleven times but performed worse on
the remaining six datasets.

Figure 6.2 illustrates the performance of the ten trials for the dataset Bos_2018.
The semi-supervised Multinomial Naive Bayes with sub-topics model (6.2(a)) could
find all relevant documents sooner in most cases. There is only one trial where
the Multinomial Naive Bayes model (6.2(b)) found all the relevant documents
sooner. The graphs also illustrate that the semi-supervised model was able to more
consistantly find the relevant documents per trial. There is less variance between the
trials.

Chapter 6. Results 46

Datasets SS MNB MNB Higher Lower Tie p W
M SD M SD

App. .013 .026 .543 .084 0 10 0 .002 0.0
Ban. .256 .063 .404 .020 0 10 0 .002 0.0
Bos. .061 .031 .614 .060 0 10 0 .002 0.0
Dis. -.008 .008 .416 .012 0 10 0 .002 0.0
Hal. .276 .088 .884 .004 0 10 0 .002 0.0
Kit. .002 .017 .120 .043 0 10 0 .002 0.0
Kwo. .114 .035 .367 .027 0 10 0 .002 0.0
Nag. .173 .040 .460 .038 0 10 0 .002 0.0
Rad. .080 .076 .756 .022 0 10 0 .002 0.0
Scho. .087 .019 .697 .050 0 10 0 .002 0.0
Wah. .006 .014 .688 .010 0 10 0 .002 0.0
Wol. .007 .003 .405 .053 0 10 0 .002 0.0

TABLE 6.1: Comparison of WSS@95% results for semi-supervised Multinomial Naive Bayes and
Multinomial Naive Bayes models. The Mean (M) and Standard Deviation (SD) of the WSS@95%
values are shown. The ’Higher’, ’Lower’, and ’Tie’ represent the number of times where the semi-
supervised model scored higher, lower, or equal to the supervised model, respectively. Column ’p’
shows the p-value and the column ’W’ shows the W-statistic value from the Wilcoxon signed-ranks

test.

Datasets SS MNB MNB Higher Lower Tie p W
M SD M SD

App. .038 .028 .478 .056 0 10 0 .002 0.0
Ban. .133 .006 .143 .022 3 7 0 .193 14.0
Bos. .061 .031 .614 .060 0 10 0 .002 0.0
Dis. .003 .008 .220 .074 0 10 0 .002 0.0
Hal. .098 .039 .508 .012 0 10 0 .002 0.0
Kit. .026 .010 .115 .019 0 10 0 .002 0.0
Kwo. .081 .018 .141 .032 0 10 0 .002 0.0
Nag. .104 .016 .338 .033 0 10 0 .002 0.0
Rad. .054 .025 .708 .035 0 10 0 .002 0.0
Scho. .064 .034 .716 .043 0 10 0 .002 0.0
Wah. .019 .021 .420 .016 0 10 0 .002 0.0
Wol. .007 .003 .405 .053 0 10 0 .002 0.0

TABLE 6.2: Comparison of WSS@100% results for semi-supervised Multinomial Naive Bayes and
Multinomial Naive Bayes models. The Mean (M) and Standard Deviation (SD) of the WSS@100%
values are shown. The ’Higher’, ’Lower’, and ’Tie’ represent the number of times where the semi-
supervised model scored higher, lower, or equal to the supervised model, respectively. Column ’p’
and the column ’W’ shows the W-statistic value shows the p-value from the Wilcoxon signed-ranks

test.

Chapter 6. Results 47

(a) Semi-supervised Multinomial Naive Bayes
with sub-topics

(b) Multinomial Naive Bayes

FIGURE 6.2: All trials for semi-supervised Multinomial Naive Bayes with sub-topics (a) and
Multinomial Naive Bayes (b) for the dataset Bos_2018.

6.3 Experiment 3: SVM with self-training and SVM models

The datasets van_Dis_2020 (Dis.), Hall_2012 (Hal.), and Wahono_2015 (Wah.) are
excluded from the experiments with SVM models. The SVM with self-training and
SVM models were used to run six TAR trials for the remaining nine datasets. This
was done due to time restrictions. The models started with the same initial two
documents for each of these six trials. A Wilcoxon signed-ranks test was performed
to identify whether there is a significant difference in performance between the two
models. This was done for both the work saved over sampling scores at a recall of
95% (see Table 6.5) and at a recall of 100% (see Table 6.6). The Wilcoxon signed-ranks
test found a significant difference for six datasets for WSS@95% and WSS@100%.

For the WSS@95%, the SVM model outperformed the SVM with self-training
model six times. For the WSS@100% experiments, the SVM with self-training model
outperformed the SVM model one time, while the SVM model outperformed the
SVM with self-training model five times.

6.4 Experiment 4: Label spreading and AutoTAR models

The label spreading and AutoTAR models were used to run ten TAR trials for all
twelve datasets. Each of the ten trials started with the same initial two documents. A
Wilcoxon signed-ranks test was performed to identify whether there is a significant
difference in performance between the two models. This was done for both the work
saved over sampling scores at a recall of 95% (see Table 6.7) and at a recall of 100%
(see Table 6.8). The Wilcoxon signed-ranks test revealed a significant difference in all
datasets. For the WSS@95% results, on all the datasets, it can be seen that the label
spreading model scored lower in each trial compared to AutoTAR. However, for
the WSS@100% results, it can be seen that the label spreading model scores higher

Chapter 6. Results 48

Datasets SS MNB Sub. MNB Higher Lower Tie p W
M SD M SD

App. .410 .010 .543 .084 1 9 0 .004 1.0
Ban. .341 .007 .404 .020 0 10 0 .002 0.0
Bos. .723 .000 .614 .060 9 1 0 .004 1.0
Dis. .377 .002 .416 .012 0 10 0 .002 0.0
Hal. .470 .025 .884 .004 0 10 0 .002 0.0
Kit. .493 .004 .120 .043 10 0 0 .002 0.0
Kwo. .338 .009 .367 .027 2 8 0 .010 3.0
Nag. .343 .019 .460 .038 0 10 0 .002 0.0
Rad. .506 .006 .756 .022 0 10 0 .002 0.0
Scho. .508 .003 .697 .050 0 10 0 .002 0.0
Wah. .467 .002 .688 .010 0 10 0 .002 0.0
Wol. .532 .000 .405 .053 10 0 0 .002 0.0

TABLE 6.3: Comparison of WSS@95% results for semi-supervised Multinomial Naive Bayes with
sub-topics and Multinomial Naive Bayes models. The Mean (M) and Standard Deviation (SD)
of the WSS@95% values are shown. The ’Higher’, ’Lower’, and ’Tie’ represent the number of
times where the semi-supervised model scored higher, lower, or equal to the supervised model,
respectively. Column ’p’ shows the p-value and the column ’W’ shows the W-statistic value from

the Wilcoxon signed-ranks test.

Datasets SS MNB Sub. MNB Higher Lower Tie p W
M SD M SD

App. .204 .084 .478 .056 1 9 0 .004 1.0
Ban. .030 .002 .143 .022 0 10 0 .002 0.0
Bos. .723 .000 .614 .060 9 1 0 .004 1.0
Dis. .303 .000 .220 .074 9 1 0 .084 10.0
Hal. .449 .001 .508 .012 0 10 0 .002 0.0
Kit. .411 .000 .115 .019 10 0 0 .002 0.0
Kwo. .249 .021 .141 .032 9 0 1 .008 0.0
Nag. .243 .001 .338 .033 0 10 0 .002 0.0
Rad. .350 .000 .708 .035 0 10 0 .002 0.0
Scho. .515 .009 .716 .043 0 10 0 .002 0.0
Wah. .457 .000 .420 .016 10 0 0 .002 0.0
Wol. .532 .000 .405 .053 10 0 0 .002 0.0

TABLE 6.4: Comparison of WSS@100% results for semi-supervised Multinomial Naive Bayes with
sub-topics and Multinomial Naive Bayes models. The Mean (M) and Standard Deviation (SD)
of the WSS@100% values are shown. The ’Higher’, ’Lower’, and ’Tie’ represent the number of
times where the semi-supervised model scored higher, lower, or equal to the supervised model,
respectively. Column ’p’ shows the p-value and the column ’W’ shows the W-statistic value from

the Wilcoxon signed-ranks test.

Chapter 6. Results 49

Datasets SS SVM SVM Higher Lower Tie p W
M SD M SD

App. .510 .153 .678 .066 0 6 0 .031 0.0
Ban. .496 .067 .522 .031 3 3 0 .688 8.0
Bos. .559 .085 .897 .009 0 6 0 .031 0.0
Kit. .487 .059 .532 .009 1 5 0 .156 3.0
Kwo. .631 .020 .704 .014 0 6 0 .031 0.0
Nag. .618 .023 .600 .083 3 3 0 .562 7.0
Rad. .747 .022 .784 .029 0 6 0 .031 0.0
Scho. .857 .005 .892 .005 0 6 0 .031 0.0
Wol. .560 .135 .709 .086 0 6 0 .031 0.0

TABLE 6.5: Comparison of WSS@95% results for SVM with self-training and SVM models. The
Mean (M) and Standard Deviation (SD) of the WSS@95% values are shown. The ’Higher’, ’Lower’,
and ’Tie’ represent the number of times where the semi-supervised model scored higher, lower, or
equal to the supervised model, respectively. Column ’p’ shows the p-value and the column ’W’

shows the W-statistic value from the Wilcoxon signed-ranks test.

Datasets SS SVM SVM Higher Lower Tie p W
M SD M SD

App. .213 .096 .371 .247 2 4 0 .219 4.0
Ban. .098 .024 .073 .021 5 1 0 .219 4.0
Bos. .559 .085 .897 .009 0 6 0 .031 0.0
Kit. .050 .030 .129 .033 0 6 0 .031 0.0
Kwo. .255 .025 .499 .094 0 6 0 .031 0.0
Nag. .290 .027 .369 .049 1 5 0 .062 1.0
Rad. .419 .068 .795 .020 0 6 0 .031 0.0
Scho. .883 .011 .808 .038 6 0 0 .031 0.0
Wol. .560 .135 .709 .086 0 6 0 .031 0.0

TABLE 6.6: Comparison of WSS@100% results for SVM with self-training and SVM models. The
Mean (M) and Standard Deviation (SD) of the WSS@100% values are shown. The ’Higher’,
’Lower’, and ’Tie’ represent the number of times where the semi-supervised model scored higher,
lower, or equal to the supervised model, respectively. Column ’p’ shows the p-value and the

column ’W’ shows the W-statistic value from the Wilcoxon signed-ranks test.

Chapter 6. Results 50

on each trial for two datasets. The AutoTAR model scored higher on nine datasets
on each of the ten trials. Lastly, for the dataset Kitchenham_2010 (Kit.), AutoTAR
received a higher WSS@100% score in seven trials, and label spreading received a
higher score in three trials. Still, a significant difference was found (W = 6.0, p =
.027).

6.5 Experiment 5: CombiTAR and AutoTAR models

The performance of two versions of CombiTAR has been compared to the
performance of AutoTAR. The first implementation is CombiTAR 50%. The
CombiTAR 50% and AutoTAR models were used to run ten TAR trials for each
dataset. All trials started with the same initial two documents. A Wilcoxon signed-
ranks test was performed to identify whether there was a significant difference in
performance between the two models. This was done for both the work saved over
sampling scores at a recall of 95% (see Table 6.9) and at a recall of 100% (see Table
6.10). For the WSS@95% and WSS@100% results, the Wilcoxon signed-ranks test
revealed a significant difference in all datasets. For the WSS@95%, the CombiTAR
50% model scored lower in each trial compared to AutoTAR. For the WSS@100%
results, the CombiTAR 50% model scored higher for each trial in two datasets and
lower for each trial in the remaining nine datasets.

The performance graphs of the Kitchenham_2010 dataset are shown in Figure
6.3. Figure 6.3(a) shows that CombiTAR 50% found fewer relevant documents right
after the switch to the semi-supervised model, which happened when 23 relevant
documents were found. However, once CombiTAR 50% found 95% of the relevant
documents, it required less time to find the remaining relevant documents (100%
recall). This illustrates why the CombiTAR 50% model improved the WSS@100%
score but not the WSS@95% score.

(a) CombiTAR 50% (b) AutoTAR

FIGURE 6.3: All trials for CombiTAR 50% (a) and AutoTAR (b) for the dataset Kitchenham_2010.

The second implementation of CombiTAR is CombiTAR 90%. The CombiTAR
90% and AutoTAR models also were used to run ten TAR trials for all datasets. All
trials started with the same initial two documents. A Wilcoxon signed-ranks test

Chapter 6. Results 51

Datasets Label spr. AutoTAR Higher Lower Tie p W
M SD M SD

App. .268 .190 .631 .007 0 10 0 .002 0.0
Ban. .368 .026 .497 .014 0 10 0 .002 0.0
Bos. .692 .243 .921 .010 0 10 0 .002 0.0
Dis. .315 .034 .711 .006 0 10 0 .002 0.0
Hal. .843 .011 .921 .001 0 10 0 .002 0.0
Kit. .323 .027 .604 .013 0 10 0 .002 0.0
Kwo. .600 .019 .727 .017 0 10 0 .002 0.0
Nag. .536 .010 .620 .005 0 10 0 .002 0.0
Rad. .764 .016 .825 .005 0 10 0 .002 0.0
Scho. .768 .020 .914 .003 0 10 0 .002 0.0
Wah. .745 .021 .819 .001 0 10 0 .002 0.0
Wol. .307 .221 .769 .032 0 10 0 .002 0.0

TABLE 6.7: Comparison of WSS@95% results for label spreading and AutoTAR models. The Mean
(M) and Standard Deviation (SD) of the WSS@95% values are shown. The ’Higher’, ’Lower’, and
’Tie’ represent the number of times where the semi-supervised model scored higher, lower, or
equal to the supervised model, respectively. Column ’p’ shows the p-value and the column ’W’

shows the W-statistic value from the Wilcoxon signed-ranks test.

Datasets Label spr. AutoTAR Higher Lower Tie p W
M SD M SD

App. .021 .056 .325 .166 0 10 0 .002 0.0
Ban. .021 .012 .056 .007 0 10 0 .002 0.0
Bos. .692 .243 .921 .010 0 10 0 .002 0.0
Dis. .234 .070 .620 .002 0 10 0 .002 0.0
Hal. .588 .010 .565 .000 10 0 0 .002 0.0
Kit. .110 .112 .218 .008 3 7 0 .027 6.0
Kwo. .004 .001 .296 .005 0 10 0 .002 0.0
Nag. .005 .002 .438 .008 0 10 0 .002 0.0
Rad. .001 .000 .843 .000 0 10 0 .002 0.0
Scho. .785 .016 .857 .003 0 10 0 .002 0.0
Wah. .540 .045 .419 .001 10 0 0 .002 0.0
Wol. .307 .221 .769 .032 0 10 0 .002 0.0

TABLE 6.8: Comparison of WSS@100% results for label spreading and AutoTAR models. The
Mean (M) and Standard Deviation (SD) of the WSS@100% values are shown. The ’Higher’,
’Lower’, and ’Tie’ represent the number of times where the semi-supervised model scored higher,
lower, or equal to the supervised model, respectively. Column ’p’ shows the p-value and the

column ’W’ shows the W-statistic value from the Wilcoxon signed-ranks test.

Chapter 6. Results 52

was performed to identify whether there is a significant difference in performance
between the two models. This was done for both the work saved over sampling
scores at a recall of 95% (see Table 6.9) and at a recall of 100% (see Table 6.10). For the
WSS@95% results, the Wilcoxon signed-ranks test revealed a significant difference
for ten datasets. The CombiTAR 90% model scored lower in each trial than AutoTAR
for the ten datasets with a significant difference. For the WSS@100% results, the
Wilcoxon signed-ranks test revealed a significant difference for all twelve datasets.
The CombiTAR 90% model scored higher for each trial in two datasets and lower for
each trial in ten datasets.

Chapter 6. Results 53

Datasets CombiTAR 50% AutoTAR Higher Lower Tie p W
M SD M SD

App. .442 .051 .631 .007 0 10 0 .002 0.0
Ban. .342 .012 .497 .014 0 10 0 .002 0.0
Bos. .730 .014 .921 .010 0 10 0 .002 0.0
Dis. .378 .007 .711 .006 0 10 0 .002 0.0
Hal. .459 .012 .921 .001 0 10 0 .002 0.0
Kit. .490 .008 .604 .013 0 10 0 .002 0.0
Kwo. .334 .019 .727 .017 0 10 0 .002 0.0
Nag. .340 .014 .620 .005 0 10 0 .002 0.0
Rad. .503 .005 .825 .005 0 10 0 .002 0.0
Scho. .543 .027 .914 .003 0 10 0 .002 0.0
Wah. .465 .010 .819 .001 0 10 0 .002 0.0
Wol. .529 .003 .769 .032 0 10 0 .002 0.0

TABLE 6.9: Comparison of WSS@95% results for CombiTAR 50% and AutoTAR models. The Mean
(M) and Standard Deviation (SD) of the WSS@95% values are shown. The ’Higher’, ’Lower’, and
’Tie’ represent the number of times where the semi-supervised model scored higher, lower, or
equal to the supervised model, respectively. Column ’p’ shows the p-value and the column ’W’

shows the W-statistic value from the Wilcoxon signed-ranks test.

Datasets CombiTAR 50% AutoTAR Higher Lower Tie p W
M SD M SD

App. .277 .130 .325 .166 0 10 0 .002 0.0
Ban. .028 .002 .056 .007 0 10 0 .002 0.0
Bos. .730 .014 .921 .010 0 10 0 .002 0.0
Dis. .304 .002 .620 .002 0 10 0 .002 0.0
Hal. .451 .004 .565 .000 0 10 0 .002 0.0
Kit. .423 .026 .218 .008 10 0 0 .002 0.0
Kwo. .249 .027 .296 .005 0 10 0 .002 0.0
Nag. .235 .031 .438 .008 0 10 0 .002 0.0
Rad. .361 .034 .843 .000 0 10 0 .002 0.0
Scho. .514 .013 .857 .003 0 10 0 .002 0.0
Wah. .461 .001 .419 .001 10 0 0 .002 0.0
Wol. .529 .003 .769 .032 0 10 0 .002 0.0

TABLE 6.10: Comparison of WSS@100% results for CombiTAR 50% and AutoTAR models. The
Mean (M) and Standard Deviation (SD) of the WSS@100% values are shown. The ’Higher’,
’Lower’, and ’Tie’ represent the number of times where the semi-supervised model scored higher,
lower, or equal to the supervised model, respectively. Column ’p’ shows the p-value and the

column ’W’ shows the W-statistic value from the Wilcoxon signed-ranks test.

Chapter 6. Results 54

Datasets CombiTAR 90% AutoTAR Higher Lower Tie p W
M SD M SD

App. .443 .051 .631 .007 0 10 0 .002 0.0
Ban. .327 .003 .497 .014 0 10 0 .002 0.0
Bos. .866 .029 .921 .010 0 10 0 .002 0.0
Dis. .426 .001 .711 .006 0 10 0 .002 0.0
Hal. .485 .053 .921 .001 0 10 0 .002 0.0
Kit. .582 .048 .604 .013 5 5 0 .432 19.0
Kwo. .583 .028 .727 .017 0 10 0 .002 0.0
Nag. .352 .021 .620 .005 0 10 0 .002 0.0
Rad. .495 .004 .825 .005 0 10 0 .002 0.0
Scho. .722 .063 .914 .003 0 10 0 .002 0.0
Wah. .742 .070 .819 .001 0 10 0 .002 0.0
Wol. .527 .003 .769 .032 0 10 0 .002 0.0

TABLE 6.11: Comparison of WSS@95% results for CombiTAR 90% and AutoTAR models. The
Mean (M) and Standard Deviation (SD) of the WSS@95% values are shown. The ’Higher’, ’Lower’,
and ’Tie’ represent the number of times where the semi-supervised model scored higher, lower, or
equal to the supervised model, respectively. Column ’p’ shows the p-value and the column ’W’

shows the W-statistic value from the Wilcoxon signed-ranks test.

Datasets CombiTAR 90% AutoTAR Higher Lower Tie p W
M SD M SD

App. .275 .128 .325 .166 0 10 0 .002 0.0
Ban. .026 .002 .056 .007 0 10 0 .002 0.0
Bos. .866 .029 .921 .010 0 10 0 .002 0.0
Dis. .311 .001 .620 .002 0 10 0 .002 0.0
Hal. .457 .003 .565 .000 0 10 0 .002 0.0
Kit. .404 .013 .218 .008 10 0 0 .002 0.0
Kwo. .240 .019 .296 .005 0 10 0 .002 0.0
Nag. .230 .030 .438 .008 0 10 0 .002 0.0
Rad. .354 .002 .843 .000 0 10 0 .002 0.0
Scho. .538 .045 .857 .003 0 10 0 .002 0.0
Wah. .492 .004 .419 .001 10 0 0 .002 0.0
Wol. .527 .003 .769 .032 0 10 0 .002 0.0

TABLE 6.12: Comparison of WSS@100% results for CombiTAR 90% and AutoTAR models. The
Mean (M) and Standard Deviation (SD) of the WSS@100% values are shown. The ’Higher’,
’Lower’, and ’Tie’ represent the number of times where the semi-supervised model scored higher,
lower, or equal to the supervised model, respectively. Column ’p’ shows the p-value and the

column ’W’ shows the W-statistic value from the Wilcoxon signed-ranks test.

55

Chapter 7

Discussion

This study aims to investigate whether semi-supervised learning can be used within
Technology Assisted Review to further minimizing the reviewers’ effort while
maximizing the recall. The evaluation metric work saved over sampling is used
to measure this. For this investigation, several semi-supervised and supervised
learning methods are implemented into the Technology Assisted Review framework
of the National Police LAB AI (Bron, 2021b). A total of five different semi-supervised
learning models are compared to their corresponding supervised learning models
across twelve different datasets.

7.1 Research questions

The research question of this study is: "Can semi-supervised learning be used within
Technology Assisted Review to improve the work saved over sampling score?".
The sub-questions of this study each focus on a different semi-supervised learning
method and compare the performance of this model to their supervised counterpart.

The first sub-question is "SQ 1. Does the semi-supervised Multinomial Naive
Bayes model improve the work saved over sampling score compared to the
Multinomial Naive Bayes model in Technology Assisted Review?". For this sub-
question, the semi-supervised Multinomial Naive Bayes model, which utilizes
Expectation Maximization as described by Nigam, McCallum, and Mitchell (2006),
is compared to the supervised version of Multinomial Naive Bayes.

The second sub-question is "SQ 2. Does the semi-supervised Multinomial
Naive Bayes model with sub-topics improve the work saved over sampling score
compared to the Multinomial Naive Bayes model in Technology Assisted Review?".
In addition to the semi-supervised Multinomial Naive Bayes model from sub-
question one, this model also implements a many-to-one correspondence, as
described by Nigam, McCallum, and Mitchell (2006).

The third sub-question is "SQ 3. Does the SVM with self-training model improve
the work saved over sampling score compared to the SVM model in Technology
Assisted Review?". For this sub-question, the semi-supervised SVM model, which
uses the wrapper method self-training, is compared to the supervised version of
SVM.

Chapter 7. Discussion 56

The fourth sub-question is "SQ 4. Does the label spreading model improve the
work saved over sampling score compared to AutoTAR in Technology Assisted
Review?". For this sub-question, the semi-supervised model label spreading is
compared to the AutoTAR model, which uses a logistic regression model. Because
label spreading has no supervised counterpart, AutoTAR is chosen to compare the
performance against, as this is the current state-of-the-art TAR implementation.

The fifth and final sub-question is "SQ 5. Does combining AutoTAR with
semi-supervised Multinomial Naive Bayes with sub-topics improve the work saved
over sampling score compared to AutoTAR in Technology Assisted Review?". In
order to answer this sub-question, two versions of combining AutoTAR with semi-
supervised Multinomial Naive Bayes with sub-topics are compared to AutoTAR.
Through this, we aim to find out if combining the supervised learning model with
a semi-supervised model can improve the performance of the supervised learning
model. In the first version, AutoTAR first finds 50% of the relevant documents before
switching to semi-supervised model (CombiTAR 50%). In the second version, the
switch towards the semi-supervised model is done when AutoTAR has found 90%
of the relevant documents (CombiTAR 90%).

7.2 Findings and interpretation

7.2.1 Sub-questions

For the majority of the TAR experiments, a significant difference was found between
the semi-supervised and supervised models based on the work saved over sampling
scores.

For the first sub-question, 23 out of 24 experiments resulted in a significant
difference. However, for all 23 experiments, the supervised learning model
outperformed the semi-supervised Multinomial Naive Bayes model. This shows
that the semi-supervised Multinomial Naive Bayes model could not improve the
work saved over sampling score compared to the Multinomial Naive Bayes model
in Technology Assisted Review. The lower performance of the semi-supervised
Multinomial Naive Bayes model could be caused by the model probability not being
correlated with the classification accuracy. As discussed in Section 4.3.3, the EM
algorithm optimizes on posterior model probability. Therefore, the introduction of
unlabeled data may lower classification accuracy if the model probability does not
positively correlate to the model’s accuracy. In this case, adopting a more expressive
generative model can restore this correlation, thereby enhancing the accuracy
(Nigam, McCallum, and Mitchell, 2006). The model discussed in sub-question two
is a more expressive generative model due to the many-to-one correspondence in
the form of sub-topics.

For the second sub-question, 23 out of 24 experiments resulted in a significant
difference in performance. For the work saved over sampling at 95% recall

Chapter 7. Discussion 57

(WSS@95%), the semi-supervised Multinomial Naive Bayes with sub-topics model
performed significantly better three out of twelve times. Furthermore, for the work
saved over sampling at 100% recall (WSS@100%), the semi-supervised Multinomial
Naive Bayes with sub-topics model performed significantly better five out of eleven
times. The increase in performance compared to the semi-supervised Multinomial
Naive Bayes model from sub-question one could be explained by the increased
representativeness of a model due to the addition of sub-topics, which replaced the
one-to-one assumption with a less restrictive one (Nigam, McCallum, and Mitchell,
2006). The semi-supervised model performs better in 8 out of 23 experiments.
So, it can be concluded that in some situations, the semi-supervised Multinomial
Naive Bayes with sub-topics model can improve the work saved over sampling
score compared to the supervised Multinomial Naive Bayes model. However,
finding the optimal number of sub-topics could be a challenge when the data is
not labeled. Interestingly, the semi-supervised model outperforms the supervised
model on the two datasets with the lowest inclusion rate, namely 0.19% (Bos_2018)
and 0.38% (Wolters_2018) for both the WSS@95% and WSS@100% scores. This
could indicate that this semi-supervised model, which uses sub-topics, is able to
outperform the supervised model on datasets with a relatively large number of
irrelevant documents.

The third sub-question compares the SVM with self-training to the SVM model.
Eleven out of eighteen experiments showed a significant difference based on the
work saved over sampling scores. In the experiments where a significant difference
was found, the supervised SVM model outperformed the SVM with self-training
model ten out of eleven times. So, it can be concluded that the SVM with self-training
model rarely improves the work saved over sampling score compared to the SVM
model. For these results, it is interesting to note that in the hyper-parameter value
tuning, the best number of self-training iterations was achieved with only one self-
training iteration. This shows that even though only a single self-training iteration
is performed for each active learning cycle in the TAR process, the self-training
implementation still significantly decreases the WSS score. A possible explanation
for this could be that the document with the highest probability of being relevant is
added to the labeled dataset as relevant, regardless of the estimated probability. This
is done due to the highly skewed data, as discussed in Section 5.4.1.

The fourth sub-question compares the performance of the semi-supervised label
spreading model with the AutoTAR model. All 24 experiments resulted in a
significant difference in performance. The label spreading model was only able
to perform better in 2 out of the 24 experiments. So, it can be concluded that
there are datasets in which the label spreading model can improve the work saved
over sampling score compared to AutoTAR. However, we could only find this
result in two experiments and only for the WSS@100% scores. So, it is not likely
to occur. However, it is important to note that label spreading is not compared
to its corresponding supervised learning model, as a supervised version of label

Chapter 7. Discussion 58

spreading does not exist. Due to this, the label spreading model is compared to the
state-of-the-art AutoTAR model.

The fifth and final sub-question compares the performance of both CombiTAR
50% and CombiTAR 90% to AutoTAR in order to find out whether combining
AutoTAR with semi-supervised Multinomial Naive Bayes with sub-topics can
improve the work saved over sampling score compared to AutoTAR. For CombiTAR
50%, all 24 experiments resulted in a significant difference. However, CombiTAR
50% could only outperform AutoTAR on two datasets for only the WSS@100%
scores. The results of CombiTAR 90% showed a significant difference in 23 out of
24 experiments. CombiTAR 90% was also only able to outperform AutoTAR on the
same two datasets as CombiTAR 50%, and again only for the WSS@100% scores. So,
it can be concluded that it is possible that combining AutoTAR with semi-supervised
Multinomial Naive Bayes with sub-topics improves the work saved over sampling
score compared to AutoTAR in Technology Assisted Review. However, it is not
likely to occur, as this only happened 4 times out of 47.

7.2.2 Research question

The research question of this study was "Can semi-supervised learning be used
within Technology Assisted Review to improve the work saved over sampling
score?". Sub-questions 1 and 3, involving the semi-supervised Multinomial Naive
Bayes model, and the SVM with self-training model showed no results supporting
that semi-supervised learning could improve the work saved over sampling score.
Sub-question 4, which involved the label spreading model, could only improve
the WSS score in 2 out of 24 cases. However, sub-question 2, involving the semi-
supervised Multinomial Naive Bayes with sub-topics model, showed more frequent
results where the semi-supervised learning model produced higher work saved
over sampling scores. Especially interesting is the fact that this model performed
better on the two datasets with the lowest rate of relevant documents for both
the WSS@95% and WSS@100% scores. This demonstrates that it is possible for
the semi-supervised learning models to improve the work saved over sampling
score. In the results of sub-question 5, when comparing multiple combinations of
AutoTAR with semi-supervised Multinomial Naive Bayes with sub-topics to the
supervised AutoTAR model, there are datasets in which the addition of the semi-
supervised learning method significantly increased the work saved over sampling
score. So, even though the semi-supervised models were not able to outperform
the supervised version in the majority of cases, we have shown that it is possible to
outperform the supervised learning methods by using semi-supervised models.

7.3 Limitations

A limitation of this research is that it was not possible to tune the hyper-parameter
values of the classifiers within the TAR process itself without running the whole TAR

Chapter 7. Discussion 59

process multiple times with different hyper-parameters, as discussed in Section 5.5.
Due to this, the hyper-parameter values are tuned through stratified k-fold cross-
validation on the fully labeled datasets to preserve the robustness of our models
and the validity of our results. This is a limitation as it negatively affects the
generalisability of the research results. When TAR is used in a real-life problem,
then the labels of the documents still need to be discovered. Therefore, it is
impossible to tune the model’s hyper-parameter values in the same way as done
in this research without labeling all the documents first. However, this approach
allowed us to compare the results of the models in a way where both models
had the hyper-parameter values found in the best case scenario, which kept the
comparison between models as fair as possible. For the model comparison in
sub-questions 2 and 4, it is important to note that the models label spreading and
Multinomial Naive Bayes with sub-topics do not have a direct supervised version,
which makes the comparison more complicated. The supervised Multinomial Naive
Bayes model was chosen for the comparison because this is the closest counterpart to
the Multinomial Naive Bayes with sub-topics model. Label spreading did not have
such a close counterpart. Therefore the state-of-the-art AutoTAR model was chosen
for comparison.

Determining the number of relevant documents found for the CombiTAR 50%
and CombiTAR 90% models encountered a similar issue to finding the hyper-
parameter values. Knowing how many relevant documents were included in the
dataset allowed us to see whether improving the WSS scores compared to AutoTAR
was possible by setting the threshold for the switch at exactly 50% and 90%.
However, in a real-life scenario, it is not known how many relevant documents
there are in a dataset. This means that the number of relevant documents must
be estimated to calculate the threshold values of 50% or 90% relevant documents.
However, the CombiTAR 50% model outperformed the AutoTAR model on the same
two datasets as the CombiTAR 90% model. This could indicate that the percentage
of relevant documents can be somewhat estimated. Li and Kanoulas (2020) already
described several methods to estimate the total number of relevant documents (see
Section 3.1).

Another limitation of the generalizability is that in real-life cases, human
reviewers make classification errors in the active learning step of the TAR process
(Yu and Menzies, 2019). This human error rate is not considered in our experiments.
In our experiments, the correct labels were always provided to the classifier. This
is a limitation as it is unknown which semi-supervised model is affected more by
different percentages of mislabeled documents. However, it is important to note
that multiple solutions are already available for reducing human errors in the active
learning cycle, like a majority vote or rechecking a few documents (Yu and Menzies,
2019).

The primary limitation of the semi-supervised SVM model is that no

Chapter 7. Discussion 60

implementations based on a research paper were available of meanSVM or semi-
supervised SVM at all. Due to time restrictions, it was also not possible to implement
these models ourselves. This prohibited us from comparing the performance of
meanSVM and SVM. This is a limitation as the literature indicates that meanSVM is
the best performing semi-supervised version of SVM for large datasets (Ding, Zhu,
and Zhang, 2017). It is possible that meanSVM would have performed significantly
better than SVM on the WSS scores.

The final limitation of the SVM models is that training them takes a long time,
especially on larger datasets. Due to this, we could not run the TAR trials for the
three largest datasets. It was also not possible to run the trials ten times per dataset.
This is a limitation because it would be interesting to see if performance differs on
a larger dataset. However, running the SVM models on the three largest datasets
would have taken multiple weeks of non-stop running experiments. As discussed
before, running the SVM models for multiple weeks was not possible due to time
restrictions.

7.4 Future research

A few interesting ideas for future research have emerged from this study. The first
idea for future research is related to the success of semi-supervised Multinomial
Naive Bayes with sub-topics on datasets with the lowest rate of relevant documents.
It could be further explored if this model outperforms supervised learning models
on other datasets with similarly low rates of relevant documents.

The second idea for future research regarding the Multinomial Naive Bayes with
sub-topics model is the sensitivity of the number of sub-topics on the performance.
This study found the optimal number of sub-topics based on k-fold cross-validation
on the labeled dataset. As this is impossible on unlabeled datasets, it is interesting
to know how much a deviating number of sub-topics influences the performance.

Future research could also examine the effects on performance when the relevant
class is allowed to have multiple sub-topics. Due to the highly skewed datasets, only
a single sub-topic was assigned to the relevant class in this study.

Another idea for future research is to look for a way to tune the hyper-parameter
values of a classifier used in the TAR process. The best hyper-parameter values
found in this study vary substantially between datasets, as seen in Section 5.5, Table
5.5, and Appendix A. This indicates that it is beneficial to find a way to tune the
hyper-parameter values in the TAR process, even if not all the document labels
are available. For the hyper-parameter "number of sub-topics," the search queries
on which the dataset is based or a domain expert could be utilized to estimate the
number of sub-topics.

Future research could also expand the current research by exploring the
performance differences between semi-supervised and supervised models on even
larger datasets. The largest dataset used in this study contains 10,953 documents.

Chapter 7. Discussion 61

The five datasets used by Li and Kanoulas (2020) vary between 82,421 and 685,592
documents. These datasets are publicly available at https://github.com/dli1/

auto-stop-tar (Kanoulas et al., 2017; Kanoulas et al., 2018; Kanoulas et al., 2019).
Finally, future research could expand the current study by exploring different

strategies to improve the performance of the models. This can be explored by
implementing balance strategies to rebalance the training data. Undersampling can
be used to exclude a part of the irrelevant class to balance the classes. Dynamic
resampling can be used to increase the relevant class size by duplicating documents
(Schoot et al., 2021). It would be interesting to explore how this affects both semi-
supervised and supervised learning models.

7.5 Conclusion

This study compared the performance of five semi-supervised learning classifiers
against their supervised equivalents to investigate whether semi-supervised
learning can be used to improve the work saved over sampling score within
Technology Assisted Review. The results showed that semi-supervised learning
models are able to improve performance. The semi-supervised Multinomial Naive
Bayes classifier, with many-to-one correspondence via sub-topics, showed the most
promising results. This model outperformed the supervised model on the two
datasets with the lowest inclusion rate. Future work could expand the current
research by exploring whether these findings also occur on other datasets with a
similarly large number of irrelevant documents and by further investigating ways
to improve the performance of the semi-supervised models.

https://github.com/dli1/auto-stop-tar
https://github.com/dli1/auto-stop-tar

62

References

ASReview (2022). Systematic Review Datasets. URL: https://github.com/asreview/
systematic-review-datasets (visited on 11/20/2022).

Bron, Michiel (2021a). Python package instancelib. URL: https://github.com/mpbron/
instancelib.

— (2021b). Python package python-allib. URL: https://github.com/mpbron/allib.
Chawla, N. V. et al. (June 2002). “SMOTE: Synthetic Minority Over-sampling

Technique”. en. In: Journal of Artificial Intelligence Research 16, pp. 321–357. ISSN:
1076-9757. DOI: 10.1613/jair.953. URL: https://www.jair.org/index.php/
jair/article/view/10302 (visited on 10/27/2022).

Cohen, A. M. et al. (Mar. 2006). “Reducing Workload in Systematic Review
Preparation Using Automated Citation Classification”. In: Journal of the American
Medical Informatics Association 13.2, pp. 206–219. ISSN: 1067-5027. DOI: 10.1197/
jamia .M1929. URL: https : / / doi .org / 10 .1197 / jamia .M1929 (visited on
10/25/2022).

Cormack, Gordon V. and Maura R. Grossman (Aug. 2015). “Multi-Faceted Recall of
Continuous Active Learning for Technology-Assisted Review”. In: Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval. SIGIR ’15. New York, NY, USA: Association for Computing
Machinery, pp. 763–766. ISBN: 978-1-4503-3621-5. DOI: 10 .1145 / 2766462

.2767771. URL: https : / / doi .org / 10 .1145 / 2766462 .2767771 (visited on
09/08/2022).

Defazio, Aaron, Francis Bach, and Simon Lacoste-Julien (Dec. 2014). SAGA: A
Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite
Objectives. arXiv:1407.0202 [cs, math, stat]. URL: http://arxiv .org/abs/1407
.0202 (visited on 06/05/2023).

Demšar, Janez (2006). “Statistical comparisons of classifiers over multiple data sets”.
In: The Journal of Machine learning research 7. Publisher: JMLR. org, pp. 1–30.

Ding, Shifei, Zhibin Zhu, and Xiekai Zhang (2017). “An overview on semi-
supervised support vector machine”. In: Neural Computing and Applications 28.5.
Publisher: Springer, pp. 969–978.

Fan, Rong-En et al. (2008). “LIBLINEAR: A Library for Large Linear Classification”.
en. In: The Journal of Machine learning research.

Fernandez, Alberto et al. (Apr. 2018). “SMOTE for Learning from Imbalanced Data:
Progress and Challenges, Marking the 15-year Anniversary”. en. In: Journal of
Artificial Intelligence Research 61, pp. 863–905. ISSN: 1076-9757. DOI: 10.1613/jair

https://github.com/asreview/systematic-review-datasets
https://github.com/asreview/systematic-review-datasets
https://github.com/mpbron/instancelib
https://github.com/mpbron/instancelib
https://github.com/mpbron/allib
https://doi.org/10.1613/jair.953
https://www.jair.org/index.php/jair/article/view/10302
https://www.jair.org/index.php/jair/article/view/10302
https://doi.org/10.1197/jamia.M1929
https://doi.org/10.1197/jamia.M1929
https://doi.org/10.1197/jamia.M1929
https://doi.org/10.1145/2766462.2767771
https://doi.org/10.1145/2766462.2767771
https://doi.org/10.1145/2766462.2767771
http://arxiv.org/abs/1407.0202
http://arxiv.org/abs/1407.0202
https://doi.org/10.1613/jair.1.11192
https://doi.org/10.1613/jair.1.11192
https://doi.org/10.1613/jair.1.11192

References 63

.1 .11192. URL: http://jair .org/index .php/jair/article/view/11192

(visited on 10/27/2022).
ICAI (n.d.). Police Lab AI. en-US. URL: https://icai.ai/police-lab-ai/ (visited

on 11/29/2022).
Kanoulas, Evangelos et al. (2017). “CLEF 2017 Technologically Assisted Reviews

in Empirical Medicine Overview”. en. In: vol. 1866. 1–29. CEUR Workshop
Proceedings. URL: https://www .researchgate .net/publication/319130742
_CLEF _2017 _Technologically _Assisted _Reviews _in _Empirical _Medicine

_Overview (visited on 11/29/2022).
— (2018). “CLEF 2018 Technologically Assisted Reviews in Empirical Medicine

Overview”. en. In: CEUR Workshop Proceedings. URL: https://ceur-ws.org/
Vol-2125/invited_paper_6.pdf (visited on 11/29/2022).

— (2019). “CLEF 2019 Technology Assisted Reviews in Empirical Medicine
Overview”. en. In: vol. 2380. CEUR Workshop Proceedings. URL: https://ceur
-ws.org/Vol-2380/paper_250.pdf (visited on 11/29/2022).

Li, Dan and Evangelos Kanoulas (Sept. 2020). “When to Stop Reviewing in
Technology-Assisted Reviews: Sampling from an Adaptive Distribution to
Estimate Residual Relevant Documents”. In: ACM Transactions on Information
Systems 38.4, 41:1–41:36. ISSN: 1046-8188. DOI: 10 .1145/3411755. URL: https:
//doi.org/10.1145/3411755 (visited on 11/06/2022).

Liu, Jun, Prem Timsina, and Omar El-Gayar (2018). “A comparative analysis of semi-
supervised learning: the case of article selection for medical systematic reviews”.
In: Information Systems Frontiers 20.2. Publisher: Springer, pp. 195–207.

Nigam, Kamal, Andrew McCallum, and Tom M. Mitchell (Sept. 2006). “Semi-
Supervised Text Classification Using EM”. en. In: Semi-Supervised Learning.
Ed. by Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. The
MIT Press, pp. 32–55. ISBN: 978-0-262-03358-9. DOI: 10 .7551 / mitpress /

9780262033589 .003 .0003. URL: https : / / academic .oup .com / mit

-press -scholarship -online / book / 41571 / chapter / 353090558 (visited on
09/01/2022).

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12, pp. 2825–2830.

Schmidt, Mark, Nicolas Le Roux, and Francis Bach (Mar. 2017). “Minimizing finite
sums with the stochastic average gradient”. en. In: Mathematical Programming
162.1-2, pp. 83–112. ISSN: 0025-5610, 1436-4646. DOI: 10.1007/s10107-016-1030
-6. URL: http://link.springer.com/10.1007/s10107-016-1030-6 (visited on
06/05/2023).

Schoot, Rens van de et al. (Feb. 2021). “An open source machine learning
framework for efficient and transparent systematic reviews”. en. In: Nature
Machine Intelligence 3.2, pp. 125–133. ISSN: 2522-5839. DOI: 10.1038/s42256-020
-00287 -7. URL: http://www .nature .com/articles/s42256 -020 -00287 -7

(visited on 09/30/2022).

https://doi.org/10.1613/jair.1.11192
https://doi.org/10.1613/jair.1.11192
https://doi.org/10.1613/jair.1.11192
http://jair.org/index.php/jair/article/view/11192
https://icai.ai/police-lab-ai/
https://www.researchgate.net/publication/319130742_CLEF_2017_Technologically_Assisted_Reviews_in_Empirical_Medicine_Overview
https://www.researchgate.net/publication/319130742_CLEF_2017_Technologically_Assisted_Reviews_in_Empirical_Medicine_Overview
https://www.researchgate.net/publication/319130742_CLEF_2017_Technologically_Assisted_Reviews_in_Empirical_Medicine_Overview
https://ceur-ws.org/Vol-2125/invited_paper_6.pdf
https://ceur-ws.org/Vol-2125/invited_paper_6.pdf
https://ceur-ws.org/Vol-2380/paper_250.pdf
https://ceur-ws.org/Vol-2380/paper_250.pdf
https://doi.org/10.1145/3411755
https://doi.org/10.1145/3411755
https://doi.org/10.1145/3411755
https://doi.org/10.7551/mitpress/9780262033589.003.0003
https://doi.org/10.7551/mitpress/9780262033589.003.0003
https://academic.oup.com/mit-press-scholarship-online/book/41571/chapter/353090558
https://academic.oup.com/mit-press-scholarship-online/book/41571/chapter/353090558
https://doi.org/10.1007/s10107-016-1030-6
https://doi.org/10.1007/s10107-016-1030-6
http://link.springer.com/10.1007/s10107-016-1030-6
https://doi.org/10.1038/s42256-020-00287-7
https://doi.org/10.1038/s42256-020-00287-7
http://www.nature.com/articles/s42256-020-00287-7

References 64

Scikit-learn (2023a). 1.14. Semi-supervised learning. en. URL: https://scikit-learn/
stable/modules/semi_supervised.html (visited on 05/31/2023).

— (2023b). sklearn.metrics.log_loss. en. URL: https : / / scikit -learn / stable /

modules/generated/sklearn.metrics.log_loss.html (visited on 05/31/2023).
Søgaard, Anders (May 2013). Semi-Supervised Learning and Domain Adaptation in

Natural Language Processing. en. Google-Books-ID: nexcAQAAQBAJ. Morgan &
Claypool Publishers. ISBN: 978-1-60845-986-5.

Yang, Eugene, David D. Lewis, and Ophir Frieder (Aug. 2021). “On minimizing cost
in legal document review workflows”. In: Proceedings of the 21st ACM Symposium
on Document Engineering. DocEng ’21. New York, NY, USA: Association for
Computing Machinery, pp. 1–10. ISBN: 978-1-4503-8596-1. DOI: 10.1145/3469096
.3469872. URL: https : / / doi .org / 10 .1145 / 3469096 .3469872 (visited on
11/21/2022).

Yu, Hsiang-Fu, Fang-Lan Huang, and Chih-Jen Lin (Oct. 2011). “Dual coordinate
descent methods for logistic regression and maximum entropy models”. en. In:
Machine Learning 85.1-2, pp. 41–75. ISSN: 0885-6125, 1573-0565. DOI: 10 .1007/

s10994-010-5221-8. URL: http://link.springer.com/10.1007/s10994-010
-5221-8 (visited on 06/05/2023).

Yu, Zhe and Tim Menzies (Apr. 2019). “FAST2: An intelligent assistant for finding
relevant papers”. en. In: Expert Systems with Applications 120, pp. 57–71. ISSN:
0957-4174. DOI: 10 .1016 / j .eswa .2018 .11 .021. URL: https : / / www

.sciencedirect .com/science/article/pii/S0957417418307413 (visited on
09/01/2022).

Zhu, Ciyou et al. (2011). L-BFGS-B: Software for Large-scale Bound-constrained
Optimization. URL: https://users.iems.northwestern.edu/~nocedal/lbfgsb
.html (visited on 06/05/2023).

Zhu, Xiaojin and Andrew B. Goldberg (2009). Introduction to Semi-Supervised
Learning. en. Cham: Springer International Publishing. ISBN: 978-3-031-00420-9
978-3-031-01548-9. DOI: 10 .1007/978 -3 -031 -01548 -9. URL: https://link
.springer.com/10.1007/978-3-031-01548-9 (visited on 09/27/2022).

https://scikit-learn/stable/modules/semi_supervised.html
https://scikit-learn/stable/modules/semi_supervised.html
https://scikit-learn/stable/modules/generated/sklearn.metrics.log_loss.html
https://scikit-learn/stable/modules/generated/sklearn.metrics.log_loss.html
https://doi.org/10.1145/3469096.3469872
https://doi.org/10.1145/3469096.3469872
https://doi.org/10.1145/3469096.3469872
https://doi.org/10.1007/s10994-010-5221-8
https://doi.org/10.1007/s10994-010-5221-8
http://link.springer.com/10.1007/s10994-010-5221-8
http://link.springer.com/10.1007/s10994-010-5221-8
https://doi.org/10.1016/j.eswa.2018.11.021
https://www.sciencedirect.com/science/article/pii/S0957417418307413
https://www.sciencedirect.com/science/article/pii/S0957417418307413
https://users.iems.northwestern.edu/~nocedal/lbfgsb.html
https://users.iems.northwestern.edu/~nocedal/lbfgsb.html
https://doi.org/10.1007/978-3-031-01548-9
https://link.springer.com/10.1007/978-3-031-01548-9
https://link.springer.com/10.1007/978-3-031-01548-9

65

Appendix A

Hyper-parameter values

Name Number of sub-topics
Appenzeller-Herzog_2020 94
Bannach-Brown_2019 6
Bos_2018 434
Hall_2012 85
Kitchenham_2010 35
Kwok_2020 20
Nagtegaal_2019 20
Radjenovic_2013 113
van_Dis_2020 133
van_de_Schoot_2017 134
Wahono_2015 105
Wolters_2018 247

TABLE A.1: Overview of the best found hyper-parameter values per dataset for the semi-
supervised Multinomial Naive Bayes with sub-topics model.

Name Solver C
Appenzeller-Herzog_2020 liblinear 16
Bannach-Brown_2019 liblinear 16
Bos_2018 lbfgs 13
Hall_2012 liblinear 14
Kitchenham_2010 liblinear 11
Kwok_2020 liblinear 15
Nagtegaal_2019 liblinear 11
Radjenovic_2013 liblinear 14
van_Dis_2020 lbfgs 7
van_de_Schoot_2017 liblinear 17
Wahono_2015 lbfgs 8
Wolters_2018 lbfgs 10

TABLE A.2: Overview of the best found hyper-parameter values for each dataset for the Logistic
Regression model.

Appendix A. Hyper-parameter values 66

Name Kernel n_neighbors Gamma
Appenzeller-Herzog_2020 K-Nearest Neighbors 18 -
Bannach-Brown_2019 K-Nearest Neighbors 10 -
Bos_2018 Radial Basis Functions - 13
Hall_2012 K-Nearest Neighbors 14 -
Kitchenham_2010 K-Nearest Neighbors 31 -
Kwok_2020 K-Nearest Neighbors 23 -
Nagtegaal_2019 K-Nearest Neighbors 25 -
Radjenovic_2013 K-Nearest Neighbors 24 -
van_Dis_2020 K-Nearest Neighbors 51 -
van_de_Schoot_2017 K-Nearest Neighbors 50 -
Wahono_2015 K-Nearest Neighbors 14 -
Wolters_2018 Radial Basis Function - 10

TABLE A.3: Overview of the best found hyper-parameter values for each dataset for the label
spreading model.

Name Gamma C
Appenzeller-Herzog_2020 scale 3

TABLE A.4: Overview of the best found hyper-parameter values for the Support Vector Machine
model, which uses the Radial Basis Function (RBF) kernel.

Name Gamma C Nr_iterations K_best
Appenzeller-Herzog_2020 auto 100 1 1

TABLE A.5: Overview of the best found hyper-parameter values for the model Support Vector
Machine with Self-Training, which uses the Radial Basis Function (RBF) kernel.

67

Appendix B

Graphs of all the TAR trials

B.1 Experiment 1: Semi-supervised Multinomial Naive
Bayes and Multinomial Naive Bayes models

(a) Semi-supervised Multinomial Naive Bayes (b) Multinomial Naive Bayes

FIGURE B.1: All trials for semi-supervised Multinomial Naive Bayes (a) and Multinomial Naive
Bayes (b) for the dataset Appenzeller-Herzog_2020.

(a) Semi-supervised Multinomial Naive Bayes (b) Multinomial Naive Bayes

FIGURE B.2: All trials for semi-supervised Multinomial Naive Bayes (a) and Multinomial Naive
Bayes (b) for the dataset Bannach-Brown_2019.

Appendix B. Graphs of all the TAR trials 68

(a) Semi-supervised Multinomial Naive Bayes (b) Multinomial Naive Bayes

FIGURE B.3: All trials for semi-supervised Multinomial Naive Bayes (a) and Multinomial Naive
Bayes (b) for the dataset Bos_2018.

(a) Semi-supervised Multinomial Naive Bayes (b) Multinomial Naive Bayes

FIGURE B.4: All trials for semi-supervised Multinomial Naive Bayes (a) and Multinomial Naive
Bayes (b) for the dataset van_Dis_2020.

(a) Semi-supervised Multinomial Naive Bayes (b) Multinomial Naive Bayes

FIGURE B.5: All trials for semi-supervised Multinomial Naive Bayes (a) and Multinomial Naive
Bayes (b) for the dataset Hall_2012.

Appendix B. Graphs of all the TAR trials 69

(a) Semi-supervised Multinomial Naive Bayes (b) Multinomial Naive Bayes

FIGURE B.6: All trials for semi-supervised Multinomial Naive Bayes (a) and Multinomial Naive
Bayes (b) for the dataset Kitchenham_2010.

(a) Semi-supervised Multinomial Naive Bayes (b) Multinomial Naive Bayes

FIGURE B.7: All trials for semi-supervised Multinomial Naive Bayes (a) and Multinomial Naive
Bayes (b) for the dataset Kwok_2020.

(a) Semi-supervised Multinomial Naive Bayes (b) Multinomial Naive Bayes

FIGURE B.8: All trials for semi-supervised Multinomial Naive Bayes (a) and Multinomial Naive
Bayes (b) for the dataset Nagtegaal_2019.

Appendix B. Graphs of all the TAR trials 70

(a) Semi-supervised Multinomial Naive Bayes (b) Multinomial Naive Bayes

FIGURE B.9: All trials for semi-supervised Multinomial Naive Bayes (a) and Multinomial Naive
Bayes (b) for the dataset Radjenovic_2013.

(a) Semi-supervised Multinomial Naive Bayes (b) Multinomial Naive Bayes

FIGURE B.10: All trials for semi-supervised Multinomial Naive Bayes (a) and Multinomial Naive
Bayes (b) for the dataset van_de_Schoot.

(a) Semi-supervised Multinomial Naive Bayes (b) Multinomial Naive Bayes

FIGURE B.11: All trials for semi-supervised Multinomial Naive Bayes (a) and Multinomial Naive
Bayes (b) for the dataset Wahono_2015.

Appendix B. Graphs of all the TAR trials 71

(a) Semi-supervised Multinomial Naive Bayes (b) Multinomial Naive Bayes

FIGURE B.12: All trials for semi-supervised Multinomial Naive Bayes (a) and Multinomial Naive
Bayes (b) for the dataset Wolters_2018.

B.2 Experiment 2: Semi-supervised Multinomial Naive
Bayes with sub-topics and Multinomial Naive Bayes
models

(a) Semi-supervised Multinomial Naive Bayes
with sub-topics

(b) Multinomial Naive Bayes

FIGURE B.13: All trials for semi-supervised Multinomial Naive Bayes with sub-topics (a) and
Multinomial Naive Bayes (b) for the dataset Appenzeller-Herzog_2020.

Appendix B. Graphs of all the TAR trials 72

(a) Semi-supervised Multinomial Naive Bayes
with sub-topics

(b) Multinomial Naive Bayes

FIGURE B.14: All trials for semi-supervised Multinomial Naive Bayes with sub-topics (a) and
Multinomial Naive Bayes (b) for the dataset Bannach-Brown_2019.

(a) Semi-supervised Multinomial Naive Bayes
with sub-topics

(b) Multinomial Naive Bayes

FIGURE B.15: All trials for semi-supervised Multinomial Naive Bayes with sub-topics (a) and
Multinomial Naive Bayes (b) for the dataset Bos_2018.

(a) Semi-supervised Multinomial Naive Bayes
with sub-topics

(b) Multinomial Naive Bayes

FIGURE B.16: All trials for semi-supervised Multinomial Naive Bayes with sub-topics (a) and
Multinomial Naive Bayes (b) for the dataset van_Dis_2020.

Appendix B. Graphs of all the TAR trials 73

(a) Semi-supervised Multinomial Naive Bayes
with sub-topics

(b) Multinomial Naive Bayes

FIGURE B.17: All trials for semi-supervised Multinomial Naive Bayes with sub-topics (a) and
Multinomial Naive Bayes (b) for the dataset Hall_2012.

(a) Semi-supervised Multinomial Naive Bayes
with sub-topics

(b) Multinomial Naive Bayes

FIGURE B.18: All trials for semi-supervised Multinomial Naive Bayes with sub-topics (a) and
Multinomial Naive Bayes (b) for the dataset Kitchenham_2010.

(a) Semi-supervised Multinomial Naive Bayes
with sub-topics

(b) Multinomial Naive Bayes

FIGURE B.19: All trials for semi-supervised Multinomial Naive Bayes with sub-topics (a) and
Multinomial Naive Bayes (b) for the dataset Kwok_2020.

Appendix B. Graphs of all the TAR trials 74

(a) Semi-supervised Multinomial Naive Bayes
with sub-topics

(b) Multinomial Naive Bayes

FIGURE B.20: All trials for semi-supervised Multinomial Naive Bayes with sub-topics (a) and
Multinomial Naive Bayes (b) for the dataset Nagtegaal_2019.

(a) Semi-supervised Multinomial Naive Bayes
with sub-topics

(b) Multinomial Naive Bayes

FIGURE B.21: All trials for semi-supervised Multinomial Naive Bayes with sub-topics (a) and
Multinomial Naive Bayes (b) for the dataset Radjenovic_2013.

(a) Semi-supervised Multinomial Naive Bayes
with sub-topics

(b) Multinomial Naive Bayes

FIGURE B.22: All trials for semi-supervised Multinomial Naive Bayes with sub-topics (a) and
Multinomial Naive Bayes (b) for the dataset van_de_Schoot.

Appendix B. Graphs of all the TAR trials 75

(a) Semi-supervised Multinomial Naive Bayes
with sub-topics

(b) Multinomial Naive Bayes

FIGURE B.23: All trials for semi-supervised Multinomial Naive Bayes with sub-topics (a) and
Multinomial Naive Bayes (b) for the dataset Wahono_2015.

(a) Semi-supervised Multinomial Naive Bayes
with sub-topics

(b) Multinomial Naive Bayes

FIGURE B.24: All trials for semi-supervised Multinomial Naive Bayes with sub-topics (a) and
Multinomial Naive Bayes (b) for the dataset Wolters_2018.

Appendix B. Graphs of all the TAR trials 76

B.3 Experiment 3: SVM with self-training and SVM models

(a) SVM with self-training (b) SVM

FIGURE B.25: All trials for SVM with self-training (a) and SVM (b) for the dataset Appenzeller-
Herzog_2020.

(a) SVM with self-training (b) SVM

FIGURE B.26: All trials for SVM with self-training (a) and SVM (b) for the dataset Bannach-
Brown_2019.

(a) SVM with self-training (b) SVM

FIGURE B.27: All trials for SVM with self-training (a) and SVM (b) for the dataset Bos_2018.

Appendix B. Graphs of all the TAR trials 77

(a) SVM with self-training (b) SVM

FIGURE B.28: All trials for SVM with self-training (a) and SVM (b) for the dataset
Kitchenham_2010.

(a) SVM with self-training (b) SVM

FIGURE B.29: All trials for SVM with self-training (a) and SVM (b) for the dataset Kwok_2020.

(a) SVM with self-training (b) SVM

FIGURE B.30: All trials for SVM with self-training (a) and SVM (b) for the dataset Nagtegaal_2019.

Appendix B. Graphs of all the TAR trials 78

(a) SVM with self-training (b) SVM

FIGURE B.31: All trials for SVM with self-training (a) and SVM (b) for the dataset Radjenovic_2013.

(a) SVM with self-training (b) SVM

FIGURE B.32: All trials for SVM with self-training (a) and SVM (b) for the dataset van_de_Schoot.

(a) SVM with self-training (b) SVM

FIGURE B.33: All trials for SVM with self-training (a) and SVM (b) for the dataset Wolters_2018.

Appendix B. Graphs of all the TAR trials 79

B.4 Experiment 4: Label spreading and AutoTAR models

(a) Label spreading (b) AutoTAR

FIGURE B.34: All trials for Label spreading (a) and AutoTAR (b) for the dataset Appenzeller-
Herzog_2020.

(a) Label spreading (b) AutoTAR

FIGURE B.35: All trials for Label spreading (a) and AutoTAR (b) for the dataset Bannach-
Brown_2019.

(a) Label spreading (b) AutoTAR

FIGURE B.36: All trials for Label spreading (a) and AutoTAR (b) for the dataset Bos_2018.

Appendix B. Graphs of all the TAR trials 80

(a) Label spreading (b) AutoTAR

FIGURE B.37: All trials for Label spreading (a) and AutoTAR (b) for the dataset van_Dis_2020.

(a) Label spreading (b) AutoTAR

FIGURE B.38: All trials for Label spreading (a) and AutoTAR (b) for the dataset Hall_2012.

(a) Label spreading (b) AutoTAR

FIGURE B.39: All trials for Label spreading (a) and AutoTAR (b) for the dataset Kitchenham_2010.

Appendix B. Graphs of all the TAR trials 81

(a) Label spreading (b) AutoTAR

FIGURE B.40: All trials for Label spreading (a) and AutoTAR (b) for the dataset Kwok_2020.

(a) Label spreading (b) AutoTAR

FIGURE B.41: All trials for Label spreading (a) and AutoTAR (b) for the dataset Nagtegaal_2019.

(a) Label spreading (b) AutoTAR

FIGURE B.42: All trials for Label spreading (a) and AutoTAR (b) for the dataset Radjenovic_2013.

Appendix B. Graphs of all the TAR trials 82

(a) Label spreading (b) AutoTAR

FIGURE B.43: All trials for Label spreading (a) and AutoTAR (b) for the dataset van_de_Schoot.

(a) Label spreading (b) AutoTAR

FIGURE B.44: All trials for Label spreading (a) and AutoTAR (b) for the dataset Wahono_2015.

(a) Label spreading (b) AutoTAR

FIGURE B.45: All trials for Label spreading (a) and AutoTAR (b) for the dataset Wolters_2018.

Appendix B. Graphs of all the TAR trials 83

B.5 Experiment 5: CombiTAR and AutoTAR models

B.5.1 CombiTAR 50% and AutoTAR models

(a) CombiTAR 50% (b) AutoTAR

FIGURE B.46: All trials for CombiTAR 50% (a) and AutoTAR (b) for the dataset Appenzeller-
Herzog_2020.

(a) CombiTAR 50% (b) AutoTAR

FIGURE B.47: All trials for CombiTAR 50% (a) and AutoTAR (b) for the dataset Bannach-
Brown_2019.

(a) CombiTAR 50% (b) AutoTAR

FIGURE B.48: All trials for CombiTAR 50% (a) and AutoTAR (b) for the dataset Bos_2018.

Appendix B. Graphs of all the TAR trials 84

(a) CombiTAR 50% (b) AutoTAR

FIGURE B.49: All trials for CombiTAR 50% (a) and AutoTAR (b) for the dataset van_Dis_2020.

(a) CombiTAR 50% (b) AutoTAR

FIGURE B.50: All trials for CombiTAR 50% (a) and AutoTAR (b) for the dataset Hall_2012.

(a) CombiTAR 50% (b) AutoTAR

FIGURE B.51: All trials for CombiTAR 50% (a) and AutoTAR (b) for the dataset Kitchenham_2010.

Appendix B. Graphs of all the TAR trials 85

(a) CombiTAR 50% (b) AutoTAR

FIGURE B.52: All trials for CombiTAR 50% (a) and AutoTAR (b) for the dataset Kwok_2020.

(a) CombiTAR 50% (b) AutoTAR

FIGURE B.53: All trials for CombiTAR 50% (a) and AutoTAR (b) for the dataset Nagtegaal_2019.

(a) CombiTAR 50% (b) AutoTAR

FIGURE B.54: All trials for CombiTAR 50% (a) and AutoTAR (b) for the dataset Radjenovic_2013.

Appendix B. Graphs of all the TAR trials 86

(a) CombiTAR 50% (b) AutoTAR

FIGURE B.55: All trials for CombiTAR 50% (a) and AutoTAR (b) for the dataset van_de_Schoot.

(a) CombiTAR 50% (b) AutoTAR

FIGURE B.56: All trials for CombiTAR 50% (a) and AutoTAR (b) for the dataset Wahono_2015.

(a) CombiTAR 50% (b) AutoTAR

FIGURE B.57: All trials for CombiTAR 50% (a) and AutoTAR (b) for the dataset Wolters_2018.

Appendix B. Graphs of all the TAR trials 87

B.5.2 CombiTAR 90% and AutoTAR models

(a) CombiTAR 90% (b) AutoTAR

FIGURE B.58: All trials for CombiTAR 90% (a) and AutoTAR (b) for the dataset Appenzeller-
Herzog_2020.

(a) CombiTAR 90% (b) AutoTAR

FIGURE B.59: All trials for CombiTAR 90% (a) and AutoTAR (b) for the dataset Bannach-
Brown_2019.

(a) CombiTAR 90% (b) AutoTAR

FIGURE B.60: All trials for CombiTAR 90% (a) and AutoTAR (b) for the dataset Bos_2018.

Appendix B. Graphs of all the TAR trials 88

(a) CombiTAR 90% (b) AutoTAR

FIGURE B.61: All trials for CombiTAR 90% (a) and AutoTAR (b) for the dataset van_Dis_2020.

(a) CombiTAR 90% (b) AutoTAR

FIGURE B.62: All trials for CombiTAR 90% (a) and AutoTAR (b) for the dataset Hall_2012.

(a) CombiTAR 90% (b) AutoTAR

FIGURE B.63: All trials for CombiTAR 90% (a) and AutoTAR (b) for the dataset Kitchenham_2010.

Appendix B. Graphs of all the TAR trials 89

(a) CombiTAR 90% (b) AutoTAR

FIGURE B.64: All trials for CombiTAR 90% (a) and AutoTAR (b) for the dataset Kwok_2020.

(a) CombiTAR 90% (b) AutoTAR

FIGURE B.65: All trials for CombiTAR 90% (a) and AutoTAR (b) for the dataset Nagtegaal_2019.

(a) CombiTAR 90% (b) AutoTAR

FIGURE B.66: All trials for CombiTAR 90% (a) and AutoTAR (b) for the dataset Radjenovic_2013.

Appendix B. Graphs of all the TAR trials 90

(a) CombiTAR 90% (b) AutoTAR

FIGURE B.67: All trials for CombiTAR 90% (a) and AutoTAR (b) for the dataset van_de_Schoot.

(a) CombiTAR 90% (b) AutoTAR

FIGURE B.68: All trials for CombiTAR 90% (a) and AutoTAR (b) for the dataset Wahono_2015.

(a) CombiTAR 90% (b) AutoTAR

FIGURE B.69: All trials for CombiTAR 90% (a) and AutoTAR (b) for the dataset Wolters_2018.

Response	Summary:

Section	1.	Research	projects	involving	human	participants
	
P1.	Does	your	project	involve	human	participants?	This	includes	for	example	use	of	observation,	(online)
surveys,	interviews,	tests,	focus	groups,	and	workshops	where	human	participants	provide	information	or
data	to	inform	the	research.	If	you	are	only	using	existing	data	sets	or	publicly	available	data	(e.g.	from
Twitter,	Reddit)	without	directly	recruiting	participants,	please	answer	no.	

No

	
Section	2.	Data	protection,	handling,	and	storage
The	General	Data	Protection	Regulation	imposes	several	obligations	for	the	use	of	personal	data	(defined	as	any
information	relating	to	an	identified	or	identifiable	living	person)	or	including	the	use	of	personal	data	in	research.

	
D1.	Are	you	gathering	or	using	personal	data	(defined	as	any	information	relating	to	an	identified	or
identifiable	living	person)?

No

	

Section	3.	Research	that	may	cause	harm
Research	may	cause	harm	to	participants,	researchers,	the	university,	or	society.	This	includes	when	technology	has	dual-
use,	and	you	investigate	an	innocent	use,	but	your	results	could	be	used	by	others	in	a	harmful	way.	If	you	are	unsure
regarding	possible	harm	to	the	university	or	society,	please	discuss	your	concerns	with	the	Research	Support	Office.	

	
H1.	Does	your	project	give	rise	to	a	realistic	risk	to	the	national	security	of	any	country?

No

	
H2.	Does	your	project	give	rise	to	a	realistic	risk	of	aiding	human	rights	abuses	in	any	country?

No

	
H3.	Does	your	project	(and	its	data)	give	rise	to	a	realistic	risk	of	damaging	the	University’s	reputation?
(E.g.,	bad	press	coverage,	public	protest.)

No

	
H4.	Does	your	project	(and	in	particular	its	data)	give	rise	to	an	increased	risk	of	attack	(cyber-	or
otherwise)	against	the	University?	(E.g.,	from	pressure	groups.)

No

	
H5.	Is	the	data	likely	to	contain	material	that	is	indecent,	offensive,	defamatory,	threatening,	discriminatory,
or	extremist?

No

	
H6.	Does	your	project	give	rise	to	a	realistic	risk	of	harm	to	the	researchers?

No

	
H7.	Is	there	a	realistic	risk	of	any	participant	experiencing	physical	or	psychological	harm	or	discomfort?

No

	

91

Appendix C

Ethics and Privacy Quick Scan

H8.	Is	there	a	realistic	risk	of	any	participant	experiencing	a	detriment	to	their	interests	as	a	result	of
participation?

No

	
H9.	Is	there	a	realistic	risk	of	other	types	of	negative	externalities?

No

	

Section	4.	Conflicts	of	interest
	
C1.	Is	there	any	potential	conflict	of	interest	(e.g.	between	research	funder	and	researchers	or	participants
and	researchers)	that	may	potentially	affect	the	research	outcome	or	the	dissemination	of	research
findings?

No

	
C2.	Is	there	a	direct	hierarchical	relationship	between	researchers	and	participants?

No

	
Section	5.	Your	information.
This	last	section	collects	data	about	you	and	your	project	so	that	we	can	register	that	you	completed	the	Ethics	and
Privacy	Quick	Scan,	sent	you	(and	your	supervisor/course	coordinator)	a	summary	of	what	you	filled	out,	and	follow	up
where	a	fuller	ethics	review	and/or	privacy	assessment	is	needed.	For	details	of	our	legal	basis	for	using	personal	data
and	the	rights	you	have	over	your	data	please	see	the	University’s	privacy	information.	Please	see	the	guidance	on	the
ICS	Ethics	and	Privacy	website	on	what	happens	on	submission.	

	
Z0.	Which	is	your	main	department?

Information	and	Computing	Science

	
Z1.	Your	full	name:
Ercan	Öz

	
Z2.	Your	email	address:
e.oz@students.uu.nl

	
Z3.	In	what	context	will	you	conduct	this	research?

As	a	student	for	my	master	thesis,	supervised	by::
Dr.	A.J.	(Ad)	Feelders

	
Z5.	Master	programme	for	which	you	are	doing	the	thesis

Artificial	Intelligence

	
Z6.	Email	of	the	course	coordinator	or	supervisor	(so	that	we	can	inform	them	that	you	filled	this	out	and
provide	them	with	a	summary):
a.j.feelders@uu.nl

	
Z7.	Email	of	the	moderator	(as	provided	by	the	coordinator	of	your	thesis	project):
g.m.krempl@uu.nl	(Second	Examiner)

	
Z8.	Title	of	the	research	project/study	for	which	you	filled	out	this	Quick	Scan:
Semi-supervised	learning	for	Technology	Assisted	Review

	

Appendix C. Ethics and Privacy Quick Scan 92

Z9.	Summary	of	what	you	intend	to	investigate	and	how	you	will	investigate	this	(200	words	max):
Consider	the	task	of	finding	all	documents	relevant	to	an	information	need	in	a	(potentially	large)	collection	of	documents.
To	determine	whether	any	given	document	is	relevant	is	non-trivial,	for	example,	a	human	has	to	read	the	document	to
determine	its	relevance.	In	Technology	Assisted	Review	(TAR)	one	tries	to	speed	up	this	process	typically	by	using
machine	learning	models	in	an	active	learning	cycle.
Classifiers	are	trained	on	the	labeled	instances,	and	used	to	select	the	next	document	to	be	labeled	from	the	set	of
unlabeled	documents.	In	training	the	classifiers,	the	unlabeled	data	is	typically	ignored,	even	though	semi-supervised
learning	techniques	could	potentially	make	use	of	the	unlabeled	data	to	improve	the	quality	of	the	classifiers.
In	this	project	we	are	going	to	study	different	techniques	for	semi-supervised	learning	(SSL)	for	binary	classification,
and	evaluate	the	added	value	of	these	techniques	in	the	TAR	process.	Since	the	TAR	process	is	complex,	and	contains
a	number	of	different	building	blocks,	the	interaction	between	different	SSL	approaches	and	other	TAR	components
must	also	be	taken	into	account.

	
Z10.	In	case	you	encountered	warnings	in	the	survey,	does	supervisor	already	have	ethical	approval	for	a
research	line	that	fully	covers	your	project?

Not	applicable

	

Scoring
Privacy:	0
Ethics:	0

Appendix C. Ethics and Privacy Quick Scan 93

	Introduction and research question
	Introduction
	Research question

	Technology Assisted Review
	Continuous active learning (CAL)
	AutoTAR
	One-phase workflows and two-phase workflows

	Related work
	Autostop
	ASReview
	FAST2
	Comparative analysis of semi-supervised learning for relevant article selection

	Semi-Supervised Learning strategies
	Wrapper methods
	Graph-based models
	Mixture models and Expectation Maximization
	Semi-supervised support vector machines (S3VM)

	Experimental evaluation setup
	Datasets
	Document representation
	Evaluation metrics
	Model algorithms
	Hyper-parameter tuning
	Experiments
	Ethics and Privacy

	Results
	Experiment 1: Semi-supervised Multinomial Naive Bayes and Multinomial Naive Bayes models
	Experiment 2: Semi-supervised Multinomial Naive Bayes with sub-topics and Multinomial Naive Bayes models
	Experiment 3: SVM with self-training and SVM models
	Experiment 4: Label spreading and AutoTAR models
	Experiment 5: CombiTAR and AutoTAR models

	Discussion
	Research questions
	Findings and interpretation
	Limitations
	Future research
	Conclusion

	References
	Hyper-parameter values
	Graphs of all the TAR trials
	Experiment 1: Semi-supervised Multinomial Naive Bayes and Multinomial Naive Bayes models
	Experiment 2: Semi-supervised Multinomial Naive Bayes with sub-topics and Multinomial Naive Bayes models
	Experiment 3: SVM with self-training and SVM models
	Experiment 4: Label spreading and AutoTAR models
	Experiment 5: CombiTAR and AutoTAR models

	Ethics and Privacy Quick Scan

