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Abstract

Although general relativity has proven to be a very successful theory of gravitation,
there are strong indications that general relativity requires modification. Dynamical
Chern-Simons gravity is one of such modifications of general relativity that has gained
popularity in the last fifteen years.
An important prediction of general relativity is the existence of black holes. Although
there is a good deal of observational evidence indicating the existence of black holes,
it is not yet clear whether the black holes in our universe are well described by general
relativity. Therefore, it is critical to study black holes in modified theories of gravity.
In dynamical Chern-Simons gravity, static black holes do not differ from those in general
relativity. However, it is expected that black holes generally are not static, as they are
expected to have angular momentum. In other words, they rotate. In that case, the
rotating black holes from general relativity, which are described by the Kerr metric,
need corrections to satisfy the modified field equations of dynamical Chern-Simons
gravity.
In this thesis, we will review the current best description of rotating black holes in
dynamical Chern-Simons gravity. Subsequently, we will use this description to test the
four laws of black hole mechanics, and draw the comparison with the Kerr black hole
from general relativity.
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Introduction

It was in 1979 that French physicist Jean-Pierre Luminet first produced a visual represen-
tation of a black hole with accretion disk based on the formulas of general relativity with
nothing but an IBM computer, a sheet of paper and ink [1]. At the time, the concept of
a black hole was still highly theoretical, hence being able to ’see’ such an unfathomable
object is nothing short of remarkable.
To produce this ’image’ of a black hole, Luminet considered a rotating disk of gas around
a static black hole. Although only the accretion disk was taken to be rotating, Luminet
argued that a slowly rotating black hole with accretion disk should look similar, and he
posed that his image could potentially be a representation of the supermassive black hole
M87* at the centre of the galaxy M87.
Almost exactly 40 years later, the EHT consortium captured an image of M87*[2]. Al-
though not quite one to one with Luminet’s ‘image’, many of the defining features were
there.
Since 1979 our mathematical understanding of black holes has had a long time to mature,
and more and more observational evidence of the existence of black holes has been and is
being gathered. However, even though we are almost certain that black holes exist, we are
not sure whether the theory of general relativity is sufficient to describe these black holes.

The supermassive black hole M87* at the core of the Messier 87 galaxy, as captured by the
EHT consortium.
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That general relativity almost certainly does not provide a complete description of gravity
is clear, as the theory is not compatible with quantum physics. This realization has led
physicists to propose and explore many modified theories of general relativity. Such a the-
ory must provide predictions similar to general relativity in weak gravity environments,
such as in our own solar system or in binary pulsar systems, but predictions may differ in
environments where gravity is strong, such as black hole environments. Which is why it is
interesting to study black holes in modified theories of gravity.
A well-motivated modification of general relativity that has gained popularity in the last
fifteen or so years is dynamical Chern-Simons gravity (dCS). This modification has its roots
in string theory, loop quantum gravity, and particle physics, but it also comes up naturally
when supplementing the Einstein-Hilbert action of general relativity with higher curvature
terms. Dynamical Chern-Simons gravity, which was first formulated in [2, 3], extends the
Einstein-Hilbert action, by adding a dynamical scalar field coupled to the Chern-Pontryagin
scalar, which is quadratic in the curvature.
In dCS gravity, static black holes do not require modifications, however this does not apply
to rotating black holes [4]. This has made finding dCS corrections to the Kerr metric a
primary point of interest in dCS gravity.
The first dCS corrections to the Kerr metric were found in 2009 by N. Yunes and F. Preto-
rius [5], however they only allowed for the probing of slowly rotating black holes.
Only recently, in 2019, significantly more accurate dCS corrections to the Kerr metric were
found by P. Cano, and A. Ruipérez [6]. These newly found corrections have allowed us to
probe moderately fast rotating black holes.
An interesting aspect of black holes in general relativity are the four laws of black hole
mechanics. These are a set of four laws, which were discovered in the early seventies [7],
connected black hole physics with the four laws of thermodynamics. Since, the thermo-
dynamics of black holes has become a rich, and very well-studied subject. These laws can
also be used to put bounds on the energy that can be extracted or released by single or
multiple black hole systems.
Whether the laws of black hole mechanics hold in modified theories of gravity is a priori
not clear, as many proofs of the laws of black hole mechanics rely on assumptions that
cannot be made in many modified theories of gravity, this is for example the case in dCS
gravity. This is one of the reasons why studying the laws of black hole mechanics in modi-
fied theories of gravity an interesting subject of research.

The structure of this thesis is as follows: In the first chapter, we will briefly go over the
main concepts of general relativity and Kerr black holes. Then, in the second chapter, we
will discuss the basics of dCS gravity. In the third chapter, we discuss the basic properties
of the dCS corrected Kerr black hole, which will include some new work on the local Petrov
type. In the final chapter, we will test the four laws of black hole mechanics explicitly using
the dCS corrected Kerr metric, and we calculate the upper bound on the amount of energy
that can be released from a single or multiple dCS black holes.
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1 A Brief Introduction to General Relativity and Black Holes

In this section, we will briefly go over the main concepts of general relativity that we will be
using in this thesis. We will also briefly cover the topic of black holes by using the Kerr black
hole as an example. This is by no means a complete overview of general relativity or black
holes. For that, we will refer to S. Carroll’s textbook as an introductory text [8], R. Wald’s
classic textbook for a more rigorous treatment of general relativity [9], or E. Poisson’s
textbook for the more advanced topics [10]. The notation and naming conventions used
in this thesis are mainly based on those three texts.

1.1 The Einstein Field Equations

The theory of general relativity is built on a four-dimensional pseudo-Riemannian mani-
fold, usually referred to simply as spacetime, which is a manifold equipped with a metric
gµν with a metric signature (−,+,+,+). Such a metric is often referred to as a Lorentzian
metric. On top of that, the manifold is equipped with the Levi-Civita connection ∇, which
is the unique connection that is metric compatible,

∇αgµν = ∂αgµν − Γσ
αµ gσν − Γσ

αν gσµ = 0, (1.1)

and torsionless,

Γσ
µν = Γσ

νµ. (1.2)

With these requirements, the connection coefficients are uniquely determined by the met-
ric,

Γσ
µν =

1

2
gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν) . (1.3)

Crucial to general relativity is the curvature of spacetime, which is encoded in the Riemann
curvature tensor. In terms of the connection coefficients, the Riemann curvature tensor is
given by,

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ. (1.4)

The dynamics of the metric gµν are governed by the action,

S =

∫
d4x

√
−g (κR + LM) , (1.5)

where g is the determinant of the metric, LM is the Lagrangian of matter, R = Rµν
µν is the

Ricci curvature scalar, and lastly κ is the gravitational coupling constant, which in natural
units where G = c = ℏ = kb = 1, is given by κ = 1/16π. We will be employing the natural
units system in the rest of this thesis. The gravitational part of Eq. (1.5) is known as
Einstein-Hilbert action,

SEH =

∫
d4x

√
−g κR. (1.6)
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By requiring that the metric extremizes the action (1.5), we find the Einstein field equa-
tions,

Rµν −
1

2
gµνR =

1

2κ
Tµν , (1.7)

where Rµν = Rλ
µλν is the Ricci curvature tensor, and Tµν is the stress-energy tensor of

matter, which is defined as,

Tµν =
−2√
−g

δ(
√
−gLM)

δgµν
. (1.8)

The Einstein field equations are often abbreviated as,

Gµν =
1

2κ
Tµν , (1.9)

Where Gµν = Rµν− 1
2
gµνR is called the Einstein tensor. The Einstein tensor is automatically

conserved, which also implies the conservation of the stress-energy tensor via Eq. (1.9),

∇µG
µν = 0 → ∇µT

µν = 0. (1.10)

By taking the trace of both sides of Eq. (1.7) we get,

R = − 1

2κ
T, (1.11)

where T = T µ
µ is the trace of the stress-energy tensor. By using Eq. (1.11) in Eq. (1.7) we

get the so-called trace-reversed form of the Einstein field equations,

Rµν =
1

2κ

(
Tµν −

1

2
gµνT

)
, (1.12)

where T = T µ
µ is the trace of the stress-energy tensor.

Often we will only be interested in vacuum spacetimes, in which case the Einstein field
equations are,

Rµν = 0. (1.13)

A metric that solves the vacuum Einstein field equations is called a Ricci-flat metric.
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1.2 Energy Conditions

General relativity does not tell us what kind of matter is present in the universe. Thus, apart
from the vacuum case, in which the stress-energy tensor vanishes, the stress-energy tensor
could be anything. If the stress-energy tensor could really be anything, we are left with
the situation where any Lorentzian metric can be a solution to the Einstein field equations,
as one can simply calculate the Einstein tensor associated with the metric and obtain the
stress-energy tensor associated with that metric from Eq. (1.9).
To rule out spacetimes that most physicists deem unphysical, one can put restrictions on the
stress-energy tensor. Since we roughly know the properties of the matter that is confirmed
to be present in our universe, the restrictions we put on the stress-energy tensor should
reflect that. A particular common set of restrictions that are often employed are simply
known as the energy conditions, which are:

• Weak Energy Condition: Tµνv
µvν ≥ 0 for any future-directed timelike vector vµ. Since

an observer with four-velocity vµ measures the local energy density of matter ρ to
be ρ = Tµνv

µvν , the weak energy condition simply states that: locally, an observer
should always measure the energy density of matter to be positive.

• Null Energy Condition: Tµνv
µvν ≥ 0 for any future-directed null vector vµ. This condi-

tion essentially states the same as the weak energy condition but for null observers.
This energy condition is actually the weakest energy condition, as it is implied by all
other three energy conditions. Conversely, if the null energy condition is violated,
then all energy conditions are violated.

• Strong Energy Condition:
(
Tµν − 1

2
gµνT

)
vµvν ≥ 0 for every future-directed timelike or

null vector vµ. This energy condition is more of a condition on the Ricci tensor, as
through the trace-reversed Einstein field equations (1.12), the strong energy condi-
tion states that Rµνv

µvν ≥ 0. This condition ensures that gravity is attractive, or in
other words, that matter gravitates towards matter.

• Dominant Energy Condition: −T µ
ν v

ν is a future-directed timelike or null vector field,
for any future-directed timelike or null vector field vµ. This condition essentially states
that the local four-momentum density measured by a local observer must be timelike
or null.

Typically, these energy conditions hold for all known classical matter in the universe, how-
ever, many modified theories of gravity violate one or more of these energy conditions.
While this is not an immediate cause for concern, theorems in general relativity that as-
sume one or more of these energy conditions, such as the laws of black hole mechanics,
need to be reassessed in such theories.
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1.3 The Geodesic Equation

In general relativity, test particles, which are free particles moving in curved spacetime,
move on geodesics. Geodesics are the generalization of straight lines in curved spacetime.
A curve is a geodesic if it extremizes the spacetime distance between any two points on the
curve, thus the spacetime distance can be used as the action to describe the motion of test
particles in gravitational fields,

SGD =

∫
dλ
√

− gαβ uαuβ. (1.14)

Here uα = dxα/dλ is the four-velocity of the test particle, and λ is an affine parameter1

that parameterizes the geodesic. By varying the action with respect to the four-velocity,
one obtains the geodesic equation,

uα ∇αu
β = 0, (1.15)

which is the differential equation that describes the motion of test particles in gravitational
fields.

1.4 Killing Tensor Fields

Symmetries are one of the most important concepts in physics, with Noether’s theorem
giving a one-to-one relation between symmetries and conserved quantities. Symmetries of
spacetime are usually represented by Killing vector fields. We say that a vector field ξµ is a
Killing vector field if the Lie derivative of the metric along said vector field vanishes,

£ξgµν = ξα∇α gµν + gαµ∇ν ξ
α + gαν∇µ ξ

α = 0. (1.16)

Intuitively, this can be understood as the metric being the same along the flow of the vector
field ξµ. By using the metric compatibility of the Levi-Civita connection (1.3), one can
further simplify Eq. (1.16) to,

∇(ν ξµ) = 0, (1.17)

here (.) denotes the symmetrization of the indices2. Equation (1.17) is often referred to as
Killing’s equation.
Depending on the coordinates used to express the metric in, finding Killing vectors can be a
non-trivial task. However, if in a certain coordinate system the metric does not depend on
one or multiple coordinates, then the coordinate vectors associated with these coordinates
are Killing vectors. Conversely, if the spacetime admits a Killing vector, then there exists a
coordinate system in which the metric does not depend on one of the coordinates.

1When a geodesic is parameterized by a parameter λ that is not affine, the geodesic will satisfy uα ∇αu
β =

f(λ)uβ , for some function f(λ).
2For a rank two tensor Tµν the symmetrization (.) of the indices is defined as T(µν) = 1

2 (Tµν + Tνµ).
Furthermore, [.] denotes the anti-symmetrization of the indices, which for a rank-two tensor Tµν is defined
as T[µν] =

1
2 (Tµν − Tνµ).
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Similar to Noether’s theorem, a Killing vector field implies a conserved quantity. If the
four-momentum of a test particle pα obeys the geodesic equation, and the spacetime ad-
mits a Killing vector field ξµ, then the quantity,

Qξ = ξµ pµ → pµ∇µQξ = 0, (1.18)

is conserved along the geodesic. In some cases, a spacetime has a symmetry that is repre-
sented by a higher rank Killing tensor. By a higher rank Killing tensor, we mean a tensor
Kµ1µ2...µn of rank n ≥ 2 that obeys the generalization of Killing’s equation to tensors of
arbitrary rank,

∇(ν Kµ1...µn) = 0. (1.19)

A trivial example of a second rank Killing tensor is the metric, which is a Killing tensor in
any spacetime by virtue of the metric compatibility of the Levi-Civita connection (1.3). The
conserved quantity associated with higher-rank Killing tensors is given by,

QK = Kµ1...µn pµ1 ...pµn → pµ∇µQK = 0. (1.20)

When a spacetime admits four unique Killing tensors, and thus four unique constants of
motion, the geodesic equation, at least in principle, becomes integrable. When the geodesic
equation is not integrable, geodesic motion will exhibit chaotic regimes.

1.5 The Kerr Family of Black Holes

One, if not the most, interesting predictions of general relativity is the existence of black
holes. Black holes, assumed to be the end stage of complete gravitational collapse of a
celestial body, simply put, are regions of no escape. This means that, once a particle enters
a black hole, it is impossible for the particle to exit the black hole again, and escape to in-
finity. While black holes are one of the best and most studies concepts in physics, precisely
answering the question: what is a black hole?, is actually quite difficult [11].

The first black hole solution was found by K. Schwarzschild [12], and independently by
J. Droste [13] in 1916. On top of being the first black hole solution, the Schwarzschild
metric was actually the first ever solution to the Einstein field equations, apart from the
trivial flat spacetime. It seems like there really even was no escape of the concept of black
holes.

The black holes described by the Schwarzschild black hole are the simplest example of
a black hole, as the Schwarzschild black hole is only characterized by its mass M , and is a
vacuum solution of the Einstein field equations.
While the simplicity of the Schwarzschild black hole is a strength, it is also a weakness, as
the Schwarzschild black hole does not describe black holes with angular momentum i.e.
rotating black holes. If a black hole is formed by the total gravitational collapse of a star,
one expects the black hole formed by the gravitational collapse to have angular momen-
tum, since stars typically have angular momentum. It took some time, but in 1963 R. Kerr
[14] found an extension to the Schwarzschild metric that also describes black holes with
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angular momentum, which are known today as Kerr black holes.

In this section, we will briefly discuss the Kerr black hole and its properties. In particu-
lar, we will discuss those properties that are important for the rest of the thesis. For a more
detailed review of the Kerr black hole, we refer to the review article by Saul Teukolsky
[15].

1.5.1 The Kerr Metric

The Kerr metric is the unique solution to the vacuum Einstein field equations (1.13) that
is both stationary and axisymmetric. The Kerr metric is usually represented in Boyer-
Lindquist coordinates,

ds2 =−
(
1− 2Mr

Σ

)
dt2 − 4M2χr sin2 θ

Σ
dtdϕ+ Σ

(
dr2

∆
+ dθ2

)
+

(
r2 +M2χ2 +

2M3rχ2 sin2 θ

Σ

)
sin2 θdϕ2,

(1.21)

with Σ = r2 +M2χ2 cos2 θ, and ∆ = r2 − 2Mr +M2χ2. Here M represent the mass of the
black hole, and χ ∈ [−1, 1], represents the spin of the black hole, which is related to the
total angular momentum of the black hole by J = M2χ. The sign of χ denotes the direction
of the spin of the black hole. Often, χ is taken to be positive, as the direction of spin is
not important for an isolated black hole. Thus, the Kerr metric describes a two-parameter
family of black holes.
By setting χ to zero, one obtains the Schwarzschild metric, and by setting M to zero one
obtains the flat metric.
When working with a computer algebra system, the trigonometric functions in Eq. (1.21)
can drastically slow down calculations. Therefore, it is useful to eliminate them by defining
a new coordinate3 z = − cos θ. In this new coordinate system, the Kerr metric is given by,

ds2 =−
(
1− 2Mr

Σ

)
dt2 − 4M2χr

Σ
dtdϕ+ Σ

(
dr2

∆
+

dz2

1− z2

)
+

(
r2 +M2χ2 +

2M3χ2r (1− z2)

Σ

)(
1− z2

)
dϕ2,

(1.22)

with Σ = r2 +M2χ2z2, and ∆ = r2 − 2Mr+M2χ2. This will be the form of the Kerr metric
that we will be using in the rest of this thesis.
It will also be useful to point out that the metric of any stationary and axisymmetric space-
time, can be written in the same form as the Kerr metric,

ds2 = gtt(r, z)dt
2 + 2gtϕ(r, z)dtdϕ+ grr(r, z)dr

2 + gzz(r, z)dz
2 + gϕϕ(r, z)dϕ

2, (1.23)

where the metric components {gtt, gtϕ, grr, gzz, gϕϕ} are specific to the spacetime.

3The minus sign is chosen such that the new coordinate system has the same orientation as the Boyer-
Lindquist coordinate system.
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1.5.2 Symmetries of the Kerr Geometry

As stated before, the Kerr metric is stationary and axisymmetric. This means that the met-
ric admits a timelike Killing vector tµ that represents time-translational invariance, and a
spacelike Killing vector ϕµ that represents the axial symmetry of the spacetime. The co-
ordinates in (1.22) are chosen such that these Killing vectors are the coordinate vectors
associated with the timelike coordinate t and the azimuthal coordinate ϕ, hence tµ∂µ = ∂t,
and ϕµ∂µ = ∂ϕ. These are the only two independent Killing vectors of the Kerr spacetime.

The Kerr metric also admits two independent second rank Killing tensors, one of which
is of course the metric tensor gµν but the second of which is a bit of a surprise. This Killing
tensor is given by,

Kµν = 2Σ l(µnν) + r2gµν , (1.24)

where the vectors lµ, and nµ are given by,

lµ∂µ =
r2 +M2χ2

∆
∂t + ∂r +

Mχ

∆
∂ϕ,

nµ∂µ =
r2 +M2χ2

2Σ
∂t −

∆

2Σ
∂r +

Mχ

2Σ
∂ϕ,

(1.25)

which are the principle null directions of the Kerr metric. What that exactly means we will
discuss in section 3.4.
In geodesic motion, these four Killing tensors generate four constants of motion,

E = −tµpµ

L = ϕµpµ

m = gµνpµpν

C = Kµνpµpν ,

(1.26)

where E represents the energy of the test particle, L the angular momentum about the axis
of symmetry, m the rest mass of the test particle, and C is called the Carter constant, after
B. Carter who discovered this constant of motion in 1968 [16].
Since there are four independent constants of motion, the geodesic equation is fully inte-
grable in the Kerr spacetime.

1.5.3 Event Horizons

A crucial aspect of black holes are their event horizon or event horizons, as there may be
multiple. The outer event horizon signifies the boundary between the black hole and the
exterior spacetime. In the case of multiple event horizons, there may be another event
horizon within the black hole, however, in this thesis we will focus on the outer event
horizon only.
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First of all, event horizons of stationary black holes are null hypersurfaces. A hypersurface
can be defined by an equation,

f(x) = 0, (1.27)

where f(x) is some function of the spacetime coordinates. From f(x) we can construct the
normal vectors nµ to the hypersurface defined by Eq. (1.27) like,

nµ ∝ gµν∂µf(x). (1.28)

A hypersurface is null when the normal nµ to that hypersurface is null nµnµ = 0.
Apart from being null hypersurfaces event horizons of stationary black holes in general
relativity, if not in any theory of gravity, are also Killing horizons, as shown by Hawking
[17]. A Killing horizon is a null hypersurface on which the norm of a Killing vector ξµ of
the spacetime vanishes. We then say that the Killing vector generates the horizon.

In the Kerr spacetime, one can find two event horizons. These event horizons are sur-
faces where the radial coordinate r is constant, hence the event horizons of the Kerr black
hole are defined by the equation,

r − r± = 0, (1.29)

where r+ represents the outer horizon and r− represents the inner horizon. The normal
vectors nµ to these surfaces of constant r, are proportional to the radial coordinate vector,

nµ ∝ ∂µ(r − r±) = δrµ. (1.30)

Thus, the norm of the normal vectors of surfaces of constant r are proportional to the grr

component of the metric,

nµnµ ∝ gµνnµnν = grr =
∆

Σ
. (1.31)

The null surfaces of constant r in the Kerr spacetime can thus be identifies by solving ∆ = 0,
which gives us,

r± = M(1±
√
1− χ2). (1.32)

To verify whether these two surfaces are Killing horizons, we take a general Killing vector
of the Kerr spacetime,

ξµ = tµ + Aϕµ, (1.33)

where it is very important to stress that A is a constant. Then we calculate the norm of this
Killing vector on the constant r± surfaces. This gives us,

ξµξµ = gtt(r±, z) + A 2gtϕ(r±, z) + A2 gϕϕ(r±, z). (1.34)
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The norm of this Killing vector vanishes when,

A =
gtϕ
gϕϕ

∣∣
r±

±

√
g2tϕ − gttgϕϕ

g2ϕϕ

∣∣
r±
. (1.35)

One can explicitly check that g2tϕ − gttgϕϕ = ∆(1− z2), which is the negative of the determi-
nant of the t− ϕ sector of the metric, and since it is proportional to ∆, this vanishes at r±.
What we are left with is,

A =
gtϕ
gϕϕ

∣∣
r±
, (1.36)

which is constant. Hereby we have shown that the inner and outer horizons of the Kerr
spacetime are Killing horizons. Since we will be mostly interested in the outer horizon, we
will define,

ΩH =
gtϕ
gϕϕ

∣∣
r+
, (1.37)

such that the Killing vector that generates the outer horizon is written as,

ξµ = tµ + ΩH ϕµ. (1.38)

The quantity ΩH is known as the angular velocity of the outer event horizon, as a test
particle falling into the black hole from infinity will have an instantaneous angular velocity
of ΩH when it reaches the outer event horizon. For the Kerr black hole, the angular velocity
of the event horizon is explicitly given by,

ΩKerr
H =

χ

2M(1 +
√
1− χ2)

. (1.39)

Henceforth, we will simply refer to the outer event horizon as the event horizon, and refer
to the r coordinate that defines the outer event horizon as rH .

1.5.4 The Ergosphere

A crucial feature of the Kerr spacetime is the existence of an ergosphere. Due to the angular
momentum of the black hole, one could say that the spacetime around the black hole
is being ’dragged along’ with the rotation of the black hole, which is known as frame
dragging.
The effect of frame dragging is strongest near the horizon of the black hole and becomes
negligible far away from the black hole. At some point, the frame dragging becomes so
strong that it is only possible for a null observer to remain static. This is known as the
static limit surface, which is the surface on which the time Killing vector tµ becomes null,

tµtµ = gtt = −
(
1− 2Mr

Σ

)
= 0. (1.40)
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This implies that the static limit surface of the Kerr spacetime is defined by the equation,

rE(z) = M(1 +
√

1− χ2z2), (1.41)

which touches the event horizon at the poles, rE (±1) = rH . Excluding the interior of the
black hole, we have that for rH < r < rE(z) the time Killing vector becomes spacelike,
which means that not even null observers can remain static. This will be our definition of
the ergosphere.
As we will see, the existence of the ergosphere allows for the extraction of energy from the
black hole.
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2 Introducing Dynamical Chern-Simons Gravity

In this section, we will give a brief introduction to dynamical Chern-Simons gravity (dCS).
We will start with a short motivation of the dCS action and a derivation of the modified
field equations. Then we will go over known exact solutions to the modified field equations.
Lastly, we will derive, and discuss the validity of the modified field equations of dCS gravity
in the small coupling limit. This introduction is by no means complete. For a more in depth
discussion on dynamical Chern-Simons gravity and its origins, we refer to the review article
by S. Alexander and N. Yunes [4].

2.1 The Chern-Simons Action and Equations of Motion

Chern-Simons gravity is a four-dimensional effective extension of general relativity. Chern-
Simons gravity extends general relativity by adding a Chern-Simons term to the Einstein-
Hilbert action (1.6). This Chern-Simons term is quadratic in the Riemann tensor, making
Chern-Simons gravity a quadratic curvature theory.
The Chern-Simons term find its origin in three-dimensional Yang-Mills and gravitational
theories [3]. However, one can extend the three-dimensional Chern-Simons term such
that it can be introduced in four-dimensional theories of gravity. This was done first by R.
Jackiw and S.-Y. Pi in 2003 [2].
The extended four-dimensional Chern-Simons term constructed by Jackiw and Pi is given
by,

SCS = κ

∫
V
d4x

√
−g α ϑ ∗RR. (2.1)

Here, α is a generic coupling constant, ϑ is a scalar field, and ∗RR is the Chern-Pontryagin
scalar which is given by,

∗RR = ∗RγδαβRβαγδ =
1

2
ϵγδµνRαβ

µνRβαγδ, (2.2)

here ϵγδµν is the Levi-Civita tensor.
The Chern-Pontryagin scalar is parity odd, hence it is actually a pseudo-scalar. That means
that under a parity transformation P , the Chern-Pontryagin scalar transforms as,

P [ ∗RR] = − ∗RR. (2.3)

The coupling of the scalar field ϑ to the Chern-Pontryagin scalar in Eq. (2.1) is necessary as
the Chern-Pontryagin scalar by itself cannot be used to meaningfully extend the Einstein-
Hilbert action as it can be written as the divergence of a vector field,

∇µK
µ =

1

2
∗RR. (2.4)

Here the vector field Kµ, known as the Chern-Simons topological current, is given by,

Kµ = ϵµαβγΓν
αδ

(
∂βΓ

δ
νγ +

2

3
Γδ

βλΓ
λ
νγ

)
. (2.5)
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By using Stokes’ theorem, we can then write the CS term (2.1) as,

SCS = 2κ

∫
∂V

d3x
√

|γ|αϑKµnµ − 2κ

∫
V
d4x

√
−g α (∂µϑ)K

µ, (2.6)

where γµν is the induced metric on ∂V and nµ is the unit normal to ∂V. The first term is a
boundary term and may be discarded from the action. The second term is non-vanishing
provided ∂µϑ is non-vanishing. This explains why ϑ must be a scalar field, and not just a
constant.

The gravitational action, consisting of the Einstein-Hilbert action and the Chern-Simons
term, is then given by,

SND
CS = SEH + SCS = κ

∫
V
d4x

√
−g (R + αϑ ∗RR) , (2.7)

Where ND stands for non-dynamical. This action does not dictate the dynamics of the
scalar field ϑ, which means that the scalar field can be arbitrarily prescribed. That is why
the gravitational theory described by this action is known as non-dynamical Chern-Simons
gravity.
By varying the action with respect to metric, we obtain the field equations of non-dynamical
CS gravity,

Gµν + 4αCµν = 0, (2.8)

where Cµν is the so-called Cotton tensor4, which is given by,

Cµν = ∇β∇α
[
∗Rα(µν)β ϑ

]
. (2.9)

Equivalently, the Cotton tensor can be expressed as,

Cµν = ϵγβ ∇α(µ| βR|ν)γ∇αϑ+ ∗Rα(µν)β ∇β∇αϑ. (2.10)

The equivalence of these two expression is proven in Appendix A.

Due to the Einstein tensor automatically satisfying ∇µG
µν = 0, the space of solutions of

non-dynamical CS gravity is confined to metrics that satisfy ∇µC
µν = 0. It turns out that

this implies that the Chern-Pontryagin scalar of the metric must vanish. Thus, the non-
dynamical Chern-Simons theory comes with the constraint, ∗RR = 0, known as the Pon-
tryagin constraint. This makes non-dynamical Chern-Simons gravity a constrained theory,
for example, ruling out rotating black hole solutions [4]. On top of that, we also have the
problem of the scalar field ϑ being completely arbitrary.

4Which is related, but not equivalent to the Cotton tensor that appears in three-dimensional Chern-Simons
theories. It is also useful to point out that the Cotton tensor is traceless, Cµ

µ = 0.
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To cure the Chern-Simons theory of the arbitrariness and the Pontryagin constraint, we can
add generic terms to the action to make the scalar field ϑ dynamical. There is of course
some arbitrariness to the choice of terms added to the action as well, but we can keep the
action for the scalar field quite general. An obvious choice of action is a just a standard
kinetic term,

Sϑ = −κ

2

∫
V
d4x

√
−g gµν∂µϑ∂νϑ. (2.11)

One could in principle also add a potential term, but since there is no obvious choice of
potential, we will leave it out. If we add this term to the non-dynamical CS action, we
obtain the dynamical CS action or dCS action, which was first formulated in [18]. The dCS
action is then given by,

SdCS = SEH + SCS + Sϑ = κ

∫
d4x

√
−g

(
R + αϑ ∗RR− 1

2
gµν∂µϑ∂νϑ

)
. (2.12)

This action implies the following field equations for the metric5,

Gµν =
1

2
T ϑ
µν − 4αCµν . (2.13)

The new term that appears here is the stress-energy associated with Sϑ, which is given by,

T ϑ
µν = ∂µϑ∂νϑ− 1

2
gµν∂σϑ∂

σϑ. (2.14)

This stress-energy tensor is not conserved, meaning that ∇µT
µν
ϑ ̸= 0. However, conservation

of the Einstein tensor does imply that,

1

2
∇µT

µν
ϑ = 4α∇µC

µν . (2.15)

This then in turn implies, instead of the Pontryagin constraint, that the scalar field ϑ must
satisfy the sourced wave equation,

□ϑ = −α ∗RR, (2.16)

which can also be derived by varying the action Eq. (2.12) with respect to ϑ. Since the
Chern-Pontryagin scalar is a pseudo-scalar, (2.16) implies that ϑ is also a pseudo-scalar
field, which is why it is sometimes called the axion field, which is also the naming conven-
tion we will be using in this thesis. The combination ϑ ∗RR is then a scalar, thus the theory
does not break parity at the level of the action.

5Of course, one can also add other matter fields to the dCS action, in which case the stress-energy tensor
of those fields appears on the right side of the dCS field equations.
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Instead of using Eq. (2.13), it is often more convenient to use the trace-reversed form of
Eq. (2.13), which is given by

Rµν =
1

2
∂µϑ ∂νϑ− 4α ϵγβ ∇α(µ| βR|ν)γ∇αϑ− 4α ∗Rα(µν)β ∇β∇αϑ, (2.17)

where we have used the explicit form of the Cotton tensor given in Eq. (2.10).

Aside from the motivation of the dCS action outlined here, dCS gravity can also be de-
rived from heterotic string theory, loop quantum gravity, and from the standard model, as
discussed in [4]. A part from that, dCS gravity also comes up naturally when one consid-
ers higher order curvature corrections to the Einstein-Hilbert action, as one can essentially
only build four independent quadratic curvature scalars from the Riemann tensor, which
are: the Ricci scalar squared R2, the Ricci tensor squared RµνR

µν , the Kretschmann scalar
RµναβR

µναβ, and lastly, the Chern-Pontryagin scalar ∗RR. All in all, this makes dCS gravity
a very well-motivated extension to the Einstein-Hilbert action that is worth studying.

2.2 Exact Solutions in Dynamical Chern-Simons Gravity

As with most modified theories of gravity, finding exact solutions in dynamical Chern-
Simons gravity is not an easy task. However, there are two classes of spacetimes that will
trivially solve the dCS equations, provided they are exact solutions to the Einstein field
equations. These are all spherically symmetric and all conformally flat solutions to the
Einstein field equations. To find out why this is the case, we will treat these two cases
separately.

2.2.1 Spherically Symmetric Solutions to the Einstein Field Equations

That any spherically symmetric solution to the Einstein Field equations solve the dCS equa-
tions exactly, is purely due to the fact that the Chern-Pontryagin scalar is a pseudo-scalar.
The metric of a spherically symmetric spacetime is parity even, meaning that it does not
change under a parity transformation P . Thus, we must have that for spherically symmet-
ric spacetimes P [ ∗RR] = ∗RR, but since the Chern-Pontryagin scalar is inherently parity
odd, we also have that P [ ∗RR] = − ∗RR, thus for both of these statements to be true we
must have that ∗RR = 0 for spherically symmetric spacetimes.

When a spacetime has a vanishing Chern-Pontryagin scalar, the wave equation for the
axion fields given by Eq. (2.16) becomes,

□ϑ = 0, (2.18)

which usually will not have a well-defined solution that decays to zero at infinity, except
for a vanishing field, which in any case is a perfectly fine solution to the wave equation
without a source.
If we set the axion field to zero in the dCS equations (2.13), we recover the Einstein field
equations (1.7), hence spherically symmetric spacetimes are exact solutions in dCS gravity
provided they solve the Einstein field equations.
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This specifically means that the Schwarzschild solution is still a solution in dCS, but the
Kerr black hole, which is not spherically symmetric, is not a solution in dCS. This is exactly
why rotating black holes are a primary area of interest in dCS gravity. The fact that the
Schwarzschild solutions persists is, however, still relevant for rotating black holes in dCS.
In general relativity, we recover the Schwarzschild solution if we set the spin of the Kerr
metric to zero, thus we also expect that rotating black holes in dCS reduce to the Schwarzschild
solution when we set their spin to zero. This also automatically implies that the axion field
must vanish when we take the spin to zero.

2.2.2 Conformally Flat Solutions to the Einstein Field Equations

A conformally flat spacetime is a spacetime in which the metric can be written as,

ds2 = a(x)ηµνdx
µdxν , (2.19)

where a(x) is some arbitrary function of the spacetime coordinates, and ηµν is the flat
metric. The curvature of conformally flat spacetimes is completely determined by the Ricci
curvature tensor. The Chern-Pontryagin scalar does not contain any information about the
Ricci curvature tensor, hence for any conformally flat metric we have that ∗RR = 06.
Just like with spherically symmetric spacetimes, we can then set the axion field to zero, and
we once again recover that the metric should solve Einstein field equations. Although we
will not be dealing with conformally flat spacetimes here, it is important to note that the
Friedmann-Lemaître-Robertson-Walker metric, which describes a homogenous, isotropic
expanding universe is also still a solution in dCS gravity.

2.3 Dynamical Chern-Simons Gravity in the Small Coupling Limit

In the previous section, we obtained the modified field equations for the metric and the
wave equation for the axion field from the dCS action (2.12). In this section, we will
expand these equations around any exact vacuum solution of the Einstein field equations
(1.13), to leading order in the dCS coupling parameter.

Although trivial solutions to the exact dCS equations are easy to find, like we have seen in
the previous section, non-trivial solutions are extremely difficult to find. Furthermore, one
could ask whether exact solutions that include all orders in the dCS coupling are even use-
ful. Since general relativity already works well for black hole physics, one should expect
the dCS equations to only provide small corrections to observables. On top of that, one
expects that the correct effective theory of gravity derived from quantum gravity contains
more terms in addition to the dCS term, maybe even infinitely many. In that context, it is
not very useful to include beyond leading order dCS corrections to general relativity.

6In short, this is because the Chern-Pontraygin scalar can also be written as ∗CC. Where Cµναβ is the
Weyl curvature tensor. Since the Weyl tensor is invariant under conformal transformations of the metric,
the Chern-Pontryagin scalar is as well. That means that the Chern-Pontryagin scalar of conformally flat
spacetimes are conformally related to the Chern-Pontryagin scalar of the flat metric, which vanishes.
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To expand the dCS equations to leading order in the coupling parameter, we first make the
ansatz that the metric can be written as,

gµν = g(0)µν + αh(1)
µν + α2 h(2)

µν +O(α3), (2.20)

with |α(n)h
(n)
µν | ≪ 1. Here g

(0)
µν is the background spacetime, which is an exact solution to

the vacuum Einstein field equations (1.13), which means that,

R(0)
µν = 0. (2.21)

The ansatz for the axion field also needs to be expanded in the coupling, hence the ansatz
for the axion field is,

ϑ = ϑ(0) + αϑ(1) + α2 ϑ(2) +O(α3). (2.22)

Now we insert the ansatz for metric (2.20) and the axion field (2.22) into Eq. (2.16), and
then we expand both sides in the coupling parameter. We then find,

□(0)ϑ(0) + α
(
□(1)ϑ(0) +□(0)ϑ(1)

)
+O(α2) = −α ∗RR(0) ++O(α2), (2.23)

where ∗RR(0) is the Chern-Pontryagin scalar associated with the background spacetime.
The zeroth order part of this equation, □(0)ϑ(0) = 0 implies that ϑ(0) = 0, if we require the
axion field to vanish at infinity. If we use that again in Eq. 2.23, the wave equation for the
axion to leading order in the coupling then becomes,

α□(0)ϑ(1) = −α ∗RR(0). (2.24)

The axion field thus is at least of order O(α).

Now we can do the same thing for Eq. (2.17) by using the ansatz for the metric (2.20)
and the ansatz for the axion (2.22). Using our newly found knowledge that the axion is at
least of order O(α), Eq. (2.17) to leading order in the coupling becomes,

α2R(2)
µν +O(α3) = α2

(
1

2
∂µϑ

(1) ∂νϑ
(1) − 4 ∗R

(0)
α(µν)β ∇

β∇αϑ(1)

)
+O(α3). (2.25)

Here the covariant derivatives are those of the background metric, and have used Eq.
(2.21), to set the Ricci tensor of the background metric to zero. We have also already
set h

(1)
µν = 0, as there is no source for those terms on the right-hand side of Eq. (2.17).

Furthermore, R(2)
µν is given by,

R(2)
µν =

1

2

(
∇α∇µ h

(2)
αν +∇α∇ν h

(2)
αµ −∇µ∇ν h

(2) −□h(2)
µν

)
, (2.26)

here the covariant derivatives are the covariant derivates of the background metric and
h = gµν(0)h

(2)
µν . From this we conclude that the corrections of the metric are, to leading order

O(α2). That means that to leading order we have,

gµν = g(0)µν + α2 hµν , (2.27)
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where hµν satisfies the differential equation,

α2
(
∇α∇µh

α
ν +∇α∇νh

α
µ −∇µ∇νh−□hµν

)
= ∂µϑ ∂νϑ− 8α ∗Rα(µν)β ∇β∇αϑ, (2.28)

where the covariant derivatives, and the dual Riemann tensor are evaluated on the back-
ground spacetime. In addition, we have the following equation for the axion field,

□ϑ = −α ∗RR, (2.29)

with the Chern-Pontryagin scalar evaluated on the background spacetime.

By expanding the dCS equations to leading order in the coupling we have separated the
equations for the metric and the equation for the axion, in the sense that we can first solve
the equation for the axion on the background spacetime, and subsequently use this solution
to solve for the metric corrections. Furthermore, we have also eliminated the third order
derivatives, thus the dCS equations have become a set of coupled second order linear par-
tial differential equations for the metric corrections hµν and a second order linear partial
differential equation for the axion ϑ.

2.4 The Coupling Constant, and the Validity of the Small Coupling
Limit

When making an approximation, it is of paramount importance to know the limitations of
the approximation, and whether the use of the approximation is justified.
The dCS equations in the small coupling limit are only valid when |α2hµν | ≪ 1, whether
this is the case depends on the value of the coupling constant α.
The coupling constant is not a dimensionless quantity. Its dimensions can easily be deter-
mined by counting the number of derivatives in each term in the action (2.12).
The Ricci scalar R contains second order derivatives and thus has dimensions [R] = m−2.
All other terms in the action then should have these dimensions as well. The action of the
axion contains a product of two first order derivatives, thus the axion itself is dimension-
less. The Chern-Pontryagin scalar ∗RR is essentially the product of two Riemann tensors,
thus has dimensions [ ∗RR] = m−4. This implies that the coupling constant, α, must have
the dimensions, [α] = m2.

Since the coupling constant α is not dimensionless, it makes no sense to talk about it
being small, as that depends entirely on the choice of units. To be able to talk about the
coupling constant being small, we must define a dimensionless coupling constant. If we
can determine the characteristic length scale l of the system we are interested in, we can
define a dimensionless coupling constant,

ζ =
α2

l4
. (2.30)



2 INTRODUCING DYNAMICAL CHERN-SIMONS GRAVITY 20

If we are considering dCS corrections to black hole solutions from GR, then this charac-
teristic length scale is the mass of the black hole7 M hence we will from now on use the
dimensionless coupling constant,

ζ =
α2

M4
. (2.31)

The added benefit of the introduction of this dimensionless coupling is that, in the small
coupling limit any observable, O can be written as,

O = OGR + ζδO +O(ζ2), (2.32)

where OGR is the observable evaluated on the background spacetime, and δO is the first
order dCS correction to the observable, and we neglect the terms of order O(ζ2).
Coming back to the validity of the leading order expansion of the dCS equations, we can
now recast the criterion for validity as,

|ζhµν | ≪ 1. (2.33)

The strictest bounds on the coupling constant α comes from results obtained by the Neu-
tron Star Interior Composition Explorer (NICER), combined with the measurement of the
neutron star inspiral GW170817 [19]. This measurement puts a bound8 on α of,

α̂1/2 ≤ 60.3 km, (2.34)

with a credibility of 90%.
If we take the upper bound, then ζ ≈ 1, when M ≈ 5.3M⊙. Thus, it seems that the leading
order expansion in the coupling constant of dCS gravity should suffice for astrophysical
black holes.

7In SI units, GM
c2 is the characteristic length scale of a black hole, which is half of the Schwarzschild radius.

8The reported bound on α from is α1/2 ≤ 8.5 km, but due to our choice of action we have to include an
extra factor of κ1/2.
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3 The Chern-Simons Corrected Kerr Black Hole

With the dCS equations in the small coupling limit in hand, it is now possible to obtain
leading order corrections to the Kerr metric. To this end, one must first solve the equations
of motion for the axion sourced by the Chern-Pontryagin scalar of the Kerr spacetime, and
then solve equation (2.28).
This has turned out to be quite the monumental task, as the first hurdle, obtaining the
axion on the Kerr background, has not yet been cleared. However, by expanding in the
spin of the Kerr background, it is possible to calculate solutions to arbitrary order in the
spin algorithmically.
The downside to this approach is that these solutions need corrections to very high orders
in the spin to be valid for fast rotating black holes. Solutions to high order in spin get very
lengthy very quickly, thus requiring the aid of computer software to be able to work with
these solutions.

In this section, we will sketch how to solve the dCS equations in the small coupling limit
to obtain the dCS corrections to the Kerr metric. We will discuss the corrections that have
been found so far, and we discuss some basic properties of the dCS corrected Kerr metric.
Most attention will be given to the Petrov type of the dCS corrected Kerr metric, as this
section will include new results.

3.1 The Axion on a Kerr Background

To find the dCS corrections to the Kerr metric, we first have to solve the equation of motion
of the axion (2.29), on a Kerr background (1.22). The Chern-Pontryagin scalar of the Kerr
metric is given by,

∗RR = −96
M3χ r

Σ6
z
(
r2 − 3M2χ2z2

) (
3r2 −M2χ2z2

)
, (3.1)

which is showcased in Fig. 1 in a small region around the event horizon of the Kerr black
hole, which is the region of spacetime we will be mostly interested in.
Since the background spacetime on which we solve Eq. (2.29) is stationary and axisym-
metric, the axion depends only on the r and z coordinates, ϑ = ϑ(r, z). With the explicit
expression of the Chern-Pontryagin scalar, the equation of motion for the axion is given by,

□ϑ = 96
αM3χ r

Σ6
z
(
r2 − 3M2χ2z2

) (
3r2 −M2χ2z2

)
. (3.2)

As stated before, no solution to this complicated differential equation has been found so
far. However, if we expand Eq. (3.2) in the spin of the black hole, it is possible to solve for
the axion as a power series in the spin i.e. we assume the axion field can be written as,

ϑ =
∞∑
n=0

ϑ(n)(r, z)χn. (3.3)
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Figure 1: The Chern-Pontryagin scalar of the Kerr spacetime outside the event horizon,
with the spin taken to be moderately high, χ = 0.7. The black circle indicates the event
horizon.

Where the functions ϑ(n)(r, z) are to be determined by solving Eq. (3.2) order by order. As
an example, to linear order in the spin, the wave equation for the axion becomes,

(1− 2M

r
)∂2

rϑ
(1) +

2

r
(1− M

r
)∂rϑ

(1) +
1− z2

r2
∂2
zϑ

(1) − 2z

r2
∂zϑ

(1) = αM3288z

r7
, (3.4)

The solution to this equation is,

ϑ = −αχ
5

2

z

r2

(
1 +

2M

r
+

18M2

5r2

)
, (3.5)

which was first obtained by Yunes and Pretorius in 2009 [5]. However, it is possible to do
better. It turns out that, the coefficients ϑ(n)(r, z) in Eq. (3.3) can always be written as a
polynomial in z and 1/r,

ϑ(n)(r, z) =
n∑

p=0

kmax∑
k=0

ϑ(n,p,k)zpr−k, (3.6)

where ϑ(n,p,k) are constant coefficients, and the value of kmax depends on the value of n,
and p. By inserting this ansatz in Eq. (3.2) and expanding the wave operator and Chern-
Pontryagin scalar in the spin, Eq. (3.2) reduces to a system of algebraic equations, which
can be solved order by order. This means that the coefficients ϑ(n,p,k) only depend on the
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coefficients ϑ(m<n,p,k) of the lower order spin terms.

Solving these algebraic equations quickly becomes cumbersome to do by hand, however
by using a computer algebra system, solutions to practically arbitrary order can be found,
provided one has a sufficient amount of time and processing power available. This ap-
proach was first discovered and used by Cano and Ruipérez in 2020 [6]. In this work, a
solution up to fourteenth order in the spin was provided, however since then calculations
have been done up to twenty-eighth order in the spin [20].
The axion field up to fourteenth order in the spin is shown in Fig. 2 in a small region
outside the horizon. The axion field has a strongly resembles the electric potential of an
electric dipole. We say the axion has a dipolar character, further emphasized by the absence
of a 1/r term9.
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Figure 2: The Axion field on a Kerr background outside the event horizon up to fourteenth
order in the spin, with the spin taken to be moderately high, χ = 0.7. The outer event
horizon is indicated with the black circle.

9We’d like to note that this dipolar character is already captured by the z/r2 term in the lowest order
solution given by Eq. (3.5).
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3.2 The Corrected Metric

Once we have obtained the axion field to the desired order in spin, we can determine the
right-hand side of (2.28), and solve for the dCS metric corrections to the Kerr spacetime.
This was first done by Yunes and Pretorius in 2009 [4], to linear order in the spin. They
found that the dCS corrected Kerr metric is given by,

ds2 = ds2Kerr + ζχ(1− z2)
M4

r4

(
10 +

120M

7r
+

27M2

r2

)
dϕdt, (3.7)

where it is understood that ds2Kerr is also expanded to linear order in the spin. This solution
already indicates that the effect of frame dragging is reduced by the dCS corrections to the
Kerr metric.

In the following years higher order solutions were found [21], but the door to arbitrary
high solutions was really opened by Cano and Ruipére in 2020 [6], who managed to find
the corrected metric up to fourteenth order in the spin. To find this solution, Cano and
Ruipére used the ansatz,

ds2 =−
(
1− 2Mr

Σ
− ζH1

)
dt2 − (1 + ζH2)

4M2χr

Σ
dtdϕ+ (1 + ζH3) Σ

(
dr2

∆
+

dz2

1− z2

)
+ (1 + ζH4)

(
r2 +M2χ2 +

2M3χ2r (1− z2)

Σ

)(
1− z2

)
dϕ2,

(3.8)
where the functions {H1(r, z), H2(r, z), H3(r, z), H4(r, z)} are written as a power series in
the spin parameter,

Hi =
∞∑
n=0

H
(n)
i χn, (3.9)

and the coefficients H(n)
i are polynomials in z and 1/r,

H
(n)
i =

n∑
p=0

kmax∑
k=0

H
(n,p,k)
i zpr−k, (3.10)

where H
(n,p,k)
i are constant coefficients, and the value of and kmax depends on the value of

n, and p. This ansatz reduces the differential equations for H(n)
i to algebraic equations for

the coefficients H(n,p,k)
i that can be systematically solved by a computer algebra system.

In principle, one can generate solutions to arbitrary order in the spin with this ansatz.



3 THE CHERN-SIMONS CORRECTED KERR BLACK HOLE 25

In this thesis, we will be using the dCS corrections to the Kerr metric up to fourteenth order
in spin.
We have tried to generate higher order solutions, but it seems that fourteenth order is
about the highest order solution one can reasonably find and use, using a standard con-
sumer grade computer.

Recently, the accuracy of the spin expansion has been analysed in [20]. In short, the
relevant conclusions we draw from this work are:

• Requiring that metric perturbations, |ζHi| < 0.5 on the event horizon for a spin of,
χ = 0.9, allows the dimensionless coupling constant to be ζ = 0.15 at most.
In the rest of this thesis, we will set ζ = 0.15.

• The dCS corrections to the Kerr metric up to order O(ζχ14) are reasonably accurate
up to χ = 0.8. If we take the spin to be lower than that, the accuracy dCS corrections
improve dramatically.
In the rest of this thesis, we will set the maximal allowed spin value to be 0.8.

Due to the dCS corrected metric having very length expressions, we will be using the xAct
Mathematica package to do all of our calculations. This means that most calculations will
be done ’under the hood’. The notebook that we have used to do these calculations, as well
as more information on the xAct package, can be found in Appendix C. Even though we are
using a computer, these are still analytical calculations.
Just to give some insight into these dCS corrections to the Kerr metric, the explicit form of
the axion field to order O(χ3), as well as metric corrections to order O(χ2), can be found
in Appendix B.

3.3 Basic Properties of the dCS Corrected Kerr Black Hole

In this section, we will go over some basic properties of the dCS corrected Kerr metric that
will be used in the rest of this thesis. For more details, we refer to [6].

3.3.1 Symmetries of the dCS Corrected Kerr Black Hole

Like the Kerr metric, the dCS corrected Kerr metric is stationary and axisymmetric, thus
the corrected metric has two independent Killing vectors. The Killing vector associated
with stationarity is the coordinate vector of the time coordinate t, and the Killing vector
associated with the azimuthal symmetry is the coordinate vector associated with the ϕ co-
ordinate.
Of course, the metric is a Killing tensor, however the Killing tensor in Eq. (1.24) is not a
Killing tensor of the dCS corrected Kerr metric, hence we lose the Carter constant. This is
due to that lµ and nµ as defined in (1.25) are not so-called principle null directions of the
dCS corrected Kerr metric10. Without a fourth constant of motion, the geodesic equation
will not be fully integrable.

10This will be discussed more in depth in the section on the Petrov type of the dCS corrected Kerr metric.
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However, we need not rely on the Carter constant, one could in principle just solve the
Killing equation (1.19) by brute force to find a Killing tensor that would generate a fourth
independent constant of motion. This was first done by Owen, Vitek, and Yunes in 2021
[22]. In this paper, the authors have shown that up to order O(ζχ2) no unique Killing
tensor exists of rank 2 up to 6. This also rules out the existence of Killing tensors of this
rank, even when including higher order terms in the spin. Thus, it seems likely that the
rotating dCS black hole does not have a fourth constant of motion.

3.3.2 The Event Horizon

When it comes to the event horizon of the dCS corrected Kerr black hole, the ansatz (3.8)
really shines. The coordinates (r, z) are chosen in such a way that the r − z sector of the
metric is simply a conformal rescaling of the r−z sector of the Kerr metric. This means that,
in particular, the component grr is still proportional to ∆, thus the null hypersurfaces of
constant r coordinate are still identified by ∆ being zero. That means that the r coordinate
of the event horizon of the dCS corrected Kerr black hole is still defined by11,

rH = M(1 +
√

1− χ2). (3.11)

One can check that this hypersurface is also a Killing horizon, further confirming that this is
indeed the event horizon of the dCS corrected Kerr black hole. Like in the Kerr spacetime,
the event horizon is generated by the Killing vector,

ξµ = tµ + ΩdCS
H ϕµ, (3.12)

with ΩdCS
H still defined by (1.37). Which can explicitly be written as,

ΩdCS
H = ΩKerr

H + ζδΩH, (3.13)

where ΩKerr
H is the horizon angular velocity of the Kerr metric as given by Eq. (1.39), and

δΩH is the dCS correction, which is given by,

δΩH = − 1

M

(
709

1792
χ +

169

1536
χ3 +

254929

2365440
χ5 +

613099

5271552
χ7 +

1684631453

13776322560
χ9

+
35249720647

281036980224
χ11 +

67579939563817

533970262425600
χ13

)
.

(3.14)

This correction is always negative, implying that the angular velocity of the event horizon
is smaller in dCS corrected Kerr metric than it is in the Kerr metric, as also seen in Fig. 3.

11The coordinate location of the event horizon is physically meaningless, thus this does not mean that the
event horizons of Kerr and dCS corrected Kerr black hole are the same.
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3.3.3 The Ergosphere

While the analysis of the horizon is very simple due to the choice of coordinates used to
express the dCS corrected Kerr metric in, it is a different story for the ergosphere. The
static limit surface of the dCS corrected Kerr metric i.e. where the gtt component of the
metric vanishes, is now defined by,

1− 2Mr

Σ(r, z)
= ζH1(r, z). (3.15)

Solving this equation to obtain a relation rE(z) between the r and z coordinates is a difficult
task. What we can easily do, however, is show that the event horizon and ergosphere touch
at the poles, just like in GR,

1− 2MrH
Σ(rH ,±1)

= ζH1(rH ,±1). (3.16)

That finding rE(z) is difficult is for the rest of the thesis not important, we will be merely
interested in the existence of the ergosphere. To do that, we can simply visualize the gtt
component of the metric and determine where it is negative and positive. This is shown in
Fig. 4 for a spin of χ = 0.7. Here we see that the ergosphere extends out the furthest at the
equator, and touches the horizon at the poles. Thereby making it similar to the ergosphere
of the Kerr black hole. We must however note that this visualization is coordinate depen-
dent.
We have indicated the static-limit surface of the Kerr black hole in this figure, however
the (t, r, z, ϕ) coordinate system in which we express the Kerr metric is not identical to the
(t, r, z, ϕ) coordinate system in which we express the dCS corrected Kerr metric.
A better quantity that can serve as a comparison between the ergospheres would for in-
stance be surface area of the static limit surface.

3.3.4 Energy Conditions

A crucial difference between the Kerr metric and the dCS corrected Kerr metric is that the
former is a vacuum spacetime, whereas the latter, is not. It is clear that the dCS corrected
black hole supports the axion field, which begs the question: What is the stress-energy
tensor associated with the dCS corrected Kerr metric?
Instead of considering dCS gravity as a modified theory of gravity, it can be useful to take
the viewpoint that dCS is simply general relativity with some exotic stress-energy tensor.
In that case, we should actually interpret the right-hand side of (2.13) as being the stress-
energy tensor of dCS gravity,

T dCS
µν =

1

2
∂µϑ ∂νϑ− 1

4
gµν ∂σϑ ∂

σϑ− 4α ϵγβ ∇α(µ| βR|ν)γ∇αϑ− 4α ∗Rα(µν)β ∇β∇αϑ. (3.17)

To see if this is a reasonable stress-energy tensor, we can evaluate the four energy con-
ditions. Since the null energy condition is the weakest energy condition, it makes sense
to evaluate this condition first. One can then show that by contracting the stress-energy
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tensor twice with the null vector field12,

vµ∂µ = ∂t +

− gtϕ
gϕϕ

+

√
g2tϕ − gttgϕϕ

gϕϕ

 ∂ϕ, (3.18)

we have that everywhere in the exterior of the black hole,

T dCS
µν vµvν ≤ 0. (3.19)

This means that the null energy condition is clearly violated, implying that all four energy
conditions are violated by the dCS corrected Kerr metric [23].

12This vector field becomes the Killing vector ξµ on the event horizon.
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Figure 3: The angular velocity of the event horizon of the Kerr black hole and the dCS
corrected Kerr black hole. The grey dashed line indicates the difference between the two.

Figure 4: The metric component gtt for a dCS black hole with spin parameter χ = 0.7. In
the dark red region, gtt is positive, thus the red region defines the ergosphere of the dCS
corrected Kerr black hole. In the light red region gtt is negative. The inner black ring is the
outer event horizon and the outer black ring is the boundary of the ergosphere of a Kerr
black hole with spin χ = 0.7.
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3.4 Petrov Type of the dCS Corrected Kerr Black Hole

In 1954, A. Petrov [24] devised a scheme to classify spacetimes by the algebraic properties
of their Weyl curvature. In this classification scheme, a generic spacetime falls into one
of six types, known today as the Petrov types. Spacetimes of the same Petrov often have
commonalities. For example, the Kerr family of black holes are all of Petrov type D, and
whenever we have a vacuum spacetime that is of Petrov Type D, there is a theorem that tells
us that there exists a non-trivial rank-two Killing tensor other than the metric [25]13. In the
case of the Kerr black hole, this theorem implies the conservation of the Carter constant,
which is generated by (1.24).
Mathematical tools used to study gravitational fields sometimes may only be applicable
to spacetimes of a certain Petrov type, an important example is the Teukolsky equation
which is used to study perturbations of rotating black holes, which also requires a type D
spacetime [26].
The dCS corrected Kerr spacetime being of a different Petrov type than the black holes of
GR, thus could imply a drastic difference in properties. Therefore, it is important to study
and determine the Petrov type of the dCS corrected Kerr black hole. Before we do that,
however, we will have to cover some preliminaries.

3.4.1 Introducing Orthonormal Tetrads

Consider a spacetime with metric, ds2, and a coordinate system, (x0, x1, x2, x3). With this
coordinate system comes a convenient basis in which we can expand vectors, (∂0, ∂1, ∂2, ∂3),
and covectors (dx0, dx1, dx2, dx3). In this ’coordinate basis’, the metric is written as,

ds2 = ds2(∂µ, ∂ν) dx
µ ⊗ dxν = gµν dx

µ ⊗ dxν , (3.20)

where gµν = ds2(∂µ, ∂ν) are the components of the metric in the coordinate basis. We are
so used to using this basis that we often refer to gµν itself as the metric. However, using
the coordinate basis is a choice and not a necessity. We may just as well use another set of
vector fields, (e(0), e(1), e(2), e(3)), and the associated covector fields, (e(0), e(1), e(2), e(3)), as a
basis. Such a set of vector fields that we use as a basis we call a tetrad basis. Essentially,
that is all there is to it.
The (co)vector fields that constitute the tetrad basis can in turn be expanded in terms of
the coordinate basis,

e(a) = e µ
(a) ∂µ, e(a) = e(a)µ dx

µ, a ∈ {0, 1, 2, 3}. (3.21)

In such a tetrad basis, the metric can be expanded as,

ds2 = ds2(e(a), e(b)) e
(a) ⊗ e(b) = g(a)(b) e

(a) ⊗ e(b), (3.22)

where, g(a)(b), are the components of the metric in the tetrad basis. It is straightforward to
check that the components of the metric in tetrad basis and the components of the metric

13The spacetime does not necessarily have to be a vacuum, as the theorem also holds if one adds a cosmo-
logical constant, and it also holds in the case of the Kerr-Newman family of black holes, which is not vacuum
solution if the black hole is electrically charged.
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in the coordinate basis are related by,

g(a)(b) = e µ
(a) e ν

(b) gµν . (3.23)

A particularly useful class of tetrads are ‘orthonormal tetrads’. These are tetrad bases in
which the components of the metric reduce to those of the Minkowski metric,

ds2 = η(a)(b) e
(a) ⊗ e(b) = −e(0) ⊗ e(0) + e(1) ⊗ e(1) + e(2) ⊗ e(2) + e(3) ⊗ e(3). (3.24)

Such a choice of tetrad basis is not unique. Consider for example a different tetrad basis,
{ē(a)}, that is locally related to the orthonormal tetrad basis {e(a)} by,

ē(a) = Λ
(b)

(a) e(b), (3.25)

where Λ
(b)

(a) is some transformation matrix. The components of the metric in our newly
defined tetrad basis are,

ḡ(a)(b) = ds2(ē(a), ē(b)) = Λ
(c)

(a) Λ
(d)

(b) ds2(e(c), e(d)) = Λ
(c)

(a) Λ
(d)

(b) η(c)(d). (3.26)

If we require our new tetrad basis to be orthonormal as well, we have must have that,

η(a)(b) = Λ
(c)

(a) Λ
(d)

(b) η(c)(d). (3.27)

This is exactly the relation that defines Lorentz transformations. Thus, orthonormal tetrads
are locally related by a Lorentz transformations14.
The tetrad formalism can be a really effective tool when doing calculations, and general
relativity can be entirely formulated in terms of tetrads, however the strongest argument
for using tetrads as opposed to the usual coordinate bases, is the fact that one has to use
tetrads to define fermionic fields on curved spacetime. However, we will be covering that
in this thesis.

3.4.2 The Weyl Curvature Tensor and Petrov classification

The curvature of spacetime is expressed by the Riemann curvature tensor. By taking the
trace of the Riemann tensor we obtain the Ricci curvature tensor, which plays a central
role in the Einstein field equations (1.7), which tell us that the Ricci curvature of spacetime
is directly related to the local stress-energy of matter. However, often we are interested
in vacuum spacetimes where the local stress-energy of matter vanishes, or we are dealing
with compact objects, in which case the local stress-energy is only non-vanishing in a small
patch of space. In such cases, where (locally) the Ricci curvature vanishes, the Weyl tensor,
which is defined as15,

Cαβγδ = Rαβγδ −
(
gα[γRδ]β − gβ[γRδ]α

)
+

1

3
Rgα[γgδ]β, (3.28)

14Note that this is not a Lorentz transformation of the coordinates, but simply a Lorentz rotation of the
basis vectors that make up the tetrad basis.

15In a coordinate basis, we might now like to add.
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expresses the curvature of spacetime. Together, the Ricci curvature tensor and the Weyl
tensor contain the information provided by the Riemann tensor. We could say that, in
general relativity, the Weyl curvature is the curvature of free space. Here we will not be
interested in the all the ins and outs of the Weyl tensor, but we will specifically be interested
in its algebraic properties, as these algebraic properties give rise to the Petrov classification
of spacetimes. The Petrov classification of spacetimes, essentially counts the number of
distinct null vector fields kα which solve the algebraic equation,

kαkβk[µCν]αβ[ρkσ] = 0. (3.29)

If kα solves the aforementioned equation, we say that kα is a principle null direction (PND).
For a general spacetime, there can be at most four of these PNDs. To determine the num-
ber of distinct PNDs in a spacetime, we use the tetrad formalism. We start with a generic
orthonormal tetrad {e(a)} with one timelike basis vector e(0) and the other three basis vec-
tors spacelike {e(1), e(2), e(3)}. With this orthonormal tetrad we can construct a new type of
tetrad, a complex null tetrad {l, n,m, m̄} defined as,

lα =
1√
2

(
e α
(0) + e α

(1)

)
,

nα =
1√
2

(
e α
(0) − e α

(1)

)
,

mα =
1√
2

(
e α
(2) + i e α

(3)

)
,

m̄α =
1√
2

(
e α
(2) − i e α

(3)

)
.

(3.30)

A complex null tetrad, thus consists of two pairs of real valued vectors {l, n}, and a pair of
complex valued vectors {m, m̄}. As the name suggests, the vectors that form the complex
null tetrad are null, and with the only nonvanishing scalar products being, lαnα = −1, and,
mαm̄α = 1. In this complex null tetrad basis, the metric takes the form,

ds2 = −l ⊗ n− n⊗ l +m⊗ m̄+m⊗ m̄. (3.31)

In such a basis, the ten independent components of the Weyl tensor are now expressed in
five complex scalars, the so-called Weyl scalars, which are defined as,

Ψ0 = Caβγδl
αmβlγmδ,

Ψ1 = Caβγδl
αnβlγmb̄,

Ψ2 = Caβγδl
αmβm̄γnδ,

Ψ3 = Caβγδl
αnβm̄γnδ,

Ψ4 = Caβγδn
αm̄βnγm̄δ.

(3.32)

Since the choice of orthonormal tetrad basis is certainly not unique, the complex null tetrad
basis is not either. Therefore, the Weyl scalars depend on the choice of basis. It turns out,
that if the complex null tetrad is constructed in such a way that the Weyl scalar Ψ0 vanishes,
then lα is a PND. Thus, finding the distinct PNDs of a spacetime comes down to finding the
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Lorentz transformations that transform a general complex null tetrad in such a way that
Ψ0 vanishes. We will not derive exactly how to do this here, but such a transformation can
be found by solving the quartic [27],

Ψ0 + 4BΨ1 + 6B2Ψ2 + 4B3Ψ3 +B4Ψ4 = 0, (3.33)

for the complex scalar B, where the Weyl scalars are computed from general complex null
tetrad where Ψ0 does not vanish.
Having found these complex scalars, the PNDs of a spacetime are then given by,

kα = lα + B̄mα +Bm̄α +BB̄nα. (3.34)

To summarize, by using the tetrad formalism, one can transform the algebraic equation
(3.29) into the task of finding the roots of the quartic (3.33). The Petrov classification of
a spacetime is then assigned into one of six types according to the structure of the roots of
this quartic according to the following scheme:

• Petrov type I: Four distinct roots,

• Petrov type II: One double degenerate root and two distinct roots,

• Petrov type III: One triple degenerate root and one distinct root,

• Petrov type D: Two doubly degenerate roots,

• Petrov type N: One quadruple degenerate root,

• Petrov type O: The Weyl curvature vanishes.

A type I spacetime is often called algebraically general, and when a spacetime is not type I
it is often called algebraically special. It is important to stress that, even though the Weyl
scalars depend on the choice of complex null tetrad, the Petrov classification is an invariant
property of the spacetime.

3.4.3 The Petrov Classification of the dCS Corrected Kerr Spacetime

To determine the Petrov type of the dCS corrected Kerr spacetime, we will take a general
approach that works for any stationary and axisymmetric spacetime. In such a spacetime,
the metric can always be written in the form given by Eq. (1.23).
Then, the following set of vectors will constitute an orthonormal tetrad,

tαdx
α =

√
−gttdt−

gtϕ√
−gtt

dϕ,

rαdx
α =

√
grrdr,

zαdx
α =

√
gzzdz,

ϕαdx
α = −

√
g2tϕ − gttgϕϕ
√
−gtt

dϕ.

(3.35)
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This can be checked by using Eq. (3.24). Subsequently, we construct the complex null
tetrad,

lα =
1√
2
(tα + ϕα) ,

nα =
1√
2
(tα − ϕα) ,

mα =
1√
2
(rα + izα) ,

m̄α =
1√
2
(rα − izα) .

(3.36)

We will use this complex null tetrad to calculate the Weyl scalars as defined in (3.32).
One can explicitly check that in this complex null tetrad basis, the Weyl scalars, Ψ1 and Ψ3

vanish for a generic stationary axisymmetric spacetime. The quartic (3.33) then reduces
to,

Ψ0 + 6B2Ψ2 +B4Ψ4 = 0. (3.37)

Besides still being a quartic in B, this polynomial can also be viewed as quadratic in B2,
which either has two distinct roots or one double root, which corresponds to either four
distinct roots or two double roots in terms of B. Thus, a generic stationary axisymmetric
spacetime can only be of Petrov type I or D16. Whether a quadratic has two distinct or a
double root can be determined by the discriminant D of the quadratic, which in this case
is,

D = 36Ψ2
2 − 4Ψ0Ψ4. (3.38)

If the discriminant vanishes, then we have a double root and the spacetime is Petrov type
D, if the discriminant is nonvanishing, then the spacetime is Petrov type I. A thorough anal-
ysis of the Petrov type of the dCS corrected spacetime was first carried out by Yani, Yunes,
and Tanaka in 2017 where they used dCS correct Kerr spacetime up to second order in the
black hole spin [22]. The trio concluded that up to linear order in the black hole spin, the
dCS corrected Kerr spacetime is, like the Kerr spacetime, Petrov type D. However, if one
includes the second order spin corrections, the spacetime is Petrov Type I. Even though
this is analysis was carried out with a corrected metric up to quadratic order in the spin,
including higher order corrections in the spin is not necessary. This can be easily seen by
considering (3.38).
Since we are working with a metric expand in the spin, we must also expand the discrimi-
nant in the spin,

D(r, z) =
∞∑
n=0

D(n)(r, z)χn. (3.39)

16Or Type O if the Weyl curvature vanishes, but this case we will disregard.
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Since the spacetime is only type D if the discriminant vanishes, the discriminant must van-
ish order by order in the spin.

Nonetheless, we will still carry out the analysis of the Petrov type with the dCS corrected
metric up to fourteenth order in spin. In particular, we will consider the local Petrov type
of the dCS corrected Kerr spacetime. This has not been considered before17.

Since the Weyl scalars, and thus the discriminant are locally defined, we can also con-
sider the Petrov type of the spacetime locally. If we use the metric (3.8), and calculate the
discriminant (3.38), we can make a few interesting observations.
We will not show the explicit form of the discriminant here, but we can present the dis-
criminant as a contour plot in a small region around the black hole. As the discriminant is
generally a complex quantity, we have shown the real and complex parts of the discrimi-
nant separately in Fig. 5 for a dCS black hole with a very small spin of, χ = 0.01. From
these figures we can indeed gather that the Petrov type is indeed almost everywhere type
I, however there are two important surfaces where the Petrov type is locally of type D. One
of these surfaces is the event horizon, clearly visible in both figures as a white arc around
r = 2, which is approximately where the event horizon is located for a very slow rotating
black hole. One can also explicitly check that,

D(rH , z) = 0, (3.40)

when expanded to order, O(ζχ14). One can also explicitly check that the axis of symmetry
is locally of type D,

D(r,±1) = 0. (3.41)

The fact that the event horizon and the axis of symmetry of a black hole are algebraically
special surfaces has been noted before, for instance by D. Papadopoulos and B. Xanthopou-
los in 1984 [28], for general static and axisymmetric local black holes18. However, this
does not directly apply to the dCS corrected Kerr black hole. That the event horizon is an
algebraically special surface, is easy to forget in general relativity, as stationary axisymmet-
ric black holes in general relativity are everywhere of type D.
In a 2013 paper by I. Tanatarov and O. Zaslavksii [29], on the Petrov classification of event
horizon of axisymmetric black holes, the duo argue that due to the event horizon being
of a different Petrov type than the of the exterior of the black, an observer could locally
distinguish the event horizon from the rest of the spacetime, contrary to the popular no-
tion that event horizons are locally not detectable. We must however add that not a lot of
literature exists on this topic, and the deeper mathematical meanings as to why the these
algebraically special surfaces appear as well as the implications of the event horizon and
axis of symmetry being algebraically special surfaces is unclear. Therefore, although an
interesting mathematical observation, we decided not to pursue this topic further.

17Initially our analysis of the Petrov type was purely to check the results obtained by Yani, Yunes, and
Tanaka, however by doing this we noticed the interesting properties of the local Petrov type.

18That is, non-rotating black holes, around which, for a finite distance, there are no non-gravitational fields
present.
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Figure 5: The real and imaginary parts of the discriminant that determines the local Petrov
type, with the spin taken to be very small, χ = 0.01. Where this discriminant is non-zero,
the local Petrov type is I, where the discriminant vanishes, the local Petrov Type is D. Only a
small region inside the horizon is presented, thus no data is provided in the region bounded
by the blue arc. The event horizon is clearly visible as a type D surface.
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4 The Four Laws of Black Hole Mechanics

In 1969, during a conference held in Florence, Italy, R. Penrose showed that it is possible
to extract energy from a rotating black hole in general relativity [30, 31]. In a nutshell,
Penrose showed that one could arrange a situation where a composite particle on a geodesic
enters the ergosphere of a rotating black hole. Subsequently, this composite particle decays
into two particles, after which the particles will travel along separate geodesics. One of
the particles eventually falls into the black hole, whereas the other will again exit the
ergosphere having gained energy and angular momentum as compared to the energy and
angular momentum of the initial composite particle. Since for every winner, there is a loser,
the black hole must have lost an amount of energy and angular momentum equal to the
energy and angular momentum that the particle emerging from the ergosphere has been
enhanced with.
A year after Penrose introduced the Penrose process, D. Christodoulou considered the loss
of mass of a black hole due to the Penrose process [32]. Christodoulou showed that this
loss of mass is not indefinite, but that the black hole reaches its minimal mass when all of
its angular momentum has been extracted. Christodoulou coined this mass the irreducible
mass, and he argued that the only transformations of the black hole’s mass and angular
momentum that can be reversed are those that leave the irreducible mass unchanged. Any
other transformation can only increase the irreducible mass. Christodoulou also showed
that up to 29% of the mass energy of an extremal Kerr black hole can be extracted via the
Penrose process, a fact that we will rediscover shortly. At the time, it became clear that
Christodoulou’s work on the Penrose process, with its reversible and irreversible processes,
had a lot in common with the second law of thermodynamics. This ultimately begged the
question: is there a connection between the four laws of thermodynamics and black hole
physics? It turned out that there indeed is such a connection.
A little over two years after Christodoulou’s work was published, J. Bardeen, B. Carter,
and S. Hawking published a set of four laws, which they called the four laws of black hole
mechanics, each of which having a clear analogue with the four laws of thermodynamics
[7]. Despite not co-authoring this specific paper, a name we certainly must not forget to
mention is J. Bekenstein, who in 1972 published an important paper on black holes and
the second law of thermodynamics [33].
Since then, a lot of work has been done to deepen our understanding of these laws in
the context of general relativity. However, when we consider theories that supplement
the Einstein-Hilbert action with additional terms, it is not a priori clear that these four
laws of black hole mechanics still hold. This is because proofs of the four laws hinge on
assumptions that often cannot be made in modified theories of gravity, for example: the
energy conditions, which are not satisfied in dCS gravity. Therefore, we will revisit the four
laws of black hole mechanics in the context of dCS gravity.
In this section, we will go over each law one by one. First, we will simply state the law
that is under consideration, and then we will give some general background information.
After that, we will evaluate the law using the dCS corrected Kerr metric and study the
implications.
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4.1 The Zeroth Law of Black Hole Mechanics

The zeroth law of black mechanics states:

The surface gravity κ of a stationary black hole is constant over the event horizon.

This statement is analogous to the zeroth law of thermodynamics, which states that the
temperature of a thermal system is uniform in equilibrium.
The surface gravity is defined by,

ξµ∇µξ
ν = κξν , (4.1)

where ξµ is the Killing vector that generates the event horizon of the black hole, and κ is
the surface gravity. But how is this related to temperature?
In their 1972 paper on the laws of black hole mechanics, J. Bardeen, B. Carter, and S.
Hawking explicitly stated that the surface gravity and thermodynamic temperature are
only analogously related to each other, and that the surface gravity is not related to the
actual temperature of a black hole. They argued that the effective temperature of a black
hole should be absolute zero. They argued that this is because a black hole can never be
in equilibrium with a black body of finite non-zero temperature, as some radiation of the
black body will always be absorbed by the black hole, but by definition the black hole itself
cannot emit any radiation.
Later, sometime around 1975, Hawking, by considering the effects of Killing horizons on
quantum fields, showed that black holes in fact do emit radiation [34]. It then became
clear that the surface gravity is in fact directly related to the temperature of this radiation
in any theory of gravity by,

TH =
κ

2π
, (4.2)

which is now known as the Hawking temperature. By considering this relation between
surface gravity and temperature, we may also reformulate the zeroth law as,

The temperature TH of a stationary black hole is constant over the event horizon.

The original proof of the zeroth law of black hole mechanics assumes the dominant energy
condition [7], which does not hold in dCS, thereby rendering the proof inapplicable. How-
ever, the constancy of the surface gravity of the event horizon can still be proven under a
different set of reasonable assumptions without making an appeal to the energy conditions
or the field equations [35]. Here we will take an even simpler approach. Since we know
the metric (approximately), we can directly calculate the surface gravity, and check if it is
constant on the event horizon.

Recall that, the event horizon of a rotating black hole in dCS is a Killing horizon that is
generated by the Killing vector ξµ as given by Eq. (1.38). It turns out that evaluating Eq.
(4.1) directly is usually not a very convenient way to calculate the surface gravity, however,
we can express Eq. (4.1) equivalently as,

−∂µξ
2 = 2κξµ. (4.3)
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This expression is more convenient as there are no covariant derivatives involved, hence
we do not need to evaluate the connection coefficients (1.3). There is a problem, however.
The coordinates in which we have expressed the metric of dCS corrected Kerr black hole
are not regular on the event horizon. Preferably, we change to a different set of coordinates
that are regular on the event horizon, but, if we are careful, we can still obtain the correct
result with our ill-behaving coordinates.
First, consider the left-hand side of equation (4.3). By inserting (1.38) into (4.3) we obtain,

−∂µξ
2 = −∂µ(gtt + 2ΩH gtϕ + Ω2

H gϕϕ). (4.4)

This expression is completely regular when evaluated on the event horizon, as only the grr
component of the metric diverges there. Furthermore, one can show by explicit calculation
that only the partial derivative with respect to the radial coordinate is non-zero, leaving us
with,

−∂µξ
2|rH = −∂rξ

2|rHδrµ. (4.5)

Now we tackle the right-hand side of (4.3). This turns out to be a more subtle. First of
all, we will use that the Killing vector ξµ is both normal and tangent to the event horizon.
Then, by using Eq. (1.30) we should have that ξµ must be proportional to δrµ, thus we may
write,

ξµ = ξr δ
r
µ, (4.6)

where ξr is to be determined. Note that this is only true on the event horizon. We can then
determine ξr by considering the square of ξµ,

ξ2 = ξµξµ = ξ2r g
rr. (4.7)

Then, we can determine what ξr should be by taking the on-horizon limit of the following
expression,

ξr = lim
r→ rH

√
ξ2

grr
. (4.8)

Since both ξ2 and grr go to zero on the horizon, we may use l’Hopital’s rule to evaluate the
limit as,

ξr = lim
r→ rH

√
∂rξ2

∂rgrr
. (4.9)

Altogether, this gives us the following expression for the surface gravity of the event hori-
zon,

κ = −∂rξ
2|rH

2ξr
. (4.10)
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If we then evaluate this expression for the rotating dCS black hole, we find a surface gravity,

κdCS = κKerr + ζδκ, (4.11)

where κKerr is the surface gravity of the Kerr black hole,

κKerr =

√
1− χ2

2M(1 +
√
1− χ2)

, (4.12)

and δκ is the leading order dCS correction to the surface gravity,

δκ =
1

M

(
2127

7168
χ2 +

14423

86016
χ4 +

429437

3153920
χ6 +

125018653

984023040
χ8 +

20524079857

165315870720
χ10

+
276424697191

2248295841792
χ12 +

2482747013891

20341724282880
χ14

)
.

(4.13)

Thus, we find that the surface gravity of the dCS corrected Kerr black hole is constant on
the horizon, hence the zeroth law of black hole mechanics holds for the dCS corrected Kerr
black hole.

Besides this, it is interesting to consider the features of the surface gravity. In general
relativity, a black hole with a fixed mass M has a maximal surface gravity when it is non-
rotating, and it vanishes when the black hole is extremal, as can be seen in Fig. 6. The dCS
correction, however, given by Eq. (4.13), increases with the spin of the black hole. Thus,
a dCS black hole has a higher surface gravity than a Kerr black hole. Via the Hawking
temperature (4.2), we can then also say that the horizon of a dCS black hole is at a higher
temperature than the horizon of a Kerr black hole.
This is ultimately related to the fact that a Kerr black hole of fixed mass and spin has a
higher horizon angular velocity than a dCS corrected Kerr black hole of the same mass and
spin.
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Figure 6: The surface gravity of the event horizon in GR and in dCS. The grey dashed line
indicates the difference between the two.

4.2 The First Law of Black Hole Mechanics

The first law of black hole mechanics states:

Nearby stationary black holes solutions are related by: TdS = dM − ΩHdJ .

This law specifically applies to uncharged black holes, however, it can be naturally extended
to include charged black holes as well. When this law was first put forth by Bardeen, Carter
and Hawking, the first law was stated as:

Nearby stationary black holes solutions are related by: κ
8π
dA = dM − ΩHdJ .

Here κ is the surface gravity, M and J are the mass and angular momentum of the black
hole, ΩH is the angular frequency of the black hole event horizon, and A is the surface area
of the black hole event horizon, which is defined as,

A =

∮
H
d2x
√

|γ|, (4.14)

where γ is the determinant of the induced metric, and the integral is over the event horizon
at a constant time.
This is quite a remarkable result, as it relates the geometry of the event horizon, A, and
quantities locally defined on the event horizon, κ and ΩH, to quantities that are measured
in the asymptotically flat region of the spacetime, M and J . Besides that, it seems to almost
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exactly mimic the first law of thermodynamics,

TdS = dU − dW, (4.15)

if we identify the change in black hole mass dM with the change in energy dU , the change
in angular momentum ΩHdJ with the work done on the system dW , and the change in the
event horizon area κ

8π
dA with the change in entropy TdS.

As we have already related the temperature of a black hole to the surface gravity via Eq.
(4.2), it seems that the event horizon surface area should play the part of entropy19,

SBH =
A
4
. (4.16)

We now call this the Bekenstein-Hawking entropy. With these definitions, we may write
the first law of black hole mechanics as,

TdSBH = dM − ΩHdJ. (4.17)

If one tries to apply this law to the dCS corrected Kerr black hole, they will come to the
conclusion that this relation does not hold. On the surface, this seems like a problem, but
really, this is not a cause for concern. The first law can be fixed.
Although the relation between entropy and surface area of a black hole proposed by Beken-
stein and Hawking is quite elegant, there is a priori no reason to assume that this relation
holds in modified theories of gravity.
Should we have to modify the definition of entropy as well? This modified definition should
reduce to Eq. (4.16) when applied to general relativity, and it should probably depend on
the event horizon, as this is the only part of the black hole that is accessible to an outside
observer. But what should this definition be? Luckily, we are not the first ones to have
asked this question. In fact, our question has already been answered thirty years ago: we
should use the Wald entropy.

4.2.1 The Wald Entropy

In 1993 R. Wald proposed a new definition of a black hole’s entropy with which the first
law of black hole mechanics holds for a wide class of theories of gravity, if in such a theory
the zeroth law holds [36], and if the black hole’s mass and angular momentum are well-
defined. With the knowledge that we have so far, it seems that this should be a good
definition of entropy in dCS gravity. The definition of entropy that Wald proposed is,

S = −8π

∮
H
d2x
√
|γ| ∂L

∂Rµναβ

n[µσν]n[ασβ]. (4.18)

19This is also what Jacob Bekenstein figured out in 1972 when he proposed that black holes should have an
entropy that is proportional to surface area of their event horizon. Bekenstein proposed that the proportional-
ity constant between entropy and the surface area should be log 2

8π , or at least very close to that. However, the
first law together with the definition of the Hawking temperature implied that the proportionality constant
should simply be 1

4 .
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Here L is the Lagrangian of the theory, nµ is the unit normal to a constant time hypersur-
face, (nµnµ = −1), and σµ is the unit normal to the event horizon within this constant time
hypersurface, (σµσµ = 1). The anti-symmetrized product of these two normal vectors has
the property,

n[µσν]n[µσν] = −1

2
. (4.19)

Note that, like the Bekenstein-Hawking entropy, the Wald entropy is still an integral over
the event horizon on, and as we shall see, the Wald entropy reduces to the Bekenstein-
Hawking entropy when we take the Lagrangian to be the Einstein-Hilbert Lagrangian.

Let’s now apply Wald’s entropy formula to dCS gravity. Evidently the kinetic term of the
axion field in the dCS Lagrangian is not relevant here, as it does not contain the Riemann
tensor, thus the Wald entropy of a dCS black hole is determined by the Lagrangian,

L = κ
(
R + αϑ ∗RR

)
. (4.20)

The derivative of this Lagrangian with respect to the Riemann tensor can then be calculated
in a straightforward manner by using,

∂Rabcd

∂Rµναβ

= δµaδ
ν
bδ

α
cδ

β
d. (4.21)

We begin by considering the entropy contribution of the Einstein-Hilbert term, for this we
have to calculate the derivative of the Ricci scalar with respect to the Riemann tensor,

∂R

∂Rµναβ

= gacgbd
∂Rabcd

∂Rµναβ

= gacgbdδµaδ
ν
bδ

α
cδ

β
d

= gµαgνβ.

(4.22)

Then we contract with the normal vectors nµ, and σµ to obtain the integrand of the Wald
entropy,

gµαgνβn[µσν]n[ασβ] = n[µσν]n[µσν] = −1

2
, (4.23)

where we have used Eq. (4.19). The entropy contribution of the Einstein-Hilbert term then
reduces to a quarter of the event horizon surface area, which is simply the Bekenstein-
Hawking entropy of the black hole,

SEH =
1

4

∮
H
d2x
√
|γ| = A

4
. (4.24)
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To calculate the contribution from the dCS part of the Lagrangian, we calculate the deriva-
tive of the Chern-Pontryagin scalar with respect to the Riemann tensor,

∂ ∗RR

∂Rµναβ

=
1

2
ϵabcdgknglm

∂

∂Rµναβ

RabklRcdmn

= ϵabµνR βα
ab

= 2 ∗Rµνβα.

(4.25)

This results in an entropy contribution,

δSdCS = α

∮
H
d2x
√

|γ|ϑ ∗Rµναβn[µσν]n[ασβ]. (4.26)

Since the dual of the Riemann tensor is antisymmetric on the first and second pair of
indices, we may drop the antisymmetrisation brackets on the normal vectors. The total
Wald entropy of a dCS black hole then is given by,

SdCS =
A
4
+ α

∮
H
d2x
√
|γ|ϑ ∗Rµναβnµσνnασβ . (4.27)

When specifically applied to the dCS corrected Kerr black hole, the Wald entropy can then
be divided into three parts,

SdCS =
1

4
AKerr + ζδSdCS =

1

4
AKerr + ζ

(
1

4
δAdCS + δSϑ

)
. (4.28)

This consists of the background part, which is the Bekenstein-Hawking entropy of the Kerr
black hole (4.16), where the surface area of the event horizon is given by,

AKerr = 8πM2
(
1 +

√
1− χ2

)
. (4.29)

Then we have a correction to the Bekenstein-Hawking entropy due to the dCS corrections
to the Kerr metric, which changes the horizon surface area by,

δAdCS = πM2

(
−915

112
χ2 − 25063

6720
χ4 − 528793

295680
χ6 − 39114883

53813760
χ8 − 618487273

7749181440
χ10

+
1975280860769

5796387717120
χ12 +

17922709822092007

28634155322572800
χ14

)
.

(4.30)

This contribution is negative, meaning that the surface area of a dCS corrected Kerr black
hole is smaller than the surface area of a Kerr black hole. Note that the last two terms in
the expansion are actually positive, but the total contribution is still negative if we restrict
the spin to be within the accepted range allowed by the approximate metric.
Lastly, we have an explicit contribution from the quadratic curvature term in the dCS ac-
tion. To leading order in the coupling, this contribution is completely determined by the
axion field on a Kerr background. The dCS corrections to the metric do not come into play
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here. Therefore, we call this the axion contribution to the entropy, which is given by,

δSϑ = πM2

(
29

8
χ2 +

311

160
χ4 +

33511

26880
χ6 +

1971919

2257920
χ8 +

96205849

149022720
χ10

+
84400129507

170481991680
χ12 +

34572926824993

88650635673600
χ14

)
.

(4.31)

Altogether, this gives us a total contribution to the Wald entropy due to the dCS corrections
of the Kerr metric of,

δSdCS = πM2

(
709

448
χ2 +

5437

5376
χ4 +

945691

1182720
χ6 +

12760691

18450432
χ8 +

587646343

939294720
χ10

+
135895944179

234197483520
χ12 +

16211067412583

29665014579200
χ14

)
,

(4.32)

which is an increase in the total entropy as compared to the Bekenstein entropy of a Kerr
black hole. These corrections are shown in Fig. 7 and Fig. 8 as a function of the black
hole spin, keeping the mass of the black hole constant. Even though the dCS corrections to
the entropy are an increasing function of spin, the total entropy of the dCS corrected Kerr
black hole is still a decreasing function of spin.

In principle, the first law must hold with Wald’s definition of entropy. Nonetheless, we
can still explicitly check that this is true. By explicitly using Eq. (4.28), the first law implies
that we should have,

TdSdCS = T
∂SdCS

∂M
dM + T

∂SdCS

∂J
dJ = dM − ΩHdJ. (4.33)

Since we have expressed the Wald entropy in terms of mass and spin, it is more convenient
to rephrase this as,

TdSdCS = T
∂SdCS

∂M
dM + T

∂SdCS

∂χ
dχ = (1− 2MχΩH) dM −M2ΩHdχ. (4.34)

Here we used that dJ = 2MχdM +M2dχ. Then the first law holds if,

1− 2MχΩH − T
∂SdCS

∂M
= 0,

T
∂SdCS

∂χ
+ ΩH = 0.

(4.35)

We have confirmed that this does indeed hold up to order O(ζχ14). Thus, the first law of
black hole mechanics holds for the dCS corrected Kerr black hole provided we use Wald’s
definition of entropy given by Eq. (4.27).
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Figure 7: The dCS corrections to the Wald entropy as a function of the spin. The contribu-
tion from the axion on the Kerr background increases the entropy, whereas the contribution
from the changed the horizon surface area decreases the entropy. However, overall, their
sum results in a positive contribution to the Wald entropy that grows with the spin.
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Figure 8: The total entropy of a rotating black hole in GR and in dCS as given by the Wald
entropy. Even though the dCS entropy corrections increase with spin, the total entropy is
still a decreasing function of spin.

4.3 The Second Law of Black Hole Mechanics

The second law of black hole mechanics states:

The entropy of a black hole cannot be decreased by any classical process, dS ≥ 0.

This statement is actually stronger than the second law of thermodynamics, which states
that the entropy of a closed system cannot decrease, but entropy may still be exchanged be-
tween two systems. In general relativity, two black holes cannot exchange entropy, thus the
entropy of each black hole is separately non-decreasing by means of any classical process.
This does not require a quasi-static process, indeed in any classical process the entropy of a
black hole cannot be decreased. A key ingredient in the proof of the second law is the null
energy condition [37], which, as discussed, does not hold in dCS. That makes this proof
inapplicable as well. We will not be able to present a formal proof of the second law in dCS
gravity here, however, what we can do is consider what happens to a black hole’s entropy
due to the effect of the Penrose process. In general relativity, the Penrose process serves as
an informal proof of the second law. This will also be our strategy here. We will consider
the effects of the Penrose process on the dCS corrected Kerr black hole. As we will see, one
cannot decrease the entropy of a dCS black hole with the Penrose process, suggesting that
the second law holds.
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4.3.1 The Penrose Process

In the introduction to this chapter, we have already briefly discussed the Penrose process
qualitatively, so let us now discuss it quantitively. We will do this in a general setting with-
out initially making any appeal to a specific gravitational theory.

Consider a stationary axisymmetric spacetime with a coordinate system, (t, r, θ, ϕ), that is
adapted to the spacetime symmetries. This means that we have two Killing vectors tµ and
ϕµ, corresponding with the time-translational and axial symmetry, that are the coordinate
vectors of the t and ϕ coordinates respectively. We will assume this spacetime describes
a rotating black hole with well-defined mass M and angular momentum J , and we will
assume that the outer event horizon is a Killing horizon, generated by the Killing vector,

ξµ = tµ + ΩH ϕµ, (4.36)

with ΩH the event horizon angular velocity, which must be a constant. We will assume that
the event horizon is a surface of constant r. Lastly, we will assume there is an ergosphere
in the exterior of the black hole i.e. the region where the Killing vector tµ is spacelike.

Now consider a particle travelling on a geodesic inside the ergosphere with four-momentum
pµ. As the particle travels on a geodesic trajectory, the quantities,

dM = −tµpµ,

dJ = ϕµpµ,
(4.37)

which are the energy and angular momentum of the particle respectively, are constants of
motion. We will assume that these quantities are much smaller than the mass energy M
and angular momentum J of the black hole. Since tµ is spacelike in the ergosphere, the
energy of the particle can be of either sign. The sign of the angular momentum of the
particle depends on whether the particle moves with or against the rotation of the black
hole. In the latter case, the angular momentum is negative. Thus, we can arrange for both
the energy and angular momentum of the particle to be negative, then, when the particle
falls into the black hole, the mass and angular momentum of the black hole decreases by
dM and dJ respectively.
One may believe that this is the end of the story, however, it is a priori not clear that a par-
ticle with negative mass and angular momentum will eventually cross the event horizon in
the future. Therefore, to make sure it does cross the event horizon, it might be a good idea
to have an observer keep an eye on our particle.
A particularly useful set of observers are observers that co-rotate with the black hole at
constant r and θ, while also having zero angular momentum, so-called zero angular mo-
mentum observers (ZAMOs). The four-velocity of such an observer is,

uµ = tµ + Ω(r, θ)ϕµ. (4.38)

This four-velocity should really be normalized such that uµuµ = −1, but that is not im-
portant here. The quantity Ω(r, θ) is the angular velocity of the ZAMO, which is defined



4 THE FOUR LAWS OF BLACK HOLE MECHANICS 49

by,

Ω(r, θ) = −
gtϕ
gϕϕ

, (4.39)

which is largest near the horizon and vanishes at infinity.
Even though the conserved energy of the infalling particle is negative, any observer will
always locally measure the energy of the particle to be positive. In particular, If we take
this observer to be a ZAMO, we get the condition,

uµpµ = tµpµ + Ω(r, θ)ϕµpµ = −dM + Ω(r, θ) dJ ≥ 0, (4.40)

which can also be written as,

dM ≥ Ω(r, θ) dJ. (4.41)

Hence, when the particle crosses the event horizon, a ZAMO near the horizon should mea-
sure the particle’s energy to be positive. Near, or on the horizon we have,

lim
r→ rH

Ω(r, θ) = ΩH. (4.42)

Thus, the condition for the particle to be able to cross the horizon is,

dM ≥ ΩH dJ. (4.43)

When the particle crosses the event horizon, we assume that its mass and angular momen-
tum adds to the mass and angular momentum of the black hole, which leaves us with a
stationary black hole of mass M + dM and angular momentum J + dJ .
If in this spacetime, the first law holds, we see, by using Eq. (4.43) in combination with
the first law, that the entropy of the black hole must increase by the effects of the Penrose
process,

dS =
1

T
(dM − ΩH dJ) ≥ 0. (4.44)

As stated before, this is not a formal proof, but it does hint towards the second law being
true in dCS gravity.

If the second law holds, it is possible to put constraints on the amount of energy that
can be extracted from a single black hole, and it can also be used to put constraints on
the amount of energy that can be converted into gravitational waves in a binary black hole
merger event. This is what we will do now.

4.3.2 Extracting Energy from an Isolated Black Hole

An interesting question to ask is: how much energy can one extract from a single black
hole by Penrose processes? The second law provides an answer. The most efficient way
to extract energy from a black hole is by a process where the entropy of the black hole
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remains constant,

dS = 0 → dM = ΩH dJ. (4.45)

We say that this is an ideal Penrose process. From this differential relation, we can calculate
how the mass of the black hole changes as a function of its angular momentum. To make
further calculations easier, we will work with the spin, χ instead of the angular momentum
J . In terms of the spin, Eq. (4.45) becomes,

dM =
M2ΩH

1− 2MχΩH
dχ, (4.46)

where we have used that dJ = 2MχdM +M2dχ. At first glance, this does not seem to help
us, but let us now consider what this differential relation looks like for the Kerr black hole.
By using the explicit form of the event horizon angular velocity of the Kerr black hole as
given by Eq. (1.39) we obtain,

M2ΩKerr
H

1− 2MχΩKerr
H

=
M

2
· χ

1− χ2 +
√
1− χ2

, (4.47)

which gives the following differential relation between the mass and the spin of the black
hole,

dM

M
=

1

2
· χdχ

1− χ2 +
√
1− χ2

. (4.48)

This differential relation is separable, hence solving for the mass of the black hole in terms
of the spin is straightforward. We integrate both sides of Eq. (4.48) and take the exponen-
tial to obtain,

M(χ) = M0 exp

{
1

2

∫ χ

χ0

dχ′ χ′

1− χ′2 +
√

1− χ′2

}
, (4.49)

here M0 and χ0 represent the initial mass and spin of the black hole.
Now all that is left to do is to perform the integration on the right-hand side of Eq. (4.49),
which is straightforward as well. The final result then is,

M(χ) = M0

(
1 +

√
1− χ2

0

1 +
√
1− χ2

)1/2

. (4.50)

This expression represents a curve of constant entropy, in the parameter space (M,χ) of
the Kerr black hole. If we follow this curve, starting from the point (M0, χ0), we eventually
reach the point (Mirr, 0), where the black hole has lost all of its spin, and we are left with a
Schwarzschild black hole of mass,

Mirr = M0

(
1 +

√
1− χ2

0

2

)1/2

, (4.51)
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which is known as the irreducible mass. Thus, by means of any process where dS ≥ 0, a
Kerr black hole with an initial mass and spin of (M0, χ0) can never have a mass that is less
than Mirr. Equivalently, we can say that a Kerr black hole with an initial mass and spin of
(M0, χ0) can at most lose a fraction,

∆MBH = 1− Mirr

M0

= 1−

(
1 +

√
1− χ2

0

2

)1/2

, (4.52)

of its mass. If we start with an extremal Kerr black hole, χ0 = 1, the maximal amount of
mass that can be extracted is ∆MBH = 1− 1√

2
, or about 29% of its initial mass.

In the case of the dCS corrected Kerr black hole, the same relation given by Eq. (4.46)
holds between the mass and spin of the black hole. If we insert the explicit form of the
horizon angular velocity of dCS corrected Kerr black hole given by Eq. (3.13), into Eq.
(4.46), we obtain the differential equation,

Ṁ + F (χ,M, α2) = 0. (4.53)

Here the dot denotes a derivative with respect to the spin parameter χ, and the function F
is given by,

F (χ,M, α2) =
M2(ΩKerr

H + α2

M4 δΩH)

1− 2Mχ(ΩKerr
H + α2

M4 δΩH)
. (4.54)

Here we have used Eq. (3.13), and we have replaced ζ with α2/M4 to make the mass
dependence of F clearer. Since we only know the metric of the dCS corrected Kerr black
hole up to order O(α2), the differential equation (4.53) is only valid up to order O(α2), in
which case, the leading order solution to (4.53) can be written as,

MdCS(χ) = MKerr(χ) + α2 δM(χ). (4.55)

We then insert this ansatz into Eq. (4.53), and expand to order O(α2). Equation (4.53)
then becomes,

ṀKerr + F (χ,MKerr, 0) + α2
(
δṀ +

∂F (χ,MKerr, 0)

∂α2
+

∂F (χ,MKerr, 0)

∂M
δM
)
= 0, (4.56)

where F is evaluated at (χ,MKerr, 0) after differentiating.

To solve Eq. (4.56) we separately have to solve the zeroth order O(α0) part and the leading
order in coupling part O(α2). The zeroth order part of Eq. (4.56), is just the ideal Penrose
process in the Kerr spacetime, which means that MKerr is given by Eq. (4.50). Then we
have the leading order in coupling part, which will gives us the dCS correction to the ideal
Penrose process,

δṀ − MKerr(χ)
2ΩKerr

H

1− 2MKerr(χ)χΩ
Kerr
H

δM − MKerr(χ)
2δΩH

(1− 2MKerr(χ)χΩ
Kerr
H )2

= 0, (4.57)
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where ΩKerr
H and δΩH are evaluated at MKerr(χ). This differential equation comes with the

initial condition, δM(χ0) = 0, as the initial mass and spin of the black hole do not depend
on the coupling parameter.
In addition to only being interested in the leading order in coupling solution, we are also
limited by the fact that the metric we are using is only valid up to fourteenth order in spin.
Thus, it only makes sense to look for a power series solution up to fourteenth order in spin.
Obtaining a general solution is then straightforward, however a generic choice of initial
spin χ0 will lead us to having to solve for the roots of a fourteenth order polynomial to
satisfy the initial condition. The only choice that avoids this problem is choosing χ0 = 0,
which will give us the following solution,

δM(χ) = − 1

M3
0

(
709

3584
χ2 +

8747

86016
χ4 +

5784463

75694080
χ6 +

1534220603

23616552960
χ8 +

9347435299

160306298880
χ10

+
38736160452331

719454669373440
χ12 +

55277078724807509

1093571097447628800
χ14

)
.

(4.58)

However, it now seems our initial black hole already has zero spin, so how can we ex-
tract any information from this? The solution to Eq. (4.56) represents a curve of constant
entropy20. The initial conditions (M0, χ0) merely serve to pick out the exact value of the
entropy of that curve, which means it does not really matter which initial conditions we
pick. We can later just pick any point on that curve and choose that as the initial state of
the black hole. The only downside to choosing χ0 = 0, instead of keeping it generic, is
that we now no longer can find an explicit form of the irreducible mass as a function of the
initial spin.

Equipped with the solutions to equation (4.58), we can now see how these curves of con-
stant entropy look like for the Kerr case and the dCS corrected Kerr case. This is showcased
in Fig. 9.
The point where the red and black curves cross represents the initial states of the black hole,
thus we are considering a black hole that initially has moderately high spin of, χi = 0.8.
The other points on the curves then represent the states that the initial black hole can reach
in an idealized Penrose process. It is also important to note that these curves separate the
parameter space of the black holes into two regions. From our initial black hole state, it
is possible to reach any state above the curves. This means that starting from our initial
Kerr or dCS black hole, we can pick any point on or above their respective constant entropy
curve and there then exists a path in parameter space that connects these two initial and
final state by a path along which dS ≥ 0. The points below the curves cannot be reached,
as they require that dS < 0.
From these constant entropy curves, it is also clear that the ideal Penrose process in dCS
gravity is less efficient than the ideal Penrose process in GR, in the sense that you have to
decrease the spin of the black hole by a greater amount in dCS gravity to achieve the same
decrease in mass as compared to the Kerr case. This is, of course, directly related to the
fact that the horizon angular velocity of the dCS corrected Kerr black hole is lower than

20As a sanity check, we have checked that dS(MdCS(χ), χ)/dχ = 0 up to order O(ζχ14).
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the horizon angular velocity of the Kerr black hole, for a black hole with the same mass
and spin. This can also be seen from Eq. (4.46) since this equation tells us that the slope
of M(χ) decreases if one decreases ΩH.
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Figure 9: The ideal Penrose process, or the constant entropy curves starting from a black
hole with a black hole of initial spin χi = 0.8 and mass M(χi) in dCS gravity and GR.

With these constant entropy curves, we can now also determine what the upper bound is
on the amount of mass that can be extracted from a single black hole in GR and in dCS.
This upper bound is shown in Fig. 10.
Let us consider, in specific, a black hole of initial spin χi = 0.8 again. In GR, the second law
puts a bound on the extraction of mass of about 10.6% whereas in dCS this is only 7.9%,
which is a difference of about 2.7% – quite significant. Of course, this difference very much
depends on the value of the coupling constant.
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Figure 10: The upper bound on the fraction of the initial mass that can be extracted from
a single black hole with a spin of χ, in dCS and in GR. The dashed grey line indicates the
difference between the two.

4.3.3 The Second Law and Binary Black Hole Mergers

Another interesting setting to discuss is binary black hole mergers. If the second law holds
in a general setting, then the remnant black hole of a binary black hole merger event should
have an entropy of at least the sum of the entropies of the two black holes prior to merging,

Srem ≥ S1 + S2. (4.59)

It would then be interesting to consider how much mass energy could be extracted from the
merger event. This energy would then be converted into gravitational waves. The maximal
amount of energy will be extracted when the entropy of the remnant is equal to the sum of
the entropies of the merging black holes,

Srem = S1 + S2. (4.60)

The number of parameters in this situation is six, as we now have three black holes. How-
ever, if we wish to calculate the true upper bound on the amount of energy extracted, we
can reduce the number of free parameters to two.
First of all, we may assume that the remnant is a Schwarzschild black hole, in which case
the entropy of the remnant black hole is,

Srem = 4πM2
rem. (4.61)
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If the remnant black hole had non-zero spin it could still lose mass via the Penrose process,
so fixing the spin of the remnant to be zero gives us the largest upper bound.
Then, the smallest possible mass of the remnant in terms of the entropy of the merging
black holes would be,

4πM2
rem = S1(M1, χ1) + S2(M2, χ2),

= SKerr
1 + SKerr

2 +
α2

M4
1

δSdCS
1 +

α2

M4
2

δSdCS
2 .

(4.62)

If we choose the spin of the merging black holes to be as large as possible, we maximize the
mass difference, M1 +M2 −Mrem, thus we will choose the merging black holes to have the
same spin, and as high as possible. Keeping the restriction that we will not be considering
spins higher than 0.8 for the dCS corrected Kerr black hole, we will set χ1 = χ2 = 0.8. We
will also define M̄ = M2

M1
≥ 1, and ζ1 = α2

M4
1
. We will also strip all dimensionful parameters

from the entropies of the merging black holes by defining,

SKerr
i = M2

i S̄
Kerr
i ,

δSdCS
i = M2

i δS̄
dCS
i .

(4.63)

After some algebra, we can then rewrite Eq. (4.62) as,

4π

(
Mrem

M1

)2

=

(
(1 + M̄2)S̄GR(χ) + ζ1(1 +

1

M̄2
)δS̄dCS(χ)

)
. (4.64)

This equation still has three masses, however the fractional difference between the total
mass before the merging and the remnant mass is only a function of the ratio of the masses
of the merging black holes,

∆MBH-BH = 1− Mrem

M1 +M2

= 1−
(
Mrem

M1

)
1

(1 + M̄)
, (4.65)

where Mrem/M1 is obtained from Eq. (4.64). This fractional difference is shown in Fig. 11.
We see a clear difference between the bound set by the GR case and the dCS case when the
masses of the black holes are similar. In this mass ratio regime, the upper bound differs by
a few percent. Another noticeable difference is that the upper bound is highest in GR when
the black holes have the same mass, but in dCS the upper bound is highest when one of
the black holes is slightly more massive than the other.
As the mass ratio increases, the upper bound on the change in mass becomes smaller and
smaller, as does the difference between GR and dCS. This is due to the fact that the Kerr
part of the entropy of the merging black holes scales as, M̄2 whereas the dCS part of
the entropy scales as, M̄−2. Hence, ultimately, the second law does not put a significantly
different upper bound on the mass extraction unless the merging black holes have a similar
mass. When the mass ratio is large, there is almost no difference between GR and dCS,
even though we have taken the dCS coupling constant to be quite large.
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Figure 11: The upper bound percentage of total mass energy that can be converted to
gravitational waves in a BH-BH merger event in dCS gravity and GR. The dashed grey line
indicates the difference between the two.
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4.4 The Third Law of Black Hole Mechanics

The third law of black hole mechanics states:

It is impossible to reduce the surface gravity of a black hole to zero by means of
any process, no matter how idealized, by finitely many operations.

The third law of black hole mechanics mirrors the third law of thermodynamics, which
states the same for the temperature of a thermodynamic system. Of course, as we have
seen, we may interpret the surface gravity as the temperature of the black hole, making
the analogy even stronger. But what exactly is meant by finitely many operations? To
make sense of what a finite operation is, we must take the dynamics of the black hole into
account, in which case, we cannot define the surface gravity any more, so we cannot infer
what happens to the surface gravity in a dynamical setting.
The third law is a delicate matter, which was also noted by Bardeen, Carter, and Hawking,
as they posed the third law without proof in [7]. We can, however, get an idea of how the
third law works by considering some examples.
Take the Schwarzschild black hole, the surface gravity is given by,

κSchw =
1

4M
. (4.66)

To reach zero surface gravity, one must add an infinite amount of mass to the black hole,
which is not possible in finitely many operations. For the Kerr black hole, the situation is a
bit more complex. The surface gravity is,

κKerr =

√
1− χ2

2M(1 +
√
1− χ2)

. (4.67)

It is clear that in this case we also cannot reduce the surface gravity in finitely many steps
by just adding mass, however if we can let the spin of the black hole approach unity, the
surface gravity vanishes. Thus, to reduce the surface gravity to zero, we would need to
spin up the black hole until it becomes extremal.

The third law thus deals with (near) extremal black holes, which is a setting in which
our solutions for the rotating dCS black hole are not valid, thus no concrete statements can
be made regarding the third law in this work. There have, however, been attempts to find
solutions to the dCS equations for near-extremal black holes, but as of now, no solutions of
that type exist [38].
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Discussion and Conclusions

In this thesis, we have used the most accurate dCS corrections to the Kerr metric [6] that
are currently available to study the properties of rotating black holes in dynamical Chern-
Simons gravity. With these corrections, it became possible to probe moderately fast rotating
black holes, whereas previously, it was only possible to study slowly rotating black holes.

Our main goal was to study the four laws of black hole mechanics in the context of dy-
namical Chern-Simons gravity. We verified the zeroth law by explicitly checking that the
surface gravity of the event horizon is constant. This also revealed to us that the dCS cor-
rections tend to increase the temperature of the event horizon, which can be explained by
the fact that the horizon angular velocity, which is directly related to the surface gravity, is
lowered by the dCS corrections.
To study the first law, we calculated the explicit form of the Wald entropy in dCS gravity.
Although one would a priori expect that the first law holds in dCS with Wald’s definition
of entropy, we nonetheless evaluated the Wald entropy with the dCS corrected Kerr met-
ric, which allowed us to verify the first law with a direct calculation. This showed us that
the corrections to the Bekenstein-Hawking entropy coming from the Wald entropy tend to
increase with the spin of the black hole, which is in contrast with the Bekenstein-Hawking
entropy of the black hole, which decreases with spin.
We studied the second law by considering the Penrose process. Although this analysis does
not constitute a formal proof, it did hint towards the second law holding true in dCS.
We then calculated the upper bound on the amount of energy that can be extracted from a
single rotating black hole under the assumption that the second law holds. We found that
due to the dCS corrections, less energy can be extracted from a rotating black hole. This
is again directly related to the angular velocity of the event horizon being lowered by the
dCS corrections.
We also considered the upper bound on the amount of energy that can be released in a
binary black hole merger event, assuming that the second law holds. In this situation, we
also found that less energy can be released due to the dCS corrections, however the differ-
ence between the dCS and GR upper bound very quickly approaches zero when the mass
ratio of the black holes is large.
We were unable to do any meaningful work on the third law, as this requires studying the
behaviour of the black hole in the extremal limit, which is currently not possible with the
available dCS corrections to the Kerr metric.

While reviewing and checking the already known properties of the dCS corrected Kerr
metric, we discovered that event horizon and axis of symmetry are algebraically special
surfaces of the dCS corrected Kerr spacetime, in the sense that on these surfaces the local
Petrov type is D, whereas it is type I everywhere else in the exterior of the black hole. Since
the local Petrov type is an invariant, this means that one might be able to locally detect
the event horizon by determining the local Petrov type. This is not possible in GR, where
stationary black holes are type D everywhere.
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Since the dCS corrected Kerr metric discovered in [6] is only an approximate solution
to the dCS equations, all the calculations that are done in this thesis are only valid up to
the accuracy of the approximate solution. This is a clear limitation of the results. However,
since it is unlikely that there exist exact closed form solutions describing rotating black
holes in dCS gravity, this will remain a limitation.

Outlook

For future work, it would be interesting to be able to probe dCS corrected Kerr black holes
near the extremal limit. We would then be able to work on the third law of black hole
mechanics, but it would also be interesting and useful in general to study the properties
of dCS corrected Kerr black holes in the extremal limit. To this end one could for instance
extend the corrections from [6], which has already been partly done in [20], or one could
start from the ground up and solve the dCS equations on an extremal Kerr background,
which also was already partly done in [38].
It would also be interesting to study dynamical perturbations of the dCS corrected Kerr
black hole to better study the second law of black hole mechanics.
An obvious extension to work done here would be to repeat the calculations done in this
thesis for other modified theories of gravity. The solution found in [6] also includes correc-
tions to the Kerr metric due to the Einstein-dilaton Gauss-Bonnet extension to the Einstein-
Hilbert action, as well as corrections due to cubic curvature terms. Extending the calcula-
tions done in this thesis to include these additional corrections to the Kerr metric should
be straightforward.
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A Equivalent Expressions of the Cotton Tensor

In this appendix, we show that the Cotton tensor can be equivalently written as,

Cµν = ∇β∇α
[
∗Rα(µν)β ϑ

]
= ϵγβ ∇α(µ| βR|ν)γ∇αϑ+ ∗Rα(µν)β ∇β∇αϑ. (A.1)

Starting with the expression,

Cµν = ∇β∇α
[
∗Rα(µν)β ϑ

]
, (A.2)

we first distribute the covariant derivatives to obtain,

Cµν =
[
∇αϑ∇β +

[
∇βϑ+ ϑ∇β

]
∇α +∇β∇αϑ

]
∗Rα(µν)β . (A.3)

The first term can be rewritten as,

∇β ∗Rαµνβ =
1

2
ϵ γδ
αµ ∇βR

β
γδν =

1

2
ϵ γδ
αµ

[
∇δRγν −∇γRδν

]
= ϵ γδ

αµ ∇δRγν . (A.4)

Here we used that the covariant derivative of the Levi-Civita tensor vanishes due to metric
compatibility of the Levi-Civita connection,

∇µ ϵαβγδ = 0. (A.5)

We also used the single contracted differential Bianchi identity,

∇µR
µ

αβν = ∇βRαν −∇αRβν . (A.6)

The second term vanishes due to the fact that the dual Riemann tensor is divergenceless
on the left two indices,

∇α ∗Rαµνβ =
1

2
∇α ϵ

α γδ
µ Rγδνβ = −1

2
ϵ αγδ
µ ∇αRγδνβ = −1

2
ϵ αγδ
µ ∇[αRγδ]νβ = 0. (A.7)

Here we used the differential Bianchi identity in the last step,

∇[αRβγ]µν = 0. (A.8)

Although not important here, it can be shown analogously that the dual Riemann tensor is
also divergenceless on the second index. Since ∇α ∗Rαµνβ vanishes we have that,

Cµν = ∇αϑ∇β ∗Rα(µν)β +
∗Rα(µν)β∇β∇αϑ. (A.9)

Which, using (A.4) can be written as,

Cµν = ϵγβ ∇α(µ| βR|ν)γ∇αϑ+ ∗Rα(µν)β ∇β∇αϑ, (A.10)

Which concludes the proof.
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B Explicit Metric Corrections and Axion Field of the dCS
Corrected Kerr Metric

In this appendix, we present the solutions of the metric corrections {H1, H2, H3, H4}, and
the axion field ϑ up to order O(χ3). For convenience, we have set the mass M to unity,
however one can reimplement the mass by making the substitutions,

ϑ(r, z) → 1

M2
ϑ(r/M, z),

Hi(r, z) →
1

M4
Hi(r/M, z).

(B.1)

The explicit form of the metric corrections and the axion field are:

ϑ(r, z)√
ζ

=χ

(
−9z

r4
− 5z

r3
− 5z

2r2

)
+

χ3

(
100z3

3r6
+

12z3

r5
+

2z

5r5
+

3z3

r4
+

3z

5r4
+

z

2r3
+

z

4r2

)
+O(χ5),

(B.2)

H1(r, z) = χ2

(
342z2

r9
− 9279z2

637r8
− 20268

637r8
− 19280z2

1001r7
− 11710

637r7
− 1094689z2

42042r6
−

30707

3234r6
+

298393z2

84084r5
+

1074

7007r5
+

80291z2

24024r4
− 271

12012r4
+

80291z2

24024r3
− 271

12012r3
+

72185

48048r2
− 72185

48048r

)
+O(χ4),

(B.3)

H2(r, z) =

(
− 27

2r5
− 60

7r4
− 5

r3

)
+ χ2

(
171z2

r8
+

81219z2

637r7
− 10134

637r7
+

4701743z2

126126r6
−

447949

57330r6
− 32689z2

5544r5
− 564161

194040r5
− 1852791z2

224224r4
+

154675

96096r4
− 3310225z2

1345344r3
+

1153277

1345344r3
+

462029z2

672672r2
+

457841

3363360r2
+

72185

96096r
− 72185

96096

)
+O(χ4),

(B.4)

H3(r, z) = χ2

(
−99z2

r8
− 57843z2

1274r7
+

639

1274r7
− 455055z2

28028r6
+

2005

2548r6
+

5891z2

3822r5
+

41549

42042r5
+

3425z2

8008r4
+

8581

12012r4
− 2969z2

4004r3
+

887

1716r3
− 14015z2

6864r2
+

270

1001r2
− 72185

48048r
+

72185

48048

)
+O(χ4),

(B.5)
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H4(r, z) = χ2

(
−45z2

r8
− 54

r8
− 705z2

637r7
− 27897

637r7
+

234445z2

14014r6
− 40995

1274r6
+

294806z2

21021r5
− 18587

1617r5
+

183353z2

24024r4
− 12993

2002r4
+

80291z2

24024r3
−

12241

3432r3
− 85145

48048r2
− 72185

48048r
+

72185

48048

)
+O(χ4).

(B.6)

C xAct Mathematica Package

xAct is a package for Wolfram Mathematica developed by Jose M. Martin-Garcia that is
specifically geared towards doing analytical tensor calculus in general relativity and dif-
ferential geometry. The package was first released publicly in 2004 and since has been
constantly tested and improved. The package can be found on http://www.xact.es/.
Here one can also find installation instructions, example notebooks, and more. There is
also an active public Google Groups specifically for discussing all things related to xAct.

Without the xAct package, this thesis would not have been possible, as all calculations
with the dCS corrected Kerr metric have been done with the xAct package. All of these
calculations have been collected into a single notebook, which is available on Github.

http://www.xact.es/
https://groups.google.com/g/xAct?pli=1
https://github.com/RamonWakelkamp/Chern-Simons
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