
Creating Varied Terrain-Considerate Road Networks
on Heightmaps with Directed Alternating Physarum

Agents
Jeroen Hijzelendoorn

Game and Media Technology Master’s Thesis
Utrecht University

6262279
j.m.hijzelendoorn@students.uu.nl

Abstract—This thesis presents a novel pathfinding technique
for creating terrain-considerate walking-path networks over
heightmap terrain called Directed Alternating Physarum Agents
(DAPA). DAPA has similar dynamics to slime mould networks,
but has more control over the network generated, can connect
any two nodes of choice and can realistically navigate heightmap-
generated terrain. Unlike most pathfinding techniques, DAPA
paths consists of line segments unrestrained by the heightmap
grid, making for smooth looking paths. Furthermore, same-
destination paths may join together due to shared exploration
resources.

Index Terms—road network, pathfinding, slime mould, multi-
agent, emergent behaviour, heightmap

I. INTRODUCTION

Open world videogames have seen a steady rise in pop-
ularity over the years. These games offer a lot of freedom
to players by allowing them to go to virtually anywhere in
the game world from the very start. The appeal of these
games is the opportunity to explore the world’s regions in any
order the player desires. To facilitate this feeling of freedom
and exploration, these game worlds are often very large and
typically feature natural landscapes with i.e. forests, mountains
and settlements placed at large intervals. The settlements are
typically connected by manually-designed road networks.

This thesis presents a procedural pathfinding method for
these kinds of roads. Procedural road network generation
is an uncommon sight in videogames, while research tends
to focus on urban street-planning applications(1). For the
purposes of connecting points in virtual open worlds, manual
designs or regular pathfinding techniques are typically used.
However, these techniques either ignore or abstract verticality
to some extent, are incapable of path interactions such as
intersections, are focused on creating networks from scratch
rather than connecting existing points, or restrain paths to a
grid representation of the world, lowering path resolution.

Directed Alternating Physarum Agents (DAPA) connects
multiple points of interest over large distances while navigat-
ing natural landscapes. The paths attempt to optimize length
and terrain traversability and may merge with other paths if
they share a common destination.

Fig. 1: Example path network
Three point of interest are connected by different paths,

joining up as they meet each other while moving around the
hills.

Pathfinding is based on heightmap1 data, but resulting paths
are not restricted to discrete grid points, rather being com-
prised of short line segments with floating point start and end
coordinates.

A. Requirements

To resemble real walking paths, the technique aims to fulfill
three primary and three secondary requirements.

Primary

• Heightmap Considerate: paths need to avoid hard-to-
navigate terrain like steep mountain sides if a serviceable
detour is possible. That is, it must prefer paths that
minimize both horizontal and vertical distance travelled.
Furthermore, gradual slopes must be preferred over sud-

1Heightmaps are 2D textures which can be translated to 3D terrain. In the
texture, the brightness of each pixel indicates the height of the corresponding
grid coordinate of the terrain. Heightmaps are a popular means of creating
3D terrain, as they can be created with relative ease compared to other ways
like 3D sculpting.

den jumps in height. The technique will need to consider
the 2.5D2 heightmap data for this purpose.

• Smooth: Real paths consist of a long trail which bends
around obstacles. Discrete 4- or 8-neighbour path rep-
resentations cannot capture this; a path with 360◦ of
freedom is required.

• Large Scale: The technique must be able to create
paths over large distances without significant performance
drawbacks. As a point of reference, this must be possible
when creating a network between 3 points spaced 1600m
apart on a 2048x2048-resolution heightmap, using no
more than 2GB of memory and taking at most 5 minutes.

Secondary
• Joining: paths should join into one if they run close to

one another, rather than having multiple separate paths
side by side.

• Winding: paths must ascend steep slopes in a winding
pattern, as seen in real-life mountain scaling paths.

• Imperfect: path need to be short, but not necessarily
perfect, as this is also not the case in real life. The final
path should be no more than 110% of the optimal path’s
length when simulating paths over heightmap terrain.

Navigating nonuniform cost terrain like heightmaps and
creating smooth paths is already individually possible with
modern techniques. However, a combination of the two is not
common.
Here, we differentiate between smooth and smoothed paths.
Smoothed paths are based on discrete ones and use these
discrete points to create smooth curves. The discrete basis
means the final path doesn’t consider terrain features as much
as purely smooth paths. However, this could be considered as
a trade-off, trading quality for an increase in imperfectness.
The creation of smooth paths on heightmap terrain together
with its application on a large scale is the goal this thesis.

We will create these paths by answering 3 research ques-
tions (RQ).

• RQ1: Which existing techniques serve as a suitable
baseline for this project?

• RQ2: What modifications and extensions are required for
a chosen baseline to solve our pathfinding problem?

• RQ3: How effective is the new technique at attaining the
primary and secondary requirements as opposed to the
baseline, and how do we measure this?

II. RELATED WORK

As mentioned, many procedural road network generation
algorithms mainly focus on applications for creating urban
layouts, a very different use case from the one mentioned
above. As such, these specific works will not be featured here.
Below is a summation of pathfinding and network creation

2Heightmap-generated terrain is not truly 3D. It produces exactly one terrain
point per grid coordinate and is thus not able to represent all 3D features such
as overhangs and bridges. It is therefore sometimes referred to as 2.5D.

algorithms with applications related to the thesis requirements.
These techniques double as potential candidates for a baseline
for the thesis.

A. A*

First off, the ‘golden standard’ of pathfinding in games,
A* (2), a graph search algorithm which can use a given
heuristic to adjust its exploration behaviour. This generally
makes it a more time-efficient algorithm than other graph
search techniques. Being graph-based, it lends itself very well
to the structure of videogames, whose environments are often
times represented as grids that can easily be converted to
graphs. Furthermore, the option to add a custom heuristic
makes A* adaptable to many different tasks.

A* has plenty of variants that add features and optimizations
to the method. Iterative-Deepening A* (IDA*) or Simplified
Memory Bounded A* (SMA*) produce identical results to
A* but have reduced memory consumption, while any-angle
path planning variants permit diagonal paths outside of the
restrictive 8-neighbour 45° grid paths that regular A* must
abide by.
Other variants of interest include incentivised joint graph
traversal between paths (3) (as opposed to cooperate pathfind-
ing), reducing node expansion using bidirectional search or
even more so using preprocessing techniques (4).

B. Navmesh

The second pathfinding approach frequently used in video
game environments are navigation meshes (5), more com-
monly referred to as navmeshes. A navmesh is a collection
of convex polygons which covers all walkable space in an
environment. Movement within a convex polygon is trivial,
being able to walk in a straight line between any two points
within it. A graph is constructed containing all polygons
which mirrors the layout in the scene. Using a graph search
algorithm, a sequence of any-angle polygon traversals can be
determined to get to the destination. With this approach it is
possible to walk efficient paths without having to adhere to
grid structures.

C. Potential Field

Potential fields can create continuous paths by having obsta-
cles exude negative force while the goal exudes positive ones.
A path is generated by following the strongest positive force.
This is applicable in both discrete and continuous worlds.
However, as heightmaps contain no explicit obstacles, this
technique is not applicable to nonuniform cost terrain.

D. Ant Colony Optimization

Ant colony optimization (6) (ACO) is also an interesting
option to consider, as it allows us to choose how much time
we want to spend optimizing the resulting path. Similarly, we
can choose a memory maximum by limiting how many agents
are used in its simulation. ACO was originally made to solve
the travelling salesman problem but is also sees application
as for graph search in general, which extends to pathfinding

over grids. The algorithm imitates real-life ants leaving their
colony in search for food. Digital ants move from the source
node throughout the graph while leaving behind pheromones.
Other ants detect these pheromones and follow them with a
probability based on the pheromone’s strength. Pheromone
strength, in turn, is based on the path length. This causes the
shortest paths to be the most likely to be reinforced again
and again. ACO has no definite termination condition, rather
improving over time until it stagnates at a (locally) optimal
solution. ACO has been applied to heightmaps before (7), and
can even be used for continuous spaces (8).

E. Slime Mould

Next, we cover slime moulds (9), a multi-agent algorithm.
This pathing technique is based on the behaviour of a real-
life slime mould, physarum polycephalum, which can produce
rather efficient networks in its search for food. Conceptually, it
has some parallels to ACO, with agents leaving and following
pheromone trails. A difference is that slime mould algorithms
do not feature a specific start and goal node, rather multiple
points of interest (POI) in general. These POIs propagate
pheromones, attracting agents to approach it. The algorithm
works by spreading large number of agents around the scene,
after which they move around randomly or follow the strongest
pheromones they can find. The pheromones are stored in a
grid and are diffused and spread out after each update, causing
agents to detect trails from larger distances and merging close-
together paths. Agent positions are stored with floating point
coordinates. However, each agents still occupies exactly one
grid point or ’cell’ and are unable to pass through cells
occupied by other agents. As agents either follow one another
or approach POIs, the algorithm can create efficient path
networks connecting multiple POIs. Agents could sample from
the heightmap in the same manner as they do from the
pheromone map, making for an easy extension to nonuniform
cost terrain traversal. Furthermore, just like ACO, we can
adjust memory consumption when needed by reducing the
number of agents used.

F. Gathering Technique

In a series of videos of Pezzza’s Work (10), an ant simula-
tion method for finding smooth paths from a colony to pockets
of food scattered across a discrete domain was presented. As
mentioned by its creator, this hobby project has no scientific
basis. The videos call the method ’ant simulation’, but to
prevent confusion with ACO, this method will be referred
to as the ’gathering technique’ for future reference. The
simulation functions like a modified slime mould technique.
It has similar dynamics with agents leaving pheromones and
using sensors to detect them to determine their behaviour.
Unlike slime moulds, however, agents all originate from the
same start node, and attempt to return there after finding a food
source instead of another POI. Furthermore, only agents leave
pheromones. These pheromones are not diffused like in slime
mould simulations. Lastly, the gathering technique makes use
of two types of pheromones to distinguish agents moving to

and from the food sources. This way, searching agents can
follow trails of agents who are returning after having found a
food source and vice versa.

G. Authoring Hierarchical Road Networks

This paper (11) describes the creation of road networks over
3D terrain consisting of different road types. Firstly, highways
are generated between large settlements, then primary roads
between smaller ones and finally secondary roads between the
smallest settlements. The network is constructed by first gen-
erating a graph of possible connections, then culling redundant
roads and finally joining adjacent roads based on the Fréchet
distance between them. The paths are generated according
to earlier work (12), using a n-neighbour A* system which
additionally can build bridges over water and tunnels through
mountains, taking into account road curvature restrictions.
After a path consisting of grid points is found, a smooth path
is constructed from these points using clothoı̈d curves.
I only discovered this paper in the last week before the
proposal date, meaning that it was too little too late to adjust
my plans to their contents. However, as it is highly relevant
work related to the goal of this thesis I decided to still mention
it here.

III. ANALYSIS

To pick a suitable baseline technique we need to compare
the techniques mentioned above. Table I gives an overview of
the main characteristics of each technique, while below any
miscellaneous features and/or problems are mentioned. Finally,
the most suitable one is chosen.

A. A*

A* is one of the few techniques that is compatible with
heightmaps out of the box. Due to A*’s admissibility property,
it and its variants are the only techniques on this list that
can already satisfy the Winding condition with the use of
a maximum inclination and/or steepness aversion heuristic.
However, A* has memory issues. It saves all explored nodes,
and as such has a exponential memory complexity. Such a
characteristic does not meet the Large Scale requirement.
Furthermore, the discrete nature of the resulting paths does
not conform to our smooth path requirement. All mentioned
variants suffer one or both of these issues.

Iterative-deepening A* only has a polynomial time com-
plexity and Simplified Memory Bounded A* can set a memory
limit for its search, meeting the Large Scale requirement where
A* could not. However, these techniques still do not meet the
primary Smooth requirement.

Many of the any-angle techniques are not compatible with
nonuniform cost terrains (like heightmaps). Even compatible
techniques like Field D* (13) still carry the same memory
issues as A*. Furthermore, while an any-angle approach is a
step up from discrete paths, it is still not suitable for creating
smooth paths as they are unable to create curves.

Incentivized joint graph traversal adds a form of realism
to the resulting paths by having two paths share parts of their
trail. However, the caviat of this technique is that paths need to
be explicitly chosen to share paths, which makes it unfit for
creating multiple paths that connect or overlap in a natural
looking way. Bidirectional search A* still has the discrete
path issue and is thus not useable. As mentioned before, the
method is to be designed for videogames where environments
are generated upon play. In this case, preprocessing and
regular processing would always execute directly in sequence,
defeating the point of preprocessing.

B. Navmesh

Navmeshes aren’t suited for nonuniform cost environments,
as movement cost can only differ between polygons, not
within them. Theoretically it is still possible to apply them to
heightmaps, with each polygon representing a grid coordinate.
However, this would defeat the purpose of the polygonal
abstraction of the terrain and would behave exactly like grid-
constrained any-angle techniques, along with their limits.

C. Potential Field

As the technique is dependant on following the positive
potential of the goal, long-distance paths would require a
very strong potential. This would cover a much larger area
than smaller simulations, increasing memory demands expo-
nentially. Furthermore, potential fields can get stuck in local
minima when positive and negative potentials cancel each
other out. With a positive field spanning over a larger area,
the number of local minima will surely increase too. For these
reasons I assume the potential field technique to miss the Large
Scale requirement.

D. Ant Colony Optimization

Together with slime mould and the gathering technique,
ACO is a path optimization technique that relies on random-
ness to a certain degree. This means that in a complex envi-
ronment, an optimal solution will likely not be found within
reasonable time, but an approximately optimal solution might.
With this characteristic, these techniques attain the Imperfect
requirement. ACO’s performance is strongly dependant on the
size of the environment, as it can drastically increase the
search space. However, the effect can be reduced by simply
limiting the search space by laying initial pheromones between
the start and goal state (14). By implementing more such
effective extensions for limiting the search space, ACO, slime
mould and the gathering technique could possibly increase
their convergence speed to such an extent that they satisfy the
Large Scale requirement.
Discrete ACO has the same issue as A*, where bends can
only be created as a postprocessing effect. Continuous ACO is
only able to construct continuous (thus smooth) path solutions
based on a continuous domain. This would require the discrete
heightmap to be converted to a continuous representation to
be used.

E. Slime Mould

Slime mould looks promising for the purposes of smooth
path generation over heightmaps. With agents reading
pheromones from a grid, reading heightmap values from a grid
would be a feasible extension. As the only technique in this list
that generates a pathing network at once, it is also the only one
meeting the Joining requirement. However, the technique still
lacks control, as it can only connect all POIs to one another
into one big network. In a videogame environment, this is not
always desirable. Additionally, slime mould simulation does
not actually produce an actual path; rather a collection of
pheromones that agents can follow while freely moving. A
path creation extension based on agent movement would create
smooth paths, however.

F. Gathering Technique

Just like slime mould, extending the gathering technique to
consider the heightmap should be possible. However, it shares
its issue in not producing an actual path. Here too, a path
creation extension would solve this problem.

G. Authoring Hierarchical Road Networks

As mentioned before, creating smooth paths from discrete
representations is differentiated from ’pure’ smoothness,
meaning the technique does not quite meet the ’Smooth’
requirement. It’s road joining post processing pass earns it
the ’Joining’ requirement. Next, by down-sampling the 3D
environment, the technique is able to generate roads over large
terrains. This does impact path quality somewhat, but does
not result in major path inefficiencies, meeting the ’Large
Scale’ requirement. Lastly, the underlying path generation
algorithm uses stochastic point sampling to boost performance
when generating tunnels or bridges. As a consequence, these
road path have an element of randomness to them. However,
as it is not apply to the whole path, it does not meet the
’Imperfect’ requirement.

H. Baseline choice

As seen in table I, there is no technique present that
can meet all the requirements based on a discrete world
representation as input.
(11) is the most suitable technique so far. However, this
technique will not be considered as a baseline option as I only
discovered it in the last days of the proposal stage, leaving me
too little time to completely change my thesis plans.
Therefore, any method chosen would need to be augmented
tremendously, or a completely new approach will have to be
created. The former was chosen, with the gathering technique
as the chosen baseline. This, because it is already able to
create smooth paths from discrete terrain and an extension to
heightmaps seems very feasible, in contrast to creating smooth
terrain-considerate paths from discrete ones, as would be the
alternative for the other prime candidates, A*(variations) and
ACO. Slime mould was also highly considered, but adjusting
it for increased path creation control would likely result in a

TABLE I: Algorithm comparison

Algorithm World rep-
resentation

Heightmap
Considerate

Smooth Large Scale Joining Winding Imperfect

A* Discrete ✓ × × × ✓ ×
IDA*/SMA* Discrete ✓ × ✓ × ✓ ×
Field D* Discrete ✓ × × × ✓ ×
Navmesh Polygonal × × ✓ × × ×
Potential fields Continuous × ✓ × × × ×
ACO Discrete ✓ × ✓* × × ✓
Continuous ACO Continuous ✓ ✓ ✓* × × ✓
Slime mould Discrete ✓* ✓* ✓* ✓ × ✓
Gathering
technique

Discrete ✓* ✓* ✓* × × ✓

Authoring
Hierarchical
Road Networks

Discrete ✓ Smoothed
(post-
processing)

✓ ✓ ✓ ×

Checkmarks indicate that the base algorithm already meets the corresponding requirement, crosses mean they do not. An
asterisk indicates that a requirement can theoretically be met by extending the algorithm.

method very similar to the gathering technique, making it a
redundant option.

IV. METHOD

Below, the baseline is explained in more detail, the minimal
comparable version v0.5 is presented, alongside its extensions
and further extensions that will be added over the course of
the thesis.

A. Baseline

As the gathering technique is essentially a slime mould
modification, the new technique will be called Directed Al-
ternating Physarum3 Agents (DAPA). This new technique will
direct agents to automatically-determined goal points. The
agents arrive at the goal using slime mould-like pheromone
mechanics, after which they alternate their navigation to
instead search for their starting point. A video of Sebastian
Lague (15) also covers (a modification of) the gathering tech-
nique, but in more detail than Pezzza’s Work (10). Therefore
I based the implementation of this slightly adjusted version
which uses slime mould’s sensor model (9) for the agents, see
fig. 2.

The baseline already contains the following features. It
works on uniform cost terrain with walkable surfaces and
impassable obstacles. One or more ant colonies and food
pieces are placed on the terrain. At the start of the simulation,
ant agents oriented in all directions are placed on the colonies.
Each simulation iteration the agents move forward, but can
bend to the left or right depending on random deviation and
their sensor readings. Each agent has three sensors in front of it
which measure the pheromone strength within their region, see
figure 2. The strongest sensing sensor dictates what direction
an ant wants to head in. Over time, the walking direction of the
ant is adjusted to that of the strongest sensing sensor, making
for a smooth motion. Unlike slime mould, ant agents do not

3Physarum being the mould species the slime mould technique is based
upon.

occupy physical space and as such do not take inter-agent
collision into consideration, only colliding with unwalkable
terrain. As mentioned before, agents can leave two types of
markers. Once food is found or brought back to the colony,
the ant will start leaving ’to food’ or ’to home’ markers
respectively. Finally, all pheromones lose freshness over time,
meaning that if a food source is depleted, the trail towards
it will slowly vanish as well. Because ants prefer fresher
pheromones, these vanishing trails will not be followed in
vain if any other active trail is still in use in the vicinity.
In theory, shorter paths are preferred, as it means a path
has less time to degrade while ants make trips over them.
Furthermore, as agents walk over them, paths are automatically
shortened, as random movement deviation creates shorter and
preferred versions of the path over time. However, during the
implementation of the baseline, this behaviour did not emerge.
I inquired Pezzza’s Work about this and came to understand
he used the same solution I did to remedy these shortcomings
myself (see: Distance counters, in ’Implemented extensions’).
However, he also offered insight on his agent’s sensor model,
which helped in attaining this behaviour. More on this in
Probabilistic sensor in ’Thesis extensions’.

Terminology: The parallel to ant-like simulation becomes
inaccurate for DAPA in the context of path generation in
videogame environments. Therefore, I will be referencing to
certain elements more appropriately as seen in table II.

TABLE II: Terminology change

Old term New term
Ant Agent
Colony Node
’to home’ pheromone ’to start’ pheromone
’to food’ pheromone ’to goal’ pheromone

For ease and accuracy of reference, terminology used for the
baseline will be changed to the above.

Fig. 2: Agent sensor model
Agent (C) with three sensor areas in front of it: front left
(FL), front (F) and front right (FR). Sensors are set at an

angle SA at a distance SO from the agent.

B. DAPA v0.5 and v1

As mentioned in the introduction, the project has multiple
pathing requirements. The baseline is only able to solve 1 of
the requirements by itself. However, it has the potential to fit
all of them with multiple extensions of various complexity. The
completely extended version - the result of this thesis - will
be called DAPA v1. For future improvement measurements,
we would like to compare v1 to the baseline to see its
performance improvement. However, as the baseline is not
meant for generating specific paths, it is difficult to apply
it for that purpose. As such, I introduce DAPA v0.5 as a
minimal functioning version for the purpose of generating
specific paths with this method, meant to compare against the
fully functional v1.

C. Minimal version extensions

Below, a list of extensions is given. A distinction will be
made between implemented extensions and those that will
need to be developed during the thesis. First, the implemented
features are mentioned.

1) Directed pathing: This extension was added such that
the baseline became fit to generate specific paths on demand.
To generate a path between a chosen start and end position,
a node is placed on the start position and one food piece was
placed on the goal position. Multiple agents are released from
the node and directed to only search for the specific goal food
piece. Once reached, the agents search for a way home as
usual, though without picking up the food. This way, agents
will keep pathing between the two points until the simulation
is stopped as the food will never move or disappear.

2) Bidirectional search: To increase the baseline’s fitness
for the Large Scale requirement, bidirectional search was
implemented to reduce the search space. The one food piece
is replaced with another node. Both nodes direct agents to
find the other one. While there are 2 nodes, the program
still only needs 2 types of pheromones as before. Agents
from different nodes must be able to use the other nodes
pheromones, otherwise the ’meet in the middle’ concept of
bidirectional search does not work. Luckily, as one node’s ’to
start’ pheromone functions identically to the other’s ’to goal’,
these can be used interchangeably.

3) Distance counters: The Heightmap Considerate require-
ment demands that paths minimize vertical and horizontal
travel distance. As mentioned before, my implementation did
not feature the path shortening and short path preference
behaviour that was expected. Therefore, the baseline was
extended to remedy this.

Originally, agents base their movement on pheromone fresh-
ness alone. This caused a populism effect, whereby agents
ignore short new paths in favour of busy paths, which con-
stantly get new pheromones placed on them. By adding a
distance counter to each agent, their pheromones indicate
how far an agent has travelled before laying the pheromone.
The counter resets upon reaching a node. This solves the
populism problem, as it enables agents to distinguish short
from frequented paths.
In combination with distance counters, pheromone freshness
has an averse effect on path quality, decreasing both the consis-
tency of pathfinding and slowing down path improvement over
time. This is likely because the populism effect discourages
exploration by encouraging the conservation of the currently
established path. As such, pheromone freshness will no longer
be considered for pheromone evaluation. Now, it will be used
solely as a lifetime count, with the pheromone being disabled
and eventually removed when it reaches 0.

4) Exploration limitation: As mentioned before, previous
research (14) shows that limiting the search space is beneficial
for convergence time in ACO. I expect the same result for
the gathering method, which could make it more suitable for
large-scale environments. This extension adds two guiding
elements to the baseline: an ellipse of initial pheromones and
a bounding box, both positioned loosely around the start and
goal node. The initial pheromone ellipse makes sure agents
move approximately in the direction of the other node. These
pheromones are very low value, and any other pheromone of
the same type is preferred over them. When the ellipse has
completely dissipated, it is possible for agents to stray too
far away from either node, getting ’lost’ in the large terrain.
This severely decreases the chances of the agent finding its
goal node, which means computing resources are wasted on
it. To prevent this, the bounding box provides a hard limit to
the search space. Agents reaching its edge have their walking
direction mirrored on that edge.

5) Heightmap interaction: To make the baseline entirely
Heightmap Considerate, it needs to be extended to also mind
vertical path length. For walking paths, it is preferred to walk
along flat terrain as opposed to uneven, steep or mountainous
surfaces. In short: the lowest summed absolute vertical change
is preferred during travel. Using the heightmap, agents can
measure their elevation change during movement and add this
to a ‘spent energy’ counter and add this value to dropped
pheromones. Just like the path length, agents can read the
energy spending required if they want to follow a given
pheromone trail. With this agents can distinguish ‘short’ paths
going straight over mountains from somewhat longer detours
around them, with the latter being preferred. Furthermore, as
uneven terrain also requires more vertical movement, these
should also be avoided if possible.
Gradual slopes should be preferred over steep, sudden jumps
in height, thus the spent energy counter exponentially increases
energy consumption for larger height differences. The extent
of this behaviour can be regulated by multiplying the spent
energy counter with an effort weight parameter before adding
the score to dropped pheromones.

6) Final path constructor: After the simulation is termi-
nated, the result is a map of pheromone trails. To extract a clear
path from this data, all agents are removed and a final batch
of agents is released from either end of the path. These agents
have no random deviation and use the current slime mould
sensor model to make sure the optimal pheromone is never
missed. When all agents arrive at their destination, agent’s
path with the best score will be the final result.

D. Thesis extensions

Below is a list of the remaining extensions required for the
project, alongside methodology. These have been implemented
during the thesis.

1) Between-path sharing: This extension enables multiple
nodes to make use of overlap in their paths, which enables
the baseline to meet the Join requirement. Instead of creating
a separate pheromone map per path, all pheromones leading
to a settlement are stored per node and are accessible to any
agent searching for it. This way, if multiple nodes have the
same goal they can use each other’s search results to aid
in finding a path. As a consequence, there is a chance that
multiple nodes utilize some of the same pheromones, which
causes path joining. As a bonus, the sharing of pheromones
increases the searching resources for all nodes involved, which
should lead to faster convergence times and more exploration,
increasing path quality. However, this might also add a bias
towards path sharing, as other options might be left unexplored
after a initial path is quickly set up.

2) Long-distance pheromones: As pheromones dissipate
over time, long distances can cause them to disappear before a
sustainable path can be based on them. To extend the baseline’s
quality in terms of the Large Scale requirement, this issue
will be addressed by increasing pheromone lifetime based on

expected path length. Initially, this would create issues with
paths sharing pheromones with different freshness standards,
but as freshness is no longer considered when agents search
pheromones it will be no problem.

3) Selective node pairing: DAPA v0.5 is capable of sim-
ulating multiple paths at the same time. However, it attempts
to create paths between all nodes by default. Just as with
slime mould, this is not desirable as it lacks the control to
(dis)connect specific nodes. To replicate the structure of real-
life road networks it is preferred to only connect settlements
relatively close to one another. Using a Delaunay triangulation
on the settlements, the edges created will represent potential
paths. User will be able to add/remove potential paths after
this process. All settlements that have a potential path within
a predetermined range will have a path generated. If all edges
to a settlement are outside of range, the shortest among them
is generated anyway. Lastly, if the edges to two nodes are too
close together, the longer edge will be removed, as a detour
via the shorter edge to the node further away would be more
natural.

4) Probabilistic sensor: Attaining the Winding requirement
is a difficult task with DAPA v0.5’s pheromone information
setup. This is because agents will ignore terrain while not de-
tecting pheromones to increase exploration. Subsequent agents
can then judge the path quality. This means that for winding
behaviour, an agent must at some point make the winding
motion before others can deem that as the most preferred path.
This is currently highly unlikely to happen.
This is where Pezzza’s Work’s original sensor model could
offer a solution. Unlike the currently implemented slime mould
sensor model from Sebastian Lague, this one is probabilistic.
Agents have a ’sensing cone’ in front of them from which
they sample a random space every simulation iteration. Be-
cause agents are blind to any pheromones outside this space,
they will miss pheromones otherwise detected. On average,
however, they will keep following trails, especially if they
are already well established. The difference in behaviour is
that agents now have a higher chance to somewhat sway of
the beaten path, increasing exploration. If this behaviour is
maintained over numerous iterations on a slope where lower
inclination movement is preferred, small diversions turn into
bends, which turn into the winding behaviour required. A
nice bonus is that with only one sensing area per agent the
processing time will also be reduced.

5) Copy pheromones: DAPA v0.5’s paths change too little
from their initial shape, even if this would be beneficial. The
quality of the paths is therefore not always adequate. This is
because agents only drop pheromones describing the quality
of their total path traveled. An agent joining and improving
a popular path halfway will thus be ignored if the path it
travelled before was of low quality. This extension aims to
solve this problem with a simple solution: agents copy the
properties of any same-type higher-quality pheromones they
walk over, meaning that any improvement made is guaranteed
to produce higher value pheromones than the ones present.

6) Termination condition: The final extension is again for
the Large Scale. Many Large Scale extensions are needed, as
the search space increases drastically as the distance between
nodes does. In DAPA v0.5, users can indicate how many iter-
ations the entire simulation must perform. However, because
shorter paths will need fewer iterations for a good path than
long paths on average, this number will always be suboptimal
for most paths. To reduce wasted computing time on short
paths and increase the quality of longer paths by way of more
iterations, a termination condition will be introduced. If this
condition is met, the simulation for the specific path is stopped.
Once an agent has reached its goal node, DAPA will keep track
of the best path result between the start and goal node. If the
path quality stagnates for too long, it is safe to assume the
simulation has reached a (local) optimum that will not change
much in the future, indicating that the simulation for that path
can be stopped.

V. EXPERIMENTS

A number of experiments will be performed to mea-
sure to which degree the requirements have been met with
DAPA v1. The aforementioned ’Authoring Hierarchical Road
Networks’(11) would make for a good technique to compare
against, as it shares the most requirements with DAPA v1 out
of all techniques considered. However, no code is available
of this technique in practice, and there was insufficient time
left to create an implementation from scratch. That is why, as
mentioned in the previous section, DAPA v0.5 will be used to
compare against v1. In table III, we have an overview of the
difference in extensions between the two versions.

The terrains upon which the experiments will be held are
256x256 by default unless stated otherwise. In terms of scale
we determine 1x1 grid space to correspond to 1m2. Nodes will
be denoted with capital letters, e.g. ’A’ and ’B’. When only 2
nodes are used, they will be placed 200m apart unless stated
otherwise. Any path characteristics will be measured from
the final generated path created by the final path constructor
extension. This feature is a post-processing extension and thus
will not impact the simulation itself. In table IV an overview
of all experiment measurements is shown.

Experiments may be comprised of multiple parts, which I
will refer to as tests. Different tests within an experiment make
the same measurement for the same requirement, though under
different circumstances.

Experiment results will be based on the data collected from
100 simulations per parameter test, unless stated otherwise.
This means that experiments with multiple tests - such as
the considerate experiment testing different effort weights -
execute 100 simulations for each one.

Unless mentioned otherwise, the simulation uses an effort
and distance weight of 1. When randomly generated terrain is
used, both DAPA versions are applied to each of these terrains,
meaning that the terrain input is varied yet identical for either
version.

As the distance between nodes gets bigger, the chances of
finding a path while maintaining the same number of agents
decreases significantly. To find the appropriate parameters
for the different node distances and their corresponding map
sizes (256-2048m2), I have tested different agent numbers,
aiming to get at least 90% success rate for v1. Again, 100
simulation results are averaged each time to approximate
their effectiveness. To approximate general performance, the
simulations are executed on randomly generated terrain. This
resulted in agent quantities of 300, 1000, 2500 and 6000
for node distances of 200, 400, 800 and 1600m respectively.
Although 6000 agents is still not enough to reach 90% success
rate, diminishing returns and a vast increase in compute time
lead me to eventually choose this number as a compromise.

Lastly, due to time constraints, the maximum number of
iterations will be approximated to 1000 iterations for a 200m
node distance path, doubling with alongside the node distance.
This might leave small simulations running for too long and
large ones too short, but the significant time needed to study
the interaction between node distance, number of agents and
maximum number of iterations in its entirety is not available.

1) Heightmap Considerate: For this experiment, the goal
is to measure to what degree v1 and v0.5 take sudden and
gradual terrain changes into consideration when generating
paths. Furthermore, as the effort weight changes the impact
of terrain on the simulation, these measurements will be done
with effort weight values of 0.01, 0.5, 1 and 10 for comparison.
To measure the consideration of different terrain changes,
heatmaps will be produced of the paths generated by both
DAPA versions and compared to one another. Afterwards, I
will speculate the results and what decisions led to them.
To test sudden and gradual terrain change consideration, two
experiments will be set up.

The first one will contain two nodes featuring a sloped
wall with an apex of 37.5m exactly between them, extending
perpendicular to one edge of the terrain, see figure 3A. This
gradual slope gives the DAPA versions the option of scaling
it to reduce path length or avoid it to reduce the effort of
traversing the path. This way, the consideration of gradual
terrain change can be well observed.

For the second experiment, consideration of sudden terrain
change is tested. A flat terrain is used where one node is
elevated by 37.5m. The node is accessible by either moving
up a steep ridge or a slight slope that is on the side of the
node, see figure 3B.

I expect the wall will be directly scaled in the first experi-
ment when the effort weight is below 1, while higher values
the mountain might be somewhat scraped but averted overall.
In the second experiment, paths should cover the slope rather
than the jump in every case, unless the effort weight is set to
extremely low levels.

2) Smooth: While the difference between grid-bound and
free flowing paths is clearly noticeable, it is difficult to quan-

TABLE III: DAPA extension difference

D
ir

ec
te

d
pa

th
in

g

B
id

ir
ec

tio
na

l
se

ar
ch

D
is

ta
nc

e
co

un
te

rs

E
xp

lo
ra

tio
n

lim
ita

tio
n

H
ei

gh
tm

ap
in

te
ra

ct
io

n

Fi
na

l
pa

th
co

ns
tr

uc
to

r

B
et

w
ee

n-
pa

th
sh

ar
in

g

L
on

g-
di

st
an

ce
ph

er
om

on
es

Se
le

ct
iv

e
no

de
pa

ir
in

g

Pr
ob

ab
ili

st
ic

se
ns

or

C
op

y
ph

er
om

on
es

Te
rm

in
at

io
n

co
nd

iti
on

DAPA v0.5 ✓ ✓ ✓ ✓ ✓ ✓ × × × × × ×
DAPA v1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fig. 3: Considerate terrain layouts. A: first setup, sloped
wall. B: second setup, elevation with side slope.

tify smoothness. To approximate it, the final path’s movement
will be measured. The results will be represented in a scatter
plot which shows how often bends of different horizontal
angles are made along the path. Furthermore, the change
in bend curvature over the course of a final path will be
measured. A smooth path should gradually curve to bend
around obstacles.

These measurements will be made for paths with node
distances of 200, 400 and 800m to get results on different
scales.
Later during experimentation, the need for a fifth test arose.
This test includes the same terrain as we will see featured for
the Imperfect obstacle test. This time, the terrain is used to
measure the amount and size of bends in paths when curves
are induced by the obstacle on the map. To force the avoidance
of the obstacle, the effort weight is set to 1000 for this test.

The expected outcome of this experiment is a generally high
% of the path containing small curvature bends and a low
change in curvature.

3) Large Scale: In the following experiment, the computa-
tion time and memory performance of the two DAPA versions
will be compared.

This will be done in two tests, both varied in scale (node
distances of 200-1600m) and performed on randomly gener-
ated terrain featuring steep mountains, hills and plains. By
performing the simulation on varied terrains, a better average
performance should be measured than for a static map choice.
The first test features a generic 2-node setup to test the single
path performance for different node distances.
In the second test, 3 nodes are set up in a triangle, all set apart

by the corresponding node distance. This experiment tests the
influence of multiple paths and path length on performance.
For this setup, three times as many agents will be used, as
three paths will be generated.

Because the experiment returned some unexpected values,
the first test was done once more at 10 iterations with the
alteration of measuring the average maximum memory usage
per test instead of the absolute maximum.

The goal is to produce valid results on the 3 node
2048x2048 setting within 5 minutes with a memory usage of
2GB or less.

Expected results for this experiment would be a general
decrease in computation time due to the combination of
the Termination condition, Probibalistic sensor and Copy
pheromones extensions, with a slight increase in memory
usage due to the longer-living pheromones the Long-distance
pheromones extension provides.

4) Joining: When joining occurs, a segment from two paths
should overlap or stay in close proximity to one another. To
show the degree of joining, we measure how big this segment
is by checking how many consecutive path points are within
3m of the closest point from another path.
During experimentation, it became clear that multiple joined
segments might appear between paths. As such, all joined
segments between paths will be measured (instead of only the
first one starting from the goal node), as well as the average
number of segments per test.

For this experiment, three nodes will be placed in a triangle
formation on a flat terrain, with A in the middle of the map
and AB and AC being 100m apart. Multiple test sets will be
performed where angle BAC is 180°, 90°, 45°, 30°, 15° and 5°.
Paths along edges AB and AC will be formed, but not BC.
This gives paths AB and AC the opportunity to join paths
whenever they come close to one another.

This measure should be much higher for an algorithm with
the joining property than one without it, while it should still
remain near-0 for paths that do not come close together. DAPA
v0.5 is only able to create connections between all settlements,
but the extra path BC will have no effect on the course of AB
and AC, as v0.5 contains no degree of joining. This means we
can safely generate and ignore any final paths for BC.

5) Winding: For this experiment, winding behaviour will
be defined as ’movement at a low incline relative to a scaled
slope, moving back and forth along the slope in a zig-zag

pattern of varied lengths’.
As long as a path does not move backwards, the vertical
path length should remain the same between winding and
non-winding behaviour. However, we do expect horizontal
path length to change, along with the maximum and average
inclination, according to this definition. These characteristics
will be measured in the following experiment to determine to
what degree winding can be detected for v0.5 and v1.

The terrain setup for this experiment will be a gradient slope
from A to B. The experiment will be held with inclination
angles ranging from 0° to 50°, incrementing in steps of 10°.
Due to technical limitations of the terrain generation program I
made, this experiment will have to be performed on a 128x256
terrain, with A and B 100m apart, parallel to the slope and the
slope moving along the shortest axis. This way, a 50° slope
is possible while staying under the artificial height maximum
of the program, while giving the agents enough space to wind
along the longer axis.

The expected result from this experiment is for v1 to
showcase stronger winding behaviour than v0.5 due to the
increased agent exploration and path improvement of the
Probabilistic sensor and Copy pheromones extensions.

6) Imperfect: To measure the deviation from the optimal
path, the standard deviation of the path length difference is
calculated over multiple simulations for both scenarios.

As no perfect pathfinding algorithm was found which
matches the thesis’ requirements, we have no means of de-
termining the optimal smooth path to compare against4 By
imitating uniform-cost terrain scenarios, however, we can get
an optimal reference length with straight line paths.
Uniform-cost terrain is imitated by only allowing flat
traversable terrain. Walls are represented by elevated segments.
By increasing the effort weight to 1000, any and all height
changes should be avoided at all costs.
This does mean that only the horizontal imperfection can be
measured, as uniform cost terrain is 2D. However, this will
still give a strong indication of DAPA’s imperfection, as the
only introduced imperfection in the technique is that of random
horizontal deviation of the agent’s movement.

For this experiment, two scenarios will be considered.
Firstly, an empty, flat terrain with nodes A and B. We will
test this with a node distance of 200m, 400m and 800m to
see the impact of scale on imperfection. Consequently, terrain
size will also scale from 256, 512 to 1024m2, respectively.

Second, a flat terrain with a 20x80m obstacle with a height
of 37.5m aligned perpendicularly between A and B is tested,
see figure 4. This scenario will show the impact of curves on
the deviation of perfect path length.

For this experiment the expected outcome would be for the
path deviation to scale with node distance. Furthermore, path

4An exception would be the last approach(11) mentioned in the methods
section, though it is not optimal. As there is no public implementation of the
approach available and because there is far too little time to recreate it from
scratch, it is not possible to use it for comparison.

Fig. 4: Imperfect terrain layout. The obstacle in the middle
forces paths to curve around it.

deviation should be lower for v1, as the Copy pheromones
extension should improve the quality of generated paths.

VI. RESULTS & DISCUSSION

Below, we present the results from the above mentioned
experiments. Many of these results are displayed in scatter
plots. These plots represent individual simulation results as
grey dots, which are grouped together in buckets for clarity.
The domain size of each bucket is 1 unit, where decimal
results are rounded down before being added to the graph.
The groups are normalized, where the number and size of dots
indicate the frequency of occurrence compared to the most
frequent result. The most frequent result is represented with 6
full size dots. Blue dots indicate the average value, purple the
standard deviation5 added/subtracted to/from the average, red
dots indicate the maximum value and orange dots show the
standard deviation of the maximum value.

It should be noted that DAPA version 0.5 performs sig-
nificantly worse than v1 for long paths (800m+), with often
times no path being found before the iteration limit is reached6.
With many of the experiments being applied to these terrains,
it becomes difficult to collect enough data on successful v0.5
path results. As a consequence, the presented v0.5 data for
larger maps is (significantly) less representable than desired.
To show the degree of generalizability for each experiment
and version, I will mention the number of successful paths
that each experiment test is comprised of.

1) Heightmap Considerate: To start off, we will look at
the results of the Heightmap Considerate experiment. Ideally,
we want to see the resulting paths to more strongly avoid
slopes with increasing effort weights as they try to balance path

5It should be taken into consideration that the standard deviation is
expressed in squared units, e.g. %2. Presenting them alongside the other values
in the graph is thus not entirely accurate, though they have been left in as an
indication of relative deviation between test results.

6This is in part due to an elusive bug in the final path construction step
which could not be solved in time. Though, solving this would probably only
improve the success rate of the final path construction by at most 50%. As
we will see in the results, this would still be far too little for adequate overall
success rates.

TABLE IV: Experiment overview

Requirement Measurements
Heightmap Considerate Path routing heatmaps for different effort weights and terrain setups.
Smooth Path curvature and curvature change for different node distances.
Large Scale Speed and memory performance for different node distances.
Joining Total joined lengths between paths for different path proximities.
Winding Vertical and horizontal path length, max. inclination.
Imperfect Average deviation from perfect path for different node distances and for paths with induced

corners. Uniform-cost terrain is simulated with flat terrain, high walls and high effort weight.

distance and effort. Furthermore, slopes should be preferred
over sudden jumps in height.

In the first experiment test, we tested the behaviour of
the two DAPA versions in minimizing distance and effort
depending on effort weight. The second test means to test
the versions’ behaviour when facing slopes and sudden jumps
in height, depending on effort weight as well. We see the
results of these experiments in figure 5 (v0.5: 96, 65, 53, 41
out of 100 paths successful, v1: 100, 100, 97, 46) and figure
6 (v0.5: 76, 48, 44, 37 of paths successful, v1: 100, 91, 90,
77) respectively.

For both tests, we notice that v1 has less concentrated
results than v0.5 overall. This is probably the result of the
Probabilistic sensor extension of v1. By adding more ran-
domness to agent movement, fewer straight paths are walked,
meaning that more effort is required to make them as straight
as v0.5’s. Furthermore, the randomness also causes an increase
in exploration but not thoroughness, meaning that path with a
wider variety of initial shapes have a chance of emerging.

For the first test, v1 does not react as strongly to increased
effort weight as v0.5. We can even see this at an effort weight
of 0.01, where v0.5 already has a slightly down-curving overall
shape, while v1 makes no noticeable adjustments. Notably,
however, v0.5 still seems to incorrectly cross straight over the
slope for effort weight 10 more often than v1, even though
these v1 results contain more than twice as many samples.
The difference might be the cause of the Termination condition
extension being set too sensitive. If the termination condition
deems the path improvement during the simulation below a
certain level, it stops the simulation and begins final path
construction. If it is set too sensitive, it could cut off path
that had the potential of curving along with the terrain more.
This could have also explained why v1 performs better at effort
10: the higher weight makes for higher path scores. Higher
scores means higher differences between path scores as well,
which holds off the termination condition from cutting the
simulation short. However, looking at the average number of
iterations per simulation (1228, 1207, 1197 and 1181 for v0.5,
1204, 1205, 1205 and 1206 for v1, respectively), it is clear that
this latter conclusion is incorrect.

For the second test we notice the opposite of the first one:
v1’s paths much more consistently react to a higher effort
weight than v0.5. This is likely due to the Copy pheromones
extension, as this should drastically increase the simulation’s
path improvement capabilities. With the extension, agents are
better able to adjust a defined path to take into account the

terrain, as seen in the v1 results of figure 6. While this was
not effective enough for the first test, it might have had a
larger impact here due to the area that needed to be improved
being much smaller. Instead of the whole path needing to be
improved to the shape of the hill in the first test, here, it is
only needed to improve a small area of very high contrast
possibilities (being the slope and the other steep sides up to
the node).

It would seem that both versions contain desirable as-
pects concerning Heightmap Considerate behaviour. Though,
as neither performs desirably in both tests, the Heightmap
Considerate requirement is not met.

2) Smooth: For the measure of smoothness, the experiment
tested the change in angle between the path points for different
map sizes. Furthermore, the change in angle while moving
over the path has also been measured.
Reviewing the results for the first time, I realize that the
measure of average curvature change was not a good indicator
for smoothness in combination with the terrain setup, as
slightly curved paths can be just as smooth as straight ones,
but give different results with this measure. This did not
combine well with the terrain setup of an empty, flat surface,
as it allowed for a great deal of variation in path shape,
muddying the comparison of path properties. For a slightly
more comparable experiment setup, I added a test using the
same obstacle layout as the Imperfect experiment, where paths
will be more comparable as they avoid the wall in a similar
manner. The results are added to figure 7.

Looking at figure 7 (v0.5: success rates of 98, 84, 6 and
52, v1: 100, 100, 98 and 92), we see that v1’s distribution of
bend size is a lot more gradual than v0.5. While the crude
distribution of v0.5’s 1024x map results could be attributed to
the low number of samples collected (only 6/100 successful
paths), the same cannot be said for its 256x and obstacle
map results. It would seem that v0.5 mainly goes straight
ahead along its shorter paths, while longer paths are harder
to optimize for both versions, resulting in more bends and
thus a wider spread of bend sizes.
The v1 results on the obstacle map are notably different from
v0.5, which more resembles the profile of the other results.
Instead, v1 has a clear higher averaged spread of curves.
V1’s results indicate smoother curves overall if we take into
consideration that, for a curve to be smooth, slightly sharper or
duller curves need to occur about as frequently. The smoother
distribution of v1 shows that this is the case.

Fig. 5: Heightmap Considerate first setup results. Left
column: v0.5, right column: v1. Top to bottom: results with

effort weights of 0.01, 0.5, 1 and 10 respectively

From table V it is clear that the average curvature change
has increased between versions, while the standard deviation
has stayed relatively the same. This is most likely due to v1’s
agent sensors working differently than v0.5’s (see Probabilistic
sensor in Thesis extensions). V1 only has 1 sensor randomly
positioned in a cone in front of the agent. This randomness
probably results in the creation of fewer straight paths, mean-
ing that the paths on average make more turns which causes

Fig. 6: Heightmap Considerate second setup results. Left
column: v0.5, right column: v1. Top to bottom: results with

effort weights of 0.01, 0.5, 1 and 10 respectively

the difference between v0.5 and v1.
On the contrary, the obstacle test shows a slight decrease
in curvature change. As the terrain incites paths to create
comparable paths with curves around the obstacle, I can say
with more certainty that this indicates smoother behaviour
around induced curves as opposed to curves created by random
agent movement.

In either case, the change in curvature is very minimal.
Though v1 makes sharper curves in general, these curves
appear gradually. With that, I deem v1 to attain the Smooth
requirement.

Fig. 7: Smooth results. Left columns: v0.5, right: v1.

TABLE V: Smooth curvature change (°)

v0.5 v1
Minimal
path length

Average Std Average Std

200 1.58 0.55 3.76 0.52
400 2.34 0.46 4.28 0.35
800 4.01 0.47 4.27 0.49
217
(obstacle
setup)

4.62 0.63 4.38 0.50

3) Large Scale: The Large Scale experiments have all been
executed on a Lenovo ThinkPad w540 with an i7-4800MQ
processor and 8GB of RAM. The execution of the experiment
has taken more than time expected, with the vast majority of
the time spent on calculating the 1600m distance paths. After
simulating 100 single paths for both versions, it was clear
that attempting to do the same for the three path configuration
of the experiment would simply take too much time to be
practical. Because of this, I decided to reduce the number of
simulations for the three path test down to 10. As this test
is not as reliant on specific results and is rather a ballpark
indication of the influence of path length on computation time
and memory usage, this reduction should not be too much of
a problem.

From the experiment results in table VI it is clear that v1
is significantly faster than v0.5. It seems that the Termination
condition and Probabilistic sensor extensions have had their
intended effect. For single paths, the latter decreased the
number of iterations with 18.1-45.5%: v1 averaged 671, 1318,
2971 and 7089 iterations for the different node distances,

whereas v0.5 needed 1226, 2419, 4633 and 8658 iterations
on average.
For the triple path setup, iteration amounts were lowered by
19.0-47.3%: 1246, 2484, 4804 and 9022 versus 778, 1310,
2932 and 7304.
Meanwhile, the decreased number of pheromone reads per
iteration due to the Probabilistic sensor seems to have caused
an improvement of computation speed of 12.3-70.7% for
single paths, looking at the differences in average iterations/s
in table VI. For triple paths, the speedup ranges from 38.1-
131.3%. The larger speedup for longer paths has most likely
to do with the number of agents becoming the bottleneck
of the program. As pheromone reading is the most taxing
part of agent behaviour, a lot of performance can be gained
with the optimization that the Probabilistic sensor performs
on this segment. Very notable is that, on average, v1 is faster
constructing 3 paths than v0.5 from any distance. Furthermore,
looking at the increase in simulation time between single and
triple paths, we see that while v0.5 sees time increases of
26.7-316.6%, v1 scales much better with 15.6-230.8%. This
is likely the result of aforementioned performance enhancing
extensions, as well as the Between-path sharing extension
helping paths work together for faster overall pathfinding.

It should also be noted that v1 sees much more success
constructing paths than v0.5, especially with longer ones: v0.5
has success rates of 86, 66, 31 and 7/100 on the single path
test, while v1 boast rates of 96, 99, 92 and 77/100. For the
1600m node distance test (on 2048m2 terrain), this means an
11× increase in success chance, and around 3× for 800m. We
can thus confirm that the Long-distance pheromones extension
works as expected, that is to keep pheromones active for long
enough to give agents a chance to find other’s paths towards
their goal over long distances. For comparison, in the triple
path setup v0.5 completed 21, 13, 5 and 1/30 paths over 10
simulations, while v1 successfully generated 26, 30, 29 and
26/30.
Looking at the success rates of the Heightmap Considerate
and Winding experiments, however, we can see that v1 still
struggles with high effort weights as success rate drastically
decreases alongside it.

TABLE VI: Large scale computation times

v0.5 v1
Node
distance
(single
path)

Average(s) Std(s2) Average
Itera-
tions/s

Average(s) Std(s2) Average
Itera-
tions/s

200 13.1 0.9 93.4 6.4 0.6 104.9
400 48.9 4.1 48.5 17.1 1.2 77.1
800 292.0 16.5 15.9 109.9 6.3 27.0
1600 2123.9 86.1 4.1 1010.1 66.0 7.0
Minimal
path length
(triple path)
200 16.6 1.0 76.4 7.4 0.4 105.5
400 154.8 10.6 16.0 35.4 2.7 37.0
800 892.5 105.8 5.4 253.6 23.4 11.6
1600 2623.4 11.9 3.4 1224.1 43.0 6.0

In terms of maximum memory usage, we see in table VII
that both DAPA versions perform about the same under both
single and multiple path conditions.
The first thing of notice is very low single path average
memory usage for both versions relative to the maximum and
the triple path results. It is unclear how these values can reach
such low numbers, much less why they decrease with node
distance.
Another point of interest is the significant memory spikes that
only seem to occur for single paths. This is likely in part due
to a flaw of the experiment: the maximum is only simply the
largest memory reading during all of the simulations for a
given test. The maximum values could thus be outliers, as no
average maximum per simulation is calculated. With only 10
iterations for the triple path test, it could be chance that these
outliers were not encountered here

To verify this, the single path test was re-executed at 10
iterations while documenting the average maximum memory
usage between iterations instead of the absolute highest peak
across all iterations in a test. From these results, seen in
table VIII, it becomes clear that the average maximum is
much more consistent with the average memory usage, just
like the triple path results indicate in figure VII. A peculiar
detail to note is that for node distances 800 and 1600m, v0.5
and v1 have a lower average maximum than average memory
usage respectively. It is unclear what causes this. Furthermore,
with this adjusted experiment, it is safe to say that the high
maximum memory usage values of the initial experiment were
only outliers.

V1 is able to stay below the 2GB memory usage goal, but
cannot create the three 1600m paths under 5 minutes. The
criteria has thus not been met, but significant strides have been
made towards it considering the increased success rate and
computation time.

TABLE VII: Large scale memory usage (mb)

v0.5 v1
Node distance
(m) (single
path)

Average Maximum Average Maximum

200 5.8 277.3 27.6 281.3
400 1.0 581.3 25.0 585.3
800 4.7 1445.3 9.5 1449.3
1600 0.2 4917.4 5.7 4913.4
Node distance
(triple path)
200 147.6 149.3 151.4 153.3
400 173.2 181.3 175.8 185.3
800 244.1 277.3 247.5 281.3
1600 500.5 645.4 500.8 657.4

4) Joining: As per the joining requirement, paths should
join if they run close to one another, rather than having
multiple separate paths side by side. In figure 8 (98, 93, 86,
83, 94 and 96 samples for v0.5, 100, 99, 99, 99, 99 and
100 samples for v1) we can see the impact of the Between-
path sharing extension for both DAPA version for different
between-path angles between the two generated paths. Note

TABLE VIII: Large scale memory usage (mb), adjusted test

v0.5 v1
Node distance
(m) (single
path)

Average Average
maxi-
mum

Average Average
maxi-
mum

200 151.6 151.7 151.4 151.7
400 175.7 175.7 177.2 177.3
800 244.6 244.5 244.5 244.5
1600 498.2 501.4 508.5 501.4

that no values of 0% joining are present: 2-3 path points
around the shared goal of the paths are always within 3m of
one another. Because this experiment can only be measured
when both paths are successful, the described situation is
always present.

As is to be expected, path joining values only rise in the
tests where paths come close together. From 30° on, we see
an increase in joining % from v1 over v0.5. However, the
standard deviation increases as well. There are two possible
reasons for why this is the case.

Firstly, this dispersion of results may be the consequence
of the experiment measure chosen. As mentioned in the
experiment section, for Joining we originally measured the
number of consecutive points that are close together from both
paths. However, when a long joined segment contains a single
path point that is not close to the other path, this number gets
cut short as only the first segment is registered and the second
is ignored.
To find out if this reasoning was valid, the experiment was
extended and executed again. This time, the experiment mea-
sures the total % of joined path, instead of only measuring
until the first >3m disconnect occurs. Additionally, the average
amount of joined segments per simulation and their lengths
was measured. The same characteristics were measured for
the segments of path disconnection between connected parts.
The results of this extended experiment are already included
in figure 8. The new measurements show that all joined paths
across all simulations for v1 and v0.5 in this experiment have
exactly one segment, with the average segment count being
one, leading to the average segment length matching the total
joining length.
From this we can conclude that the increase in dispersion is
not the result of increased joined path segmentation.

Second, as discussed in the Heightmap Considerate results,
the Probabilistic sensor extension increases exploration, mean-
ing that the initially generated paths AB and AC might not
emerge close together. This lowers the chances for agents from
either path to find and make use of the other’s path.

From figure 8 it can be concluded that the degree of joining
has certainly increased from v0.5 to v1. However, as we can
see in figure 9, the improved joining still leaves room for
unwanted separation between joined paths, albeit small. Due to
this, together with the inconsistency of the % of path shared, I
deem the joining requirement not to be met, though the results
are promising.

Fig. 8: Joining results. Left: v0.5, right: v1.

Fig. 9: Unwanted separation behaviour

5) Winding: It should be noted that the results of v0.5
for this experiment are somewhat incorrect, as they included
rather specific inclination values of over double the maximum
possible slope of different tests. This bug only occurred a
handful of times, depending on the test. However, as the large
values influenced the calculation of averages and maximal
values, they have been left out of the graphs presented below.
It is not known if this bug also impacts values below the
maximum incline limit, but I expect the lower inclination
spikes in e.g. figure 10D to be a result of this. The same
experiment code is used for the calculation of the incline
angles. Both versions use the same function for calculating
agent and path point elevation, meaning that the problem likely
stems from how agent movement is coded in v0.5.

Secondly, due to downward rounding, all highest inclina-
tions fall into the bucket just below the maximum inclination.
The result of floating-point rounding errors and/or inaccuracies
cause some values to fall into the actual max inclination bucket
by a margin of 10−4 or less.

In the Winding experiment description, I mentioned that a
winding path should ideally have an increasing horizontal path
length as it moves somewhat perpendicularly to the slope,
scaling with slope steepness. Furthermore, the vertical path
length should not be affected by inclination, as paths should
always be moving up, resulting in nearly the same vertical
movement every time. Paths should always be moving up
because moving away from the goal does not serve path

optimization and will thus be filtered out before the simulation
is over. Lastly, the average and maximum inclination of the
path should decrease with slope steepness as the agents have
a stronger aversion to scaling steeper slopes, especially with
higher effort weights.

First of all, the graphs of image 10(A)-10(E) show that
the expectation of decreasing maximum inclination was in-
sufficiently thought out. It stands to reason that the maximum
inclination of a path is always equal to the slope incline. In
fact, it must be. As the two nodes are placed exactly behind
one another along the slope, only diagonal movement for slope
minimisation is not enough to reach the other node. A diagonal
path must eventually turn around, or else keep moving further
away from the goal. At such a turn, the full steepness of the
slope must be traversed. The alternative to this is a straight
line across the slope towards the goal. Logically, this includes
moving against the full incline of the slope.

In the same graphs we see a pattern in v1 of slightly
higher average inclinations, but lower standard deviations
and a cleaner spread of inclination frequency compared to
v0.5. From table IX and figure 10(D) we can see that the
uneven spread of inclination frequency is likely not due to
under-sampled results: both results are based on approximately
the same number of samples, yet the difference in spread
of inclination frequency remains. As mentioned before, the
spikes of low inclination could be the result of a bug in
v0.5’s movement code. By increasing the frequency of non-
average values, these spikes lower the average and increase
the standard deviation. If this is the case, I can only conclude
that v1 has a more solid spread of increment frequency, likely
due to the increased path quality consistency of the Copy
pheromones extension.

As expected, we see in table X that the vertical path length
remains basically unchanged when changing the effort weight.
Furthermore, we notice that v1 has shorter paths than v0.5
across the boards, with only few exceptions. For the 30-50°

Fig. 10: (A) effort weight 0 results

Fig. 10: (B) effort weight 1 results

Fig. 10: (C): effort weight 5 results

Fig. 10: (D): effort weight 25 results

Fig. 10: (E): effort weight 100 results

Winding experiment results. Left columns: v0.5 results, right columns: v1 results.

slopes, we even see that v1’s paths actually decrease in length
as the effort weight increases to 25 and 100, while being longer
than v0.5 at the same effort values for the 10° slope.

A possible explanation could be that the pheromone scoring
system enables this behaviour. Each pheromone is scored as
follows: (agent’s spent effort × effort weight) + (agent’s trav-
elled distance × distance weight). When using this formula,
the score will obviously be dominated by the effort part if
it’s weight is set high enough. For low-slope terrain, the high
scores motivate agents to move in lower inclines. However,
perhaps at high effort weight and high slope, these scores
become so large that the score-minimizing behaviour would
become to simply interact with the terrain as little as possible.
In other words, the agents make shorter paths to receive fewer
effort penalties.

TABLE IX: Winding sample counts

Slope inclination (°)

E
ff

or
t

w
ei

gh
t 0 10 20 30 40 50

0 100/100 100/100 100/100 100/100 99/100 100/100

1 100/100 100/100 96/100 89/98 79/94 61/84

5 100/100 100/100 84/97 64/84 60/76 42/51

25 100/100 92/98 71/76 55/59 51/53 39/44

100 100/100 92/91 61/61 43/54 36/43 25/51

Left values: v0.5, right values: v1

If this were the case, however, then an even shorter path
would be expected, as we see that v1 is capable of on lower
effort weights. Additionally, this behaviour should also occur
for v0.5, as it uses the same scoring system.

Thus, it remains unclear what could lead to this behaviour.
In any case, both versions clearly still prefer steep ascension
in their paths, as we see the (technical) maximum value
is the most frequent in all figures 10A-10(E). Furthermore,
horizontal movement only increases slightly as incline rises.
Both indications combined show that the Winding criteria has
not been met.

6) Imperfect: As per the Imperfect requirement, the final
path should be no more than 110% of the optimal path’s
length. From image 11 (v0.5: 99, 90, 6 samples, v1: 99,
100, 99), it is clear that the average path deviation increases
dramatically with the distance between nodes. Furthermore,
we can see that the path inconsistency also increases with
node distance: the standard deviation from the mean ranges
from 1.41% to 4.69% for v0.5 and 2.16% to 9.18% for v1.
When it comes to path length, v1 has higher average deviation
and standard deviation than v0.5. However, with v0.5 having
only 6 samples for the path length of 800, it is not possible to
confidently tell how different the two versions actually perform
at this length.

The increase in overall deviation could very well be the
result of the probabilistic sensor extension. The increase in
randomness of movement does increase exploration, but per-
haps at the cost of consistency. Overall, however, the Imperfect
requirement is met for unobstructed paths of 400m and shorter,
while 800m paths cannot reliably attain 110% or less of perfect
path length. It is extremely likely that this trend continues with
longer paths.

Figure 12 (v0.5: 99, 50, v1: 99, 93) shows adequate im-
provement of average deviation between v0.5 and v1. Curi-
ously, standard deviation actually also decreases for the ob-
stacle terrain, in contrast to the path length results mentioned
above, from 9.18% to 6.20%. It should be noted that both
versions have still somewhat crossed the walled terrain in their
generated paths, despite the high effort weight of 1000. On
average, v0.5’s Obstacle paths added another 15,47% (39m)
deviation with vertical path movement, where v1 added 1,39%

Fig. 11: Imperfect results: influence of node distance.

Fig. 12: Imperfect results: influence of curves.

(4m). Keeping in mind the obstacle height of 37.5m, the paths
still seem to mostly only graze the walls. For v0.5, this can be
attributed to it’s difficulty with improving paths, which led to
the addition of the Copy pheromones extension and is likely
the reason for the decreased trespass and decreased average
deviation of v1.

Seeing as straight paths maintain a ≤10% average deviation
up to 400m node distance, one could argue that the Imperfect
criteria is met. However, with the vast influence curves seem to
have on average deviation and the trend of increasing deviation
with node distance, I strongly doubt if the 10% threshold will
be maintained in practical applications over non-flat terrain.
As such, the Imperfect criteria has been failed.

VII. CONCLUSION

Below, we will review once more the research questions of
this thesis.

For research question 1 (RQ1), the best suitable baseline
was to be selected that attained as many of the Heightmap
Considerate, Smooth, Large Scale, Joining, Winding and Im-
perfect requirements as possible as to create realistic walking
path networks. As such, various pathfinding algorithms have
been covered to see how many requirements they could fulfil.
Afterwards, an unusual method was chosen as a baseline,
referred to as the ’gathering method’. Though not scientifically
based, the method drew parallels to the slime mould method
which also fulfilled multiple requirements. The chosen base-
line already approximated the Heightmap Considerate, Smooth
and Imperfect criteria.

Though deemed the most suitable, the baseline cannot be
applied to the circumstances of the experiments. Thus, as
a point of comparison, a minimal version of DAPA was

TABLE X: Winding path lengths

Slope inclination (°)

E
ff

or
t

w
ei

gh
t 0 10 20 30 40 50

0/0 17.6/17.5 36.4/36.2 57.8/57.4 84.0/83.4 119.2/118.5

0 101.9/101.3 102.1/101.3 102.0/101.2 102.2/101.3 102.0/101.3 102.3/101.3

101.9/101.3 103.6/102.8 108.4/107.5 117.5/116.4 132.2/131.6 157.2/156.0

0/0 17.6/17.5 36.4/36.2 57.7/57.4 84.0/83.5 119.9/118.7

1 102.0/101.3 102.1/101.5 103.3/102.1 106.3/104.9 116.7/113.4 126.4/123.5

102.0/101.3 103.6/103.0 109.6/108.4 121.1/119.7 144.9/141.3 176.9/172.5

0/0 17.6/17.5 36.4/36.3 57.9/57.6 84.9/83.7 120.5/118.7

5 102.0/101.3 103.0/102.2 109.7/111.1 123.4/123.4 141.8/128.7 147.4/130.9

102.0/101.3 104.5/103.7 115.7/117.0 137.1/136.6 168.2/154.6 194.9/178.4

0/0 17.6/17.5 36.6/36.3 58.1/57.6 84.9/84.0 120.4/118.8

25 102.1/101.2 106.0/108.4 131.9/124.6 141.6/130.8 145.9/129.3 145.1/132.4

102.1/101.2 107.5/109.8 137.4/130.0 154.6/143.6 171.7/155.4 192.9/179.9

0/0 17.6/17.6 36.7/36.3 58.2/57.6 84.6/83.7 121.0/118.8

100 102.2/101.2 111.9/120.4 133.4/129.5 148.7/128.6 153.4/127.9 152.4/130.8

102.2/101.2 113.4/121.7 138.9/134.8 161.4/141.7 178.3/154.0 199.7/178.7

Averaged results of the Winding experiment. Top values: vertical path length.
Middle: horizontal length. Bottom: full path length.

Left values: v0.5, right values: v1

developed: DAPA v0.5. This allowed me to measure the
increase in performance compared to a base version of the
approach. To meet all requirements, several extensions were
developed. As v0.5 already came relatively close to fulfilling
the Heightmap Considerate, Smooth and Imperfect criteria,
the extensions focus on improving Large Scale, Joining and
Winding characteristics.

For RQ2, the following extensions were chosen to extend
the v0.5 version of DAPA to attain the remaining requirements.
The Large Scale requirement needed the most attention, as
performance scaled quadratically with path length which is
a big problem for large world traversal. For this purpose,
the Long-distance pheromones, Termination Condition, Copy
pheromones and to some extent the Probabilistic sensor exten-
sion were added. Long-distance pheromones enables paths to
form over longer distances, the Termination condition cuts the
simulation short if a quality path emerges early on and Copy
pheromones increases the likelihood for this to happen by
speeding up path improvement. Probabilistic sensor changes
the way that agents interact with pheromones, resulting in
faster iteration time, though at the cost of less consistent agent
movement.

Joining was enabled by the addition of Between-path shar-
ing, with which agents can interact with pheromones from
any path heading to the same goal. This made for some good
joining results. However, the behaviour is still not consistent
enough, as often times no joining takes place where it could.
Furthermore, the extension is not strict enough, as it allows for
joined segments to slightly detach from one another at random
spots.

The Winding requirement was the hardest one to tackle,

as generated paths of the simulation have trouble making
significant changes over time. With the Probabilistic sensor
and Copy pheromones extensions, agent exploration and path
improvement should have increase respectively, which would
lead to winding behaviour in an effort to minimize effort.
However, this did not have as much impact with regards to
winding as desired.

Lastly, the Selective node pairing extension increases con-
trol in which paths are to be generated. Though this extension
does not contribute to the requirements, it is a valuable tool
for any practical application of the technique with networks
of more than two nodes.

For RQ3, we want to measure the effectiveness of v1
at fulfilling the criteria as opposed to the baseline (now
being v0.5). For this purpose, experiments were set for each
requirement, and suitable measurements were determined.
From these experiments, it became clear that both DAPA
versions have different desirable Heightmap Considerate be-
haviour with v0.5 reacting well to low frequency terrain
changes while v1 reacts well to high frequency changes.
Only a combination of the two would satisfy the requirement,
meaning that v1 by itself does not fulfil it adequately.
Furthermore, Smooth has proven to be met, seeing the gradual
change in curvature when moving over the path.
Next, while v1 boasts significant performance improvements
over v0.5, both in computation time and success rate, the Large
Scale requirement of creating 3 simultaneous 1600m paths in
5 minutes could not be met.
Joining was not consistent enough for practical use. Though
joining lengths were promising, the deviation in joining length
was too strong, thus not attaining its requirement.

Winding experiments show that attempts to increase the wind-
ing behaviour were not effective enough as the general incline
of the path did not decrease nearly enough as the slope got
steeper, failing the requirement.
Finally, the Imperfect experiment showed acceptable results
for straight paths with node distances of 400m or less, but
deviated too much with longer or curved paths, failing the
criteria on larger scales and more practical applications on
non-flat terrain.

Overall, most requirements could not be met to satisfaction,
with only the Smooth requirement being at a desirable level.
Looking back, however, the criteria for this thesis might have
been set too high. The amount of augmentation v0.5 needed
and still needs to meet them is vast.
For any pathfinding algorithm, map scale has a large perfor-
mance impact. Considering the nature of my approach, it was
too optimistic to set the 5 minute and 2Gb requirement for
Large Scale.
It should not be seen as a total failure, however, as significant
improvements over v0.5 have been made for all requirements
save Heightmap Considerate.

While DAPA is unsuited for navigating mazes or working
with impassible obstacles, it remains a novel approach appli-
cable to heightmaps that can create smooth path networks over
relatively large distances. Though not as capable as desired,
it still fills a niche of pathfinding for large open worlds with
some path joining properties.

VIII. FUTURE WORK

Due to the many near-missed requirements, plenty of future
work is available to address these issues.

To start of, a lot of deviation-related differences between
v0.5 and v1 are suspected to be the result of the Probabilistic
sensor extension. It would be interesting if its benefits could
be maintained while the increase in deviation is removed by
experimenting with its maximum sensor angle and sensor size
parameters, or else looking at v1’s behaviour when using
the original sensor setup. This could have benefits for the
Heightmap Considerate, Joining and Imperfect criteria.

For Large Scale improvement, one could have a look at (12)
on navigating a subsampled version of the heightmap. While
more crude, it could serve as a basis for a second higher-
resolution pathfinding pass.
Another performance improvement would be to replace the
initial pheromone ellipse mentioned in Exploration limitation.
The simulation slows down a lot due to the large amount
of pheromones added with this ellipse, especially on larger
scales. If the ellipse could instead be replaced with an elliptical
boundary check in the agent behaviour, then the simulation
could speed up significantly while containing agents more
effectively then the current approach.
Thirdly, by scaling agents’ random movement strength with
detected pheromone score, popular paths could be explored
more, causing even stronger path improvement behaviour.

Something similar to this pheromone-induced random
movement could also be used to approach the Winding require-
ment, by increasing wandering behaviour based upon strong
increases of effort in detected pheromone. This should lead to
agents moving side to side along slopes, after which the Copy
pheromones extension makes sure that other agents notice the
improved path alteration.

To prevent small disconnections in joined paths at in Figure
9, a technique can be used that was applied in (11), where
close path segments are fused into one, based upon Fréchet
distance.

Lastly, to improve path creation success rates on larger
paths, multiple final path agents could be released instead of
only two. The different agents could have different wandering
weights, adding diversity to their traversal over the pheromone
map, decreasing the chances of accidentally straying from the
main pheromone trail.

IX. ACKNOWLEDGMENT

Big thanks to the Youtuber Pezzza’s Work for sharing his
insights in the exact workings of the gathering method, his
advice in tackling some of the requirements of this thesis and
general enthusiasm towards the project.

REFERENCES

[1] J. Beneš, A. Wilkie, and J. Krivanek, “Procedural mod-
elling of urban road networks,” Computer Graphics Fo-
rum, vol. 33, 02 2014.

[2] P. Hart, N. Nilsson, and B. Raphael, “A formal basis
for the heuristic determination of minimum cost paths,”
Systems Science and Cybernetics, IEEE Transactions on,
vol. 4, pp. 100 – 107, 08 1968.

[3] F. Teichteil-Königsbuch and G. Povéda, “Collaborative
common path planning in large graphs,” 09 2020.

[4] A. Goldberg, H. Kaplan, and R. Werneck, “Reach for a
*: Efficient point-to-point shortest path algorithms,” 11
2005.

[5] R. Arkin, “Path planning for a vision-based autonomous
robot,” vol. 727, 01 1986.

[6] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed
optimization by ant colonies,” 01 1991.

[7] L. Wang, J. Kan, J. Guo, and C. Wang, “3d path
planning for the ground robot with improved ant colony
optimization,” Sensors, vol. 19, p. 815, 02 2019.

[8] K. Socha, ACO for Continuous and Mixed-Variable Opti-
mization, pp. 25–36. Springer, Berlin, Heidelberg, 2004.

[9] J. Jones, “Characteristics of pattern formation and evolu-
tion in approximations of physarum transport networks,”
Artificial life, vol. 16, pp. 127–53, 04 2010.

[10] P. Work, “C++ ants simulation 1, first approach,” May
2020.

[11] A. Peytavie, E. Galin, E. Guérin, and B. Benes, “Au-
thoring hierarchical road networks,” Computer Graphics
Forum, vol. 30, 05 2011.

[12] E. Galin, A. Peytavie, N. Maréchal, and É. Guérin,
“Procedural generation of roads,” Computer Graphics
Forum, vol. 29, 2010.

[13] D. Ferguson and A. Stentz, “Field d*: An interpolation-
based path planner and replanner,” vol. 28, pp. 239–253,
01 2005.

[14] J. Zhao, D. Cheng, and C. Hao, “An improved ant colony
algorithm for solving the path planning problem of the
omnidirectional mobile vehicle,” Mathematical Problems
in Engineering, vol. 2016, 01 2016.

[15] S. Lague, “Coding adventure: Ant and slime simula-
tions,” May 2021.

