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Abstract

This thesis introduces a new quantitative metric, used to determine the quality
of a morph. This metric is based on the angular change of all enclosed boundary
loops and is experimentally shown to effectively distinguish between morphs that are
visually appealing and morphs that are worse in terms of visual quality. This thesis
also improves the Voronoi and mixed morphs [15] using two approaches. The first
approach experimentally shows that a dynamic variable for the mixed morph can
result in morphs that better balance all quantitative metrics and results in visually
more appealing morphs. The second approach is the introduction of a new abstract
morph and its mixed variant, that adjust the Voronoi morph to reduce the number of
components present in intermediate shapes. We prove some basic properties on the
creation of components in the Voronoi morph and that the new morph also adheres
to the Hausdorff property [16]. In an experimental analysis of the new morphs, we
record data on the area, perimeter and total angular change development throughout
the morph, and the number of holes and components. We show that one of the new
morphs performs best on our quantitative analysis and also visually appears most
attractive.
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1 Introduction
Shape morphing, also known as shape interpolation or shape blending, is the process of gradually
transforming a source shape to a target shape over time. There are many different applications
for morphing; each with their own techniques. Some are used in the film and game industry to
create animations or visual effects. Other techniques are used in medical imaging to generate 3D
reconstructions from 2D slices made by MRI- or CT-scanners. In this thesis, morphs are regarded
as a function from the interval [0, 1]. The parameter operating on this interval can be regarded to
as time. The function operates on two input shapes and outputs one shape, such that the output
shape at 0 is one input shape and the output shape at 1 is the other input shape. Any shape of the
morph at a given time value is referred to as an intermediate shape.

Each application has different requirements that determine the quality of a morph. When an-
imating between two poses of an animal, it would make sense that the hind legs in the source
shape transform into the hind legs in the target shape. To accomplish this, a lot of techniques use
predefined anchor points that define a correspondence between features of the input shapes. When
creating a 3D construction from hundreds of 2D slices it would not be practical to rely on user
input between each neighbouring slice. It is, however, important that the generated intermediate
shapes are anatomically plausible. Generally speaking, all morphs should generate a smooth tran-
sition between the source and target shape in such a way that the intermediate shapes preserve the
appearance of the input shapes.

Figure 1: The intermediate halfway morphs of three different morphing methods when morphing
between the input shapes at the top. The bottom left shows the dilation morph [16], the bottom
middle shows the Voronoi morph [15] and the bottom right shows the mixed morph [15].

This thesis concentrates on a branch in the field of morphing, called abstract morphing, that
does not concern itself with the defining features of the input or output shape. A new type of
abstract morphing based on the Hausdorff distance is introduced in a recent paper by van Kreveld
et al. [16]. The Hausdorff distance is a bottleneck metric that measures how distant two sets are
from one another. It is the maximum distance of a set to the nearest point in the other set. Morphs
based on the Hausdorff distance are called Hausdorff morphs and have the following property:
Given two input shapes A and B with a Hausdorff distance of 1 and a time value α ∈ [0, 1], an
intermediate shape can be constructed that has a Hausdorff distance of α to A and 1−α to B. The
morph introduced by van Kreveld et al. [16], the dilation morph (Sα), is based on the Minkowski
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sum with a disk and produces the maximal shape that supports this Hausdorff property. Figure 1
shows how the halfway morph (the intermediate shape at α = 1/2) does not have any resemblance
with the input shapes as a result of its increased surface area.

In a follow-up paper, de Kogel et al. [15] introduced the Voronoi morph (Tα); a Hausdorff
morph that resolves the issue of having intermediate shapes with a disproportionate surface area.
This morph moves points in the source shape to the closest point on the target shape by a fraction
of α and moves points in the target shape to the closest point on the source shape by a fraction
of 1 − α, after which it takes the union of those two sets to get the resulting intermediate shape.
Figure 1 shows the Voronoi morph is significantly better in terms of visual quality compared to
the Dilation morph. It does however still neglect two main problems: intermediate shapes contain
several parts that are fully disconnected from the rest of the shape and the boundary of intermediate
shapes contain many slits, which greatly increases the perimeter of the shape. The same paper
addressed the latter problem with the introduction of the mixed morph (Mα,φ). It is called the
mixed morph because it combines Sα and Tα. It functions the same as Tα, with the addition of an
extra step. It first dilates Tα using the Minkowski sum, after which it erodes the shape using the
Minkowski difference with a disc of similar radius. This process is called closing, results in the
closing of small gaps and holes whilst keeping the rest of the shape intact. This technique does not
manage to remove all the slits and still creates extra components at the boundary of Voronoi cells.

This thesis has two main goals. The first is to investigate new ways to more accurately measure
the quality of an abstract morph in a quantitative manner. We do this by experimentally investi-
gating different versions of the angular change of intermediate shapes their boundary loops, to
determine whether this metric yields distinct outcomes for different morph types and qualities,
and to see if this metric can be used to accurately predict which of two morphs will produce better
visual results.

The second main goal is to improve the quality of the Voronoi and mixed morph. This is
achieved using two different approaches. The first aims to improve the mixed morph, by experi-
mentally testing different parametric inputs for the dilation parameter. We will also investigate the
use of a non-fixed dilation parameter that changes over during the morph. In the second approach
we present a new Hausdorff morph, based on the Voronoi morph and its mixed variant. This
morph is called the Voronoi Component Reduction (VCR) morph. As the name suggest, it aims
to reduce the number of components present in intermediate shapes. We experimentally show that
this morph produces visually convincing intermediate shapes that preserve more visual features
that are present in the input shapes, than the Voronoi morph.

2 Related works
There are many applications for morphing. A big subdomain of morphing is image morphing.
This is the process of morphing between two images. The techniques used in image morphing are
quite distinct from the techniques used to morph between 2D or 3D shapes, and therefore outside
the scope of this thesis. A survey on recent image morphing techniques is presented by Rhora and
Kulkarni [17].

A more niche type of morphing is font morphing. Font morphing is used by designers to
create new fonts from already existing fonts. It differs from other morphing domains, since it sees
morphing as a multidimensional problem, where various aspects of the font, such as the boldness,
width and size, can be morphed independently from one another [14].

The focus of this thesis is on the sub-domain that morphs 2D shapes. Most morphing tech-
niques used on 2-dimensional shapes work directly or with some small modifications on 3-dimensional
shapes as well. The following subsections discuss different kinds of shape morphing techniques.
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2.1 Triangulation
Morphs based on the triangulation of two shapes aim to optimize two problems. (1) Finding a
compatible triangulation, and (2) interpolating the positions of the vertices properly.

In order to have a triangulation of two shapes that is compatible, each vertex in one shape must
have a corresponding vertex in the other shape. In addition, each edge in one shape connected by
two vertices, must have an edge in the other shape that is connected to the corresponding vertices
[3]. If this triangulation is generated, each vertex in the source shape can be ’moved’ to the position
of the corresponding vertex in the target shape using some interpolation method.

Aronov et al. show that a compatible triangulation between two simple polygons with n ver-
tices is always possible [3]. In some cases, this requires the addition of O(n2) Steiner points
inside each polygon. They present two algorithms. The first algorithm creates a triangulation of
both polygons P1 and P2. These triangulations are then mapped to a convex n-gon, after which
the triangulated n-gons are overlayed. At each edge crossing, a Steiner point is added, creating
a triangulation that is compatible with both P1 and P2. The second algorithm creates a universal
triangulation for any n-gon that is independent of the initial polygon. This triangulation has the
shape of a spiderweb. It consists of concentric layers of n-gons, in which all the corresponding
vertices on a given layer are connected by radial edges. The vertices on the innermost layer are
also connected to one central vertex.

The resulting triangulations generated by these two algorithms often have a lot of very elon-
gated triangles. This generally decreases the quality of a morph, especially for textured shapes
or images. There are several papers that address this issue, using improved versions of these
algorithms.

Alexa et al. [2] refines the first algorithm by improving the initial triangulations of P1 and
P2. The initial polygons are triangulated using Delaunay Triangulation, which maximizes the
minimum interior angle, avoiding elongated triangles. After merging the two triangulations, the
resulting triangulation might still contain elongated triangles. To solve this, they move interior
vertices and flip interior edges to maximize the minimum angle of the resulting triangulation.

Gotsman and Surazhsky [13] modify the universal triangulation to create a triangulation that
allows morphing between two simple polygons of which the intermediate polygons are guaranteed
to be simple as well. It also contains fewer Steiner points than the original universal triangulation
and does not create any triangles that are very small or skinny. It does so by eliminating redundant
Steiner points in the concentric layers of the spiderweb-like structure.

The simplest way to handle the interpolation of vertex position is to interpolate their positions
linearly. Linear transformations can lead to a lot of local distortion on textured shapes. It also has
difficulties dealing with rotations and typically results in intermediate shapes that are smaller than
the source and target shape. Alexa et al. [2] introduce a more complex interpolation model that
minimizes local distortion. This method does however require user-defined anchor points.

2.2 Reconstructing 3D shapes
The reconstruction of 3D shapes from 2D slices can also be classified as morphing [1, 4–7]. The
information between each slice must be retrieved by interpolating between these slices. This is a
relevant problem in the medical world, where MRI scanners are used to create 2D images (slices)
of specific parts of the body. A 3D model of the body part can be constructed using morphs
between each adjacent slice. Doing so, creates a surface that is not smooth. Each pair of slices
is part of a bigger framework of slices. This means that the information of the surrounding slices
may also be needed to create a more accurate and smooth reconstruction.
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Barequet and Vaxman [6] created a technique that does this using a curve network. The curve
network is generated by matching the vertices of each slice with its neighboring slices, creating
a flow graph. Using the flow graph a curve network of cubic Bézier curves is created, which in
turn is used to construct the mesh. This ensures the slices are connected through smooth curves in
the generated 3D mesh. They also introduced a technique that can reconstruct a 3D shape from a
collection of colored nonparallel planar cross-sections. The algorithm reconstructs the original 3D
space, such that the reconstructed shape also has colored regions that match the input slices [7].

Albu et al. [1] proposed a method that morphs between image slices. This approach morphs
between the slices in an iterative manner. Each iteration it uses a parallel deformation process
based on conditional dilation. This iterative approach manages to produce smooth 3D volumetric
reconstructions of 2D slices. This method only works if all adjacent slices partially overlap.

2.3 Implicit functions
The previously described techniques mostly morph between shapes that are represented using
geometric data such as vertex locations and edge connections. This usually requires a vertex
correspondence between the shapes. A good matching can be difficult or even impossible to
achieve when the shapes have distinct topologies. To circumvent this bottleneck, shapes can be
represented as implicit functions.

An example of such an implicit function is a signed distance function (SDF). This function
describes the shape S, as an orthogonal distance from a given point x to the boundary Sb of the
shape. Points located in the shape, {x ∈ S and x ̸∈ Sb} result in a positive value, which will be
greater if the point is further away from Sb. When the point lies exactly on the boundary x ∈ Sb,
the function returns 0. For any point outside of S, x ̸∈ S the function has negative values [11].
Cohen-Or et al. [12] proposed a method that uses SDFs to morph 3D shapes. It does not simply
use linear interpolation between the functions of the source and target shape since this can lead
to distorted and relatively small intermediate shapes. To solve this, they use user defined anchor
points in the source shape that are linked to anchor points in the target shape. Parts of the shape
that are close to an anchor point in the source shape will be moved towards the general area located
around the linked anchor point in the target shape.

Turk and O’Brien described another technique based on a variational implicit function. This
technique does not create two distinct implicit functions for the source and the target shape. Instead
of this, for shapes with n dimensions, they create one implicit function of n + 1 dimensions. For
2D shapes, this means that two planes, each for one of the shapes, contain the data constraints
of these shapes. These planes are placed parallel to one another in a 3-dimensional space. The
implicit function defining a 3D shape that is an interpolation of the 2D input shapes is created
using a variational interpolation technique. The resulting intermediate shapes are the contours of
slices located between these parallel planes.

2.4 Optimal transportation
The Wasserstein distance (also known as the Earth Mover’s Distance) is a distance function that
describes the minimal amount of work needed to move all mass of one distribution onto the other
distribution. This can be used to morph between shapes in a way that optimally transports the shape
its mass. Solomon et al. [18] describe a techniques that can compute the optimal transportation
plan in a scalable manner, and is capable of morphing between shapes that have a lot of topological
differences.
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2.5 Abstract morphing
The Hausdorff distance is not the only shape simularity measure that can be used for abstract
morphing. The Fréchet distance is another shape similarity measure used to define a morph. It
is not clear how this measure can be used to morph between shapes that have different numbers
of components and holes, however it is used to morph between shapes with more topological
similarities. A Fréchet matching proposed by Buchin et al. [10] matches all pairs of points on
two curves. This means that an interpolation between these points results in a smooth morph. A
problem with this approach is that the outline can self-intersect during the morph. In a later study,
Buchin et al. [9] adresses this problem.

3 Preliminaries
Given two sets of points in R2, A and B, the directed Hausdorff distance from A to B is defined
as

dH⃗(A,B) := sup
a∈A

inf
b∈B

d(a, b),

where d denotes the Euclidean distance, meaning it is the largest distance from all points in A to
their closest point on B. The undirected Hausdorff distance is defined as

dH(A,B) := max (dH⃗(A,B), dH⃗(B,A))

The dilation morph defined by van Kreveld et al. [16], where for any time parameter α ∈ [0, 1]

Sα(A,B) := (A⊕Dα) ∩ (B ⊕D1−α),

where ⊕ denotes the Minkowski sum defined as {a+b | a ∈ A, b ∈ B}, and Dα is a disc of radius
α. Sα has the following properties with respect to the Hausdorff distance: dH(A,Sα) = α and
dH(B,Sα) = 1 − α, assuming dH(A,B) = 1. This means that the Hausdorff distance changes
linearly with α. This is called a Hausdorff property. Any morph that satisfies this property is
known as a Hausdorff morph.

The Voronoi morph (Tα) defined by De Kogel et al. [15] is defined as

Tα(A,B) := {a+ α(c(a,B)− a) | a ∈ A} ∪ {b+ (1− α)(c(b, A)− b) | b ∈ B},

where c(a,B) denotes the point on B that is closest to a. In other words, every point in A is
moved to its closest point in B by a fraction of α of that distance, and every point in B is moved
to its closest point in A by a fraction of 1 − α. If a point is equidistant to multiple points in the
other shape, all options are included. The union of these shapes results in T (A,B). They prove
this morph is also a Hausdorff morph.

In the same paper, the mixed morph Mα,φ is defined as

Mα,φ := ((Tα(A,B)⊕Dφ)⊖Dφ) ∩ Sα,

where ⊖ denotes the Minkowski difference, defined as A ⊖ B := (Ac ⊕ B)c, where Ac is the
complement of A. It first dilates Tα by taking the Minkowski sum with a small disc. After that, it
erodes the shape by taking the Minkowski difference with a disc of the same radius. Performing
a dilation proceeded by an erosion with a disc of the same radius is known as closing, and can be
used to close small gaps and holes while keeping the rest of the shape intact. It is used to remove
small slits that are present in the intermediate shapes of the Voronoi morph. This is shown in
Figure 1. To make sure it is a Hausdorff morph, the intersection with Sα is taken.
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4 Experimental setup
All three major sections will be tested on the same data sets and similar implementations. The
implementation details and data sets will be described in the following subsections.

4.1 Implementation details
The morphs are implemented in C++, using Boost1 to calculate intersections and unions of poly-
gons and lines, Voronoi diagrams and Minkowski sums. A Voronoi diagram of a polygon may
contain curves. Our implementation approximates these curves with line segments, which can re-
sult in a very small error. This error should not manifest as a noticeable difference in the resulting
morphs. Another error occurs from the final step in the implementation, where all slices parti-
tioned by the Voronoi diagrams are combined using a tiny dilation to ensure neighbouring slices
are combined properly. This can impact the perimeter and number of component in intermediate
shapes when two slices merge while there should be a tiny distance between them. This effect will
be more noticeable as α approaches 0 and 1. The area will only slightly be affected by this.

4.2 Data sets
The tests are performed on three data sets. The first data set contains a collection of 9 outlines
of animals taken from [8]. Each animal polygon only consist of one component. The second
data set is a collection of 13 European country outlines from the Thematic Mapping World Bor-
ders data set:2 Austria, Belgium, Croatia, Czechia, France, Germany, Greece, Ireland, Italy, the
Netherlands, Poland, Spain and Sweden. Except for Austria, Belgium Czechia and Poland, all
country polygons are comprised of multiple components. The last data set contains a small collec-
tion of letters, traced as polygons, taken from [15]. Three pairs of words will be used (wish/luck,
kick/stuff, try/it), and the letters f, i and u in a serif and a sans serif font.

4.3 Experimental setup
None of the morphs are translation- or scale-invariant. Therefore the resulting intermediate shapes
differ depending on the initial position and scale of the input shapes. In all experiments, input
shapes from the animal and country data sets are scaled to have the same surface area and are
translated to have a common centroid. Input shapes from the letter data set, will not be scaled to
have the same surface area; font size is used instead.

The assumption is made that an ideal morph linearly interpolates the area and perimeter be-
tween those of the input shapes. For each experiment, the ratio between the measured area and
perimeter and these ’ideal’ values is given. The number of components and holes are discrete and
are directly recorded. Since the total angular change—discussed in the next section—does not
have a clear ideal value, these values are also directly recorded.

The type of experiments differ per section and are therefore discussed separately in each sec-
tion.

1https://www.boost.org
2https://www.thematicmapping.org/downloads/world borders.php
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5 A new quality metric
An ideal morph is a morph that visually represents the input shapes most accurately based on the
time variable α. When α = 1/2, the intermediate shape should partially represent both input
shapes equally without showing details that do not visually represent any parts of the input shapes.
When α = 1/4, the intermediate shape should mostly represent the source shape, while still
resembling some of the target shape.

De Kogel et al. [15] use both quantitative and qualitative metrics to determine the quality of
a given abstract morph. The quantitative metrics include the change in surface area, perimeter,
number of components and holes, for different values of α.

An ideal morph does not create extra components that do not visually resemble any details of
the source or target shape. In most cases, any component created during the morph that continues
to merge into another component, creates extra detail that does not contribute to any visual resem-
blance of the input shapes. Morphs between some input shapes might require extra components
to be created in order to not distort the input shapes too much. If we morph between the shape of
the letter C and a mirrored C, the ideal morph might split the letter in half horizontally. However,
for most inputs, the ideal morph should probably not have more components than either one of the
input shapes during any stage of the morph.

The number of holes in an ideal morph might exceed that of either one of the input shapes. If
the hole from the source shape is close to that of the target shape, an ideal morph, might translate
and scale one hole to the other. In that case, the number of holes should not increase. However,
if the input shapes both have a hole on opposite sides, an ideal morph might open and close the
holes at the same time during the morph. This causes the number of holes to exceed that of the
target and source shape. Therefore, the number of holes in an ideal morph should not exceed the
number of holes in the source and target shape combined.

Ideally, the surface area and perimeter of intermediate shapes in a morph scale linearly with
α between that of the source and target shape. If the surface area of intermediate shapes exceeds
that of a linear interpolation, it is likely that the shape loses resemblance with the source and target
shape. An example of this is the dilation morph shown in Figure 1. The perimeter of intermediate
shapes shows us whether details of the input shapes might be lost, if it is smaller than a linearly
interpolated perimeter or whether extra detail is created that does not resemble any of the input
shapes if the perimeter is larger. An example of the latter case is the Voronoi morph shown in
Figure 1.

In this section, a new qualitative metric will be explored to get more insight in the quality
of a given morph. This metric is based on the angular change of the enclosed boundary loops.
Investigating the angular change of intermediate shapes can inform us about the conservation of
concave details of the input shapes during a morph.

The following subsections explore different implementations of the angular change metric. For
each implementation, the dilation, Voronoi and mixed morphs for two pairs in the animal dataset
is computed and examined: shark→spider and cat→dog. In all experiments, the angular change
implementation is measured for α values starting at 0, in increasing steps of 1

100 . The parameter
φ of the mixed morph, is set to 0.02 for all experiments in this section as a starting point, because
this value for φ is also used in the paper that introduced the mixed morph [15].

5.1 Total angular change
The most basic angular change metric that will be explored is the sum of the angular change of
each closed boundary loop. If the shape is composed of n convex components and holes, then the
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total angular change will be n2π. The lowest value for the total angular change of a given shape
is 2π, because concavities will always increase the angular change of a closed boundary loop.

When morphing between a source and target shape, the intermediate shapes should gradually
lose resemblance with the source shape and gain resemblance with the target shape as α increases.
At α = 1/2, the angular change should reflect that concavities from both input shapes are pre-
served. Therefore, the expected angular change at α = 1/2 is larger than that of the source and
target shape. The angular change in an ideal morph should gradually increase as α grows and peak
around α = 1/2, after which it should gradually decrease to that of the target shape. It should
not exceed the angular change of the source and target shape combined, since that would mean
concavities or components not present in the input shapes appear during the morph.
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Figure 2: The total angular change in radians as a function of α when morphing from the shark to
the spider on the left, and from the cat to the dog on the right.

The results shown in Figure 2 are in line with the predictions made at the beginning of this
section. The dilation halfway morph between the shark and spider is less concave than the shark
and especially less concave than the spider (see Figure 1). This is reflected in the total angular
change, which turns out to be lower than either of the input shapes. The cat→dog dilation morph
also has a decrease in the total angular change on the Dilation morph.

The total angular change of the Voronoi morph instantly increases a lot as α changes from 0 to
1

100 , after which it seems to only slightly change until it decreases again when α changes from 99
100

to 1. This rapid change comes from the slits and components that arise when points on opposite
sides of a Voronoi edge move in different directions. Causing them to split or merge at α = 0 and
α = 1. The extra concave details created in the Voronoi morph are clearly represented in the total
angular change, as it is more than four times the sum of the inputs’ total angular change for most
of the intermediate shapes.

The mixed morph closes small slits and merges components when their distance falls below
2φ. This is reflected in the total angular change; it gradually increases and peaks around α = 1/2.
This is when slits are at their peak size and the distance between components is largest. Large
slits that do not represent features in the input shapes are still present in the halfway morph. This
is reflected in the total angular change, which is quite a bit lower than that of the Voronoi morph,
but still almost double the sum of the inputs’ total angular change in the shark→spider morph and
almost three times the sum of the inputs in the cat→dog morph. The curvature of the total angular
change over α for the mixed morph is also less smooth than that of the Voronoi and dilation
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morphs. This mostly comes from components and slits that suddenly appear or disappear during
the morph.

5.2 Average angular change
The total angular change is quite heavily influenced by the number of components that are created
during the morph, because every components adds at least 2π to the total angular change of a
given shape. A way to reduce this effect is to take the average angular change of all the enclosed
boundary loops to determine the quality of a morph.
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Figure 3: The average angular change in radians as a function of α when morphing from the shark
to the spider on the left, and from the cat to the dog on the right.

The results shown in Figure 3, indicate that average angular change of the shark→spider di-
lation morph is the same as the total angular change of the shark→spider dilation morph shown
in Figure 2, up until α = 0.78. After that, the average angular change has some rapid changes.
After α = 0.78, holes start to appear. These holes do not affect the total angular change too much
because they are quite convex. Therefore, when the average is taken, the angular change suddenly
drops when a hole appears.

The same effect can be observed on the average angular change in the mixed morph. It changes
significantly between small intervals of α when components merge or disconnect. During the
mixed morph, several holes and components disappear or appear as they fall below or outside of
the 2φ range (the distance it takes for two disconnected parts to be merged).

Contrary to the dilation and mixed morph, the average angular change of the Voronoi morph
as a function over α is quite smooth. The number of components in the Voronoi morph only
change at α = 0 or α = 1 [15]. Therefore, taking the average of all components between small
intervals of α, does not suddenly change the average angular change very much. The average
angular change is however quite low, compared to the mixed morph and seems to be quite similar
to that of the dilation morph. This is a result of the number of components present in the Voronoi
morph. Most small components are quite convex. This means they do not attribute that much to
the total angular change. When taking the average, this is not taken into account. Therefore, these
convex components strongly lower the average.
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5.3 Perimeter weighted angular change
The total and average angular change do not take into account the fact that some components
contribute more to the visual quality of a morph than other components. When observing an
intermediate shape that is comprised of two components – one that is very large and one that
is very small – the details on the large component contribute most to the visual quality of the
intermediate shape. The perimeter weighted angular change takes this into account by weighting
each closed boundary loop with its perimeter divided by the total perimeter of the intermediate
shape. This way, small components contribute less to the computed angular change.
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Figure 4: The perimeter weighted angular change in radians as a function of α when morphing
from the shark to the spider on the left, and from the cat to the dog on the right.

he results shown in Figure 4 are quite similar to that of the total angular change. The perimeter
weighted angular change of the shark→spider Voronoi morph seems to be the almost identical in
gradient to that of the total angular change; it is only scaled down on the y-axis. Both tests – most
noticeably in the cat→dog Voronoi morph – seem to have some abrupt changes in the angular
change. This seems to be a result of the tiny dilation that is used to merge all slices that are
partitioned by the Voronoi diagrams of the input shapes. This causes some components to connect
when they are very close while there should be a tiny distance between them. Because slits are
thinnest close to α = 0 and α = 1, this effect is most noticeably close to those α values.

The mixed morph’s perimeter weighted angular change differs more from the total angular
change than the dilation and Voronoi morphs their perimeter weighted angular changes. It de-
creases more rapidly as it approaches α = 1. The impact of components and holes appearing/dis-
appearing is quite noticeable in the cat→dog mixed morph, by the rapid increase/decrease of the
angular change at small intervals of α.

5.4 Comparison
The average angular change does not indicate the quality of a morph really well. It mostly shows
whether components or holes appear/disappear during the morph. The average angular change of
the Voronoi and dilation morphs are quite similar despite being visually very distinct.

The perimeter weighted angular change, indicates the quality of a morph in a clearer manner.
The shark→spider test (Figure 4) clearly shows that the Voronoi morph’s intermediate shapes have
more concavities than those of the dilation and mixed morphs. It is however still affected quite
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heavily when components or holes appear/disappear. This is most noticeable in the cat→dog test
shown in Figure 4, where the results indicate that most intermediate shapes at α > 0.4 in the mixed
morph are more convex than those in the Voronoi morph. Visually this is however not intuitive, as
can be seen in Figure 1.

The total angular change appears to most accurately indicate the quality of a given morph.
Each morph shows distinct values that characterise visual attributes of the morphs (Figure 2). The
low angular change of the dilation morph is in line with its convex nature and the high values from
the Voronoi morph are in line with all the concave slits that are present in intermediate shapes. The
mixed morph is visually the most balanced in terms of convexity. The total angular change metric
captures this, as the values are in between that of the Voronoi and dilation morphs. Therefore, the
total angular change is used in all experiments in the next sections.

6 Mixed morph improvements
The mixed morph has an input-parameter φ that denotes the radius of the disc used for the closing
operator. De Kogel et al. [15] experiments with the mixed morph using one value for this param-
eter: φ = 0.02. Higher values of φ can result in less components, but it also increases the surface
area resulting in more details of the input shape being lost during the morph. This section explores
different values for φ and explores φ as a function where the output of φ changes with α.

6.1 Different φ values experiments
In these experiments the mixed morph with different parametric inputs for all pairs of animals and
all pairs of countries in the animals and countries data sets are computed. The word and letter
pairs from the letter data set are also computed. In each experiment, the surface area, perimeter,
total angular change, number of components and number of holes of the morph will be measured
for α values starting at zero and increasing in steps of 1/8. Several values of φ will be tested: 0.01,
0.02, 0.03, 0.05, 0.1 and 0.2.

6.1.1 Results

Tables 1 and 2 show a summary of the surface area and perimeter measurements. Table 3 contains
a summary of the number of components and holes for the animals data set; the other data sets are
excluded because the inputs have different numbers of components.

Figure 5 shows that the dilation parameter has a big impact on the surface area of intermediate
shapes. On both the animals and countries data sets, φ = 0.02 and φ = 0.03 best fit a linear
interpolation of the surface area between the input shapes.

The perimeter, as shown in Figure 6, is also greatly affected by the dilation parameter. φ =
0.05 stays closest to 1.0 for any value of α. On the animals data set the perimeter grows a bit larger
than 1.0, while it stays lower than 1.0 in the countries data set. In both data sets the perimeter is
smaller than 1.0 close to α = 0 and α = 1 when φ = 0.05. This is a result of slits growing as α
approaches 0.5. If α is close to 0 or 1, the slits are thin, and will therefore be closed. φ = 0.03
also does not diverge too much from the ideal linear interpolation.

The number of components differs most between small values of φ. Table 3 shows that after
φ = 0.1, there are not as many components left to be merged with other components when in-
creasing the dilation parameter. For the tested values of φ, the number of components is smaller
when φ is larger. This is not the case for the number of holes. The number of holes is largest when
φ = 0.05. When φ increases, it can close small holes, however, larger values of φ can also create
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holes, when merging the ends of two bulges. An example of this can be seen in Figure 8, where
only the morph with φ = 0.05 has a hole in it.

Figure 7 shows that there is a clear difference in the total angular change between different
values of φ. As α increases, the total angular change decreases for the tested values of φ. φ = 0.1
has the best fit in terms of total angular change on the animals data set since it peaks close to the
sum of the inputs. On the countries data set, φ = 0.03 peaks very close to the sum of the inputs,
but on the animals data set it is significantly larger. φ = 0.05 has a more balanced total angular
change between the two data sets. It does not however seem to have a good fit for either of the
data sets. On the Animals data set it exceeds the sum significantly, and on the countries data set it
peeks at 2/3 of the sum of the inputs.

Overall, φ = 0.03 seems to result in the best morphs. In terms of surface area, perimeter is
performs close to the ideal linear interpolation. In terms of total angular change it seems perfect on
the countries data set, but peeks too high on the animals data set. In terms of components φ = 0.05
is better. This value of φ also has reasonable results in surface area and perimeter metrics. It does
however also create more holes that have a significant impact on the visual quality of the morph.
This can be seen in Figure 8, where the morph with φ = 0.05 at α = 0.75 has three holes that are
quite large. In this Figure the merging of components by the closing operator can also be observed.
Merging components that are not very close using the closing operator causes a bulge that does
not look very pleasing. The morph at φ = 0.05 at α = 0.75 merges a component with the rump
of the spider. This creates a bulge that does visually does not represent any details in the source or
target shape.

Animals Countries Text

φ Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

0.01 0.982 0.020 0.978 0.035 1.029 0.030
0.02 0.991 0.019 0.994 0.039 1.033 0.030
0.03 1.002 0.019 1.011 0.049 1.039 0.034
0.05 1.024 0.027 1.046 0.081 1.052 0.044
0.1 1.078 0.064 1.121 0.171 1.097 0.084
0.2 1.169 0.136 1.215 0.284 1.239 0.290

Table 1: The distributions of normalized surface areas for each tested φ value for all tested values
of α, in the mixed morph, separated by experiment category

Animals Countries Text

φ Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

0.01 1.277 0.194 1.249 0.239 1.170 0.213
0.02 1.175 0.151 1.122 0.180 1.141 0.186
0.03 1.107 0.126 1.045 0.152 1.117 0.168
0.05 1.019 0.099 0.949 0.137 1.083 0.139
0.1 0.898 0.098 0.837 0.155 1.029 0.080
0.2 0.800 0.139 0.764 0.185 0.950 0.067

Table 2: The distributions of normalized perimeters for each tested φ value for all tested values of
α, in the mixed morph, separated by experiment category
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Components Holes

φ Mean Std. Dev. Mean Std. Dev.

0.01 6.702 3.492 0.163 0.439
0.02 4.976 2.955 0.214 0.514
0.03 3.940 2.499 0.274 0.558
0.05 2.710 1.866 0.349 0.695
0.1 1.671 1.074 0.290 0.624
0.2 1.155 0.373 0.238 0.584

Table 3: The distributions of the number of components and holes for each tested φ value for all
tested values of α except 0 and 1. Only the animal data set is included, as these shapes only have
one component and no holes.
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Figure 5: The normalized average surface area over all experiments as a function of α, for both
the animals and countries data sets.
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Figure 6: The normalized average perimeter over all experiments as a function of α, for both the
animals and countries data sets.

14



0.0 0.2 0.4 0.6 0.8 1.0

α
50

100

150

200

250

300

350

400

450
To

ta
lA

ng
ul

ar
C

ha
ng

e
(r

ad
)

Animals

0.0 0.2 0.4 0.6 0.8 1.0

α

50

100

150

200

250

300

350

400

450

To
ta

lA
ng

ul
ar

C
ha

ng
e

(r
ad

)

Countries

0.01 0.02 0.03 0.05 0.1 0.2 Sum of inputs

Figure 7: The average total angular change over all experiments as a function of α, for both the
animals and countries data sets. The dashed line indicates the average sum of the input shapes
their angular change for all experiments.

Figure 8: Intermediate shapes for α ∈ {0, 1/4, 1/2, 3/4, 1} when morphing between outlines of a
shark and spider. The columns show the mixed morph with different values for φ: 0.01, 0.02, 0.03
and 0.05 from left to right.
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6.2 φ as a function experiments
In the previous section, φ was constant for all values of α. Meanwhile, attributes of intermediate
shapes such as slits are very thin α values close to 0 and 1. This means that a small value of φ
can be enough to close these slits. In Figure 6, it can be seen that the high value of φ (0.05) has a
significant impact on the perimeter for α values close to 0 and 1.

To overcome this, φ can be a function of α, where φ is smaller near α = 0 and α = 1 and
larger near α = 1/2. In this section we will test the following simple piecewise linear function for
φ:

f(α) =


1.475α+ 0.005 if α < 0.2

0.03 if 0.2 ≤ α ≤ 0.8

−1.475α+ 1.48 if α > 0.8

(1)

At α = 0, φ starts at a tiny value (0.005) to make sure no instant slits are created that are present
in the Voronoi morph. When α < 0.2, φ linearly grows until it reaches 0.03, after which it stays
constant up until α = 0.8. For α > 0.8, φ linearly decreases to 0.005 as α approaches 1.0. The
α = 0.2 and α = 0.8 cutoff points are chosen based on preliminary experimentation.

To test φ as a function over α, two experiments are executed. In the first, φ will be set to 0.03,
as this turned out to be the most reasonable value for φ of all tested values. In the second, φ will
be set to the function shown in Equation 1. In both experiments the mixed morph for the word
and letter combinations and all combinations in the animal and country data sets are computed.
In each experiment, the surface area, perimeter, total angular change, number of components and
number of holes of the morph will be measured for α values starting at zero and increasing in steps
of 1/8.

6.2.1 Results

Figure 9 and 6 show that when φ is not fixed, it can better fit a linear interpolation between the
surface area and perimeter of the input shapes. With a fixed φ at 0.03, the perimeter and surface
area instantly change significantly at the start and end of the morph. φ represented as a piecewise
linear function eliminates this sudden change.

On the angular change, the opposite effect can be observed. Figure 11 shows that the angular
change at α = 0.1 exceeds that of α values closer to α = 0.3 when representing φ as a the function
shown in Equation 1. The fixed φ = 0.03 value results in a smoother change of the angular change
over α. Small details stay intact when φ is small, while new details can arise as well. Therefore,
it is not necessarily a bad development of the angular change.

In terms of components, Table 4 shows the fixed value φ = 0.03 performs better. At the start
and end of the morph some components might not be merged when φ < 0.03. In terms of holes, φ
represented as a function performs better. It is however likely that components present at the start
and the end of the morph when φ is represented as a function, will turn out to be components at
α = 1/2, because these components only exists at small alpha values if the distance to their target
in the other shape is large, which means they move away, from other components more rapidly.

Representing φ as a function shows promising results, as it performs better in terms of area,
perimeter and the number of holes. Meanwhile, it performs worse in terms of the number of
components. It is however, likely that these components are also present with a fixed φ value at
other stages of the morph. For this reason, φ represented as the function shown in (1), will be used
as a benchmark for the mixed morph when comparing it to other morphs in the next section.
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Components Holes

φ Mean Std. Dev. Mean Std. Dev.

function 4.210 2.480 0.337 0.663
0.03 3.940 2.499 0.274 0.558

Table 4: The distributions of the number of components and holes for each tested φ = 0.03 and
φ as the function in Equation (1). Only the animal data set is includes, as these shapes only have
one component and no holes.
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Figure 9: The normalized average surface area over all experiments as a function of α, for both
the animals and countries data sets.
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Figure 10: The normalized average surface area over all experiments as a function of α, for both
the animals and countries data sets.
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Figure 11: The average total angular change over all experiments as a function of α, for both the
animals and countries data sets. The dashed line indicates the average sum of the input shapes
their angular change for all experiments.

7 A new morph
The number of extra components in intermediate shapes has a big impact on the quality of the
morph. The previous section showed how increasing the dilation parameter in the mixed morph
reduces the number of components created. The value of φ needed to remove most components
decreases the quality of the morph in terms of the surface area and perimeter quality metrics.

In this section a new Hausdorff morph is introduced. The new morph is based on the Voronoi
morph. It tries to lower the number of extra components created in the Voronoi morph. The
Voronoi morph linearly moves every point from one input shape A to its closest point in the other
input shape B. Both input shapes are partitioned by the Voronoi diagram of the other shape. Each
part of the shape located inside a Voronoi cell is moved to the site of that Voronoi cell. This site
can be a vertex, edge or face of the polygon that represents the shape [15]. Moving a part to
its corresponding site can create an extra component when its neighbouring Voronoi cells move in
different directions. The new morph identifies when a component is created and if possible, moves
it to sites of a neighboring Voronoi cell.

The first subsection investigates when and how components are created in the Voronoi morph.

7.1 Voronoi morph Components
De Kogel et al. [15] show that the number of components in a Voronoi morph #C(Tα) is constant
for every value of α in the range (0, 1). This means that components only appear and disappear
when changing α between 0 or 1 and another value of α.

Let V (A) be the Voronoi diagram of the vertices, open edges and interior components of A
and let Par(A,B) be input shape A partitioned into regions by V (B). From now on we shall refer
to these partitioned regions as slices. This means all points in a slice S ∈ Par(A,B) have a closest
point, edge or interior component in B, which can be described as the site of the Voronoi cell in
V (B) in which S lies.

We define the directed Voronoi morph as:

T⃗α(A,B) := {a+ α(c(a,B)− a) | a ∈ A}
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where c(a,B) denotes the point on B closest to a. It moves any point in A to its closest point in
B by a fraction of α. Note that the shape at α = 1 does not have to be equal to B. Only if B fully
overlaps with A, this will be the case. If they it does not overlap on some parts, A will just morph
to the boundary of B.

We can prove that the number of components in the directed Voronoi morph, will not exceed
the number of components in A, #C(A), when B is convex.

Lemma 1. Let B be a convex shape. Then #C(T⃗α(A,B)) = #C(A) for any 0 ≤ α ≤ 1.

Proof. We first show that any slice S ∈ Par(A,B) does not lose connectivity during the morph.
After that, we show that components consisting of multiple slices, also do not lose connectivity.

Consider the site of S its corresponding Voronoi cell to be an interior component. The initial
position of S overlaps with the target shape. Therefore, the slice will not move when changing α,
and will be connected for any α.

Now consider the site of S its corresponding Voronoi cell to be a line segment L. The vector
c(p1, B), where p1 ∈ S will be perpendicular to L, and parallel to any vector c(p2, B), where
p2 ∈ S. Because of this and the fact that every point p ∈ S is moved linearly towards L with
respect to α, S will be connected for any α.

Now consider the site of S its corresponding Voronoi cell to be a point P . Assume two points
p1, p2 ∈ S that are not collinear with P . Since P is the closest point in B of p1 and p2, the
vectors c(p1, B) and c(p2, B) intersect at P . Therefore p1 and p2, will move closer to each other
if α increases. Now assume p1, p2 and P are collinear. In this case the vectors c(p1, B) and
c(p2, B) have the same direction. This means that p1 and p2 will also move closer to each other if
α increases. Since all points in S move closer to each other when α increases, S will be connected
for any α.

Now consider two slices S1, S2 ∈ Par(A,B) that are connected at α = 0 and do not overlap
with B at α = 0. Every point p ∈ S ∈ Par(A,B) moves in a straight line to its closest point in B.
This means that S1 and S2 must be connected through the edge e that divides their corresponding
Voronoi cells. Let Vexterior(B), be the part of V (B) /∈ B. Because B is convex, two Voronoi
cells in Vexterior(B) can only be adjacent if the site of one cell is a line segment and the other is
a point. Therefore if S1 morphs towards a line segment, S2 has to morph towards a point, and if
S1 morphs towards a point, S2 has to morph towards a line segment. If the site of a Voronoi cell
v ∈ Vexterior(B) is a line segment, the edges of v will be perpendicular to that line segment. This
means that any point on the edge of v moves along with this edge. If the site of a Voronoi cell
v ∈ Vexterior(B) is a point P , the edges of v are pointed directly to P . Therefore any point on an
edge of v moves along with that edge. Because S1 and S2 are connected through an edge, they
both have overlapping points on that edge. These points will move in the same direction along the
edge with respect to α. Therefore S1 and S2 stay connected for any α.

Now consider two slices S3, S4 ∈ Par(A,B) that are connected at alpha = 0 and where only
S3 overlaps with the interior of B at α = 0. The part connecting the S3 and S4 has to be at the
boundary of B. This is either a vertex or an edge. This means that all points in S4 will move
towards the closest point on that edge or vertex. Thus, points already on the edge or vertex, that
are connected with S3 will not move as α changes. Since S3 overlaps with B at α = 0, it will not
move as α changes. Therefore S3 and S4 stay connected for any α.

In the last case we consider two slices S5, S6 ∈ Par(A,B) that are connected at α = 0 and
both overlap with B at α = 0. Since both shapes overlap with B, S5 and S6 will not move if α
changes. Therefore, S5 and S6 stay connected for any α.

Since slices do not lose connectivity for any α, and any two slices that are connected at α = 0
also do not lose connectivity for any α when B is convex, the connectivity of any component stays
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the same for any 0 ≤ α ≤ 1. Furthermore, as proven by de Kogel et al. in Lemma 3 of [15],
components can never appear. Thus, the statement in this lemma follows.

Lemma 2. Let A and B, be two convex polygons, each consisting of one component. Then
#C(Tα(A,B)) = 1 for any 0 ≤ α ≤ 1.

Proof. Lemma 1 demonstrates that all points in A will be connected to each other for all values of
α. It also demonstrates that all points in B stay connected because Tα(B,A) results in the same
morph; only parameterised in reverse.

Let there be a closest pair of points a, b such that a ∈ A, b ∈ B. This means that c(a,B) = b
and c(b, A) = a. Therefore, a is translated to b, by a fraction of α in a straight line l, and b is
translated to a by a fraction of 1 − α on l. Therefore b = a for any 0 ≤ α ≤ 1. This means that
A and B will be connected at any state of the morph, because two convex polygons always have a
closest point. Thus, #C(Tα(A,B)) = 1 for any 0 ≤ α ≤ 1.

Figure 12: On the left, B is partitioned by the Voronoi diagram V (A) of A. On the right, each
partitioned part of B, shown in orange, is scaled towards the closest point in A by a factor 1− α,
and the morphed A, shown in green, is scaled towards the closest point in B (bottom left vertex of
B) by a factor of α.

These proofs show that convex parts of the input shapes are not responsible for any extra
components created during the morph. Next we prove that a component is created when it is split
by a Voronoi edge originating from a concave vertex if it contains no point that are part of the
closest point mapping between A and B. An example of this is shown in Figure 12.

We define E as a set of boundary edges and exterior edges in V (A) that arises from a concave
vertex v ∈ A and partitions B into two sets of slices Sr, Sl ⊂ Par(B,A), in such a way that Sr

contains all slices on the right of E and Sl contains all slices to the left of E.

Lemma 3. Let there be no point pr ∈ Sr such that c(a,B) − a = pr and a ∈ A, then Sr will be
disconnected for any 0 < α < 1.

Proof. For this proof, we first demonstrate that Sr and Sl are not connected during the morph.
After that, we demonstrate that Sr is not connected to any part of A during the morph.

Every point p ∈ Par(B,A) moves in a straight line toward to its closest point in A. Therefore,
two slices S1 ∈ Sl and S2 ∈ Sr, can only be connected at any 0 < α < 1 if they both have points
on a common edge e ∈ E ∈ V (A), because E divides Sl and Sr. Vertex v is concave, which
means that the angle between its corresponding edges e1, e2 ∈ A is smaller than 180◦. e is the
bisector of e1 and e2, which means that ∠ee1 = ∠ee2 < 90◦. Therefore, points on E, will not
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move along E to v. Instead they move to their closest point on e1 or e2, which is not v. Therefore,
S1 and S2 will move in a different direction, whilst staying in their corresponding Voronoi cells,
causing them to lose connectivity.

Points in both shapes move to their closest point in the other shape. This means that every
point pa ∈ A, only lies on the closest path from pa to B, and every point pr ∈ B, only lies on
the shortest path from pr to A. We know that the shortest paths from pa to B and pr to A do
not have the same endpoints, because, the lemma states that no pa ∈ A has pr as its closest point.
Therefore, only one endpoint can be shared. Points are only located at the endpoints of the shortest
paths when α = 0 or α = 1. We also know that two shortest paths between A and B that do not
share both endpoints do not intersect at any other point than the endpoint. This is proven by de
Kogel et al. in Lemma 3 of [15]. Therefore, pr, can only overlap with a point from A when α = 1
or α = 0, depending on the direction of the morph. This means that no pr ∈ B overlaps with any
point pa ∈ A, for any 0 < α < 1. This completes the proof.

7.2 Reducing components
We propose a new morph, based on the Voronoi morph, that is able to reduce the number of com-
ponents without the need to increase the surface area of intermediate shapes. We call the morph
the Voronoi Component Reduction (VCR) morph. This morph identifies which slices converge to
extra components in the Voronoi morph, and moves them along with neighbouring slices that are
part of a bigger component if the Hausdorff distance allows it. Smaller components always move
along with bigger components because visually, small components look as if they move away from
the bigger component that represents the input shapes. A slice is considered a neighboring slice if
it is directly connected to the slice in the input shape. Recall that a component is a disconnected
part of the shape, and that components can be composed of multiple slices. In the Voronoi morph,
all components have a target. This targets is the site of the Voronoi cell by which the slice is
partitioned: a point, line segment or interior component of the other shape. The target of a slice
can be set to that of a neighboring slice. In that case, the slice is redirected. We call redirected
targets secondary targets. There are several types of valid secondary targets to which a slice can
be redirected. A secondary target is valid when the Hausdorff distance between the slice and target
is smaller than of the two input shape and it satisfies one of the following conditions:

• it is the target of a neighboring slice that is part of a bigger component;

• it is the target of a neighboring slice, part of another component, that has valid secondary
target in a bigger component;

• it is the target of a neighboring slice in the same component that has a valid secondary target.

Whenever a slice has a valid secondary target, it will be redirected, making the secondary target
the new target of the slice. If a slice has multiple valid secondary targets, it will be redirected to
the secondary target, to which the directed Hausdorff distance is the closest. Assuming the targets
final targets are given, we formally define our new morph Uα as:

Uα(A,B) := {a+α(vc(a, ts)−a) | a ∈ A, ts ∈ B}∪{b+(1−α)(vc(a, ts)−b) | b ∈ B, ts ∈ A},

where vc(a, ts) the closest point on the final target ts of the slice in which a is located. If a slice
has no valid secondary targets, this is will be the closest on B. If it has secondary targets, the
target is the closest secondary target based on the directed Hausdorff distance. Notice that if no

21



slice can be redirected, this results in the Voronoi morph. Secondary targets are only valid if their
Hausdorff distance is smaller than that of the two input shapes. Therefore, we can prove Uα is a
Hausdorff morph.

Theorem 4. Let A and B be two compact sets in the plane with dH(A,B) = 1. Then for any
0 ≤ α ≤ 1, we have dH(A,Uα) = α and dH(B,Uα) = 1− α.

Proof. Theorem 1 of [15] shows that dH(A, Tα) = α and dH(B, Tα) = 1 − α. It proves this by
showing that every point moves to their closest point in the other shape linearly. This results in all
points whose distance to the other shape is smaller than dH(A,B), to not affect the dH(A, Tα) and
dH(B, Tα), and point p whose distance to the other shape is exactly dH(A,B) to be dH(p, Tα) =
α and dH(p, Tα) = 1−α. Therefore, moving a point a on a straight line segment with an endpoint
on a and an endpoint on the boundary of B, with a length smaller than dH(A,B), never affects
dH(A, Tα) and dH(B, Tα). The same holds for a point b that is moved on a straight line segment
with an endpoint on b and an endpoint on the boundary of A.

This morph only allows a slice S to be redirected to a target t, when dH(S, t) < dH(A,B).
Therefore, redirecting slices does not affect the Hausdorff distance of intermediate shapes. Thus,
dH(A, Tα) = dH(A,Uα) and dH(B, Tα) = dH(B,Uα). Hence, the statement in the theorem
follows.

Note that despite the goal to reduce components, it is theoretically possible that this approach
results in more components. In Figure 13 a potential component in the Voronoi morph, composed
of three slices, of an intermediate shape is illustrated. If slice S3α where to be redirected, while S1α

and S2α, can not be redirected due to the Hausdorff constraint, the intermediate shape possesses
an extra component in the VCR morph.

Figure 13: A potential component composed of three slices at a given 0 < α < 1.

7.3 Mixed variant
De Kogel et al. [15] show that the Voronoi morph introduces many slits into the boundary of
intermediate shapes. VCR, has the same problem. They solve this problem by introducing a
variant morph that closes, small gaps and holes, called the mixed morph. A mixed variant of the
VCR morph can also be used to resolve these slits. The mixed VCR morph Um

α,φ, is defined as
follows:

Um
α,φ := ((Uα(A,B)⊕Dφ)⊖Dφ) ∩ Sα,
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where ⊖ denotes the Minkowski difference, defined as A ⊖ B := (Ac ⊕ B)c, where Ac is the
complement of A. Dφ denotes a disc of radius φ. This means that Um

α,0 = Uα. To make sure it is
a Hausdorff morph, the intersection with Sα is taken.

7.4 Algorithm
The algorithm to compute the VCR morph uses the algorithm to compute the Voronoi morph as
the first step. To compute Uα we assume A and B are (sets of) polygons that may contain holes.
The basic algorithm on these input sets works as follows:

1. Compute Tα at α = 1/2 as described in De Kogel et al. [15]. This results in a set of slices,
in which each slice has a target and is morphed halfway to their target in the other slice. A
target can be a vertex, edge or interior component of the other input shape.

2. Determine which slices belong to which components in the halfway Voronoi morph for both
input shapes separately. In our implementation, we dilate a slice by a tiny amount and check
if it overlaps with other slices to determine if they belong to the same component.

3. For each slice we determine its neighbouring slices in the source shape. This is also imple-
mented using a tiny dilation.

4. For each slice determine the shortest distance to a neighbouring component in the initial
shape in terms of slices, using any graph searching algorithm such as breadth-first search.
Two adjacent slices have a distance of 1. If two slices are both adjacent to slice s, but not
adjacent to each other their distance is 2.

5. For both shapes A and B, sort all slices separately based on two criteria: (1) on the size of
the component they belong to, from small to large, and (2) within each component, based
on their slice distance to an adjacent component in the initial shape.

6. For each slice, in order of the previously sorted slices, determine which neighbours in the
original shape are valid secondary targets. The criteria for a valid target are described in
Section 7.2. If a slice has multiple valid targets, the closest valid secondary target in terms
of the directed Hausdorff distance from the slice to the target, will be set as the new target.
If no valid secondary targets exist, the old target remains. If a slice is redirected, the slice
is marked as a follower of the slice that belongs to the new target, and every follower of a
redirected slice has their target set to the new valid target if the Hausdorff distance allows
for it. If the Hausdorff distance does not allow it, the initial primary target for that slice is
set as the target.

7. Each slice in A is scaled and translated towards their target in B. If the target is an inte-
rior component of the other shape, the slices overlap and will be stationary throughout the
morph. If the target is a vertex, the slice will be uniformly scaled towards that vertex by a
fraction of α. If the target is an edge, the slice will scale perpendicular to the supporting line
of that edge by a factor of α. Slices in B are handles the same, except that they are scaled
by a factor of 1− α.

8. Combine all slices of A and B together. In our implementation, this is implemented using a
tiny dilation.

We sort components from small to large, in order to ensure that larger components can move
along with a smaller component if that smaller component is redirected to a component that is
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even larger. We also sort on the distance to neighbouring components in terms of slices to make
sure slices with no direct neighbouring component in the initial shape can be redirected if a neigh-
bouring slice that is closer to another component is redirected towards a new target.

Um
α,φ can simply be computed by computing Uα and Sα, dilating and eroding Uα by a distance

of φ, and intersecting the result with Sα.

7.5 Experiments
We compare the Voronoi, VCR, and both mixed variant morphs experimentally on the three data
sets described in Section 4.2. For each experiment, the area, perimeter, total angular change, num-
ber of components and number of holes of the morph for α values starting at zero and increasing
in steps of 1/8. The parameter φ of the mixed variants is universally set to the function described
in Equation (1), based on the test performed in Sections 6.1.1 and 6.2.1.

7.6 Results
Tables 5 and 6 show a summary of the surface area and perimeter measurements. Table 7 contains
a summary of the number of components and holes for the animals data set; the other data sets
are excluded because the inputs have different numbers of components. A full overview of the
topological measurements for all experiments is shown in Tables 8 and 9 in Appendix B. Due
to numerical precision issues, the morphs sometimes contain spurious holes (e.g. no intermediate
shape in our experiment with the words try and it, should contain two holes in the Voronoi morph).
Figure 14 displays that the VCR morph is a tiny bit worse in terms of area than the Voronoi morph.

In the Voronoi morph, slices never overlap, because they all move to their points in the other shape.
In the VCR morph, slices can overlap, because their directions can be changed to limit the number
of components. This overlap seems to result in a lower surface area. The overlapping slices can
also explain the fact surface area change over time is less smooth in the VCR morph. This is less
noticeable in the countries data set. This could be a result of the countries data set having more
test shapes, in which the average converges to a smoother curve. The mixed VCR morph, also
has a lower surface area than the mixed morph, due to the same reason. Figure 14 shows that the
mixed morph’s surface area stays very close to one for all tested values of alpha on the countries
data set.

In terms of perimeter, the VCR and mixed VCR morphs are both an improvement of their
Voronoi and mixed morphs counterparts. The perimeter of the VCR morph is significantly lower
than that of the Voronoi morph. The mixed VCR morph slows a slight improvement in terms
of perimeter compared to the mixed morph. This effect can be explained by the reduction of
components. If a slice disconnects from another slice, their previously shared boundary is added
to the total perimeter.

The main purpose of our VCR morph is to reduce the number of extra components created
in the Voronoi morph. It achieves this purpose well; the average number of components created
on the animal data set in the VCR morph is more than three times less than that in the Voronoi
morph. In Figure 17, we see that all extra components in the Voronoi shark-spider morph, are
not present in the VCR morph. The tail of the shark stays intact for any intermediate shape in
the VCR morph. The mixed and mixed VCR morphs further reduces the number components of
their Voronoi and VCR counterparts. The mixed and mixed VCR morphs do however create some
undesirable outcomes in the countries data set. Components that are disconnected in one of the
input shapes can be merged as a result of the closing operator. This is illustrated in Figure 19: the
islands on the bottom left of Spain partially merged in both mixed variants.
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Voronoi Mixed VCR Mixed VCR

Category Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Animals 0.976 0.022 0.999 0.017 0.964 0.076 0.983 0.076
Countries 0.968 0.036 1.008 0.047 0.963 0.061 0.994 0.062
Text 1.027 0.031 1.035 0.030 1.021 0.041 1.027 0.038

Table 5: The distributions of normalized surface areas for each morphing method over all experi-
ments for all nine tested values of α, separated by experiment category.

Voronoi Mixed VCR Mixed VCR

Category Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Animals 1.531 0.322 1.124 0.123 1.408 0.278 1.058 0.117
Countries 1.528 0.415 1.060 0.149 1.397 0.302 1.019 0.118
Text 1.236 0.286 1.130 0.177 1.161 0.191 1.082 0.116

Table 6: The distributions of normalized perimeters for each morphing method over all experi-
ments for all nine tested values of α, separated by experiment category.

Voronoi Mixed VCR Mixed VCR

Category Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Components 11.262 4.686 4.210 2.480 3.710 2.263 3.016 2.024
Holes 0.282 0.589 0.337 0.663 1.690 1.787 0.508 0.770

Table 7: The distributions of the number of components and holes for each morphing method for
all tested values of α except 0 and 1. Only the animal data set is included, as these shapes only
have one component and no holes.
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Figure 14: The normalized average surface area over all experiments as a function of α, for both
the animals and countries data sets.
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Figure 15: The normalized average perimeter over all experiments as a function of α, for both the
animals and countries data sets.
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Figure 16: The average total angular change over all experiments as a function of α, for both the
animals and countries data sets.

The total angular change on our VCR and mixed VCR morphs are lower than their respective
Voronoi and mixed morphs. Each component adds at least 2π to the total angular change. There-
fore, reducing the number of components leads to a lower total angular change. The shape itself
does not seem to differ too much between our VCR and mixed VCR morphs, and their respective
Voronoi and mixed morphs. The difference in the component count is larger between the Voronoi
and VCR morphs, than that of the mixed variants. Therefore, the difference in total angular change
between the Voronoi and VCR morphs is larger than that of the mixed and mixed VCR morphs.

The change in topology is however not improved in terms of the number of holes. Our VCR
morph’s intermediate shapes contain more holes than intermediate shapes in the Voronoi morph.
Figure 20 displays how slits in the Voronoi morph, can result in holes in our VCR morph, if a
component is redirected in such a way that it overlaps with the opening of the slit. Our Mixed
VRC morph manages to fill some of these holes, resulting in a significant lower hole count on the
animals data set. It does however in some cases also create holes that were not present in the VCR
morph. Figure 17 shows the mixed and Mixed VCR morphs, containing holes that are not present
in the Voronoi and VCR morphs.

Visually (Figures 17-21, party in Appendix A), our VCR morph seems to better conserve
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Figure 17: Intermediate shapes for α ∈ {0, 1/4, 1/2, 3/4, 1} when morphing between outlines of
a shark and spider. The columns show the Voronoi morph, mixed morph, VCR morph and mixed
VCR morph from left to right.

subtle details from the input shapes. The shark’s tail is kept intact in all intermediate shapes
when morphing between the shark and spider. In the Voronoi morph, half of the tail splits away
from the main component, resulting in two extra components that do not reps resent any details
in the input shapes. Even in cases where extra components are still created, lowering the number
of components increases the visual quality of the morph. The hind leg of the ostrich, is more
recognisable in the VCR morph than in the Voronoi morph, where it is split into more components
(Figure 18 in Appendix A).

Morphing between words is a challenge for the Voronoi morph. Our VCR morph better con-
serves some of the structure of certain letters. Figure 21 illustrates that the tittle of the letter i does
not split into multiple components, and is therefore more recognizable. The letter y also distorts
less in the VCR morph. Regardless of these improvements, at α = 1/2 it is still hard to recognize
the input words due to the fact that words are comprised of individual letters that are all being
merged together, as distinct letters are not taken into account.
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8 Conclusion
We delivered three major contributions: the total angular change metric, experimental tests on
the mixed morph with different parameter settings, and the Voronoi component reduction (VCR)
Hausdorff morph and its mixed variant.

The total angular change over time is a quantitative metric that is experimentally demonstrated
to effectively distinguish different types of morphs in a predictable manner. By iteratively remov-
ing details using a larger dilation parameter on the mixed morph, the angular change accurately
reflects the loss of concave detail. This metric can effectively explain visual results. It does how-
ever not necessarily indicate what happens in a morph without looking at the morph itself, because
a higher total angular change can be explained by two shape features: concave details and extra
components. Both features, usually result in a worse visual morph, therefore it can still be used to
accurately determine which of two outputs is visually better in most cases in the tested data sets.

To improve the quality of the existing mixed morph, we experimentally tested the morph with
different parameter settings. We showed that changing the dilation parameter has a big impact on
the quality of the morph’s output. Usually, when the dilation parameter is changed to improve
one recorded feature such as the number of components, this results in other features, such as the
surface area, to suffer. We found changing the radius of the disc for the closing operator over time
is the best way to balance the quality of all features. When α is close to 0 or 1, the disc’s radius
can be small, to not affect the perimeter too much, while still keeping the number of components
low by gradually increasing the radius of the closing disc.

Even with the right balance, the mixed morph still suffers from the extra components created
in the Voronoi morph. It might merge some components using the closing operator, but that also
ussually results in details that are not present in the input shapes. Our VCR morph solves this
issue and still satisfies the Hausdorff property. We have shown experimentally that the number of
components in the VCR morph is significantly lower than that of the Voronoi and mixed morphs.
We also demonstrated that the VCR morph keeps more visual details of the input shapes in tact
during the morphs. This results in intermediate shapes being more recognizable in the VCR morph
than those formed by the Voronoi and mixed morphs. To solve the issue the Voronoi and VCR
morphs have regarding their perimeter, caused by slits, we also introduced a mixed variant of the
VCR morph and experimentally demonstrate that this mixed variant is able to effectively reduce
the perimeter caused by slits. This leaves a morph that better preserves details of both input shapes
without adding too much extra details.

It must be noted that the VCR morph loses some of the conceptual simplicity of the Voronoi
and mixed morphs. Selecting correct targets that reduce the number of components significantly
increases the complexity of the algorithm. It does however leave some elegant simplicity from the
way slices only move along with direct neighbours in their source shape, resulting in the morph
working on inputs that contain multiple components without the need to adjust the algorithm or
implementation.

9 Future work
There are several ways the Voronoi and VCR morphs might be further improved. Some open
questions that could lead to further research will be briefly discussed here.

The VCR morph might be improved when the criteria on choosing the best valid secondary
target change, because different targets cause the slice to deform in different ways. Currently, if
multiple valid secondary targets exist, the closest in terms of the directed Hausdorff distance is
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selected. The best secondary target could be selected in several other manners. The first could be
to move along with the neighbouring slice that has the largest shared boundary. Another approach
could be to use a different distance measurement. The directed Hausdorff distance measures the
distance from the furthest point in the slice to the target. We might be able to more accurately
predict the amount of deformation if we take the distances of all vertices to the target into account.

In this thesis, we briefly tested the capabilities that changing the radius for the closing operator
has. It showed promising, but limited results. Only one variation was tested. It is therefore likely
that further experimental research could lead to improvement on the mixed variants. Different
functions can be tested and versions that adaptively change to balance all, or some, recorded
features might prove to significantly improve the quality of these morphs for all values of α.

Our implementation normalizes the position of input shapes to have a common centroid. Dif-
ferent ways of positioning the input shapes might lead to significant improvements on the Voronoi,
VCR, and mixed variant morphs. The shapes’ position can for example be normalized by mini-
mizing the Hausdorff distance, or by maximizing the overlap between the input shapes.

The Voronoi, VCR and mixed variant morphs are created to morph between 2D shapes. Con-
ceptually they are quite simple to adjust to work on 3D shapes. Most metrics that determine the
quality of the morph can also easily be used when morphing between 3D shapes. The surface area
can be substituted for the volume, and the perimeter can be substituted for the surface area. The
total angular change can not easily be substituted for a 3D version, since 3D shapes do not allow
for a walk around a given boundary loop. Other metrics such as compactness or eccentricity might
turn out to be accurate indicators of a morph’s quality that work on both 2D and 3D shapes.

29



References
[1] Alexandra Albu, Trevor Beugeling, and Denis Laurendeau. “A Morphology-Based Ap-

proach for Interslice Interpolation of Anatomical Slices From Volumetric Images”. In: IEEE
transactions on bio-medical engineering 55 (Aug. 2008), pp. 2022–38.

[2] Marc Alexa, Daniel Cohen-Or, and David Levin. “As-Rigid-as-Possible Shape Interpola-
tion”. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interac-
tive Techniques. SIGGRAPH ’00. USA: ACM Press/Addison-Wesley Publishing Co., 2000,
pp. 157–164. ISBN: 1581132085.

[3] Boris Aronov, Raimund Seidel, and Diane Souvaine. “On compatible triangulations of sim-
ple polygons”. In: Computational Geometry 3.1 (1993), pp. 27–35.

[4] Gill Barequet, Michael T Goodrich, Aya Levi-Steiner, and Dvir Steiner. “Contour interpo-
lation by straight skeletons”. In: Graphical Models 66.4 (2004), pp. 245–260.

[5] Gill Barequet and Micha Sharir. “Piecewise-Linear Interpolation between Polygonal Slices”.
In: Computer Vision and Image Understanding 63.2 (1996), pp. 251–272.

[6] Gill Barequet and Amir Vaxman. “Nonlinear Interpolation between Slices.” In: Interna-
tional Journal of Shape Modeling 14 (Jan. 2008), pp. 39–60.

[7] Gill Barequet and Amir Vaxman. “Reconstruction of Multi-Label Domains from Partial
Planar Cross-Sections”. In: Comput. Graph. Forum 28 (July 2009), pp. 1327–1337.

[8] Quirijn W. Bouts, Irina Kostitsyna, Marc J. van Kreveld, Wouter Meulemans, Willem Sonke,
and Kevin Verbeek. “Mapping polygons to the grid with small Hausdorff and Fréchet dis-
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A More example morphs

Figure 18: Intermediate shapes for α ∈ {0, 1/4, 1/2, 3/4, 1} when morphing between outlines of
a bird and ostrich. The columns show the Voronoi morph, mixed morph, VCR morph and mixed
VCR morph from left to right.
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Figure 19: Intermediate shapes for α ∈ {0, 1/4, 1/2, 3/4, 1} when morphing between outlines of
France and Spain. The columns show the Voronoi morph, mixed morph, VCR morph and mixed
VCR morph from left to right.
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Figure 20: Intermediate shapes for α ∈ {0, 1/4, 1/2, 3/4, 1} when morphing between outlines of
Germany and Italy. The columns show the Voronoi morph, mixed morph, VCR morph and mixed
VCR morph from left to right.
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Figure 21: Intermediate shapes for α ∈ {0, 1/4, 1/2, 3/4, 1} when morphing between outlines of
of the words try and it. The columns show the Voronoi morph, mixed morph, VCR morph and
mixed VCR morph from left to right.
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B Topology tables

Table 8: The minimum and maximum number of components and the maximum number of holes
for each experiment, separated by the Voronoi and VCR morph types.

Voronoi VCR

Experiment min max holes min max holes

bird → butterfly 1 8 0 1 4 1
bird → cat 1 10 0 1 1 6
bird → dog 1 10 1 1 4 2
bird → horse 1 17 1 1 3 5
bird → ostrich 1 16 0 1 6 2
bird → shark 1 11 0 1 2 2
bird → spider 1 15 2 1 2 3
bird → turtle 1 14 0 1 5 0
butterfly → cat 1 3 0 1 1 0
butterfly → dog 1 5 1 1 2 2
butterfly → horse 1 21 1 1 8 3
butterfly → ostrich 1 6 0 1 4 6
butterfly → shark 1 3 0 1 2 0
butterfly → spider 1 17 1 1 5 4
butterfly → turtle 1 9 1 1 2 1
cat → dog 1 9 0 1 5 3
cat → horse 1 9 0 1 3 2
cat → ostrich 1 6 0 1 2 0
cat → shark 1 6 1 1 2 1
cat → spider 1 12 2 1 4 4
cat → turtle 1 10 1 1 5 1
dog → horse 1 13 2 1 7 3
dog → ostrich 1 12 2 1 4 3
dog → shark 1 12 0 1 1 0
dog → spider 1 19 1 1 7 8
dog → turtle 1 12 0 1 4 1
horse → ostrich 1 21 0 1 9 3
horse → shark 1 13 1 1 3 2
horse → spider 1 17 3 1 6 9
horse → turtle 1 17 1 1 7 4
ostrich → shark 1 11 1 1 4 6
ostrich → spider 1 22 3 1 15 4
ostrich → turtle 1 11 2 1 2 0
shark → spider 1 13 0 1 1 1
shark → turtle 1 8 0 1 2 0
spider → turtle 1 15 1 1 4 4
austria → belgium 1 1 0 1 1 0
austria → croatia 1 20 2 1 19 5
austria → czechia 1 2 0 1 1 0
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Table 8: (continued from last page)

Voronoi VCR

Experiment min max holes min max holes
austria → france 1 14 1 1 10 5
austria → germany 1 20 1 1 20 1
austria → greece 1 71 1 1 68 9
austria → ireland 1 9 0 1 5 0
austria → italy 1 29 0 1 25 4
austria → netherlands 1 11 4 1 9 4
austria → poland 1 2 0 1 2 0
austria → spain 1 20 0 1 15 1
austria → sweden 1 21 7 1 19 8
belgium → croatia 1 22 0 1 19 1
belgium → czechia 1 1 0 1 1 0
belgium → france 1 11 2 1 10 10
belgium → germany 1 21 2 1 20 3
belgium → greece 1 73 1 1 76 7
belgium → ireland 1 6 0 1 6 0
belgium → italy 1 24 0 1 24 5
belgium → netherlands 1 11 3 1 9 10
belgium → poland 1 1 0 1 1 0
belgium → spain 1 17 0 1 16 0
belgium → sweden 1 22 9 1 19 11
croatia → czechia 1 23 1 1 19 3
croatia → france 10 43 1 10 26 8
croatia → germany 19 52 2 19 35 6
croatia → greece 19 111 0 19 79 6
croatia → ireland 4 33 0 4 21 5
croatia → italy 19 59 0 19 40 6
croatia → netherlands 9 31 3 9 30 7
croatia → poland 1 29 1 1 19 3
croatia → spain 15 49 0 15 32 0
croatia → sweden 19 53 7 19 30 7
czechia → france 1 11 1 1 10 8
czechia → germany 1 20 2 1 20 2
czechia → greece 1 76 1 1 69 12
czechia → ireland 1 6 0 1 4 4
czechia → italy 1 24 0 1 23 4
czechia → netherlands 1 11 2 1 9 7
czechia → poland 1 2 0 1 1 0
czechia → spain 1 16 0 1 16 1
czechia → sweden 1 23 9 1 19 7
france → germany 10 32 1 10 21 7
france → greece 10 90 2 10 73 9
france → ireland 4 16 1 4 11 4
france → italy 10 43 1 10 32 7
france → netherlands 9 20 4 9 14 9
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Table 8: (continued from last page)

Voronoi VCR

Experiment min max holes min max holes
france → poland 1 10 1 1 10 9
france → spain 10 32 2 10 24 4
france → sweden 10 32 6 10 22 14
germany → greece 20 88 8 20 68 20
germany → ireland 4 24 2 4 20 5
germany → italy 20 51 2 20 27 13
germany → netherlands 9 35 4 9 25 8
germany → poland 1 20 1 1 21 5
germany → spain 15 36 2 15 30 6
germany → sweden 19 41 8 19 24 15
greece → ireland 4 76 1 4 72 10
greece → italy 22 112 1 22 84 11
greece → netherlands 9 81 2 9 83 21
greece → poland 1 76 2 1 71 16
greece → spain 15 101 2 15 79 4
greece → sweden 19 112 7 19 73 12
ireland → italy 4 34 0 4 25 4
ireland → netherlands 4 17 2 4 12 6
ireland → poland 1 7 1 1 5 2
ireland → spain 4 24 0 4 18 2
ireland → sweden 4 25 6 4 19 13
italy → netherlands 9 36 2 9 29 6
italy → poland 1 25 0 1 23 3
italy → spain 15 47 0 15 42 4
italy → sweden 19 53 10 19 36 11
netherlands → poland 1 11 3 1 9 4
netherlands → spain 9 24 3 9 21 4
netherlands → sweden 9 32 7 9 23 14
poland → spain 1 16 0 1 15 0
poland → sweden 1 21 10 1 19 15
spain → sweden 15 39 8 15 28 16
wish → luck 4 22 2 4 10 8
kick → stuff 5 20 1 5 11 5
try → it 3 13 2 3 7 4
f serif → f sans 1 1 0 1 1 0
i serif → i sans 2 2 0 2 2 0
u serif → u sans 1 1 0 1 1 0
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Table 9: The minimum and maximum number of components and the maximum number of holes
for each experiment, separated by the mixed and mixed VCR morph types.

Mixed Mixed VCR

Experiment min max holes min max holes

bird → butterfly 1 4 2 1 4 2
bird → cat 1 4 0 1 1 1
bird → dog 1 5 1 1 3 1
bird → horse 1 5 1 1 3 3
bird → ostrich 1 10 1 1 6 0
bird → shark 1 5 0 1 2 0
bird → spider 1 6 2 1 2 1
bird → turtle 1 6 0 1 5 1
butterfly → cat 1 3 1 1 1 1
butterfly → dog 1 3 1 1 2 1
butterfly → horse 1 5 1 1 7 1
butterfly → ostrich 1 3 2 1 3 2
butterfly → shark 1 3 1 1 2 1
butterfly → spider 1 5 2 1 4 2
butterfly → turtle 1 3 1 1 2 2
cat → dog 1 1 1 1 3 2
cat → horse 1 5 1 1 3 1
cat → ostrich 1 3 0 1 2 0
cat → shark 1 4 0 1 2 0
cat → spider 1 7 2 1 4 2
cat → turtle 1 5 1 1 5 0
dog → horse 1 4 1 1 6 2
dog → ostrich 1 5 1 1 3 1
dog → shark 1 5 1 1 1 0
dog → spider 1 12 2 1 6 3
dog → turtle 1 4 0 1 3 1
horse → ostrich 1 12 1 1 8 3
horse → shark 1 6 1 1 2 1
horse → spider 1 7 3 1 5 4
horse → turtle 1 8 0 1 7 1
ostrich → shark 1 5 2 1 4 1
ostrich → spider 1 15 1 1 15 2
ostrich → turtle 1 3 0 1 1 0
shark → spider 1 4 3 1 1 2
shark → turtle 1 2 1 1 2 0
spider → turtle 1 7 5 1 4 4
austria → belgium 1 1 0 1 1 0
austria → croatia 1 19 4 1 19 4
austria → czechia 1 1 0 1 1 0
austria → france 1 10 0 1 10 0
austria → germany 1 20 0 1 20 0
austria → greece 1 68 4 1 68 3
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Table 9: (continued from last page)

Mixed Mixed VCR

Experiment min max holes min max holes
austria → ireland 1 4 0 1 4 1
austria → italy 1 22 1 1 22 1
austria → netherlands 1 9 3 1 9 3
austria → poland 1 2 0 1 2 0
austria → spain 1 15 1 1 15 0
austria → sweden 1 19 0 1 19 0
belgium → croatia 1 19 4 1 19 3
belgium → czechia 1 1 0 1 1 0
belgium → france 1 10 1 1 10 1
belgium → germany 1 20 2 1 20 2
belgium → greece 1 68 2 1 68 4
belgium → ireland 1 4 1 1 4 1
belgium → italy 1 22 1 1 22 1
belgium → netherlands 1 9 2 1 9 2
belgium → poland 1 1 1 1 1 1
belgium → spain 1 15 0 1 15 0
belgium → sweden 1 19 1 1 19 1
croatia → czechia 1 19 2 1 19 2
croatia → france 7 19 2 5 19 4
croatia → germany 4 20 2 2 20 3
croatia → greece 19 68 5 19 68 4
croatia → ireland 2 19 4 2 19 3
croatia → italy 13 22 1 19 23 2
croatia → netherlands 6 19 4 4 19 4
croatia → poland 1 19 2 1 19 3
croatia → spain 6 19 0 3 19 1
croatia → sweden 10 19 3 6 19 3
czechia → france 1 10 0 1 10 0
czechia → germany 1 20 2 1 20 2
czechia → greece 1 68 3 1 68 4
czechia → ireland 1 4 2 1 4 3
czechia → italy 1 22 0 1 22 1
czechia → netherlands 1 9 2 1 9 3
czechia → poland 1 1 0 1 1 0
czechia → spain 1 15 0 1 15 0
czechia → sweden 1 19 1 1 19 2
france → germany 3 20 2 3 20 1
france → greece 10 68 3 9 68 3
france → ireland 3 10 1 4 10 2
france → italy 10 22 1 10 22 2
france → netherlands 5 10 2 4 10 3
france → poland 1 10 2 1 10 2
france → spain 4 15 0 4 15 0
france → sweden 7 19 1 5 19 1
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Table 9: (continued from last page)

Mixed Mixed VCR

Experiment min max holes min max holes
germany → greece 6 68 1 7 68 1
germany → ireland 3 20 2 1 20 3
germany → italy 9 22 3 9 22 3
germany → netherlands 6 20 3 5 20 4
germany → poland 1 20 3 1 20 4
germany → spain 2 20 0 2 20 0
germany → sweden 9 20 4 5 20 4
greece → ireland 3 68 4 4 68 4
greece → italy 22 68 2 22 68 7
greece → netherlands 6 68 3 9 68 4
greece → poland 1 68 3 1 68 3
greece → spain 11 68 2 11 68 1
greece → sweden 9 68 2 8 68 2
ireland → italy 4 22 1 4 22 1
ireland → netherlands 3 9 3 2 9 5
ireland → poland 1 4 2 1 4 1
ireland → spain 2 15 0 3 15 0
ireland → sweden 3 19 2 2 19 2
italy → netherlands 9 22 2 8 22 3
italy → poland 1 22 1 1 22 1
italy → spain 5 22 0 9 22 0
italy → sweden 10 22 1 5 22 2
netherlands → poland 1 9 2 1 9 2
netherlands → spain 3 15 1 3 15 1
netherlands → sweden 5 19 2 5 19 3
poland → spain 1 15 0 1 15 0
poland → sweden 1 19 1 1 19 1
spain → sweden 4 19 1 4 19 0
wish → luck 4 17 0 4 9 1
kick → stuff 5 17 0 5 10 1
try → it 3 9 1 3 6 1
f serif → f sans 1 1 0 1 1 0
i serif → i sans 2 2 0 2 2 0
u serif → u sans 1 1 0 1 1 0
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