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Abstract

Generalized Cohomology is a topic in Algebraic Topology. Field Theories are prominent
in Theoretical Physics, with connections to the mathematical notions of Topological Field
Theories. Supersymmetry can be added to the Field Theories. We will build bridges be-
tween these topics. We will introduce supermanifolds and stacks. Using those, we will define
suitable bordism categories on which we define Supersymmetric Field Theories. We will
see that the Field Theories are a geometric construction of some Generalized Cohomology
Theories. We will construct ordinary cohomology from 0|1-dimensional Field Theories and
complexified K-theory and complexified tmf from 1|1 and 2|1-dimensional Field Theories
respectively. In these constructions, we aim to keep the dimensions general. In particular,
we are able to relate even dimensional Field Theories to Siegel Modular forms.
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1 Introduction
Mathematics and Theoretical Physics are tied together with many strings. One such connection
is the topic of this thesis. We will investigate how we can obtain Generalized Cohomologies,
a topic in Algebraic Topology, from Supersymmetric Field Theories, a topic in Theoretical
Physics. Related to the physics of field theories, there is also the mathematical notion of
Topological Field Theories or more generally Functorial. These will also play a role in our
studies.

A Generalized Cohomology is a functor from some category of topological spaces to the category
of graded Abelian groups satisfying axioms on homotopy invariance, exactness and excision,
see Definition B.1. Compared to ordinary (singular) cohomology, the groups associated to the
one point space need not be concentrated in degree zero. Examples of generalized cohomologies
include K-theory and elliptic cohomology.

Generalized cohomology theories have vast applications in Theoretical Physics. For example,
K-theory can be used to classify D-branes in string theory, [BLT13, Chapter 9.5]. D-branes
are objects in string theory where open strings with Dirichlet boundary conditions can end.
Conversely, the physical theories can help us find the correct mathematical definitions. We will
see this a few times in this thesis too.

The physical field theories we will consider go by the name of Sigma Models. These are
theories of maps from some domain (commonly called a world line and worldsheet if the
dimension is 1 or 2) to some background space X. Supersymmetry comes in when lifting
the domain to a supermanifold. The mathematical notion of field theories is in terms of
bordism categories. Bordism categories are categories with objects the compact manifolds
without boundary and morphisms the manifolds whose boundary corresponds to the source
and target object. The composition operation is defined in terms of gluing along the
boundaries. The bordisms can be given the extra datum of a map to a background X.
Bordism categories are given a symmetric monoidal structure by the disjoint union operation.
Functorial field theories are now symmetric monoidal functors from a bordism category
to the category of vector spaces. The connection to physical field theories lies precisely in
the maps from the bordism to X, which can be interpreted as fields in the relevant Sigma Model.

Sigma Models themselves were first proposed in [GL60] when studying beta decay of pion.
Since then, many Sigma Models have been constructed, see e.g., [För77; Jev77; DLD78].
A particular example of a sigma model is String Theory, we embed vibrating strings in a
space-time background.

Connecting generalized cohomologies to field theories is an old subject. Already, Edward
Witten [Wit87] and Greame Segal [Seg88] tried to connect field theories to elliptic coho-
mology. The connection between generalized cohomologies and field theories taken here is
more modern and goes by the name of the Stolz-Teichner Program. This is named after the
mathematicians Stephan Stolz and Peter Teichner. Their main objective it to give geometric
constructions of generalized cohomology theories in terms of suitable field theories. In their
papers [ST04], [HST10], [Hoh+11] and [ST11], they construct suitable bordism categories
and obtain singular cohomology for dimension 0|1 and K-theory in dimension 1|1. They con-
jecture that integral elliptic cohomology can be obtained from the 2|1-dimensional field theories.
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The conjecture remains open to date. However, when taking complexified coordinates, it
has been shown that tmf , the universal case of elliptic cohomology, can be obtained from
2|1-dimensional field theories in the style of the Stolz-Teichner program [Ber13a]. In the
same paper, complexified K-theory is obtained from 1|1-dimensional field theories. Studies
of 0|2-dimensional and 1|2 are done in similar fashion in [Ber13b] and [Ber15] respectively.
Equivariant versions are considered in [Ber20].

A different connection between the field theories and cohomologies is due to Kevin Costello
[Cos10a; Cos10b], where he constructs the Witten Genus from field theories. One can view
Costello’s approach as the Hamiltonian equivalent of the Lagrangian based theory studied here.

Considering and applying the methods used in the Stolz-Teichner program is one of the main
goals of this thesis. We will present the results of the 0|1 dimensions and complexified results
of the 1|1 and 2|1-dimensional case.

We start in Chapters 2 and 3 by introducing the supermanifolds and stacks. The former are
the objects which mathematically encode supersymmetry. The latter provide us with a suitable
categorical language. Using this framework in Chapter 4, we define supersymmetric bordism
categories and field theories in both the mathematical and the physical sense. Already here, we
will see that, following [Hoh+11], we can obtain De Rham cohomology from the 0|1-dimensional
field theories. Lastly, in Chapter 5, we consider the field theories in a perturbative sense, by just
considering (higher dimensional) tori. This already allows us, using some physical motivation
obtained from the physical field theories and following [Ber13a], to construct complexified
K-theory and tmf from 1|1 and 2|1-dimensional field theories respectively. Moreover, we
construct the relevant genera in the given set-up.

Compared to [Hoh+11] and [Ber13a], we aim to keep the story general for as long as possible.
Explicitly, we work in arbitrary dimensions and more general structures on the bordisms. The
stacks of tori constructed in [Ber13a] in dimensions 1|1 and 2|1 with Spin structure group are
generalized to higher dimensions and arbitrary struture groups in Chapter 5.2. Moreover, we
explicitly show that the constructed objects are differentiable stacks. In [Hoh+11], field theories
for 0|q are defined, but only the case q = 1 is analyzed in detail. We will treat arbitrary q in
Theorem 4.32. In [Ber13a], the dimensions 1|1 and 2|1 are considered with a specific structure
group (the Spin group). We will, using the same methods, generalize to arbitrary dimensions and
structures in Theorem 5.29. The original results are recovered with specializing the dimensions
and structures. However, the more general view allows us to make extentions. In particular,
we obtain a connection to Siegel Modular Forms, Corollary 5.30, in the even bosonic dimensions.

The introduction to supermanifolds, Chapter 2, contains an extensive treatment of the
superpoint, its symmetries and their connection to the odd tangent bundles. These turn out to
be important objects in the study of field theories. Especially, we consider an arbitrary number
of odd dimensions, while in most literature only 1 or 2 dimensions are considered. Most other
notions introduced in this section are well-known objects in the realm of supergeometry. We
collected them here.

In Chapter 3, we tell the, in a sense folklore, story of stacks in considerable detail. We build
up a connection between (differentiable) stacks and (super) Lie groupoids. Such a connection
is made in various sources including [BX06; Hei05; Blo07].
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The bordism categories on which Functorial Field Theories are defined are build up step by
step in Chapter 4.1. We succesively upgrade the notion of bordims by considering Model
Geometries, family versions, maps to a background space and supersymmetry. This allows us
to see the effect and nuances of each of these additions. The physics of certain Sigma Models
is summarized in Chapter 4.3 is mostly due to Witten, [Del+99; Wit87].

This project started with the idea to study the Witten Genus and its properties. To see its
relations to Generalized Cohomologies, Bordisms and Sigma Models and see what physical
arguments imply for the mathematical definitions and vice versa. During the project, the focus
shifted more to studying the relations between Generalized Cohomologies, Bordisms and Sigma
Models itself. The Witten Genus is however still constructed in the end of the thesis.

I would like to acknowledge my supervisors Dr. F.L.M Meier and Dr. T.W. Grimm for their
suggestions which put me on the right track on various occasions, but also for allowing me the
freedom to head in directions I was interested in. I wish to express my gratitude to my fellow
students Leon Goertz, Luuk Lagendijk, Jaime Pastor, Tom Vredenbregt and Bas Wensink for
taking part in a self-hosted seminar giving the opportunity to study the relevant physics in this
thesis together.
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2 The Super Side of Things
Supersymmetry will play an important role throughout this thesis. Therefore, we have this
chapter devoted to introducing supersymmetry. The study of supersymmetry dates back
to Hironari Miyazawa with [Miy66], where he studies symmetry transformation between
baryons and mesons in particle physics. After the papers of Miyazawa initially being ignored,
supersymmetry has become an important tool in theoretical physics. The symmetry manifest
itself by introducing two types of variables: Regular, commuting, ones and anti-commuting
ones (Grassman variables). Physicist will, as physicist do, use these notations and compute
with them. While this viewpoint works in most cases, it is not completely rigorous in the
mathematical sense. We will give a fully rigorous mathematical definition of superspaces.

Throughout this chapter, we will lift notions well-known for ordinary (non-super) mathematics
to the case with supersymmetry. We will assume the reader is familiar with standard differential
geometry. Prior knowledge of supersymmetry is not required.

The structure of this chapter is as follows. We start by the basics of Super Linear Algebra
following [Var04, Chapter 3] and [DM99, Section 1]. Using this setup, we are able to generalize
ordinary manifolds to supermanifolds following [DM99, Section 2]. Here, we also see how the
physical picture on supersymmetry of (anti)-commuting variables is incorporated in the math-
ematical definitions, Theorem 2.36. We continue with generalizing the common notions of Lie
groups and vector bundles to the super world. For the latter, we follow [DM99, Section 3]. In
particular, we will extensively study the odd partner of the super tangent bundle. This will be
an important object in the latter study of field theories. Lastly, we will add extra structure to
supermanifold in terms of Super Model Geometries.

2.1 Super Linear Algebra
Linear algebra is lifted to the super world, by assuming the vector spaces have a Z2 grading.
We follow [Var04, Chapter 3] and [DM99, Section 1].

Definition 2.1. A Super vector space over a field K is a usual K-vector space V together
with a Z2 grading (representation). In other words, V has a chosen decomposition V ∼= V0⊕V1.
Here, we identify V0 with the elements invariant under the representation and V1 consists of
exactly those elements by which the (nontrivial part of the) representation induces a change of
sign. If di is the dimension of Vi for i = 0, 1, then d0|d1 is the dimension of the super vector
space V . N

Remark 2.2. Instead of insisting on a field K and obtaining vector spaces, we could relax to
rings and obtain super monoids. Most of this section will apply mutatis mutantis to monoids
too. O

The straightforward, and up to isomorphism only, class of examples of super vector spaces is
constructed by taking powers of the ground field K with appropriate grading. The fact that this
yields, up to isomorphism, all super vector spaces can be seen by choosing a basis of homogeneous
elements.

Example 2.3. Take V = Kp+q with standard basis ei for 1 ≤ i ≤ p + q. Let V0 = ⊕pi=1Kei
and V1 = ⊕p+qi=p+1Kei. Equivalently, take the Z2 representation on V induced by ei 7→ ei for
1 ≤ i ≤ p and ei 7→ −ei for p + 1 ≤ p + q. We denote the resulting super vector space by
Kp|q. 4
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In physics or when doing any kind of differential geometry, we will obviously be mostly
interested in the case that K = R,C.

For our convenience, we give some names to the various elements of a supermanifold:

Definition 2.4. Given a super vector space V ∼= V0 ⊕ V1. The elements of V0 ∪ V1 ⊆ V are
called homogeneous. Moreover, we associate to each of these homogeneous elements a parity:
The elements of V0 are called even and have parity 0 ∈ Z2. The nonzero elements of V1 are
called odd and have parity 1 ∈ Z2. We define the parity function p : V0∪V1 → Z2 by assigning
to every homogeneous element its parity in Z2. N

Remark 2.5. Formulae involving the parity function are, a priori, only defined on the homoge-
neous part. The parity function is, after all, only defined on those elements. However, in what
follows, we will impose that any (multi)linear expression involving the parity function extends
linearly to the non-homogeneous elements. O

Super vector spaces, just like many mathematical structures, can be organized in a category.
We will denote the category of super vector spaces over K by sV ectK. The morphisms in this
category are the linear maps of vector spaces which preserve the parity of the homogeneous
elements. So for any two super vector space V,W we have the categorical Hom

Hom(V,W ) = {Linear maps V →W preserving parity}. (2.1.1)

Apart from just considering the parity conserving maps, we can instead also look at the inner
hom, denoted by Hom(V,W ), consisting of all linear maps V → W . The space Hom(V,W )
itself admits the structure of a super vector space, making it an interesting part of the theory.
Here, the even part Hom(V,W )0 consists precisely of the parity preserving maps Hom(V,W )
and the odd component consists of all maps reversing the parity, i.e., sending even elements of
V to odd ones in W and vice versa.

We will write End(V ) = Hom(V, V ) for the super vector spaces of endomorphisms on V .
Furthermore, we can take the dual V ∗ as Hom(V,K). Here, we see K as a completely even
super vector space, i.e., the odd part is trivial. In other words, the space (V ∗)i consists precisely
of the linear maps V → K which vanish on V1−i.

Given super vector space V = V0 ⊗ V1. We can form a new super vector space by switching
the even and odd parts. We simply define W = W0 ⊗W1, where W0 = V1 and W1 = V0. This
construction is called the change of parity for vector spaces.

Super vector spaces admit direct sums in the obvious manner. The even resp. odd component
of the direct sum super vector space is simply the direct sum of the even resp. odd components,
i.e., (V ⊕W )i = Vi ⊕Wi. For tensor products, we take the usual formula for graded vector
spaces. However, the indices are taken modulo 2:

Definition 2.6. For super vector spaces V,W define the homogeneous components of the tensor
product V ⊗W as

(V ⊗W )i =
⊕

j+m=i
Vj ⊗Wm. (2.1.2)

Here the indices i, j,m are taken in Z2. More explicitly, we set (V ⊗W )0 = (V0⊗W0)⊕(V1⊗W1)
and (V ⊗W )1 = (V1 ⊗W0)⊕ (V0 ⊗W1). N
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The tensor product is both associative and symmetric. This means that there exists natural
isomorphisms aU,V,W : (U ⊗ V ) ⊗ W ∼= U ⊗ V (⊗W ) and cV,WV ⊗ W ∼= W ⊗ V . However,
even though the isomorphisms are natural, there is not a unique choice of such natural isomor-
phisms. In the usual setting of standard linear algebra, one takes the associativity isomorphism
(u ⊗ v) ⊗ w 7→ u ⊗ (v ⊗ w) and symmetry isomorphism v ⊗ w 7→ w ⊗ v. In our setting of
super linear algebra, we take the associativity isomorphism aU,V,W the same, but change the
symmetry isomorphism to

cV,W : V ⊗W →W ⊗ V, v ⊗ w 7→ (−1)p(v)p(w)w ⊗ v. (2.1.3)

Notice that, a priori, this is only defined on homogeneous elements. As remarked, we can
extend linearly to all non-homogeneous elements. The motivation for this particular choice of
commutativity isomorphism stems from quantum physics. In quantum mechanics, there are
two kinds of indistinguishable particles: bosons and fermions. Following physical arguments,
whenever we have two (or more) bosons the wave functions need to be symmetrized, while for
fermions the wave functions need to be antisymmetrized (that is, taking the (anti)-symmetric
sum of the products of the wave functions of the individual particles). Notice that in the case of
fermions, whenever we interchange two particles, the resulting antisymmetrized wave function
will obtain a sign change. While if we swap two bosons, the symmetrized wave function will
not change at all. In the case, we interchange a boson with a fermion, we obviously have
distinguishable particles. Hence, the resulting wave function (which is just the simple product
of the wave function for the individual particles) will not change either.

2.1.1 The Rule of Signs

Returning to our super linear algebra setting, suppose that the even part correspond to
some bosonic object, while the odd part correspond to some fermionic object, then we
obtain the sign change precisely when two odd elements are interchanged. This is exactly what
Eq. (2.1.3) tells us: Only in the piece V1⊗W1 →W1⊗V1 there is a sign change. The principle of
changing the sign whenever two odd/fermionic elements are swapped is called the rule of signs.

Upon taking this different sign convention in the symmetry isomorphism, we have wiped a subtle
point under the carpet: its consistency. To illustrate this potential problem, consider some
tensor product of an arbitrary number of super vector spaces and we permute the components
in some way. For consistency, the sign change of the permutation must be the same, no matter
how we write the permutation. As a well known fact, we know that any permutation can
be decomposed in a sequence of adjacent exchanges, but the decomposition is not unique. A
particular decomposition together with the rule of signs induces a sign convention. What is re-
quired to show is that the sign does not depend on the decomposition, but only the permutation.

In the relatively simple example of the sign, one can show the consistency by a direct argument,
see [Var04, Proposition 3.1.1 and Corollary 3.1.2]. More generally, we can attack the problem by
Mac Lane’s Coherence Theorem for symmetric monoidal categories. This theorem essentially
says that whenever some particular diagrams involving aU,V,W and cV,W commute, all such
diagrams commute. See [Mac71, Chapter XI.1].
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Proposition 2.7. Let U, V,W,X be K super vector spaces. The following diagrams commute.

(U ⊗ V )⊗ (W ×X)

((U ⊗ V )⊗W )⊗X U ⊗ (V ⊗ (W ⊗X))

(U ⊗ (V ⊗W ))⊗X U ⊗ ((V ⊗W )⊗X)

aU,V,W⊗XaU⊗V,W,X

aU,V,W⊗idX

aU,V⊗W,X

idU⊗aV,W,X

, (2.1.4)

(V ⊗K)⊗W V ⊗ (K⊗W )

V ⊗W

aV,K,W

ρV ⊗idW
idV ⊗λW , (2.1.5)

(U ⊗ V )⊗W U ⊗ (V ⊗W ) (V ⊗W )⊗ U

(V ⊗ U)⊗W V ⊗ (U ⊗W ) V ⊗ (W ⊗ U)

aU,V,W

cU,V ⊗idW

cU,V⊗W

aV,W,U

aV,U,W idV ⊗cU,W

. (2.1.6)

Here ρV : V ⊗K→ V and λW : K⊗W → W are the canonical isomorphisms. Moreover, there
holds

cV,W ◦ cW,V = idV⊗W . (2.1.7)

Proof. Commutativity of the diagrams (2.1.4) and (2.1.5) is unchanged compared to standard
linear algebra. Chasing a homogeneous element u⊗v⊗w ∈ U⊗V ⊗W in diagram (2.1.6) yields

(u⊗v)⊗w u⊗(v⊗w) (−1)p(u)p(v⊗w)(v⊗w)⊗u

(−1)p(u)p(v)(u⊗v)⊗w (−1)p(u)p(v)v⊗(u⊗w) (−1)p(u)(p(v)+p(w))v⊗(w⊗u)

aU,V,W

cU,V ⊗idW

cU,V⊗W

aV,W,U

aV,U,W idV ⊗cU,W

.

(2.1.8)
By definition of the tensor product for super vector spaces, we have that p(v⊗w) = p(v)+p(w).
Therefore, the diagram above commutes for homogeneous elements. Extending linearly gives
the result for non-homogeneous elements.

The identity cV,W ◦ cW,V = idV⊗W is easily verified in the same fashion.

Corollary 2.8. Any diagram involving just aU,V,W , cV,W and ρV and λW from the proposition
commutes. In particular, any decomposition in adjacent exchanges of a permutation of some
tensor product of super vector spaces gives the same resulting sign.

Proof. The first statement is the Coherence Theorem by Mac Lane. See [Mac71, Chapter XI.1].
For the second statement, suppose that we have two decompositions of the same permutation
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σ. We can form the following diagram

V1⊗· · ·⊗Vn V1⊗· · ·⊗Vi+1⊗Vi⊗· · ·⊗Vn · · · Vσ(1)⊗· · ·⊗Vσ(n)

V1⊗· · ·⊗Vn V1⊗· · ·⊗Vj+1⊗Vj⊗· · ·⊗Vn · · · Vσ(1)⊗· · ·⊗Vσ(n)

idV1⊗···⊗cVi,Vi+1⊗···⊗idVn

idV1⊗···⊗cVj,Vj+1⊗···⊗idVn

.

(2.1.9)
Here, the two rows execute the decompositions step by step. Since the diagram commutes by
the Coherence Theorem, we must obtain equal signs from the two different decompositions.

2.1.2 Superalgebras and Rings

We will now lift the notions of algebras and rings, well known in ordinary linear algebra, to the
super world.

Definition 2.9. A K-superalgebra is a K super vector space A with an algebra multiplication
µ : A⊗A→ A which preserves parity. I.e., the map µ is a morphism of super vector spaces. The
supercenter Z(A) of a superalgebra A is given by the span of the homogeneous elements a such
that for any b ∈ A0∪A1 there holds ab = (−1)p(a)p(b)ba. A superalgebra is supercommutative
when it is equal to its supercenter. N

We give some basic properties of superalgebras:

Proposition 2.10. (a) A super vector space A with an associative map µ : A ⊗ A → A is a
superalgebra if and only if p(µ(a, b)) = p(a) + p(b) for all homogeneous a, b ∈ A0 ∪A1.

(b) If A has a unit 1, then 1 has even parity.

(c) The space A0 is a purely even subalgebra of A. Moreover, there holds A0A1 ⊆ A1 and
A1A1 ⊆ A0.

Proof. (a) The statement that µ preserves parity, precisely tells us that
p(µ(a⊗ b)) = p(a⊗ b) = p(a) + p(b) for all homogeneous a, b ∈ A0 ∪A1.

(b) From part a) we have that p(1) = p(µ(1⊗ 1)) = p(1) + p(1). Hence, p(1) = 0 and thus 1
is even.

(c) Suppose a, b ∈ A0. Then p(µ(a⊗ b)) = p(a) + p(b) = 0 and thus µ(a⊗ b) ∈ A0. The other
cases follow similarly.

Example 2.11. For any super vector space V , the endomorphisms End(V ) are a superalgebra
under multiplication. Its supercenter is given by the scalar multiplications K · idV . The only
supercommutative cases are K1|0 and K0|1. 4

Example 2.12. Let A = K[t] with t odd and t2 = 1. This is canonically a superalgebra. Notice
that since t2 6= 0, we have that t /∈ Z(A). Hence, Z(A) = K and thus A is not supercommutative.
On the other hand, if we consider A just as an algebra, then it is commutative. This example
illustrates that the superness can significantly change the objects under investigation. 4

Example 2.13. An important example of a supercommuting superalgebra is the exterior alge-
bra Λ•(V ) of a (totally even) vector space V . In finite dimension, we obtain, up to isomorphism,
K[θ1, · · · , θq] satisfying the relation θiθj + θjθi = 0 for all 0 < i, j ≤ q. 4
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Example 2.14. Following [Mei13, Defintion 2.1], we define for a K vector space V and sym-
metric bilinear form B : V × V → K the Clifford Algebra to be the quotient

Cl(V,B) = T (V )/T (V,B). (2.1.10)

Here, we have denoted T (V ) for the tensor algebra and T (V,B) for the ideal generated by all
elements of the form

v ⊗ w + w ⊗ v − 2B(v, w), v, w ∈ V. (2.1.11)

The tensor algebra has a natural Z grading. It collapsed to a Z/2 grading upon taking the
quotient by the ideal T (V,B). 4

As a special case, we consider the Z-superalgebras. Notice that we are working over a ground
ring now, see Remark 2.2. In this case, we obtain the notion of a super ring.

Definition 2.15. A superring is a Z-superalgebra. N

Example 2.16. For a topological space, the cohomology ring H• is a superring under the
cup-product. The odd degrees of cohomology give the odd components of the algebra. 4

2.2 Supermanifolds
A smooth structure on ordinary (real or complex) manifolds is usually given by a smooth atlas
of charts. These give us local coordinates on the manifold, allowing us to do analysis. In
particular, we can define for a smooth manifold M its algebra C∞(M) of real (or complex)
valued functions. This algebra turns out to be as fundamental as the smooth atlas. More
precisely, we can equivalently define a smooth structure on a manifold by its function algebra.

Definition 2.17. Let X be a topological space. A presheaf of sets is an assignment F which
assign for every open set U ⊆ X a set FU and for every inclusion of opens V ⊆ U a map
resV,U : FU → FV called the restriction morphism. We require the functorial properties
that resU,U is the identity morphism and that for opens W ⊆ V ⊆ U there holds for the
composition resW,V ◦ resV,U = resW,U .

A presheaf is called a sheaf if additionally for any open cover (Ui)i∈I of an open U ⊆ X the
following two properties hold

• (Locality) Let s, t ∈ FU . If resUi,U (s) = resUi,U (t) for all i ∈ I, then s = t.

• (Gluing) Suppose that we have si ∈ FUi for all i ∈ I such that
resUi∩Uj ,Ui(si) = resUi∩Uj ,Uj (sj) for all i, j ∈ I. Then there is an s ∈ FU such that
resUi,U (s) = si for all i ∈ I.

N

Remark 2.18. The notion of a presheaf above coincides with the general notion of a presheaf in
category theory, being contravariant functors. For this, consider the poset category with objects
the opens of X and morphisms the inclusions of opens V ⊆ U . Contravariant functors on this
category exactly satisfy the properties in the definition above. O

Remark 2.19. Instead of taking values in the category of sets, we can land anywhere. Examples
include rings, algebras, vector spaces, and of course their super counterparts. O
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Example 2.20. A trivial example of a sheaf is given by sending every open U of a space X to
the empty set. 4

Example 2.21. For every topological space X, we can assign to an open U the set of continuous
functions C0(U), the restriction morphisms are given by the restriction of functions (hence the
name). Notice that using the ring structure of C0(U), we can see this as a sheaf of rings too. We
will denote this sheaf by C0. Moreover, passing to smooth manifolds (defined by some atlas),
we can also consider the set (or ring) C∞(U) of smooth functions. This gives us a sheaf C∞ on
the manifold. 4

Continuing on this last example of function spaces, a map f : X → Y of topological spaces
induces a map f∗ : C0(Y )→ C0(X) by taking the pullback, i.e., by precomposing. Notice that
this pullback commutes with the restrictions. Hence, we obtain a good candidate for morphisms
between sheaves. However, for a general sheaf F , the set FX has a priori no relation to X
(apart from F). Therefore, a map f : X → Y of topological spaces need not induce a canonical
map on a sheaf. The solution is to simply remember the map on the sheaf too.

Definition 2.22. Let X and Y be topological spaces and sheaves OX and OY on X and Y
respectively. A map from the pair (X,OX) to (Y,OY ) consists of

• a continuous map f : X → Y ,

• a map f∗V : OY V → OXf−1(V ) for every open V ⊆ Y which commutes with restrictions.
I.e., there holds resf−1(V ′),f−1(V ) ◦ f∗V = f∗V ′ ◦ resV ′,V for all open V ′, V ⊆ Y .

N

Remark 2.23. The pullback maps f∗V should be seen as morphisms in the target category,
see Remark 2.19. So in the case of rings, we should require the pullback maps to be ring
homomorphisms and similarly for any other target category. O

For us, the most important case will be the sheaves of rings. We will call a pair (X,OX) of a
topological space with a sheaf of rings a ringed space. The sheaf OX is called the structure
sheaf. Together with the maps of Definition 2.22, we have formed the category of ringed
spaces. The canonical case is a topological space, with the sheaf of continuous functions. In
this case, a map on the topological spaces induce a map on the structure sheaf by precomposition.

Ringed spaces allow us to do geometry. In fact, we can define smoothness of manifolds just in
terms of their structure sheaf.

Theorem 2.24. Let (X,OX) be a ringed space which is locally isomorphic to (Rn, C∞). Then
there exists a smooth atlas A on X such that (X,C∞) w.r.t the atlas A is isomorphic to (X,OX).

Proof. For a proof, see [Nes03, Chapter 7].

Remark 2.25. Completely analogously, we can look at the complex valued smooth function
instead. Since a complex valued function is not nothing more than two real valued ones, we
obtain similar properties. O

Remark 2.26. Related to the theorem above, there is the Gelfand-Naimark Theorem, which
states that any commutative C∗-algebra is isomorphic to C(X) for some locally compact Haus-
dorff space X. For a precise statement and proof of the Gelfand-Naimark Theorem, see for
example [Fol16, Theorem 1.20 and 1.31]. O
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This theorem allows us to view smooth structures more algebraically as sheaf of rings. This
point of view will allow us to define the notion of a supermanifold. The idea is to change the
sheaves of (necessarily commutative) rings by sheaves of commutative superrings. For ordinary
manifolds, these sheaves need to be locally isomorphic to (Rn, C∞). For supermanifolds, we
should find some suitable local model giving a superstructure.

Definition 2.27. A superdomain, denoted by Up|q is the super ringed space (U,C∞p|q) where
U ⊆ Rp and C∞p|q is the sheaf given by C∞p|qV = C∞(V ) ⊗R Λ•(Rq) for open V ⊆ U . Here,
Λ•(Rq) denotes the exterior algebra. As seen in Example 2.13, we can identify C∞p|qV with
C∞(V )[θ1, · · · , θq] where θiθj + θjθi = 0 for 1 ≤ i, j ≤ q. N

In particular, we have the superdomain Rp|q = (Rp, C∞p|q) of super real space. This gives us a
suitable local model to define supermanifolds.

Definition 2.28. A supermanifold is a super ringed space (X,OX) which is locally isomorphic
to Rp|q. The local isomorphisms are the supercharts of the supermanifold. N

Remark 2.29. In the case we want to consider real analytic, holomorphic or similar super-
manifolds, we just have to change our superdomains into the relevant local model. E.g., for
the holomorphic setting, we take our superdomains to be (U,Hp|q) where U ⊆ Cn open and
Hp|q = H(U)⊗C Λ•(Cq). Here, H(U) denotes the holomorphic maps on U . O

Remark 2.30. We will denote to a supermanifold (X,OX) usually by just X. If we want to
make explicit reference to the underlying ordinary manifold, then we use the notation |X|. The
underlying ordinary manifold is also called the reduced manifold. O

Remark 2.31. At this point, there might seem to be an apparent notational mismatch: We
have the supermanifold Rp|q and the super vector space Rp|q. The manifold has reduced manifold
Rp while the underlying vector space of the super vector space Rp|q is Rp+q. We will resolve this
mismatch at the end of this section, Lemma 2.41. Moreover, it will be clear from the context
whether we are looking at supermanifolds or super vector spaces. O

Example 2.32. Any superdomain trivially is a supermanifold. In particular, Rp|q is. 4

Example 2.33. Any ordinary d-dimensional manifold X is a supermanifold of dimension d|0.
4

Example 2.34. For an ordinary manifold X, the sheaf of differential forms Ω•(X) is locally free.
Hence, the pair (X,Ω•(X)) defines a supermanifold. This goes by the name of the odd or shifted
tangent bundle. It turns this manifold can be identified with the mapping space SMfld(R0|1, X),
which will be important to use when we consider (vacuum) field theories over some manifold,
see Definition 5.20. We will consider this manifold in more detail and also motivate its name in
Chapter 2.4.2. 4

Example 2.35. Let E → M be an ordinary real vector bundle over M . The space of section
Γ (Λ•E) of the exterior bundle Λ•E forms a sheaf of super rings over M . We obtain a super-
manifold (M,Γ (Λ•E) of dimension dim(M)|rank(E). Marjorie Bachelor showed in [Bat79] that
every supermanifolds, up to isomorphism, can be obtained from this construction. 4

The intuitive picture of a supermanifold is that of a real manifold with a cloud of odd stuff
around it. The cloud cannot be seen when mapping the structure sheaf into any completely
even ring, as per definition of maps of superrings. Nevertheless, the odd cloud does contribute
to the geometry and the even and odd parts do interact.
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2.2.1 Morphisms of Super Manifolds

Maps of supermanifolds can be defined completely analogously as we did for ringed spaces in
Definition 2.22. Notice that for the (super) Euclidean case of a map f : Rp|q → Rp|q, it consists
of a map |f | : Rp → Rp′ on the base manifold and a homomorphism of sheaves

f∗ : C∞(Rp
′
)[θ1, . . . , θq′ ]→ C∞(Rp)[θ1, . . . , θq]. (2.2.1)

The function |f | can be recovered from f∗ by taking the odd parameters to zero. In turn,
the homomorphism f∗ is completely determined by its action on C∞(Rp′) and the generators
θ1, . . . , θq′ . Therefore, we can equivalently view a morphism as a map f : Rp|q → Rp|q as a map
on the even and odd coordinate functions xi and θj . Here, the map xi : Rp → R is the projection
on the ith coordinate and θj ∈ C∞(Rp)[θ1, . . . , θq] is the constant map with image θj . More
explicitly, the map f becomes an assignment

(~x, ~θ) = (x1, . . . , xp, θ1, . . . , θq) 7→ (feven1 (~x, ~θ), . . . , fevenp′ (~x, ~θ), fodd1 (~x, ~θ), . . . , foddq′ (~x, ~θ)).
(2.2.2)

This coordinate approach is commonly used in physics and makes doing computations much
easier. From such an assignment on coordinates we can recover the sheaf homomorphism
C∞(Rp′)[θ1, . . . , θq′ ] → C∞(Rp)[θ1, . . . , θq], by viewing the assignment as a coordinate trans-
formation acting by precomposition. We will switch freely between the different descriptions.

The view of reducing a map of supermanifolds to an assignment on the even and odd components
can be formalized in the Chart Theorem.

Theorem 2.36 (Chart Theorem). Let Up|q be a superdomain and S a supermanifold. There is a
natural bijection, explicitly given for Up|q = Rp′|q′ in the text above, between maps S → U of su-
permanifolds and collections of p even functions feven

i ∈ O(S) and q odd functions fodd
j ∈ O(S)

such that for the reduced map |f | obtained by taking the odd variables to zero there holds
|f |(m) ∈ |U | for all m ∈ |S|.

Proof. For the case that S is a superdomain, a detailed proof can be found in [Lei80, Theorem
2.1.7]. The general case follows by a similar proof, see [CF07, Theorem 3.1.2].

Example 2.37. Consider the map f : R1|2 → R1|0 given by the assignment

(x, θ,θ2) 7→ (x+ θ1θ2). (2.2.3)

Under the associated homomorphism f∗ : C∞(R)→ C∞(R)[θ1, θ2], the map (x 7→ x2) ∈ C∞(R)
is mapped to

(x, θ1, θ2) 7→ (x+ θ1θ2)2 = x2 + 2xθ1θ2. (2.2.4)

More generally, a map g ∈ C∞(R) is mapped under the homomorphism f∗ to

(x, θ1, θ2) 7→ g(x) + g′(x)θ1θ2, (2.2.5)

where g′ denotes the derivative of g. 4

Do notice, however, that not all assignments as in Eq. (2.2.2) give a well-defined morphism
of supermanifolds: The even components feveni should really have even values, while the odd
components foddj must be odd.
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Example 2.38. The assignment f : R1|1 → R1|0 given by

(x, θ1) 7→ x+ θ1 (2.2.6)

does not give a map of supermanifolds. Indeed, the structure sheaf of R1|0 is completely even,
while the identity function on R under the associated homomorphism f∗ would be mapped to
(x 7→ x+ θ1) which mixes even and odd variables. 4

The function sheaf C∞(X) of a supermanifold X has a decomposition in the even and odd
function. This decomposition can be recovered from functions using the Chart Theorem.

Corollary 2.39. For a supermanifold X, we can identify C∞(X)ev = SMfld(X,R1) and
C∞(X)odd = SMfld(X,R0|1).

2.2.2 Functor of Points Viewpoint

With the morphisms of supermanifolds, we have constructed the category of supermani-
folds SMfld. As mentioned in Example 2.35 every isomorphism class of supermanifolds can
be obtained from vector bundles over ordinary manifolds. However, the required isomorphism
cannot be chosen canonically. In fact, morphisms in the category of supermanifolds differ from
morphisms of ordinary vector bundles. [DM99, Section 2.1.5]

Associated to SMfld we have the category of presheaves SMfldop → Set on it.

Definition 2.40. We call a presheaf SMfldop → Set a generalized supermanifold. A gen-
eralized supermanifold is representable by a supermanifold X if it is naturally isomorphic to
S 7→ SMfld(S,X). Here, we write SMfld(S,X) for the set of morphisms S → X. N

There are two points to make about this notion of generalized supermanifolds. Firstly, we
have the Yoneda Lemma which tells us that the maps between representables are cannonically
identified with the natural transformations between the generalized supermanifolds. Secondly,
set of morphism SMfld(S,X) can canonically be identified with the set of algebra functions
Alg(O(X),O(S)) between the structure sheaves. This turns geometry problem into algebra,
which gives us a wealth of tools available to analyze them. The approach of considering the
presheaf represented by a (super) manifold is referred to as the functor of points approach.

A particular important case mapping space is the mappings out of R0|q, the super point with
q odd dimensions. It will play a crucial role in field theories, see Definition 5.20. The founda-
tion will lie in the odd tangent bundles, which we already have seen for ordinary manifolds in
Example 2.34. At this point, we can consider one further interesting case:

Lemma 2.41 ([DM99, Lemma 3.1.1]). The mapping space SMfld(R0|1,Rp|q) is a super vector
space isomorphic to Rp|q.

Proof. We can decompose, using the group structure of Rp, a morphism f : R0|1 → Rp|q in
an even morphism R0|0 → Rp on the reduced manifolds and an odd morphism R0|1 → Rp|q
for which the reduced manifold is mapped to the origin. This gives us a decomposition of
SMfld(R0|1,Rp|q) into the even component SMfld(R0|0,Rp|q) of maps factoring through R0|0

and maps SMfld(R0|1,Rp|q) with reduced image the origin. This decomposition gives easily the
isomorphism with Rp|q.
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2.2.3 Supermanifolds with Boundary

Ordinary manifolds can be generalized to allow them having boundaries. Manifolds with
boundary are a useful concept when considering bordisms. So for the purpose of generalizing
bordisms to the super setting, which we do in Chapter 4.1.3, we will now define supermanifolds
with boundary. Supermanifolds with boundary were first defined in [VZ87] precisely for the
purpose of considering bordisms and homotopical properties of supermanifolds.

Boundaries of ordinary manifolds are, roughly speaking, sharp edges where the manifold “ends”.
Rigorously, we assert that the charts of a manifold X must be diffeomorphisms between opens
in X and opens of the half space Rn+ = {(x1, . . . , xn) ∈ Rn|x1 ≥ 0}. The boundary of X
will now be exactly those pieces which are mapped to hyperplane with x1 = 0 of Rn. It can
straightforwardly be shown that the boundary point of X do not depend on the chosen atlas.
In other words, when passing from ordinary manifolds without boundary to ordinary manifolds
with boundary, we have changed our local model of the space from the whole Rn to the half
space Rn+. This change of local model motivates the following definition.

Definition 2.42 ([VZ87, Definition 1]). A supermanifold with boundary of dimension p|q
is a ringed space locally isomorphic to open subspaces of the model space

Rp|q+ =
(
Rp+, C∞(Rp+)⊗ Λ•(Rq)

)
. (2.2.7)

Here, we write Rp+ for the half space Rp+ = {(x1, . . . , xp) ∈ Rp|x1 ≥ 0}. The open subspaces of(
Rp+, C∞(Rp+)⊗ Λ•(Rq)

)
are superdomains with boundary. N

The reduced manifold |X| of a supermanifold with boundary X is an ordinary manifold with
boundary. This boundary is an embedded submanifold ∂|X| ↪→ |X| with a canonical embedding.
We like to have a notion of boundaries of supermanifolds too. The boundary will then be some
p−1|q-dimensional submanifold of X, where p|q is the dimension of X. Naturally, the underlying
ordinary manifold must be the boundary ∂|X| of the reduced manifold. However, this does not
completely describe the boundary supersubmanifold yet

Example 2.43 ([Loz+04]). The space R1|2
+ has topological boundary the point 0. However,

the embeddings ι, ι′ : R0|2 → R1|2
+ written in coordinates (t, θ1, θ2) of R1|2 as

ι(θ1, θ2) = (0, θ1, θ2), (2.2.8)
ι′(θ1, θ2) = (θ1θ2, θ1, θ2) (2.2.9)

are different embeddings which are equally valid as boundary. In this simple case of a superdo-
main, one might be tempted to prefer the embedding ι. However, for a general supermanifold
with boundary, we cannot make this choice consistently since in different charts the boundary
might look different. Do notice that the two embedded supermanifolds here are isomorphic as
supermanifolds. 4

Definition 2.44 ([VZ87, Definition 2]). A boundary of a supermanifold X, whose dimen-
sion is p|q, is a supermanifold Y of dimension (p − 1)|q together with a smooth embedding of
supermanifolds

ι : Y ↪→ X (2.2.10)
such that ι reduces to a diffeomorphism |ι| : |Y | → ∂|X| from the reduced manifold |Y | to the
boundary ∂|X| of the reduced manifold |X|. N

As we have seen in Example 2.43 boundaries of supermanifolds are not unique. However, all
boundaries of a supermanifold are isomorphic as supermanifolds.
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Proposition 2.45 ([VZ87, Proposition 2]). Any two boundaries of a supermanifold with bound-
ary are isomorphic as supermanifolds.

2.3 Super Lie Groups
In ordinary differential geometry, a Lie group is a smooth manifold which is also a group such
that the multiplication and inversion maps are smooth. This can be formulated completely in
categorical terms by demanding a Lie group to be a group object in the category of smooth
manifolds. This categorical viewpoint is vital for generalizing the notion of Lie groups to Super
Lie groups. The reason for this is that in the super case, we don’t have points to turn to. So,
a condition like “there exists an e ∈ G such that eg = g for all g ∈ G” does not make sense.
Instead, following [Fio10], we make a categorical definition.

Definition 2.46. A super Lie group G is a supermanifold G with maps

µ : G×G→ G, (2.3.1)
i : G→ G, (2.3.2)
e : R0|0 → G, (2.3.3)

called the multiplication, inversion and unit map respectively. These maps are further required
to satisfy the usual relation (associativity, unit, etc.). These can be summarized by requiring
the following diagrams to commute.

G×G×G G×G

G×G G

µ×IdG

IdG×µ µ

µ

, (2.3.4)

G×G G G×G G×G G G×G

G G

µ

〈IdG,ê〉 〈ê,IdG〉

IdG
µ µ

〈IdG,i〉 〈i,IdG〉

ê
µ

. (2.3.5)

Here, the map ê : G→ G is the constant map on the unit of G. I.e., it is the composition of the
unique map G→ R0|0 and e. N

Example 2.47 ([Ber13a, Example 1.11]). Let V be a vector space and a symmetric pairing
R : ∆ ×∆ → V . Denote Π∆ for the completely odd space of ∆, i.e., for finite dimensional ∆,
the superspace R0|q with q = dim(∆). We can define the supergroup V × Π∆ with underlying
manifold V and supergroup action given by

(~v, ~θ) · (~v′, ~θ′) = (~v + ~v′ +R(~θ, ~θ′), ~θ + ~θ′). (2.3.6)

Notice that in this case, we have a short exact sequence of groups

0→ V → V ×Π∆→ Π∆→ 0. (2.3.7)

In case V = Rp and Π∆ = R0|q, we write Ep|qR = V × Π∆ and call it the group of super Eu-
clidean translations for the pairing R. We are using the notation Ep|qR to explicitly distinguish
between the space Rp|q and the supergroup of translations Ep|qR . 4
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Example 2.48 ([CF07, Example 3.4.3]). Let V = V0 ⊕ V1 be a super vector space. The
space of invertible linear parity preserving transformations GL(V ) can be identified with
GL(V0) × GL(V1), seen as ordinary vector spaces. If p = dim(v0) and q = dim(V1), then
we can see GL(V ) as an open of Rp2+q2 . We will give GL(V ) the structure sheaf from the
embedding in Rp2+q2|2pq. I.e., for an open U ⊆ GL(V0)×GL(V1) ⊆ Rp2+q2 , we have that

OGL(V )(U) = C∞(U)[θ1, . . . , θ2pq] (2.3.8)

with the usual anti-commutativity θiθj + θjθi = 0. 4

Lemma 2.49. Let (S,OS) a supermanifold. The space of maps SMfld(S,GL(Rp|q)) can be
identified with AutOS (Op|qS ), the automorphisms of Op|qS = OpS ⊗R Λ•(Rq).

Proof. By the Chart Theorem, Theorem 2.36, we can identify morphisms of supermanifolds
f : S → GL(Rp|q) ⊆ Rp2+q2|2pq as collections of p2+q2 even elements and 2pq odd elements of the
structure sheaf OS such that the induced reduced map has image in GL(Rp)×GL(Rq) ⊆ Rp2+q2 .
In turn, these collections, can be identified with an invertible matrix with coefficients in OS .
The invertibility follows from the fact that the reduced map has image in GL(Rp) × GL(Rq)
is invertible. This shows that SMfld(S,GL(Rp|q)) can be identified with the automorphisms of
Op|qS .

2.3.1 Super Lie Groupoids

In the same spirit of super Lie groups, we define super Lie groupoids. The difference between
groups and groupoids is that in groupoids the multiplication is only partially defined. Elements
are given a source and target. Two elements can only be composed if the target of the one
element agrees with the source of the other. Without any smooth structure, a groupoid can
be identified with a category where all morphisms are isomorphisms. In ordinary smooth
geometry a Lie groupoid is a pair of two manifolds Γ0 and Γ1 with two surjective submersion
s, t : Γ1 → Γ0, the source and target map. Obviously in this smooth setting, we also assume
that the inversion map and (partially defined) multiplication map are smooth.

We now lift the notion to the case for supermanifold, using a similar categorical approach as for
super Lie groups.

Definition 2.50 ([Tom10, Definition 2.1]). A Super Lie Groupoid is a pair of supermanifolds
(Γ1,Γ0) with five morphisms satisfying some axioms.

• The source and target submersive epimorphisms s, t : Γ1 → Γ0.

• The multiplication map m : Γ1t×s Γ1 → Γ1 defined on the fiber product Γ1t×s Γ1 in the
diagram

Γ1t×s Γ1 Γ1

Γ1 Γ0

Pr2

Pr1 t

s

(2.3.9)

• The inversion map i : Γ1 → Γ1.

• The identity map e : Γ0 → Γ1.
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These maps are assumed to satisfy i ◦ i = IdΓ1 and s ◦ i = t and make the following diagrams
commute.

Γ0 Γ0 Γ0

Γ1

IdΓ0

e

IdΓ0

s t
(2.3.10)

Γ1t×s Γ1 Γ1 Γ1t×s Γ1 Γ1

Γ1 Γ0 Γ1 Γ0

m

Pr1 s

m

Pr2 t

s t

(2.3.11)

Γ1t×s Γ1t×s Γ1 Γ1t×s Γ1

Γ1t×s Γ1 Γ1

IdΓ1×m

m×IdΓ1 m

m

(2.3.12)

Γ1 Γ1t×s Γ1 Γ1

Γ1

〈e◦s,IdΓ1 〉

IdΓ1
m

〈IdΓ1 ,e◦t〉

IdΓ1

(2.3.13)

Γ1t×s Γ1 Γ1t×s Γ1 Γ1t×s Γ1

Γ1

〈IdΓ1 ,i〉

e◦s
m

〈i,IdΓ1◦t〉

e◦t
(2.3.14)

N

The discusion of super Lie groups is included in this definition by taking the base space Γ0 to
be the complete even point R0|0. Lie goupoids are obtained when taking all supermanifolds to
be ordinary manifolds.

Similar to how (super) Lie groups can act on (super)manifolds, we can act with super Lie
groupoids on supermanifolds. However, since the multiplication in the groupoid is defined on
the fiber Γ1t×s Γ1, the action is defined on a similar fiber space.

Definition 2.51. Let Γ = (Γ1,Γ0) a super Lie groupoid and M a supermanifold. A right Γ-
action on M consists of an anchor map ï : M → Γ0 and a multiplication map µ : Mï×s Γ1
on the fiber space in the diagram

Mï×s Γ1 Γ1

M Γ0

s

ï

(2.3.15)

such that the following diagram commute

Mï×s Γ1t×s Γ1 Mï×s Γ1

Mï×s Γ1 M

IdM×m

µ×IdΓ1 µ

µ

(2.3.16)
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Mï×s Γ1 M M Mï×s Γ1

Γ1 Γ0 M

µ

PrΓ1 ï

〈IdM ,e◦ï〉

IdM
µ

t

(2.3.17)

N

2.4 Super Vector Bundles
In this section, we will consider super bundles over supermanifolds. These will be superman-
ifolds fibered over some supermanifold in some supermanifold. I.e., we simply superficate all
spaces in consideration. Using this notion, we can consider super vector bundles. In particular,
the super tangent bundle of a supermanifold. In turn, this gives rise to the odd tangent bundle
which will be one of the main objects of study when considering field theories in later chapters.

We start by defining super fiber bundles.

Definition 2.52. A super fiber bundle E →M with fibers F for supermanifolds E, M and
F is a smooth super map that locally looks like the projection M × F →M . N

The geometric notion of super vector bundles follows naturally:

Definition 2.53. A super vector bundle is a super fiber bundle with fibers Rp|q such that
the transition functions lie in the supergroup GL(Rp|q). Here, we use the identification from
Lemma 2.41 to view Rp|q as a super vector space. N

While the geometric description is very intuitive, it is cumbersome to work with. Instead, we
will use an equivalent, more algebraic notion. For ordinary manifolds, this is closely related to
the Swan’s Theorem.

Theorem 2.54 ([DM99, Sections 3.1.2-4]). Let M be a supermanifold. Taking the sheaf of
sections U 7→ SMfldM (U × R0|1, E|U ) of a super vector bundle E → M defines a bijection
between super vector bundles over M and locally free sheaves over OM .

Proof. For a super vector bundle, the sheaf U 7→ SMfldM (U × R0|1, E|U ) is a locally free since
there are local trivializations E|U ∼= U ×Rp|q. The space of sections SMfldM (U ×R0|1, U ×Rp|q)
can be identified with the super vector space Rp|q, see Lemma 2.41.

A locally free sheaf E over OM has by definition a cover (Ui)i∈I with trivializations
φi : E(Ui) ∼= OUi × Rp|q. Here, we see Rp|q as a vector space. Using the identification from
Lemma 2.41, we can glue together copies of the supermanifold Ui × Rp|q along the transition
functions induced by φi ◦ φ−1

j on Ui ∩ Uj for i, j ∈ I. This gives us a suitable super vector
bundle, whose sheaf of sections is isomorphic to E .

2.4.1 Super Tangent Bundle

A leading example when considering ordinary vector bundles is the tangent bundle. We will
construct a super analogue of the tangent bundle. We follow [CF07, Section 3.2]. A tangent
vector in the ordinary sense is a derivation on the function algebra. Therefore, we will consider
derivations on the structure sheaves of supermanifolds. This will give us a locally free sheaf on
the base manifold. Hence, by Theorem 2.54, it gives a vector bundle.
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Definition 2.55. Let (M,OM ) be a supermanifold. Define for all opens U ⊆ M , the super
ring DerOM (U) of derivations on OM (U). The even component of DerOM (U) are linear maps
∂ : OM (U)→ OM (U) such that for all f, g ∈ OM (U) there holds that

∂(fg) = (∂f)g + f(∂g). (2.4.1)

The odd component of DerOM (U) consists of the linear maps ∂ : OM (U) → OM (U) with the
property that

∂(fg) = (∂f)g + (−1)p(f)f(∂g) (2.4.2)

for all f, g ∈ OM (U). Notice the use of the rule of signs here. We write DerOM for the sheaf of
derivations consisting of DerOM (U) for all opens U ⊆M . N

If we work on a superdomain Rp|q, then we have a canonical basis for the super ring of derivations.
We have the usual even derivatives ∂

∂xi
and the odd derivatives ∂

∂θj
. These derivatives are

explicitly given by

∂

∂xi
(fI(x)θI) = ∂fI(x)

∂xi
θI ,

∂

∂θj
(fI(x)θjθI) = fI(x)θI . (2.4.3)

In the second identity, we assume that j /∈ I.

Lemma 2.56. For a supermanifold M , the sheaf of derivations DerOM is locally free.

Proof. Locally, the supermanifold M looks like a super domain Rp|q. As we have seen in the
text above, the sheaf of derivations on Rp|q is free.

With this lemma, we can rigorously define the super tangent bundle of a supermanifold:

Definition 2.57. Let M be a supermanifold. The Super Tangent Bundle TM of M is
defined by the locally free sheaf DerOM .

Dually, the Super Cotangent Bundle T ∗M of a supermanifold M is the dual bundle to the
tangent bundle TM . Its sections are the Super Differential 1-Forms Ω1(M). Taking exterior
powers Λ•T ∗M and their sections, we have the Super Differential Forms Ω•(M). N

Notice that if we started with an ordinary manifold M (which we can see as a supermanifold
with superdimension zero), then the definitions reduces to the usual definition of (co)tangent
bundles and differential forms on ordinary manifolds. A De Rham operator can be constructed
for supermanifolds too, by extending the usual formulae to odd coordinates.

The algebra Ω•(M) of (super) differential forms can be seen completely algebraically as the
universal differential envelope of O(M), [BDM95, Section 2.2]. It is universal in the sense that
there exists an algebra homomorphism O(M)→ Ω•(M) and for any other graded commutative
differential algebra A with a map O(M)A0, there exists a unique homomorphism Ω•(M)→ A
of differential algebras making the triangle

O(M)

Ω•(M) A

(2.4.4)

commute. This point of allows us to generalize to n-differential algebras too. So instead of a
single De Rham differential, we require n of them.
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2.4.2 Odd Tangent bundle

On super vector bundles, we can perform all the usual constructions like direct sums, tensor
products, duals etc. in a straightforward fashion. However, in the super setting, we can do more:
we can perform a change of parity transformation. On the level of vector space and sheaves,
the change of parity transformation does not seem too drastic. We simply switch the even and
odd parts. However, on the level of spaces, the geometric change is immense.

Definition 2.58. Given a super vector bundle E → M over a supermanifold M given with
sheaf of sections E , the change of parity vector bundle ΠE is defined by the locally free
sheaf constructed by changing the parity U × Rp|q → U × Rq|p in the local trivializations of
E . N

Notice that under this construction, the total space of the super vector bundle changes, even
as a topological space. While the reduced manifold |E| is a vector bundle over |M | of rank p.
After the change of parity, the vector bundle |ΠE| over |M | has rank q.

Definition 2.59 (Odd tangent bundle). For any supermanifold M , we define the odd tangent
bundle ΠTM by the parity changed bundle of the tangent TM . By iterating the procedure of
taking the tangent bundle and switching the parity δ times, we obtain the space (ΠT )δM . The
elements of function sheaf O

(
(ΠT )δM

)
are called pseudo-differential forms. N

The odd tangent bundle ΠTM of a (super)manifold has some intriguing properties. We will
present some of them below. Inspiration is taken from [Hoh+11, Section 3] and [Koc04]. While
studying the properties of ΠTM , we upgrade them to (ΠT )δM where possible. Ideas, especially
for the case δ = 2, are taken from [KS03].

Lemma 2.60. Let M be some supermanifold. The generalized supermanifold
S 7→ SMfld(S × R0|1,M) is represented by the supermanifold ΠTM from Definition 2.59.

Proof. We follow the proof of [DM99, Lemma 3.3.1b]. We need to show that the assignments
S 7→ SMfld(S × R0|1,M) and S 7→ SMfld(S,ΠTM) are naturally isomorphic.

The induced map φ : O(M) → O(S) × O(R0|1) ∼= O(S)[θ]/(θ2 = 0) from an element in
SMfld(S × R0|1,M) can be written as

φ = α+ θβ : O(M)→ O(S)⊕ θO(S). (2.4.5)

For f, g ∈ O(M), there holds

α(fg) + θβ(fg) = φ(fg)
= φ(f) · φ(g)
= (α(f) + θβ(f)) · (α(g) + θβ(g))

= (α(f)α(g) + θ
[
β(f)α(g) + (−1)p(α(f))α(f)β(g)

]
.

From this expansion, we see that α : O(M) → O(S) is a map of algebras, while β is an odd S
valued α-derivation. I.e., we have that β ∈ Γ(S, α∗TM).

On the other hand, notice that we can decompose O(ΠTM) is locally generated respectively by
the even and odd coordinates

x1, . . . , xp, dθ1, . . . , dθq and dx1, . . . , dxp, θ1, . . . , θq. (2.4.6)
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The coordinates x1, . . . , xp, θ1, . . . , θq together generate a copy of O(M). Restricting an element
of SMfld(S,ΠTM) to O(M) leave us with an algebra map α : O(M)→ O(S). Restricting an ele-
ment of SMfld(S,ΠTM) to the piece of O(ΠTM) locally generated by dθ1, . . . , dθq, dx1, . . . , dxp
gives us precisely a section of the pullback bundle α∗TM . This shows the claim.

Proposition 2.61. Let M be some supermanifold. The generalized supermanifold
S 7→ SMfld(S × R0|δ,M) is represented by the supermanifold (ΠT )δM for all non-negative
integers δ.

Proof. We proceed by induction on δ. The case for δ = 0 is trivial. The case δ = 1 is the
claim of Lemma 2.60. Suppose that S 7→ SMfld(S × R0|δ,M) is represented by the superman-
ifold (ΠT )δM for some δ. By Lemma 2.60, we know that S 7→ SMfld(S × R0|δ × R0|1,M) is
represented by the supermanifold ΠT (ΠT )δM = (ΠT )δ+1M . Since canonically, we have that
R0|δ × R0|1 ∼= R0|δ+1, the induction step is shown.

The mapping space SMfld(S × R0|δ,M) admits an action of R0|δ via precomposition of the
translation action of R0|δ on itself. In fact, we can act by any diffeomorphism S×R0|δ → S×R0|δ.
For such an action to define an action on the representables of the considered presheaves, we
need to require that the diffeomorphisms S ×R0|δ → S ×R0|δ to respect the projections to S.

Definition 2.62. The Generalized Supergroup of Diffeomorphisms Diff(R0|δ) of a su-
permanifold X is the group valued functor S 7→ SMfldS(S × X → S × X), which sends a
supermanifold S to the set of diffeomorphisms S ×X → S ×X respecting the projections to S.
I.e., the following diagram commutes.

S ×X S ×X

S S
IdS

(2.4.7)

N

We will be interested in the case of the diffeomorphism supergroup of the superpoints R0|δ.
This case is particularly nice, since the generalized supergroup has a chance to be representable
by a Lie supergroup. In case, there was a nonzero even dimension, the representable would
need to be infinite dimensional. It remains to show that Diff(R0|δ) can be represented by some
supergroup Diff(R0|δ).

Generators of the generalized supergroup Diff(R0|δ) can be found by explicitly writing out the
transformations in coordinates using Theorem 2.36. To aid us in notation, we will write I for
an ordered sequence (I1, . . . Ik) ⊆ {1, . . . , δ}. For odd coordinates θ1, . . . θδ of R0|δ, we write
θI = θI1 · · · θIk . We write |I| for the length of the sequence. Sequences of length 0 are allowed.
We continue using the notation for the rest of this section.

Lemma 2.63. Denote θ1, . . . , θδ for the odd coordinates of R0|δ. The generalized supergroup
Diff(R0|δ) is for any index space S generated by the assignmentsθ1

...
θδ

 7→ A ·

θ1
...
θδ

 , A ∈ GLδ(O(S)), (2.4.8)

θi 7→ θi + ηIi θ
I , ηIi ∈ O(S), 0 < i ≤ δ and |I| 6= 1. (2.4.9)
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Proof. By the Chart Theorem, Theorem 2.36, we can write a general map S ×R0|δ → S ×R0|δ

respecting the projections to S as a pullback assignment of the form

θi 7→
∑
I

cIi θ
I (2.4.10)

for some elements cIi ∈ O(S). The condition of respecting the space S boils via the Chart
Theorem down to asserting that the coordiantes of S are send to itself. Such an assignment
represents an element of Diff(R0|δ) if and only if it is invertible. In turn, this is equivalent to
requesting invertibility when shrinking to just the linear terms in θ1, . . . θδ. I.e., the assignment
from Eq. (2.4.10) is invertible if and only if the following assignment is invertible.

θi 7→
δ∑
j=1

cjiθj (2.4.11)

This is simply saying that the matrix (cji )0<i,j≤δ ∈ GLδ(O(S)) as in Eq. (2.4.8). Notice that the
nonlinear terms of Eq. (2.4.10) can be recovered using transformations of the form in Eq. (2.4.9).

Corollary 2.64. The generalized supergroup Diff(R0|δ) represented by a finite dimensional super
Lie group Diff(R0|δ) with underlying supermanifold GLδ × Rδ(2δ−1−δ)|δ2δ−1

. The group action
of Diff(R0|δ) is induced by Eqs. (2.4.8) and (2.4.9).

Proof. Notice that the GLδ part of Diff(R0|δ) generated by Eq. (2.4.8) gives even transforma-
tions. The other generators each give a copy R1|0 or R0|1 depending on whether they give rise
to an even or odd transformation. Counting the generators gives the precise dimension.

Remark 2.65. The dimension of the Super Lie group Diff(R0|δ) is δ2δ−1|δ2δ−1. This should
be of no surprise since space of maps R0|δ → R0|δ can be identified with (ΠT )δR0|δ which has
dimension δ2δ−1|δ2δ−1. Indeed, if δ = 0 there is nothing to show. Otherwise, we have that
dim

(
ΠTR0|δ) = δ|δ and further acting with ΠT doubles the dimension every time.1 O

Albeit, the supermanifolds they are defined over are the same, the Super Lie groups Diff(R0|δ)
and GLδ×Rδ(2δ−1−δ)|δ2δ−1

with its canonical Super Lie group structure are vastly different. Even
if δ = 1, we obtain a (slightly) more complicated group operation. Increasing the dimension
further will worsen the situation further. For δ > 2, Noam Shomron [Sho02] showed, in somewhat
different notation, that the representation theory of Diff(R0|δ) is wild. For δ = 1, we can
write the diffeomorphism supergroup Diff(R0|1) completely as a semi-direct product of scalar
multiplications and translations.

Lemma 2.66 ([Hoh+11, Lemma 9]). The diffeomorphism supergroup Diff(R0|1) is isomorphic
to R× nR0|1. The semi-direct product is defined by the scalar multiplication of R× on R0|1.

Proof. We work in the generalized setting over an index space S and conclude the statement
using the Yoneda Lemma. Lemma 2.63 tells us that Diff(R0|1) is generated by scalar multipli-
cations GL1(O(S)) ∼= SMfld(S,R×) and translations SMfld(S,R0|1). The semi-direct product
structure follows from composing two diffeomorphisms:

θ
(α,β)7→ αθ + β

(α′,β′)7→ αα′θ + αβ′ + β. (2.4.12)
1More precisely, if dim(M) = p|q, then dim(ΠTM) = p + q|p + q. This reduces to doubling the dimension if

p = q.
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where α, α′ ∈ GL1(O(S)) are scalar multiplications and β, β′ ∈ SMfld(S,R0|1) are translations.

Increasing δ will give much richer diffeomorphism supergroups. However, the action of the
general linear group GLδ and the action of translations by R0|δ are still present. The same
argument as in the lemma above, shows that the semi-direct product GLδ nR0|δ is a subgroup
of Diff(R0|δ) in a canonical way. We have shown the following.

Lemma 2.67. The semi-direct product GLδ n R0|δ can be canonically embedded as a subgroup
in Diff(R0|δ).

By construction, we have a precomposition action of the generalized supergroup Diff(R0|δ) on
the generalized supermanifold S 7→ SMfld(S × R0|δ). By Proposition 2.61, we obtain an action
of Diff(R0|δ) on (ΠT )δM . This action induces an action on the structure sheaf O

(
(ΠT )δM

)
.

For δ = 1, the supermanifold ΠTM has locally even coordinates x1, . . . , xp, dθ1, . . . , dθq and
odd coordinates dx1, . . . , dxp, θ1, . . . , θq. Here, the coordinates x1, . . . xp, θ1, . . . θq are just the
coordinates of M and dx1, . . . dxp, dθ1, . . . dθq are the coordinates in the fibers of the shifted
tangent bundle. Inductively, we obtain local coordinates dIx1, . . . dIxp and dIθ1, . . . dIθq of
(ΠT )δM . Here, the xi resp. θj are the even resp. odd coordinates of M and dI = dI1 . . . dIk for
some ordered sequence I ⊆ {1, . . . , δ}.

The notation using the symbol d is suggestive in the sense that we obtain some kind of differential
forms. In fact, the differential forms of M are a subset of the pseudo-differential forms. Namely,
those forms that are polynomial in dθ1, . . . , dθq. Pseudo-differential forms could look like edθj ,
while this clearly cannot be a differential form.

Definition 2.68 ([Ber13b, Definition 1.19]). Define for a supermanifold M the sheaf of (ho-
mogeneous) polynomial functions on (ΠT )δM as

Opol
(
(ΠT )δM

)
=
⊕
k∈Z≥0

{f ∈ O
(
(ΠT )δM

)
|r · f = rkf, r ∈ R>0} (2.4.13)

Here, we write r · f with r ∈ R>0 and f ∈ O
(
(ΠT δM

)
for the dilatation action of R>0 on

(ΠT )δM . This is the action by the elements r · 1 ∈ GLδ ⊆ Diff(R0|δ).

A function f ∈ O
(
(ΠT δM

)
satisfying r · f = rkf is said to have polynomial degree k. We

will denote them by Ok((ΠT )δM) N

Proposition 2.69 ([Del+99, Remark page 74], [Ber13b, Proposition 2.4]). For any superman-
ifold M , there is an isomorphism of sheaves

Ω•(M) ∼= Opol(ΠTM) (2.4.14)

between (super) differential forms and the polynomial functions on ΠTM .

Proof. Locally identify the coordinates x1, . . . , xp, dθ1, . . . , dθq, dx1, . . . , dxp, θ1, . . . , θq of ΠTM
with the (super) differential forms with the same notation. This extends to an isomorphism of
sheaves as requested.

Corollary 2.70. For an ordinary manifold M , the structure sheaf of ΠTM can be identified
with Ω•M , the sheaf of differential forms. I.e., we obtain the space constructed in Example 2.34.
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Proof. For an ordinary manifold M the dilatation action on ΠTM is trivial in the even coor-
dinates and linear in the odd coordinates. This makes the function sheaf O(ΠTM) equal to
Opol(ΠTM).

The De Rham operator d on differential forms can be recovered as an odd vector field from
the Diff(R0|1) action on ΠTM . It is simply the derivative at zero of the translation action of
R0|1 ⊆ Diff(R0|1) on ΠTM . Following the computation in [Hoh+11, Section 3.1], we see that
acting by an element η ∈ R0|1 on a map S ×R0|1 has the effect of replacing the odd coordinate
ψ of R0|1 by ψ + η. A map φ : U × R0|1 →M induces a map on structure sheaves locally given
by

φ∗(xi) = yi + ψŷi, φ∗(θj) = ζj + ψζ̂j . (2.4.15)

Hence, in coordinates of ΠTM , we obtain the action given by(
η, (xi, θj , dxi, dθj)1≤i≤p

1≤j≤q

)
7→ (xi + ηdxi, θj + ηdθj , dxi, dθj)1≤i≤p

1≤j≤q
. (2.4.16)

The derivative to η evaluated at 0 becomes the odd vector field D which satisfies

Dxi = dxi, Dθi = dθi, Ddxi = 0 and Ddθi = 0. (2.4.17)

I.e., it is the operator given by

D =
p∑
i=1

dxi
∂

∂xi
+

q∑
j=1

dθj
∂

∂θj
. (2.4.18)

Lemma 2.71 ([Hoh+11, Lemma 8]). The restriction of the operator D to O(M) ⊆ O(ΠTM)
yields the De Rham operator d on supermanifolds.

Proof. From the formulae above, we easily deduce that D is an odd vector field on ΠTM . I.e.,
it satisfies

D(fg) = (Df)g + (−1)|f |fDg, (2.4.19)

for all f, g ∈ O(ΠTM). Moreover, it satisfies D2 = 0. Using the identification of Proposi-
tion 2.69, we complete the proof by computing Df for f ∈ O(M) in coordinates:

Df =
p∑
i=1

dxi
∂

∂xi
f +

q∑
j=1

dθj
∂

∂θj
f =

p∑
i=1

(−1)|f |
(

∂

∂xi
f

)
dxi +

q∑
j=1

(
∂

∂θj
f

)
dθj . (2.4.20)

Each component of the translation action of R0|δ ⊆ Diff(R0|δ) give just a copy of the case where
δ = 1. Hence, applying the above analysis to (ΠT )δM , we obtain operators D1, . . . , Dδ on
O
(
(ΠT )δM

)
. Inductively declaring local coordinates in the same way as we did for ΠTM ,

we obtain that local coordinates of (ΠT )δM can be denoted by dIxi and dIθj . Here, the xi
resp. θj are the even resp. odd coordinates of M and dI = dI1 · · · dIk for any ordered sequence
I ⊆ {1, . . . , δ}. Applying Lemma 2.71 to an operator Di, we realize that on O(M), there holds
Di = di. Straightforward induction yields the following lemma.

Lemma 2.72 ([Ber13b, Lemma 2.6]). An ordered sequence of operators DI on O
(
(ΠT )δM

)
reduces to dI on O(M) ⊆ O

(
(ΠT )δM

)
.
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Up to now, we kept the operators DI ordered. We wish to understand their commutation
relations.

Lemma 2.73. The operators Di are anti-commutative. I.e., they satisfy DkDl = −DlDk for
all 1 ≤ l, k ≤ δ.

Proof. We consider (ΠT )δM as a mapping space following Proposition 2.61. The induced map
on structure sheaves of a morphism φ : S × R0|δ →M takes the form

φ∗(xi) =
∑

I⊆{1,...,δ}

yiIψI , φ∗(θj) =
∑

I⊆{1,...,δ}

ζjIψI . (2.4.21)

For the commutation of Dk and Dl only the pieces proportional to ψkψl is relevant. Translating
ψk by ηk and ψl by ηl yields

ψlψk 7→ (ψl + ηl)(ψk + ηk) = ψlψk + ηlψk + ψkηl + ηlηk. (2.4.22)

Differentiating with ∂
∂ηl

∂
∂ηk

induces a sign change when commuting ηl with the derivative
∂
∂ηk

. Hence, the differentials ∂
∂ηk

∂
∂ηl

and ∂
∂ηl

∂
∂ηk

differ exactly by a sign. This implies that
DkDl = −DlDk as requested.

The differential operators Di map the space Opol
(
(ΠT )δM

)
of polynomial functions, see Def-

inition 2.68 on itself. Moreover, the Di give Opol
(
(ΠT )δM

)
the structure of an n-differential

graded commutative algebra. In fact, making the same identifications as in Proposition 2.69,
we can see that Opol

(
(ΠT )δM

)
can be identified with the universal n-differential graded

commutative algebra containing O(M), [KS03, Section 2].

The anti-commutativity of Di in particular implies that D2
i = 0. Hence, we can consider the

cohomology.

Proposition 2.74 ([KS03, Section 4.3]). The cohomology of Opol
(
(ΠT )δM

)
with respect to any

of the Di is naturally isomorphic to the ordinary De Rham cohomology of M .

Proof. The case for δ = 1 is directly implied by Proposition 2.69 and Lemma 2.71. For δ > 1
notice that (ΠT )δM = (ΠT )δ−1ΠTM is a vector bundle over ΠTM . Hence, it contracts to
ΠTM . Therefore, the cohomology of (ΠT )δM is the cohomology of ΠTM . This shows the
claim.

Instead of considering the operators Di individually, we can also consider the action of all of
them together. We come to the following definition.

Definition 2.75. A pseudo differential form ω ∈ O
(
(ΠT )δM

)
is closed if Diω = 0 for all i.

It is exact if there exists an f ∈ O
(
(ΠT )δM

)
such that D1 · · ·Dδω. N

From the commutation relations of the Di it is immediately clear that exactness implies
closedness. Moreover, when M is a superdomain iterative standard integration yields that all
closed polynomial functions of nonzero degree are exact.

Thus far, we considered the translation action of R0|δ on (ΠT )δM . Recall that the whole
supergroup Diff(R0|δ) acts on (ΠT )δM . In particular, we have an action of GLδ on (ΠT )δM .
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Computing similar to the case of odd translations, Eqs. (2.4.15) and (2.4.16), a map
φ : U × R0|δ →M is locally in coordinates given by

φ∗(xi) =
∑
I

yIi θ
I . (2.4.23)

Here, we sum over all ordered sequences, the θk are the odd coordinates and θI = θI1 · · · θI|I| .
The I superscript on the yi is only a label. Acting by an (alk)0≤k,l≤δ = A ∈ GLδ has the effect
of replacing θk with

∑
l a
l
kθl. Passing to the action on (ΠT )δM in coordinates, we see that A

acts by replacing dk by
∑
l a
l
kdl.

In particular, a coordinate of the form d1 . . . dδxi will transform like

d1 . . . dδxi 7→
∑
l

al1dl . . .
∑
l

alδdlxi = det(A)d1 . . . dδxi. (2.4.24)

Here, we used the anti-commutation relations of the Dk, Lemma 2.73, and Lemma 2.72 to obtain
the equality with the determinant.

Definition 2.76. A pseudo differential form ω ∈ C∞((ΠT )δM) form has determinant degree
k if for any A ∈ GLδ, the precomposition action yields

A · ω = det(A)kω. (2.4.25)

N

Example 2.77. If δ = 1, then the determinant degree agrees with the usual degree of differential
forms. We know that locally a degree k form can be written as fdx1 . . . dxk. Acting with a
linear scalar A ∈ GL1 gives

(A, fdx1 . . . dxk) 7→ Akfdx1 . . . dxk. (2.4.26)

So indeed, we have the pseudo differential form has determinant degree k. Moreover, any element
of C∞(ΠTM) is of determinant degree k for some k. 4

2.4.3 Equivariant Super Vector Bundles

The equivariant case for super vector bundles is completely analogously to the ordinary case.

Definition 2.78. Let G be a super Lie group. A G-equivariant super vector bundle is a
super vector bundle π : E → M with G actions on E and M such that π(ge) = gπ(e) for all
e ∈ E and g ∈ G and G acts on E by linear transformation between the fibers. In other words,
the following diagram commutes

G× E M

G×M M

IdG×π π . (2.4.27)

and the action in the fibers of E is linear. Here, the horizontal arrows are the relevant action
maps. N

Example 2.79. A G-equivariant super vector bundle over the point R0|0 is nothing else than
a super vector space V with a G action acting by linear transformations. E.g., it is the same
data as a G-representation G→ GL(V ). 4
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Example 2.80. More generally, a G-representation ρ : G→ GL(V ) defines a vector bundle Vρ
on every G-manifold M by the action given by

G× (M × V ) 3 (g, (m, v)) µ7→ (gm, ρ(g)(v)) ∈M × V. (2.4.28)

The (equivariant) sections of this bundle can be identified with the equivariant maps M → V :

ΓG(M,Vρ) ∼= {f ∈ SMfld(M,V )|f ◦ µ = ρ ◦ pG · f ◦ pM ∈ SMfld(G×M,V )}. (2.4.29)

Here, the maps pG : G ×M → G and pM : G ×M → M are the projections. The · on the
right-hand side, denotes the action of the representation on V . 4

From an equivariant vector bundle E → M , we can consider the induced vector bundle
E//G→M//G with the action groupoids E//G and M//G. The action groupoid of a manifold
M with a group action of G is defined to be the groupoid with objects the points of M and
morphisms triples (m, g,m′) ∈ M × G ×M such that gm = m′. The source and target maps
are simply the projections to M . The fact that E//G→M//G is a vector bundle can be easily
seen from trivializing charts of the equivariant vector bundle E →M .

2.5 Super Model Geometries
In Chapter 2.2, we have established that superdomains Rp|q give us a local model for superman-
ifold. This was done in close analogy how ordinary manifold have Rn as local model and how
Cn is for complex manifolds. However, all these local model exhibit much more structure than
used for defining manifolds. We can remember much more of the geometry via the charts. We
consider, following [HST10, Section 6.3], the case of supermanifolds, but the same analysis can
be performed on ordinary manifolds, complex manifolds and other similar structures.

Definition 2.81 ([HST10, Definition 6.13]). A supermanifold M with a (left) action of a super
Lie group G is called a super model geometry. An (M, G)-supermanifold is a supermanifold
Y together with a maximal atlas of smooth equivariant charts

Y ⊆ Ui
φi−→ Vi ⊆M (2.5.1)

from an open Ui ⊆ Y to an open Vi ⊆M such that the following properties hold:

• The Ui’s cover Y .

• The transition function

M ⊇ φi(Ui ∩ Uj)
φj◦φ−1

i−−−−−→ φj(Ui ∩ Uj) ⊆M (2.5.2)

is given by the action of an element g ∈ G. I.e., it is (a restriction of) the map

µ(g,−) : M→M (2.5.3)

for some g ∈ G and µ : G×M→M the action map.

N

Notice that in this definition, we can retrieve the supermanifold Y as a gluing of open subsets
of M. Therefore, we could instead work with just the transition function on which we impose a
suitable cocycle condition.
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Example 2.82. For any super Lie group G with subgroup H, we have a model geometry (G,H).
A basic (G,H)-manifold is the group G itself. 4

Example 2.83. In Example 2.47 above, we have constructed the supergroup of super Euclidean
translation Ep|qR for a paring R : Rq × Rq → Rp. Suppose that we further have Lie group G
acting on Rp and a G-representation of Rq such that the paring R is G-equivariant. With this
data, we can form the semi-direct product Ep|qR oG. Here, the action of G on Ep|qR = Rp ×ΠRq

is given by the action of G on Rp and through the representation on ΠRq. We call Ep|qR oG the
super Euclidean isometry group for G and the pair (Rp|q,Ep|qR oG) the super Euclidean
model geometry for G.

Standard examples of groups G are any kind of matrix group acting naturally on Rp, like
GL(p),SO(p) and Spin(p) etc. 4

Example 2.84. The Möbius strip M = ([0, 1]× R) / ((0, t) ∼ (1,−t)) can be seen as an
(S1 × R,Z/2Z)-manifold in the following way. Denote π : M → S1 = [0, 1]/(0 ∼ 1) for the
projection on the first coordinate. As charts take

φ1 : (0, 2
3

)× R→ S1 × R, φ1(s, t) = (π(s), t), (2.5.4)

φ2 : (1
3
, 1)× R→ S1 × R, φ2(s, t) = (π(s), t), (2.5.5)

φ3 :
((

[0, 1
3

) ∪ (2
3
, 1]
)
× R

)
/(0, t) ∼ (1,−t)→ S1 × R, φ3(s, t) =

{
(π(s), t) if s < 1

3
(π(s),−t) if s > 2

3
.

(2.5.6)

These charts are visualized in Fig. 1. The action of Z/2Z on the cylinder S1 × R is given by
flipping the sign in the second coordinate. Notice that the transition functions φ1 ◦ φ−1

2 and
φ1 ◦ φ−1

3 are given by the action of the trivial element of Z/2Z, while φ2 ◦ φ−1
3 is exactly given

by the action of the nontrivial element. 4

Remark 2.85. Notice that in the previous example, we cannot merge the charts φ1 and φ2 into
some φ. If we would, the transition function does not act like an element of Z/2Z anymore. The
common domain of the charts φ and φ3 now consists of two disjoint opens. On one component
the action is trivial while, it is non-trivial on the other component. O

As a single object, an (M, G)-supermanifold is simply a supermanifold, with a carefully chosen
atlas such that locally it resembles M with its group action. The relevant notion of (iso)morphims
in this situation must locally boil down to suitable (iso)morphisms on M. The latter being the
actions by elements of the group G.

Definition 2.86. The Isometries f : X → Y of (M, G)-supermanifolds X and Y are
diffeomorphisms which represented in charts are given by the action of an element g ∈ G on
M. More explicitly, for any chart φ around x ∈ X and any chart ψ around f(x) ∈ Y , the
composition ψ ◦ f ◦ φ−1 equals µ(g,−) for some g ∈ G. Here, µ is the action map on M.

The isometries of a single (M, G)-supermanifold Y form canonically a group under composition.
We will call this group Iso(Y ). N
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Figure 1: The Möbius strip on the left and cylinder on the right. In different colors, we
show the overlapping domains and codomains of the charts φ1, φ2 and φ3 as in

Example 2.84. Any single chart has as domain and codomain exactly two union of the
regions indicated by two colors. The action by Z/2Z is given by turning the cylinder

upside down.

2.5.1 Families of Model geometries

Instead of standalone (M, G)-supermanifolds and their isometries, we can consider families of
them. In fact, in the case of supermanifolds some sort of generalization must be made, since the
standalone objects do not give us much of an advantage over the ordinary (non-super) case. This
is due to the fact that any map R0|0 → G for a supergroup G factors uniquely through the under-
lying manifold |G|. Therefore, a (M, G)-supermanifold is nothing more than a (M, |G|)-manifold.

Roughly, a family of (M, G)-supermanifolds is a fiber bundle where the fibers are (M, G)-
supermanifolds.

Definition 2.87 ([HST10, Definition 6.14]). Let S be a supermanifold. An S-family of (M, G)-
supermanifolds is a morphism p : Y → S together with a maximal atlas of charts for Y which
are diffeomorphism φi : Ui → Vi between the opens Ui ⊆ Y and Vi ⊆ S × M such that the
following properties hold:

• The Ui cover Y .

• For all i, the following diagram commutes

Y ⊇ Ui Vi ⊆ S ×M

S

p

φi
∼=

p1

. (2.5.7)

• For all i, j, the transition function

S ×M ⊇ φi(Ui ∩ Uj)
φj◦φ−1

i−−−−−→ φj(Ui ∩ Uj) ⊆ S ×M (2.5.8)

takes the form
S ×M 3 (s,m) 7→ (s, gij(s)m) ∈ S ×M (2.5.9)
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for some function gij : p(Ui ∩ Uj)→ G.

N

Notice that by the property listed second, we obtain local sections of p. We deduce that p
is a submersion. As in the case of standalone (M, G)-supermanifolds, we can retrieve the
supermanifold Y from gluing together opens of S ×M along some suitable cocycles.

Also, the notion of isometries can be lifted to families. We simply require an isometry of a
family to be a map factoring over the index space S, which is an isometry of the standalone
(M, G)-supermanifold in the fiber.

Definition 2.88. An isometry between two families Y → S and Y ′ → S′ of (M, G)-
supermanifolds is a pair of maps (f, f) : (Y, S)→ (Y ′, S′) such that the following holds:

• The diagram

Y Y ′

S S′

f

f

(2.5.10)

commutes.

• For every chart φ of Y and φ′ of Y ′ the chart representation φ′ ◦ f ◦ φ−1 of f , where
defined, is of the form

S ×M ⊇ V 3 (s,m) 7→ (f(s), g(s)m) ∈ U ⊆ S′ ×M (2.5.11)

for some smooth function g : S → G.

We write IsoS(Y ) for the isometries on an S-family of (M, G)-supermanifolds Y . N

These families of spaces with their isometries form a category in a canonical way. The projection
to the index space S yields a functor to the category of smooth manifolds. This functor turns
out to have very desirable properties. It will be a stack. In the next chapter, we will define
stacks. In Proposition 3.21, we show that families of (M, G)-supermanifolds give stacks.
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3 Stacks
Stacks will form the language in which we can formulate field theories rigorously. They are
certain categories with desirable properties. Especially, they assume certain descent data, as
studied by Grothendieck [Gro60]. With this, Grothendieck observes that a stack is a solution to
a moduli problem in case a moduli space does not exist due to the existence of automorphism.
In this case, one can have a moduli stack.

The definition of a stack is originally due to Jean Giraud, [Gir71]. We will build up the definition
following [BX06] starting with the notion of Groupoid Fibrations. Stacks then arise by imposing
additional sheaf-like properties. The main goal in this chapter is to relate stacks, more precisely
differentiable stacks, to Lie groupoids and vice versa. The transition from differentiable stacks
to groupoid and reverse are the result of Proposition 3.25 and Proposition 3.38 respectively.

The categorical structures defined in this chapter can be used to formalize objects of study
in physics. We will treat one such example in Chapter 4, where we define Functorial Field
Theories in the language of stacks. More direct application exist. A number of them are
summarized in [BS17]. In particular, one can obtain a version of Kaluza-Klein theory in this way.

In this chapter, I assume the reader is familiar with basic category theory. In particular, the
Yoneda Lemma and slice categories are important. A good introduction to category theory can
be found in [Rie14].

3.1 Groupoid Fibrations
To build up the notion of a stack, we will first consider a weaker notion. Namely, that of a
category fibered in groupoids.

Definition 3.1. A category fibered in groupoids or simply a groupoid fibration is a
functor π : X→ T which has the following two properties:

• (Pullback) For every arrow V → U in T and object x ∈ X lying over U under π, there
exists an object y ∈ X and an arrow y → x in X lying over the arrow V → U .

• (Cartesian arrows) For every commutative triangle triple of arrows a, b, c in T such that
b ◦ a = c and arrows γ : z → x and β : y → x in X lying over c and b respectively, there
exists a unique arrow α : z → y lying over a making the diagram such that β ◦ α = γ.
Diagrammatically, we have the following commutative prism

z

y x

W

V U

α

π

γ

β

π π

a c

b

. (3.1.1)

Here, the upper triangle lies in X, while the lower one lies in T. The structure morphism
π of the groupoid fibration links the two diagrams.
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N

Remark 3.2. The condition π′ ◦ F = π for morphisms is meant a strict equality of functors.
It is too weak to require that π′ ◦ F and π are isomorphic as functors. O

Example 3.3 ([BX06, Example 2.2]). For every object X of a category T, the slice category
T/X gives a category fibered in groupoids T/X → T. The objects of T/X are pairs (U, f) where
U is an object in T and f : U → X a morphism. The morphisms (U, f)→ (V, g) are commuting
triangles

U V

X
f g

. (3.1.2)

The functor T/X → T simply projects on the first component. The pullback and Cartesian
arrows property hold canonically. 4

Notice that in the example above, we have that the fibers (T/X)U , on objects, can be identified
with the set of morphisms HomT(U,X). This identification highlights that the category fibered
in groupoids constructed just uses the presheaf represented by X. In fact, any presheaf gives
rise to a category fibered in groupoids.

Example 3.4 ([BX06, Example 2.4]). Any presheaf, i.e., contravariant functor, F : T → Set
gives rise to a category fibered in groupoids X→ T in the following way: The objects of X are
pairs (U, x) where U is an object in T and x ∈ FU . The morphisms (U, x) → (V, y) in X are
arrows a : U → V such that FU(y) = x. The functor X→ T is again just the projection on the
first component.

To see this indeed defines a category fibered by groupoids notice that for any arrow a : V → U
and x ∈ FU , we have the object (V, Fa(x)) ∈ X and thus the arrow a in X lying over a in

T. Moreover, suppose we have a commuting triangle
W

V U

a c

b

in T and arrows

b̃ : (V, y) → (U, x) and c̃ : (V, z) → (U, x) lying over b and c respectively. Since the functor
X → T is faithful by construction, we have that Fb(x) = y and Fc(x) = z. Therefore, there
holds Fa(y) = Fa(Fb(x)) = F (b ◦ a)(x) = Fc(x) = z. Hence, we have found a suitable arrow
in X over a. It is unique by faithfulness of X→ T. 4

The nomenclature category fibered in groupoids suggests there is a natural fibering of the
category in groupoid. Indeed, there is: fibers along identity morphism form groupoids. These
groupoids contain, as we shall see later on, much of the information of the entire category fibered
in groupoids.

Proposition 3.5. Let π : X → T be a category fibered in groupoids and U ∈ T an object. The
category XU consisting of all objects lying over U with morphisms, the morphisms lying over
IdU is a groupoid.

Proof. We have to show that all morphisms of Γ admit an inverse. Suppose we have a morphism
β : x→ x′ in Γ. By the Cartesian arrow property, applied to the triangle of identities on U , we
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obtain a morphism β−1 : x′ → x lying over IdU such the diagram

x′

x x′

U

U U

β−1

π

Idx′

β

π π

IdU IdU

IdU

. (3.1.3)

commutes. This shows that every element has a right inverse, hence an inverse.

Proposition 3.6. Let π : X → T be a category fibered in groupoids, b : V → U an arrow in
T and x on object in X lying over U . The object y whose existence is implied by the pullback
property is unique up to unique isomorphism.

Proof. Suppose objects y, y′ ∈ X lay over V with arrows β : y → x and β′ : y′ → x both lying
over the arrow b : V → U . By the Cartesian arrows property of a category fibered in groupoids,
we obtain a unique arrow φ : y → y′ lying over idV in the following diagram.

y′

y x

V

V U

φ

π

β′

β

π π

IdV b

b

(3.1.4)

Since φ lies over the identity on V , by Proposition 3.5 it is in an isomorphism. The uniqueness
of the isomorphism is implied by the uniqueness of the arrow φ.

The (up to unique isomorphism) unique object y is called the pullback of x along the arrow
a : V → U . We denote it by x|V or a∗x when including the explicit arrow. Similarly, a
morphism φ : x→ y over the identity on U , by the Cartesian arrow property, there is a unique
arrow a∗φ : a∗x→ a∗y over the identity on V making the following diagram commute.

a∗x a∗y

x y

a∗φ

φ

(3.1.5)

In case the arrow a is understood, we denote the pullback morphism a∗φ by φ|V .

3.1.1 Morphisms of Groupoid Fibrations

Having considered groupoid fibrations and their internal structure, we turn our head to mor-
phisms between them.
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Definition 3.7. A morphism groupoid fibrations over T from π : X → T to π′ : Y → T is
a functor F : X → Y such that π′ ◦ F = π. The morphism is an isomorphism if it is an
equivalence of categories. N

Example 3.8. Given a groupoid fibration π : X→ T. For every object x ∈ X, we can define a
morphism of groupoid fibrations T/πx → X as follows: On objects send an object f : U → πx
of T/πx to the pullback f∗x. The choice of pullback does not matter, just take any. This con-
struction extends to morphisms of T/πx by the Cartesian arrow property of groupoid fibrations.
Indeed for a morphism φ : (U, f)→ (V, g) of T/πx, we can form the diagram

f∗x

g∗x x

U

V πx

π

π π

φ f

g

. (3.1.6)

We obtain a suitable (and unique) arrow f∗x → g∗x as an image of φ. It is straightforward
to check that this is indeed a morphism of groupoid fibrations. We will denote the obtained
functor by x : T/πx→ X.

Notice that from the functor x we can recover the object x as the image of
(Idπx : πx→ πx) ∈ T/πx. 4

As we have alluded to before, the groupoids as fibers of a groupoid fibration constructed in
Proposition 3.5 contain much of the information of the entire groupoid fibration. To illustrate
this fact, we show in the next proposition that fullness and faithfulness of a morphism is com-
pletely determined by the action on the fiber groupoids.

Proposition 3.9. Let F : X→ Y be a morphism of groupoid fibrations over T. Denote XU (x, x′)
for the set of arrows x→ x′ in X over the identity on U . The following assertions hold.

(i) The morphism F is full if and only if for any two objects x, x′ in X over the same object
U ∈ T the map XU (x, x′)→ YU (Fx, Fx′) is surjective.

(ii) The morphism F is faithful if and only if for any two objects x, x′ in X over the same
object U ∈ T the map XU (x, x′)→ YU (Fx, Fx′) is injective.

Proof. In both cases, the condition is obviously necessary. We focus on the converses. Denote
πX : X → T and πY : Y → T for the groupoid fibrations. Let x, x̃ be any objects in X. Denote
Ũ for πXx̃.

Assume the condition of (i). Let γ : Fx → Fx̃ be an arrow in Y. By the pullback condition of
groupoid fibrations, we obtain an arrow β : x′ → x̃ in X over πYγ. Here, the object x′ must lie
over U . Applying the Cartesian arrow axiom, we obtain an arrow α : Fx → Fx′ in Y making
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the following prism commutes.

Fx

Fx′ Fx̃

U

U Ũ

α

πY

γ

Fβ

πY
πY

IdU πYγ

πYγ

(3.1.7)

Using the assumed condition, we find an arrow α̃ : x→ x′ such that Fα̃ = α. By functoriality,
we conclude that

F (β ◦ α̃) = Fβ ◦ Fα̃ = Fβ ◦ α = γ. (3.1.8)

This shows the first claim.

Now suppose the condition of (ii). Let β, γ : x → x̃ be arrows such that Fβ = Fγ. Since there
holds

πXβ = πYFβ = πYFγ = πXγ, (3.1.9)

we can apply the by the Cartesian arrow axiom to see there is just one arrow Fx → Fxs over
IdU in Y making the following diagram commute.

Fx

Fx F x̃

U

U Ũ

α

πY

Fγ

Fβ

πY
πY

IdU πXγ

πXβ

(3.1.10)

However, we know such arrow Fx → Fx. Namely, the identity on Fx. Therefore, any arrow
φ : x→ x over IdU in X making, the diagram

x

x x̃

βφ

α

(3.1.11)

commute, must have Fφ = idFx. Hence, by the assumed condition (ii), we conclude that φ = idx
and thus α = β. This shows the claim.

In the same spirit, we can detect essentially surjectiveness of morphisms on the fiber groupoids.

Proposition 3.10. A morphism F : X → Y of groupoid fibrations is essentially surjective if
and only if for every y ∈ Y lying over some object U , there exists an object x ∈ X such that Fx
is isomorphic to y with an isomorphism over the identity on U .
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Proof. Suppose that F is essentially surjective. Take an object y ∈ Y. Now there exists an x′

such that y ∼= Fx′ however this isomorphism need to lie over the identity on U . Nevertheless,
denote φ : y → Fx′ for the isomorphism and suppose it lies over some isomorphism ψ : U → U .
Then by the pullback property of groupoid fibrations, we have a map ψ∗x′ → x′ and thus, by
the Cartesian arrow property, an arrow Fψ∗x′ → y over the identity on U making the diagram

Fψ∗x′

y Fx′

U

U U

πY

φ

πY πY

IdU ψ

ψ

(3.1.12)

commute. This provides us with the necessary isomorphism over IdU .

The converse is obvious.

Hereby, we have seen that equivalence of groupoid fibrations is detected in the fiber groupoids.
Therefore, the notion of isomorphism, which just assumes the functor is an equivalence of
categories, can be detected simply in the fibers.

3.1.2 Representables

The groupoid fibrations arising as slices, like in Example 3.3, take a special place in the category
of groupoid fibrations. We will call them representable:

Definition 3.11. A category fibered in groupoids X → T is representable if there exists an
object X ∈ T such that the slice T/X ∼= X as groupoid fibrations. We will use the notation X
for the category fibered in groupoids represented by X. N

Definition 3.12. Suppose we have two categories fibered in groupoids X → Mfld and
: Y→ Mfld over the category of manifolds Mfld. We say that a morphism of categories fibered
in groupoids f : X→ Y is a representable if for every manifold U and morphism U → Y, the
fibered product X ×Y U is represented by some V . If additionally the induced map on mani-
folds V → U is a submersion, then the map f is a representable submersion. Moreover, we
say that a morphism of categories fibered in groupoids X → Y is an epimorphism if for any
manifold U and morphism U → X there is a covering (Ui → U)i∈I and there exist morphisms
Ui → X such that the following diagram 2-commutes for all i ∈ I.

Ui U

X Y

=⇒ (3.1.13)

Putting everything together, we say that a morphism of categories fibered in groupoids
f : X → Y is a surjective representable submersion if it is a representable submersion
and an epimorphism. N
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Lemma 3.13 ([BX06, Lemma 2.8]). Let F be a sheaf over SMfld. Let X be a (super)manifold
and F → X a morphism and let (Ui)i∈I be a cover of |X|. If for every i ∈ I the sheaf Ui ×X F
is representable, then F is representable.

Proof. Without loss of generality, we can assume that the cover (Ui)i∈I consists of opens of |X|.
Otherwise, we can choose a refinement of opens. Suppose that Ui ×X F is represented by some
Fi. Notice that for all i, j ∈ I, the fibered product (Ui∩Uj)×XF ⊆ Ui×XF is representable, say
by some Fij . Moreover, there are inclusions of open subsets Fij → Fi and Fij → Fj . Therefore,
we can glue the Fij together. We obtain a (super)manifold representing F .

3.2 Stacks
With some additional axiom imposed on a category fibered in groupoids, we obtain the notion
of a stack.

Definition 3.14. Let X → Set be a category fibered in groupoids. We say that X is a stack
over Set if the following axioms are satisfied for every object S ∈ Set:

• (Locality) Let x, y ∈ X be objects over S and φ, ψ : x → y isomorphisms in X over the
identity. If for some cover (Ui)i∈I of X there holds φ|Ui = ψUi for all i ∈ I, then there
holds φ = ψ.

• (Gluing) Let x, y ∈ X be objects over S and (Ui)i∈I a cover of S with isomor-
phisms φi : x|Ui → y|Ui over the identity on Ui for all i ∈ I. If there holds
φi|(Ui ∩ Uj) = φj |(Ui ∩ Uj), then there is a morphism φ : x→ y such that φ|Ui = φi.

• (Descent) Let (Ui)i∈I be a cover of S with objects xi over Ui and isomorphisms
(φij : xi|(Ui ∩ Uj) → xj |(Ui ∩ Uj))i,j∈I over the identity on Ui ∩ Uj satisfying the co-
cycles condition φjk ◦ φij = φik taken in the fiber XUi∩Uj∩Uk . Then there exists an object
x over S and isomorphisms φi : x|Ui → xi such that φij ◦ φi = φj in the fiber XUi∩Uj .

A functor X→ Y is a morphism of stacks if it is a morphism of groupoid fibrations. N

Remark 3.15. The pullbacks used in the axioms involve some choices. They are only unique
up to unique isomorphism, see Proposition 3.6. However, none of the properties depend on the
exact choice. O

Remark 3.16. Notice that the morphism φ obtained from gluing is unique by the locality axiom.
Moreover, the object x obtained by the descent axiom is unique up to unique isomorphism by
the other two axioms. O

Remark 3.17. Instead of landing in the category of sets, we can, similar to Remark 2.19, land
in any category like rings, algebras or vector spaces. O

Remark 3.18. For generalizing the source of the stack, we can only use categories with a
Grothendieck Topology. This gives us the suitable notion of covers. For more details on
Grothendieck topologies, I refer to [Vis04]. When working on some catgeory with a Grothendieck
topology, we should to interpret the intersection Ui ∩ Uj as the fibered product Ui ×S Uj along
the inclusion maps. For us, the most important case is when we take the category of smooth
(super) manifolds with smooth maps, obtaining stacks of (super) manifolds. O

Example 3.19. For a (super)manifoldX, the slice category SMfld/X is a stack. In Example 3.3,
we have seen it is a groupoid fibration. Notice that any morphism over the identity must be
the identity itself. Therefore, the locality and gluing property hold trivially. The descent axiom
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holds, since we can glue opens together to a supermanifold when the given cocycle condition
holds. We will use the same terminology and notation as for groupoid fibrations that the
supermanifold X represents the stack X constructed by the slice category. 4

Example 3.20 ([Hei05, Example 1.5]). Given a supermanifold X with an action of a super
Lie group G. Denote a : G × X → X for the action map. We define the quotient stack
[X/G] to have objects the pairs (P p→ S, P

f→ X). Here, p is a principal G-bundle and f an
equivariant map for the relevant G action. The morphisms of [X/G] are G-equivariant maps
P → P ′ between principal bundles P → S and P ′ → S′. This category is a stack over SMfld
under the projection to S. 4

More examples of stacks arise as categories of families of (M, G)-(super)manifolds with their
isometries as defined in Chapter 2.5.

Proposition 3.21. Given a (super) model geometry (M, G) and S a (super)manifold. The cate-
goryM(M, G) with as objects the S-families of (M, G)-(super)manifolds for all (super) manifolds
S and as arrows the isometries between them is a stack under the canonical projection to the
index space S.

Proof. We first check that the functor π : MS(M, G)→ SMfld is a groupoid fibration. Take an
S-family of (M, G)-manifolds Y → S, a manifold S′ and a map f : S′ → S. We can now consider
the pullback manifold f∗Y = Y ×S S′ in the diagram

Y ×S S′ Y

S′ S
f

. (3.2.1)

By pulling back the charts φi of Y over f , we obtain charts ψi of Y ×S S′. If a transition
function φj ◦ φ−1

i takes in coordinates the form S ×M 3 (s,m) 7→ (s, gij(s)m) ∈ S ×M, then
the transition function ψj ◦ ψ−1

i takes the form S′ ×M 3 (s′,m) 7→ (s′, gij(f(s′))m) ∈ S′ ×M
for the same function gij : S → G. The upper horizontal map in the diagram is an isometry.
This shows the pullback property of groupoid fibrations.

To show the Cartesian arrow property take manifolds S, S′ and S′′ with (M, G) families Y, Y ′
and Y ′′ over them respectively and morphisms forming the diagram

Y ′′

Y ′ Y

S′′

S′ S

φ

ψ

f

. (3.2.2)

Since, the isometries φ and ψ are diffeomorphisms in the fibers over S, S′ and S′′, there exists a
unique map Y ′′ → Y ′ over f which is an isometry in every fiber. Considering this map in local
charts, we deduce smoothness of this map. This shows the required property. We have shown
that M(M, G) is a groupoid fibration.
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Since isometries of families are completely governed by their local properties on the index man-
ifold, the locality and gluing axioms on the morphism hold trivially. Since the families can be
retrieved from gluings of opens in together opens of S×M, provided a suitable cocycle condition,
restricting sufficiently, we deduce that the descent axiom holds. This completes the proof.

3.2.1 Morphisms of Stacks

Morphisms of stacks are defined simply as morphisms of the underlying groupoid fibrations.
However, the additional axioms imposed on the groupoid fibrations do enforce properties of the
morphisms. The next proposition is particularly useful.

Proposition 3.22. Let F : X→ Y be a fully faithful morphism of stacks. The morphism F is
essentially surjective if and only if for every object y ∈ Y lying over some object U , there exists
a cover (Ui)i∈I of U with for every i ∈ I an object xi ∈ X lying over Ui such that Fxi ∼= y|Ui
over the identity on Ui.

Proof. The implication left to right is directly implied by the similar result on groupoid
fibrations, see Proposition 3.10. We show the converse statement.

Denote Uij = Ui ∩ Uj for all i, j ∈ I. Fix an isomorphism φi : Fxi → y|Ui over the identity
on Ui for every i ∈ I. Consider the objects xi|Uij . We have by construction a morphism
ιi : xi|Uij → xi over the inclusion Uij → Ui. Hence, the morphism Fιi in Y lies over
the identity. By uniqueness of pullbacks, Proposition 3.6, there is a unique isomorphism
F (xi|Uij) ∼= F (xi)|Uij over the identity on Uij . Using the isomorphism φi we obtain an
isomorphism F (xi|Uij) ∼= (y|Ui)|Uij ∼= y|Uij . Applying the same argument with the indices i
and j switches, we obtain an isomorphism F (xj |Uij) ∼= y|Uij . Composing the isomorphisms,
we find an isomorphism ψij : F (xi|Uij) → F (xj |Uij). Since the functor F is fully faithful, we
can reflect this isomorphism to an isomorphism ψ̃ij : xi|Uij → xj |Uij .

We check the cocycle condition on the isomorphisms ψij . Notice that it suffices to check it
on the ψ̃ij ’s instead, because F is fully faithful. The composition ψ̃jk ◦ ψ̃ij is induced by the
following chain of isomorphisms

F (xi|Uijk) ∼= F (xi)|Uijk ∼= y|Ui|Uijk ∼= y|Uijk ∼= y|Uj |Uijk ∼= F (xj)|Uijk ∼= F (xj |Uijk)
∼= F (xj)|Uijk ∼= y|Uj |Uijk ∼= y|Uijk ∼= y|Uk|Uijk ∼= F (xk)|Uijk ∼= F (xk|Uijk)

.

(3.2.3)
Notice that the fourth term and the third to last term are equal. Therefore, the isomorphism
over the identity on Uijk in between is the identity on y|Uijk. Hence, we can shrink the chain
of isomorphisms to

F (xi|Uijk) ∼= F (xi)|Uijk ∼= y|Ui|Uijk ∼= y|Uijk ∼= y|Uk|Uijk ∼= F (xk)|Uijk ∼= F (xk|Uijk) .
(3.2.4)

This corresponds precisely to the chain of isomorphisms giving the isomorphism ψ̃ik restricted
to Uijk. This shows that the cocycle condition holds for the ψ̃ij ’s. Hence, it holds for the ψij ’s.

The gluing property of stacks now gives us an object x ∈ X over U and isomorphisms
ψi : x|Ui → xi such that ψij ◦ ψi = ψj . We show that Fx is isomorphic to y. Notice that
φj |Uij ◦ ψ̃ij corresponds to the chain of isomorphisms

F (xi|Uij) ∼= F (xi)|Uij ∼= y|Ui|Uij ∼= y|Uij ∼= y|Uj |Uij ∼= F (xj)|Uij ∼= y|Uj |Uij ∼= y|Uij . (3.2.5)
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Similar to the argument above, we can shrink this chain to

F (xi|Uij) ∼= F (xi)|Uij ∼= y|Ui|Uij ∼= y|Uij . (3.2.6)

We conclude that φj |Uij ◦ ψ̃ij = φi|Uij . Hereby, we obtain the identity

φi|Uij ◦ (Fψj)|Uij = φj |Uij ◦ ψ̃ij ◦ (Fψi)|Uij = φj |Uij ◦ (Fψj)|Uij . (3.2.7)

By the gluing action of stacks, we obtain an isomorphism Fx→ y. As requested.

Corollary 3.23. A morphism of stacks FX→ Y is an equivalence if and only if the following
two conditions hold:

• For any two objects x, x′ ∈ X over the same object U the map XU (x, x′) → YU (Fx, Fx′)
is bijective.

• For every object y ∈ Y lying over some object U , there exists a cover (Ui)i∈I of U with for
every i ∈ I an object xi ∈ X lying over Ui such that Fxi ∼= y|Ui over the identity on Ui

Proof. Apply Proposition 3.9, Proposition 3.22 and the usual construction of a pseudo-inverse
for a fully faithful and essentially surjective functor, e.g., see [Rie14, Theorem 1.5.9].

3.2.2 Differentiable Stacks

In the case of stacks on (super) manifolds, as in Remark 3.18, we can make a further definition.
We will say when stacks themselves are differentiable. Naturally, the stacks represented by a
smooth manifold should be differentiable. Taking this as a guidance, we define the following.

Definition 3.24. A stack X→ Mfld is called (super) differentiable if there exists a (super)
manifold X and a surjective representable submersion X → X. The (super) manifold X and
the surjective representable submersion X → X together are called a (super) presentation or
(super) atlas of X. N

Given an atlas X → X on a stack, we can form the 2-fiber product

X ×X X X

X X

=⇒ (3.2.8)

Since an atlas s : X → X is a representable submersion by definition, we know that the fibered
product X ×X X is representable. Hence, we can see it as a manifold. Inspecting the points of
X×XX more closely, we see that it is given by triples (y, φ, y′), where y : U → X and y′ : U → X
are objects in X and φ : s(y) → s(y′) an isomorphism in X over the identity on X. From this
description, we can distill a composition rule on the fibered product

(y, φ, y′) ◦ (y′, ψ, y′′) = (y, ψ ◦ φ, y′′). (3.2.9)

This composition rule makes the X ×X X into a groupoid.

Proposition 3.25. Let X → X be a differentiable stack over some (super)manifold X. Then
the fibered product X ×X X is represented by a (super) Lie groupoid.
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Proof. The fibered product is representable, since the atlas is a representable submersion. The
composition rule Eq. (3.2.9) provides us with an associative composition. The projections
X ×X X → X to the first and third component provide us with source and target maps re-
spectively. All we have to show is that these maps are surjective submersions. The fact that
the source and target maps are surjective submersions is implied by the fact that the atlas is an
epimorphism.

Example 3.26. A stack X represented by a manifold X defines an atlas on itself. The Lie
groupoid associated is simply the groupoid with only identity morphism on the points of X. 4
Example 3.27. For any Lie group G, the category BG consisting of all principal G bundle
with G-equivariant maps is a stack over Mfld. The map ∗ → BG which sends

∗ 3 (U → ∗) 7→ G× U ∈ BG

to the trivial G bundle over U defines an atlas for BG. The Lie groupoid can be identified with
the group G, seen as a Lie groupoid. 4
Example 3.28. Similarly, the stack VecBunnIso of rank n vector bundles with morphisms the
morphisms of vector spaces which are fiberwise isomorphisms forms a stack. It has a presentation
given by the group GLn. 4
Example 3.29. For a (super)manifold X with a (super) Lie group action by G, the quotient
stack from Example 3.20 admits an atlas given by sending an object f : S → X to the trivial
principal bundle S ×G→ S and the G-equivariance S ×G→ X given in local coordinates by

S ×G 3 s, g 7→ g · f(s) ∈ X.

The map on arrows is canonical. The (super) Lie groupoid is the action groupoid of G acting
on M . 4
We can reformulate the conditions imposed on a presentation into weaker conditions. The proof
goes through the following lemma.
Lemma 3.30 ([BX06, Lemma 2.11]). Let f : X → Y be a morphism of stacks over SMfld
and let U be a (super)manifold with an epimorphism U → Y. If the fibered product X ×Y U
is represented by some (super)manifold V and the map V → U is a submersion, then f is a
representable submersion.

Proof. Let W be a (super)manifold and W → Y a morphism. Firstly, we show that the fibered
product F = X ×Y W is representable. Since U → Y is an epimorphism, we can find a cover
(Wi → W )i∈I of W and morphisms φi : Wi → U such that the following diagram 2-commutes
for every i ∈ I.

Wi W

U Y

φi

=⇒ (3.2.10)

With this 2-commutative square, we can form a 2 commutative Cartesian cube.
Wi ×W F V

Wi U

F X

W Y

(3.2.11)



3 STACKS 42

Since, the left, right and bottom side of this cube are pullback squares, so is the top square.
Hence, we have an isomorphism Wi ×W F ∼= Wi ×U V . Therefore, the fibered product
Wi ×W F is representable and thus by Lemma 3.13 the stack F is representable, say by some
(super)manifold F .

Also since the top square of the cube is a pullback and the fact that V → U is a submersion, so
is the map Wi×W F→Wi a submersion. Now F →W is a submersion, since being submersive
is a local property.

Corollary 3.31. A stack X over SMfld is differentiable if and only if there exists a morphism
X → X with the following properties:

• The groupoid X ×X X is represented by some super Lie groupoid Γ and the projections
Γ→ X are submersions.

• The morphisms X → X is an epimorphism.

Proof. The conditions are obviously necessary. Lemma 3.30 immediately shows that they are
sufficient.

3.3 From Lie Groupoids to Stacks
In the previous section, we have seen that we can associate a (super) Lie groupoid to any differ-
entiable stack. In this section, we will go the reverse route and construct a suitable differentiable
stack from a given (super) Lie groupoid. This construction goes by torsors over a groupoid.

3.3.1 Torsors

Torsors are for a Lie groupoid what principal bundles are for groups. We give a definition.

Definition 3.32 ([BX06, Definition 2.8]). Let Γ be a (super) Lie groupoid, see Definition 2.50,
and B a (super) manifold. A right Γ-torsor over B is a manifold E with a right Γ action, see
Definition 2.51, together with a surjective submersion π : E → B such that if π(p) = π(p′), then
there exists a unique γ ∈ Γ such that p · γ is defined and p · γ = p′. Notice that the right action
of the groupoid includes a anchor map ï : E → Γ0, where Γ0 is the base of the Lie groupoid
Γ. N

Example 3.33. A super Lie groupoid Γ with its target map Γ → Γ0 to the base Γ0 is a
Γ-torsor. 4

Example 3.34. Any principal bundle with any structure group G is a G-torsor. Here, we see
G as a groupoid. 4

Example 3.35 (Trivial torsors, [BX06, Example 2.20]). Denote Γ0 for the base manifold of a
(super) Lie groupoid Γ. Let f : B → Γ0 be a smooth map. The fiber product B ×Γ0 Γ in the
diagram

B ×Γ0 Γ Γ

B Γ0

π s

f

(3.3.1)

is a Γ-torsor over B with projection π. Here, the map s : Γ → Γ0 is the source map. The Γ
action on B ×Γ0 Γ is given in local coordinates by acting on the right in the second coordinate

((s, γ), δ) 7→ (s, γ · δ) ∈ B ×Γ0 Γ. (3.3.2)
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The anchor map is the projection to the second coordinate composed with the target map of
the (super) Lie groupoid. We call the torsors constructed in this fashion trivial torsors. 4

Many more examples of torsors arise from differentiable stacks. The following lemma outlines
the construction.

Lemma 3.36. Given a differentiable stack X with atlas s : X → X, a manifold U and a mor-
phism of stacks p : U → X. Then the 2-fibered product X ×X U in the diagram

X ×X U U

X X

p
=⇒

s

(3.3.3)

is represented by a torsor for the groupoid X ×X X as constructed in Proposition 3.25. The
anchor maps is simply the projection onto X

Proof. The fact that X ×X U is representable follows immediately from the fact that the atlas
s is a representable submersion. Moreover, the induced map on manifolds by the morphism
X ×X U → U is a surjective submersion (surjectivity follows from surjectivity of s).

Inspecting the objects of X×XU , we see that they are exactly triples (g, φ, f) where f : V → X
and g : V → U are maps and an isomorphism φ : p(g) → s(f) in X. Therefore, the groupoid
X ×X X, which has as objects the triples (f, ψ, f ′) with f : V → X, f ′ : V → X maps and
isomorphism ψ : s(f) → s(f ′) in X over IdU , has an obvious action on X ×X U from the right.
Namely, the action given by

(g, φ, f) · (f, ψ, f ′) = (g, ψ ◦ φ, f ′). (3.3.4)

A straightforward check shows this is indeed a groupoid action. The anchor map is clearly
as claimed. Moreover, if (g, φ, f) and (g, φ′, f ′) are objects of X ×X U , then the object
γ = (f, φ′ ◦ φ−1, f ′) is the unique object γ ∈ X ×X X such that (g, φ, f) · γ = (g, φ′, f ′).
This shows that X ×X U is indeed represented by a torsor for the relevant groupoid.

3.3.2 A Stack of Torsors

In Example 3.27, we have seen that principal bundles give a differentiable stack in a natural
way. Since, torsors are the natural generalization of principal bundles from groups to groupoids,
we will now generalize this example. Firstly, we need a suitable notion of morphism between
stacks.

Definition 3.37. A morphism of Γ-torsors π : E → B and π′ : E′ → B′ is a commutative
diagram of the following form

E E′

B B′

π π′ (3.3.5)

such that the top map is Γ-equivariant. N

With these morphisms, we can form the category BΓ of Γ-torsors and their morphisms. Notice
that the trivial torsors play a special role, since any torsor is locally isomorphic to a trivial
torsor. Indeed, for a torsor π : E → B, the map π is a surjective submersion. Hence, it admits
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local sections. A section σ : B → E constructs an isomorphism between E and the trivial torsor
constructed using the map ï ◦ σ where ï : E → Γ0 is the anchor map. The isomorphism is
given by the assignment in local coordinates

B ×Γ0 Γ 3 (b, γ) 7→ σ(b) · γ ∈ E. (3.3.6)

Using this local triviality property, one can easily deduce that for any morphism of torsors the
diagram in Eq. (3.3.5) is a pullback diagram.

The category BΓ admits a canonical forgetful functor BΓ→ SMfld mapping a torsor E → B to
the base manifold B. This functor turns out to be a differentiable stack. We show this fact in
several steps. We start by showing that BΓ is a stack over SMfld, Proposition 3.38. Secondly,
we show there is a suitable functor Γ0 → BΓ from which we can recover the (super) Lie groupoid
Γ, Lemma 3.39. Lastly, we deduce that the constructed functor in Lemma 3.39 is actually a
presentation, Proposition 3.40.

Proposition 3.38 ([Blo07, Proposition 2.16]). For any (super) Lie groupoid, the category BΓ
is a stack over SMfld.

Proof. We first show that the functor BΓ→ SMfld is a groupoid fibration. Notice that for any
Γ-torsor E′ → B′ and a map B → B′, the pullback E′ ×B′ B is naturally a Γ-torsor over B.
Moreover, any morphism of Γ-torsors gives rise to a pullback diagram, as in Eq. (3.3.5). Hence,
any arrow in BΓ is Cartesian. This shows that BΓ→ SMfld is a groupoid fibration.

To see that BΓ→ SMfld is a stack, notice that the locality and gluing axiom are fulfilled since
the morphisms of BΓ are given by maps of supermanifold and Γ-equivariance is a local property
on the base space of the torsor. For the descent axiom, notice that we can glue torsors from
local pieces if the cocycle condition is satisfied. This is similar to the way one can glue vector
bundles or principal bundles together from cocycles. Suppose that U = (Ui)i∈I is an open cover
of some space B with cocycles φij : E→Ej as in the descent axiom. In particular, we have torsors
Ei → Ui for all i ∈ I. Consider the pushout space

E := ti∈IEi/ ∼ . (3.3.7)

Here, the pushout is taken over the cocycle maps φij . Straightforward checks show that this
indeed defines a torsor satisfying the requirements of the descent axiom. This shows that
BΓ→ SMfld is a stack.

3.3.3 Presentation for the Torsor Stack

The stack of principal bundles, Example 3.27, was one of our prime examples of stacks admiting
a presentation. Here, the presentation was given by embedding trivial principal bundles into
BG. The stack of trivial bundles was then identified with the stack ∗ (the only datum of a
trivial principal bundle is the base space). The trivial torsors defined in Example 3.35, give us
the natural generalization. Now, the stack ∗ should be generalized to the base of the super Lie
groupoid Γ0.

Lemma 3.39. Let Γ be a (super) Lie groupoid. The assignment s : Γ0 → BΓ by sending an
object (f : U → Γ0) to the trivial torsor U ×Γ0 Γ extends to morphisms and the 2-fiber product
Γ0 ×BΓ Γ0 equivalent to Γ with an equivalence identifying the two projections Γ0 ×BΓ Γ0 → Γ0
with the source and target map of the (super) Lie groupoid.
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Proof. The extension of s to morphisms is straightforward. We focus on the other claims. We
follow the proof of [Blo07, Proposition 2.17].

Objects of Γ0 ×BΓ Γ0 are given by triples (a, φ, b) where a, b : U → Γ0 are smooth maps of
supermanifolds and an isomorphism of Γ-torsors φ : b̂ → â. Here, â and b̂ denote the trivial
torsors U ×Γ0 Γ defined by the maps a and b respectively. Denote the isomorphism φ explicitly
by φ(u, γ) = (φU (u, γ), φΓ(u, γ)). For any object (a, φ, b) of Γ0 ×BΓ Γ0, we can define a map
η(a,φ,b) : U → Γ in local coordinates by

U 3 u 7→ φΓ(u, idb(u)) ∈ Γ. (3.3.8)

Conversely, for any map η : U → Γ, we can define in local coordinates

aη : U → Γ0 φη : b̂→ â bη : U → Γ0

aη(u) = sΓ(η(u)) φη(u, γ) = (u, η(u)γ) bη(u) = tΓ(η(u))
(3.3.9)

Here, sΓ and tΓ denote the source and target map Γ → Γ0 of the (super) Lie groupoid respec-
tively. Notice that

φ(u, γγ′) = (u, η(u)γγ′) = (u, η(u)γ)γ′ = φ(u, γ)γ′. (3.3.10)

Moreover, notice that â 3 (u, γ) 7→ (u, η(u)−1γ) ∈ b̂ is an inverse of φ. Therefore, the map φ is
an isomorphism of Γ-torsors. Hence, we have constructed maps on objects

Γ0 ×BΓ Γ0 → Γ Γ→ Γ0 ×BΓ Γ0

(a, φ, b) 7→ η(a,φ,b) η 7→ (aη, φη, bη)
. (3.3.11)

These assignments extend straightforwardly to morphisms and become morphisms of stacks.
We show that they are each other’s pseudo-inverses (hence they form the required equivalence
of stacks). Composing the two morphisms, we see that

η(aη,φη,bη)(u) = (φη)Γ (u, idbη(u)) = η(u)idbη(u) = η(u). (3.3.12)

So on Γ, there is nothing to show. Composing the other way around, we find

aηa,φ,b(u) = sΓ(ηa,φ,b(u)) = sΓ(φΓ(u, idb(u))) = a(φU (u))
φηa,φ,b(u, γ) = (u, ηa,φ,b(u)γ) = (u, φΓ(u, idb(u))γ) = (u, φΓ(u, γ))

bηa,φ,b(u) = tΓ(ηa,φ,b(u)) = tΓ(φΓ(u, idb(u))) = b(u)
. (3.3.13)

We observe that φU gives us an isomorphism between a and aηa,φ,b . Hence, it induces an
isomorphism between (a, φ, b) and (aηa,φ,b , φηa,φ,b , bηa,φ,b). This gives us the required natural
isomorphism on Γ0 ×BΓ Γ0. This shows that Γ and Γ0 ×BΓ Γ0 are equivalent as stacks.
Therefore, the stack Γ0 ×BΓ Γ0 is represented by Γ.

Tracing through the definitions, under this equivalence, the two maps Γ → Γ0 induced by the
projections Γ0 ×BΓ Γ0 → Γ0 correspond precisely to the source and target maps of the (super)
Lie groupoid.

Proposition 3.40 ([BX06, Proposition 2.21]). For any (super) Lie groupoid Γ, the category
BΓ is a differentiable stack with a presentation Γ0 → BΓ.
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Proof. Take the functor s : Γ0 → BΓ from the previous lemma. We show that it is a presenta-
tion, i.e., it is a surjective representable submersion.

We show that s is an epimorphism. Let U be a (super) manifold and a morphism of stacks
β : U → BΓ. Denote E → B for the Γ-torsor β(IdU : U → U). Since any Γ-torsor is locally
trivial, we can find an open cover Bi of B such that the pullbacks Ei → Bi along the inclusion
Bi → B are trivial. By the pullback property of groupoid fibrations, we can find inclusions
Ui → U such that β(Ui → U) = (Ei → Bi). For any object µ : T → Ui in Ui, we can form the
following diagram

T Ui U

U

µ

µ

IdU
. (3.3.14)

Applying β yields the commuting prism
Eµ

Ei E

Bµ

Ui B

β(µ)

. (3.3.15)

Here, Eµ → Bµ denotes the torsor given by β(T µ→ Ui ↪→ U). Since, the torsor Eµ → Bµ factors
through a trivial torsor, it is trivial itself. Hence, we can find a map σµ : Bµ → Γ0 giving rise
to this trivial torsor. The assignment µ → σµ extends easily to a functor Ui → Γ0 making the
following diagram 2-commutes.

Ui U

Γ0 BΓ

β

=⇒ (3.3.16)

This shows that the functor Γ0 → BΓ is an epimorphism.

Lemma 3.39 shows that the 2-fibered product Γ0×BΓΓ0 is represented by Γ and both projections
to Γ0 correspond to the source and target map of the (super) Lie groupoid. Since the latter
two are submersions, so are the projections Γ0 ×BΓ Γ0 → Γ0. An application of Corollary 3.31
completes the proof.

3.3.4 Morita Equivalence

We have now established ways to go back and forth between (super) Lie groupoids and differen-
tiable stacks. To recall: For a (super) Lie groupoid Γ the category BΓ gives rise to a differentiable
stack, Proposition 3.40. Conversely, for a differentiable stack X with atlas s : X → X, obtain a
(super) Lie groupoid representing X ×X X, Proposition 3.25.

Theorem 3.41 ([BX06, Theorem 2.22]). Let π : X → Mfld be a differentiable stack with atlas
s : X → X. Let Γ represent X ×X X. Then there is an equivalence of stacks F : X→ BΓ.

Proof. Recall from Example 3.8 that we can view an object x ∈ X as a morphism of groupoid
fibration (or stacks) x : πx → X. Using this morphism, we obtain a Γ-torsor X ×X πx by
Lemma 3.36. We assign on objects Fx = X ×X πx.
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The assignment F extends on morphisms. Indeed, given an arrow a : x→ x′ in X, then for any
object (g, φ, f) ∈ Fx the inner two squares of the following diagram are pullbacks

g∗x x x′

π(g∗x) πx πx′

π

a

π π

πa

(3.3.17)

By pullback pasting, the outer square is also a pullback square. We conclude that there exists
a unique isomorphism χa,g : x(g) = g∗x → ((πa) ◦ g)∗x′ = x′((πa) ◦ g). Now we can define
F (a)(g, φ, f) = ((πa) ◦ g, χa,g ◦ φ, f). This extends F to arrows.

Notice from the description on arrows that F is faithful. Indeed, if a, a′ : x → x′ are arrows
in X such that Fa = Fa′, then χa,g = χa′,g for all g. In particular, this holds if g = IdU .
This immediately implies that a∗x′ = (a′)∗x′ and since pullbacks are unique up to unique
isomorphism, this in turn shows that a = a′.

We show that F is an equivalence of stacks. We will use the simpler criterion, Corollary 3.23. Let
x, x′ ∈ X be objects over some V and φ : Fx→ Fx′ an isomorphism over IdV . Since Fx and Fx′
are torsors, we can choose a cover (Vi)i∈I of V trivializing both torsors. In the trivializations,
the isomorphism φ becomes an isomorphism Γ×Γ0 Ui → Γ×Γ0 Ui. Notice that we can identify
F (x|Ui) and F (x′|Ui) with these trivializations. By equivariance, the isomorphism φ looks in
local coordinates like

(γ, u) 7→ (φΓ(u)γ, u). (3.3.18)
Here, the maps φΓ : Ui → Γ is given by the Γ coordinate of φ(Idu, u), where Idu is the identity
map on the relevant base point. Applying the Yoneda embedding to the map φΓ, we obtain
a map G : Ui → X ×X X. Notice that the map G sends an object g ∈ Ui to an isomorphism
x|Ui(g) ∼= x′|Ui(g). Evaluating G on the object IdUi ∈ Ui yields a map θi : x|Ui → x′|Ui.
Carefully tracing through the definitions, shows that Fθi = φ|Ui. Since F is faithful, the maps
θi are unique with this property. Therefore, on the overlaps Ui ∩ Uj in the covers, the θi and
θj must agree. Hence, by the gluing property of stacks, we obtain a morphism θ : x → x′ such
that θ|Ui = θi for all i ∈ I. Clearly, we have that Fθ = φ. This shows the first requirement of
Corollary 3.23.

For the second requirement of Corollary 3.23, notice that for any Γ-torsor T → U there is a
trivializing cover (Ui)i∈I . Hence, there exists sections si : Ui → T of the torsor. Applying the
Yoneda embedding, we obtain morphisms si : Ui → X×XX. Hence, by projecting on the target
of the groupoid X ×X X and composing with the atlas, we obtain morphisms xi : Ui → X. Let
xi ∈ X be the object related to xi as in Example 3.8. Now Fxi = X ×X πxi. Notice that the
section si gives a trivialization of this torsor and thus a canonical identification of Fxi and T |Ui.
This shows the second requirement of Corollary 3.23 and thus completes the proof.

As the previous theorem shows, one composition of the functors between (super) Lie groupoids
and differentiable stacks leaves the stack untouched, up to equivalence of stacks. The other
composition we can make, will also leave the Lie groupoids invariant, up to so called Morita
equivalence. Morita equivalence is named after the Japanese mathematician Kiiti Morita, who
introduced the concept in abstract algebra. In this setting, two rings are called Morita equivalent
if their categories of modules are equivalent. [AH97]

Definition 3.42. Two (super) Lie groupoid Γ and Γ′ are called Morita Equivalent if their
associated stacks of torsors BΓ and BΓ′ are equivalent. N
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For simplicitly, we show the following theorem just in the case of ordinary (non-super) geometry.
The proofs of (i) =⇒ (ii) and (ii) =⇒ (iii) can be lifted to the super case straightforwardly.
The proof form (iii) =⇒ (i) is more involved to lift, since it uses quotients of manifolds, which
are non-trivial in the super setting, see Chapter 3.3.6.

Theorem 3.43 ([BX06, Theorem 2.26]). Let Γ and Γ′ be Lie groupoids. Then the following are
equivalent:

(i) The Lie groupoids Γ and Γ′ are Morita equivalent.

(ii) There exists a manifold Q with commuting groupoid actions of both Γ and Γ′ making Q a
Γ-torsor over Γ′0 and a Γ′-torsor over Γ0 such that the anchor maps Q→ Γ0 and Q→ Γ0
coincide with the projections of the Γ′ and Γ-torsor respectively.

(iii) There exists a third Lie groupoid Ξ and groupoid homomorphisms φ : Ξ → Γ and
φ′ : Ξ → Γ′ such that the maps φ0 : Ξ0 → Γ0 and φ′0 : Ξ0 → Γ′0 are surjective submer-
sions and the diagrams

Ξ Ξ0 × Ξ0 Ξ Ξ0 × Ξ0

Γ Γ0 × Γ0 Γ′ Γ′0 × Γ′0

φ φ0×φ0 φ′ φ′0×φ
′
0 (3.3.19)

are pullbacks. Here, the horizontal maps are given by the product of the source and target
map of the relevant Lie groupoid.

Proof. We first show (i) =⇒ (ii). Take an equivalence of stacks φ : BΓ′ → BΓ. From
Proposition 3.40, we know that there are presentations s : Γ0 → BΓ and s′ : Γ′0 → BΓ′. We can
now form the 2-fibered product

Γ′0 ×BΓ Γ0 Γ0

Γ′0 BΓ

s

=⇒

φ◦s′
. (3.3.20)

Lemma 3.39 shows that the fibered product Γ′0 ×BΓ Γ0 is represented by Γ. From Lemma 3.36,
we immediately deduce that Γ′0 ×BΓ Γ0 is a Γ-torsor over Γ′0 with anchor the projection to Γ0.
To show that it also is a Γ′-torsor over Γ0 by the same lemma, we need to show that φ ◦ s′ is an
atlas on BΓ. Since s is an atlas, we can apply Lemma 3.30 to see that φ ◦ s′ is a representable
submersion. We are left to show that φ ◦ s′ is an epimorphism. Denote ψ : BΓ → BΓ′ for a
pseudo-inverse of φ. Let U be some manifold with a morphism f : U → BΓ. Now, by the fact
that s′ is an epimorphism, we can find an open cover (Ui)i∈I such that for every i ∈ I there is
a morphism Ui → Γ′0 making the following diagram 2-commute.

Ui U

Γ′0 BΓ′
ψ◦f

=⇒

s′

(3.3.21)
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Since φ ◦ ψ is naturally isomorphic to the identity on BΓ, the following diagram is also 2-
commutative.

Ui U

Γ′0 BΓ

f

=⇒

φ◦s′
(3.3.22)

This shows that φ ◦ s′ is an epimorphism. Inspecting the resulting actions immediately shows
that they commute. This completes the proof of (i) =⇒ (ii).

Secondly, we show (ii) =⇒ (iii). Take a manifold Q as in the assumption. Using the maps
p : Q → Γ0 and p′ : Q → Γ′0, we can form the fibered product Ξ = Γ′ ×Γ′0 Q ×Γ0 Γ. Here, the
maps Γ′ → Γ′0 and Γ0 → Γ are the source maps of the relevant Lie groupoid. Let the projection
to Q be the source map sΞ. Since the projections are also the anchor maps, we can also define
the target map tΞ : Γ′ ×Γ′0 Q×Γ0 Γ→ Q by assigning

Ξ 3 (γ′, q, γ) 7→ (q ·Γ γ) ·Γ′ γ′ = (q ·Γ′ γ′) ·Γ γ ∈ Q. (3.3.23)

Here, we used the commutativity of the actions. For any two points (γ′, q, γ) , (γ̃′, q̃, γ̃) ∈ Ξ such
that

tΞ(γ′, q, γ) = (q ·Γ γ) ·Γ′ γ′ = (q ·Γ′ γ′) ·Γ γ = q̃ = sΞ(γ̃′, q̃, γ̃), (3.3.24)

we can define the composition rule

(γ′, q, γ) · (γ̃′, q̃, γ̃) =
(
γ′γ̃′, q, γγ̃

)
. (3.3.25)

It is clear that this makes Ξ a Lie groupoid with base Q.

There are obvious groupoid homomorphisms φ : Ξ→ Γ and φ′ : Ξ→ Γ such that the diagrams

Ξ Q×Q Ξ Q×Q

Γ Γ0 × Γ0 Γ′ Γ′0 × Γ′0

φ φ0×φ0 φ′ φ′0×φ
′
0 (3.3.26)

commute. We show that these diagrams are pullbacks. By symmetry, it suffices to show that
just one of the diagrams is a pullback. Suppose we have a space E with maps f : E → Q × Q
and g : E → Γ making the diagram

E

Ξ Q×Q

Γ Γ0 × Γ0

f

g
φ φ0×φ0

(3.3.27)

commute. Denote f1 and f2 for the components of f . For any point e ∈ E, we have
that p(f2(e)) = tΓ(g(e)) = p(f2(e) ·Γ g(e)). Therefore, there is a unique γ′e ∈ Γ′ such that
f2(e) = (f2(e) ·Γ g(e)) ·Γ′ γ′e. Now we can define the map E → Ξ by

E 3 e 7→ (γ′e, f1(e), g(e)) ∈ Ξ. (3.3.28)
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A straightforward verification shows that this map is well-defined and makes the diagram

E

Ξ Q×Q

Γ Γ0 × Γ0

f

g
φ φ0×φ0

(3.3.29)

commute. The uniqueness of γ′e implies that the map E → Ξ is unique with this property. This
completes the proof of (ii) =⇒ (iii).

Lastly, we show (iii) =⇒ (i). Suppose we have a Lie groupoid Ξ with groupoid homomorphism
φ : Ξ → Γ and φ : Ξ → Γ′ as in (iii). Using the maps φ0 : Ξ0 → Γ0, φ′0 : Ξ0 → Γ′0, the source
maps sΓ : Γ→ Γ0 and sΓ′ : Γ′ → Γ′0 we can form the fibered product

Γ×Γ0 Ξ0 ×Γ′0 Γ′. (3.3.30)

This fibered product has a canonical Ξ action by acting with a ξ ∈ X with source q ∈ Ξ0
according to

(γ, q, γ′) · ξ =
(
φ(ξ)−1γ, tΞ(ξ), φ′(ξ)−1γ′

)
. (3.3.31)

Hence, we can take the quotient

Q =
(
Γ×Γ0 Ξ0 ×Γ′0 Γ′

)
/Ξ. (3.3.32)

We now construct a functor F : BΓ→ BΓ′. Define for a Γ-torsor π : E → U that

FE = (E ×Γ0 Q) /Γ. (3.3.33)

Here, the map ïE : E → Γ0 is the anchor map and Q→ Γ0 is the composition of the projection
to the first coordinate and the target map tΓ. To see that this is well-defined, we should show
two things: Firstly, we should show that there is a canonical Γ action on E ×Γ0 Q. Secondly,
the space FE should be a Γ′-torsor.

The Γ action on E×Γ0 Q for (e, [γ, q, γ′]) ∈ E×Γ0 Q and α ∈ Γ such that sΓ(α) = ï(e) is given
by

(e, [γ, q, γ′]) · α = (e · γ, [γα, q, γ′]). (3.3.34)

Notice that this is a well-defined action, since it commutes with the Ξ action on(
Γ×Γ0 Ξ0 ×Γ′0 Γ′

)
.

We now show that FE is a Γ′-torsor. For any points [e, [γ, q, γ′]] ∈ FE and α′ ∈ Γ′ with
tΓ′(γ′) = sΓ′(α′) we have the action given by

[e, [γ, q, γ′]] · α′ = [e, [γ, q, γ′α′]]. (3.3.35)

Again this action commutes with the action of Ξ on
(
Γ×Γ0 Ξ0 ×Γ′0 Γ′

)
and it also com-

mutes with the Γ action on E ×Γ0 Q. Therefore, this Γ′ action is well-defined. There is a
clearly well-defined map π′ : FE → U taking the torsor map π : E → U of the first coordi-
nate of a representative. Suppose there are points [e, [γ, q, γ′]], [ẽ, [γ̃, q̃, γ̃′]] ∈ FE such that
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π′([e, [γ, q, γ′]]) = π′([ẽ, [γ̃, q̃, γ̃′]]). Since there holds π(e) = π(ẽ), there is a unique α ∈ Γ such
that e · α = ẽ. We obtain the equation

[ẽ, [γ̃, q̃, γ̃′]] = [e · α, [γ̃, q̃, γ̃′]] = [e, [γ̃α−1, q̃, γ̃′]]. (3.3.36)

Now we can take the composition γ̃α−1γ−1 which has source q̃ and target q. Since the diagram

Ξ Ξ0 × Ξ0

Γ Γ0 × Γ0

φ φ0×φ0 (3.3.37)

is a pullback, we find a unique ξ ∈ Ξ such that φ(ξ) = γ̃α−1γ−1 and sΞ(ξ) = q̃ and tΞ(ξ) = q.
We deduce the formula

[e, [γ̃α−1, q̃, γ̃′]] = [e, [φ(ξ)−1γ̃α−1, q, φ′(ξ)−1γ̃′]]

= [e, [γαγ̃−1γ̃α−1, q, φ′(ξ)−1γ̃′]] = [e, [γ, q, φ′(ξ)−1γ̃′]] (3.3.38)

We now find the element α′ = γ′−1φ′(ξ)−1γ̃′. Using Eqs. (3.3.36) and (3.3.38), we see that

[e, [γ, q, γ′]] · α′ = [ẽ, [γ̃, q̃, γ̃′]]. (3.3.39)

Uniqueness of α′ with this property is implied by the uniqueness of α and ξ and the fact that
the diagram

Ξ Ξ0 × Ξ0

Γ′ Γ′0 × Γ′0

φ′ φ′0×φ
′
0 (3.3.40)

is a pullback. This shows that FE is a Γ′-torsor.

The assignment Eq. (3.3.33) straightforwardly extends to morphisms and it is clearly a
morphism of stacks. We are left to show that F is an equivalence. We will apply Corollary 3.23.
We check the conditions:

Choose a section σ : Γ′0 → Ξ0 of φ′0. Notice that for any representative [e, [γ, q, γ′]] ∈ FE, we
can find by the pullback diagram (3.3.40) a unique ξ ∈ Ξ with source q and target σ(tΓ′(γ′))
such that φ′(ξ) = γ′. Therefore, we have that

[e, [γ, q, γ′]] = [e, [φ(ξ)−1γ, tΞ(ξ), φ′(ξ)−1γ′]] = [eγ−1φ(ξ), [Idφ0(tΞ(ξ)), tΞ(ξ), Idφ′0(tΞ(ξ))]].
(3.3.41)

Notice that the representative on the right hand side does not depend on the representative
we started with (only on the class it represents). Hence, by putting elements of FE and
similar for FE′ in this standard form the maps BΓU (E,E′) and BΓ′U (FE,FE′) are in bijective
correspondence by F .

For any Γ-torsor E, we can take a cover (Ui)i∈I which trivializes both E and FE. There
holds FEi = (FE)i and therefore the second condition of is satisfied. Applying Corollary 3.23
completes the proof of (iii) =⇒ (i).
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Remark 3.44. The space Q as in (ii) in the theorem above is called a Γ-Γ′-bitorsor. Dia-
grammatically, we can summarize the data as follows:

Γ′ Q Γ

Γ′0 Γ0

sΓ′tΓ′ sΓ tΓ . (3.3.42)

With the equivalence of (i) and (ii), we can see stacks as objects in the bicategory of Lie
groupoids, bibundles and bibundle maps. O

3.3.5 The Dictionary Lemmas

The theorems in the previous section are merely the starting point of a dictionary between
(super) Lie groupoids (up to Morita equivalence) and differentiable stacks. We can continue to
consider the morphisms and 2-morphisms. The result is that morphisms of stacks correspond to
Lie groupoid homomorphisms (up to the right notion of equivalence) and natural transforma-
tion between morphisms of stacks correspond to the following natural equivalences of groupoid
homomorphisms.

Definition 3.45 ([BX06, Definition 2.28]). Let φ, ψ : Γ → Γ′ be two Lie groupoid homomor-
phisms. A natural equivalence θ : φ⇒ ψ is a smooth map θ : Γ0 → Γ′1 such that for all local
coordinates x ∈ Γ1 there holds that

θ(s(x))ψ(x) = φ(x)θ(t(x)). (3.3.43)

This notion of equivalence give the category of (super) Lie groupoids the structure of a 2-
category. N

To build the dictionary, we first associate a morphism of stacks to a Lie groupoid homomorphism.
We will omit proofs of these Dictionary Lemmas as they are only careful, tedious checks of all
properties. More details of the proofs are given in [Car11, Chapter I.2.9].

Lemma 3.46 ([BX06, Lemma 2.29]). Let φ : Γ→ Γ′ be a Lie groupoid homomorphism and let X
and Y be the differentiable stacks associated to Γ and Γ′ via Proposition 3.40 respectively. Then
there exists a morphism of stacks f : X→ Y and natural isomorphism η making the diagram

Γ0 Γ′0

X Y

φ0

f
=⇒
η (3.3.44)

commutes and the cube Γ1 Γ′1

Γ0 Γ′0

Γ0 Γ′0

X Y

s

φ1

t t

s

φ0

φ0

f

(3.3.45)

2-commutes. If there is another pair (f ′, η′) satisfying these properties, then there is a unique
natural isomorphism of stacks θ : f ⇒ f ′ such that θ ◦ η′ = η.
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The other two Dictionary Lemmas presented here treat the converse. They associate to mor-
phisms and natural isomorphisms of stacks homomorphisms and natural equivalences of Lie
groupoids.

Lemma 3.47 ([BX06, Lemma 2.30]). Let f : X → Y be a morphism of differentiable stacks
and φ0 : Γ0 → Γ′0 a map between the bases of the (super) Lie groupoids associated to X and
Y respectively and let η be a natural isomorphism making the square (3.3.44) commute. Then,
there exists a unique Lie groupoid homomorphism φ1 : Γ1 → Γ′1 covering φ0 and making the cube
(3.3.45) commute.

Lemma 3.48 ([BX06, Lemma 2.31]). Let f : X→ Y be a morphism of differentiable stacks. Let
φ, ψ : Γ→ Γ′ be Lie groupoid homomorphisms between the associated (super) Lie groupoids and
let η, η′ be natural isomorphisms of stacks such that the squares of the form (3.3.44) commute
for the pairs (φ, η) and (ψ, η′). Then there exists a unique natural equivalence θ : φ ⇒ ψ such
that the following diagram 2-commutes.

Γ′1

Γ0

Γ′0 X Γ′0

Y

ts
θ

φψ

f

(3.3.46)

3.3.6 Quotient Supermanifolds as Stacks

I will conclude the discussion of stacks by highlighting an application of them in the realm of
supermanifolds, namely that of quotient supermanifolds. Consider some supermanifold M with
an action of a Lie supergroup G. We did like to make precise the quotient M/G. Already
for ordinary manifolds, it is well-known that the space M/G with the quotient topology need
not be a manifold. For example, take the action of Z on S1 by an irrational rotation. Every
orbit will be dense in S1. Hence, the quotient space is not even Hausdorff. Obviously, there is
the Quotient Manifold Theorem asserting that the quotient of a manifold under a Lie group
acting freely and properly can be given a unique smooth structure making the quotient map a
submersion.[Lee12, Theorem 21.10]

For super Lie groups acting on supermanifolds the situation worsens in the odd dimen-
sions. E.g., consider the superpoint R0|1 with the Z/2 action given by θ 7→ −θ. In the
quotient, we did like to think that θ and −θ are equal but is should not remove the odd
part completely. However, identifying the coordinate function θ with −θ, would yield the
completely even space R0|0. To accommodate these issues, we will work with stacks over
supermanifolds instead. In particular, the quotient stacks considered in Examples 3.20 and 3.29.

We consider a supermanifold M with an action of a super Lie group G via an action
µ : G×M →M . We will denote p : G×M →M for the projection. We will view the quotient
stack [M/G] as the incarnation of the “quotient supermanifold” M/G. We investigate its func-
tions: From Example 3.29, we know that the quotient stack [M/G] can be represented by the
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action groupoid of G acting on M . Recall from Corollary 2.39 that C∞(M)ev = SMfld(M,R1)
and C∞(M)odd = SMfld(M,R0|1).

Proposition 3.49 ([Hoh+11, Corollary 57]). The morphisms of stacks [M/G] → R and
[M/G]→ R0|1 can be identified with the even and odd G-invariant functions on M respectively.
I.e.,

FunSMfld([M/G],R) ∼= {f ∈ C∞(M)ev|µ∗(f) = p∗(f) ∈ C∞(G×M)ev}, (3.3.47)

FunSMfld([M/G],R0|1) ∼= {f ∈ C∞(M)odd|µ∗(f) = p∗(f) ∈ C∞(G×M)odd}. (3.3.48)

Proof. By the Yoneda Lemma, a functor between representables can be identified with a function
between the representables. Recall that R and R0|1 are represented by themselves. I.e., they
are represented by the Lie (super)groupoid with only identity morphisms. Considering the
Dictionary Lemmas 3.46 to 3.48, we see indeed that the morphisms of stacks [M/G] → R and
[M/G]→ R0|1 can be identified with natural equivalences of super Lie groupoids. In turn, these
are by definition the even and odd G-invariant functions on M respectively.

On top of these quotient like objects of supermanifolds, we can consider vector bundles and
their sections. Recall from Example 3.28 the differentiable stack VecBunnIso of rank n vector
bundles with morphisms the morphisms of vector bundles which are fiberwise isomorphisms. Its
presentation is given by GLn. Following the case of line bundle laid out in [Hoh+11, Section
7.4], we make the following definition.

Definition 3.50. We define the strong vector bundles of rank n over a quotient
stack [M/G] as the morphisms of stacks [M/G] → VecBunnIso. Given such a vector bundle
F : [M/G]→ VecBunnIso, we define its sections Γ([M/G], Vρ) to be the natural transformations

[M/G] VecBunnIso

F

1

E . (3.3.49)

Here, the functor 1 is given by sending all objects to the trivial vector bundle and all morphisms
to the identity. N

Notice that a homomorphism ρ : G → GLn, by Lemma 3.46 induces a morphism of stacks
Vρ : [M/G] → VecnIso. I.e., homomorphisms ρ : G → GLn give rise to vector bundles over
[M/G]. In a particular, the vector bundle 1 is given by the trivial homomorphism. With
a similar application of the Dictionary Lemmas as in Proposition 3.49, we can identify the
sections of a vector bundle Vρ with certain functions on M .

Proposition 3.51. Let M be a (super)manifold with a G action µ and a homomorphism
ρ : G→ GLn. The sections of the strong vector bundle Vρ over [M/G] are given by

Γ([M/G], Vρ) = {f ∈ C∞(M,GLn)|µ∗(f) = p∗1(f)p∗2(ρ) ∈ C∞(M ×G,GLn)} (3.3.50)

When changing Vρ to its odd partner ΠVρ the section will instead take values in the odd partner
of GLn, i.e., the invertible linear transformations of the purely odd n-dimensional vector space.

With this proposition, we can interpret vector bundles on the quotient stack as equivariant
super bundles on M , see also Example 2.79.
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Instead of working with the stack VecnIso we can also work with the category Vecn of rank n

vector bundles with vector bundle morphisms. The difference between VecnIso and Vecn lies
in the fact that in the former we assume that all morphisms are isomorphisms in the fibers.
In the latter, all linear maps in the fibers are permitted. The category Vecn is not a stack.
In fact, it is not a groupoid fibration as can easily been seen by considering the fibers over
the identity morphisms (these do not form a groupoid, since there always is the zero map, cf.
Proposition 3.5). However, we can still consider the functors F : [M/G] → VecBunn as being
vector bundles.

Definition 3.52. We define the vector bundles of rank n over a quotient stack [M/G]
the morphisms [M/G]→ VecBunn compatible with the projection to the base (super)manifolds.
Similar to Definition 3.50, given such a vector bundle F : [M/G] → VecBunnIso, its sections
Γ([M/G], Vρ) are the natural transformations

[M/G] VecBunnIso

F

1

E . (3.3.51)

Here, the functor 1 is again given by sending all objects to the trivial vector bundle and all
morphisms to the identity. N

Since, the category VecBunn is a subcategory of VecnIso, a homomorphism ρ : G → GLn still
induces a vector bundle Vρ : [M/G] → Vecn. The additional morphism in VecBunn amount to
the non-invertible linear transformations in the fibers. Therefore, the interplay between VecnIso

and Vecn resembles the interplay between the group GLn and the monoid of n × n-matrices
Mat(n × n). A careful analysis, as done in [Hoh+11, Proposition 53] of this transition, yields
the following result on sections of vector bundles.

Proposition 3.53. Let M be a (super)manifold with a G action µ and a homomorphism
ρ : G → GLn. The sections of the vector bundle, in the sense of Definition 3.52, Vρ over
[M/G] are given by

Γ([M/G], Vρ) = {f ∈ C∞(M,Mat(n× n))|µ∗(f) = p∗1(f)p∗2(ρ) ∈ C∞(M ×G,Mat(n× n))}
(3.3.52)

When changing Vρ to its odd partner ΠVρ the section will instead take values in the odd partner
of Mat(n× n), i.e., the linear transformations of the purely odd n-dimensional vector space.

The characterization of the sections of Eqs. (3.3.50) and (3.3.52) are similar to the sections of
equivariant vector bundles over supermanifolds, as in Example 2.80. This should also justify
the terminology of vector bundles adopted above.
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4 Field Theories
Most of Theoretical Physics is written in terms of Field Theories. Quantum Field Theories,
Statistical Field Theories and Conformal Field Theories are obvious examples. In particular,
the Standard Model in Particle Physics can be formulated as a field theory. In a very general
sense, field theories in physics consists of a bunch of maps on which we define a functional, called
the Lagrangian L (or Hamiltonian H if one uses the equivalent Hamiltonian description). From
this Lagrangian, we then try to compute things like equations of motions and conserved currents.

A main object in a field theory computed from the Lagrangian is the partition function. This
function collects virtually all physically relevant data of the theory. The main tool to compute
partition functions are path integrals. Here, we “integrate” over all the fields. Since, the
fields are maps, they generally form an infinite dimensional manifold. Hence, constructing a
well-defined integration measure might be troublesome. Therefore, mathematicians certainly
raise eyebrows when coming across path integrals, due to ill-definedness problems. This is
mostly caused by the way physicist manipulate them. Physicist generally turn a blind eye and
simply compute with them as ordinary integrals. At the end of the day, when comparing the
results with experiments, nature will tell whether we messed up somewhere along the way.
Nature doesn’t make mistakes, does it? However, in many cases, the ill-definedness problems
can be dodged to yield a mathematically rigorous theory.

In mathematics, there also is a notion of (Topological Quantum) Field Theory, TQFT, first
considered by Edward Witten [Wit88] and axiomatized by Michael Atiyah [Ati88]. Over the
years, Atiyah’s axioms were reformulated in terms of functors out of bordism categories. This
formulation will also be our mathematical viewpoint of field theories. An introduction to
TQFT’s is presented in [CR18]. Since, we will work in a smooth setting, in fact with Model
geometries, we will use the more general term Functorial Field Theories instead of more
common Topological Field Theories which only refers to the topological nature.

The main goal of this chapter is linking the physical and mathematical notions of field theories.
We will start with the mathematical view in Chapters 4.1 and 4.2 and continue with the physical
view Chapter 4.3. Throughout, this chapter, we will use the term Functorial Field Theories to
indicate we are working in a mathematical framework. While we simply say field theory for the
physical notion.

4.1 Bordism Categories
The building blocks of Functorial Field Theories are bordism categories. Roughly speaking,
these are categories with objects the d − 1-dimensional compact manifolds and morphisms the
d-dimensional compact manifolds with boundary. A precise definition is given below. The
manifolds can be assumed to have extra structure, such as being orientable. In particular,
we can consider bordism categories consisting of (M, G)-manifolds for some model geometry
(M, G) as defined in Chapter 2.5. Following [Hoh+11, Section 4+5], we can lift the notion of
bordism to families of supermanifolds.

We start by the most basic definition of a bordism category. Following this, we upgrade the
definition to allow for easier addition of additional structure. Bordisms with extra structures
are then described in the following sections.
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Definition 4.1. For (p − 1)-dimensional closed manifolds E and F consider the triples
(ιin,M, ιout) with M a p-dimensional compact manifold with boundary and ιin : E → ∂M and
ιout : F → ∂M embeddings with disjoint image together forming the whole boundary of M . I.e.,
there holds

ιin(E)
⋂
ιout(F ) = ∅ and ιin(E)

⋃
ιout(F ) = ∂M. (4.1.1)

Two triples (ιin,M, ιout) and (ι′in,M ′, ι′out) are considered equivalent if there exists a diffeomor-
phism ψ : M → M ′ such that ψ ◦ ιin = ι′in and ψ ◦ ιout = ι′out. An equivalence class under this
equivalence relation, we will call a bordism. We will denote a bordism (ιin,M, ιout) between
closed manifolds E and F as M : E → F .

We define the category of n-dimensional bordism as the category with objects the (n − 1)-
dimensional (real) closed manifolds and arrows the bordisms between the manifolds. The com-
position of two bordisms M : E → F and M ′ : F → G is the bordism obtained by gluing M and
M ′ along their common boundary F to form a new bordism M tF M ′ : E → G. The identity
bordisms are the cylinders E × [0, 1]. N

Remark 4.2. The topology on a composite bordism M tF M ′ is fixed, since it is a pushout in
the category of topological spaces. However, we also demanded a smooth structure. This needs
a little more care. We can construct a smooth structure on M tF M ′ by using collar neighbor-
hoods around F . These are neighborhoods of F diffeomorphic to F × [0, 1) in M and M ′. It is
clear that such neighborhoods can be glued together along F×{0} to obtain a smooth structure.

The collar neighborhoods of F in M (and similarly M ′) can be constructed from charts of M
around the points of F .[Bro62] Compactness of F implies finitely many charts suffice. Hence,
shrinking the charts sufficiently and putting them together will yield a collar neighborhood.
Different collar neighborhood give diffeomorphic smooth structures. Notice that bordisms are
manifolds consider up to diffeomorphisms, so this shows that the composition of bordisms is
well-defined. O

This issue around the smooth structures when gluing bordisms together can be solved differ-
ently too: We can remember the collar neighborhoods in the objects by “fattening” the object
manifolds and boundaries of the bordisms. In the simple case expositioned above, this is un-
necessary extra data. However, when we want to add supersymmetry or additional structure
to the manifolds, like some (M, G) structure of a model geometry, we will need this data. We
obtain the following:

Definition 4.3 ([ST11, Definition 2.21]). We define the category n-Bord to be the category
with objects the pairs (E × (−1, 1), E × {0}) where E is a closed manifold of dimension n− 1.
Usually, we will refer to the object (E× (−1, 1), E×{0}) with just E. Figure 2 illustrates these
objects.

The morphism from E to F are equivalence classes of triples (ιin,M, ιout), called the bor-
disms. Here, we have that M is an n-dimensional manifold and ιin : E × (−1, 1) → M and
ιout : F × (−1, 1)→M embeddings with the following properties.

(c) The core M\ (E × (−1, 0) ∪ F × (0, 1)) of the bordism is compact.

(+) The images of ιin(E × (−1, 0)) and ιout(F × [0, 1)) are disjoint.

(b) The closures of the opens ιin(E × (−1, 0)) and ιout(F × (0, 1)) in M are ιin(E × (−1, 0])
and ιout(F × [0, 1)) respectively.
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E × {0}

Figure 2: An illustration of an object E in the category n−Bord. As usual in bordism theories,
we will limit the pictures to the case for n = 2.

ιin(E−) ιin(E+)

E

ιout(F−) ιout(F+)

F

M

Figure 3: A generic example of a morphism M : E → F in the category n-Bord. In the figure,
we write E− and E+ for E × (−1, 0) and E × (0, 1) respectively and similar for F . The gluing
action on such bordisms goes by cutting out the piece ιout(F × [0, 1)) and the along gluing
ιin(F−).

Two triples (ιin,M, ιout) and (ι′in,M ′, ι′out) are considered equivalent if there exists a diffeomor-
phism ψ : M →M ′ such that ψ ◦ ιin = ι′in and ψ ◦ ιout = ι′out. We will usually write just M for
the triple (ιin,M, ιout). A generic example of these bordisms is visualized in Fig. 3.

The composition of M : E → F and M ′ : F → G in this category is given by the gluing

(M\ιout(F × [0, 1))) tF×(−1,0) F × (−1, 1) tF×(0,1) (M ′\ιin′(F × (−1, 0])) . (4.1.2)

N

Remark 4.4. Compared to [ST11, Definition 2.21], there are two main differences. Firstly, their
definition is in terms of internal categories where we remember all morphisms by unraveling the
equivalence taken in the definition of bordisms. We will present this viewpoint shortly. Secondly,
an omission has been fixed by assuming that the boundaries of ιin(E×(−1, 0)) and ιout(F×(0, 1))
in M are ιin(E × {0}) and ιout(F × {0}) respectively. This ensures that we can only glue on
the edges of the manifold. In other words, the manifold cannot continue on both sides of the
embedding. This is necessary to have identity bordisms (cylinders of the form E × (−1, 1)). If
we wouldn’t assume this condition, then the gluing of a cylinder can leave some disconnected
piece.

O

Remark 4.5. At first, when trying to enforce the gluing to work on the edges, I was working with
manifolds with boundary instead. The objects of the bordism category would stay the same, but
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E F

M

Figure 4: A version of a definition of bordisms with thickened boundaries to glue on, however
with boundaries to ensure gluing work near the edges of the manifold.

the morphisms would turn into manifolds with boundary with embeddings ιin : E × [0, 1)→M
and ιout : F × (−1, 0] → M . Pictorially, these bordisms would look like Fig. 4. While such
a definition is perfectly fine in this setting, it does add the fuss of shrinking and stretching
the manifold when showing that the cylinders act like identity morphisms. This can turn out
problematic if one adds further structure, such that the shrinking and stretching is not possible
anymore, like with Model Geometries. O

The above definition makes manifestly sure that we obtain smooth structures on composite
bordisms. Indeed, we glue along open subsets. Hence, all local properties are preserved. How-
ever, this comes at the price that Hausdorffness is not immediately clear anymore. E.g., gluing
two copies of R along (0, 1) yields a non-Hausdorff space. Hausdorffness of composite bordisms
follows from the following lemma in point-set topology.

Lemma 4.6 ([ST11, Lemma 2.23]). Let X,Y be Hausdorff spaces and U an open subset of both
X and Y . If the image of U under the natural map U → X×Y is closed, then the space XtU Y
is Hausdorff.

Proof. Let x, y ∈ X tU Y . We construct disjoint open neighborhoods of x and y respectively.
If x, y ∈ X or x, y ∈ Y , then there is nothing to show since both X and Y are Hausdorff
itself. Hence, we assume that x ∈ X and y ∈ Y . Notice that U = X implies that x ∈ Y .
Hence, we assume that U 6= X and similarly U 6= Y . Moreover, if x, y ∈ U , then x, y ∈ X.
Therefore, without loss of generality x ∈ X\U . Now we know that the point (x, y) lies in the
open (X × Y ) \U . Hence, there exists opens x ∈ I ⊆ X and y ∈ I ′ ⊆ Y such that

(I × I ′) ⊆ (X × Y ) \U. (4.1.3)

This implies that I ∩ I ′ ⊆ X tU Y is empty and shows the claim.

In the definition of bordisms above, we carefully take equivalence classes of diffeomorphic man-
ifolds. Taking the equivalence classes is required to have identity morphisms in the bordism
category. However, we can unravel the equivalence and instead work with two groupoids: one
for the object manifolds and one for the bordisms.

Definition 4.7. The groupoid n-Bord0 of bordism objects, has objects the n-dimensional
manifolds Y with a decomposition in disjoint submanifolds Y c and Y ±. Here, the manifold
Y c is compact of codimension 1 called the core and Y ± are open submanifolds of Y such
that their closure in Y equals Y c. An (iso)morphism Y → Y ′ in this groupoid is a germ of
a diffeomorphism on open neighborhoods of Y c respecting the decomposition (i.e., it sends Y c



4 FIELD THEORIES 60

to (Y ′)c and Y ± to (Y ′)±). Two diffeomorphisms represent the same germ if they agree on a
smaller open neighborhood of Yc. Composition is given by the composition of the germs. N

Remark 4.8. Notice that every object of n-Bord0 is isomorphic to an object of the form
Y = E× (−1, 1) with the decomposition Y c = E×{0}, Y + = E× (0, 1) and Y − = E× (−1, 0).
Hereby, we obtain the picture as in Fig. 2. We will only care about manifolds of this form. O

Definition 4.9. The groupoid n-Bord1 of bordism morphisms has objects precisely the
triples (ιin,M, ιout) of manifolds with certain embeddings E → M and F → M considered as
bordisms in Definition 4.3. The morphism M → M ′ are the triples (fin, F, fout) of diffeomor-
phisms fin : E × (−1, 1)→ E′ × (−1, 1), F : M →M ′ and fin : F × (−1, 1)→ F ′ × (−1, 1) such
that fin and fout respect the decomposition as in the above remark and the following diagram
commutes

E × (−1, 1) M F × (−1, 1)

E′ × (−1, 1) M ′ F ′ × (−1, 1)

fin

ιin

F

ιout

fout

ι′in ι′out

. (4.1.4)

N

It should be clear that isomorphism classes of objects in the category n-Bord1 can be identified
with the morphisms of n-Bord.

This unraveling of the category shows that we can see the category n-Bord as a so called internal
category. A full hands-on definition can be found in [ST11, Definition 2.4]. For more background
on internal categories, I refer to [Mac71, Section XII.1] and [Fer06]. Notions of functors and
natural transformations straightforwardly extend to internal categories.

4.1.1 Bordisms for Model geometries

As mentioned before, the thickening of the boundary achieved in Definition 4.3 not only solves
the issue of smoothness around the gluing. It also allows for additional structure on the man-
ifolds in question. Our prime example will be that of (M, G) model geometries as defined in
Definition 2.81 for the supersymmetric case. For now, we consider just the model geometries
for ordinary (not super) manifolds, in other words the odd dimension is taken to be zero. The
supersymmetric case will follow in Chapter 4.1.3.

Definition 4.10. We define the category (M, G)-Bord of bordisms for some model geometry
(M, G) to have objects, the (M, G)-manifolds of the form E × (−1, 1) for some n − 1-manifold
Y .

The morphisms are equivalence classes (ιin,M, ιout), called the (M, G)-bordisms. Here, we
have that M is a (M, G)-manifold and ιin : E × (−1, 1) → M and ιout : F × (−1, 1) → M
isometric embeddings such that the conditions (c), (+) and (b) from Definition 4.3 hold. With
an isometric embedding condition, we mean that the maps ιin and ιout are embeddings which are
isometries on the image of E × (0, 1) and E × (−1, 0) respectively. Two triples are equivalent if
there exists an isometry between them identifying the images of the relevant embeddings ιin, ιout.

The composition law is the same as in Definition 4.3, by gluing the bordism along their common
(thickened) boundary. N

Remark 4.11. I wish to stress here that the product Y ×(−1, 1) needs to be an (M, G) manifold,
not the manifold Y . O
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Remark 4.12. The identity morphisms of this bordism category are the cylinders E× (−1, 1).
Notice that gluing such a cylinder on a bordism, does not change the manifold at all. Indeed,
we cut out a piece of the bordism isometric to E× [0, 1) and glue along E× (−1, 0) (for the left
composition of the identity). So the obtained composition is indeed isometric to the original
bordism. This illustrates the issue raised in Remark 4.5, since general model geometry does
not have “stretching” as an isometry. Moreover, all gluing happens on opens of the relevant
manifolds along isometric embeddings this makes sure that the composition of two (M, G)-
bordisms indeed again yields a (M, G)-bordisms. O

In the same spirit as Definitions 4.7 and 4.9, we can unravel the equivalence taken in the
definition of bordisms for model geometries. Obviously, the diffeomorphisms should be replaced
by isometries of the relevant model geometry in this case. One obtains again two groupoids
(M, G)-Bord0 and (M, G)-Bord1. As before, the morphisms of (M, G)-Bord can be viewed as
isomorphism classes of objects in (M, G)-Bord1.

4.1.2 Families of Bordisms

In Chapter 2.5, we have generalized away from standalone (super) manifolds for a certain
model geometry to families of them. For bordisms, we can do the same. This generalization is
required when we want to consider smoothness of functors on this category. Since, Functorial
Field Theories will be functors out of bordisms categories, we need families of bordisms for a
notion of smoothness on Functorial Field Theories. [Hoh+11, Page 14]

The fact that families of manifolds can be used to describe smoothness of functors on the
relevant categories follows from the fact that families of manifolds form (differentiable) stacks
over the category of manifolds. We have shown this for model geometries in Proposition 3.21.
Functors between differentiable stacks can, via de Yoneda Lemma, be seen as functions on the
presenting Lie groupoids. These Lie groupoids give us an obvious notion of smoothness.

Since, we already established the notion of bordisms for (M, G)-model geometries, we will now
define bordisms of families of (M, G)-manifolds. This definition is motivated by [ST11, Definition
4.46]. Remark 4.4 applies to this definition in a similar fashion.

Definition 4.13. An object in the category (M, G)-Bordfam of families of (M, G)-bordisms
has objects the families of (M, G)-manifolds, see Definition 2.87, of the form E × (−1, 1) → S
such that the induced map E×{0} → S is proper (i.e., the preimage of a compact set is compact).

A morphism from E× (−1, 1)→ S to F × (−1, 1)→ S in (M, G)-Bordfam is an equivalence class
of triples (ιin,M, ιout). Here, we write M for a family of (M, G)-manifolds over S such that the
map M → S is proper and ιin and ιout are isometric embeddings of families E × (−1, 1) → M
and F×(−1, 1)→M respectively such that the condition (+) of Definition 4.3 holds. Moreover,
we assume that condition (b) of Definition 4.3 holds fiberwise over S. Two triples (ιin,M, ιout)
and (ι′in,M ′, ι′out) are equivalent if there exists an isometry of families M → M ′ respecting the
embeddings. An equivalence class of a triple (ιin,M, ιout) is called a family of bordisms and
is usually denoted by just M

The composition in this category is given by gluing of families of (M, G)-manifolds along the
isometric embeddings. N

Remark 4.14. The properness assumption in this definition is a replacement of the compactness
assumption in the none family case. For non-compact spaces S, it wouldn’t make sense to request
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compactness on the domain. In case S = Pt, we see by definition that properness is equivalent
to compactness of the domain. O

Stacks come into this definition when we unravel the equivalence of bordisms under isometries
of families. We can consider pairs of families of (M, G)-manifolds and thus also spaces Y with
the decomposition in a core Y c and Y ± as in Definition 4.7. Using the same proof as in Propo-
sition 3.21, one can show that these pairs of families of (M, G)-manifolds form a stack. With
this one obtains the stack (M, G)-Bordfam

0 consisting of families (M, G)-manifolds Y decom-
posable in Y c and Y ± with their families of isometries. Furthermore, one obtains the stack
(M, G)-Bordfam

1 consisting of the triples (ιin,M, ιout) of families of bordisms with the relevant
triples of isometries as in Definition 4.13.

Remark 4.15. The notion of pairs of families of (M, G)-manifolds adopted here is relatively
weak in the sense that we have not assumed any relation between the submanifold and the
(M, G) structure. In the work of Stolz and Teichner [ST11, Definition 2.33], there are some
compatibility condition. Roughly speaking, this boils down to assuming that for a pair (Y, Y ′)
the submanifold Y ′ ⊆ Y has some (M′, G) structure for a submanifold M′ ⊆M with a compatible
G action. These extra restrictions are not required for our purposes. O

4.1.3 Supersymmetric Bordism Categories

Having done the details of ordinary bordism categories in the previous section, supersymmetry
can be added straightforwardly. We only have to add a supersymmetric dimension to all the
manifolds, both in the objects and in the arrows of the bordism category. The structure of
model geometries and the notion of families of bordisms can be transferred to the super case
immediately.

In Definition 2.42, we have defined supermanifolds with boundary, which are implicitly
required in our notion of bordism. However, as we have seen in Example 2.43, boundaries
of supermanifolds are not unique. Though, they are isomorphic by Proposition 2.45. In our
definition of bordism, there will not be any ambiguity what the boundary of the supermanifold
must be. Our bordisms come with embeddings around the topological boundaries, whose
domains have a natural choice of boundary.

The definition below is the straightforward generalization of Definition 4.13 to the super world.

Definition 4.16. Let (M, G) be a super model geometry. An object in the category
(M, G)-Bordfam of families of (M, G)-bordisms has objects the families of (M, G)-
supermanifolds of the form E × (−1, 1) → S such that the induced map on reduced manifolds
|E| × {0} → |S| is proper (i.e., the preimage of a compact set is compact).

A morphism from E × (−1, 1) → S to F × (−1, 1) → S in (M, G)-Bordfam is an equivalence
class of triples (ιin,M, ιout). Here, we write M for a family of (M, G)-supermanifolds over S and
isometric embeddings ιin : E × (−1, 1)→M and ιout : F × (−1, 1)→M such that the following
properties hold:

(c) The map on reduced manifolds |M | → |S| is proper.

(+) The reduced images of |ιin(E × (−1, 0))| and |ιout(F × [0, 1))| are disjoint.

(b) Boundaries of the closures of the opens ιin(E× (−1, 0)) and ιout(F × (0, 1)) in M fiberwise
over S are ιin(E × {0}) and ιout(F × {0}) respectively.
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Two triples (ιin,M, ιout) and (ι′in,M ′, ι′out) are equivalent if there exists an isometry of families
M → M ′ respecting the embeddings. An equivalence class of a triple (ιin,M, ιout) is called a
family of bordisms and is usually denoted by just M

The composition in this category is given by gluing of families of (M, G)-supermanifolds along
the isometric embeddings. N

Remark 4.17. This definition reduces to Definition 4.13 when M is an ordinary manifold.
Therefore, we use the same notation and terminology for this category. O

As in the case for non supersymmetric manifolds unraveling the equivalence classes of bordisms,
yields stacks (M, G)-Bordfam

0 and (M, G)-Bordfam
1 . These stacks obviously lie over the category

of supermanifolds instead of ordinary manifolds. The details are the same as the ordinary case.

4.1.4 Bordisms over a Space

The considered bordism theories can be enriched with the extra datum of a map into some
fixed space X. This space X should, physically, be thought of as the background space-time
manifold of the theory. Mathematically, it is the space we are probing using the bordisms. I.e.,
the (co)homological properties we will discover, are those of the space X.

The below definition applies to all bordism categories, supersymmetric, model geometry and
family versions, constructed in the preceding sections.

Definition 4.18. Given any of the bordism categories Bord constructed before, we define
the category of bordisms over X denoted by Bord(X) as the category with objects, the
objects of Bord (which are certain manifolds E × (−1, 1)) furnaced with a (smooth) map to
E × (−1, 1) → X. The morphisms of Bord(X) are the relevant triples (ιin,M, ιout) defining a
bordism in Bord together with a map f : M → X. Two triples (ιin,M, ιout) and (ι′in,M ′, ι′out)
with maps f : M → X and f ′ : M ′ → X define the same bordism over X if the triples define
the same bordism in Bord and the isomorphism Φ: M → M ′ inducing the equivalence makes
the following diagram commute

M M ′

X
f

Φ

f ′
. (4.1.5)

The source (and similarly the target) of a bordism (ιin,M, ιout) with map f : M → X is an
object E × (−1, 1) with a map f̃ : E × (−1, 1) → X such that ιin : E × (−1, 1) → M is an
embedding and f̃ = f ◦ ιin. N

Remark 4.19. Notice that all the previous discussion of bordism categories is included in this
definition when taking X = Pt the one point space. A map to the point does not add any extra
data, since the point is the terminal object in the category of (super)manifolds. O

Remark 4.20. The space X here can be taken a supermanifold if one wishes so. Also, it can
be endowed with a (Riemannian) metric, which a common thing to do in physics. O

4.1.5 Some Properties of Bordism Categories

In this section, we investigate some basic properties which bordism categories posses. These
results apply to all categories previously constructed. We will use the notation Bord for any
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such category and Bord(X) to explicitly refer to bordisms over a space X.

In all the bordism categories considered, there is a seeming discrepancy between the object
and morphism. In each case, the objects are manifolds itself, while the morphisms are certain
diffeomorphism classes of manifolds. Notice that we have remembered the source and target
objects in the definition of bordisms. However, it doesn’t make sense to expect that diffeomor-
phic objects behave any different in a bordism category and indeed they don’t as a result of the
following lemma.

Lemma 4.21. Suppose that E× (−1, 1) and F × (−1, 1) are objects in a bordism category Bord
and a diffeomorphism φ : E → F (in case we have a model geometry in play, further assume that
the map Φ× Id(−1,1) : E × (−1, 1)→ F × (−1, 1) is an isometry). Then, the objects E × (−1, 1)
and F × (−1, 1) are isomorphic in the category Bord.

Proof. Consider the following bordism

M = (IdE×(−1,1), E × (−1, 1), φ× Id(−1,1)) : E × (−1, 1)→ F × (−1, 1). (4.1.6)

Similarly, we have the bordism given by

M ′ = (φ× Id(−1,1)), E × (−1, 1), IdE×(−1,1)) : F × (−1, 1)→ E × (−1, 1). (4.1.7)

Notice that these indeed define bordisms. In particular, the (+) condition in the definition
holds. It is clear that the composition M ′ ◦M yields the identity morphism on E × (−1, 1).
The diffeomorphism φ−1× Id(−1,1) applied to the composition M ◦N shows that M ◦N defines
the same bordism as the identity on F × (−1, 1).

In case we work with bordisms over a space X, the same construction applies. We only need to
process the map to X in every step. This shows the claim.

A structure, which all the bordism categories considered posses, is a symmetric monoidal struc-
ture from the disjoint union. For any of the non-family, bordism categories Bord, the disjoint
union functor t : Bord×Bord→ Bord acting by the disjoint union of manifolds and bordisms is
canonically associative. The empty manifold is a left and right unit. The symmetry comes from
the natural isomorphism EtF → F tE. The symmetry bordism can be visualized as in Fig. 5.
It is a straightforward, yet little tedious, check to show this satisfies all properties, [Eti+15, Defi-
nitions 2.1.1 and 8.1.1], of a symmetric monoidal category. I will leave these checks to the reader.

In the case of a category of families of bordisms, the disjoint union functor should be restricted
to the fibers of the groupoid fibration. The disjoint union of two families can only be taken if
the index space of the families coincides. This way, the disjoint union operator can be seen as
a morphism of stacks.

4.2 Functorial Field Theories
The bordism theories constructed above are the main building block of Functorial Field Theo-
ries (FFT’s). Functorial Field Theories will be functors out of the bordism category to some
category of vector spaces. The investigation has been initiated by Witten, [Wit88], attempting
to construct topological invariants from field theories in physics. Shortly after, Michael Atiyah
[Ati88], axiomatized the notion, which over the years, in more modern language, turned into
the definition we present here.
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E F

F E

Figure 5: The bordism giving the symmetry isomorphism of the disjoint union operator in
Bord.

4.2.1 Topological Vector Spaces and Algebras

Before we come to the definition of functorial field theories, we still need one ingredient: The
target category of vector spaces. For ordinary bordism, we can simply use the category of vector
spaces over some ground ring K with the linear maps between them. If required, these vector
spaces can be topologized, yielding a category TV of Topological Vectors Spaces.

Definition 4.22 ([Sem03, Chapter 2.1]). A Topological Field is a field K endowed with a
topology such that the addition, multiplication and inversion (both additive and multiplicative)
maps are continuous. A Topological Vector Space is a vector space over a topological field K
endowed with a topology making addition and scalar multiplication by K continuous. We will
denote the category of Topological Vector Spaces over K with continuous linear maps by
TVK. N

Remark 4.23. If we wish to work in the smooth category, we replace the continuity assumption
by smoothness. Moreover, this definition also lifts to the super world. Lifting the fields and
vector spaces to superrings and super vector spaces. This way, we have Topological Super
Vector Spaces. O

Example 4.24. Taking K = R,C with the Euclidean topology, the vector spaces Kn endowed
with the Euclidean topology are topological vector spaces. In this fashion, the space Rp|q is a
topological super vector space using the identification of Lemma 2.41. 4

For ordinary bordism categories, like the ones defined in Definitions 4.3 and 4.10, it suffices to
use just TV to define Functorial Field Theories. However, we need to extend the notion for the
category of families of bordisms, as introduced in Definitions 4.13 and 4.16. For the families
versions, we also need some kind of family version of TV. At first, one might expect to use
vector bundles over the index space. However, as explained by [ST11, Remark 3.16] this turns
out to be a too strict notion. Instead, we define the following.

Definition 4.25 ([ST11, Definition 2.47]). The category TVfam of families of Topological
Vector Spaces has objects over a (super)manifold S, the sheaves V over S of topological
monoids over the structure sheaf OS . I.e., the monoidal objects in the category of topological
vector spaces. A morphism of families of Topological Vector Spaces is an OS linear map
of sheaves V → V ′ between objects V and V ′. N

In the spirit of Definitions 4.7 and 4.9, we can restructure the above definition in terms of two
stacks TVfam

0 and TVfam
1 of the objects and morphisms of TV respectively.
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Definition 4.26. The objects of the category TVfam
0 are the objects of TVfam. A morphism of

TVfam
0 from a sheaf V over S to a sheaf V ′ over S′ is a smooth map f : S → S′ together with

a OS′(U) linear map V (f−1(U)) → W (U) for every open subset U ⊆ S′. Here, the action of
OS′(U) on V (f−1(U)) is given through the algebra homomorphism f∗ : OS′(U)→ OS(f−1(U)).

N

Definition 4.27. The objects of the category TVfam
1 are the morphisms of TVfam. The mor-

phisms of TVfam
1 between objects φ : V0 → V1 and φ′ : V ′0 → V ′1 over S and S′ respectively

consists of a map f : S → S′ together with OS′(U) linear maps V0(f−1(U)) → V ′0(U) and
V1(f−1(U))→ V ′1(U) for all opens U ⊆ S′ such that the diagram

V0(f−1(U)) V1(f−1(U))

V ′0(U) V ′1(U)

φ|U

φ′|U

(4.2.1)

commutes. As before, the action of OS′(U) on V0,1(f−1(U)) is given through the algebra ho-
momorphism f∗ : OS′(U)→ OS(f−1(U)). N

The fact that TVfam
0 and TVfam

1 are stacks follows easily from the properties of the sheaves.

We can enrich the notion of a Topological Vector Spaces to Topological Algebras. Similar to
TV the category TA can be used as a target category for Functorial Field Theories. This will
especially be important when considering twists in Chapter 4.2.5.

Definition 4.28 ([ST11, Definition 5.1]). The category of Topological Algebras TA has
objects the topological vector spaces A with a continuous associative multiplication A⊗A→ A.
The morphisms A0 → A1 are the A0, A1-bimodules. I.e., they are topological vector spaces B
with a multiplication A0 ⊗B ⊗A1 → B making B both a left A0 and a right A1 module.

The composition of two bimodules B : A0 → A1 and B′ : A1 → A2 is the bimodule
B ⊗A1 B

′ : A0 → A2.

Unraveling this category in the familiar style yields the groupoid of objects TA0, whose mor-
phisms are the continuous algebra isomorphisms and the groupoid of morphisms TA1. The
morphisms of the latter are triples (f0, g, f1) where f0 : A0 → A′0 and f1 : A1 → A′1 are algebra
isomorphisms and g : B → B′ a morphism of bimodules with B an A0, A1-bimodule and B′ an
A′0, A

′
1-bimodule. N

The notion of topological algebras can be upgraded to families. Recall that we have defined
families of topological vector spaces to be sheaves over the index space. We know that algebras
are the monoidal objects in the category of vector spaces. Therefore, an S-family of topolog-
ical algebras is a monoidal object in the category of S-families of topological vector spaces.
Similarly, an S-family of bimodules is an object in the category of S-families of topological
vector spaces with commuting left and right action by the modules. This way we obtain family
versions of the categories TA, TA0 and TA1. The latter two are again turned into stacks with
the projection to the index space.

Remark 4.29. These notions of families of topological vectors spaces and algebras introduced
in this section apply mutatis mutantis for super vector spaces and algebras too. We simply
assume a Z/2 grading on all the vectors spaces involved. Families can also be taken over
supermanifolds. O
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4.2.2 Definition of Functorial Field Theories

We have now collected all the required ingredients to define Functorial Field Theories. We think
of them as symmetric monoidal functors

Z : Bord→ TV. (4.2.2)

from some bordims category with symmetric monoidal structure given by the disjoint union
to the category of topological vectors spaces with symmetric monoidal structure given by the
tensor product. More precisely we should work with the relevant unraveled internal categories,
which are stacks, given that we work with family versions of bordisms and topological vector
spaces.

Definition 4.30. A Functorial Field Theory is a pair of symmetric monoidal functor of
stacks

Z0 : Bord0 → TV0, (4.2.3)
Z1 : Bord1 → TV1. (4.2.4)

Satisfying suitable compatibility properties. Here, the category Bord0 and Bord1 are the
stacks which together form an internal category of bordisms Bord. This is just any of the
constructed bordism categories. This can in particular includes supersymmetry, maps to
a background space X and model geometry structures. The categories TV0 and TV1 are
the unraveled versions of the category of topological vector spaces as in Definitions 4.26 and 4.27.

The compatibility property of the functors asserts that the functors cannonically induce a functor
Z : Bord→ TV in the ununraveled case. For a precise definition of internal categories and their
morphisms see [ST11, Definition 2.4]. N

This definition in terms of the internal categories is the precise object we are looking at. However,
for many purposes it suffices to look at the induced functor Z : Bord→ TV instead.

Example 4.31. The trivial functorial field theory is given by sending every object of a bordism
category Bord to the ground field K of the vector spaces and all morphisms of Bord to the
identity of K. For a category of families of bordisms Bordfam, we can send every object to (the
section sheaf of) the trivial line bundle S × K, where S is the relevant index space. Again, all
morphisms are sent to the identity on S ×K. 4

The funcotrial field theories, being functors Bord→ TV for some bordism category Bord, form
the category of symmetric monoidal functors. The morphisms in this category are the natural
transformations between the symmetric monoidal functors. We will denote the category of
functorial field theories by FFT. When working over a space X, we can make this explicit with
the notation FFT(X).

The adopted nomenclature of field theories, which is a widely used term in physics, for this
mathematical object hints at a direct link between mathematics and physics. The physical
interpretation of functorial field theories is as follows. The objects of the bordism categories
should be thought of as “particles” of the theory. In case, we have a 1-dimensional bordism
category (so the bordism manifolds have dimension 1), the objects are indeed disjoint unions
of points, the 0-dimensional manifolds. This reflects point like particles. For 2-dimensional
bordism categories, the objects become circles, resembling strings. When working over a
manifold X the “particles” are placed into some background manifold X, which can be
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interpreted as the relevant space-time. A field theory is now a functor which assigns to every
such “particle” a vector space, which could be refined to resemble the Hilbert space of the
particle.

The morphisms (bordisms) can be interpreted as a geometric description of a sort of time evolu-
tion of the system. The bordism tells us how the particles transform and interact. When working
over a background manifold X, the map to X also tells us how the particles “move” in the
background X. The field theory functor assigns a linear map between the relevant Hilbert spaces
corresponding to the time evolution of the states under the given transformation of the particles.

The monoidal structures on the bordism category given by disjoint unions allows us to consider
several particles simultaneously. The monoidal structure of the tensor product on the category
of vector spaces gives us the quantum notion of “placing states together”. Namely, the states
get entangled using the tensor product structure.

4.2.3 Functorial Field Theories in Purely Odd Dimensions

In this section, we will consider functorial field theories on bordism categories of super-
manifold in purely odd dimensions. I.e., the dimension of the bordism will be 0|q for any
q ≥ 0. The objects of any bordism category consists only of the empty set, as this is the
only −1-dimensional manifold. The morphisms are disjoint unions of (super)point R0|q,
potentially furnaced with extra datum like a map into a background manifold X. Notice
that for the morphisms, we do need to take equivalence classes over the relevant notion of
diffeomorphism. The diffeomorphism group of a one point topological space is obviously trivial.
However, the superpoint R0|q has a nontrivial diffeomorphism group, as explored in Lemma 2.63.

The above observations lead to the following theorem. We write [(ΠT )qX/G] for the quotient
stack of (ΠT )qX by the action of G ⊆ Diff(R0|q) as explained in Chapter 2.4.2, where (ΠT )qX
can be seen as the mapping space Map(R0|q, X), Proposition 2.61.

Theorem 4.32. Let X be a supermanifold, G ⊆ Diff(R0|q) a subgroup and K a topological
field. Consider the bordism category (R0|q, G)-Bordfam(X) of families of bordisms over X for
the model geometry (R0|q, G). Then, the functorial field theories (R0|q, G)-Bordfam(X)→ TVfam

K
are in natural bijection with the K valued functions on (ΠT )qX invariant under G.

Proof. As observed, the category (R0|q, G)-Bordfam(X) has a single object, namely the empty
set, which is the unit for the monoidal structure given by the disjoint union. Therefore, every
FFT on 0|q-Bordfam(X) sends all objects to the trivial family of topological vector spaces given
by the trivial line S × K for the relevant index space S. In particular, this means that the
image of a morphism under a FFT is a vector bundle map between trivial line bundles. I.e., it
can be identified with an map S → K.

Since a FFT is a symmetric monoidal functor, it is completely determined by its values on
connected families of bordisms. Therefore, it suffices to remember just the values on the
bordisms represented by a map S × R0|q → X. Two such maps f, f ′ : S × R0|q → X define the
same bordism precisely if there exist a g ∈ G ⊆ Diff(R0|q) such that f ◦ (IdS × g) = f ′.

We have obtained the following bijection

Fun⊗,fam((R0|q, G)-Bordfam(X),TVfam) ∼= Mapfam(Map(−× R0|q, X)/G,K). (4.2.5)
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Here, the left-hand side is precisely the set of FFT’s on (R0|q, G)-Bordfam(X). While, the right
hand side are for every index space S the K valued S-families of functions on Map(S×R0|q, X)/G.
By Proposition 2.61, we know that Map(S × R0|q, X) = Map(S, (ΠT )qX). Hence, by Proposi-
tion 3.49 we see that the right hand side of Eq. (4.2.5) are the K valued functions on (ΠT )qX
invariant under G. We obtain the result.

Corollary 4.33. Taking G = GLδnR0|δ, we obtain a canonical bijection between the (R0|q, G)-
FFT’s with ground field R over X and the closed pseudo differential forms of determinant degree
0.

Proof. By the theorem, we need to consider the functions on the quotient stack [(ΠT )qX/G].
Invariance under R0|δ is by definition equivalent with closedness. Invariance under GLδ is by
definition equivalent with having determinant degree 0. This shows the claim.

Corollary 4.34 ([Hoh+11, Lemma 20]). For a supermanifold X and topological field K, the
0|0-dimensional functorial field theories are in natural bijection with the K valued functions on
X.

Corollary 4.35 ([Hoh+11, Proposition 30]). Let X be an ordinary manifold and K = R,C.
Then, the FFT’s 0|1-Bordfam(X)→ TVfam

K are in bijection with the K valued closed differential
forms on X of degree zero Ω0

cl(X,K). I.e., the locally constant function on X.

Proof. By the theorem above, we know that the FFT’s are in bijection with the K valued
functions on ΠTX invariant under Diff(R0|1). These are precisely the elements of the function
sheaf C∞(ΠTX) invariant under Diff(R0|1) with values in K, Proposition 3.49. The function
sheaf of C∞(ΠTX) are the differential forms on X, Corollary 2.70. We know by Lemma 2.66
that Diff(R0|1) = R× nR0|1, the translations and scalar multiplications on R0|1. The derivative
of the action by translations is the De Rham operator, Lemma 2.71. A scalar multiplication by
some α ∈ R× acts on the function sheaf by multiplying a form ω with α−n with n the degree of
ω. Therefore, the invariant elements of the function sheaf C∞(ΠTX) are the degree zero closed
differential forms on X. As requested.

It seems a little sad we only see closed differential forms of degree zero. We know much more
about differential forms and like to use their computative power to learn more about functorial
field theories and bordism categories. The reason why we only obtain closed differential forms
can be seen from the proof. The closedness and degree come respectively from the invariance
under translation and scalar multiplication in Diff(R0|1) = R× n R0|1. The invariance in
turn followed from the fact that bordisms in 0|1-Bordfam(X) are equivalent if they are tied
together by an element in Diff(R0|1). When we restrict this equivalence, we have less invariance
assumptions on the forms. Hence, more forms will survive.

Allowing fewer bordisms to be equivalent can be done by enforcing the diffeomorphisms to be
isometries in a model geometry. The interesting cases are the model geometries (R0|1,R0|1) and
(R0|1, {±1}nR0|1).

Corollary 4.36 ([Hoh+11, Section 5.2]). Let X be an ordinary manifold and K = R,C. Then,
the FFT’s (R0|1,R0|1)-Bordfam(X)→ TVfam

K and (R0|1, {±1}nR0|1)-Bordfam(X)→ TVfam
K are

respectively in bijection Ω•cl(X,K) and Ωev
cl (X,K).

Proof. The proof is the same as in Corollary 4.35, only the invariance under scalar multiplication
is limited to multiplying by 1n and (−1)n in the respective cases with n the degree of the
form.
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4.2.4 Concordance

As seen in the previous section, functorial field theories over certain bordism categories
make up closed differential forms. From closed differential forms, it is a small step to De
Rham cohomology. In this section, we aim to pass directly from functorial field theories
to cohomology. I.e., we need to find a notion of equivalence on FFT’s which sets closed
forms differing by an exact form equal. The relevant notion will be concordance of functorial
field theories. A concordance generally forgets geometrical data, while it retains topological data.

A map f : X → Y on the (super)manifolds induce by postcomposition a pushforward functor
f∗ : Bord(X) → Bord(Y ) between the bordism categories over X and Y . Hence, by precompo-
sition, we obtain a pullback functor f∗ : FFT(Y )→ FFT(X).

Definition 4.37 ([ST11, Definition 1.12]). Two functorial field theories Z± : Bord(X) → TV
for any of the bordism categories over a manifold X are concordant if there exists a functorial
field theory Z : Bord(X × R) → TV such that π∗±Z± and i∗±Z are naturally isomorphic as
symmetric monoidal functors. Here, the functions π± : X × (±1,±∞) → X are the projection
and the functions i± : X × (±1,±∞)→ X × R are the inclusions. N

Remark 4.38. The term concordance is used in various mathematical fields, roughly meaning
the same. All what really goes into the definition is a notion of pullback and isomorphism for
some kind of structure defined over geometric objects. For example, we can say that two vector
bundles E± over a base B are concordant if there exists a vector bundle E over B × R such
that π∗±E± ∼= i∗±E. By standard vector bundle theory, this notion of concordance is equivalent
with isomorphisms of vector bundles.

Another example of concordance of (closed) differential forms. By applying Stokes’ Theorem
and the homotopy invariance of De Rham cohomology, we see that closed differential forms are
concordant if and only if they represent the same cohomology class. O

We will now process the notion of concordance of functorial field theories through the proof of
Theorem 4.32. Let X be a (super)manifold, G ⊆ Diff(R0|q) a subgroup and K a topological field.
By the theorem a concordance Z ∈ FFT(X×R) between two (R0|q, G)-FFT’s Z± corresponds to
a K valued function f on (ΠT )q(X×R) invariant under G. Since, the bijection of Theorem 4.32
is natural with respect to changing the background space, we deduce that there must hold

π∗±f± = i∗±f. (4.2.6)

Here, we write

π∗± : C∞((ΠT )q(X)/G,K)→ C∞((ΠT )q(X × (±1,±∞))/G,K) and (4.2.7)
i∗± : C∞((ΠT )q(X × R)/G,K)→ C∞((ΠT )q(X × (±1,±∞))/G,K) (4.2.8)

for the pullbacks given by precomposition of the relevant projections and inclusions respectively.
The functions f± are the elements of C∞((ΠT )q(X)/G,K) classifying Z±.

We now consider concordance classes of functorial field theories in the low dimensions.

Proposition 4.39 ([Hoh+11, Corollary 21]). There is a single concordance class for 0|0-FFT’s
over a supermanifold X.

Proof. Any smooth function on X×((−∞,−1) ∪ (1,∞)) extends to a smooth function on X×R.
Using Corollary 4.34, the result follows.
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Proposition 4.40. The concordance classes of 0|1-FFT’s, (R0|1, {±1} n R0|1)-FFT’s and
(R0|1,R0|1)-FFT’s over an ordinary manifold X can be identified naturally with De Rham coho-
mology classes in H0

dR(X), Hev
dR(X) and H•dR(X) respectively.

Proof. Observe that the equivalence induced, given by Corollaries 4.35 and 4.36 on the differ-
ential forms from concordance on functorial field theories, yields precisely concordance of closed
differential forms. As by Remark 4.38, closed differential forms are concordant if and only if
they represent the same cohomology class. This shows the claim in each of the cases.

The way we have arrived here at De Rham cohomology in all degrees is different from [Hoh+11].
We have modified the model geometry to obtain the result, while [Hoh+11] introduce a notion
of degree on the functorial field theories, using twists. We will present this approach in the next
section. Our approach considered above is simpler in terms of getting just the identification with
the total cohomology Ω•(X). However, using twists allows us to find the FFT’s concentrated
in a single degree.

4.2.5 Twisted Functorial Field Theories

In this section, we consider twisted Functorial Field Theories. These will allow us to define
a suitable notion of degree, materializing the degree in cohomology. Twists will be a general
framework in which we can define the degree. The name twist is used since it is believed that
twisted field theories correspond to twisted cohomology, [ST11, Section 5]. From a physics
perspective, the twisted theories are the conformal field theories with nonzero central charge.
This correspondence to physics is due to Greame Segal, [Seg88].

Definition 4.41 ([ST11, Definition 5.2]). Let X be a smooth manifold and (M, G) a model
geometry. A twist is a symmetric monoidal functor

T : (M, G)-Bord(X)→ TA. (4.2.9)

N

A simple, yet fundamental, example is the trivial or constant twist

Example 4.42. The trivial or constant twist

T 0 : (M, G)-Bord(X)→ TA (4.2.10)

sends all objects and morphism of (M, G)-Bord(X) to the ground field K seen as a topological
algebra and K,K bimodule respectively. This defines indeed a twist, since K is the monoidal
unit in both TA0 and TA1. 4

Definition 4.43 ([ST11, Definition 5.2]). A T -twisted Functorial Field Theory for a (M, G)
is a natural transformation

(M, G)-Bord(X) TA

T

T 0

Z (4.2.11)

from the trivial twist to T . N
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For this definition to make sense compared to the previous definition of functorial field theories,
Definition 4.30, we need to recover the previous notion from the new one. This is indeed possible,
as the following lemma shows. However, for this, it is important we work with internal categories
explicitly.

Lemma 4.44 ([ST11, Lemma 5.7]). The functorial field theories twisted by the trivial twist
T 0 are in natural bijective correspondence with functorial field theories in the sense of Defini-
tion 4.30.

Proof. A natural transformation Z between T 0 and itself amounts to an assignment
Z0 : (M, G)-Bord(X)0 → TA1 on objects and an assignment Z1 from the objects of
(M, G)-Bord(X)1 to the morphisms of TA1. Since, the trivial twist T 0 sends all objects of
(M, G)-Bord(X)0,1 to the ground field, the assignment Z0 sends every object to a topological
vector space and Z1 sends a bordism to a linear map between the topological vector spaces.
The compatibility conditions of natural transformations enforce functoriality on the described
assignment Z : (M, G)-Bord(X)→ TV. This establishes the requested identification.

A degree on a functorial field theory is given by a twist, which does not depend on the
background manifold X. Defining these twists is non-trivial. A general construction of a degree
in all dimensions has not been established. For purely bosonic dimensions p|0, a construction
of twists Tn is given in [ST11, Section 5.5]. Below, we will consider the other extreme of purely
fermionic dimensions 0|q, following [Hoh+11, Section 6].

The diagram in (4.2.11) should remind us the sections of vector bundles over quotient stacks
defined in Definition 3.52. The quotient stack here is that of the manifold (ΠT )δX by the group
G. Here, the group G needs to be some subgroup of Diff(R0|δ). This quotient stack detects
precisely the connected bordisms in (R0|δ, G)-Bord(X)1, which is all relevant information for
FFT’s. In Corollary 2.64, we have identified the underlying supermanifold of Diff(R0|δ)to be
GLδ×Rδ(2δ−1−δ)|δ2δ−1

. Hence, at least on the level of supermanifolds, there is a projection map

Diff(R0|δ)→ GLδ. (4.2.12)

This projection removes all odd directions. In particular, all the odd translations are projected
out. Recall from Lemma 2.67 that the translations and rotations in Diff(R0|δ) form a copy of
GLδ n R0|δ. All other generators of Diff(R0|δ), see Lemma 2.63, do not affect the rotations.
In conclusion, the projection map (4.2.12) is a group homomorphism. Postcomposing with the
determinant map, we obtain a homomorphism

ρ : Diff(R0|δ)→ GLδ
det→ R×. (4.2.13)

Recall from Chapter 3.3.6 that a homomorphism ρG : G ↪→ Diff(R0|δ)→ R× gives rise to a line
bundle Vρ over the quotient stack [(ΠT )δX/G]. From the proof of Theorem 4.32, we deduce
that any symmetric monoidal functor (R0|δ, G)-Bord(X) → TA must take values in the line
bundles. The stack of (real) line bundles can be identified with the quotient stack [Pt/R] (this
is just saying that line bundles are locally trivial). The bordism category can be identified with
(ΠT )δX/G. Therefore, a line bundle bundle over [(ΠT )δX/G] defines an (R0|δ, G)-FFT twist.
In particular, we have the line bundle VρG and its odd partner ΠVρG .

Definition 4.45. The degree 1 twist of (R0|δ, G)-FFT’s is the odd partner ΠVρG of the
line bundle VρG over (ΠT )δX/G. Here, the homomorphism ρG is the restriction of the
homomorphism of Eq. (4.2.13) to G ⊆ Diff(R0|δ). The degree n-twist is the n-fold tensor
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product (ΠVρG)⊗n where we used the tensor product of TA.

The (R0|δ, G)-FFT’s over X of degree n are the natural transformations

(R0|δ, G)-Bord(X) TA

(ΠVρG)⊗n

T 0

Z . (4.2.14)

N

Proposition 4.46. The (R0|δ, G)-FFT’s over X of degree n are in canonical bijection with{
f ∈ C∞((ΠT )δX)|µ∗(f) = p∗1(f)p∗2(ρVG) ∈ C∞((ΠT )δX)×G

}
. (4.2.15)

Proof. Using the same analysis of bordism categories and symmetric monoidal functors on them
as in Theorem 4.32, we obtain that the (R0|δ, G)-FFT’s over X of degree n are in canonical
bijection with the section of the vector bundle (ΠVρG)⊗n over the quotient stack [(ΠT )δX/G].
Proposition 3.53 now implies the claim.

Corollary 4.47. Let G = GLδ n R0|δ. Then, the (R0|δ, G)-FFT’s over X of degree n are in
canonical bijection with the closed pseudo-differential forms of determinant degree n.

Proof. By the proposition, we have to analyze the set{
f ∈ C∞((ΠT )δX)|µ∗(f) = p∗1(f)p∗2(ρVG) ∈ C∞((ΠT )δX)×G

}
(4.2.16)

with G = GLδ nR0|δ. The required invariance under the R0|δ translation action is by definition
equivalent with closedness of the pseudo-differential forms. The condition required by the GLδ
action boils down to the equality

A · f = det(A)nf (4.2.17)

for all A ∈ GLδ. This is by definition equivalent with asking the form to be of determinant
degree n.

Restricting to the case of δ = 1, we obtain, similar to Corollary 4.35, differential forms.

Corollary 4.48 ([Hoh+11, Proposition 35]). The (R0|1,Diff(R0|1))-FFT’s over X of degree n
are in canonical bijection with the closed degree n differential forms Ωncl(X) on X.

Proof. Apply the previous corollary, using Lemma 2.66. The result now follows from Lemma 2.71
and Example 2.77.

4.3 Physical Field Theories
Having consider the mathematical notion of functorial field theories, we will now turn to the
physics side of things. In this section, we will relate the mathematical structures considered to
certain field theories, in fact Sigma Models, common in physics. The models used will be taken
from Edward Witten’s chapter titled “Index of Dirac Operators” from [Del+99]. This section
has a more “physicist” tone than before. We adopt notations and conventions common in the
theoretical physics community.
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4.3.1 Sigma Models

Field theories come in many variations in physics. The simplest are probably the scalar field
theories. Here, we define a Lagrangian on top of maps from some manifold to R (or C when
dealing with complex scalars). Naturally, we can extend this to vector fields, which are a bunch
of scalars combined. I.e., we now have a Lagrangian from some manifold to Rn (or Cn). However,
we can go much more general by allowing our fields to land in any space X.

Definition 4.49 ([Lin18, Section 2]). A Sigma Model is a field theory whose fields take value
in some manifold X. N

The name Sigma Model originates from the fact that initially the target manifold X was called
σ, [GL60, Section 5]. In our application, the fields will take value in the space-time X.

Obviously, any of the (complex) scalar or vector field theories are included in the discussion
of Sigma Models, by simply taking X = Rn (or Cn). More interestingly, we can consider the
Sigma Model of a (relativistic) point particle in a space-time X. This is described by maps
Ψ: R→ X, where the domain represents the time evolution. We write gij for a metric on X, a
free Lagrangian for this model is given by

S(Ψ) =
∫
dt〈Ψ̇, Ψ̇〉 =

∫
dtgij(Ψ)Ψ̇iΨ̇j . (4.3.1)

Taking the dimension up one further, we obtain (relativistic) strings Ψ: Σ→ X in a space-time
X. In general, a Sigma Model with 2-dimensional domain can be given the Lagrangian

S(Ψ) =
∫
d2xgij(Φ)ηab∂aΨi∂bΦj +Bij(Ψ)εab∂aΦi∂bΨj . (4.3.2)

Here, both the metric and the B field should be thought of as generalized coupling constants.
After quantization, they will generically scale with energy.

The connection of these Sigma Models to the functorial field theories is as follows. We have
defined functorial field theories over a space X on top of bordism categories over X. The data
of both the object and the morphism in these categories contain a map to X, cf. Definition 4.18.
Precisely this map resembles the fields in the Sigma Models. Obviously, in the topological case,
we consider several manifolds as domain (depending on the structures we assume to be present).
This can be incorporated in the physics story too. When taking path integrals, we need to
integrate over all fields anyway. Hence, we can also integrate over a suitable moduli space to
account for the various possible domains. Fixing ingoing and outgoing boundaries Xin and Xout
and a FFT Z, the amplitude is computed by, [BM22, Equation 1.2],

A(Xin, Xout) =
∑

Y : Xin→Xout

1
|Aut(Y )|

Z(Y ). (4.3.3)

The automorphism group Aut(Y ) is the group of automorphisms of Y relative to the boundary.
The fraction taking over the automorphism group is necessary to mitigate over counting. The
result of this sum if obviously an element of Hom(Z(Xin), Z(Xout)).

4.3.2 Supersymmetric Sigma Models

Supersymmetry can be added to sigma models in two places. Both the domain and the target
manifold of the model can be taken supermanifolds. We will respectively refer to the two cases
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as world sheet supersymmetry and space-time supersymmetry. We will mostly be
concerned with world sheet supersymmetry.

Consider a world sheet2 Σ whose dimension is p|q and an ordinary manifold X. General fields
Ψ: Σ→ X in this Sigma Model take the form

Ψi(~x, ~θ) =
∑

I⊆{1,...,q}

aIi (~x)θI . (4.3.4)

Here, the i index on the coefficients is there to account for the coordinates in X. The coefficient
functions aIi (~x) are necessary even or odd functions, depending on the parity of the cardinality
of I. This fact should raise some eyebrows, since what does it mean to have an odd resp. even
function. The solution lies in the fact that we should work with families of Sigma Models instead.
This is the analogue of the families of bordisms and their functorial field theories considered
from a mathematical perspective. Explicitly, we will be working with world sheets which are
fiber bundles over some index space S, whose fiber is Σ. Since, the index space S can be taken
a supermanifold, function on this fiber bundle come with a notion of parity. We will tacitly
assume the index space to be present in all our computation, but make no explicit reference to it.

We will consider the supersymmetric Sigma Model with an action of the form

S(Ψ) = −1
2

∫
Σ
dpxdqθ〈∂µΨ, DµΨ〉. (4.3.5)

Here, the brackets denote the pullback of the metric gij on X along the field Ψ and Dµ is a
some vector field on Σ. The integral over the world sheet includes integration in both the even
and odd coordinates. The integration of odd variables are Berezinian integrations. Berezinian
integrals are the standard way in physics to integrate odd variables. For more details see
[Wip19]. The µ index runs over the even directions on the worldsheet.

The equations of motion for such an action are most easily computed by varying the action
once. We follow the computation in [Ber13a, Sections 4.5 and 5.5].

δvS(Ψ) = −1
2

∫
Σ
dpxdqθ

[
〈∇v∂µΨ, DµΨ〉+ 〈∂µΨ,∇vDµΨ〉

]
(4.3.6)

= −1
2

∫
Σ
dpxdqθ

[
〈∇µδvΨ, DµΨ〉+ 〈∂µΨ,∇DµδvΨ〉

]
(4.3.7)

= −1
2

∫
Σ
dpxdqθ

[
− 〈δvΨ,∇µDµΨ〉+ ∂µ〈δvΨ, DµΨ〉

− 〈∇Dµ∂µΨ, δvΨ〉+Dµ〈∂µΨ, δvΨ〉
]

(4.3.8)

=
∫

Σ
dpxdqθ〈δvΨ,∇µDµΨ〉 (4.3.9)

Here, in the second step, we used that the connection is torsion free. In the third step, we have
partially integrated. In the last step, we have discarded the total derivatives, which integrate
to zero. From this equation, we see that the equation of motion is

∇µDµΨ = 0. (4.3.10)
2I will use the term world sheet for the domain of the Sigma Model, irrespective of its dimension. So it can

be a world line, volume or any higher dimensional analogue
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Continuing the computation in the same spirit, we obtain the second order variation on the
classical solution.

δwδvS(Ψ) =
∫

Σ
dpxdqθ

[
〈∇wδvΨ,∇µDµΨ〉+ 〈δvΨ,∇w∇µDµΨ〉

]
(4.3.11)

=
∫

Σ
dpxdqθ〈δvΨ,∇µ∇DµδwΨ〉 (4.3.12)

We will now construct an explicit operator D for which the action (4.3.5) applies. For now, we
will assume all function have complex values. I.e., the function sheaves of our supermanifolds
will be tensored with C. This has the effect that the odd generators θi obtain an additional
spinor index α. We will use the shorthand θ2

i = (θi)α(θi)α. We now can define an operator Dµ

as

Dµ = θ2
1 · · · θ2

k∂
µ −

k∑
i=1

θ2
1 · · · θ2

i−1θ
2
i+1 · · · θ2

k(θi)αεα
′′

α′ σ
µ
αα′′

∂

∂θα′
. (4.3.13)

Here, the σµαα′ are the sigma matrices. The εα′′α′ is there to correct the sign in case the θαi are
ordered in reverse. We write the fields Ψ from Eq. (4.3.4) as

Ψi(~x, ~θ) = xi(~x) + (ψi)µα θ
α
µ + higher order. (4.3.14)

Substituting the operator Dµ and these fields in the action (4.3.5) and performing the Berezinian
integrals similar to [Del+99, pages 651-652], we obtain the following:

S(Ψ) = −1
2

∫
Σ
dpxdqθ〈∂µΨ, DµΨ〉 (4.3.15)

= −1
2

∫
Σ
dpxdqθgij(Ψ)∂µΨiDµΨj (4.3.16)

Since all terms coming from DµΨj contain at least 2p−1 factors of θαi , the only terms surviving
must have at most 1 factor of θαi from gij(Ψ) and ∂µΨi. Taylor expanding gij in the θi yields

= −1
2

∫
Σ
dpxdqθ

(
gij(x(~x)) + θνα(ψk)αν ∂kgij(~x)

)
∂µΨiDµΨj (4.3.17)

= 1
2

∫
|Σ|
dpx

[
gij(x(~x))

(
∂µx

i∂µxj − ∂µ
(
ψi
)α
ν
σµαα′

(
ψj
)να′)

− (ψk)αν ∂kgij(~x)∂µxiσµα,α′
(
ψj
)να′ ] (4.3.18)

= 1
2

∫
|Σ|
dpx〈∂µx, ∂µx〉 − 〈σµαα′ψ

α
ν ,∇µψνα

′
〉 (4.3.19)

In all, we see that we have obtained the free Lagrangian of a supersymmetric Sigma Model with
q complex supersymmetries. Moreover, we can identify the Hamiltonian function with

1
2
〈∂µx, ∂µx〉. (4.3.20)

For the rest of this chapter we will specify the dimension to low dimension. We will just have one
fermionic dimension and 1 resp. 2 bosonic dimensions. As we will see, in these dimensions the
notation greatly simplifies. In particular, we do not have to work with complex odd generators
anymore. Real ones will suffice.



4 FIELD THEORIES 77

4.3.3 1|1-dimensional Sigma Model and the Â-genus

The Sigma Model with one bosonic and one fermionic dimension gives rise to the Â-genus. From
a mathematical perspective, the Â-genus is a homomorphism

Â : ΩSO
• → π•(KO)⊗Q (4.3.21)

from the bordism ring of orientable manifolds to the spectrum of K-theory.[Van13] This places
the Â-genus in K-theory, which is a generalized cohomology theory. The characteristic series
for the Â-genus is given by, [AHR10, Proposition 10.2],

x/2
sinh(x/2)

= exp

( ∞∑
k=1

x2k

2k(2πi)2k 2ζ(2k)

)
. (4.3.22)

As we will see below, we can construct the Â genus from the 1|1-dimensional Sigma Model
using Physical arguments. This argument is taken from Witten’s chapter in [Del+99]. A
mathematically rigorous construction following the same ideas will be given in Chapter 5.5.
Moreover, the Â-genus itself has applications in physics itself. Firstly, the genus is integral
part of the Atiyah-Singer index theorem, [AS71], which is widely used to compute indices of
operators. Secondly, the genus is used for describing effective actions on Dp-branes in super
string theory. For example, see [BLT13, Equation 16.171].

The Sigma Model we have constructed takes as central input the vector field Dµ. Since there is
just one bosonic dimension, we can drop the index and use the following operator

D = ∂

∂θ
− θ d

dt
. (4.3.23)

As before, we take the action functional

S(Ψ) = −
∫
dtdθ〈∂tΨ, DΨ〉 (4.3.24)

=
∫
dt

[
〈ẋ, ẋ〉 − 〈∇tψ,ψ〉

]
(4.3.25)

where we have written the field Ψ(t) = x(t) +ψ(t)θ and we have used Eq. (4.3.19) to obtain the
second line. The equations of motion remain ∇tDΨ = 0 as by Eq. (4.3.10). We now investigate
the second order variation of the action. From Eq. (4.3.12), we know that the second order
variation evaluated at the classical solutions takes the form

δwδvS(Ψ) =
∫
dtdθ〈δvΨ,∇t∇DδwΨ〉. (4.3.26)

Denote i0 : R→ R1|1 for the inclusion in the even coordinate. We have the identities

i∗0(Ψ) = x, i∗0(DΨ) = ψ, (4.3.27)

i∗0∇D∇t∇D = i∗0∇t∇D∇D = 1
2
i∗0∇t(R(D,D)−∇[D,D]) = 1

2
R(D,D)∇ti∗0 +∇2

t i
∗
0. (4.3.28)

Here, we used in the first equality the fact that the connection is torsion free, in the second
equality that D is an odd vector field and thus

∇2
D = 1

2
(∇D∇D +∇D∇D) = 1

2
(
R(D,D)−∇[D,D]

)
(4.3.29)
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and in the last equality that [D,D] = 2∇DD = −2∂t. The R(D,D) denotes the curvature.

Decomposing the variation δvΨ = a+ θη and using these identities, we obtain that the Hessian
takes the form

Hess(a, η) = δvδvS(Ψ) (4.3.30)

=
∫
dtdθ〈a+ θη,∇tη + θ

(
∇2
t + 1

2
R(D,D)∇t

)
a〉 (4.3.31)

=
∫
dt

[
〈η,∇tη〉+ 〈a,

(
∇2
t + 1

2
R(D,D)∇t

)
a〉
]

(4.3.32)

where in the second equality we have taken the Berezinian integral. In particular, we have
obtained the operators

∆1|1
ev = −∇2

t −
1
2
R(D,D)∇t and ∆1|1

odd = −∇t. (4.3.33)

The Â-genus arises as a determinant of the operator ∆1|1
ev . One can also add the contributions

from the odd operator, however their contribution is only an irrelevant constant. We ignore
the odd part and focus on the even compartment. Notice that the a used in the computation
above is a map a : R→ TX. Since, we work with a Riemannian metric on X, we can decompose
TX, for any linear operator R ∈ SO(TX) (in particular the curvature R), in two-dimensional
subspaces such that R is block diagonal with blocks Ri of the form(

0 xi
−xi 0

)
. (4.3.34)

Therefore, a basis of eigenfunctions is given by the functions

t 7→ e2πikt. (4.3.35)

Hereby, we obtain that the eigenvalues of ∆1|1
ev are (2πk)2± 2πikxi

2 . Evaluating the determinant
of ∆1|1

ev is some straightforward linear algebra:√
det(∆1|1

ev ) =
∏
i

∏
k 6=0

√
(2πk)2 ± 2πikxi

2
(4.3.36)

=
∏
i

∞∏
k=1

(2πk)4
(

1 + xi
2πk

)2
(4.3.37)

= C
∏
i

[
xi
2

sinh
(
xi
2
)]−1

(4.3.38)

for some (infinite) constant C. We have obtained precisely the inverse of the characteristic series
of the Â-genus, Eq. (4.3.22). The infinite constant is the obvious root cause of this computation
not being mathematically rigorous. We will aid this problem in the next chapter by comparing
to a flat background.

4.3.4 2|1-dimensional Sigma Model and the Witten Genus

The 2|1-dimensional Sigma Model gives rise to the Witten genus. This genus, first constructed
by Edward Witten in his paper, [Wit87]. The Witten genus takes a similar place in elliptic
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cohomology as the Â-genus does in K-theory.

In the 2|1-dimensional Sigma Model, we consider has action functional

S(Ψ) = −1
2

∫
dzdz̄dθ〈∂zΨ, DΨ〉 (4.3.39)

= 1
2

∫
dzdz̄

[
〈∂zx, ∂z̄x〉 − 〈∂zψ,ψ〉

]
(4.3.40)

where D = ∂
∂θ − θ

∂
∂z̄ . For the second line, we used Eq. (4.3.19).

The equations of motion are obtained immediately from Eq. (4.3.10),

∇zDΨ = 0. (4.3.41)

Varying the action once more, we obtain the second order variation

δwδvS(Ψ) =
∫

Σ
dzdz̄dθ〈δvΨ,∇z∇DδwΨ〉. (4.3.42)

We analyze this equation with the same ideas as in the 1|1-dimensional case. We write
i0 : R2 → R2|1 for the inclusion in the even coordinates. We have the identities

i∗0(Ψ) = x, i∗0(DΨ) = ψ, (4.3.43)

[D,D] = 2∇DD = −2∂z̄, ∇2
D = 1

2
(∇D∇D +∇D∇D) = 1

2
(
R(D,D)−∇[D,D]

)
, (4.3.44)

i∗0∇D∇z∇D = i∗0∇z∇D∇D = 1
2
i∗0∇z(R(D,D)−∇[D,D]) = 1

2
R(D,D)∇zi∗0 +∇z∇z̄i∗0. (4.3.45)

Here, we write R(D,D) for the curvature.

Decomposing the variation δvΨ = a+ θη and using these identities, we obtain that the Hessian
takes the form

Hess(a, η) = δvδvS(Ψ) (4.3.46)

=
∫
dzdz̄dθ〈a+ θη,∇zη + θ

(
∇z∇z̄ + 1

2
R(D,D)∇z

)
a〉 (4.3.47)

=
∫
dzdz̄

[
〈η,∇tη〉+ 〈a,

(
∇z∇z̄ + 1

2
R(D,D)∇z

)
a〉
]

(4.3.48)

where in the second equality we have taken the Berezinian integral. In particular, we have
obtained the operators

∆2|1
ev = −∇z∇z̄ −

1
2
R(D,D)∇z and ∆2|1

odd = −∇z. (4.3.49)

The Sigma Model in consideration is a version of Type II supersymmetric string theory. We
will consider the sector with Ramond right movers and NS left movers. After quantization, we
obtain the supercurrent

Q =
∫
dσ〈∂+x, ψ+〉. (4.3.50)
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Its square is the Hamiltonian operator L0. We will compute the index of the operator Q closely
following [Wit87].

Naively, one would expect the index of Q to be the number of zero eigenvalues of Q with
(−1)FR = +1 minus the number of eigenvalues with (−1)FR = −1. Here, the operator (−1)FR
counts the number of right movers modulo 2. However, we need a more refined character valued
index.

We define the momentum operator
P = L̃0 − L0 (4.3.51)

which commutes with Q. Hence, the eigenspaces of P and Q coincide. For every eigenvalue λ of
P denote bλ for the index of Q restricted to the eigenspace Hλ of P with eigenvalue λ. Define
the character valued index of Q as

F (q) =
∑
λ

bλq
λ. (4.3.52)

Recall from standard supersymmetric string theory that the momentum operator P picks up a
factor of (−1)FL under a transformation τ → τ +2π and that the global anomaly in the fermion
determinant under the same transformation makes the states pick up a factor e−iπ d8 . Here, the
dimension of the background is d. Hence, we have the operator statement

e2πiP = (−1)FLe−iπ d8 . (4.3.53)

We conclude that the possible eigenvalues for P are

λ = − d

16
+ l

2
(4.3.54)

where l is an integer.

We evaluate Eq. (4.3.52) with the found eigenvalues.

F (q) = q−
d
16
∑
l∈Z

blq
l
2 (4.3.55)

= q−
d
16

∞∑
l=0

Index(Rl)q
l
2 (4.3.56)

Here, the operators Rl are defined by the generating function∑
k

q
k
2Rk = ⊗k∈N+ 1

2
ΛqkT ⊗l∈N SqlT (4.3.57)

where we have used the antisymmetric and symmetric expansions of T

ΛtT = 1 + tT + +t2Λ2T + . . . (4.3.58)
StT = 1 + tT + +t2S2T + . . . (4.3.59)

The operator T denotes the fundamental representation of SO(N) and the equality in
Eq. (4.3.56) holds because the operator Rk gives us precisely the symmetry transformation of
the k’th mass level of the theory. E.g., denote |Ω〉 for the ground state, which is a spin(N)
singlet. Now, the first excited states are created by applying the fermion creation operators
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ψik for negative halfintegers k and boson creation operators ail for negative integers l. At
the first excited level, we only find the states ψi− 1

2
|Ω〉, which transforms like T . At the

second level, we find the states ψi− 1
2
ψi− 1

2
|Ω〉 and ai−1|Ω〉, which transforms like Λ2T ⊕ T .

Continuing to the third level, we find the states ψi− 1
2
ψi− 1

2
ψi− 1

2
|Ω〉, ψi− 1

2
ai−1|Ω〉 and ψi− 3

2
|Ω〉.

Together these transform like Λ3T ⊕ (T ⊕ T ) ⊕ T . Notice that these are precisely the first
factors in the expansion of Eq. (4.3.57) and we can reasonably assume this continues to all orders.

By formally applying the Atiyah-Singer Index Theorem, [AS71], we can compute the index F
following the computations in [SW86].

F (q) = q−
d
16 Â(X)ch

(
⊗k∈N+ 1

2
ΛqkT ⊗l∈N SqlT

)
[X] (4.3.60)

=

(
η(−q 1

2 )
η(q)η(−q)

)d
Φ(q) (4.3.61)

Here, the function Φ can be shown to be a modular form of weight d
2 and the η’s are Dedekind

η functions. The modular form Φ is referred to as the Witten Genus. In the next chapter,
we will construct this genus in a more mathematically rigorous setting. The main issue in this
computation is the fact we only have formally applied the Atiyah-Singer Index Theorem. This
theorem has only been shown for finite dimensional manifolds, while here we apply it over a
loop space, which generically is infinite dimensional.
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5 One Loop Field Theories
In Chapter 4.2.3, we have analyzed field theories in purely odd dimensions. The goal now is
to allow for non-trivial even dimensions. This makes the theories highly non-trivial in general.
Therefore, we will perturbatively expand and just consider the theories up to having one loop.
I.e., we restrict our manifolds to be (higher dimensional) tori. As we will see, we can construct
some interesting objects already from these restricted theories.

We start by defining lattices and their tori and family versions of both. We continue in Chap-
ter 5.2 by organizing the lattices in a stack of tori. By adding the datum of a map to a
background, we lift to a stack of Fields. To make this stack manageable, we need to restrict the
field maps to be constant in the even coordinates. We use the hereby obtained stacks of vacuum
fields to construct complexified cohomology using similar ideas as in Chapter 4.2.3. We finish
by constructing the Â and Witten class in the present language.

5.1 Lattices and Tori
The tori will be defined in terms of lattices, so we define those first.

Definition 5.1. A p-dimensional lattice is a subgroup of Rp of the form Zv1 + · · · + Zvp,
where v1, · · · , vp are a linear basis of Rp. We say that a lattice is oriented if

det


v1
v2
...
vp

 > 0. (5.1.1)

We denote the set of all oriented p-lattices by Lp. N

The space Lp can canonically be identified with the collection of oriented p-frames in Rp, i.e.,
p-tuples of linearly independent vectors in Rp with orientation. In other words, Lp can be
identified with the oriented Stiefel-manifold Vp(Rp) in canonical fashion. This oriented Stiefel
manifold is an open submanifold of (Rp)p, the p-fold product of Rp.[MS74, Paragraph 5, page 56]

Figure 6 visualizes some basic examples of lattices. With the notion of oriented lattices, we do
not lose much compared to unoriented lattices. From an unoriented lattice, we can change the
sign of one of its generators vi and obtain an oriented one. Moreover, the lattice obtained by
flipping the sign, should really be thought of the same as the original lattice, since the subgroup
Zv1 + · · · + Zvp of Rp is invariant under this transformation. Obviously, there are many more
transformations leaving the subgroup invariant. Indeed, the action of the general linear group
with integer coefficients GLp(Z) does. However, the orbits of this action are somewhat harder
to parameterize. Therefore, we stick with the oriented lattices. What we have achieved by
passing to oriented lattices is that we reduced the symmetry group form GLp(Z) to SLp(Z),
the special general linear group with integer coefficients.

In small dimensions, this notion of orientation takes the familiar form. If p = 1, then a lattice
is given by a nonzero scalar r ∈ R×. Orientability asserts that r ∈ R>0. If p = 2, then suppose
that v1 = (a, b) and v2 = (c, d). Hence, there holds

det
(
v1
v2

)
= det

(
a b
c d

)
= ad− bc (5.1.2)



5 ONE LOOP FIELD THEORIES 83

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 6: Two lattices in R. On the left is the lattice generated by the vectors (0, 2) and
(2, 0). On the right are the lattice generated by (1, 1) and (4,−1). In each plot, the
image points of the related homomorphism Z2 → R2 are indicated in red and blue

respectively. The resulting torus in each case is obtained by identifying all points in R2

which only differ by a linear combination with integer coefficients of the generating
vectors. In particular, the red and blue points are identified in each case.

Identifying R2 ∼= C, we can consider

v2

v1
= c+ di

a+ bi
= (c+ di)(a− bi)

a2 + b2
= ac+ bd+ (ad− bc)i

a2 + b2
(5.1.3)

So the lattice Zv1 + Zv2 is oriented if the quotient v2
v1

lies in the upper half plane H.

Notice that for any lattice we have a canonical homomorphism Λ: Zp → Rp such that the images
of the generators (1, 0, · · · , 0), · · · , (0, 0, · · · , 1) form a basis of Rp. The condition for an oriented
lattice now becomes explicitly

det


Λ(1, 0, · · · , 0)
Λ(0, 1, · · · , 0)

...
Λ(0, 0, · · · , 1)

 > 0. (5.1.4)

In this description of lattices, we can straightforwardly consider families of them. An illustration
of a family of lattices is in Fig. 7.

Definition 5.2. For a manifold S, an (oriented) S-family of p-lattices is an equivariance
ΛS : S × Zp → Rp such that for any s ∈ S the restriction to {s} × Z is a(n oriented) lattice.
Here, we take the Zp action on S × Zp which just acts in the Zp coordinate. N

Using the inclusion Rp ↪→ Rp|q as a completely even space, we can define a p-lattice on Rp|q.
Upon taking quotients by lattices, we obtain (super)tori in any dimension.

Definition 5.3. For a(n oriented) p-lattice Λ: Zp → Rp, we define the p|q-dimensional super
torus Tp|q as the superspace Rp|q/Zp, where the Zp action if given by

(~t, ~θ) · (~n) = (~t+ Λ (~n) , ~θ) (5.1.5)

N
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S

Figure 7: An illustration of a family of 2-dimensional lattices for some space S. The
space S runs in the as indicated with the arrow on the right. At every S-point one gets a

lattice in the other two dimensions, as indicated by the red arrows.

The underlying ordinary manifold of the torus Tp|q is simply the p-torus Tp. In fact, from a
(super)manifolds point of view, any choice of lattice gives up to diffeomorphism the same space.
However, for now we will remember the lattice. This can be motivated by complex analysis,
where in the same construction the Riemann surfaces can be non-holomorphic for different
lattices.

As for lattices, we can consider families of (super)tori. Moreover, the manifold S parameterizing
the family can be taken a supermanifold too.

Definition 5.4. For a (super)manifold S, the S-family of p|q-supertori S×Λ Rp|q associated
to an S-family of (oriented) latices Λ: S × Zp → Rp|q is the space

(
S × Rp|q

)
/Zp with the

Zp-action
S × Rp|q × Zp 3

(
s,~v, ~θ, ~n

)
7→
(
s,~v + Λ(s, ~n), ~θ

)
∈ S × Rp|q (5.1.6)

N

These families of super tori are examples of (Rp|q,Ep|qR o G)-supermanifolds for the model ge-
ometry (Rp|q,Ep|qR o G) we have seen before in Example 2.83. To recall, the group Ep|qR o G
acts on Rp|q by translations and the action of G on Rp on the even part directly and through
the G-equivariant pairing R on the odd part. We can define an equivariant chart around every
point (s, x) ∈ |S × Rp|q| which lies inside the (closed) family of parallelepiped spanned by the
generating vectors of the lattice Λ, i.e., a fundamental domain for the lattice action. This is
done by taking a sufficiently small open neighborhood of (s, x) such that it contains no pairs
of different points equivalent under the lattice action. These opens give equivariant charts of
the torus S ×Λ Rp|q by taking the inclusion into S × Rp|q. This construction of the charts is
illustrated by Fig. 8. Notice that the hereby constructed charts also show that the projection
S × Rp|q → S ×Λ Rp|q is a Zp-sheeted normal covering space or equivalently a Zp-principal
bundle.
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S

•

Figure 8: Illustrated example of a fundamental domain of an S-family of lattices and the
construction of charts for the associated S-family of tori. The fundamental domain is
the area inside the blue family of parallelograms (including the boundary). A chart can

be constructed by taking a point in the fundamental domain and taking a sufficiently
small open (the red box) around it, such that there are no two different points inside the
open equivalent under the lattice action. The torus can be seen as a gluing the top and

bottom face and left and right face of the blue family of parallelograms.

Remark 5.5. Up to this point, we have allowed all (orientable) lattices in the families. Obvi-
ously, we can be more strict in which lattices we allow. We can, e.g., assume that the individual
lattices must be an element of some subset L ⊆ Lp. The notion of tori for these restricted fam-
ilies of lattices follows immediately. One point to keep in mind when restricting the lattices is
that the group SLp(Z) might not act on the set L anymore. However, we can just restrict to any
subgroup SLp(Z). An example of these restriction would be the Siegel Lattices (Definition A.13)
with the Siegel modular group (Definition A.9). O

Definition 5.6. We will say that a group K is a full symmetry group of a collection of
lattices L ⊆ Lp if for Λ,Λ′ ∈ L and A ∈ SLp(Z) with Λ(A−1~n) = Λ′(~n) for all ~n ∈ Zp, there
holds A ∈ K. N

Example 5.7. The set of all lattice Lp has full symmetry group SLp(Z). 4

5.2 A Stack of Tori
We have seen that the families of super tori from Definition 5.4 are families of (Rp|q,Ep|qR oG)-
supermanifolds. Therefore, we can consider the isometries between the families of tori for
this model geometry. I.e., we look at the full subcategory tori in the stack of families of
(Rp|q,Ep|qR o G)-supermanifolds. The fact that the families of (Rp|q,Ep|qR o G)-supermanifolds
form a stack over SMfld is shown in Proposition 3.21. In fact, if we remember the family of
lattices, the full subcategory of tori is a stack itself too. Considering Remark 5.5, we will take
the lattices in some arbitrary but fixed subset of all (orientable) lattices.



5 ONE LOOP FIELD THEORIES 86

Lemma 5.8. Let L ⊆ Lp be a submanifold. The category Mp|q
R,G,L with objects, the (oriented)

families of lattices Λ: S×Zp → Rp in L and morphisms, the (Rp|q,Ep|qR oG)-isometries between
the super tori S×ΛRp|q → S′×Λ′ Rp|q is a stack over SMfld under projection to the index space.

Proof. The fact that all properties just related to the arrows of the categories hold is directly
implied by the Proposition 3.21 and the fact that we are morally speaking about a full
subcategory of the stack of families of supermanifolds for a certain model geometry. I.e., the
Cartesian arrows property of groupoid fibrations and the locality and gluing properties of stacks
hold. We are left to show the pullback axiom of groupoid fibrations and descent axiom of stacks.

For the pullback property of groupoid fibration notice that for an S-family of lattices
Λ: S × Zp → Rp in L and a map f : S′ → S, we can canonically form an S′-family of lattices
Λ′ in L by precomposing the family Λ by f in the first coordinate. Moreover, the map
f : S′ ×Λ′ Rp|q → S ×Λ Rp|q by just acting with f in the first coordinate is a well-defined
isometry over f . This shows the pullback property.

For the descent axiom of stacks, notice that the families of tori glue together, provided the given
cocycle condition. This immediately gives us suitable isometries between the families. Using
this data, in particular the fact that isometries of families are isometries in the fibers, we can
retrieve the way we need to glue the underlying family of lattices to obtain the glued family of
tori. This way, we construct a suitable family of lattices. This shows the descent axiom.

5.2.1 Differentiability of the Tori Stack

Our goal is now to analyze the stack we just constructed. A natural question to ask is whether
it is differentiable. We will answer this question in Corollary 5.27. Along the way, we will
progressively put some constraints on the action of the group G on the Euclidean super space
Rp|q. We firstly will take a close inspection of the morphisms of Mp|q

R,G,L provided that the
action of the group G is free on opens.

Definition 5.9. An action of a group G on a manifold M is free on opens if for any open
U ⊆ |M | the action map G 7→ Map(M |U →M) is injective. N

Lemma 5.10. Suppose that G acts on Rp|q freely on opens. Let Λ and Λ′ be S and S′ families
of lattices respectively. A φ : S ×Λ Rp|q → S′ ×Λ′ Rp|q over a map ψ : S → S′ lifts to a smooth
map ψ : S × Rp|q → S′ × Rp|q which is of the form

S × Rp|q 3
(
s,
(
~v, ~θ
))
7→
(
φ(s), g(s) ·

(
~v, ~θ
))
∈ S′ × Rp|q (5.2.1)

for some smooth function g : S → Ep|qR o G. Moreover, the map ψ is unique up to choosing a
suitable family of base points S → Rp|q.

Proof. Locally, the isometry φ is given by an action of Ep|qoG on Rp|q. Moreover, the projection
S×Rp|q → S×Λ Rp|q is a covering space. By the standard lifting criterion, [Hat15, Proposition
1.33], we obtain a lift ψ : S × Rp|q → S′ × Rp|q in the diagram

S × Rp|q S′ × Rp|q

S ×Λ Rp|q S′ ×Λ′ Rp|q

ψ

φ

(5.2.2)
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Notice that the conditions of [Hat15, Proposition 1.33] are indeed met: Any loop in S × Rp|q
is homotopic to a loop in S (the space Rp|q is contractible3) and thus postcomposing with
the map φ : S → S′ induced by φ we obtain a loop in S′. Projecting down to S′ ×Λ′ Rp|q
with obtain the condition on fundamental groups. The conditions on path-connectedness and
locally path-connectedness are trivial, since we can work in the connected components of the
supermanifold S separately.

The fact that φ is locally given by an action of Ep|qR oG on Rp|q implies that ψ is too. By the
assumption that Ep|qR oG acts freely on opens, we deduce that ψ is globally of the form

S × Rp|q 3
(
s,
(
~v, ~θ
))
7→
(
φ(s), g(s) ·

(
~v, ~θ
))
∈ S′ × Rp|q (5.2.3)

for some smooth function g : S → Ep|qR oG.

The uniqueness of ψ follows from the uniqueness property of lifts, [Hat15, Proposition 1.34].

The objects ofMp|q
R,G,L are certain families of lattice. Morphisms inMp|q

R,G,L are given by group
actions by Ep|qR o G. Therefore, we did like that this action also acts in some nice way on the
lattices. The translations of Ep|qR create no real issue. However, we will need G to act by linear
transformations. I.e., we assume it acts via a representation. The condition of freeness on opens
can be reformulated in terms of the representation.

Definition 5.11. A (super) representation ρ : G → GL(V ) is called faithful if ρ is injective
(i.e., a monomorphism). N

Lemma 5.12. A faithful representation ρ : G→ GL(V ) of a (super) Lie group G on a (super)
vector space V gives rise to an action free on opens of V oG on V . Here, both the semi-direct
product and the action on V are taken via the representation ρ. The action of V on V is by
translations.

Proof. The action of doing first a translation v ∈ V and followed by an invertible linear transfor-
mation ρ(g) for g ∈ G has precisely one neutral transformation. For all other transformations,
the fixed points in V form a strict affine subspace. Since ρ is injective, the action of V o G is
free on opens.

We come back to the stack of families of super tori. We wish to know whether it is differentiable.
There is a natural candidate for a presentation, namely the submanifold L of the Stiefel-manifold
of p-lattices Lp. The data of a family of lattices Λ: S×Zp → Rp|q is the same as a map S → L.
Therefore, we obtain, on objects, an obvious functor sMp|q

R,G,L

: L→Mp|q
R,G,L. On morphisms, a

morphism f : Λ → Λ′ in L with Λ and Λ′ an S and S′ family of lattices in L respectively (so
under the hood f is a map S → S′) gets mapped to the isometry S×Λ Rp|q → S′×Λ′ Rp|q given
by

S ×Λ Rp|q 3 [s, x] 7→ [f(s), x] ∈ S′ ×Λ′ Rp|q. (5.2.4)

A straightforward check shows that this is indeed a functor. Notice that this functor is bijective
on objects by construction. Therefore, it gives a promising candidate to be an epimorphism of
stacks.

3For this contractability, what we actually want is that Rp|q and R0|0 are homotopic as supermanifolds. This
is easily seen to be true by using the convexity of Rp|q .
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Lemma 5.13. Suppose that the group G acting via a faithful representation on Rp|q. Then the
functor sMp|q

R,G,L

: L→Mp|q
R,G,L defined in the text above is an epimorphism.

Proof. For any supermanifold U with functor F : U →Mp|q
R,G,L, we can find the relevant functor

H : U → L on objects using the bijectivity of sMp|q
R,G,L

on objects. On arrows, the functor
is fixed by demanding it is a morphism of stacks. The assignment on arrows is well-defined,
as can be shown by considering the inclusion of points: Let f : S → U and f ′ : S′ → U be
objects and φ : S → S′ an arrow in U and let s ∈ S. Now the lattice obtained by acting with
F on {s} ↪→ S

f→ U is exactly the restriction of sMp|q
R,G,L

(f) to the point s. Since, the map

{s} ↪→ S
f→ U equals the map {s} ψ→ {ψ(s)} ↪→ S′

f ′→ U , we deduce that the restriction of
sMp|q

R,G,L

(f) to the point s equals the restriction of sMp|q
R,G,L

(f ′) to the point ψ(s) for all s ∈ S.
This shows that the functor H is well-defined.

We are left to check that the functors F and sMp|q
R,G,L

◦H are naturally isomorphic. Notice that
on objects the two functors coincide.

Any object f : S → U in U can be seen as a morphism from f to IdU :

S U

U

f

f IdU
. (5.2.5)

Applying Lemma 5.10, we obtain that Ff can be lifted to a map S ×Rp|q → U ×Rp|q which is
of the form

S × Rp|q 3
(
s,
(
~v, ~θ
))
7→
(
f(s), gf (s) ·

(
~v, ~θ
))
∈ U × Rp|q (5.2.6)

for some smooth function gf : S → Ep|qR oG. As we have seen while showing the well-definedness
of the functor H on arrows, the isometry Ff pointwise does not change the lattice. Therefore,
the action of element gf (s) ∈ Ep|qR o G does not change the relevant lattice. Hence, using this
action of Ep|qR oG on Rp|q, the map gf defines a map S × Rp|q → S × Rp|q by sending

S × Rp|q 3 (s, x) 7→ (s, gf (s) · x) ∈ S × Rp|q. (5.2.7)

This map descents to a self-isometry ηf over the identity on the family of tori S ×Ff Rp|q.
Here, we see f as an object of U so Ff is a family of lattices. We show that the assignment
f 7→ ηf gives a natural isomorphism between F and sMp|q

R,G,L

◦H.

Suppose that f : S → U and f ′ : S′ → U are objects and φ : S → S′ a morphism from f to f ′ in
U . We can form the following diagram:

S S′

U

U U

φ

f

f

f ′

f ′

IdUIdU
IdU

. (5.2.8)
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Denote gf and gφ for the maps S → Ep|qR o G and gf ′ for the map S′ → Ep|qR o G associated
to the maps Ff , Fφ and Ff ′ under Lemma 5.10. The map S → Ep|qR o G associated to the
composite ηf ′ ◦ Fφ under Lemma 5.10 is the product gf ′gφ in Ep|qR o G. Since f ′ ◦ φ = f , we
deduce that we have obtained the map gf .

On the other hand, the function S → Ep|qR oG associated to (sMp|q
R,G,L

◦H)(φ) can be chosen to

be constantly the identity in the Ep|qR oG. Therefore, the map gf gives a lift of the composite
(sMp|q

R,G,L

◦H)(φ) ◦ ηf . This shows the claim.

The last lemma gives us an epimorphism. To see that it actually is an atlas, we need, by virtue
of Corollary 3.31, to show that the groupoid L ×Mp|q

R,G,L

L is representable by some super Lie
groupoid with base L. Moreover, we need that the source and target maps of the super Lie
groupoid correspond to the projections to L. For the dimensions 1|1 and 2|1 and a specific
group G (a product of the Spin group and dilatations R>0) and pairing R and L = Lp, this
super Lie groupoid has been constructed and identified by Daniel Berwick Evans in [Ber13a,
Lemma 2.5 and Lemma 3.3]. We follow the same intuition for the more general case.

Lemma 5.14. Let L ⊆ Lp be a submanifold with a full symmetry group K. Assume that G
acts on Rp|q via a faithful representation and L is closed under the G action. Then, the stack
L×Mp|q

R,G,L

L in the pullback diagram

L×Mp|q
R,G,L

L L

L Mp|q
R,G,L

s
Mp|q
R,G,L

s
Mp|q
R,G,L

(5.2.9)

is representable by the super Lie groupoid with base L and morphisms the quotient(
Ep|qR oG×K × L

)
/Zp by the Z action

Ep|qR oG×K × L× Zp −→ Ep|qR oG×K × L

(~v, ~θ, g, µ,A,Λ, ~n) 7−→ (~v + Λ(~n), ~θ, g, µ,A,Λ).
(5.2.10)

Here, the source map is the projection on L and the target map is induced by the action of
G × K) on L given by the left action of G on lattices via the representation on Rp|q and the
right precomposition action of K on lattices. Explicitly the action is

(g,A) · Λ(−) 7→ gΛ(A−1−). (5.2.11)

The unit maps are given by the unit element of Ep|qR oG×K.

Proof. The stack Mp|q
R,G,L has objects L by definition: The data of a family of lattices

Λ: S ×Zp → Rp|q in L is the same as a map S → L. We are left to understand the morphisms.

A morphism over the identity in Mp|q
R,G,L is an isometry φ : S ×Λ Rp|q → S ×Λ′ Rp|q over the

identity on S. By Lemma 5.10, we can lift the map φ to a map ψ : S × Rp|q → S × Rp|q of φ.
Moreover, the map ψ is globally of the form

S × Rp|q 3
(
s,
(
~v, ~θ
))
7→
(
s, g(s) ·

(
~v, ~θ
))
∈ S × Rp|q (5.2.12)
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for some smooth function g : S → Ep|qR oG. Notice that this implies that ψ is a diffeomorphism.
Notice that the isometry is completely determined by this function g. Since the group G
acts by linear transformations, every such map determines an isometry to a relevant family
of tori. Moreover, since Ep|q o G × L →

(
Ep|q oG× L

)
/Zp with the quotient as in the

statement, is a covering space, there exist local sections. With these sections, we can lift a
map S →

(
Ep|q oG× L

)
/Zp locally to Ep|q oG× L. From here, we can use the projection to

obtain a map to Ep|q o G. Since the resulting isometry on families of tori does not depend on
the chosen section, we obtain an isometry from a map S →

(
Ep|q oG

)
/Zp.

A map g : S → Ep|qR o G gives rise to the identity isometry precisely when g(s) ∈ Λ(s) × {e}
for all s ∈ X with e the identity of G. Therefore, an isometry completely determines a map
S →

(
Ep|q oG× L

)
/Zp. The L component is determined by the lattice of the source object.

Notice that the existence of the map ψ in the diagram (5.2.2) implies that ψ(Λ) ⊆ S × Rp|q
must be contained in a potentially translated version of Λ′ ⊆ S′ × Rp|q. However, we exactly
know the fiberwise translation. Namely, it must be the image of ψ(s, 0) or equivalently, the
first, Ep|q, component of g(s) for all s ∈ S.

Since φ is a (fiberwise) diffeomorphism ψ maps the lattice Λ bijectively to the trans-
lated version of Λ′. Indeed, injectivity is implied by injectivity of ψ. For surjectivity,
take s ∈ S and x ∈ Λ′(s) + ψ(s, 0) ⊆ Rp|q. We have that ψ(s, g(s)−1x) = (s, x). Since φ is
an isometry, hence diffeomorphism, in the fibers, we see that g(s)−1x must be contained in Λ(s).

We have obtained that ψ(Λ) is a translated version of Λ′ as sets. However, the diffeomorphism
ψ may have permuted or changed the generators. I.e., there is for every s ∈ S a unique element
of SLp(Z) restoring the generators. By the assumption made, we know that this element lies in
K. Since K is a discrete space, we obtain a smooth map A : S → K assigning to every s ∈ S
the corresponding matrix restoring the generators.

Notice that the maps g and A together completely determine the lattice Λ′ from the lat-
tice Λ. Namely, we obtain Λ′ from Λ by acting (fiberwise) with the second component of
g : S → Ep|q oG from the left and acting similarly by A from the right by precomposition.

In summary, we have obtained that the isometry φ : S ×Λ Rp|q → S ×Λ Rp|q is completely
determined by a map g : S →

(
Ep|qR oG

)
/Zp and a map A : S → K. Conversely, the maps

g and A determine the isometry. Moreover, we can recover Λ′ from g, A and Λ. Since the
map A is unique and g is unique up to transformations in the lattice, we see that isometries
of tori over the identity correspond exactly to the objects in the slice stack of the quotient(
Ep|qR oG×K × L

)
/Zp. We have shown that L ×Mp|q

R,G,L

L is represented by a super Lie
groupoid.

Notice that under the constructed equivalence, the source map of the groupoid L ×Mp|q
R,G,L

L

corresponds to the projection
(
Ep|qR oG×K × L

)
/Zp → L and the target map corresponds to

the map induced by the “action” of G×K on L.

Corollary 5.15. The stack Mp|q
R,G,L is differentiable given that G acts on Rp|q via a faithful

representation and L admits a full symmetry group.
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Proof. Apply Corollary 3.31 to the functor sMp|q
R,G,L

. The conditions of Corollary 3.31 are met
due to Lemmas 5.13 and 5.14.

Remark 5.16. The condition of the set of lattices needing to admit a full symmetry group arises
from the fact we have allowed all isometries between all tori in the model geometry. Instead,
one could work with any subgroup of SLp(Z) acting on L. This will define a super Lie groupoid,
and thus a stack via Proposition 3.40, in the same way as in the lemma above. However, one
loses the canonical geometric interpretation in terms of the tori. O

5.3 A Stack of Fields
The Stack of Tori defined in the section above collects the data of a piece of the plain bordism
category for the (Rp|q,Ep|qR oG) model geometry. Namely, we consider the piece of the category
with just the tori as objects. What is not present in the discussion in the previous section is
any kind of field maps to some background space X. In this section, we will add such field
maps to obtain a stack of fields.

The following definition is a generalization of [Ber13a, Definitions 2.7 and 3.5] which contain
the case of dimension 1|1 and 2|1 for a specific model geometry.

Definition 5.17. Let X be a standard manifold and L ⊆ Lp a submanifold. The stack of
fields Φp|qL (X) has objects over S the pairs (Λ, ψ) with Λ an S-family of lattices in L and
ψ : S ×Λ Rp|q → X a map. We call the map ψ the field map. The morphisms of Φp|qL (X) are
commuting triangles

S ×Λ Rp|q S′ ×Λ′ Rp|q

X
ψ ψ′

. (5.3.1)

Here, the horizontal arrow is a family of isometries in the (Rp|q,Ep|qR oG) model geometry, i.e.,
a morphism in the stack Mp|q

R,G,L.
N

Remark 5.18. In the notation of the stack of fields, we dropped the group G and pairing
R. They obviously are still present in the background. From now onwards, we assume their
existence implicitly. O

This definition needs a proof. We need to verify that the defined stack of fields is actually a
stack.

Lemma 5.19. The stack of fields Φp|qL (X) from Definition 5.17 is a stack in the sense of
Definition 3.14.

Proof. We run the same proof as in Lemma 5.8, which inherits properties from Proposition 3.21.
Only every time we construct an object, we need additionally to construct a map into X and
when we construct an arrow, we need to verify this forms the triangle (5.3.1). We cycle through
the properties:

For the pullback property of groupoid fibrations in Lemma 5.8, we construct the pullback
lattice by precomposition and obtain a relevant family of isometries. The relevant map to X is
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given by precomposition by the family of isometries.

For the Cartesian arrow property, we only need to show that the constructed arrow makes the
triangle (5.3.1) commute. Suppose that we have any two commuting triangle

S′ ×Λ′ Rp|q S ×Λ Rp|q S′′ ×Λ′′ Rp|q

X

β

ψ′
ψ

γ

ψ′′

(5.3.2)

and a map α : S′′ ×Λ′′ Rp|q → S′ ×Λ′ Rp|q such that β ◦ α = γ. Then, upon noticing that the
outer boundary and two of the inner triangle of the following diagram commute, we can chase
the diagram to see that the third inner triangle commutes too.

S′′ ×Λ′′ Rp|q S ×Λ Rp|q

X

S′ ×Λ′ Rp|q

γ

α

ψ′′ ψ

ψ′

β (5.3.3)

This shows the required property and hence that Φp|qL (X) is a groupoid fibration.

We now focus on the properties of a stack, Definition 3.14. For locality, there is nothing to
show. Maps over a space X glue to maps over a space X. This shows the gluing axiom. In
Lemma 5.8, we have seen that families of lattices can be glued along cocycles. The same holds
for maps to X, as long as the cocycles make the triangles like (5.3.1) commute. This completes
the proof.

For this stack to be differentiable, there is no hope, unless p = 0. For a single index space S and
S-family of lattices Λ, we need to be able to retrieve (at least up to the notion of isomorphism
in Φp|qL (X)) all field maps S×Λ Rp|q → X from the atlas. If this is not the case, we cannot have
an epimorphism. Generically, this becomes infinite dimensional. So since the presentation must
be a functor from some slice category, the representing manifold must be infinite dimensional.
Though, it might be worthwhile to generalize the notion of differentiability of stacks to the
infinite dimensional case, we will stick to the finite dimensional case.

5.3.1 Vacuum Fields

We have seen that the full stack of fields is too big to be manageable for our tools. In order
to have something manageable, we have to find a sensible way to restrict the field maps in
consideration. The motivation stems from the relevant field theories in physics considered
in Chapter 4.3. We there have found the equation of motion, (4.3.10), and the Hamiltonian
density (4.3.20). From these together, we see that the classical (on shell) energy zero solutions
are precisely the field maps S ×Λ Rp|q → X factoring through to S × R0|q.

Another reason why this factorization is important, is that for a these field theories to admit
Mayor-Vietoris sequences, we need some locality property. This means that we should be able
to recover a field theory from the restrictions to an open cover {U, V } of X. Assuming that
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the fields factor through R0|q enforces them to be constant in the even coordinates. Therefore,
every field must lie in at least one of the opens U and V . This certainly makes the theory
sufficiently local. Notice that factoring R0|q only makes the even coordinates constant. We can
still have nontrivial behavior in the odd coordinates.

Hereby motivated, we generalize [Ber13a, Definitions 2.8 and 3.6] to higher dimensions and more
general model geometries. In particular, it also includes [Ber15, Definition 3.2].

Definition 5.20. Let L ⊆ Lp be a submanifold. The stack of classical π vacua Φp|qL,0(X) with
values in a standard manifold X is the full substack of Φp|qL (X) generated by the objects (Λ, ψ)
over S, where ψ : S ×Λ Rp|q → X factors through the projection πS,Λ : S ×Λ Rp|q → S × R0|δ

over the identity on S induced by an epimorphism π : Rp|q → R0|δ, the vacuum projection.
We call the induced map ψ0 : S ×Λ ×R0|δ → X the vacuum field map. N

Again, this definition needs the verification that Φp|qL,0(X) is indeed a stack.

Lemma 5.21. The stack of classical vacua Φp|qL,0(X) from Definition 5.20 is a stack in the sense
of Definition 3.14.

Proof. As Φp|qL,0(X) is a full substack of the stack of fields Φp|qL (X), all properties of groupoid
fibrations and stacks just relating to arrows are automatically fulfilled. We only need to check
that Φp|qL,0(X) is closed under pullbacks and descents. The pullback on an object (Λ, ψ) over S
of Φp|qL (X) under some map φ : S′ → S is of the form (Λ′, ψ ◦ φ) with φ acting trivially in the
Rp|q component. Therefore, if ψ factors through S ×Λ Rp|q → S × R0|δ, so does ψ ◦ φ (mutatis
mutantis the index space). This shows that Φp|qL,0(X) is a groupoid fibration.

The descent axiom holds, since if maps individually factor through the relevant projections, then
their gluing factors through the gluing of the projections. Projections Ui ×Λi Rp|q → Ui × R0|δ

obviously glue to the projection S ×Λ Rp|q → S × R0|δ if
⋃
i Ui = S and the families of lattices

Λi glue to Λ. This completes the proof.

Remark 5.22. If q = 1, then there is a canonical choice of vacuum projection π : Rp|1 → R0|δ.
Namely, the canonical projection. For higher dimensions, we can obviously project to any of the
factors or mix them. Also, we could factor through chosen maps πS,Λ : S ×Λ Rp|q → S × R0|δ

which potentially differ for different lattices. Do notice that in this case, the maps need to
satisfy certain gluing relations in order for the classical vacua to form a stack. An example of
such a field projection is worked out in [Ber15, Section 3.2]. O

The properties of the vacuum projection have significant influence on the stack of vacua. For us,
it will be important when we can obtain the vacuum field map of the target from the vacuum
field map of the source for some isometry. The condition on the vacuum projection required
should morally say that for any coordinates x, y ∈ Rp|q and g ∈ G there holds that π(x) = π(y)
implies π(gx) = π(gy). However, we work in supermanifolds, so we don’t have points explicitly.
Hence, we need some more fancy condition on families making use of the functor of points
viewpoint.

Definition 5.23. The vacuum projection is G-covariant if for any map g : S → Ep|qR oG, there
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is a unique diffeomorphism S × R0|δ → S × R0|δ such that the following diagram commutes

S × Rp|q S × Rp|q

S × R0|δ S × R0|δ

IdS×π

(s,x) 7→(s,g(s)x)

IdS×π . (5.3.4)

N

5.3.2 Differentiability of the Vacuum Stack

We can now consider the differentiability of the stack Φp|qL,0(X). Since, we assume that the field
map S ×Λ Rp|q → X must factor through S × R0|δ by a chosen map, we are essentially just
looking at maps S×R0|δ → X. Recall from Proposition 2.61 that the generalized supermanifold
S 7→ SMfld(S×R0|δ, X) is represented by the odd tangent bundle (ΠT )δX. Therefore, compared
to the case of just the stack of tori of the previous section, the stack of classical vacua is obtained
by taking a product with the odd tangent bundle.

Lemma 5.24. Let L ⊆ Lp be a submanifold with full symmetry group K. Consider the quotient(
Ep|qR oG× L

)
/Zp with the Zp action given by

Ep|qR oG× L× Zp −→ Ep|qR oG× L

(~v, ~θ, g, µ,Λ, ~n) 7−→ (~v + Λ(~n), ~θ, g, µ,Λ).
(5.3.5)

If the vacuum projection π : Rp|q → R0|δ is G-covariant, then any pair of maps
g : S →

(
Ep|qR oG× L

)
/Zp and ψ0 : S × R0|δ → X induces the diagram

S × Rp|q S × Rp|q

S ×Λ Rp|q S ×Λ′ Rp|q

S × R0|δ S × R0|δ

X

φ

πS,Λ πS,Λ′

ψ0 ψ′0

. (5.3.6)

Here, the family of lattices Λ is obtained from g by projecting to the L component, i.e., the source
map of Lemma 5.14. The family of lattices Λ′ is obtained by acting with G on Λ, i.e., the target
map of Lemma 5.14. The second horizontal arrow is the isometry of families of tori associated
to g induced by the construction of Lemma 5.14. In particular, we obtain a vacuum field map ψ′0
from g and ψ0. This induces a surjective submersion

(
Ep|qR oG× L

)
/Zp×(ΠT )δX → (ΠT )δX.

Proof. The upper square of diagram (5.3.6) is induced by Lemma 5.14. The precise factor of K
is unimportant for the constructed maps. Explicitly, we could simply take the identity element.
Notice that the choice of upper horizontal map is not unique. However, since the composition
of the vertical arrows of diagram (5.3.6) on either side gives IdS × π, applying Definition 5.23
to any choice gives the same diffeomorphism S × R0|δ → S × R0|δ. The map ψ′0 is now given
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by a composition of the inverse of this diffeomorphism and ψ0.

From Lemma 2.60, we know that the generalized supermanifold S 7→ SMfld(S × R0|δ, X) is
represented by (ΠT )δX. Therefore, the assignment (g, ψ0) 7→ ψ′0 given in the argument above
induces a smooth map

(
Ep|qR oG× L

)
/Zp× (ΠT )δX → (ΠT )δX. One can see it is a surjective

submersion by considering the maps g : S →
(
Ep|qR oG× L

)
/Zp which are constantly the

identity element in the Ep|qR oG coordinate.

We construct an atlas sΦp|qL,0(X) : L× (ΠT )δX → Φp|qL,0(X) for the stack Φp|qL,0(X) of vacua. We
perform essentially the same construction as spelled out directly above Lemma 5.13. The functor
on objects is given by sending a map S × L × (ΠT )δX to the pair (Λ, ψ), where the family of
lattices Λ is defined by the projection to the L coordinate and the map ψ by the projection
to the (ΠT )δX. The construction of the lattice Λ is exactly the same as for the stack of tori.
The field map ψ is given by composing the map S ×Λ Rp|q → S ×R0|δ associated to π intrinsic
to the stack of vacua, with the map S × R0|δ → X associated with the map S → (ΠT )δX
via Lemma 2.60. On morphisms nothing changes compared to the tori case, we send a map
f : S → S′ to the isometry

S ×Λ Rp|q 3 [s, x] 7→ [f(s), x] ∈ S′ ×Λ′ Rp|q. (5.3.7)

To show this is well-defined, we need to shows that the triangle

S ×Λ Rp|q S′ ×Λ′ Rp|q

X

(5.3.8)

commute. Since the diagonal arrows factor through S × R0|δ respectively S′ × R0|δ, we can
equivalently look at the diagram

S ×Λ Rp|q S′ ×Λ′ Rp|q

S × R0|δ S′ × R0|δ

X

. (5.3.9)

Here, the second horizontal arrow acts like f in the first coordinate and trivially in the R0|δ

coordinate. Since, the triangle
S S′

X

f

(5.3.10)

commute by definition, the diagram (5.3.9) commutes.

It is easy to see that sΦp|qL,0(X) is a functor.
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Lemma 5.25. Suppose that the group G acts via a faithful representation on Rp|q. Then the
functor sΦp|qL,0(X) : L× (ΠT )δX → Φp|qL,0(X) defined in the text above is an epimorphism of stacks.

Proof. The proof is the same as the proof of Lemma 5.13. We only need to carry the extra
weight of the field maps to X around.

With the epimorphism sΦp|qL,0(X), to show that Φp|qL,0(X) is differentiable, it suffices to show that
the groupoid L× (ΠT )δX×Φp|qL,0(X)L× (ΠT )δX is represented by some super Lie groupoid with
base L × (ΠT )δX with the source and target maps corresponding to the projections (Corol-
lary 3.31). The cases for dimensions 1|1 and 2|1 for a specific group G, pairing R and L = Lp
are shown in [Ber13a, Proposition 2.10 and Proposition 3.8].

Proposition 5.26. Let L ⊆ Lp be a submanifold with full symmetry group K. Assume that G
acts on Rp|q via a faithful representation such that L is closed under the G-action and that the
vacuum projection is G-covariant. The stack L× (ΠT )δX ×Φp|qL,0(X) L× (ΠT )δX in the pullback
diagram

L× (ΠT )δX ×Φp|qL,0(X) L× (ΠT )δX L× (ΠT )δX

L× (ΠT )δX Φp|qL,0(X)

s
Φp|q
L,0(X)

s
Φp|q
L,0(X)

(5.3.11)

is represented by the super Lie groupoid with as base the space L× (ΠT )δX and as morphisms
the space

(
Ep|q oG×K × L

)
/Zp × (ΠT )δX. Here, the Zp quotient is taken under the action

Ep|qR oG×K × L× Zp −→ Ep|qR oG×K × L

(~v, ~θ, g, µ,A,Λ, ~n) 7−→ (~v + Λ(~n), ~θ, g, µ,A,Λ).
(5.3.12)

The source map is the projection to L× (ΠT )δX. The target map is obtained by looking at the
components L and (ΠT )δX separately. On the L, the target map is given by the “action” of
G×K on L as in Lemma 5.14. The target map is the submersion obtained from Lemma 5.24.
The unit maps are induced by the unit element of Ep|q oG×K.

Proof. The objects of Φp|qL,0(X) are pairs (Λ, ψ). We know that Λ ∈ L. Since the map π is
assumed to be an epimorphism, we obtain a unique map ψ̃ : S×R0|δ → X such that ψ = πS,Λ◦ψ̃.
This verifies the claim on the base. The (iso)morphisms in Φp|qL,0(X) over the identity are
isometries of families of tori. These, we computed to be the quotient

(
Ep|q oG×K × L

)
/Zp

under the mentioned action in Lemma 5.14. Notice that from the map of fields ψ : S×ΛRp|q → X
of the source and the isometry, the map of fields in the target is fixed. This is due to the fact
that the following triangle commutes for morphisms in Φp|qL,0(X):

S ×Λ Rp|q S ×Λ′ Rp|q

X

. (5.3.13)

This verifies the claim on the morphism. The claim on unit elements is trivial. The source map
can easily be identified with the projection L× (ΠT )δX×Φp|qL,0(X)L× (ΠT )δX → L× (ΠT )δX on
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the first coordinate. The target map is identified with the submersion obtained from Lemma 5.24
by construction. The extra factor of K in the domain can be projected out.

Corollary 5.27. The stack Φp|qL,0(X) is differentiable given that G acts on Rp|q via faithful
representations for which L is closed and L admits a full symmetry group.

Proof. Apply Corollary 3.31 to the functor sΦp|qL,0(X). The conditions of Corollary 3.31 are met
due to Lemma 5.25 and Proposition 5.26.

5.4 Cohomologies from Tori Stacks
In Chapter 4.2.5, we have used the dictionary lemmas of stacks, Lemmas 3.46 to 3.48, to
link (twisted) functorial field theories to sections of vector bundles over the relevant stack.
In turn these section were shown to give differential forms. Recall that a G-representation
G → GL(V ) gives rise to a vector bundle of the quotient stack [R0|0/G]. Recall that in the
data of the Euclidean model geometry, Example 2.83, we have assumed a G-representation of
Rq. Alternatively, we assumed in the previous section that G acts by linear transformations on
Rp|q. Under this assumption, we obtain a G-representation on Rp|q. This gives us two ways to
construct (super) vector bundles on the quotient stack [R0|0/G].

5.4.1 Vector Bundles over Tori Stacks

We define a suitable vector bundle of the stack of vacuum fields, extending the cases considered
in [Ber13a, Definitions 2.6 and 3.4].

Definition 5.28. Consider the groupoid presentation
(
Ep|qR oG×K)× L

)
/Zp of the stack of

tori Mp|q
R,G,L from Lemma 5.14. We have a projection(

Ep|qR oG×K)× L
)
/Zp → G. (5.4.1)

This defines a map of (groupoid presentation of) stacksMp|q
R,G,L → [R0|0/G]. Pulling the vector

bundle given by the representation ρ : G→ GL(Rq), intrinsic to the Euclidean model geometry,
along this map of stacks gives us a vector bundle ω 1

2 over Mp|q
R,G,L.

There holds Mp|q
R,G,L

∼= Φp|qL (R0|0) ∼= Φp|qL,0(R0|0). Hence, we also have vector bundles ω 1
2 over

these stacks. The unique map X → R0|0 induces a functor Φp|qL,0(X)→ Φp|qL,0(R0|0). Pulling back
further along this functor, we obtain a vector bundle over Φp|qL,0(X).

We will denote ω•/2 vector bundle obtained with using the representation ρ• in the construction
instead. N

We now compute the sections of this vector bundle. We adopt the method of [Ber13a, Proposi-
tion 3.9].

Theorem 5.29. The sections Γ(Φp|qL,0(X), ω•/2) are in canonical bijection with sums of functions
F ⊗ α ∈ C∞(L,Mat(q × q))⊗C∞

(
(ΠT )δX

)
such that F is invariant under the K action, α is

closed and the sum Q transforms like g ·Q = ρ(g)kQ for all g ∈ G.
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Proof. From Propositions 5.26 and 3.53, we know that the sections Γ(Φp|qL,0(X), ω•/2) can be
identified with matrix valued functions on L× (ΠT )δX satisfying equivariant properties. I.e.,

Γ(Φp|qL,0(X), ω k
2 ) =

{
f ∈ C∞

(
L× (ΠT )δX,Mat(q × q)

)
|µ∗(f) = p∗1(f)p∗G(ρk)

}
. (5.4.2)

Here, we have written µ for the action of Ep|qR oG×K on L×(ΠT )δX and we used the projection

p1 : Ep|qR oG×K × L× (ΠT )δX → L× (ΠT )δX and (5.4.3)

pG : Ep|qR oG×K × L× (ΠT )δX → G. (5.4.4)

Consider the homogeneous elements of Γ(Φp|qL,0(X), ω k
2 ). I.e., the elements that can be written

as

F ⊗ α ∈ C∞(L,Mat(q × q))⊗ C∞
(
(ΠT )δX

)
⊆ C∞

(
L× (ΠT )δX,Mat(q × q)

)
. (5.4.5)

The equivariance condition in Eq. (5.4.2) in particular says that F is invariant under the action
of K and α is invariant under the action of Ep|qR , i.e., it is closed due to Lemma 2.71. The
leftover equivariance under the G action, precisely gives the requested transformation rule in
the statement. This shows the claim.

This theorem gives us a powerful tool to transition from field theories to closed pseudo-differential
forms with values in the matrix valued function on lattices, satisfying a compatibility condition.
In Appendix A, we have identified functions on lattices certain, at least in even dimensions,
with functions of Siegel Modular weights.

Corollary 5.30. Let L = LS2g be the set of Siegel Lattices. Let K = Sp2g(Z) be the Siegel
modular group and G = GLg(C) acting naturally on R2g ∼= Cg and through the represen-
tation ρ : G → GLq on Rq given by multiplication with the real determinant det(g) for all
g ∈ G ⊆ GL2g(R). Take as vacuum projection the canonical projection to R0|q. Then, taking
Remark 5.16 into account, there is an isomorphism⊕

i+j=k

Ojcl((ΠT )qX)⊗ SMFui → Γ(Φp|qL,0(X), ω k
2 ), α⊗ vol2jF 7→ α⊗H. (5.4.6)

Here, we write vol ∈ C∞(Lp) for the volume of the torus defined by the lattice and we have
identified elements of Γ(Φp|qL,0(X), ω k

2 ) with functions on L× (ΠT )qX. Recall that Ojcl((ΠT )qX)
are the closed pseudo differential forms on X of polynomial degree j.

Proof. Similar to the proof of the theorem, we consider the homogeneous elements
F ⊗ α : C∞(L) ⊗ Ojcl((ΠT )qX) which define an element in Γ(Φp|qL,0(X), ω k

2 ). Using the theo-
rem, we only need to check that the equivariance under the G action is equivalent with the
modularity property of Eq. (A.1.34). To see this, notice that acting with an element g ∈ G
on α transforms as g · α = ρ(g)−jα. The equivariance requirement of the G-action asserts the
transformation g · (vol2jF ⊗ α) = ρ(g)kvol2jF ⊗ α. We can assume this transformation on the
homogeneous elements, since the action on the pseudo-differential form is by scalar multiplica-
tion. Since g · vol2j = ρ(g)2jvol2j , we must have that F transforms as g · F = ρ(g)k−jF . Using
Proposition A.14, this precisely means that F is a function of Siegel modular weight ρ−i, which
implies the claim.

It can be of interest when the functions of some Siegel modular weight become Siegel modular
forms. I.e., the function on the lattices becomes holomorphic. The corresponding sections
H(Φp|qL,0(X), ω k

2 ) ⊆ Γ(Φp|qL,0(X), ω k
2 ) are called the holomorphic sections.



5 ONE LOOP FIELD THEORIES 99

5.4.2 Cohomology Theories from Field Theories

Specifying Theorem 5.29 to some specific settings allows us to identify some complexified
cohomology theories. The language might seem a bit overloaded since complexified cohomology
theories are just ordinary cohomology theories with suitable coefficients, Proposition B.7.
However, we have some benefits. E.g., it is possible to replace the space X with a quotient
stack [X/H] to obtain a version of equivariant cohomology, see [Ber20]. Also, as we will see in
the next section, we can use some operators from the physics in Chapter 4.3 to construct the
Â and Witten genera analytically.

Throughout the rest of this chapter, we assume that the function sheaves of supermanifold take
complex values. We consider the case of 1|1-dimensional field theories and construct complexified
K-theory. We take the super Lie group E1|1 with group action

(t, θ) · (t′, θ′) = (t+ t′ + iθθ′, θ + θ′). (5.4.7)

The model geometry we will use, is the Euclidean structure (R1|1,E1|1 o R×) with R× acting
on R1|1 in coordinates by

µ · (t, θ) = (µ2t, µθ). (5.4.8)

We will denote ω k
2 for the k fold tensor product of the line bundle over Φ1|1

L1,0 induced by the
map Φ1|1

L1,0(X)→ R× → {±1} using the construction of Definition 5.28.

Proposition 5.31 ([Ber13a, Proposition 2.1]). We have a natural isomorphism of sheaves of
graded algebras over C,{
ωev

cl (−) if • = even
ωodd

cl (−) if • = odd
→ Γ

(
Φ1|1
L1,0(−), ω •2

)
, Ωkcl(X) 3 α 7→ (2πr) k2 ⊗α ∈ Γ

(
Φ1|1
L1,0(X), ω •2

)
.

(5.4.9)

Proof. Theorem 5.29 tells us that elements of Γ
(

Φ1|1
L1,0(−), ω •2

)
can be identified with sums

of elements F ⊗ α ∈ C∞(Lp) ⊗ Ωclk = C∞(R>0) ⊗ Ωclk which are equivariant under the R×
action. The R× equivariance asserts that F ⊗ α is transformed by flipping the sign according
to the power of k. We can consider the R× action on the homogenous elements since we act by
scalar multiplications on the differential forms. Since, we know the transformation of α to be
µ × α = µ−kα for µ ∈ R×, we must require that F = (2πr) k2 (up to a constant, which can be
absorbed in α). Notice that we need the square root to counter the square in the action on the
even part of R1|1.

Since, the stack Φ1|1
Lp,0(X) is natural in X, we know that Γ

(
Φ1|1
L1,0(−), ω •2

)
is a presheaf. The

argument above shows that this presheaf is isomorphic to a sheaf. Hence, the constructed
isomorphism is one of sheaves.

This realizes the sections Γ
(

Φ1|1
L1,0(−), ω •2

)
as a cocyclic model for complexified K-theory. To

see this, use Proposition B.7 and Example B.8.

We crank up the dimension to 2|1 to obtain tmf . We have the super Lie group E2|1 with the
group action

(z, z, θ) · (z′, z′, θ′) = (z + z′, z + z′ + θθ′, θ + θ′). (5.4.10)
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The model geometry, we consider will be the Euclidean (R2|1,E2|1 oC×) model geometry where
the action of C× on R2|1 is given in coordinates by

µ · (z, z, θ) = (µ2z, µ2z, µθ). (5.4.11)

Using Definition 5.28, we obtain complex line bundles ω k
2 over Φ2|1

L2,0 induced by the projection
Φ2|1
L2,0 → C×. For convenience, we will denote vol ∈ C∞(L2) for the function assigning the

volume of a torus defined by the lattice (l, l′) ∈ L2. Explicitly, we have that

vol(l, l′) = 1
2i

(ll′ − ll′). (5.4.12)

The projection Φ2|1
L2,0(X)→ C× induces using the construction of Definition 5.28 a complex line

bundle ω k
2 over the stack Φ2|1

L2,0(X).

Proposition 5.32 ([Ber13a, Proposition 3.9]). We have a natural isomorphism of sheaves of
graded algebras over C,⊕

i+j=k

Ωjcl(−; MFui)→ Γ
(

Φ2|1
L2,0(−), ω k

2

)
, F ⊗ α 7→ (vol)

j
2F ⊗ α. (5.4.13)

Here, the assignment goes from homogeneous elements F ⊗ α ∈ MFui ⊗Ωjcl(X) to functions on
L2 ×ΠTX regarded as elements in Γ

(
Φ2|1
L2,0(X), ω k

2

)
.

Proof. Given a homogeneous element f ∈ C∞(L2)⊗Ωj(X). We need to consider the conditions
implied by the equivariance under the C×-action on the functions. For convenience, we write

f = vol
j
2F ⊗ α, F ∈ C∞(L2) and α ∈ Ωj(X). (5.4.14)

The covariance under C× now implies that

µkvol
j
2F⊗α = (µ, µ)·(vol

j
2F⊗α) = (µ2µ2)

j
2 vol

j
2 (µ, µ)·F⊗µ−jα = µjvol

j
2 (µ, µ)·F⊗α. (5.4.15)

Therefore, Proposition A.7 implies that F must be of modular weight j − k. By Theorem 5.29,
we obtain a natural isomorphism of graded algebras as in Eq. (5.4.17). Similar to the 1|1 case,
we argue that both sides must be sheaves and thus we have an isomorphism of sheaves, as
requested.

Demanding that the functions F ∈ C∞(L2) in the previous proof are holomorphic, requires pre-
cisely that ∂lF = ∂l′F = 0. Tracing this condition through the previous proof, these conditions
are equivalent with demanding that the functions f ∈ C∞(L2)⊗ C∞(ΠTX) as in Eq. (5.4.14)
satisfy (

2l∂l −
ll′

ll′ − l′l deg

)
f =

(
2l′∂l′ −

l
′
l

ll′ − l′l deg

)
f = 0. (5.4.16)

Here, we writedeg for the degree derivation on ΠTX coming from the dilatation action. This is
the same derivation as used in Definition 2.68 to define polynomial degrees of pseudo differential
forms.

Definition 5.33. We will call the elements of Γ
(

Φ2|1
L2,0(X), ω •2

)
holomorphic sections if they

satisfy Eq. (5.4.16). We denote the subspace of holomorphic sections by H
(

Φ2|1
L2,0(X), ω •2

)
. N
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Theorem 5.34 ([Ber13a, Theorem 1.1]). We have a natural isomorphism of sheaves of graded
algebras over C, ⊕

i+j=k

Ωjcl(−; MFi)→ H
(

Φ2|1
L2,0(−), ω k

2

)
. (5.4.17)

Proof. We apply Proposition 5.32. The holomorphicity conditions on the functions F and f in
the proof of are Proposition 5.32 equivalent.

This theorem realized the space of holomorphic sections as a cocyclic model for complexified
tmf . This fact follows from Proposition B.7 and Example B.9.

5.5 Genera from Field Theories
We have established constructions for both complexified K-theory and complexified tmf in the
language of field theories on tori in the previous section. In these cohomology theories, there
exists certain genera, respectively the Â-genus and Witten Genus for K-theory and tmf . We
will construct these classes in the present language as ζ-determinants of operators found in the
related physical sigma models. Integrations of the classes would return the respective genus.
We will closely follow [Ber13a].

Definition 5.35 ([Ber13a, Section 1.7.3]). Let D be a Fredholm operator with discrete spectrum
{λk}k∈Z. We define the ζ-function

ζD(s) =
∑

λsk. (5.5.1)

Assume that this function defines a holomorphic function for all s with real part smaller than
−1, which can be analytically extended to a meromorphic function on C which is regular at
s = 0. We define the ζ-determinant as

detζ(D) = exp(ζ ′D(0)). (5.5.2)

We define the Pfaffian as a square root of the ζ-determinant. I.e., we can take
pfζ(D) = exp( 1

2ζ
′
D(0)).

In case, we have operators acting in the super world, i.e., on Z/2 graded vector spaces, we define
the ζ-super determinant as the quotient

sdetζ(D) =
pfζ(D|odd)
pfζ(D|even)

. (5.5.3)

N

The operators from which we can obtain the Â and Witten class are motivated by the corre-
sponding physical sigma models. They are the operators from Eq. (4.3.33) and Eq. (4.3.49)
popping up in the second order variation of the Lagrangian. In the computation of the genera
in Chapter 4.3, we had some infinite constants around, making the constructions there not en-
tirely rigorous. We will resolve this problem by comparing to the trivial bundle over the space
X. Compared to Chapter 4.3, we will work in a Wick rotated version of the theory. This will
slightly change the operators.
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Proposition 5.36 ([Ber13a, Proposition 4.1]). Let X be a Riemannian manifold. Define oper-
ators(

∆1|1
X

)ev
= −∇2

t + i

2
R∇t and

(
∆1|1
X

)odd
= i∇t and ∆1|1

X =
(

∆1|1
X

)ev
⊕
(

∆1|1
X

)odd
(5.5.4)

on the sections of the tangent bundle of Φ1|1
L1,0(X), where R is the endomorphism valued curvature

two form. Also define (
∆1|1
n

)ev
= −∂2

t and
(

∆1|1
n

)odd
= i∂t (5.5.5)

on the trivial vector bundle. Then, the quotient of ζ-super determinants

sdetζ(∆1|1
X )

sdetζ(∆1|1
n )

(5.5.6)

gives a function in C∞(Φ1|1
L1,0(X)) whose cohomology class agrees with the Â-class under the

isomorphism of Proposition 5.31

Proof. We will perform a similar computation as in Chapter 4.3.3. The Â-class has characteristic
series, [AHR10, Proposition 10.2],

x
2

sinh
(
x
2
) = exp

( ∞∑
k=1

x2k

2k(2πi)2k 2ζR(2k)

)
. (5.5.7)

Here, we have written ζR for the Riemann ζ-function.

We pull the operators ∆1|1
X and ∆1|1

n back along the map π : R>0 × ΠTX → Φ1|1
L2,0(X). This

produces operators on the bundles whose fiber at r ∈ R>0 is C∞(R/rZ)⊗Γ(ev∗TX) respectively
C∞(R/rZ)⊗Γ(ev∗X ×Rn) with ev: R0|1⊗ΠTX → X the evaluation map. In this framework,
have that (Π∗φ∗∇)t = d

dt ⊗ IdTX . Hence, the pulled back operators become

π∗
(

∆1|1
X

)ev
= − d2

dt2
⊗ IdTX + i

d

dt
⊗R, π∗

(
∆1|1
X

)odd
= i

d

dt
⊗ IdTX . (5.5.8)

To compute the ζ-function, we take the basis of functions on R/rZ given by Fn = e
2πint
r . This

gives the ζ-functions from the definition as

ζev
X (s) =

∑
n6=0

Tr
(

4π2n2

r2 ⊗ IdTX + 2πin
r
⊗ iR

)s
, (5.5.9)

ζodd
X (s) =

∑
n6=0

Tr
(
−2πn

r
⊗ IdTX

)s
. (5.5.10)

A similar computation for the operator ∆1|1
n gives the ζ-functions

ζev
n (s) =

∑
n 6=0

Tr
(

4π2n2

r2 ⊗ IdX×Rn
)s

, (5.5.11)

ζodd
n (s) =

∑
n 6=0

Tr
(
−2πn

r
⊗ IdX×Rn

)s
. (5.5.12)
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Notice that the ζ-functions of the odd parts does not depend on the Riemannian metric,
but only depend on the dimensions of the vector bundles TX and X × Rn. Therefore, their
contributions are equal and thus they cancel in taking the quotient (5.5.5). We continue with
just the even operators.

A binomial expansion of Eq. (5.5.9) gives

ζev
X (s) =

∑
n 6=0

Tr
(

Id− r

2πn
⊗R

)s(4π2n2

r2

)s
(5.5.13)

=
∑
n 6=0

∞∑
k=0

Tr
(
Rk s(s− 1) · · · (s− k −+1)

k!(2πn)k
rk
)(

4π2n2

r2

)s
. (5.5.14)

Here, the sum over k is finite since R is nilpotent as it is a differential form. The contribution
of k = 0 is identical to the contribution of ζev

n (s) therefore it cancels in the quotient of super
ζ-determinants. By differentiating under the sum and evaluating at s = 0, we see that the
relevant contribution to ζ ′(0) is

∞∑
k=0

Tr
(
Rk
) (−1)k−1

k(2π)k
rk2ζR(k) = −

∞∑
k=1

Tr
(
R2k) r2k

k(2π2k)
ζR(2k). (5.5.15)

In the second step, we used that traces of odd powers ofR vanish. We conclude that the quotient
in Eq. (5.5.5) becomes

sdetζ(∆1|1
X )

sdetζ(∆1|1
n )

= exp

( ∞∑
k=1

Tr
(
R2k) r2k

2k(2πi)2k ζR(2k)

)
. (5.5.16)

From standard differential geometry, we know that we can write the Pontryagin character
phk(TX) in terms of the curvature under the isomorphism of Proposition 5.31. In our case,
the result is

r2kTr(R)2k = 2(2k)!phk(TX). (5.5.17)

Substituting this in Eq. (5.5.16) yields

sdetζ(∆1|1
X )

sdetζ(∆1|1
n )

= exp

( ∞∑
k=1

2(2k)!phk(TX)
2k(2πi)2k ζR(2k)

)
. (5.5.18)

which we identify as the Â-class of X.

Using similar methods, we can recover the Witten Genus from the case of 2|1-dimensional field
theories. The relevant operators ∆2|1

X are now the wick rotated versions of Eq. (4.3.49).

Theorem 5.37 ([Ber13a, Theorem 1.3]). Let X be a Riemannian manifold. Define operators(
∆2|1
X

)ev
= −∇z∇z + 1

2
R∇z and

(
∆2|1
X

)odd
= ∇z and ∆2|1

X =
(

∆2|1
X

)ev
⊕
(

∆2|1
X

)odd
(5.5.19)

on the sections of the tangent bundle of Φ2|1
L2,0(X), where R is the endomorphism valued curvature

two form. Also define (
∆2|1
n

)ev
= −∂z∂z and

(
∆2|1
n

)odd
= ∂z (5.5.20)
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on the trivial vector bundle. Then, the quotient of ζ-super determinants

sdetζ(∆2|1
X )

sdetζ(∆2|1
n )

(5.5.21)

defines a function in C∞(Φ2|1
L2,0(X)) whose cohomology class which agrees with the non-

holomorphic Witten class under the isomorphism of Proposition 5.32.

Proof. The non-holomorphic Witten genus has characteristic series

exp

(
E∗2

2(2πi)2 z
2 +

∞∑
k=2

E2k(q)
2k(2πi)2kz2k

)
. (5.5.22)

The E2k for k ≥ 2 are the holomorphic Eisenstein Series of weight 2k and E∗2 is the non-
holomorphic, see also Example A.6.

We pull back the operator ∆2|1
X and ∆2|1

n along the map L2 × ΠTX → Φ2|1
L2

(X) to obtain
operators on bundles whose fibers are C∞(R/Λ)⊗ Γ(ev∗TX) and C∞(R/Λ)⊗ Γ(ev∗(X ×Rn))
respectively. In this framework, we have that

(π∗φ∗∇)z = ∂z ⊗ IdTX , (π∗φ∗∇)z = ∂z ⊗ IdTX . (5.5.23)

Therefore, the components of ∆2|1
X become

Π∗
(

∆2|1
X

)ev
= −∂z∂z ⊗ IdTX + ∂z ⊗R, Π∗

(
∆2|1
X

)odd
= ∂z ⊗ IdTX . (5.5.24)

To compute the ζ-function, we take the basis of functions on R2/(lZ ⊕ l′Z) for a lattice (l, l′)
given by the functions

Fn,m(z, z) = exp
( π

vol

(
−z(nl +ml

′) + z(nl +ml′)
))

(5.5.25)

for all n,m ∈ Z and vol = ll
′−ll′
2i the volume of the induced torus. Evaluating the ζ-functions

for the operators
(

∆2|1
X

)ev
and

(
∆2|1
X

)odd
yields

ζev
X (s) =

∑
(n,m)∈Z2

∗

Tr
(
π2

vol2
|nl +ml′|2 ⊗ IdTX + π

vol
(nl +ml′)⊗R

)s
, (5.5.26)

ζodd
X (s) =

∑
(n,m)∈Z2

∗

Tr
( π

vol
(nl +ml′)⊗ IdTX

)s
. (5.5.27)

Performing the same computation for the operators
(

∆2|1
n

)ev
and

(
∆2|1
n

)odd
, we get the ζ-

functions

ζev
n (s) =

∑
(n,m)∈Z2

∗

Tr
(
π2

vol2
|nl +ml′|2 ⊗ IdX×Rn

)s
, (5.5.28)

ζodd
n (s) =

∑
(n,m)∈Z2

∗

Tr
( π

vol
(nl +ml′)⊗ IdX×Rn

)s
. (5.5.29)
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Again, the contributions of the odd operators only depend on the dimensions of the vector
bundle. Hence, their contribution to the quotient (5.5.21) is trivial. We continue with just the
even operators. Binomially expanding Eq. (5.5.26) yields

ζev
X (s) =

∑
(n,m)∈Z2

∗

Tr
((

Id + vol
π

(nl +ml′)−1 ⊗R
)s(

π2

vol2
|nl +ml′|2

)s)
(5.5.30)

=
∑

(n,m)∈Z2
∗

∞∑
k=0

Tr
((

volk s(s− 1) · · · (s− k + 1)
k!(2π)k(nl +ml′)k

⊗Rk
)( π

vol
|nl +ml′|

)2s
)

(5.5.31)

Where the sum over k is finite, since R is nilpotent. The k = 0 term is cancelled by the
contribution from ζev

n in the quotient (5.5.21), so we will ignore it. For odd k the terms vanish
since traces of odd powers of R vanish. For k = 2 differentiating and taking the limit s → 0−
gives

lim
s→0−

−Tr

 ∑
(n,m)∈Z2

∗

1
2

(
vol2|nl +ml′|2s

(2π)2

) = −vol2E∗2
2(2π)2 Tr (R) (5.5.32)

where we introduced the non-holomorphic but modular Eisenstein series E∗2 of weight 2. Now
focusing on the terms k ≥ 3, the contribution to ζ ′(0) is

∑
(n,m)∈Z2

∗

∞∑
k=3

Tr

(
(−1)k−1volk

k(2π)k
(nl +ml′)−k ⊗Rk

)
= −

∞∑
k=2

vol2kE2k

2k(2π)2kTr
(
R2) , (5.5.33)

where we used that the odd terms vanish. Putting all together, we can evaluate Proposition 5.31
as

sdetζ(∆2|1
X )

sdetζ(∆2|1
n )

= exp

(
vol2E∗2
4(2πi)2 Tr (R) +

∞∑
k=2

vol2kE2k

4k(2πi)2kTr
(
R2)) . (5.5.34)

The isomorphism of Proposition 5.32 identifies the Pontryagin character phk(X) as

2(2k)!phk(X) = vol2kTr(R2k). (5.5.35)

Substituting this into Eq. (5.5.34), we obtain

sdetζ(∆2|1
X )

sdetζ(∆2|1
n )

= exp

(
ph1(X)
(2πi)2 E

∗
2 +

∞∑
k=2

(2k)!phk(X)
2k(2πi)2k E2k

)
. (5.5.36)

This function induces the non-holomorphic Witten class under the isomorphic of Proposition 5.31
as an element in the De Rham cohomology with values in the functions with some modular
weight.

The non-holomorphic Witten Genus is closely related to the Holomorphic Witten Genus,
which has characteristic series, [AHR10, Section 15],

(e z2 − e− z2 )Π
(
1− qne z2

) (
1− qne− z2

)
(1− qn)2 = exp

( ∞∑
k=1

E2k(q)
2k(2πi)2kz2k

)
(5.5.37)

The equality of the two formulae was shown by Don Zagier in [Zag88]. If the manifold has
a rational string structure, meaning that there exists a 3-form H ∈ Ω3(X) such that
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dH = −p1(X) is the first Pontryagin class, then the non-holomorphic and holomorphic Witten
classes are concordant. The concordance is given by

sdetζ(∆2|1
X )

sdetζ(∆2|1
n )

exp
(
d(tH)
(2πi)2E

∗
2

)
(5.5.38)

At t = 0, by Theorem 5.37, we have the non-holomorphic Witten class, while for t = 1 we obtain
the holomorphic Witten class.
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6 Conclusion
In this thesis, we have built a bridge between Generalized Cohomologies and Supersymmetric
Field Theories. We started by introducing supermanifolds, which are the fundamental objects
in supersymmetry. In particular, we studied the odd tangent bundle ΠTX, Definition 2.59, and
its symmetries. This is a very important object, since it can be interpreted as the mapping
space R0|1 → X. We continued by introducing stacks. These give a categorical foundation for
the afterward considered notions. We have seen that differentiable stacks can be interpreted as
Lie groupoids up to Morita equivalence, Theorem 3.43.

With the notions of supermanifolds and stacks in place, we went on with defining Field Theories
in both mathematical and physical sense. The mathematical notion is defined in terms of
functors out of bordism categories. When working over a background space, the field theories
can be interpreted as certain Sigma Models in physics. We were able to classify the field
theories in dimension 0|1 with differential forms, Corollary 4.35 and their concordance classes
with De Rham cohomology, Proposition 4.40. On the physics side, we constructed the related
Sigma Models. The equations of motion and certain operators motivate some definitions in the
mathematical theory.

Lastly, we studied the mathematical notions of field theories, up to one loop. I.e., with just
the (higher dimensional) tori. Using all the build up machinery of supermanifolds and stacks,
we are able to relate the field theories here to closed (pseudo) differential forms with values
in lattice functions satisfying an equivariance property, Theorem 5.29. In this setting, the
1|1-dimensionsal field theories can be identified with complexified K-theory, Proposition 5.31
and the 2|1-dimensional field theories with complexified tmf , Theorem 5.34. Moreover, we
are able to obtain a connection to Siegel modular forms, Corollary 5.30. It is an interesting
question whether Theorem 5.29 can be used in more settings to obtain other (complexified)
cohomologies. Furthermore, one can try to find the integral versions of the cohomology theories
from the full field theories. For K-theory this has been shown. For tmf , it is only conjectured.

Computing ζ-determinants of the operators identified in the physical theory give rise to the
genera of the relevant cohomology theory. We have computed the Â-genus, Proposition 5.36,
and Witten Genus, Theorem 5.37, in our setting of fields over tori. The question this poses is
whether the same method can be applied in higher dimensions. For this, one would first need
to identify suitable operators. Studies of the Sigma Models can prove useful.

Another question that remains is the following: One way to construct generalized cohomologies
is via Formal Group Laws. In fact, singular cohomology and K-theory can be defined in this
way. One could ask how these formal group laws show up in the setting of field theories. This
might prove more insight in the relation between field theories and generalized cohomology.
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A Appendix: Modular Forms
Modular Forms are holomorphic functions on the upper half plane H with certain symme-
try properties. They arose from the study of elliptic functions and their moduli space, hence
the name modular form. In this Appendix, we will define modular forms and derive some
properties required in this thesis. Also, we extend the notion of modular form to Siegel
Modular Forms, which are the analogue of modular forms on higher dimensional domains,
Siegel Upper Half Planes.

Definition A.1 ([Bro17, Definition 2.1]). A smooth function f : H→ C is modular of weight

k if for every matrix
(
a b
c d

)
∈ SL2(Z), there holds

f

(
ac+ b

cz + d

)
= (cz + d)kf(z). (A.0.1)

N

Modular forms are obtained by imposing additional holomorphicity assumptions

Definition A.2. A weak modular form of weight k is a holomorphic function on the upper
half plane H which is modular of weight k. It becomes a modular form of weight k if it is
also holomorphic at ∞. N

Remark A.3. In the definition of functions modular some weight, we have not assumed any
conditions involving a Laplacian or conditions of the asymptotic growth. Therefore, this defi-
nition is different from Maass forms. See e.g., [Liu07, Definition 2.1] for a definition of Maass
Forms. O

Remark A.4. The modularity condition for the matrix
(
−1 0
0 −1

)
for a function f of modular

weight k implies that f(z) = (−1)kf(z) for all z ∈ Z. In particular, this tells us that the only
functions of odd weight is the zero function. O

Remark A.5. The definition can be extended to cover half-integer weights too, [GMR20,
Section 2]. We define a function to be modular of weight k ∈ Z + 1

2 to satisfy

f

(
ac+ b

cz + d

)
= 1(

c
d

)ε2kd √cz + d
2k
f(z),

(
a b
c d

)
∈ SL2(Z)withc ≡ 0 Mod 4. (A.0.2)

Here, we have denoted
(
c
d

)
for the extended Jacobi Symbol in the sense of [Shi73], the square

root is taken in the branch with −π2 < arg(
√
z) ≤ π

2 and the εd are defined by

εd =

{
1 if d ≡ 1 Mod 4
1 if d ≡ 3 Mod 4

. (A.0.3)

O

Example A.6 ([Sut17, Example 25.4]). The prime example of modular forms are the Eisen-
stein Series. These are the functions defined by the infinite sum

Ek(z) =
∑

(m,n)∈Z2

1
(mz + n)k

z ∈ H. (A.0.4)

For odd k the terms (m,n) and (−m,−n) cancel each other, making the Eisenstein series vanish.
For even k the function becomes modular of weight k. It is a modular form over weight k if
k > 2. For k = 2 the function fails to be holomorphic. 4
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The functions of some modular weight (or modular forms) can be put together in a graded ring
with grading according to their weight. Multiplying two functions with some modular weight
will return a function whose modular weight is the sum of the original two. We will denote
MFu−k and MF−k for the functions and modular forms of weight k respectively. Hereby, we
have the graded rings MFu• and MF•.

The modularity condition in Definition A.1 can be formulated equivalently in terms of lattices.
We take the construction from [Lac15, Page 4] to arrive at [Cal13, Definition 1.2.1]. Denote L2
for the set of orientable lattices in C, i.e.

L2 =
{

(z1, z2) ∈ C× × C×
∣∣∣im(z1

z2

)
> 0
}
. (A.0.5)

We have the action of C× on L2 given by the assignment (λ, (z11, z2)) 7→ (λz1, λz2) for λ ∈ C×.
Moreover, there is a natural action of SL2(Z) on L2 by assigning((

a b
c d

)
, (z1, z2)

)
7→ (az1 + bz2, cz2 + dz2),

(
a b
c d

)
∈ SL2(Z). (A.0.6)

To see that this is indeed well-defined, notice that if im( z1z2 ) > 0, then im(z1z2) > 0. Since for

a matrix
(
a b
c d

)
∈ SL2(Z), we have that ad− bc = 1, we obtain that im(adz1z2 + bcz1z2) > 0.

This in turn implies that the imaginary part of (az1 + bz2)(cz2 + dz2) and thus also of az1+bz2
cz1+dz2

is positive.
Proposition A.7. The smooth functions f : H → C of modular weight k are in canonical
bijection with the functions F : L2 → C invariant under the SL2(Z) action and satisfying

F (λ · Γ) = λ−kF (Γ) for all λ ∈ C× and Γ ∈ L2. (A.0.7)

Proof. Given a smooth function f : H → C of modular weight k define the map F : L2 → C
given by

F (z1, z2) = z−k2 f

(
z1

z2

)
, (z1, z2) ∈ L2. (A.0.8)

Notice that z1
z2
∈ H. We show that F is invariant under the SL2(Z) action and satisfies

Eq. (A.0.7). For any λ ∈ C2 and (z1, z2) ∈ L2, we have that

F (λz1, λz2) = λ−kz−k2 f

(
λz1

λz2

)
= λ−kz−k2 f

(
z1

z2

)
= λ−kF (z1, z2). (A.0.9)

Similarly, we have that for any
(
a b
c d

)
∈ SL2(Z) there holds by the modularity of f that

F (az1 + bz2, cz1 + dz2) = (cz1 + dz2)−kf
(
az1 + bz2

cz1 + dz2

)
(A.0.10)

= (cz1 + dz2)−kf

(
a z1z2 + b

c z1z2 + d

)
(A.0.11)

= (cz1 + dz2)−k(cz1

z2
+ d)kf

(
z1

z2

)
(A.0.12)

= z−k2 f

(
z1

z2

)
(A.0.13)

= F (z1, z2). (A.0.14)



A APPENDIX: MODULAR FORMS 110

Conversely, given a function F : L2 → C invariant under the SL2(Z) action and satisfying
Eq. (A.0.7), we can recover the function of modular weight k by defining

f(z) = F (z, 1), z ∈ H. (A.0.15)

Since z ∈ H, we know that (z, 1) indeed defines a lattice. We show that f has modular weight

k. Given a matrix
(
a b
c d

)
, we have the following:

f

(
az + b

cz + d

)
= F

(
az + b

cz + d
, 1
)

(A.0.16)

= (cz + d)kF (az + b, cz + d) (A.0.17)
= (cz + d)kF (z, 1) (A.0.18)
= (cz + d)kf(z) (A.0.19)

Here, we used the property of Eq. (A.0.7) for the second line and the SL2(Z) invariance for the
third.

Notice that the two constructions are each other’s inverse. Hence, we have found the requested
bijection.

To pass to modular forms, we only need to request holomorphicity on all functions.

Corollary A.8. The weak modular forms of weight k are in canonical bijection with the holo-
morphic functions F : L2 → C invariant under the SL2(Z) action and satisfying Eq. (A.0.7).

A.1 Siegel Modular Forms
The functions considered in the discussion above are all of the form H→ C. In a sense, this is
the lowest possible dimension for the functions to live: both the source and target have complex
dimension 1. We will now discuss extensions to higher dimensions. We will both extend
the source, obtaining Siegel Modular forms, and the target, obtaining vector valued modular
forms. In fact, we will do both simultaneously. Moreover, we need to up the dimension of the
modular group SL2(Z). One might expect to simply use SLp(Z). However, this group turns
out to be too big and we will need to take a suitable subgroup instead, the Siegel Modular Group.

For extending the domains, we need to find a suitable notion of Upper Half Plane in higher
dimensions. These will go by the name of Siegel Upper Half plane. The extension of the target
is relatively simple. We replace just C by a complex vector space V . The only thing to worry
about is the multiplication of the factor (cz+d)k in the one dimensional case. This will be aided
by choosing a representation

ρ : GLg(C)→ GL(V ). (A.1.1)

Following [Gee07, Section 1 and 2], we will construct the Siegel Modular Group, Upper Half
Plane and Modular Forms.

Definition A.9. The Siegel Modular Group in dimension g is the Symplectic group
Sp(2g,Z). This is the automorphism group of Z2g respecting the standard symplectic form 〈, 〉.
More explicitly Sp(2g,Z) consists of the matrices(

A B
C D

)
(A.1.2)
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where A,B,C and D are g × g matrices with integral coefficients which satisfy

ABt = BAt, CDt = DCt and ADt −BCt = Idg. (A.1.3)

N

From the conditions in Eq. (A.1.3) it is easy to see that in the case of g = 1, we obtain the
group SL2(Z). To see the fact that an element of the automorphism group of Z2g respecting the
standard symplectic form is equivalent to a matrix satisfying Eq. (A.1.3), we provide the next
lemma.

Lemma A.10 ([Koh07, Lemma 3]). For a matrix γ =
(
A B
C D

)
∈ GL(2g,Z), the following

three assertions are equivalent.

1. The transformation γ respects the standard symplectic form.

2. The conditions of Eq. (A.1.3) hold.

3. The following conditions hold

AtC = CtA, BtD = DtB and AtD −BtC = Idg. (A.1.4)

Proof. Condition 1 says that

γt
(

0 Idg
−Idg 0

)
γ =

(
0 Idg
−Idg 0

)
. (A.1.5)

Working out the left-hand side, we obtain

γt
(

0 Idg
−Idg 0

)
γ =

(
At Ct

Bt Dt

)(
0 Idg
−Idg 0

)(
A B
C D

)
(A.1.6)

=
(
At Ct

Bt Dt

)(
C D
−A −B

)
(A.1.7)

=
(
AtC − CtA AtD − CtB
BtC −DtA BtD −DtB

)
. (A.1.8)

Imposing the condition of Eq. (A.1.5) is equivalent with imposing Eq. (A.1.4). This shows that
1 and 3 are equivalent.

To show that also 2 is equivalent, we take the inverse of Eq. (A.1.5) to obtain the equality

γ−1
(

0 −Idg
Idg 0

)(
γt
)−1 =

(
0 −Idg

Idg 0

)
. (A.1.9)

Multiplying with γ and γt on either side, yields the equation(
0 −Idg

Idg 0

)
= γ

(
0 −Idg

Idg 0

)
γt. (A.1.10)

By working out the right-hand side the same way as before, we see that 1 and 2 are equivalent.

With the modular group in place, we turn to generalizing the upper half plane.
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Definition A.11. The Siegel Upper Half Plane Hg is defined as

Hg =
{
τ ∈ Mat(g × g,C)|τ t = τ, im(τ) > 0

}
. (A.1.11)

Here, the condition im(τ) > 0 amounts to requiring that the imaginary part of each entry is
positive. N

Again, it should be clear that if g = 1, then this definition reduces to the usual upper half
plane H.

The Siegel Modular group admits an action on the Siegel Upper Half Plane generalizing the
standard case in g = 1. We define

Sp(2g,Z)×Hg 3
((

A B
C D

)
, τ

)
7→ (Aτ +B)(Cτ +D)−1 ∈ Hg. (A.1.12)

This definition requires a check of well-definedness. I.e., we need to check that (Cτ + D) is
invertible and that we land in Hg. To check the former, write τ = x + iy with x and y
symmetric real g × g matrices. The condition im(τ) > 0 implies that y is positive definite.
Using the formulae from Lemma A.10, we compute:

(Cτ +D)t(Aτ +B)− (Aτ +B)t(Cτ +D) (A.1.13)
= (τCt +Dt)(Aτ +B)− (τAt +Bt)(Cτ +D) (A.1.14)
= τCtAτ +DtAτ + τCtB +DtB − (τAtCτ +BtCτ + τAtD +BtD) (A.1.15)
= τ − τ (A.1.16)
= 2iy (A.1.17)

From here we deduce that if (Cτ + D)ξ = 0 for any ξ ∈ Cg, then ξ
t
yξ = 0. This is a

contradiction with the fact that y is positive definite. We conclude that (Cτ + D)−1 is
well-defined.

A similar computation yields

(Cτ +D)t
((

(Aτ +B)(Cτ +D)−1)t − (Aτ +B)(Cτ +D)−1
)

(Cτ +D) (A.1.18)

= (Aτ +B)t(Cτ +D)− (Cτ +D)t(Aτ +B) (A.1.19)
= (τAt +Bt)(Cτ +D)− (τCt +Dt)(Aτ +B) (A.1.20)
= τAtCτ +BtCτ + τAtD +BtD − (τCtAτ +DtAτ + τCtB +DtB) (A.1.21)
= BtCτ + τAtD − (DtAτ + τCtB) (A.1.22)
= τ − τ (A.1.23)
= 0. (A.1.24)

This implies that the matrix (Aτ + B)(Cτ + D)−1 is symmetric. Lastly, writing
(Aτ +B)(Cτ +D)−1 = x′ + iy′, the same computation yields

(Cτ +D)ty′(Cτ +D) (A.1.25)

= (Cτ +D)t
((

(Aτ +B)(Cτ +D)−1)t − (Aτ +B)(Cτ +D)−1
)

(Cτ +D) (A.1.26)

= y. (A.1.27)
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Using that y is positive definite, this implies that y′ is positive definite. We now have shown
that the assignment Eq. (A.1.12) is well-defined. The fact that it defines an action follows from
the identity(

A′(Aτ +B)(Cτ +D)−1 +B′
) (
C ′(Aτ +B)(Cτ +D)−1 +D′

)−1 = (A.1.28)

(A′(Aτ +B) +B′(Cτ +D)) (C ′(Aτ +B) +D′(Cτ +D))−1 = (A.1.29)

((A′A+B′C)τ +A′B +B′D) ((C ′A+D′C)τ + C ′B +D′D)−1
. (A.1.30)

Having piled up all the necessary ingredients, we can now define Siegel Modular Forms.

Definition A.12 ([Gee07, Definition 3.1]). Let V be a complex vector space and
ρ : GLg(C) → GL(V ) a representation. A smooth function f : Hg → V is of Siegel Mod-

ular weight ρ if for any
(
A B
C D

)
∈ Sp(2g,Z) and τ ∈ Hg there holds

f
(
(Aτ +B)(Cτ +D)−1) = ρ(Cτ +D)f(τ). (A.1.31)

Additionally assuming that f is holomorphic (and if g = 1 assume also that f is holomorphic at
∞), we obtain a Siegel Modular Form. We write SMFuρ

−1
for the set of smooth functions

of Siegel Modular weight ρ and SMFρ
−1

for the Siegel Modular forms of weight ρ. N

The condition of being of weight ρ can be reformulated in the same fashion as in the g = 1
case, Proposition A.7. In the g = 1 case, we could work with all orientable lattices. We need to
restrict the lattices a little more here.

Definition A.13. The set of Siegel Lattices LS2g is defined as the following set of lattices in
C2g.

LS2g =

{
(v1, . . . , v2g) ∈ (Cg)2g

∣∣∣∣ (v1, . . . , v2g) real linearly independent and
(v1, . . . , vg)(vg+1, . . . , v2g)−1 symmetric with positive imag. part

}
(A.1.32)

N

The set of Siegel lattices LS2g admits an action by the Siegel Modular group Sp2g(Z) given by(
A B
C D

)
· (v1, . . . , v2g) = (A(v1, . . . , vg) +B,C(vg+1, . . . , v2g) +D) (A.1.33)

for
(
A B
C D

)
∈ Sp2g(Z) and (v1, . . . , v2g) ∈ LS2g. The discussion of the Siegel Upper Half Plane

above shows that this is a well-defined action.

Proposition A.14. Let ρ : GLg(C) → GL(V ) be a representation. The smooth functions
f : Hg → V of Siegel modular weight ρ are in canonical bijection with the smooth functions
F : LS2g → V invariant under the action of SP2g(Z) and satisfying

F (λ(v1, . . . , vg), λ(vg+1, . . . , v2g)) = ρ(λ)−1F (v1, . . . , v2g) (A.1.34)

for all λ ∈ GLg(C).
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Proof. The proof is analogous to the proof of Proposition A.7. Given a function f : Hg → V of
Siegel modular weight ρ, we define for all (v1, . . . , v2g) ∈ LS2g

F (v1, . . . , v2g) = ρ(vg+1, . . . , v2g)−1f
(
(v1, . . . , vg)(vg+1, . . . , v2g)−1) . (A.1.35)

This F is well-defined and f , invariant under SP2g(Z) and satisfies (A.1.34). The proof is
similar to the case for g = 1 and left as an exercise to the reader.

Conversely, let F : LS2g → V be a function invariant under the action of SP2g(Z) and satisfying
(A.1.34). We define a smooth function f : Hg → V of Siegel modular weight ρ by

f(τ) = F (τ, Idg) τ ∈ Hg. (A.1.36)

Here, we interpret the columns of τ together with the columns of the identity matrix as a Siegel
lattice. Notice that this indeed defines a Siegel lattice. In particular, notice that since the entries
of τ have positive imaginary part, we indeed have found 2g real linear independent vectors. The
fact this is a Siegel modular form follows similar to the case g = 1. The details are left as an
exercise.

With additionally imposing holomorphicity conditions, we obtain the following corollary.

Corollary A.15. Let ρ : GLg(C) → GL(V ) be a representation. The Siegel modular forms
of weight ρ (for g = 1, weak modular forms) are in canonical bijection with the holomorphic
function F : LS2g → V invariant under the action of SP2g(Z) and satisfying Eq. (A.1.34).
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B Appendix: Generalized Cohomology
One of the most studied invariant of topological spaces in algebraic topology is
Singular (Co)homology. Singular cohomology consists of a contravariant functor

H• : T opop
pair → AbZ (B.0.1)

from pairs of topological spaces to the category of Z graded Abelian groups together with
connecting homomorphisms δ : H•(A, ∅) → H•+1(X,A). Singular cohomology satisfies
the celebrated Eilenberg-Steenrod axioms [Eil+72]. These axioms assert homotopy invariance,
excision, exactness and dimensionality. The last axiom of dimensionality assumes that the
cohomology of the one point space is concentrated in degree zero. Eilenberg and Steenrod
show in the mentioned paper that these axioms uniquely determine the cohomology theory (at
least on CW complexes) up to isomorphism. This uniqueness property is one way to show that
cellular cohomology and De Rham cohomology are isomorphic to singular cohomology. In fact,
the reason Eilenberg and Steenrod came up with their axioms is to classify cohomology theories.

To generalize cohomology theories away from just singular cohomology, we need to drop one of
the Eilenberg-Steenrod axioms. The most natural choice is to drop the dimensionality axiom.
We obtain a notion of generalized (Eilenberg-Steenrod) cohomology.

Definition B.1. A Generalized Cohomology is a contravariant functor

E• : T opop
pair → AbZ (B.0.2)

from some category of pairs of topological spaces to the category of Z graded Abelian groups to-
gether with connecting homomorphisms δ : E•(A, ∅)→ E•+1(X,A) such that the following
properties hold:

• (Homotopy invariance) For pairs (X,X ′) and (Y, Y ′) homotopy equivalent as pairs, the
homotopy equivalence induces an isomorphism E•(X,X ′) ∼= E•(Y, Y ′).

• (Exactness) The following sequence is exact

· · · → E•(X,A)→ H•(X, ∅)→ E•(A, ∅) δ→ E•+1(X,A)→ · · · (B.0.3)

• (Excision) For a pair of spaces (X,X ′) and Y ⊆ X ′ such that closure(Y ) ⊆ interior(X ′)
then the inclusion X\Y → X induces an isomorphism

E•(X,X ′) ∼= E•(X\Y,X ′\Y ). (B.0.4)

N

Remark B.2. In this definition, we work with “some category of topological spaces”. The
precise category is not relevant for our purposes. Sensible choices include the category of all
topological spaces, CW complexes and smooth manifolds. O

Remark B.3. Instead of the excision axiom, one can equivalently assume that the Mayor-
Vietoris sequence is exact. The Mayor-Vietoris sequence is the sequence

· · · → E•(X,X ′) (j∗U ,j
∗
V )→ E•(U,U ′)⊕E•(V, V ′) (i∗U−i

∗
V )→ E•(U ∩V,U ′∩V ′) ∂→ E•+1(X,X ′)→ · · ·

(B.0.5)
The equivalence of excision and the Mayor-Vietoris sequence follows from the exactness axiom,
see e.g., [Swi02, Theorem 7.19]. O
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We list some examples of generalized cohomologies.

Example B.4. Singular cohomology is a generalized cohomology where the cohomology of the
one point space is concentrated in the zero degree. 4

Example B.5. For a compact Hausdorff space X consider the set of isomorphism classes of
real/complex vector bundles over X. We can give this a monoid structure with the direct
product of vector bundles. Now define K0(X) to be the Grothendieck group completion of this
monoid.

K0(X) = ({isomorphism classes of vector bundles over X} ,⊕)Grp (B.0.6)
Using suspensions and Bott periodicity, [Hat03, Theorem 2.11], this can be turned into a coho-
mology theory K•(X) called K-Theory of X. For details, see [Hat03, Chapter 2]. 4

Example B.6. A third example of a generalized cohomology theory is elliptic cohomology.
Here, one constructs the cohomology using the Landweber Exact Functor Theorem, [Lan76],
from a formal group law coming from an elliptic curve. The construction is laid out in
detail in [Mei22, Section 4]. A formal group law is a power series F ∈ RJx1, x2K of the form
F = x1 + x2 + higher order which is symmetric and associative in the variables.

In fact, the previous singular cohomology and K-theory can be recovered using the same
method too. One only start with a different formal group law. The formal group law for
singular cohomology is the additional law F (x1, x2) = x1 + x2. For K-theory one needs the
multiplicative law F (x1, x2) = x1 + x2 + ux1x2.

In elliptic cohomology, there is a universal cohomology theory called tmf for topological modular
forms. It can be obtained as a homotopy limit from all elliptic cohomologies. This cohomology,
or at least its spectrum, is discussed in [Mei22, Section 5]. 4

Generalized cohomology theories reduce to ordinary cohomology upon killing all torsion.

Proposition B.7 ([DAS72, Corollary 4]). For any generalized cohomology theory E• defined
on the category of pairs of CW-complexes, there is a natural isomorphism

E• ⊗Q ∼= H• ⊗ E•(Pt)⊗Q. (B.0.7)

Here, we write H• for the ordinary cohomology with Z coefficients.

Proof. The statement is usually shown for homology usual dualization arguments give the same
statement in cohomology. See [DAS72] for the original argument on finite CW-complexes. More
generally see [Rud98, Theorem II.7.13].

This proposition highlights once more that the cohomology groups of the one point space is
fundamental to the generalized cohomology theory. We will give the cohomologies of the point
for the examples above.

Example B.8. A vector bundle over a point is just a vector space. Therefore, we know that
K0(Pt) = Z. Using Bott periodicity, one can show that Kn(Pt) = Z for n even and Kn(Pt) = 0
for n odd. 4

Example B.9. The topological modular forms over the point with complex coefficients
tmf•(Pt) ⊗ C can be identified with modular forms, [Mei22, page 60]. We obtain a natural
isomorphism

tmf2·•(Pt)⊗ C ∼= MF•. (B.0.8)
4
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[DLD78] A. D’Adda, M. Lüscher, and P. Di Vecchia. “A 1/N expandable series of non-linear
σ models with instantons”. In: Nuclear Physics B 146.1 (1978), pp. 63–76. issn:
0550-3213. doi: 10.1016/0550-3213(78)90432-7.

[Del+99] Pierre Deligne, P. Etingof, D. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, D. Morri-
son, and Edward Witten. Quantum fields and strings: A course for mathematicians.
Vol. 1. American Mathematical Society, 1999. isbn: 978-0-8218-2012-4.

[DM99] Pierre Deligne and John W. Morgan. “Notes on supersymmetry (following Joseph
Bernstein)”. In: Quantum fields and strings: a course for mathematicians 1.2 (1999),
pp. 41–97.

[DAS72] Albrecht Dold, J. F. Adams, and G. C. Shepherd. “Relations between ordinary and
extraordinary homology”. In: Algebraic Topology: A Student’s Guide. London Math-
ematical Society Lecture Note Series. Cambridge University Press, 1972, pp. 166–
177. doi: 10.1017/CBO9780511662584.015.

[Eil+72] S. Eilenberg, N. E. Steenrod, J. F. Adams, and G. C. Shepherd. “An axiomatic
approach to homology theory”. In: Algebraic Topology: A Student’s Guide. Lon-
don Mathematical Society Lecture Note Series. Cambridge University Press, 1972,
pp. 46–50. doi: 10.1017/CBO9780511662584.003.

[Eti+15] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor Categories. Mathematical
Surveys and Monographs 22, American Mathematical Society, 2015. url: http:
//www-math.mit.edu/~etingof/egnobookfinal.pdf (visited on 07/03/2023).

[Fer06] Nelson Martins Ferreira. Pseudo-categories. 2006. doi: 10.48550/arXiv.math/
0604549.

[Fio10] Rita Fioresi. “Super Lie groups”. In: Introduction to Supergeometry. Ed. by Alberto
S. Cattaneo and Florian Schätz. Vol. 23. 6. 2010. doi: 10.1142/S0129055X11004400.

[Fol16] G.B. Folland. A course in abstract harmonic analysis, second edition. CRC Press,
Feb. 2016. isbn: 9781498727136. doi: 10.1201/b19172.

https://www.maths.gla.ac.uk/~mpowell/Brown%20collars.pdf
https://www.maths.gla.ac.uk/~mpowell/Brown%20collars.pdf
https://swc-math.github.io/aws/2013/2013CalegariLectureNotes.pdf
https://swc-math.github.io/aws/2013/2013CalegariLectureNotes.pdf
https://math.gmu.edu/~dcarched/Thesis_David_Carchedi.pdf
https://math.gmu.edu/~dcarched/Thesis_David_Carchedi.pdf
https://doi.org/10.4064/bc114-1
https://doi.org/10.48550/ARXIV.0710.5742
https://doi.org/10.48550/arXiv.1006.5422
https://doi.org/10.48550/arXiv.1112.0816
https://doi.org/10.1016/0550-3213(78)90432-7
https://doi.org/10.1017/CBO9780511662584.015
https://doi.org/10.1017/CBO9780511662584.003
http://www-math.mit.edu/~etingof/egnobookfinal.pdf
http://www-math.mit.edu/~etingof/egnobookfinal.pdf
https://doi.org/10.48550/arXiv.math/0604549
https://doi.org/10.48550/arXiv.math/0604549
https://doi.org/10.1142/S0129055X11004400
https://doi.org/10.1201/b19172


REFERENCES 119

[För77] D. Förster. “On the structure of instanton plasma in the two-dimensional O(3) non-
linear σ-model”. In: Nuclear Physics B 130.1 (1977), pp. 38–60. issn: 0550-3213.
doi: 10.1016/0550-3213(77)90391-1.

[Gee07] Gerard van der Geer. Siegel Modular Forms. 2007. doi: 10.48550/arXiv.math/
0605346.
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