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Abstract

This thesis explores the application of stochastic control techniques in a parameter study to
examine the implications of climate taxes on a pension fund. The problem at hand involves
modeling a pension fund comprising various assets, with a specific focus on the portfolio’s
emissions and the associated tax implications. This research aims to find the optimal alloca-
tion strategies for managing the pension fund, considering both the portfolio’s performance
and the impact of taxes. By utilizing stochastic control, we explore how various factors,
such as risk preferences, tax regulations, and emission considerations, influence the optimal
investment and consumption policies. To solve this complex problem, the BCOS method is
employed to numerically tackle the fully coupled Forward-Backward Stochastic Differential
Equations (FBSDEs) arising from the control problem. The BCOS method, known for its
effectiveness in solving coupled FBSDEs, is applied to tackle the complexity of the problem.
This numerical approach enables the exploration of different control parameters, allowing
for a comprehensive parameter study. Numerical experiments are presented to illustrate
the different outcomes by varying the parameters, thus revealing the dynamic nature of the
solutions.

Keywords: Stochastic control, forward-backward stochastic differential equations, extended
Merton portfolio problem, pension fund, emissions, taxes, BCOS method.

i



Contents

1 Introduction 1

2 Preliminary Theory 4
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Backward stochastic differential equations . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Forward-Backward Stochastic Differential Equations . . . . . . . . . . . . . . . . . 10
2.4 Stochastic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Problem Description for a Finite Horizon . . . . . . . . . . . . . . . . . . . 12
2.4.2 The Hamilton-Jacobi-Bellman approach . . . . . . . . . . . . . . . . . . . . 13
2.4.3 The Maximum Principle Approach . . . . . . . . . . . . . . . . . . . . . . . 17

3 Finding a fitting model 20
3.0.1 Utility functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Merton’s Portfolio Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 General case with Pontryagin . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Take away . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Optimizing a DC pension fund framework . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 The optimal control problem . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Analytical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.4 Take away . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 The impact of emission levels on the production profit . . . . . . . . . . . . . . . . 25
3.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 General case with Pontryagin’s maximum principle . . . . . . . . . . . . . . 27
3.3.3 Analytical solution to the optimization problem . . . . . . . . . . . . . . . . 27
3.3.4 Explicit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.5 Take away . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Isolating Green from Brown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 A portfolio of green and brown stocks . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Concerning the contribution rate . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Climate taxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Numerical methods 34
4.1 Discretization of a coupled FBSDE . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 BCOS Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Error Analysis and Computational Complexity . . . . . . . . . . . . . . . . 39

ii



CONTENTS iii

5 Results 41
5.1 Test the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Fully coupled FBSDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.2 Gobet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Portfolio based on Greenness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.1 Contribution only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 PAB tax with contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusion 52
6.1 Concluding summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



Acknowledgments

I would like to express my appreciation to my two supervisors, Kees Oosterlee and Bálint Négyesi,
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Chapter 1

Introduction

Climate risks in finance

The global transition towards sustainability is gaining momentum as the urgency to address climate
change becomes increasingly evident. The Paris Agreement [16], a landmark international accord,
plays a pivotal role in catalyzing this transformative process. It sets forth a framework to combat
climate change by limiting global warming to well below 2 degrees Celsius above pre-industrial levels
and pursuing efforts to limit the temperature increase to 1.5 degrees Celsius. However, translating
the Paris Agreement into tangible actions requires the establishment of benchmarks that can
guide and influence various sectors, including the financial industry. In particular, pension funds,
entrusted with managing long-term investments, face the challenge of aligning their portfolios with
sustainability goals.

The consequences of CO2 emissions extend beyond the environmental realm and significantly
impact the financial market in both the short and long term. In the short term, the financial
markets experience increased volatility and drift as climate-related events, such as extreme weather
conditions and policy changes, affect investor sentiment and market dynamics. These fluctuations
introduce uncertainties and risks that need to be managed effectively. Looking towards the long
term, it becomes evident that maintaining constant emission levels will lead to a growing divergence
from sustainability benchmarks. This divergence can result in escalating penalties for companies
falling short of emission reduction targets and the introduction of carbon taxes.

Pension funds, responsible for securing retirees’ financial well-being, currently face a significant
knowledge gap regarding the impact of climate change on their investment portfolios. Identifying
”brown” and ”green” companies and assessing their vulnerability becomes crucial in this context
[38]. The question arises: Will green businesses ultimately prevail, and what are the implications
for pension funds? To address this knowledge gap, this thesis aims to develop a dynamic model and
objective function that capture the evolving dynamics of stocks, accounting for their ”greenness”
and its influence on their future trajectory. The goal is to optimize the portfolio’s wealth over
time, considering diversification and transition risks.

Supervisory institutions, such as the Dutch Central Bank (DNB), play a crucial role in over-
seeing the operations of pension funds. Understanding the implications of climate change on
investment portfolios is of great interest to these institutions as they seek to ensure the long-term
financial stability of pension funds. This research provides valuable insights into the dynamics of
sustainable investing, the potential influence of the Paris Benchmark on portfolios, and the po-
tential future implementation of CO2 taxes. By exploring these aspects, the DNB can refine its
regulatory framework and guide pension funds towards sustainable investment strategies.

In conclusion, this thesis aims to bridge the knowledge gap regarding the effects of climate
change on pension fund portfolios. By developing a dynamic model and objective function that
account for the ”greenness” of companies, optimal investment strategies can be determined. The
research also explores the role of sustainability benchmarks, potential CO2 taxes, and the utility
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CHAPTER 1. INTRODUCTION 2

shift towards sustainable and ESG-rated investments. The findings have implications for supervi-
sory institutions like the DNB, assisting them in guiding pension funds towards sustainable and
resilient financial practices.

Mathematical description

We aim to develop a simplified model that represents a pension fund and examine the potential
impact of climate risks and taxes. However, addressing this issue is not straightforward, as financial
assets themselves do not emit emissions. Nevertheless, the companies associated with these assets
do contribute to CO2 emissions, which we will consider. To simplify the problem, we generalize
the portfolio to include only a green stock and a brown stock, reflecting their sustainability levels
based on the Paris Alignment Benchmark. The key question becomes: how can we determine an
optimal investment strategy? To address such inquiries, we turn to the field of stochastic control,
utilizing its techniques in conjunction with other research to solve this allocation problem.

Through the application of Feynman-Kac relations and Itô’s lemma, a link exists between
stochastic control problems and Forward-Backward Stochastic Differential Equations (FBSDEs).
Solving one problem yields an immediate solution for the other. Leveraging this relationship and
our understanding that complex FBSDEs can be solved using numerical methods, we can determine
the optimal control process over time.

While we can solve simple stochastic control problems using BSDEs and the BCOS method,
real-world problems often exhibit a degree of coupling that remains challenging to solve. Therefore,
it becomes essential to extend these numerical methods to a general framework capable of solving
control problems for given deterministic drift and volatility functions.

Our contribution to the existing literature lies in combining the techniques for solving BSDEs
using the BCOS method with stochastic control problems, thereby facilitating the computation of
numerical solutions for these control problems. Additionally, we propose a novel and straightfor-
ward portfolio problem that captures the ”greenness” of the underlying fund. Our objective is to
determine the optimal ratio between green and brown stocks while simultaneously optimizing the
return rate, accounting for the investor’s evolving preference for green considerations over time.
This extends Merton’s portfolio problem and incorporates the dynamic nature of ESG preferences.

Organisation of this thesis

The structure of this thesis is as follows: Following this introduction, Chapter 2 serves as an
introduction to the essential theories necessary for building the foundation of this thesis. In Sec-
tion 2.2, BSDEs and establish the existence and uniqueness of solutions under general assumptions
regarding the underlying randomness. Additionally, we briefly discuss the extension to FBSDE and
present two assumptions guaranteeing the existence and uniqueness of solutions. This chapter con-
cludes with an exploration of stochastic control problems and their resolution methods, specifically
the Hamilton-Jacobi-Bellman (HJB) equation and Pontryagin’s maximum principle. Furthermore,
we examine the connection between solving stochastic control problems and BSDEs, highlighting
the feedback map for the control variable, which facilitates numerical solutions for these control
problems.

The subsequent chapter, Chapter 3, delves into the discussion of various mathematical control
models, [27], [14] and [10], within the context of stochastic control and BSDE theories. We explore
how these models can be applied to pension funds and analyze their effectiveness. The chapter
ends in the development of a novel control problem centered around the ”greenness” of a pension
fund portfolio and its corresponding return on investment. We introduce a constant contribution
rate and subsequently incorporate a tax based on the Paris Alignment Benchmark to incentivize
emission mitigation.

Chapter 4 introduces the BCOS method from [18], which serves as the numerical solver for
the fully coupled FBSDEs. Additionally, a short statement about the error analysis is provided to
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evaluate the accuracy of the method.
Moving on, Chapter 5 presents the numerical results obtained from our study. We showcase

the impact of different contribution values on investment strategies and explore the diverse effects
of increasing the penalty.

Finally, in Chapter 6, we summarize our findings and draw conclusions from our work. We also
suggest potential avenues for future research and investigation.



Chapter 2

Preliminary Theory

The field of stochastic analysis has emerged as an important and strong tool in the study of complex
financial systems, with applications ranging from portfolio management to option pricing. Among
the numerous stochastic models that have been proposed in the literature, the Backward Stochastic
Differential Equation (BSDE), Forward-Backward Stochastic Differential Equation (FBSDE), and
stochastic control theories have proven to be particularly useful.

The theory of BSDEs provides a powerful framework for modeling and analyzing a wide range of
stochastic phenomena, including option pricing, risk management, and stochastic control. BSDEs
can be viewed as a natural extension of the classical theory of stochastic differential equations,
where the solution process evolves in a reverse time direction. This reverse-time evolution provides
a natural interpretation of the problem, allowing for a deeper understanding of the underlying
dynamics.

In recent years, the FBSDE theory has attracted significant attention in the financial math-
ematics community due to its ability to model complex systems that involve multiple agents,
feedback loops, and interactions between different time scales. FBSDEs can be viewed as a natural
generalization of BSDEs, where the forward dynamics of the system are also taken into account.
This allows for a more complete and accurate modeling of the underlying dynamics, providing new
insights into the behavior of complex systems.

Finally, the stochastic control theory provides a general framework for optimizing the behavior
of a stochastic system subject to various constraints. This theory has found numerous applications
in the financial industry, where it is used to model and optimize complex financial systems, such
as portfolio management and option pricing.

In this chapter, we will first give some definitions and notations used in the construction of the
theories and lemmas we need to use. Then we start with the formulation of the theories of BSDEs
and FBSDEs. Next, we provide a comprehensive overview of stochastic control theories, includ-
ing methods to solve these problems and establishing their connection with the aforementioned
BSDE/FBSDE systems. In this regard, we draw heavily on the work of Pham [32] as a primary
reference for this chapter. Key results will be used in later chapters to understand and decompose
known control papers, construct our own control problem and eventually use numerical methods
to solve this.

2.1 Preliminaries

2.1.1 Notations

In order to start this chapter, we first need to define certain notations and sets that will be used to
build the different definitions and theorems necessary. Throughout this thesis, we are concerned
with a filtered probability space W = (Wt)0≤t≤T be a standard d-dimensional Brownian motion on
the probability space (Ω,F ,F, P ) where F = (Ft)0≤t≤T is the natural filtration of W , and T is a
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CHAPTER 2. PRELIMINARY THEORY 5

fixed horizon. For x ∈ Rd, the Euclidean norm is denoted as |x| and ⟨x1, x2⟩ as the inner product.
Furthermore,

Definition 1 (Spaces)
We introduce the following notations,

• S2(0, T ): set of real-valued progressively measurable processes Y such that,

E[ sup
0≤t≤T

|Yt|2] < ∞

• H2(0, T )d: set of Rd-valued progressively measurable processes Z such that,

E[
∫ T

0

|Zt|2] < ∞

• Lp(Ω,F ,P;R): the space of all F-measurable random variables X : [0, T ]×Ω → R such that
for all t ∈ [0, T ]: E[|Xt|p < ∞] for p ∈ [1,∞).

• C0(T × O): the space of all real-valued continuous functions f on T × O. We mostly use
T = [0, T ] and O is an open set of R.

• Ck(O): the space of all real-valued continuous functions f on O with continuous derivatives
up to order k.

• C1,2([0, T )×O): the space of real-valued functions f on [0, T )×O whose partial derivatives:
∂f
∂t ,

∂f
∂xi

, ∂2f
∂xi∂xj

, 1 ≤ i, j ≤ n, exist and are continuous on [0, T ). If these partial derivatives

can be extended by continuity on [0, T ]×O, we write f ∈ C1,2([0, T ]×O). We define similarly
for k ≥ 3 the space C1,k([0, T )×O).

We will provide a short introduction to strong solutions for stochastic differential equations.
The assumptions required for establishing uniqueness and existence of the strong solutions will
also play a part in later definitions and theorems. By studying the concept of strong solutions, we
aim to lay the groundwork for a rigorous mathematical framework and explore its implications for
further analysis within this thesis.

Strong solutions of SDE

We consider the following simple forward SDE in R,

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt (2.1.1)

where X is a 1-dimensional random process, the drift function µ(t, x, ω) and the diffusion function
σ(t, x, ω) are defined on T× R× Ω and take values in R and Rd respectively. We assume that for
all ω, the functions µ(·, ·, ω) and σ(·, ·, ω) are Borelian on T × R and for all x ∈ R, the processes
µ(·, x, ·) = and σ(·, x, ·) are progressively measurable. We omit writing the ω variable in the future,
and write µ(t, x) and σ(t, x).

Definition 2
(Strong solution of SDE) A strong solution of the SDE starting at time t is a progressively mea-
surable process X s.t, ∫ s

t

|µ(u,Xu)|du+

∫ s

t

|σ(u,Xu)|2du < ∞,∀t ≤ sa.s.,

and the following relation holds true a.s.,

Xs = Xt +

∫ s

t

µ(u,Xu)du+

∫ s

t

σ(u,Xu)dWu, t ≤ s.
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Note, that a strong solution of a SDE is a continuous process. Existence and uniqueness of a
strong solution to the SDE is ensured by Lipschitz and linear growth conditions. There exist a
constant K and a real-valued process κ such that ∀t ∈ T, ω ∈ Ω, x, y ∈ R we have,

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y|,
|µ(t, x) + σ(t, x)| ≤ κt +K|x|,

with

E
[∫ t

0

|κu|2du
]
< ∞∀ ∈ T.

A natural choice for κ is κt = |µ(t, 0)|+ |σ(t, 0)|.

Additional theorems We assume familiarity with basic stochastic calculus and results from
Itô calculus, which will be utilized without further introduction. Furthermore, throughout the
remainder of this chapter, we will rely on several widely recognized theorems from functional
analysis and stochastic calculus, which will be stated without proofs. These theorems and a
definition are indispensable for constructing and proving subsequent definitions and theorems, and
their significance may not be immediately evident to the reader.

Definition 3 (Local martingale)
Let X be a càdlàg adapted process. We say that Xis a local martingale if there exists a sequence of
stopping times (τn)n≥1 such that limn→∞ τn = ∞ a.s. and the stopped process Xτn is a martingale
for all n.

Theorem 1 (Banach’s fixed point method)
Let (S, d) be a non-empty complete metric space. A mapping F : S → S is a constraction mapping
if,

d(F (x), F (y)) ≤ Kd(x, f), x, y ∈ S,

for some 0 ≤ K < 1. Then there exists a unique fixed point of F , F (x∗) = x∗.

Proof. See, [20].

Theorem 2 (Martingale Representation theorem)
Let ξ ∈ L2(R). Then there exists a unique Z ∈ H2(0, T )d such that,

ξ = E(ξ) +
∫ T

0

ZsdWs.

As a consequence for Mt, a square integrable martingale with respect to Ft, there exists Z ∈
H2(0, T )d such that.

Mt = M0 +

∫ t

0

ZsdWs.

Proof. See, [40].

Theorem 3 (Doob’s inequality)
Let X = (Xt)t ∈ [0, T ] be a nonnegative submartingale or a martingale, càdlàg. Then, for any
stopping time τ valued in T, we have:

P
[
sup

0≤t≤τ
|Xt| ≥ λ

]
≤ E|Xτ |

λ
, ∀λ > 0,

E
[
sup

0≤t≤τ
|Xt|

]p
≤
(

p

1− p

)p

E[|Xτ |p], ∀p > 1.
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Proof. See, [32]

Theorem 4 (Burkholder-Davis-Gundy inequality)
For any p > 0, there exist universal constants 0 < cp < Cp such that for all continuous martingales,
M = (Mt)t∈T, and all stopping times τ valued in T,

cpE

[
(

∫ T

0

|σt|2dt)
p
2

]
≤ E

[
| sup
0≤t≤T

∫ t

0

σsdWs|p
]
≤ CpE

[
(

∫ T

0

|σt|2dt)
p
2

]
Proof. See, [40].

2.2 Backward stochastic differential equations

The theory of BSDEs was pioneered by Pardoux and Peng [28], but was first introduced by Bismut
in 1973 for linear backward stochastic differential equations [7]. Since then, BSDEs have become
an important area of research in stochastic analysis, and have been used to study a variety of
problems, such as stochastic optimal control problems, option pricing, and risk management. In
this section we provide a concise introduction to BSDEs, including a proof for their well-posedness.

2.2.1 General formulation

While a SDE is a nonlinear extension of the stochastic integration, a Backward SDE can be regarded
as a nonlinear counterpart of the martingale representation theorem. Given ξ ∈ L2(Ω,FT ,P), it
induces a martingale Yt := E[ξ|Ft]. By the martingale representation theorem, there exists a
unique Z ∈ H2(0, T )d such that,

dYt = ZtdWt, or equivalent, Yt = ξ −
∫ T

t

ZsdWs.

This is a linear SDE where we have a fixed terminal condition YT = ξ, instead of a fixed initial
condition, hence the name backward stochastic differential equation. It is important to emphasize
that the solution to a BSDE consists of a pair of adapted random processes, namely (Y, Z). The
presence of Z ensure the F-measurability of Y . In the following chapter we consider the following
definition of a nonlinear BSDE,

Definition 4 (BSDE)
A BSDE is written in differential form as,

− dYt = f(t, Yt, Zt)dt− ZtdWt, YT = ξ, (2.2.1)

or equivalently,

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs, 0 ≤ t ≤ T. (2.2.2)

where we assume,

• ξ : Ω → Rd is called the terminal condition and is a FT -measurable random variable.

• f : Ω× [0, T ]× R× Rd → R is called the generator and is F-measurable.

Definition 5 (Solution to the BSDE)
A solution to the BSDE Eq. (2.2.1) is a pair (Y,Z) ∈ S2(0, T )×H2(0, T )d satisfying Eq. (2.2.2).

Note that a BSDE cannot be considered as a time-reversed FSDE, because at time t the pair
(Yt, Zt) is Ft measurable, indicating that the process does not possess knowledge of the terminal
condition at that particular time. We will now present a classical proof for the existence and
uniqueness of a BSDE. There exists multiple proofs in literature, we will present the proof of
Pham given in [32].
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Theorem 5 (Existence and Uniqueness of solution)
Given a pair (ξ, f) satisfying the following assumptions, there exist a unique solution (Y, Z) which
solves the BSDE of Eq. (2.2.1),

• ξ ∈ L2(Ω,FT ,P;R)

• f is uniformly Lipschitz in (y,z), i.e. there exists a positive constant Cf such that for all
y, z, y′, z′ ∈ R:

|f(t, y, z)− f(t, y′, z′) ≤ Cf (|y − y′|+ |z − z′|), dt⊗ dPa.e.

• f(·, 0, 0) ∈ H2(0, T ).

Proof. This proof is from [32] and is based on the Banach’s Fixed Point as given in Theorem 1, for
which we can argue that a defined contraction mapping has a unique fixed point. Let us consider the
function Φ on S2(0, T )×H2(0, T )d, which is a Banach space, mapping (U, V ) ∈ S2(0, T )×H2(0, T )d

to (Y,Z) = Φ(U, V ) defined by,

Yt = ξ +

∫ T

t

f(s, Us, Vs)ds−
∫ T

t

ZsdWs. (2.2.3)

This pair (Y,Z) is constructed as such: we first consider the martingaleMt = E[ξ+
∫ T

0
f(s, Us, Vs)ds|Ft],

which is square integrable under the assumptions of Theorem 5. It is possible to apply the Mar-
tingale Representation Theorem as given in Theorem 2, which gives the existence and uniqueness
of Z ∈ H2(0, T )d such that,

Mt = M0 +

∫ t

0

ZsdWs.

We then define the process Y as,

Yt := E

[
ξ +

∫ T

t

f(s, Us, Vs)ds|Ft

]
= Mt −

∫ t

0

f(s, Us, Vs)ds, 0 ≤ t ≤ T,

which satisfies Eq. (2.2.3). This can be found by using the definition of M and noting that YT = ξ,

Yt = Mt −
∫ t

0

f(s, Us, Vs)ds

= MT −
∫ T

t

ZsdWs −
∫ t

0

f(s, Us, Vs)ds

= ξ +

∫ T

0

f(s, Us, Vs)ds−
∫ T

t

ZsdWs −
∫ t

0

f(s, Us, Vs)ds

= ξ +

∫ T

t

f(s, Us, Vs)ds−
∫ T

t

ZsdWs.

Observe that by Doob’s inequality Theorem 3 that,

E[ sup
0≤t≤T

|
∫ T

t

ZsdWs|2] ≤ 4E[
∫ T

0

|Zs|2ds] < ∞.

Under the assumptions of Theorem 5, we can deduce that Y lies in S2(0, T ) and therefore Φ is a
well-defined function from S2(0, T )×H2(0, T )d into itself. With this information we see that (Y, Z)
is a solution to Eq. (2.2.1) if and only if it is a fixed point to mapping Φ, which is the next step.
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Let (U, V ), (U ′, V ′) ∈ S2(0, T ) × H2(0, T )d and (Y,Z) = Φ(U, V ), (Y ′, Z ′) = Φ(U ′, V ′). Fur-
thermore set (∆U,∆V = (U − U ′, V − V ′), (∆Y,∆Z = (Y − Y ′, Z − Z ′) and ∆ft = f(t, Ut, Vt)−
f(t, U ′

t , V
′
t ). Applying Itô’s formula to g(s,∆Ys) = eβs|∆Ys|2, for some β > 0, results in,

d(eβs|∆Ys|2) =
(
∂g

∂s
−∆f

∂g

∂∆Y s
+

|∆Zs|2

2

∂2g

∂∆Y 2
s

)
ds+∆Zs

∂g

∂∆Ys
dWs

= eβs(β|∆Ys|2 − 2∆Ys∆fs)ds+ eβs|∆Zs|2ds− 2eβs∆Ys∆ZsdWs.

Integrating both sides from 0 to T results in,

|∆Y0|2 = −
∫ T

0

eβs(β|∆Ys|2 − 2∆Ys∆fs)ds

−
∫ T

0

eβs|∆Zs|2ds−
∫ T

0

2eβs∆Ys∆ZsdWS , (2.2.4)

where we used |∆YT |2 = |YT − Y ′
T |2 = |ξ − ξ|2 = 0. Observe that,

E

[
(

∫ T

0

e2βt|Yt|2|Zt|2dt)1/2
]
≤ eβt

2
E

[
sup

0≤t≤T
|Yt|2 +

∫ T

0

|Zt|2dt

]
< ∞,

which shows that the local martingale
∫ t

0
eβtYtZtdt is a uniformly integrable martingale with the

use of the Burkholder-Davis-Gundy inequality as given in Theorem 4. Taking the expectation of
both sides of Eq. (2.2.4) yields,

E|∆Y0|2 + E[
∫ T

0

eβs(β|∆Ys|2 + |∆Zs|2)ds] = 2E[
∫ T

0

eβs∆Ys∆fs]

≤ 2CfE[
∫ T

0

eβs|∆Ys|(|∆Us|+ |∆Vs|)ds]

≤ 4C2
fE[
∫ T

0

eβs|∆Ys|2ds] +
1

2
E[
∫ T

0

eβs(|∆Us|2 + |∆Vs|2)ds].

If we choose β = 1 + 4C2
f , we obtain,

E[
∫ T

0

eβs(|∆Ys|2 + |∆Zs|2)] ≤
1

2
E[
∫ T

0

eβs(|∆Ys|2 + |∆Zs|2)ds].

This shows that Φ is a contraction on the Banach space S2(0, T ) × H2(0, T )d endowed with the
norm,

||(Y,Z)||β =

(
E[
∫ T

0

eβs(|Ȳs|2 + |Z̄s|2)ds]

) 1
2

.

This concludes the proof and Φ admits a unique fixed point, which in our case is the solution to
the BSDE.

It is well known that BSDEs are closely connected to partial differential equations (PDEs). We
state the linear Feynman-Kac theorem from [32],

Theorem 6 (Linear Feynman-Kac theorem)
On a finite horizon interval we consider the Cauchy linear PDE problem,

ρu(t, x)− ∂u

∂t
(t, x)− (Lu)(t, x)− f(t, x) = 0

u(T, x) = g(x)
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with differential operator

Lu = µ(t, x)Dxu+
1

2
Tr(σ(t, x)σ′(t, x)D2

xu).

Recall the X denotes the solution to the diffusion Eq. (2.1.1). Assume that the solution of the
PDE satisfies u ∈ C1,2 and Eq. (2.1.1) admits a unique strong solution. Then u admist the
representation,

u(t, x) = E[
∫ T

t

e−
∫ s
t
ρ(r,Xr)drf(s,Xs)ds+ e−

∫ T
t

ρ(r,Xr)drg(XT )|Xt = x]

2.3 Forward-Backward Stochastic Differential Equations

In the remaining thesis we will consider a special class of BSDEs, namely the Forward-Backwards
Stochastic Differential Equations. As the name suggests, this system comprises both a forward and
a backward Stochastic Differential Equation. In further sections of this thesis we are going to see
that FBSDEs naturally arise when solving stochastic control problems. The randomness driving
this system comes from the Brownian Motion of the forward SDE. Another way to view this, is
to consider a FBSDE as a two-point boundary value problem for stochastic differential equations,
with extra requirement that its solution is adapted solely to the forward filtration [26]. The system
describing the forward and backward equation can be stated by the following equations,

Xt = X0 +

∫ t

0

µ(s,Xs, Ys, Zs)ds+

∫ t

0

σ(s,Xs, Ys, Zs)dWs, 0 ≤ t ≤ T, (2.3.1)

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs, 0 ≤ t ≤ T. (2.3.2)

One thing that stands out is that the solutions of both equations depends on each other. In the
case of Eq. (2.3.1) and Eq. (2.3.2), we say that they are fully coupled, which means that Xt is
allowed to couple into the driver f and Yt and Zt are allowed to couple into the drift µ and the
diffusion/volatility σ. If σ does not depend on Z we shall say the system is coupled, and if µ and
σ do not depend on (Y,Z) the system is said to be decoupled. This degree of coupling is directly
linked to the complexity of solutions to the corresponding FBSDE. For decoupled FBSDE there
exist already efficient numerical algorithms but in upcoming chapter we will see that it is possible
to solve fully coupled FBSDE, mainly based on the work of [18].

The well-posedness of fully coupled FBSDEs is a complex work, for which their have been a lot
of studies around solving these systems, [29] [25] [1] [31]. The following definition comes from Hu
and Peng [17] in which they study the existence and uniqueness of the solution to forward-backward
stochastic differential equations where the σ does depend on Z.

Definition 6
A triple of processes (X,Y, Z) : [0, T ]×Ω → R×R×Rd is called an adapted solution to Eq. (2.3.1)
and Eq. (2.3.2), if (X,Y, Z) ∈ H2(0, T )×H2(0, T )×H2(0, T )d

The adaptedness of the solution will enable us to rewrite our definition of the FBSDE system
into a differential form,

dXs = µ(s,Xs, Ys, Zs)ds+ σ(s,Xs, Ys, Zs)dWs,

dYs = −f(s,Xs, Ys, Zs)ds+ ZsdWs,

X0 = x. YT = g(XT ).

We will now state the two main standing assumptions of [17]. These assumptions will ensure ex-
istence and uniqueness of a FBSDE over an arbitrarily prescribed time duration. The conditions
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for solving a stochastic control problem will be sufficient for us to find a solution to their corre-
sponding FBSDE, such as quadratic growth and concavity. We will use the following notations,
for u = (x, y, z) ∈ R× R× Rd, we write,

k(t, u) = (−f(t, u), µ(t, u), σ(t, u)).

Assumption 1
For each u ∈ R × R × Rd, k(·, u) ∈ H2(0, T )d, k(·, u) ∈ H2(0, T ) × H2(0, T ) × H2(0, T )d and for
each x ∈ R, g(x) ∈ L2(Ω,FT ,P;R); there exists a constant c1 > 0, such that

|k(t, u1)− k(t, u2)| ≤ c1|u1 − u2|, a.s., t ∈ [0, T ]

∀u1 ∈ R× R× Rd, u2 ∈ R× R× Rd

and

|g(x1)− g(x2)| ≤ c1|x1 − x2|, a.s.,
∀x1 ∈ R, x2 ∈ R.

Assumption 2
There exists a constant c2 > 0, such that,

⟨k(t, u1)− k(t, u2), u1 − u2⟩ ≤ −c2|u1 − u2|2, a.s., t ∈ [0, T ],

∀u1 ∈ R× R× Rd, u2 ∈ R× R× Rd

and

⟨g(x1)− g(x2), x1 − x2⟩ ≥ c2|x1 − x2|2, a.s.,
∀x1 ∈ R, x2 ∈ R.

Theorem 7
Let Assumption 1 and Assumption 2 hold, then there exists a unique adapted solution (X,Y, Z) for
Eq. (2.3.1) and Eq. (2.3.2).

Proof. See, [17]

In the remaining part of the master’s thesis, we will not go into detail about the proof of
Theorem 7. However, we will make use of these results on the well-posedness of FBSDEs to
advance our study.

2.4 Stochastic Control

In the following section we will treat the general theory of stochastic control and optimization.
This is a sub-field of classical control theory that deals with subjection to random perturbations
that drive a dynamical system. The system can be controlled in order to find a optimum for
some performance criterion. The aim is then to design a path through time for the controlled
variables that performs the desired control task which is found in a performance criterion. This
field has become more prominent in areas where the decision-making problems have an underlying
uncertainty. Among various fields we mention economics, biology and finance, with applications
such as finding necessary and sufficient conditions for optimality in the mathematical modelling of
the spreading of infectious diseases [39], and for the design of a optimal timing of greenhouse gas
emission abatement[3].
In this thesis, we will primarily focus on finite horizon problems due to the specific nature of climate
control problems. Finite horizon problems involve optimizing a system’s behavior over a fixed time
interval. This choice is motivated by the inherent characteristics of climate control, and the looming
the terminal time of climate mitigation. By considering finite horizon problems, we can effectively
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address the time-sensitive aspects of climate control, such as ensuring emission reduction within a
given timeframe. Therefore, we will exclude discussions related to infinite horizon problems, which
involve optimizing over an unbounded time horizon, as they are less applicable to the specific
context of climate control.

2.4.1 Problem Description for a Finite Horizon

Let us define a filtered probability space (Ω,F ,F = (Ft)t≥0,P) satisfying the usual conditions.
Consider a stochastic control model where the state of the system is governed by the following
controlled SDE valued in R,

dXs = µ(s,Xs, αs)ds+ σ(s,Xs, αs)dWs, (2.4.1)

here the coefficient functions µ(s, x, a) and σ(s, x, a) depend also on time, because of the finite
horizon nature of the control problem. The control process α = (αs)s≤0 is a progressively mea-
surable process, taking values in A, subset of Rm. The set of all admissible control processes α is
denoted by A.

The measurable function µ : [0, T ] × R × A → R and σ : [0, T ] × R × A → Rd satisfy uniform
Lipschitz conditions in A : ∃K ≥ 0,∀x, y ∈ R,∀a ∈ A,∀t ∈ [0, T ],

|µ(t, x, a)− µ(t, y, a)|+ |σ(t, x, a)− σ(t, y, a)| ≤ K|x− y|. (2.4.2)

Let’s fix a finite horizon 0 < T < ∞, and assume,

E

[∫ T

0

|µ(t, 0, αs)|2 + |σ(t, 0, αs)|2dt

]
< ∞. (2.4.3)

In the above condition Eq. (2.4.3), the element x = 0 is an arbitrary value of the diffusion, but
any arbitrary value, as long as it lies in the support of the diffusion, will do. As indicated in
Section 2.1.1, the conditions Eq. (2.4.2) and Eq. (2.4.3) guarantee the existence and uniqueness
of a strong solution to the Stochastic Differential Equation (SDE) denoted by Xt,x

s t≤s≤T with a.s.
continuous paths. This strong solution holds true for all control variables α ∈ A and for any given
initial condition (t, x) ∈ [0, T ] ∈ Rn. Under these conditions on µ, σ and α, it implies that,

E[ sup
t≤s≤T

|Xt,x
s |2] < ∞. (2.4.4)

Functional objective: Let f : [0, T ]×R×A → R and g : R → R be two measurable functions.
We assume the following,

1. g is lower-bounded

2. g satisfies a quadratic growth condition: |g(x)| ≤ C(1 + |x|2),∀x ∈ R, for some constant C
independent of x.

For (t, x) ∈ [0, T ]× R, we denote by A(t, x) the subset of controls α in A such that,

E[
∫ T

t

|f(s,Xt,x
s , αs)|ds] < ∞,

and assume that A(t, x) is not empty ∀(t, x) ∈ [0, T ]× R. We can then define the gain functional
under the assumption of Section 2.4.1,

J(t, x, α) = E[
∫ T

t

f(s,Xt,x
s , αs)ds+ g(Xt,x

T )], (2.4.5)
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∀(t, x) ∈ [0, T ] × R and α in A(t, x). The objective is to maximize this gain functional over all
admissible control processes. We introduce the associated value function,

v(t, x) = sup
α∈A(t,x)

J(t, x, α). (2.4.6)

If v(t, x) = J(t, x, α̂t) for a given initial condition (t, x) ∈ [0, T ]× R, we say that α̂ ∈ A(t, x) is an
optimal control. A special case of control process is if α is of the form αs = a(s,Xt,x

s ) for some
measurable function a : [0, T ]× R → A, then it is called a Markovian control.

Remark 1 (Quadratic growth condition)
When f satisfies a quadratic growth condition in x, i.e. ∃C ∈ R≥0 and a positive function κ : A →
R≥0 such that,

|f(t, x, a)| ≤ C(1 + |x|2) + κ(a), ∀(t, x, a) ∈ [0, T ]× R×A,

then the estimate of Eq. (2.4.4) shows that ∀(t, x) ∈ [0, T ]×R, for any constant control α = a ∈ A,

E

[∫ T

t

|f(s,Xt,x
s , a)|ds

]
< ∞.

Hence, set of constant controls in A lies also in A(t, x). Moreover, if there exists a positive constant
C such that: κ(a) ≤ C(1 + |µ(t, 0, a)|2 + |σ(t, 0, a)|2), then ∀a ∈ A, the conditions Eq. (2.4.3) and
Eq. (2.4.4) show that ∀(t, x) ∈ [0, T ]× R, for any control α ∈ A,

E

[∫ T

t

|f(s,Xt,x
s , αs)|ds

]
< ∞.

Concluding, in this case we have that A(t, x) = A.

Remark 2
We focus only on finite horizon control problems in this paper. The infinite horizon version of a
stochastic control problem is formulated as,

E
[∫ ∞

0

e−ρsf(Xs, αs)ds

]
,

where ρ > 0 is a large enough positive discount factor to ensure finiteness of the associated value
function.

Having stated the basis of the control problem, we are going to look at two different but
intertwined approaches to find the optimal control and corresponding value function.

2.4.2 The Hamilton-Jacobi-Bellman approach

In this section we look into the different steps we make to obtain a way to solve a stochastic control
problem. We begin by stating the dynamic programming principle (DPP), a fundamental building
block in the control theory. Then we look into a specific version of this principle which results in
the Hamilton-Jacobi-Bellman equation.

The dynamic programming principle was first developed by Richard Bellman’s in the 1950s in
the field of mathematical optimization problems [4]. The first applications were for deterministic
dynamic systems like graphs. Eventually, Bellman extended this technique with systems guided by
an underlying uncertainty [5]. The DPP for controlled diffusion processes is formulated as follows,
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Theorem 8 (Dynamic programming principle)
Finite horizon: let (t, x) ∈ [0, T ]× R. The value function Eq. (2.4.6) is given by,
(i) ∀α ∈ A(t, x) and θ ∈ Tt,T ,

v(t, x) ≥ E

[∫ θ

t

f(s,Xt,x
s , αs)ds+ v(θ,Xt,x

θ )

]
.

(ii) ∀ϵ < 0, there exists α ∈ A(t, x) such that ∀θ ∈ Tt,T ,

v(t, x)− ϵ ≤ E

[∫ θ

t

f(s,Xt,x
s , αs)ds+ v(θ,Xt,x

θ )

]
.

Tt,T denotes, for 0 ≤ t ≤ T ≤ ∞, the set of stopping times valued in [t, T ].

A result of the dynamic programming principle is the Hamilton-Jacobi-Bellman equation (HJB).
The HJB describes the local behavior of the value function when the stopping time θ goes to t. In
optimal control theory, it will give us necessary conditions for optimality of a control with respect
to the driver of the functional.

We first derive the formulation of the HJB. Then we prove that, given a smooth solution to the
HJB equation, the candidate coincides with the value function v.

Deriving the HJB equation

Following the steps of Pham [32], we consider an infinitesimal time frame, with stopping time
θ = t + h, and a constant control αs = a, for some arbitrary a in A. The first relation of the
dynamic programming principle becomes,

v(t, x) ≥ E

[∫ t+h

t

f(s,Xt,x
s , a)ds+ v(t+ h,Xt,x

t+h)

]
. (2.4.7)

Assuming that v is smooth enough, we can apply Itô’s formula on v(t,Xt,x
t ) between t and t+ h,

v(t+ h,Xt,x
t+h) = v(t, x) +

∫ t+h

t

∂v

∂t
(s,Xt,x

s ) + Lav(s,Xt,x
s )ds+

∫ t+h

t

σ(s,Xt,x
s , a)Dxv(s,X

t,x
s )dWs,

note that the latter component is a (local) martingale, and vanishes when taking the expectation
over the expressions. The differential operator, La, is associated to the diffusion process for the
constant control a,

Lav = µ(t, x, a)Dxv +
1

2
Tr(σ(t, x, a)σ′(t, x, a)D2

xv).

Substituting this into Eq. (2.4.7), the local martingale will vanish, and we are left with,

0 ≥ E

[∫ t+h

t

∂v

∂t
(s,Xt,x

s ) + Lav(s,Xt,x
s ) + f(s,Xt,x

s , a)ds

]
.

Applying the mean-value theorem, first dividing by h and sending h → 0, yields,

0 ≥ ∂v

∂t
(t, x) + Lav(t, x) + f(t, x, a).

Since this must hold true for any a ∈ A, we obtain the inequality,

−∂v

∂t
(t, x)− sup

a∈A
[Lav(t, x) + f(t, x, a)] ≤ 0. (2.4.8)
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Now suppose that α̂ ∈ A(t, x) is an optimal control. Then,

v(t, x) = E

[∫ t+h

t

f(s, X̂s, α̂s)ds+ v(t+ h,X∗
t+h)

]
,

where we denote with X̂ the state system solution to Eq. (2.4.1) starting from x at t, with the
control α̂. Then by similar steps as above, we arrive at,

−∂v

∂t
(t, x)− Lα̂tv(t, x)− f(t, x, α̂t) = 0. (2.4.9)

Combining Eq. (2.4.8) and Eq. (2.4.9) suggests that the value function v should satisfy,

−∂v

∂t
(t, x)− sup

a∈A
[Lav(t, x) + f(t, x, a)] = 0, ∀(t, x) ∈ [0, T )× R,

if the supremum in a is finite. Rewriting the PDE, gives us the HJB equation of the form,

−∂v

∂t
(t, x)−H(t, x,Dxv(t, x), D

2
xv(t, x)) = 0, ∀(t, x) ∈ [0, T )× R, (2.4.10)

where the function H is called the Hamiltonian. The terminal condition associated to the PDE of
Eq. (2.4.10) reads,

v(T, x) = g(x), ∀x ∈ R,

which follows immediately from the definition of the value function v.

Remark 3 (Optimality)
If there is a measurable function α̂(t, x) that satisfies,

sup
a∈A

[Lav(t, x) + f(t, x, a)] = Lα̂(t,x)v(t, x) + f(t, x, α̂(t, x)),

i.e.,

α̂(t, x) ∈ argmax
a∈A

[Lav(t, x) + f(t, x, a)],

then using the optimality argument of the DPP, we would get,

−∂v

∂t
− Lα̂(t,x)v(t, x)− f(t, x, α̂(t, x)) = 0, v(T, ·) = g(·).

By the Feynman-Kac formula Theorem 6 this gives,

v(t, x) = E

[∫ T

t

f(X̂s, α̂(s, X̂s))ds+ g(X∗
T )

]
,

where X̂ is the solution of,

dX̂s = µ(s, X̂s, α̂(s, X̂s))ds+ σ(s, X̂s, α̂(s, X̂s))dWs, t ≤ s ≤ T,

X∗
t = x.

This shows that the optimal control α̂(s, X̂s) is an optimal Markovian control.

The results found for the finite horizon problem given a gain functional 2.4.5 can be extended
to a more general form for J . Here we assume that the discount factor β is a measurable function
on [0, T ]× R×A. The general form of the functional is,

J(t, x, α) = E

[∫ T

t

B(t, s)f(s,Xt,x
s , αs)ds+B(t, T )

]
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with,

B(t, s) = exp(−
∫ s

t

β(u,Xt,x
u , αu)du), t ≤ s ≤ T.

The Hamiltonian associated with this general control problem is given by,

H(t, x, v, p,M) = sup
a∈A

[−β(t, x, a)v + µ(t, x, a)p+
1

2
Tr(σ(t, x, a)σ′(t, x, a)M) + f(t, x, a)].

This result can be used to formulate control problems with non-constant discount rates, e.g. an
interest rate changing with time, which will be necessary in the world of mathematical finance.

The next step is to confirm that a smooth solution to the HJB equation coincides with the value
function, as a candidate solution for the HJB equation does not necessarily solve the primal stochas-
tic control problem. The general verification theorem for finite time horizon from Pham [32] is
stated as follows,

Theorem 9 (Verification theorem for Finite Horizon)
Let w be a function in C1,2([0, T )× R]) ∩ C0([0, T ]× R]), satisfying a quadratic growth condition,
i.e. ∃C ∈ R≤0 such that,

|w(t, x)| ≤ C(1 + |x|2), ∀(t, x) ∈ [0, T ]× R.

(i) Suppose that,

−∂w

∂t
(t, x)− sup

a∈A
[Law(t, x) + f(t, x, a)] ≥ 0, (t, x) ∈ [0, T )× R,

w(T, x) ≥ g(x), x ∈ R,

then w ≥ v on [0, T ]× R.
(ii) Suppose that w(T, ·) = g(·), and there exists a measurable function α̂(t, x) valued in A such
that,

−∂w

∂t
(t, x)− sup

a∈A
[Law(t, x) + f(t, x, a)] = −∂w

∂t
(t, x)− Lα̂(t,x)w(t, x)− f(t, x, α̂(t, x))

= 0,

then the SDE,

dXs = µ(s,Xs, α̂(s,Xs))ds+ σ(s,Xs, α̂(s,Xs))dWs,

admits a unique solution, ˆXt,x
s , given initial condition Xt = x, and the process {α̂(s, ˆXt,x

s )} lies in
A(t, x). Then,

w = v on [0, T ]× R,

and α̂ is an optimal (Markovian) control.

Proof. See [32].

Furthermore, we are interested in the link between the HJB solution and BSDEs. As we have
noticed, the HJB equation Eq. (2.4.10) is a form of non-linear PDE. We look at the extension of
the Feynman-Kac theorem for semilinear PDE in the form,

−∂u

∂t
(t, x)− (Lu)(t, x)− f(t, x, u, σDxu) = 0, (t, x) ∈ [0, T )× Rn, (2.4.11)

u(T, x) = g(x), x ∈ Rn. (2.4.12)
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We shall represent the solution to this PDE by means of the BSDE,

−dYs = f(s,Xs, Ys, Zs)ds− ZsdWs, t ≤ s ≤ T, YT = g(XT ). (2.4.13)

The following theorem will show that a classical solution to the semilinear PDE provides a solution
to the BSDE.

Theorem 10 (Solution to the BSDE)
Suppose that v ∈ C1,2([0, T ) × R) ∩ C0([0, T ] × R) is a classical solution to Eq. (2.4.11) and
Eq. (2.4.12), satisfying a linear growth condition and for some constants C, q ∈ R≥0 that |Dxv(t, x)| ≤
C(1 + |x|q),∀x ∈ R. Then, there exists a pair (Y,Z) defined by,

(Yt, Zt) = (v(t,Xt), Dxv(t,Xt)σ(t,Xt, αt)),

which is the solution to the BSDE Eq. (2.4.13).

Proof. This follows from applying Itô’s lemma to the value function v(t,Xt),

dv(t,Xt) = (vt(t,Xt) + Lv(t,Xt))dt+ σ(t,Xt)Dxv(t,Xt)dWt

= −f(t,Xt, v(t,Xt), σ(t,Xt)Dxv(t,Xt))dt+ σ(t,Xt)Dxv(t,Xt)dWt.

A similar relation, as the one mentioned above, will also play a crucial role in the method
we are about to discuss. We will exploit this relationship when utilizing a numerical approach
to approximate the solution of BSDEs and determine the optimal control for the corresponding
stochastic control problem.

2.4.3 The Maximum Principle Approach

Another approach to solving stochastic control problems is via the Pontryagin’s maximum principle,
also known as the Stochastic Maximum Principle (SMP), which is based on optimal conditions for
the controls. The maximum principle was first formulated in 1956 by Pontryagin and his students
[13] and can be considered a specialization of the Hamilton-Jacobi-Bellman equation. It states that
an optimal state trajectory must solve a Hamilton system together with a maximum condition of
the generalized Hamiltonian. The original version studied by Pontryagin was deterministic of
nature. The stochastic control case was extensively studied in in the 1970s by Bismut [8], Kushner
[21], Bensoussan [6] and Haussmann [15]. However their results did not incorporate a control in
the diffusion coefficient. This hurdle was eventually taken by Peng [30]. He obtained a maximum
principle for degenerate and control-dependent diffusion.

The proof of the maximum principle, as presented in [33], is notably more intricate compared
to the derivation of necessary conditions for the Hamilton-Jacobi-Bellman (HJB) equation. The
maximum principle establishes a crucial requirement that must be satisfied along an optimal tra-
jectory. In contrast, the HJB approach computes a general value function that corresponds to the
application of the optimal action, denoted as α̂. This computation eliminates the optimization in
the Hamiltonian, but it also forfeits the global properties associated with the HJB equation. SMP
optimizes along a trajectory, as opposed to the value function v(t, x) over the whole state space.
Therefore, it can only be at most local optimal in the space of possible trajectories. Given our
specific interest in determining the conditions for optimal control, our preference lies with the SMP
over the HJB equation.

Let us consider the same framework of a stochastic control problem with an finite horizon as de-
fined in Section 2.4.1, in which we have a forward SDE Eq. (2.4.1) and gain functional Eq. (2.4.5).
Furthermore we assume that the driver f : [0, T ] × R × A → R is continuous in (t, x) for all a in
A, g : R → R is a concave C1 function and f, g satisfy both the quadratic growth condition in x,

|f(t, x, a)| ≤ Cf (1 + |x|2) + κf (a)
|g(x)| ≤ Cg(1 + |x|2)

}
∀(t, x, a) ∈ [0, T ]× R×A,
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for some Cf and Cg independent of x. Then we define the generalized Hamiltonian H : [0, T ] ×
R×A× R× Rd → R by,

H(t, x, a, y, z) = µ(t, x, a)y + Tr(σ′(x, a)z) + f(t, x, a), (2.4.14)

and we assume that H is differentiable in x with derivative denoted by DxH. We consider for each
α ∈ A the following BSDE, called the adjoint equation,

−dYt = DxH(t,Xt, αt, Yt, Zt)dt− ZtdWt, YT = Dxg(XT ). (2.4.15)

The following theorem and proof for optimality comes from [32],

Theorem 11 (Optimal Control)
Let α̂ ∈ A and X̂ the associated controlled diffusion. Suppose that there exists a solution (Ŷ , Ẑ) to
the associated BSDE such that,

H(t, X̂t, α̂t, Ŷt, Ẑt) = max
a∈A

H(t, X̂t, a, Ŷt, Ẑt), 0 ≤ t ≤ Ta.s., (2.4.16)

and

(x, a) → H(t, x, a, Ŷt, Ẑt) is a concave function ∀t ∈ [0, T ]. (2.4.17)

Then, α̂ is an optimal control, i.e.,

J(α̂) = sup
α∈A

J(α).

Proof. For any α ∈ A, we can write,

J(α̂)− J(α) = E

[∫ T

0

f(t, X̂t, α̂t)− f(t,Xt, αt)dt+ g(X̂T )− g(XT )

]
. (2.4.18)

E
[
g(X̂T )− g(XT )

]
≥ E

[
(X̂T − g(Xt))Dxg(X̂T )

]
= E

[
(X̂T −XT )ŶT

]
(2.4.19)

=E

[∫ T

0

(X̂t −Xt)dŶt +

∫ T

0

Ŷt(dX̂t − dXt) +

∫ T

0

Tr[σ(t, X̂t, α̂t)− σ(t,Xt, αt)
′Ẑt]dt

]

=E

[∫ T

0

(X̂t −Xt)(−DxH(t, X̂t, α̂t, Ŷt, Ẑt))dt+

∫ T

0

Ŷt(µ(t, X̂t, α̂t)− µ(t,Xt, αt))dt

+

∫ T

0

Tr[(σ(t, X̂t, α̂t)− σ(t,Xt, αt))
′Ẑt]dt

]
.

Furthermore, by definition of the Hamiltonian Eq. (2.4.14), we have,

E

[∫ T

0

f(t, X̂t, α̂t)− f(t,Xt, αt)dt

]
= E

[ ∫ T

0

H(t, X̂t, α̂t, Ŷt, Ẑt)−H(t,Xt, αt, Ŷt, Ẑt)dt (2.4.20)

−
∫ T

0

(µ(t, X̂t, α̂t)− µ(t,Xt, αt))Ŷtdt

−
∫ T

0

(Tr[(σ(t, X̂t, α̂t)− σ(t,Xt, αt))
′Ẑt])dt

]
.

By adding Eq. (2.4.19) and Eq. (2.4.20) into Eq. (2.4.18), yields,

J(α̂)− J(α) ≥ E
[ ∫ T

0

H(t, X̂t, α̂t, Ŷt, Ẑt)−H(t,Xt, αt, Ŷt, Ẑt)dt

−
∫ T

0

(X̂t −Xt)H(t, X̂t, α̂t, Ŷt, Ẑt)Dx

]
.

Because of the concavity condition of Eq. (2.4.17) we know that the above relation is always
nonnegative, which concludes the proof.
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We conclude this section by providing the connection between maximum principle and dynamic
programming. The value function of the stochastic control problem considered above is defined by

v(t, x) = sup
α∈A

E[
∫ T

t

f(s,Xt,x
s , αs)ds+ g(Xt,x

T )], (2.4.21)

where {Xt,x
s , t ≤ s ≤ T} is the solution to Eq. (2.4.1) starting from x at t. Recall that Hamilton-

Jacobi-Bellman equation but write now instead

−∂v

∂t
− sup

a∈A
[G(t, x, a,Dxv,D

2
xv] = 0.

Then the following theorem states the relationship betweeen the optimal control and the solution
to the adjoint BSDE.

Theorem 12 (Solution to the adjoint BSDE)
Suppose that v ∈ C1,3([0, T ) × R) ∩ C0([0, T ] × R), and there exists an optimal control α̂ ∈ A to
Eq. (2.4.21) with associated controlled process X̂. Then,

G(t, X̂t, α̂t, Dxv(t, X̂t), D
2
xv(t, X̂t)) = max

a∈A
G(t, X̂t, a,Dxv(t, X̂t), D

2
xv(t, X̂t)),

and the pair,

(Ŷt, Ẑt) = (Dxv(t, X̂t), D
2
xv(t, X̂t)σ(t, X̂t, αt)),

is the solution to the adjoint BSDE.

Proof. See, [32].

Definition 7 (Feedback Map)
If α̂ is an optimal control satisfying Theorem 11 and there exists a measurable function δ : [0, T ]×
R× R× R → A, then

α̂ := δ(t, x, y, z). (2.4.22)

With this definition we can transform the adjoint equation of Eq. (2.4.15) to a fully coupled
FBSDE. We use the concavity of the defined generalized Hamiltonian to ensure uniqueness of this
mapping. Using Eq. (2.4.22) we transform the forward SDE into,

dXs = µ(Xs, δ(s,Xs, Ys, Zs))ds+ σ(Xs, δ(s,Xs, Ys, Zs))dWs

:= µ̄(s,Xs, Ys, Zs))ds+ σ̄(s,Xs, Ys, Zs)dWs,

and the adjoint BSDE becomes,

−dYs = DxH(s,Xs, δ(s,Xs, Ys, Zs))ds− ZsdWs, YT = Dxg(XT )

:= DxH̄(s,Xs, Ys, Zs)ds− ZsdWs, YT = Dxg(XT )

The end result is a FBSDE system with a coupling determined by the feedback mapping. In most
cases, especially in situations which are not designed as toy models, we get a fully coupled FBSDE.
In general there is no available explicit solution to this system. However in [18] they propose an
extension of the BCOS method for coupled forward-backwards stochastic differential equations.
This we can use for our gain to solve complex stochastic control problems and will be discussed in
Chapter 4.



Chapter 3

Finding a fitting model

In order to construct our own model that focuses on emission rates of the underlying companies of
a stock while still maximizing the overall wealth of the portfolio, we will need to address three key
points in the mechanics of stochastic systems. Firstly, we will need to understand the dynamics of
portfolios consisting of stocks, bonds, and riskless assets, such as cash. We will need to consider
how these different asset classes behave under various market conditions and how their interaction
affects portfolio returns. Secondly, we will need to investigate how DC pension funds behave in
the market and how to eventually incorporate some degree of dependency on climate risks. Lastly,
we will need to examine the relationship between emission levels and the total wealth of a firm
or portfolio, which can be reflected in the relationship between emission levels and production
rates, as well as in the discrepancy of a firm’s mitigation rate with respect to the Paris Alignment
Benchmark. By answering these questions, we will be able to build our own model that focuses on
the emission rates of underlying stocks and determines the best allocation between two stocks with
different emission rates, while still maximizing the overall wealth of the portfolio. For this, we have
selected three insightful papers, aiming to thoroughly examine and comprehend their contents to
extract the necessary insights and knowledge applicable to our research objective.

We begin this chapter by devoting to the notion of utility functions. That is a concept which
appears often in literature when looking at control problem in finance. Then we look into the
classical famous Merton’s portfolio problem [27]. Thereafter, we examine a paper of Gao [14], in
which he studies the portfolio problem of a pension fund manager with stochastic interest rates.
Next, we investigate a paper from Gobet et al. [10] where they investigate the impact of transition
risk on a firm’s low-carbon production. Lastly, we are going to design a new control problem where
the aim is to find, with a given utility, a optimal strategy regarding climate risks.

3.0.1 Utility functions

Utility functions play a crucial role in finance and economics, as they provide a way to quantify
how much an individual values different outcomes or states of the world. The choice of a specific
utility function is crucial, as it determines the optimal decision-making process for an individual,
given their preferences and the constraints they face.

One popular class of utility functions is found in the constant relative risk (CRR) function.
The CRR function assumes that individuals exhibit constant relative risk aversion (CRRA), which
means that they are more averse to losses than they prefer gains, and the degree of aversion
decreases as wealth increases. The class of CRRA utility functions can be expressed as,

U(c) =

{
c1−η−1
1−η if η ≥ 0, η ̸= 1,

log(c) if η = 1,

where U(c) is the utility of consuming c units of a good or service, and η is the coefficient of
relative risk aversion. The CRR function has been widely used in finance and economics, due to its

20
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tractability and intuitive interpretation. It is well known that pension funds are in general large
companies who define their strategies with respect to the amount of money they are managing,
approximately in a scaling way [14]. Moreover, the investment period is very long, generally from
20 to 40 years. Therefore, we consider the case where the pension fund manager will focus on the
optimal growth portfolio. According to [22] and [9], there exists one logarithmic utility function
which outperforms any other utility function in the long run in terms of growth of wealth. Hence, in
this paper, we describe the pension fund manager’s objective with a logarithmic utility function,
However, the use of utility functions in economic models requires certain assumptions to hold.
One such assumption is found in the Inada conditions, which ensure that the marginal utility of
consumption is positive and approaches infinity as the consumption goes to zero, and vanishes as
the consumption goes to infinity. Specifically, the Inada conditions require that,

lim
c→0

U ′(c) = ∞ and lim
c→∞

U ′(c) = 0.

These conditions are important, as they ensure that individuals exhibit diminishing marginal
utility of consumption, which is a reasonable assumption given the law of diminishing returns.

In conclusion, utility functions are a critical component of economic models, as they provide
a way to capture individual preferences and decision-making processes. The CRR function, in
particular, has been widely used in finance and economics, due to its simplicity and flexibility.

3.1 Merton’s Portfolio Problem

The allocation of assets in a portfolio is a well-known problem in stochastic control theory. One
of the most widely studied portfolio allocation problems is the Merton Portfolio Problem, which
was first introduced by Merton in 1969 [27]. The objective of the Merton Portfolio Problem is to
determine the optimal investment strategy for an investor who seeks to maximize the expected
lifetime utility of the portfolio wealth, subject to constraints on the wealth and risk tolerance. The
model assumes that the investor has a CRRA utility function and faces a market consisting of one
risk-free asset and a single risky asset that follows a general geometric Brownian motion process.
The problem is of great practical significance as it provides a framework for investors to make
informed decisions about asset allocation in their investment portfolios.

3.1.1 Problem formulation

Let us consider a stochastic model for a portfolio consisting of one risk-free asset S0 = (S0
t )t≥0

with prices evolving as,

dS0
t = S0

t rtdt,

and one risky asset S = (St)t≥0, whose dynamics are given by,

dSt = St(µdt+ σdWt), (3.1.1)

where W is an 1-dimensional Brownian motion, and the coefficients µ ∈ R and σ ∈ R. Both
the drift and diffusion of Eq. (3.1.1) are progressively measureable 1-dimensional processes. The
control of the problem is α = (αt)t∈[0,T ], where αt represents the fraction of wealth invested in the
risky asset and 1− αt in the riskless asset at time t. The wealth process of such portfolio at time
t is denoted by,

dXt = Xt(1− αt)
dS0

t

S0
t

+Xtαt
dSt

St
,

= ((r + αt(µ− r))Xt)dt+XtαtσdWt.
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For the gain functional we will use the logarithmic utility function for the investor and apply a
discounting factor e−ρt, ρ ≥ 0. Thus, we want to maximize,

J(α) = E[
∫ T

0

e−ρs ln(Xs)ds+ e−ρT ln(XT )].

3.1.2 General case with Pontryagin

Instead of using the HJB equation which is traditionally used, we look at the SMP route because
in our research we are mostly interested in the optimal control variable. Through the use of SMP,
the general Hamiltonian of this problem is given by,

H(t,Xt, αt, ct, Yt, Zt) = ((r + αt(µ− r))Xt)Yt +XtαtσZt + e−ρt ln(Xt).

As we can see this expression is linear in the control variable. So conditions Eq. (2.4.16) and
Eq. (2.4.17) will be satisfied if and only if,

(µ− r)Ŷt + σẐt = 0, (3.1.2)

as we can see, maximizing the Hamiltonian does yield a feedback map Eq. (2.4.22) for the control
variable, but this map is constant and the optimal control variable is not dependent on Y or Z.
We know the terminal conditions for Yt and Zt for SMP. Therefore, we are looking for a candidate
solution in the the form,

Ŷt = Dx

(
ϕ(t) ln(X̂t)

)
= ϕ(t)

1

X̂t

,

for some positive function ϕ. This gives us immediately a candidate solution for Zt,

Ẑt = σ(t, X̂t, αt)D
2
x

(
ϕ(t) ln(X̂t)

)
= −X̂tαtσϕ(t)

1

X̂2
t

= −αtσϕ(t)

X̂t

.

Together with Eq. (3.1.2) we get an explicit value for the control variable, i.e.,

α̂t =
µ− r

σ2
.

3.1.3 Take away

Having laid the foundation with the Merton portfolio problem is beneficial for our objective of
incorporating emission strategies into portfolio allocation problems. The Merton portfolio problem
explores dynamic portfolio optimization in continuous time, aiming to maximize the expected
utility of an investor’s terminal wealth. It takes the form of a stochastic control problem, and the
associated paper presents the necessary optimality conditions for this problem. One key takeaway is
that the solution to the Merton portfolio problem provides a closed-form expression for the optimal
investment policy. This policy is influenced by the investor’s initial wealth and risk aversion.

Furthermore, the Merton portfolio problem highlights the crucial trade-off between risk and
return in investment decision-making. It emphasizes the need for investors to carefully balance
these factors in their investment strategies. This trade-off is of particular relevance to our study
as we aim to evaluate the trade-off between a basic green and brown asset.

3.2 Optimizing a DC pension fund framework

The world of pension funds can be broadly classified into two main types: the defined benefit
(DB) scheme and the defined contribution (DC) scheme. In a DB scheme, the benefits are fixed in
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advance, and the contributions are adjusted in the future to maintain the fund’s balance. On the
other hand, in a DC scheme, the contributions are fixed, and the benefits depend on the returns
on the fund’s portfolio. Currently, the Dutch government and especially the DNB are working on
a transition from a DB to a DC framework. However, the financial risk in a DC plan lies with
the contributors. Hence, for contributors to receive a good pension at retirement, a successful DC
scheme with a sound investment strategy is essential. One way to find such optimal strategies is
through stochastic control theory, as first applied by Merton in his portfolio problem.

In this section, we focus on the research of Gao [14], where he extended the portfolio problem
by considering stochastic interest rates instead of constant rates. Since the contribution period
in a pension fund is generally more than 20 years, assuming constant rates for DC plans is not
realistic. We first introduce the model and its dynamics, followed by stating the optimal control
problem. Finally, we attempt to find an analytical solution using Legendre transforms.

It will be interesting to explore a stochastic pension fund framework that can provide insight
and enables us to extract elements to construct our own pension fund model. However, we are
unable to utilize stochastic interest rates, as done in the work of Gao. Instead, we will use constant
interest rates, which is worth noting, but will not pose any problems for our analysis.

3.2.1 Problem formulation

As in the cases treated above, many other studies assume that the short rate is a constant. In
practice the contribution rate of pensions funds is generally long, for instance 20+ years. Therefore
it is preferred to look at stochastic interest rates, for example the Cox-Ingersoll-Ross (CIR) model
or Vašiček model [14]. We assume a framework for a simplified pension fund portfolio composed
of three different kinds of assets and add stochasticity to the interest rate. First, the riskless asset,
i.e. cash, is discussed. The price at time t evolves according to,

dS0
t = rtS

0
t dt, S0

0 = 1,

where the short rate process rt in the general form is given by,

drt = (a− brt)dt−
√

k1rt + k2dW
r
t , t ≥ 0,

with the coefficients a, b, r0, k1, k2 ∈ R≥0. Note that setting k2 = 0 gives back the Vašiček model
and k1 = 0 the CIR model.
The two risky assets in [14] are the stock, {St}t≥0, and zero-coupon bond {BT

t }t≥0. Their dynamics
are given by{

dSt = St

[
rtdt+ σ1(dW

s
t + λ1dt) + σ

√
k1rt + k2(dW

r
t + λ2

√
k1rt + k2dt)

]
, S0 = 1

dBT
t = BT

t

[
rtdt+ σB(T − t, rt)(dW

r
t + λ2

√
k1rt + k2dt)

]
, BT

T = 1,

with λ1, λ2 ∈ R and σ1, σ2 ∈ R≥0. The volatility of the bond is defined as,

σB(T − t, rt) = h(T − t)
√
k1rt + k2,

with

h(t) =
2(emt − 1)

m− (b− k1λ2) + emt(m+ b− k1λ2)
,

m =
√
(b− k1λ2)2 + 2k1.

We assume that the contribution rate, c(t), is a constant. The composition of the pension fund
portfolio comprises of these three key assets, namely cash, stocks, and bonds, alongside the con-
tribution rate. Let (Xt)t∈[0,T ] be the pension wealth, and its corresponding dynamics are given
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by,

dXt = αr
t

dS0
t

S0
t

+ αS
t

dSt

St
+ αB

t

dBT
t

BT
t

+ ctdt,

where αr
t , α

S
t and αB

t are, respectively, the amount of money invested in the riskless asset, stocks
and bonds.

3.2.2 The optimal control problem

The value function for the stochastic optimal control problem is defined as,

v(t, r, x) = sup
αS ,αB

E(U(Xr,x
T )), 0 < t < T.

Note that the value function now also depends on the interest rate due to its stochastic nature.
The associated Hamilton-Jacobi-Bellman equation leads to,

vt + a(b− r)vr + [xr + (λ1σ1 + λ2σ2σ
2
r)αs + λ2σBσrαB + ct]vx (3.2.1)

+
1

2
[σ2

1α
2
s + (σBαB + σ2σrαS)

2]vxx +
σ2
r

2
vrr − (σBσrαB + σ2σ

2
rαS)vrx = 0.

We want to get the first-order maximization conditions for the optimal strategies αS and αB .
Maximizing the Hamiltonian of Eq. (3.2.1) with respect to αS and αB gives,

[λ1σ1 + λ2σ2σ
2
r ]vx + [σ2

1αS + σBαBσ2σr + σ2
2σ

2
rαS ]vxx − σ2σ

2
rvrx = 0,

and for αB ,

[λ2σBσr]vx + [σ2
BαB + σBσ2σrαS ]vxx − σBσrvrx = 0.

These expressions result in the following maximum values for the control variables,

α̂S =
σ2σ

2
rvrx − [λ1σ1 + λ2σ2σ

2
r ]vx − σBαBσ2σrvxx

(σ2
1 + σ2

2σ
2
r)vxx

, (3.2.2)

α̂B =
−λ2σrvx + σrvrx − σ2σrαSvxx

σBvxx
. (3.2.3)

Substituting Eq. (3.2.3) into Eq. (3.2.2) and subsequently reversing the substitution, gives us the
optimal strategies α̂S and α̂B ,

α̂S = −λ1

σ1

vx
vxx

and α̂B =
σr(λ1σ2 − λ2σ1)vx + σ1σrvrx

σ1σBvxx
.

Putting everything together, we obtain a partial differential equation for the value function v,

vt + (a− br)vr +
σ2
r

2
vrr + [xr + ct]vx − λ2

1

2

v2x
vxx

− (λ2σrvx − σrvrx)
2

2vxx
= 0. (3.2.4)

We notice that this problem is difficult to solve because it is a semi-linear second order partial
differential equation.

3.2.3 Analytical solution

In the paper, Gao uses Legendre transforms and dual theory to transform a non-linear second
partial differential equation to a linear partial differential equation. We will not go into detail in
the theories and notions used but rather comment on the end results. For the interested reader we
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refer to [14]. After applying the Legendre transform and turning the primary problem into a dual
problem, we end up with the following partial differential equation,

gt + a(b− r)gr − rg − ct − λ2
2 − σ2

rgr − rzgz +
σ2
r

2
grr (3.2.5)

− (λ2σ
2
r − λ2

1)zgz −
1

2
(λ2

2σ
2
r − λ2

1)z
2gzz − λ2

2σ
2
rzgrz = 0.

Notice that the non-linear second-order partial differential equation of Eq. (3.2.4) has been trans-
formed into a linear partial differential equation Eq. (3.2.5). Going back to our optimal strategies
αB and αS , expressing these in terms of the dual function g, yields,

αB =
σr[(λ1σ2 − λ2σ1)zgz + σ1gr]

σ1σB
and αS = −λ1

σ1
zgz. (3.2.6)

The remaining problem is now to solve the linear partial differential equation Eq. (3.2.5) for g and
inserting it into Eq. (3.2.6),to end up with the optimal strategies. Eventually, the solutions for
these optimal strategies are given by,

α̂B
t =

σr(λ2σ1 − λ1σ2)Xt

σ1σB
− σrct

[
(λ1σ2 − λ2σ1)

1−e−r(T−t)

r

σ1σB
+

1−e−r(T−t)

r − (T − t)e−r(T−t)

rσB

]
,

and

α̂S
t =

λ1

σ1

[
Xt + ct

1− e−r(T−t)

r

]
.

The optimal strategy invested in the riskless asset is then,

α̂r
t = Xt − α̂B

t − α̂S
t .

3.2.4 Take away

We learned about a dynamic control problem for a DC pension fund in which the contribution rate
and investment policy are chosen to maximize expected utility of the pension’s holder. One key
result is the explicit solution for a special case where the investment returns are i.i.d. and follow
a normal distribution. The solution provides a closed-form expression for the optimal investment
allocations, which depend on the pension fund’s current wealth and the stochastic interest rate.

While the paper considers a more general case where the interest rate is also stochastic, we will
not focus on it in this master thesis as it is nontrivial to solve two-dimensional control problems
with numerical methods. Nonetheless, the paper highlights the importance of taking into account
the randomness of investment returns and interest rates in the pension fund management, and
provides a solid foundation for future research in the area.

3.3 The impact of emission levels on the production profit

In the search of a model that shows a correlation between CO2 emissions and return of assets, we
studied a paper from Gobet et al. [10]. The authors were interested in the impact of transition risk
on a firm’s low-carbon production. Due to immanent climate change and its irreducible effects, the
Intergovernmental Panel on Climate Change (IPCC) has set the idealized carbon-neutral scenario
around 2050. Gobet et al. aimed to find the optimal emission path for a production company while
maximizing its production profit and respecting emission mitigation scenarios. These scenarios are
projections of socioeconomic global changes up to 2100, known as Share Socioeconomic Pathways
(SSPs) [34]. Solving this optimization problem provides the optimal emission according to a given
SSP benchmark.

To start off, we first give the mathematical problem formulation. To solve this stochastic control
problem we will use Pontryagin’s maximum principle Section 2.4.3, and extend this work to finite
horizons which we are more interested in. Then we show how to solve this problem in the general
case. Lastly we look at an explicit example and retrieve the optimal emission strategy.
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3.3.1 Problem formulation

To begin, let us reiterate a probability space (Ω,F ,F,P) with a natural filtration generated by
1-dimensional Brownian motion W = (Wt)t≥0. We consider a firm whose production process,
P = (Pt)t≥0, depends on the energy consumption and in particular on its effective CO2-emission
rate γ = (γt)t≥0, i.e. the control variable. This production process then solves the following SDE,

dPt = Pt(µ(t, Pt, γt)dt+ σdWt), (3.3.1)

where σ is a positive constant volatility parameter. The function µ : (t, x, y) ∈ R+×R+×R+ → R
is the drift characterizing the production rate and satisfies the local Lipschitz condition on x, i.e.,
∀t ≥ 0,

∀y ∈ R,∀x, x′ ∈ R+, |µ(t, x, y)− µ(t, x′, y)| ≤ K|x− x′|,

for a positive constant K.

The firm’s goal is to maximize its production profit against the losses and costs of its exces-
sive emission level with respect to the SSP benchmark. The stochastic control problem is then
as follows: given a benchmark emission projection, a firm needs to choose its optimal emission
pathway to maximize the expected discounted profit while controlling the related production π,
costs C and losses ℓ. The objective gain functional is,

J(γ) := E[
∫ T

0

e−rt(π(Pt)− C(γt)− ℓ(γ − et))dt],

where r > 0 is the constant discount rate, and we aim to solve

Ĵ = sup
γ∈A

J(γ), (3.3.2)

where A is the set of all admissible controls for the positive progressively measurable processes γ
such that for some η ∈ (0, r),

E[
∫ ∞

0

e−ηtγ2
t dt] < ∞.

To guarantee existence and uniqueness and economic applicability we will need some assumptions
and conditions on our profit, cost and loss functions.

• The instantaneous profit of the firm is described by π : R+ → R. We suppose that it is
concave and increasing, and belongs to C1. In addition, π satisfies the Inada conditions, i.e.
limx→0+ π′(x) = ∞ and limx→∞ π′(x) = 0. These are standard assumptions on production
functions in economic growth theory.

• The firm’s production cost function is described by C : R+ → R+, which introduces the
firm’s energy-related costs. We suppose that C is increasing and convex, meaning that higher
emission rates will become increasingly more expensive for firms to maintain.

• The loss function of the firm is described by ℓ : R → R, which is the penalty related to
regulation risk constraint. We suppose that ℓ is an increasing and convex function and
assume that it is of quadratic growth, i.e. ℓ(x) = O(|x|2) as |x| → ∞.

For simplicity, we exclude any other forms of costs for the firm. It is worth noting that all of these
conditions align with the conditions outlined in Theorem 5.
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3.3.2 General case with Pontryagin’s maximum principle

We consider the optimal control problem Eq. (3.3.2) in its general form. From Eq. (3.3.1), the
log-production p := logP solves the following SDE,

dpt = µ̄(t, pt, γt)dt+ σdWt,

where we applied Itô’s lemma. The general drift coefficient satisfies µ̄(t, pt, γt) = µ(t, pt, γt)− 1
2σ

2

∀t ∈ R+, x ∈ R, y ∈ R+. We define an auxiliary function, π̄(x) := π(ex), that adapts to our
log-transformation, i.e.

π(Pt) = π̄(pt).

The driver of the gain functional transforms,

f(t, pt, γt) = e−rt[π̄(pt)− C(γt)− ℓ(γt − et)].

With all the necessary components in hand for the general Hamiltonian, it takes the following
form,

H(t, p, γ, y, z) = µ̄(t, p, γ)y + σz + f(t, p, γ)

= µ̄(t, p, γ)y + σz + e−rt[π̄(pt)− C(γt)− ℓ(γt − et)]. (3.3.3)

The adjoint BSDE for any admissible strategy γ ∈ A is given by,

dYt = −(e−rtπ̄′(pt) + ∂xµ̄(t, pt, γt)Ŷt)dt+ dMt, (3.3.4)

YT = Dxg(XT ) = 0,

here we set dMt = ZtdWt and M is an F-martingale. Next, we will show how to solve this BSDE
using differential and Itô calculus. After we carry out an explicit model to show some results and
what these say about the emission strategy of a company.

3.3.3 Analytical solution to the optimization problem

Let γ̂ be a candidate for the optimal control and (X̂, Ŷ , Ẑ) the corresponding processes, then
through maximization of the Hamiltonian of Eq. (3.3.3) we get the following expression,

∂yµ̄(t, p̂t, γ̂t)Ŷte
rt = C′(γ̂) + ℓ′(γ̂ − et). (3.3.5)

Thus, if γ̂ ∈ A, then Eq. (3.3.5) must hold dt ⊗ dP a.e. Observing Eq. (3.3.5), one notices the
dependence of the Ŷ process. Consequently, in order to obtain an expression for the optimal con-
trol, we must first derive a general expression for Ŷ . This can be accomplished through either a
numerical method, which we will delve into in Chapter 5, or can be done analytical, which we will
demonstrate right away.

By utilizing our understanding of differential and Itô calculus, we employ the subsequent sub-
stitution: f(Yu) = e

∫ u
0

∂xµ̄(s,ps,γs)dsYu. Then Itô’s lemma yields,

df(Ŷu) = ∂xµ̄(u, pu, γu)e
∫ u
0

∂xµ̄(s,ps,γs)dsŶudu+ e
∫ u
0

∂xµ̄(s,ps,γs)dsdŶu

= ∂xµ̄(u, pu, γu)e
∫ u
0

∂xµ̄(s,ps,γs)dsŶudu+ e
∫ u
0

∂xµ̄(s,ps,γs)ds(−(e−ruπ̄′(pu)

+ ∂xµ̄(u, pu, γu)Ŷu)du+ dMu)

= −e
∫ u
0

∂xµ̄(s,ps,γs)ds(e−ruπ̄′(pu)du− dMu), (3.3.6)

where we used the definition of the adjoint equation Eq. (3.3.4). Integrating the left side from
initial time, t, to terminal time, T , results in,∫ T

t

df(Yu) = e
∫ T
0

∂xµ̄(s,ps,γs)dsŶT − e
∫ t
0
∂xµ̄(t,pt,γt)dsŶt = −e

∫ t
0
∂xµ̄(t,pt,γt)Ŷt, (3.3.7)
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where we used the fact that YT = 0. Substituting Eq. (3.3.7) into the left side of Eq. (3.3.6) we
get,

−e
∫ t
0
∂xµ̄(t,pt,γt)Ŷt = −

∫ T

t

e−ru+
∫ u
0

∂xµ̄(s,ps,γs)dsπ̄′(pu)du+

∫ T

t

e
∫ u
0

∂xµ̄(s,ps,γs)dsdMu

Ŷt =

∫ T

t

e−ru+
∫ u
t

∂xµ̄(s,ps,γs)dsπ̄′(pu)du−
∫ T

t

e
∫ u
t

∂xµ̄(s,ps,γs)dsdMu.

As stochastic integrals have vanishing expectations and Mt is an F-martingale by definition, we
can reduce the expression to,

Ŷt(γ) = E

[∫ T

t

e−ru+
∫ u
t

∂xµ̄(t,ps,γs)dsπ̄′(pu)du|Ft

]
, t ≥ 0. (3.3.8)

Once Eq. (3.3.5) and Eq. (3.3.8) are known, and provided that the appropriate conditions and
assumptions are met for the drift µ̄, as well as cost and loss functions C and ℓ, we can determine
the optimal control γ̂t.

3.3.4 Explicit model

We now apply the general solution to an explicit model using some basic functions. This case
comes directly from the paper [10] and consider again the logarithmic production π(x) = log x,
which due to the substitution of pt = log(Pt) becomes π̄(pt) = pt. The resulting forward SDE is
then,

dpt = µ̄(t, pt, γt)dt+ σdWt,

where the drift coefficient, µ̄, satisfies: µ̄(t, pt, γt) = µ(t, pt, γt) − 1
2σ

2. We suppose that this drift
function has an affine form of,

µ̄(t, x, y) = a+ bx+ cy, t ∈ R+, x ∈ R, y ∈ R+,

where the coefficient a ≥ 0 corresponds to an average production level, b ≤ 0 is a mean-reverting
parameter with the negative sign meaning that over-production may deteriorate the production
ability and c ≥ 0 represents the dependence of the firm’s production upon CO2 emission. Further-
more, let the cost and penalty functions be given respectively by,

C(x) = x2

2
and ℓ(x) = ω

(x+)
2

2
,

where ω ≥ 0 is a constant coefficient characterizing the penalty force of the CO2 emission constraint
and the function x+ denotes: max(x, 0). The reason for selecting a quadratic penalty function is
to amplify the impact of excessive emissions beyond the benchmark level.
Inserting the explicit expression of the drift, cost and loss functions into Eq. (3.3.5) and Eq. (3.3.8),
we obtain the following,

e−rt(γ̂t + ω(γ̂t − et)+) = c

∫ T

t

e−ru+
∫ u
t

b dsdu

(γ̂t + ω(γ̂t − et)+) = ce−(b−r)t

∫ T

t

e(b−r)udu

(γ̂t + ω(γ̂t − et)+) =
c

b− r
e−(b−r)t[e(b−r)T − e(b−r)t] =

c

r − b
[1− e(b−r)(T−t)]. (3.3.9)

Rewriting 3.3.9 gives us an optimal emission strategy of

γ̂ = min

{
c

r − b
[1− e(b−r)(T−t)],

1

1 + ω

(
ωe+

c

r − b
[1− e(b−r)(T−t)]

)}
. (3.3.10)
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We will define the time-varying constant value as,

γ̄ :=
c

r − b
[1− e(b−r)(T−t)],

which corresponds to the desired emission level without carbon penalty, i.e., when ω = 0.
We can conclude two things from Eq. (3.3.10). If a company’s optimal emission strategy, γ̄, is
better than the benchmark, i.e. a company produces less emission than the benchmark imposes,
the optimal strategy is to retain the same constant level. That means that no effort needs to be
provided. But if their emission strategy is worse than the benchmark, i.e. γ̄ is higher than the
benchmark et, regulation requires a stricter emission reduction plan. The optimal strategy is then
to proceed as an affine function of the benchmark and the penalty weight.

3.3.5 Take away

The paper by Gobet provides valuable insights into incorporating a penalty or tax that impacts
the overall wealth of a company. While the paper primarily focuses on the direct influence of this
penalty/tax on a company’s production, it is crucial to consider the potential long-term effects
on pension fund portfolios. The emissions generated by the underlying companies within the
portfolio stocks can eventually affect the portfolio’s returns. Therefore, it becomes essential to
incorporate a tax mechanism in a control problem that penalizes the total emissions of the portfolio,
aligning with the reduction targets outlined in the Paris Agreement. This approach allows us to
proactively address climate-related risks, even if high-emitting ”brown” stocks outperform low-
emitting ”green” stocks. By implementing such a tax, we can better prepare for future climate
shocks and imminent taxes related to emissions.

3.4 Isolating Green from Brown

The motivation for this thesis stems from the increasing pressure on pension funds to consider
climate change risks and the need to meet environmental targets by 2050. With the expectation
that green stocks will be less vulnerable to climate-related shocks than brown stocks, the compo-
sition of a portfolio will have a significant impact on its resilience to such risks. However, it is
commonly believed that portfolios that favor green stocks will underperform in the short term but
offer greater stability in the long run. Therefore, the challenge is to design a dynamic system that
models a portfolio consisting of green and brown stocks over a period of time until 2050, while also
optimizing the allocation of wealth between the two types of assets.

To tackle this challenge, we propose an extension of the Merton optimization problem that consid-
ers a portfolio consisting of green and brown stocks, where each stock is modeled by a geometric
Brownian Motion Eq. (3.1.1). The SDE for green stocks represents every stock with a CO2 foot-
print below the Paris Alignment Benchmark, while the SDE for brown stocks represents those
with a CO2 footprint above the benchmark. For simplicity, both SDEs are generated by the same
Wiener process, but differ in their time dependence of drift and volatility.

Additionally, we introduce the possibility of a tax on brown stocks due to the potential intro-
duction of a CO2 tax by the EU. This tax function, denoted as τ(t), is a deterministic function
that depends solely on time and is yet to be determined. By incorporating this tax, we can in-
centivize a shift towards green stocks and discourage investments in brown stocks that have not
taken adequate measures to reduce their greenhouse gas emissions. Overall, our aim is to develop a
model that can assist pension funds in making optimal investment decisions while simultaneously
considering climate change risks and meeting environmental targets.

We split up the problem formulation in three parts. First, we will extend Merton’s portfolio
problem by changing the two asset to two stock which we label ”green” and ”brown”, character-
izing two assets with, respectively, lower and higher emission than the Paris alignment benchmark
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prescribes. For this problem there still is an easy to find analytical solution. Second, we will add
a contribution rate which characterizes the added wealth for the pension fund. This contribution
will not be related to the total wealth of the portfolio and is constant in time. Lastly, we will
look at different taxes we can implement to push investors in the more green future, when the EU
passes legislature concerning climate change.

3.4.1 A portfolio of green and brown stocks

Let us begin by considering a portfolio consisting of one green stock, SG = (SG
t )t∈[0,T ], and one

brown stock, SB = (SB
t )t∈[0,T ], whose prices evolve respectively as,

dSG
t

SG
t

= [µG(t)dt+ σG(t)dWt] ,

dSB
t

SB
t

= [µB(t)dt+ σB(t)dWt] ,

where W is an 1-dimensional Brownian motion and µG, µB , σG and σB are all real positive
constants. Both the drifts and volatilities are progressively measureable 1-dimensional processes.
The total wealth of our portfolio, Xt, at time t is modelled by,

dXt = θGt
dSG

t

SG
t

+ θBt
dSB

t

SB
t

= θGt [µG(t)dt+ σG(t)dWt] + θBt [µB(t)dt+ σB(t)dWt]

where θG and θB denote the amount of money invested in the green and brown stocks and ct the
contribution rate of the pension fund at each time t ∈ [0, T ]. Furthermore, we assume θGt +θBt = Xt,

dXt =
[
θGt µG(t) + (Xt − θGt )µB(t)

]
dt+

[
(Xt − θGt )σB(t) + θGt σG(t)

]
dWt

=
[
θGt (µG(t)− µB(t)) +XtµB(t)

]
dt+

[
θGt (σG(t)− σB(t)) +XtσB(t)

]
dWt.

To simplify the SDE of Xt we use a substitution to the control variable α
(G,B)
t = θ

(G,B)
t /Xt, where

α
(G,B)
t denotes the fraction of the wealth put in green or brown stocks respectively. Using this

substitution we obtain,

dXt = Xt

[
αG
t (µG(t)− µB(t)) + µB(t)

]
dt+Xt

[
αG
t (σG(t)− σB(t)) + σB(t)

]
dWt. (3.4.1)

We have our forward process describing the dynamics of a two asset portfolio. Now we need an
objective for our portfolio strategy. This objective is the same as for Merton’s portfolio problem,
namely that we want to determine the optimal investment strategy for an investor who seeks to
maximize the expected lifetime utility of the portfolio wealth. We choose to use the logarithmic
utility, U(x) = ln(x), which results in the following gain functional,

J(x) = sup
αG

E

[∫ T

0

ln(Xs)ds+ ln(XT )

]
, 0 < t < T. (3.4.2)

Comparing with Eq. (3.4.1), we have obtained a slightly more complex version of the wealth
value from Merton’s portfolio problem. This makes finding an analytical solution also harder. As
we will see in the next chapter, where we will use a numerical method to solve BSDEs, we need
to first find the adjoint equation and the feedback map of the formulated problem. Because of the
linearity of α and the dependence of the diffusion on α, we will first apply Itô’s lemma to aid us.
This results in,

dxt =

[
αG
t (µG(t)− µB(t)) + µB(t)−

1

2
(αG

t (σG(t)− σB(t)) + σB(t))
2

]
dt

+
[
αG
t (σG(t)− σB(t)) + σB(t)

]
dWt.
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We can use SMP to find an analytical solution to this control problem. The general Hamiltonian
of the process is,

H(t, xt, α
G
t , Yt, Zt) =

[
αG
t (µG(t)− µB(t)) + µB(t)−

1

2
(αG

t (σG(t)− σB(t)) + σB(t))
2

]
Yt

+
[
αG
t (σG(t)− σB(t)) + σB(t)

]
Zt + xt.

We notice that this Hamiltonian is not linear anymore in the control variable. So conditions
Eq. (2.4.16) and Eq. (2.4.17) will be satisfied if and only if,

(µG(t)− µB(t)− (α̂G
t (σG(t)− σB(t)) + σB(t))(σG(t)− σB(t)))Ŷt + (σG(t)− σB(t))Ẑt = 0.

The feedback map is then,

α̂G
t =

(µG(t)− µB(t))Ŷt + (σG(t)− σB(t))Ẑt − σB(t)(σG(t)− σB(t))Ŷt

(σG(t)− σB(t))2Ŷt

.

The adjoint BSDE is given as,

−dŶt = dt− ẐtdWt,

with terminal conditions,

ŶT = Dxg(X̂T ) =
1

X̂T

, (3.4.3)

ẐT = σ(t,XT , α̂
G
T )D

2
xg(X̂T ) = − (α̂G

t (σG(t)− σB(t)) + σB(t))

X̂T

.

3.4.2 Concerning the contribution rate

When considering a portfolio consisting of green and brown stocks, the SDE can be extended
to incorporate a contribution rate term. The contribution rate represents the additional funds
injected into the portfolio, associated with a defined contribution (DC) pension fund as mentioned
in [14], typically corresponding to a fixed proportion of the individual’s income. This rate can be
assumed to follow a stochastic process, capturing the uncertainties and fluctuations associated with
the individual’s income and contributions over time, but in our case we will consider a constant
contribution for the commencement of the pension until the terminal time at which the individual
will be paid out.

By incorporating the contribution rate into the SDE, the dynamics of the portfolio evolve not
only based on market forces but also as a result of the continuous inflow of new funds. This
has implications for investment decisions, asset allocation strategies, and risk management in the
context of sustainable investing. The presence of green stocks, which align with environmentally
friendly and socially responsible criteria, further adds to the complexity of the model, as the
dynamics of these stocks may exhibit distinct features compared to traditional brown stocks.

By considering the interplay between the contribution rate, the dynamics of green and brown
stocks, and potentially other factors such as market trends and risk preferences, it becomes pos-
sible to analyze the long-term growth and performance of the portfolio. This incorporation of a
contribution rate in the SDE framework provides a more realistic representation of the dynamics
of a pension fund or similar investment vehicles, enabling more accurate assessments of risk expo-
sure, sustainability considerations, and long-term financial planning. We extend the SDE given by
Eq. (3.4.1) to simulate a DC pension fund and obtain.

dXt = Xt

[
αG
t (µG(t)− µB(t)) + µB(t)

]
dt+Xt

[
αG
t (σG(t)− σB(t)) + σB(t)

]
dWt + ctdt.

The objective stays the same which is to determine the optimal investment strategy for an investor
who seeks to maximize the expected lifetime utility of the portfolio wealth and the gain functional



CHAPTER 3. FINDING A FITTING MODEL 32

is given by Eq. (3.4.2). Again we apply Itô’s lemma to circumvent the linearity of α and the
dependence of the diffusion on α, but contribution rate does not depend on the forward process
X. This results in,

dxt =

[
αG
t (µG(t)− µB(t)) + µB(t) +

c1
ex

− 1

2
(αG

t (σG(t)− σB(t)) + σB(t))
2

]
dt (3.4.4)

+
[
αG
t (σG(t)− σB(t)) + σB(t)

]
dWt,

where xt = log(Xt). Note that we still have a dependence on the log-transformed forward process.
We can use SMP to find an analytical solution to this control problem. The general Hamiltonian
of the process is,

H(t, xt, α
G
t , Yt, Zt) =

[
αG
t (µG(t)− µB(t)) + µB(t) +

ct
ex

− 1

2
(αG

t (σG(t)− σB(t)) + σB(t))
2

]
Yt

+
[
αG
t (σG(t)− σB(t)) + σB(t)

]
Zt + xt.

The conditions Eq. (2.4.16) and Eq. (2.4.17) will be satisfied if and only if,

(µG(t)− µB(t)− (α̂G
t (σG(t)− σB(t)) + σB(t))(σG(t)− σB(t)))Ŷt + (σG(t)− σB(t))Ẑt = 0,

which will give us the following feedback map,

α̂G
t =

(µG(t)− µB(t))Ŷt + (σG(t)− σB(t))Ẑt − σB(t)(σG(t)− σB(t))Ŷt

(σG(t)− σB(t))2Ŷt

.

Notice that the feedback map for the optimal control does not depend on X, but when we look at
the adjoint BSDE,

−dŶt =

(
− ct

eX̂t

Ŷt + 1

)
dt− ẐtdWt,

we can deduce that this wealth process of the portfolio will influence the allocation of the green
and brown stock. We have now obtained a control problem that is not solvable with analytical
methods, as a candidate solution for Y cannot be found. The terminal conditions of ŶT and ŶT

stay the same and are given by Eq. (3.4.3).

3.4.3 Climate taxes

We propose the incorporation of climate taxes within the stochastic control problem. These cli-
mate taxes not only account for the environmental impact of the portfolio but also capture climate-
related risks associated with transition and physical factors, which can be correlated to the relative
amount of emissions the underlying company of the stock produces.

The first tax mechanism that we will include focuses on the reduction process of companies
represented by their stock. We look at the excess emissions of the portfolio using the Paris align-
ment benchmark. This tax term acts as a penalty for the utility of the total wealth of the portfolio
and can be found in the driver part of the gain functional. We introduce,

Γt := λ
(αG

t γ
G
t + αB

t γ
B
t − ePAB

t )2+
2

,

where γG and γB are respectively the emission reduction pathways of the green and the brown
stock, ePAB is the proposed reduction scenario by the PAB, λ is a constant coefficient characterizing
the penalty force of the CO2 emission constraint and the function (x)+ denotes max(x, 0). We set
ePAB
0 = 1. The transformed gain functional, after the application of Itô’s lemma, is given by,

J(x) = sup
αG

E

[∫ T

0

xs − λ
(αG

s γ
G
s + αB

s γ
B
s − ePAB

s )2+
2

ds+ xT

]
, 0 < t < T.
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The general Hamiltonian becomes,

H(t, xt, α
G
t , Yt, Zt) =

[
αG
t (µG(t)− µB(t)) + µB(t) +

ct
ex

− 1

2
(αG

t (σG(t)− σB(t)) + σB(t))
2

]
Yt

+
[
αG
t (σG(t)− σB(t)) + σB(t)

]
Zt + xt − λ

(αG
t γ

G
t + (1− αG

t ))γ
B
t − ePAB

t )2+
2

.

Solving for α, the conditions Eq. (2.4.16) and Eq. (2.4.17) will be satisfied if and only if,

α̂t = max

(
(µG(t)− µB(t))Ŷt + (σG(t)− σB(t))Ẑt − σB(t)(σG(t)− σB(t))Ŷt

(σG(t)− σB(t))2Ŷt

, (3.4.5)

(µG(t)− µB(t))Ŷt + (σG(t)− σB(t))Ẑt − σB(t)(σG(t)− σB(t))Ŷt

(σG(t)− σB(t))2Ŷt + λ(γG
t − γB

t )2

− λ(γB
t − ePAB

t )(γG
t − γB

t )

(σG(t)− σB(t))2Ŷt + λ(γG
t − γB

t )2

)
.



Chapter 4

Numerical methods

In many cases, complex FBSDE systems lack well-defined analytical solutions, necessitating the
utilization of numerical methods. In this chapter we will explore particular method, which is based
on the use of Fourier cosine series expansion, called the COS method [12]. This method serves as
a rapid and accurate alternative to other approaches such as the Longstaff-Schwartz method [23]
or the use of binomial trees [24]. Initially developed as an option pricing technique for European
options [12], it was later extended to solve BSDEs [18], giving rise to the BCOS method. Distinct
from classical forward SDEs, discretizing a BSDE results in conditional expectations, which stems
from the problem of adaptedness we run into if we don’t apply these conditional expectation.
When implementing the BCOS method, we efficiently approximate these conditional expectations
by employing the characteristic function of the transitional density.

The COS method has already been applied to solving stochastic control problems [37]. However,
our approach differs from theirs in that we aim to find the solution through the adjoint BSDE
and Pontryagin’s maximum principle, while they utilize the dynamic programming principle to
determine the value function. Our research extends the application of the BCOS method to fully
coupled FBSDEs and using this result to recover the optimal control variable at the end. In the
problems we will examine, we restrict our focus only to one-dimensional Lévy processes, thereby
excluding any analysis of multi-dimensional control problems in this chapter.

This chapter is structured as follows. Firstly, we outline the framework of the dynamic stochas-
tic system that we aim to solve, along with the resulting adjoint FBSDE. Solving this system
ensures that the associated control is optimal. To adapt this framework for the BCOS method,
we discretize the adjoint coupled FBSDE. Subsequently, we state the BCOS method and illus-
trate how it approximates the conditional expectations arising from the discretization of a BSDE.
Finally, we discuss the errors encountered throughout the process and provide an analysis of the
computational complexity of the algorithm.

The setting For convenience of the reader, let us reiterate the compact framework presented
in Chapter 2. Our interest lies only in in the optimal control and thus we will use Pontryagin’s
maximum principle is necessary to use. The feedback map that this approach induces coincides
better with the solution pair of (Y,Z) which we will be helpful in the numerical scheme. As we
have seen in Chapter 2 the stochastic control problem is a forward SDE, (Xs), revolving around a
control variable, (αs). The dynamics are defined as,

dXs = µ̄(s,Xs, αs)ds+ σ̄(s,Xs, αs)dWs. (4.0.1)

For each control problem we need to define a functional to optimize,

J(α) = E[
∫ T

0

h(s,Xs, αs, Ys, Zs)ds+ g(XT )],

34
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and the value function is,

v(t, x) = sup
α∈A

J(α),

The general Hamiltonian of the SMP is given by,

H(s,Xs, αs, Ys, Zs) = µ̄(s,Xs, αs)Ys + σ̄(s,Xs, αs)Zs + h(s,Xs, αs, Ys, Zs),

and the adjoint BSDE,

−dYs = DxH(s,Xs, αs, Ys, Zs)dt− ZsdWs, YT = Dxg(XT ) (4.0.2)

Maximizing the Hamiltonian with respect to α gives us the feedback map of the optimal control
variable, α̂,

α̂s := argmaxH(t, X̂s, a, Ŷs, Ẑs)

= δ(t, X̂s, Ŷs, Ẑs).

For convenience of the writer we will use the notation (X,Y, Z) = (X̂, Ŷ , Ẑ). Inserting the feedback
map in Eq. (4.0.1) and Eq. (4.0.2) gives,

Xt = X0 +

∫ t

0

µ̄(s,Xs, δ(t,Xs, Ys, Zs))ds+

∫ t

0

σ̄(s,Xs, δ(t,Xs, Ys, Zs))dWs, 0 ≤ t ≤ T,

= X0 +

∫ t

0

µ(s,Xs, Ys, Zs)ds+

∫ t

0

σ(s,Xs, Ys, Zs)dWs, 0 ≤ t ≤ T,

Yt = Dxg(XT ) +

∫ T

t

h(s,Xs, Ys, Zs)ds−
∫ T

t

ZsdWs, 0 ≤ t ≤ T, (4.0.3)

where we write h(s,Xs, Ys, Zs) = DxH(s,Xs, Ys, Zs). The end result is a FBSDE with the cou-
pling determined by the optimal control mapping. In most cases, if the given system is not a
predetermined toy model or the diffusion has control dependency, we get a fully coupled FBSDE.
In general there is no available explicit solution to this system. However in [18] they propose an
extension of the BCOS method for coupled forward-backwards stochastic differential equations.
We will use this to our gain to solve complex stochastic control problems.

4.1 Discretization of a coupled FBSDE

This section is a repetition of the work of Huijskens, Ruijter and Oosterlee [18]. In their paper
they propose a discretization of a coupled FBSDE. We will extend this to a fully coupled FBSDE
where the backward component is also coupled in the diffusion σ.

For the discretization we will use the well-known Euler-Maruyama approximation. We define
a partition Π for the time steps: 0 = t0 < t1 < t2 < · · · < tm < · · · < tM = T , with fixed time
step ∆t = tm+1 − tm for m = M − 1, . . . , 0. For notational convenience we write Xm to denote
the value of any arbitrary stochastic process Xtm at time tm and define ∆Wm = Wtm+1

− Wtm ,
where the Brownian Motion Wm has norminally distributed increments, ∆Wm ∼ N (0,∆t). The
evolution of the forward SDE on a small time interval [tm, tm+1) is given by,

Xm+1 = Xm +

∫ tm+1

tm

µ(s,Xs, Ys, Zs)ds+

∫ tm+1

tm

σ(s,Xs, Ys, Zs)dWs.

To circumvent the problem of coupling we will use [11] to obtain an explicit scheme for coupled
FBSDEs. We calculate backwards the BSDE numerically while assuming that the forward SDE is
a grid of points. We know the characteristic function of this grid, so we know the probability of
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going from one point on the grid to another for each time-step. The problem with this is that due
to the coupling, X also depends on (Y,Z). That is why instead of the standard Euler-Maruyama
approximation of a forward SDE, we assume that the time step ∆ = tm+1 − tm is small, so the
approximations y(tm+1, ·) and z(tm+1, ·) on interval [tm, tm+1) can be interpreted as predictors of
the solution at time tm. This will give us the following approximation of the forward process X,

X∆
m+1 = x+ µ(tm+1, x, y(tm+1, x), z(tm+1, x))∆t+ σ(tm+1, x, y(tm+1, x), z(tm+1, x))∆Wm+1,

X∆
m = x,

this is a right-point approximation for the y, z and t components in the drift and volatility as
opposed to the conventional left-point approximation where take m instead of m + 1. It can be
interpreted as a backward Euler approximation of the forward SDE.

The local evolution of the backward SDE Eq. (4.0.3) of the coupled FBSDE is as follows,

Ym = Ym+1 +

∫ tm+1

tm

h(s,Xs, Ys, Zs)ds−
∫ tm+1

tm

ZsdWs. (4.1.1)

To obtain an approximation of the Y process, conditional expectation are taken on both sides
with respect to the underlying filtration F . Using the theta method to approximate the integrals,
the fact that Brownian motion has independent increments and that an Itô integral has zero
expectation, we end up with the following approximation,

Ym = Em[Ym+1] +

∫ tm+1

tm

Em[h(s,Xs, Ys, Zs)]ds

≈ Em[Ym+1] + ∆tθ1h(tm, Xm, Ym, Zm) + ∆t(1− θ1)Em[h(tm+1, Xm+1, Ym+1, Zm+1)],

where θ1 ∈ [0, 1] and Em[·] is denoted for the conditional expectation E[·|Fm]. Likewise we can
obtain the approximation of the Zt process, by first multiplying Eq. (4.1.1) with ∆Wm+1 and then
take the conditional expectation. This results in,

Zm = − 1

θ2
(1− θ2)Em[Zm+1] +

1

∆tθ2
Em[Ym+1∆Wm+1]

+
1− θ2
θ2

Em[h(tm+1, Xm+1, Ym+1, Zm+1)∆Wm+1],

where θ2 ∈ [0, 1]. As a consequence of the Pontryagin’s maximum principle, the terminal values
YM and ZM are given as,

YM = Dxg(XM )

ZM = σ(tM , XM , YM , ZM )D2
xg(XM ),

note that the terminal condition for ZM presents a self-referencing issue, which poses certain
difficulties in our analysis. However, we will address this matter later in the chapter, providing
some comments on how to overcome this problem.

Since the terminal conditions are deterministic function of time t and the Markov process X∆,
by the induction argument, we also get that there are deterministic functions y(tm, x) and z(tm, x)
such that,

Y ∆
m = y(tm, x), Z∆

m = z(tm, x).

The random variables Y ∆
m and Z∆

m are functions of X∆
m and therefore the conditional expectation

can be replaced by,

Em[·] = E[·|Fm] = E[·|Xm = x] ≈ E[·|X∆
m = x],
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which we define as Ex
m[·] := E[·|X∆

m = x]. Summarizing the scheme gives us a discrete-time
approximation (Y ∆, Z∆) for (Y,Z):

Y ∆
M = Dxg(X

∆
M ), Z∆

M = σ(tM , X∆
M , Dxg(X

∆
M ))D2

xg(X
∆
M ) (4.1.2)

Z∆
m = −θ−1

2 (1− θ2)Em[Z∆
m+1] +

1

∆t
θ−1
2 Em[Y ∆

m+1∆Wm+1]

+ θ−1
2 (1− θ2)Em[h(tm+1, X

∆
m+1)∆Wm+1]

Y ∆
m = Em[Y ∆

m+1] + ∆tθ1b(tm, X∆
m+1) + ∆t(1− θ1)Em[h(tm+1, X

∆
m+1)],

for m = M − 1, . . . , 0. There are now several choices of the parameters θ1 and θ2, for which the
behaviour and computational effort of our numerical methods will vary. If θ1 = 0, the scheme
becomes explicit for Y ∆

m , whereas if θ1 ∈ (0, 1] results in an implicit scheme. For this implicit
scheme we end up with a fixed-point problem for Y ∆

m , which we will approximate by using P
Picard iterations.

4.2 BCOS Method

In this section we state the COS approximation for conditional expectations. We first derive the
COS formulas and the Fourier cosine coefficients. Then we approximate the functions z and y and
the recursive recovery of the Fourier coefficients. Lastly, we show how to implement the numerical
method for stochastic control problems and elaborate on the errors and convergence rates.

Transitional density function

Since we use the right-point approximation of the forward process Xt, the conditional characteristic
function of X∆

m will be as follows,

ϕ(u|X∆
m = x) = exp

(
iux+ iuµ(tm+1, x, y(tm+1, x), z(tm+1, x))∆t− 1

2
u2σ2(tm+1, x, y(tm+1, x), z(tm+1, x))∆t

)
.

Furthermore we define two transition matrices as,

Φk(x) := R

(
ϕ
( kπ

b− a
|x
)
exp(ikπ

−a

b− a
)

)
,

and,

Φ̂k(x) := R

(
ikπ

b− a
ϕ
( kπ

b− a
|x
)
exp(ikπ

−a

b− a
)

)
.

Fourier Cosine Coefficients

We define the Fourier cosine coefficients of the deterministic functions y(tm, X∆
m) = Y ∆

m and
z(tm, X∆

m) = Z∆
m from the FBSDE discretization in Eq. (4.1.2), as such,

Yk(tm+1) =
2

b− a

∫ b

a

y(tm, x) cos

(
kπ

x− a

b− a
dx

)
, (4.2.1)

Zk(tm+1) =
2

b− a

∫ b

a

z(tm, x) cos

(
kπ

x− a

b− a
dx

)
,

and Hk(tm+1), which is the Fourier cosine coefficient of h(tm+1, x, y(tm+1, x), z(tm+1, x)) is,

Hk(tm+1) =
2

b− a

∫ b

a

h(tm+1, x, y(tm+1, x), z(tm+1, x)) cos

(
kπ

x− a

b− a

)
dx.
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We will approximate these Fourier cosine coefficients using the discrete Fourier-cosine transforms
(DCT). From [35], the idea is take a grid and create N grid-points, defined as,

xn := a+ (n+
1

2
)
b− a

N
and ∆x :=

b− a

N
.

We can calculate then the value of the function y(tm, x), from Eq. (4.2.1), on these grid-points.
The midpoint-rule integration gives us then our final result,

Yk(tm+1) ≈
N−1∑
n=0

2

b− a
y(tm, x) cos

(
kπ

xn − a

b− a

)
∆x =

2

N

N−1∑
n=0

y(tm, x) cos

(
kπ

2n+ 1

2N

)
.

This DCT is of Type II and can be calculated efficiently with certain packages in Python.

COS approximations

Now we have all the pieces to construct the COS approximation of z(tm, x). We derive the following
approximations of the three different expectations,

Ex
m[Z∆

m+1] ≈
N−1∑
k=0

′Z(tm+1)Φk(x),

Ex
m[Y ∆

m+1∆ωm+1] ≈
N−1∑
k=0

′Y(tm+1)σ(tm+1, x)∆tΦ̂k(x),

Ex
m[h(tm+1, X

∆
m+1)∆ωm+1] ≈

N−1∑
k=0

′H(tm+1)σ(tm+1, x)∆tΦ̂k(x).

Together to give the subsequent COS approximation,

z(tm, x) ≈ −1− θ2
θ2

N−1∑
k=0

′Zk(tm+1)Φk(x) +

N−1∑
k=0

′
(

1

∆tθ2
Yk(tm+1) +

1− θ2
θ2

Hk(tm+1)

)
σ(tm, x)∆tΦ̂k(x).

For the computation of the function y(tm, x) there are two conditional expectation to be approxi-
mated, and are given by,

Ex
m[Y ∆

m+1] ≈
N−1∑
k=0

′Yk(tm+1)Φk(x)

Ex
m[h(tm+1, X

∆
m+1)] ≈

N−1∑
k=0

′Hk(tm+1)Φk(x).

We then write the COS approximation of y(tm, x) as,

y(tm, x) ≈ ∆tθ1h(tm, x, y(tm, x), z(tm, x)) +

N−1∑
k=0

′(Yk(tm+1) + ∆t(1− θ1)
b− a

2
Hk(tm+1)

)
Φk(x).

Because of the self-referencing part of this expression we will perform P Picard iterations, starting
with initial guess, y0(tm, x) := Ex

m[Y ∆
m+1].
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Recovery of coefficients

At terminal time tM we compute the following Fourier-cosine coefficients by using the terminal
conditions from Pontryagin’s maximum principle,

Yk(tM ) =
2

b− a

∫ b

a

g(x) cos

(
kπ

x− a

b− a

)
≈ 2

N

N−1∑
n=0

′g(xn) cos

(
kπ

2n+ 1

N

)

Zk(tM ) =
2

b− a

∫ b

a

σ(tM , x, g(x))Dxg(x) cos

(
kπ

x− a

b− a

)
≈ 2

N

N−1∑
n=0

′σ(tM , xn, g(xn))Dxg(xn) cos

(
kπ

2n+ 1

N

)

Hk(tM ) =
2

b− a

∫ b

a

h(tM , x, g(x), σ(tM , x, g(x))Dxg(x)) cos

(
kπ

x− a

b− a

)
≈ 2

N

N−1∑
n=0

′h(tM , xn, g(xn), σ(tM , xn, g(xn))Dxg(xn)) cos

(
kπ

2n+ 1

N

)
.

From these equations we calculate backwards for m ∈ [0, . . . ,M−1] the functions z(tm, x), y(tm, x)
and h(tm, x, y(tm, x), z(tm, x)) and the Fourier coefficients Zk(tm), Yk(tm) and Hk(tm). We only
need to store the Fourier coefficients for each time step because we need these coefficients to retrieve
the pair (Y ∆

t , Z∆
t ). This is done by applying another Fourier cosine transformation and results in,

Ym ≈ y(tm, Xm) ≈
N−1∑
k=0

′Yk(tm) cos

(
kπ

Xm − a

b− a

)
,

Zm ≈ z(tm, Xm) ≈
N−1∑
k=0

′Zk(tm) cos

(
kπ

Xm − a

b− a

)
.

In order to retrieve our approximations for (Y,Z) we need to simultaneously simulate the forward
diffusion. Instead of our earlier Euler-Maruyama discretization where we applied a right-point
approximation, we now apply a left-point approximation because we go forward in time rather
then going backwards in time. So the new evolution of the forward SDE will be denoted by X̃m

and is given by,

X̃m+1 = x+ µ(tm, x, y(tm, x), z(tm, x))∆t+ σ(tm, x, y(tm, x), z(tm, x))∆Wm, X̃m = x.

In the end we find the triple processes (X̃, Y, Z), which we can use to find the optimal control,

α̂m = δ(m, X̃m, Ym, Zm).

4.2.1 Error Analysis and Computational Complexity

Working with numerical methods entails considering various approximation errors. When utilizing
the BCOS method to solve FBSDEs, these errors can be categorized into three parts. Firstly, we
have discretization errors resulting from approximating the stochastic processes (X,Y, Z) in discrete
time. Secondly, there are errors associated with the COS formulas and the Picard iterations. Lastly,
when retrieving the control variable, we employ another discretization to simultaneously determine
(X,Y, Z) to obtain the optimal control.

The discretization error in FBSDEs is nuanced, necessitating differentiation between the fully
coupled and decoupled cases. The discretization of the coupled FBSDE has been addressed in
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Algorithm 1 BCOS method

1: Compute the terminal functions y(tM , x) and z(tM , x) by using the terminal condition.
2: Using discrete Fourier-cosine transformation approximate the terminal coefficients Zk(tM ),

Yk(tM ) and Hk(tM ).
3: for m = M, . . . , 0 do do
4: Compute the functions z(tm, x), y(tm, x) and h(tm, x, y(tm, x), z(tm, x)).
5: Using these functions approximate the corresponding coefficients Zk(tm), Yk(tm) and

Hk(tm) by using the discrete Fourier-cosine transformation.
6: end for
7: for m = 0, . . . ,M do do
8: Compute the functions z(tm, X̃m) and y(tm, X̃m).
9: Compute X̃m+1.

10: end for
11: Retrieve α̂ = δ(·, X̃, Y, Z).

previous work [35] [36]. These papers demonstrate that in the decoupled case, Y exhibits second-
order convergence, while Z converges at first-order. However, in the coupled framework, achieving
a convergence rate better than that of the Euler-Maruyama scheme used to discretize the forward
process is not possible due to coupling in the drift and volatility. Consequently, the error cannot
be improved beyond O(∆t1/2).

The error in the COS formulas arises from three steps: truncation of the integration range, sub-
stitution of the density by its cosine series expansion within the truncated range, and substitution
of the series coefficients by the characteristic function approximation. The use of discrete cosine
transformation to approximate the Fourier cosine coefficients yields an error with second-order
convergence in N .

Lastly, the convergence of the Picard iterations primarily depends on the Lipschitz constant
Lf of the driver function. For sufficiently small ∆t, specifically when Lf∆tθ1 < 1, a unique fixed
point exists, and the Picard iterations converge towards that point regardless of the initial guess.
The fixed-point technique converges to the true solution at the geometric rate ∆tθ1L2.

In conclusion, the total error is the sum of these three components. By selecting a sufficiently
high value for N , we can neglect the error from the COS method, leaving us with the error of the
discretization scheme.

The computation time of the BCOS method is linear in the number of time steps M . For each
time-step tm the following computations are done to get the approximations,

• Computation of the conditional characteristic function on a x-grid in O(N) operations.

• Computation of z(tm, x) and h(tm, x) on a x-grid in O(N) operations.

• Initial guess for Picard iterations. Computation of Ex
m[y(tm+1, X

∆
m+1)] in O(N) operations.

• Computation of the Ppicard Picard iterations for y(tm, x) in O(PpicardN) operations.

• Computation of the Fourier coefficients Zk(tm), Yk(tm) andHk(tm) with the DCT inO(N log(N))
operations.

Summarizing, the total complexity of the BCOS method is O(M(N2 + PpicardN +N log(N))).



Chapter 5

Results

This chapter presents the numerical results obtained using the BCOS method for various applica-
tions. The computations were performed using Python (Jupyter Notebook) on a system equipped
with an AMD Ryzen 7 4800H CPU @2.90 GHz and 16.0 GB of RAM. In our numerical experiments,
we make use of four different discretization schemes,

Scheme A: θ1 = 1 and θ2 = 1 Scheme C: θ1 =
1

2
and θ2 =

1

2

Scheme B: θ1 = 0 and θ2 = 1 Scheme D: θ1 = 0 and θ2 =
1

2
.

5.1 Test the Method

To validate the numerical method used in this study, we perform two sets of analyses. Firstly, we
demonstrate its capability to solve fully coupled FBSDEs with a diffusion coefficient dependent on
Zs, providing evidence of its effectiveness. This verification process involves solving a toy model
derived from [41].

Secondly, we aim to establish the applicability of the BCOS method in solving stochastic control
problems. For this purpose, we utilize the earlier studied paper by Gobet [10], which presents a
well-defined stochastic control problem with an analytically solvable solution. By comparing our
numerical results with the clean analytical solution provided by Gobet, we assess the accuracy and
reliability of our method.

Through these validation steps, we ensure that our code performs well, delivering the expected
results for both fully coupled FBSDEs and stochastic control problems.

5.1.1 Fully coupled FBSDE

A concrete example illustrating a type of fully coupled FBSDE can be found in [41] by Zhao et
al. Specifically, Example 5 in the paper showcases such a problem, where the diffusion coefficient
in the forward SDE depends on Zt. This forms a class of problems where an efficient numerical
method is not yet available. The fully coupled FBSDE is defined as,

Xt = x−
∫ t

0

1

2
sin(s+Xs) cos(s+Xs)(Y

2
s + Zs)ds

+

∫ t

0

1

2
cos(s+Xs)(Ys sin(s+Xs) + Zs + 1)dWs, (5.1.1)

Yt = sin(T +XT ) +

∫ T

t

YsZs − cos(s+Xs)ds−
∫ T

t

ZsdWs, (5.1.2)

41
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Figure 5.1: Plot of the error at t=0 for (Y,Z)

with terminal conditions,

YT = sin(T +XT )

ZT =
1

2
cos(T +XT )(YT sin(T +XT ) + ZT + 1) cos(T +XT ).

Notice that when the diffusion depends on z, we cannot know the terminal coefficients Zk(tM)
and Fk(tM). Therefore, we need to set θ2 = 1 in the first time step to circumvent this problem,
after that we can use all other schemes. It is also possible that we set immediately Zk(tM) = 0 to
circumvent this problem, but we have to remember this when recovering the control variable. The
exact solutions to Eq. (5.1.1) and Eq. (5.1.2) are given by,

y(t, x) = sin(t+ x), and z(t, x) = cos2(t+ x).

For our numerical experiments, we set the terminal time as T = 0.1, the initial value of the process
as X0 = 1.5, and choose the interval parameters as a = −2π and b = 2π. In this case, the diffusion
coefficient depends on Zt, which introduces complexities in calculating the terminal coefficients
due to self-referencing. To overcome this challenge, we either set ZT = 0 or θ2 = 1 in the first time
step for all schemes. By doing so, the numerical approximation becomes independent of Zk(tM )
and Hk(tM ).

The results obtained from the numerical method are presented in Figures 5.1 and 5.2. We
observe that the method converges for all schemes in t = 0. The error through time is sampled
for a single Brownian motion, and one can approximate the expectation of this error using Monte
Carlo simulations.

In conclusion, we have successfully solved fully coupled FBSDEs using the BCOS method,
which will be instrumental in determining the control variables for the allocation of the green-
brown portfolio problems.

5.1.2 Gobet

In order to evaluate the BCOS method for a stochastic control problem, our focus lies on the specific
case discussed by Gobet et al. in their paper [10]. However, instead of considering an infinite time
horizon, we investigate the finite horizon version as addressed in Section 3.3, primarily due to our
interest in finite time intervals, which align with the terminal time for climate mitigation.

The analytical solution for the control variable, denoted as γ, is already known. Nevertheless,
in order to obtain a numerical solution, it is essential for us to determine the optimal feedback
map. By analyzing the optimization criterion presented in Gobet et al.’s work Eq. (3.3.5), along
with the provided expressions for the drift, production, cost, and penalty functions, we are able to
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Figure 5.2: Plot of the error through time of the (Y,Z) for one simulation

deduce the following,

γ̂t = min

(
cŶ ert,

1

1 + ω
(ωet + cŶ ert)

)
.

SSP benchmarks In line with the research conducted in [10], we examine various CO2 emission
scenarios that correspond to different socioeconomic reference pathways provided by CMIP6 (Cou-
pled Model Intercomparison Project Phase 6). Specifically, we consider the following scenarios:
SSP1-2.6, SSP2-4.5, SSP3-LowNTCF, SSP4-6.0, and SSP5-3.4-OS. These scenarios, available in
the SSP Public Database at https://tntcat.iiasa.ac.at/SspDb, are valuable resources that facili-
tate our understanding of and ability to anticipate the mid-term and long-term consequences of
near-term decisions, particularly in light of the noticeable impacts of climate change.

For the purpose of comparison, we select the transportation sector and set the year 2015 as the
starting point. The benchmark data required for our analysis can be obtained from the SSP Public
Database. It is important to note that while the effects of climate change are already perceptible,
these scenarios serve as indispensable tools for comprehending the potential ramifications of our
present choices in the medium and long term.

Among the five SSPs, two baseline scenarios stand out. Firstly, SSP1-2.6 represents the most
mitigated scenario, roughly corresponding to the previous scenario generation known as the Rep-
resentative Concentration Pathway (RCP) 2.6. Secondly, SSP2-4.5 depicts a moderate scenario
akin to RCP-4.5. Additionally, we consider three supplementary scenarios. These include SSP3-
LowNTCF, which provides a comparison scenario with high Near-Term Climate Forcing (NTCF)
emissions, notably sulfur oxides (SOx) and methane; SSP4-6.0, which focuses on a socioeconomic
context characterized by inequality; and SSP5-3.4-OS (Overshoot), allowing for a significant over-
shoot in emissions until mid-century, followed by substantial policy interventions in the latter half
of the century.

To facilitate the numerical computations, we plot these emission benchmarks and normalize
them such that e0 = γ̂0 = c

r−b . However, it is worth mentioning that due to limited data points,
we employ an interpolation function to smoothen the graph. While this introduces some error, it
is disregarded when assessing the convergence of the BCOS method error. Note that we receive
different outcomes than in [10]. This is evidently because of the fact that we used a finite time
horizon and used numerical solution to try to solve it. As one can observe, the scenario SSP1-2.6
is the hardest benchmark which imposes immediate reduction from the beginning 2015. For the
transportation sector, the scenario SSP2-4.5, SSP3-LowNTCF and SSP4-6.0 impose no or very
little emission constraints that the optimal emission remains at the level of γ̄. In Fig. 5.4, it shows
the impact of the parameter ω. More precisely, the optimal emission is decreasing with respect to
the penalty force. In other words, a stronger penalty policy will induce larger emission reduction
from the firm, which is as expected.

Based on the successful outcomes observed, we can confidently assert that the BCOS method is
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Figure 5.3: The SSPs emission scenarios v.s. associated optimal emission.

Figure 5.4: Different optimal emissions w.r.t. ω for scenarios SSP1 and SSP5.
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effective in solving stochastic control problems, including the one investigated in this study. With
this knowledge in hand, we are equipped to apply the BCOS method to determine solutions for
the problems outlined in Section 3.4.

5.2 Portfolio based on Greenness

In the following analysis, we focus on our portfolio problem, specifically aiming to solve the al-
location between the green and brown stocks. Through a parameter study, we explore different
scenarios involving varying drifts and volatilities, providing a comprehensive analysis of the out-
comes and discussing our findings.

To conduct the numerical study, we employ the BCOS method for the control problem outlined
in Section 3.4 For the upcoming numerical results, we adopt Scheme D of the BCOS method,
where θ1 = 0.5 and θ2 = 0.5. The initial wealth process is set at X0 = 1, and for the Fourier
cosine discretization, we choose a = 0, b = 10, N = 28, and M = 100 time steps. To achieve
smoother graphs and reduce noise, we perform 500 Monte Carlo simulations to approximate the
expectations.

In order to obtain a clearer understanding of the dynamics of the different processes, we set
the terminal time tM = 31, representing the time interval from 2020 to 2050. The drift of the
assets is based on an annual increase of 6.8% for green stocks and 7% for brown stocks, while the
corresponding volatilities are set as σG = 0.19 and σB = 0.20.

Through this parameter study and numerical simulations, we aim to gain insights into the
behavior and dynamics of the portfolio allocation between Green and Brown stocks, considering
the specified drifts and volatilities.

5.2.1 Contribution only

Let us consider the problem statement of Section 3.4.2. For analysis of the parameter study, we are
interested in outcomes when using different constant contribution rates. For c = 0, c = 0.01, c =
0.05 and c = 0.1 we have plotted both the control variables αG and αB and the wealth process X
in one graph to show that,

First of all, we notice that for an increasing contribution rate, an investor is more willing to
invest in brown stocks than in green stocks, which is remarkable as opposed to the case when c = 0.
The inclusion of a constant rate of contribution in a stochastic control problem has an impact on the
outcome, even when the utility function is of a CRRA form. While this utility function considers
the investor’s risk aversion, the constant rate of contribution introduces a dynamic element, as seen
in Eq. (3.4.4), that affects the overall wealth accumulation process, interacts with risk aversion and
subsequently influences the optimal control strategy. There could be few reasons why the constant
rate of contribution can influence the results of a stochastic control problem.

Time-varying wealth accumulation: The constant rate of contribution injects additional
funds into the portfolio over time. This leads to an increasing wealth trajectory, which in turn
affects the overall dynamics of the optimization problem. As the wealth grows, the relative im-
portance of the control variables and the impact of investment decisions can change, potentially
leading to different optimal strategies compared to a scenario without a contribution rate.

Impact on risk exposure: The constant rate of contribution alters the risk exposure of the
portfolio. When new funds are injected into the portfolio, the allocation between risky and risk-free
assets may change. This can affect the risk level and risk-adjusted performance of the portfolio,
potentially leading to different control strategies to balance risk and return compared to a scenario
without contributions.

Accumulation of compounding returns: The constant rate of contribution allows for
compounding returns over time. As the portfolio grows with the accumulated contributions and
investment returns, the compounding effect can magnify the impact of investment decisions and
potentially result in different outcomes compared to a scenario without contributions.
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The CRRA utility function captures risk preferences, but the contribution rate impacts wealth
accumulation, introducing variables like time-varying wealth, evolving risk exposure, and com-
pounded returns. These factors collectively contribute to discrepancies in numerical outcomes
when comparing scenarios with and without the contribution rate.

It is worth noting that over time, for c = 0.05 and c = 0.1, the investor gradually shifts towards a
higher allocation in green stocks until the terminal time, where the portfolio predominantly consists
of green stocks. This behavior can be attributed to the nature of the problem’s terminal condition.
At the beginning of the investment strategy, it is advantageous to adopt a more aggressive approach,
aiming for higher returns. This is because early on, there is room to absorb potential losses.
However, as the terminal time approaches, the focus shifts towards preserving the accumulated
savings. Consequently, investment strategies become increasingly conservative, aiming to mitigate
any potential losses when cashing out at the end. Therefore, the observed trend of a transitioning
portfolio allocation towards a larger proportion of green stocks can be understood as a strategic
response to the evolving time horizon and the need to safeguard investments.

Figure 5.5: The average and standard deviation of the allocations of the stocks for different values of c,
plotted against the discretization of wealth process X

5.2.2 PAB tax with contribution

Now, we will introduce the tax based on the Paris Alignment Benchmark, as discussed in Sec-
tion 3.4. This benchmark will be a reduction of 7.6% each year. We will present plots that
illustrate three distinct scenarios, each characterized by different reduction pathways.

Following the Paris reduction

Let’s begin by examining a situation where both the green and brown stocks reduce their emissions
by the same percentage as prescribed by the benchmark. However, they start at different values,
specifically γG = 0.9 for the green stock and γB = 1.1 for the brown stock. In this case, the green
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Figure 5.6: The average and standard deviation of the control variable for different values of λ, plotted
with the discretization of wealth process X

company achieves a reduction of 7.8%, while the brown company manages to reduce by 7.4%. To
explore the impact of the penalty parameter, denoted as λ, we have plotted the control variable of
the allocation for various values of λ.

In Figure 5.6, observe that when λ = 0, the control variables for allocating green and brown
stocks correspond to the scenario where only the contribution with c = 0.05 is considered, as
expected. As λ increases, we observe an increase in the allocation of the green stock and a decrease
in the allocation of the brown stock. When the investor is not constrained by penalties, they have
more freedom in their investment strategies. However, as λ increases, we see a convergence towards
the optimal control described in Equation 3.4.5, given by,

α̂G
t ≈ (ePAB

t − γB
t )

(γG
t − γB

t )
.

Consequently, we observe a convergence to αG
0 = 0.5 as λ grows, which is due to their initial values

at t0.
Furthermore, we notice that as the terminal time approaches, there is a preference for the

green stock in the allocation strategy. This preference can be attributed to the higher volatility
associated with the brown stock. As investors near the end of the investment horizon, they tend
to opt for safer, less volatile assets to protect their accumulated wealth, which is also seen in the
scenario where we only added a contribution rate.

Shifting our focus to the emissions themselves, depicted in Figure 5.7, we can observe a conver-
gence towards the PAB benchmark as the penalty parameter increases. This convergence indicates
that the penalty mechanism effectively steers the total emissions of the portfolio towards the de-
sired reduction targets set by the PAB. As the penalty becomes more severe, investors adjust their
investment allocations to align with the emissions reduction goals, ultimately leading to emissions
levels that fall below or closely match the PAB benchmark.
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Figure 5.7: The average and standard deviation of the total emission of the portfolio for different values
of λ, plotted with the PAB, Green and Brown emission paths.

Initial reduction of the Brown stock

Next, we explore a different scenario where the brown stock initially undergoes a reduction. We set
γG = 0.8 and γB = 0.9, with annual reductions of 7.6% for the green stock and 5.6% for the brown
stock. Consequently, the green stock aligns with the PAB benchmark, while the brown stock falls
behind and incurs penalties. In Figure 5.8, we present the allocation controls for various values of
λ.

Intuitively, it makes sense to invest primarily in the brown stock at the outset, as it still
demonstrates favorable emission levels. In fact, the preference for the brown stock is strong enough
to go short on green stocks, resulting in increased total emissions when the penalty has little to no
influence. However, as the penalty parameter λ increases, it gradually aligns the total emissions
with the PAB benchmark, as depicted in Figure 5.9. Notably, we observe some degree of asymptotic
convergence when λ reaches a sufficiently high value, leading to a decrease in the standard deviation
of the allocation controls.

Improving halfway through

Finally, let’s consider a scenario where the brown stock demonstrates improvement and manages
to reduce its emissions below the PAB benchmark. We begin with γG = 0.9 and γB = 1.1, and
the annual reductions for green and brown stocks are 9.2% and 9%, respectively. The optimal
allocation paths under these conditions are depicted in Figure 5.10.

When λ = 0, the investment strategy is not particularly wise, as it initially focuses heavily
on the brown stock and then shifts towards a greener portfolio as the terminal time approaches.
However, as we increase the penalty, we observe an increase in the allocation of the brown stock.
This shift occurs because the investor recognizes the decreasing trend in brown stock emissions
and takes advantage of the potential for higher returns. Ultimately, after falling below the PAB,
the brown stock reaches its peak and achieves the highest return. Interestingly, in this scenario,
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Figure 5.8: The average and standard deviation of the control variable for different values of λ, plotted
with the discretization of wealth process X

Figure 5.9: The average and standard deviation of the total emission of the portfolio for different values
of λ, plotted with the PAB, Green and Brown emission paths.
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Figure 5.10: The average and standard deviation of the control variable for different values of λ, plotted
with the discretization of wealth process X

the wealth process X does not decrease significantly with increasing penalty λ. This is due to the
investor taking on additional risk by incurring penalties at the beginning to secure higher returns in
the middle. However, similar to the previous situation, the higher return is eventually outweighed
by higher volatility, prompting a shift towards the safer and less volatile green stock. This shift is
also reflected in the emission paths, as shown in Figure 5.11, where the total emissions decrease as
the penalty increases, eventually falling below the PAB for λ > 5.

It is worth noting that the standard deviation of the controls does not diminish as the penalty
increases. This can be attributed to the absence of asymptotic convergence towards the terminal
time, as observed in the previous setting. Due to the willingness to shift preferences towards the
brown stock and subsequently transition to a greener portfolio, uncertainties are introduced, which
may not be desirable for investors.
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Figure 5.11: The average and standard deviation of the control variable for different values of λ, plotted
with the discretization of wealth process X



Chapter 6

Conclusion

In the chapter we will conclude this thesis. We will first summarize our findings and the main results
of this work. Finally, we will express some extension that can be made for further development,
and list other problems which we are able to tackle now, for which it can be useful.

6.1 Concluding summary

Throughout this thesis, we have delved into the challenging task of solving fully coupled FBSDEs
arising from stochastic control problems, specifically in the context of pension fund management.
Our findings underscore the complexity of these problems and the ongoing research being conducted
in this area.

In our parameter study in Chapter 5, we have explored the impact of a tax based on the total
emissions of a portfolio. As anticipated, we observed that higher penalty values prompt investors to
transition to a greener portfolio at an earlier stage. This aligns with the objective of incentivizing
environmentally friendly investments and promoting sustainability. However, it is noteworthy that
despite the appeal of greener assets from an environmental standpoint, the higher return rates and
volatility associated with brown stocks still render them financially preferable. Consequently, when
considering the utility of overall wealth, investors may still opt to allocate a significant portion of
their portfolio to more polluting companies.

These results highlight the intricate trade-offs faced by investors, as they navigate the inter-
section of financial returns, environmental considerations, and regulatory constraints. It becomes
evident that achieving an optimal balance between financial profitability and sustainability goals
remains a complex challenge, requiring ongoing research and the development of sophisticated
investment strategies.

6.2 Future work

There are different ways in which our approach and findings could be improved or extended. One
potential direction is to incorporate stochastic interest rates into the analysis as in [14]. By intro-
ducing randomness to interest rate dynamics, we can capture the uncertainty and fluctuations in
financial markets, which can significantly influence investment decisions and portfolio performance.
It would be also interesting to look into the difference in brown and green bonds as the green bond
market still represents less than 1 percent of the global bond market [19].

Additionally, incorporating stochastic emission paths of the corresponding stocks would enhance
the realism of the model. By considering the variability and unpredictability of emission levels,
we can better account for the inherent uncertainties associated with climate-related factors. This
addition would enable a more comprehensive analysis of the effects of emissions on portfolio returns
and the implications for optimal investment strategies.

52
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The investigation conducted by [2] examined the implications of climate change concerns and
observed that green firms tend to outperform brown firms when these concerns unexpectedly in-
crease. Incorporating these findings into a parameter study would add an intriguing dimension
to the optimization of portfolio allocations. Exploring how changes in climate change perceptions
impact the performance of green and brown firms could provide valuable insights for optimizing
investment strategies within a climate-conscious framework.
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