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Abstract

The aim of this thesis is to determine the isogeny classification of abelian varieties over a finite field Fq

with q = pn, particularly for dimensions 3, 4 and 5. For a given dimension g, each isogeny class has
a distinguished characteristic polynomial, which is a q-Weil polynomial of degree 2g satisfying certain
conditions regarding its factorisation over the p-adic integers Zp. A q-Weil polynomial is a polynomial
with integer coefficients such that all of its roots have absolute value q1/2. Enumerating all isogeny classes
is a two-steps procedure. The first step is determining all q-Weil polynomials of degree 2g and the second
step is determining the conditions for which a given q-Weil polynomial is the characteristic polynomial
of some abelian variety over Fq. This process has been carried out for a fixed dimension up to g = 5 in
recent articles by various authors. However, a few of these results contained some mistakes, particularly
in the first step for g = 3, 4 and 5. This thesis contains a correction of these specific results and also
explains the second step for these dimensions.
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Introduction

Abelian varieties over a field k are complete connected algebraic varieties whose k-rational points form a group.
Maps between two abelian varieties X and Y over k are called k-homomorphisms, which are k-morphisms of
algebraic varieties that respect the group structures of X and Y . If X and Y have the same dimension over
k, a surjective homomorphism from X to Y is called a k-isogeny. We will be mostly working with a fixed field
k, so we often leave out the k except when working over a different field. One can show that the existence of
an isogeny between two abelian varieties over k is an equivalence relation. Furthermore, by John Tate [23,
Theorem 1], the abelian varieties X and Y over a finite field k = Fq = Fpn are k-isogenous if and only if their
respective characteristic polynomials PπX

(x) and PπY
(x) are the same, which are defined in the following way.

The characteristic polynomial of an abelian variety X over a finite field k is the characteristic polynomial
of the endomorphism πX acting on the Tate-ℓ-module of X, with ℓ any prime different from p, induced by
the Frobenius endomorphism π on X. In particular, PπX

(x) is a polynomial with integer coefficients. Hence,
in order to determine all the isogeny classes for given k and dimension g, one can compute all the possible
characteristic polynomials.

A simple abelian variety is an abelian variety which has no proper abelian subvariety. Each abelian variety
X can be decomposed into a product of powers of simple abelian varieties Xm1

1 × . . .×Xmt
t , with X1, . . . , Xt

pairwise not isogenous. This decomposition is unique up to isogeny and permutation. Accordingly, the
characteristic polynomial PπX

(x) of X factors into the product PπX1
(x)m1 · . . . · PπXt

(x)mt of characteristic
polynomials of theXi’s. Hence, to determine the isogeny classification of abelian varieties of a given dimension
it is sufficient to restrict to simple abelian varieties, as the results from lower dimensions can be used for non-
simple abelian varieties. By the Tate-Honda Theorem [10] [23], there is a bijection between isogeny classes
of simple abelian varieties over Fq and conjugacy classes of q-Weil numbers, which are defined as follows. A
q-Weil number ϖ is an algebraic number such that |σ(ϖ)| = q1/2 for every embedding σ : Q[ϖ]→ C and two
q-Weil numbers are conjugate if and only if they have the same minimal polynomial. A q-Weil polynomial
is a polynomial with integer coefficients that only has q-Weil numbers as roots. In this thesis, y1/m and m

√
y

will denote the real root for any real number y. If m is even, that is if there are two real roots, then y1/m

and m
√
y denotes the positive real root.

The characteristic polynomial of an abelian variety over Fq of dimension g is a q-Weil polynomial of degree
2g. Hence, the first step to determine the isogeny classification of abelian varieties over finite fields is to
determine all possible q-Weil polynomials of degree 2g. However, the converse is not necessarily true. Hence,
the second step is to determine the conditions for which a given q-Weil polynomial of degree 2g corresponds
to an abelian variety over Fq of dimension g.

If X is a simple abelian variety over Fq, then its characteristic polynomial is equal to (P (x))d, where P (x)
is some q-Weil polynomial, irreducible over Q, and d is some positive integer. In particular, d divides 2g and
deg(P (x)) = 2g

d . Therefore, the second step to determine the isogeny classification is equivalent to finding

all possible irreducible q-Weil polynomials P (x) of degree 2g
d for each divisor d of 2g such that (P (x))d is

the characteristic polynomial of some simple abelian variety of dimension g over Fq. These problems have
been studied in-depth for up to dimension g = 5. Daiki Hayashida in [9] has made an overview of the recent
results, see Table 1.

Conditions for
Dimension g = 1 g = 2 g = 3 g = 4 g = 5

a polynomial being a q-Weil poly-
nomial of degree 2g

clear [17], [14] [6] [7] [22]

a q-Weil polynomial of degree 2g
being the characteristic polyno-
mial of a simple abelian variety of
dimension g over Fq

[25] [17], [14] [6], [28] [7], [28] [8]

Table 1: Recent results [9, Table 1]

An abelian variety of dimension 1 is called an elliptic curve. One can easily verify that a polynomial
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x2 + ax + b with integer coefficients is a q-Weil polynomial if and only if b = q and |a| ≤ 2
√
q, as b is the

product of the roots and a is equal to minus the sum of the roots. William C. Waterhouse [25, Chapter 4]
determined the correspondence between isogeny classes of elliptic curves over Fq and q-Weil numbers. Both
the bounds of the coefficients of q-Weil polynomials of degree 4 as well as the conditions of such a q-Weil
polynomial being the characteristic polynomial of an abelian variety over Fq of dimension 2, i.e. an abelian
surface, has been found by Hans-Georg Rück [17, Lemma 3.1 and Theorem 1.1] as well as Daniel Maisner
and Enric Nart [14, Lemma 2.1 and Theorem 2.9]. The bounds of the coefficients of q-Weil polynomials of
degree 6 and determination of irreducible characteristic polynomials of simple abelian varieties of dimension
3 over Fq have been computed by Safia Haloui [6, Theorems 1.1 and 1.4]. The case where d = 2 for dimension
3 has been determined by Chao Ping Xing [28, Proposition 2], who also provided the case where d = 2
for dimension 4 [28, Proposition 4]. The bounds of the coefficients of q-Weil polynomials of degree 8 were
determined by Safia Haloui and Vijaykumar Singh [7, Theorem 1.1] and they found which irreducible q-Weil
polynomials of degree 8 are characteristic polynomials of simple abelian varieties of dimension 4 over Fq, see
[7, Theorem 1.2]. Lastly, for dimension 5, Gyoyong Sohn computed the bounds for the coefficients of q-Weil
polynomials of degree 10 [22, Theorem 2.1] and Daiki Hayashida determined the characteristic polynomials
of simple abelian varieties of dimension 5 over Fq [8, Theorem 1.3].

This work covers the results regarding the isogeny classification of simple abelian varieties of dimensions 3, 4
and 5 over finite fields Fq in Chapters 8, 9 and 10, respectively. We can limit ourselves to the simple isogeny
classes, since results for non-simple isogeny classes can be found by combining results from lower dimensions.
Recall that the factorisation of a characteristic polynomial into a product of powers of irreducible q-Weil
polynomials corresponds to the decomposition of the abelian variety into a product of powers of simple
abelian varieties. The reason we work with these dimensions specifically is due to an article by Dupuy,
Kedlaya, Roe and Vincent, [3, Chapter 3.1]. While computing the q-Weil polynomials to populate the
LMFDB [LMFDB], the authors have found some errors in previous results by Haloui [6], Haloui-Singh [7]
and Sohn [22] regarding the bounds on the coefficients of q-Weil polynomials. Higher dimensions are not
covered due to the inability of applying the used method to higher degree polynomials.
All of the results from Haloui, Haloui-Singh and Sohn had in common that they were computed using
Robinson’s method, described in Chapter 7. The main goal is to determine these errors and correct them.
The corresponding result for g = 3, 4, 5 are respectively Theorems 8.2, 9.2 and 10.2. The main differences lie
in the q-Weil polynomials with real roots which were omitted in the original articles by Haloui, Haloui-Singh
and Sohn. Furthermore, for g = 4 and g = 5, there were mistakes in some of the bounds and the bound for
the coefficient of x4 specifically required more attention regarding the ordering of a cube root.
Results about determining when a given irreducible q-Weil polynomial corresponds to a simple abelian variety
of dimension 3, 4 and 5 over Fq will also be included to provide a full overview of the isogeny classifications
for the respective dimension, see Theorems 8.6, 9.4 and 10.4. These results can be obtained from looking at
the Newton polygons of the characteristic polynomials.

Chapters 1, 2, 3, 4 and 5 provide necessary background knowledge on abelian varieties over finite fields in
order to be able to understand the correspondence between isogeny classes and q-Weil numbers. In Chapter
1, abelian varieties are defined together with homomorphisms, which are morphisms between abelian varieties
that respect the group structures. Surjective homomorphisms with finite kernel are called isogenies, which
are introduced in Chapter 2. In particular, it is shown that given two abelian varieties X and Y over a field
k, there exists an isogeny from X to Y if and only if there exists an isogeny from Y to X. In Chapter 3,
the Tate-ℓ-module TℓX of an abelian variety X is constructed for ℓ ̸= char(k) from the ℓn-torsion points for
n ≥ 1, similar as to how the ℓ-adic integers Zℓ are constructed from Z/ℓnZ, that is the integers modulo ℓn.
A relation between isogenies from X to Y and maps from TℓX to TℓY is shown. This leads to the definition
of the characteristic polynomial of an endomorphism of an abelian variety, which is explicitly explained for
the Frobenius endomorphism in Chapter 4. The characteristic polynomial of the Frobenius endomorphism
corresponding to an abelian variety X over a finite field is called the characteristic polynomial of X. In
Chapter 5, a key theorem by Tate [24] is mentioned, which states that two abelian varieties are isogenous
if and only if their characteristic polynomials are the same. Furthermore, the characteristic polynomials of
abelian varieties are always q-Weil polynomials.

A method to determine whether a given q-Weil polynomial is the characteristic polynomial of a simple abelian
variety over Fq is described in Chapter 6 using Newton polygons, which due to the discussion above is sufficient
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to give the complete isogeny classification. In Chapter 7, we explain an application of Robinson’s method
that was used by Haloui, Haloui-Singh and Sohn to determine q-Weil polynomials. The idea, described in
Chapter 6, is that a q-Weil polynomial can be factored into a product of quadratic polynomials of the form
x2 + ωix + q, where ωi ∈ R and |ωi| ≤ 2

√
q. Furthermore, |ωi| = 2

√
q implies that x2 + ωix + q has two

real roots. These can be handled separately, hence the emphasis lies on |ωi| < 2
√
q. One can construct

the polynomials
∏
(x − (2

√
q + ωi)) and

∏
(x − (2

√
q − ωi)) and determine the conditions for which these

polynomials have all roots real and positive, which can be found exactly using Robinson’s method, see the
second part of Chapter 7. These results can be substituted back in the original polynomial

∏
(x2+ωix+q) to

find the bounds on its coefficients. The original article explaining Robinson’s method by Christopher Smyth
[20] only mentioned the method for the case where all roots are distinct. An explanation will be given in 7
for why the method can still be used for our goals when there is a multiple root. Results from Chapters 6
and 7 are used to determine q-Weil polynomials of degree 6, 8 and 10 and characteristic polynomials of simple
abelian varieties over Fq of dimension 3, 4 and 5 in Chapter 8, 9 and 10 respectively.

Results are implemented in SageMath 9.3 [18], which has an in-built function weil_polynomials written
by Kiran Kedlaya, see [11]. The built-in function uses a similar idea as our approach, namely looking at
polynomials of the form

∏
(x + ωi), where the ωi’s are real numbers such that

∏
(x2 + ωix + q) is a q-Weil

polynomial, i.e. it looks for polynomials with roots in the interval [−2√q, 2√q]. These are found by deter-
mining the derivatives which have roots in the interval. A tree exhaustion is applied to obtain all possible
polynomials satisfying certain conditions, such as Rolle’s theorem and Sturm’s theorem. The q-Weil polyno-
mials without real roots would have ωi ∈ (−2√q, 2√q), the open interval. The implementation of Theorems
8.6, 9.4 and especially 10.4 were in general a fair bit slower than the in-built function, partly due to my code
being fairly unoptimised and due to Kedlaya’s function using Cython for some of its calculations. However,
one advantage our result has over the built-in function is that the obtained list with q-Weil polynomials are
immediately separated into a part with real roots and a part without real roots.
The results from Theorems 8.6, 9.4 and 10.4 about which q-Weil polynomials are characteristic polynomi-
als of simple abelian varieties for dimension 3, 4 and 5 respectively, were compared with the results in the
LMFDB [LMFDB] for small q. The implementation of the bounds and the comparisons can be found in my
repository [13]. The results for the values of q that were tested, omitting the q-Weil polynomials with real
roots, matched completely with the in-built function and the LMFDB-data. However, precision errors may
occur in my code when trying higher values of q.
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1 Abelian varieties

This section will serve as an introduction to the basic definitions of abelian varieties and give some useful
properties. This part will be largely based on the preliminary notes by Edixhoven, Van der Geer and Moonen,
[4, Chapter 1]. Intuitively, an abelian variety over a field k is a complete algebraic variety over the field k
such that its k-rational points form a group. Here, with the term (algebraic) variety, we mean a separated k-
scheme of finite type that is geometrically integral. In fact, one can show that abelian varieties are projective
varieties, see [15, Section I.6].

Formally, one defines abelian varieties as follows.

Definition 1.1. Let X be a variety over a field k. Let j1 : Spec(k) ×X → X and j2 : X × Spec(k) → X
be canonical isomorphisms, ∆X/k : X → X × X be the diagonal morphism and π : X → Spec(k) be the
structure morphism. Let

m : X ×X −→ X
i : X −→ X

be morphisms and e ∈ X(k) a k-rational point. We call (X,m, i, e) a group variety if the following diagrams
commute:

1. Associativity:

X ×X ×X X ×X

X ×X X

idX×m

m×idX m

m

.

2. Identity element:

Spec(k)×X X ×X

X

e×idX

j1 m and

X × Spec(k) X ×X

X

idX×e

j2 m .

3. Two-sided inverse:

X ×X X ×X

X Spec(k) X

idX×i

m∆

π e

and

X ×X X ×X

X Spec(k) X

i×idX

m∆

π e

.

If the above holds, then we say that m defines the group law, i defines the inverse and e defines the identity
element.

Remark 1.2. One can generalise Definition 1.1 to schemes to obtain the definition of group schemes. Some
of the results below can also be generalised to group schemes. See [4, Chapter 3] for more details.

Definition 1.3. An abelian variety is a group variety that is also a complete variety.

We will often simply write X for the abelian variety (X,mX , iX , eX). Note that i2 = idX .

Example 1.4. Abelian varieties over a field k of dimension 1 are called elliptic curves, which are non-singular
curves of genus 1 together with a rational k-point. See [19, Sections II and III] for more details. Using the
theory of divisors and the Riemann-Roch theorem, one can deduce that every elliptic curve over k can be
given by a cubic equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1.1)
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for some ai ∈ k such that the discriminant of the equation is invertible in k. This equation is called a (general)
Weierstrass equation. If the characteristic of the field k is not equal to 2 or 3, then a change of coordinates
makes the equation in (1.1) into the much simpler equation

y2 = x3 +Ax+B

with A,B ∈ k with 4A3 + 27B2 invertible. Such an equation is called a short Weierstrass equation.
The group law on such an elliptic curve has a nice geometric interpretation. Firstly, assume we are working
with an elliptic curve defined by a short Weierstrass equation. The point O = (0 : 1 : 0) at infinity, which
lies on every vertical line, corresponds to the identity element. For any points P,Q on the curve, m(P,Q)
is the result of reflecting the unique third intersection point of the curve with the line through P and Q
(counting with multiplicity) across the x-axis. In particular, the inverse map is given by the reflection across
the x-axis. For a curve given by a general Weierstrass equation, one still has that if P,Q,R lie on the curve
and are collinear, then m(P,m(Q,R)) = O and that i(P ) is the intersection point (other than O) of the
vertical line through P with the curve. However, in this case the curve might not be symmetric, so that the
general formulas are longer.
Explicitly in coordinates assuming the curve is given in generalised Weierstrass form, the maps m and i can

Figure 1: An elliptic curve in R, m(P,Q) = R′

be given using the following rational functions

i(x, y) = (x,−y − a1x− a3)

m((x1, y1), (x2, y2)) =

{
O if x1 = x2 and y1 = −y2 − a1x2 − a3,

(x3, y3) else,

where

x3 = λ2 + a1λ− a2 − x1 − x2,

y3 = −(λ+ a1)x3 − ν − a3,

with

λ =

{
y2−y1

x2−x1
if x1 ̸= x2,

3x2
1+2a2x1+a4−a1y1

2y1+a1x1+a3
if x1 = x2,

ν =

{
y1x2−x1y2

x2−x1
if x1 ̸= x2,

−x3
1+a4x1+2a6−a3y1

2y1+a1x1+a3
if x1 = x2.

One can compute that y = λx + ν defines the line through (x1, y1) and (x2, y2) or the tangent line of the
curve at (x1, y1) if x1 = x2 and y1 = y2.
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The next step is to define maps between abelian varieties X and Y . Maps between algebraic varieties that
preserve the algebraic structure are morphisms of algebraic varieties. Naturally, we want morphisms in the
category of abelian varieties to be morphisms of algebraic varieties that respect the group structures on the
abelian varieties.

Definition 1.5. Let (X,mX , iX , eX) and (Y,mY , iY , eY ) be group varieties and f : X → Y a morphism of
algebraic varieties. We say that f is a homomorphism if the following diagram commutes:

X ×X X

Y × Y Y

f×f

mX

f

mY

.

Remark 1.6. If the above conditions holds, then f(eX) = eY and f ◦ iX = iY ◦ f follow from combining
Definitions 1.1 and 1.5.

Any group can be thought of as acting transitively on itself via either left or right multiplication. The same
can be stated for abelian varieties.

Definition 1.7. Let X be a group variety over a field k and let x ∈ X(k) be a k-rational point. Let
tx : X → X and t′x : X → X be maps such that the following diagrams commute:

X × Spec(k) X ×X

X X

idX×x

mj−1
2

tx

and

Spec(k)×X X ×X

X X

x×idX

mj−1
1

t′x

.

We call tx the right translation and t′x the left translation.

These indeed define a group action, since if we take x = e, then the commutative diagrams simply become
extensions of the ones we have given in Definition 1.1 for the identity element. Furthermore, extending the
diagrams with themself gives that indeed

tm(x,y) = ty ◦ tx and t′m(x,y) = t′y ◦ t′x

for points x, y ∈ X(k). One can also deduce that

ti(x) = t−1
x and t′i(x) = (t′x)

−1.

For a given point x, these can be simply stated as tx(y) = m(y, x) and t′x(y) = m(x, y). Note that tx and
t′x are generally not homomorphisms, since if x ̸= e, then

tx(e) = m(e, x) = x ̸= e,

t′x(e) = m(x, e) = x ̸= e.

Let X and Y be abelian varieties. We will relate any morphism of algebraic varieties from X to Y with
a homomorphism from X to Y and a translation map, which then tells us something about the number of
possible group structures on an algebraic variety. To do that, we first need the following lemma.

Lemma 1.8 (Rigidity). Let X,Y and Z be algebraic varieties over a field k. Suppose that X is complete.
A morphism f : X × Y → Z of algebraic varieties such that for some y ∈ Y (k), the fibre X × {y} is mapped
to a point z ∈ Z(k) factors through the projection prY : X × Y → Y .

Proof. Some parts of this proof were paraphrased from [4, Lemma 1.12].

If k is not algebraically closed, we may apply a base change to the morphism to get a morphism X×Y ×kk →
Z ×k k and if this factors through the projection Y × k, we can get a projection X × Y → Y . Hence, we
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may assume k = k. Any algebraic variety X over k has a k-rational point, hence choose x0 ∈ X(k). Then
define a morphism g : Y → Z by g(y) = f(x0, y). We will show that f = g ◦ prY on k-rational points, which
is sufficient as X × Y is an algebraic variety, hence reduced.

For z ∈ Z, let U ⊆ Z be an open affine neighbourhood of z. By the definition of completeness, prY is a
closed map. This means that the set V defined by V = prY (f

−1(Z − U)) is closed in Y . If P ∈ V , then
by construction f(X × {P}) ⊆ U . Any morphism from a complete irreducible variety to an affine variety is
constant. Furthermore, the algebraic variety X × {P} is canonically isomorphic to X, hence complete. It
follows that f is constant on X × {P}, so f = g ◦ prY on X × (Y − V ), which is a non-empty open subset of
X × Y . By irreducibility of X × Y , it follows that f = g ◦ prY everywhere.

Proposition 1.9. Let X and Y be abelian varieties and let f : X → Y be a morphism of algebraic varieties.
Then, there exists a homomorphism h : X → Y , such that the morphism f is equal to f = tf(eX) ◦ h, where
tf(eX) is the translation over f(eX) on Y .

Proof. Let y ∈ Y be the inverse of f(eX), that is y = iY (f(eX)). Define h : X → Y by h(x) = (ty ◦ f)(x), so
that h(eX) = eY by construction. We want h to be a homomorphism, since then we have that

f = tiY (iY (f(eX))) ◦ h = tf(eX) ◦ h.

Then, the composite morphism g : X ×X → Y defined by

g = mY ◦ ((h ◦mX)× (iY ◦mY ◦ (h× h)))

has the property that

g({eX} ×X) = mY (h(X)× iY (mY (eY × h(X))))

= mY (h(X)× iY (h(X)))

= {eY },

by definition of the maps mX , iY and mY . Hence, by Lemma 1.8, g factors through the projection pr2 :
X×X → X onto the second part and by symmetry also through the projection pr1 : X×X → X. Therefore,
g is the constant map sending every element to eY . It follows that

h ◦mX = iY ◦ iY ◦mY ◦ (h× h) = mY ◦ (h× h).

This shows that h is indeed a homomorphism.

Corollary 1.10. Let (X,m, i, e) be an abelian variety over a field k

1. If (X,n, j, e) is an abelian variety, then m = n and i = j. That is, the morphisms m and i making an
algebraic variety X into a abelian variety with identity element e are necessarily unique.

2. Let s : X×X → X×X be defined by (x, y) 7→ (y, x). Then, the equality m = m◦ s holds, i.e. the group
structure is commutative.

Proof. 1. Suppose (X,m, i, e) and (X,n, j, e) are abelian varieties. By Definition 1.1, for any x ∈ X(k),
we have

m(e, x) = x = n(e, x),

m(x, e) = x = n(x, e).

It follows that m and n are the same on the fibers X × {e} and {e} × X. Define the morphism
h : X × X → X by h = m ◦ (m, i ◦ n). Since m and n agree on the fibers X × {e} and {e} × X, it
follows that h is constant on these fibers by definition of i, sending everything to e. Then, Lemma 1.8
tells us that h factors through the projection X ×X → X. Similar as in the proof of Proposition 1.9,
due to symmetry, it follows that h is constant with value e everywhere. Combining this with the same
morphism but with m and n swapped and j instead of i then gives m = n and i = j.
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2. Since i : X → X is a morphism mapping e to itself, it follows that i is actually a homomorphism by
Proposition 1.9. This implies that the group is abelian.
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2 Isogenies

We are now interested in a specific type of homomorphisms, namely isogenies. In this part, we will discuss
some notions and properties of isogenies. We will always assume that the isogenies are defined over the base
field k unless stated otherwise.

Definition 2.1. Let f : X → Y be a homomorphism of abelian varieties. The kernel of f is defined as the
subscheme Ker(f) = f−1(eY ) of X.

The kernel Ker(f) is a closed subscheme of X that inherits the group structure of X. This leads into the
definition of an isogeny.

Definition 2.2. We call a homomorphism f : X → Y of abelian varieties an isogeny if it is surjective, and
Ker(f) is finite.

However, one can use other equivalent definitions.

Proposition 2.3. Let f : X → Y be a homomorphism of abelian varieties. Then the following are equivalent:

1. f is an isogeny;

2. f is surjective and dim(X) = dim(Y );

3. Ker(f) is finite and dim(X) = dim(Y );

4. f is a finite, flat and surjective morphism.

Proof. The image f(X) is a closed subvariety of Y , since X is a complete variety and Y is a separated
variety. In particular, every point b ∈ f(X) induces the translation map tb which gives an isomorphism of
f−1(0)→ f−1(b). It follows that all fibers of f over points of f(X) are isomorphic up to extension of scalars,
so that they have the same dimension. It follows that

dim f−1(b) = dimX − dim f(X),

which immediately shows the equivalence of the first three statements. The last statement clearly implies
that f is a isogeny, as fibers of finite morphisms are finite sets, in particular the kernel. Now suppose f is
an isogeny. Then, by the above, f is quasi-finite. As dimX = dimY and both X,Y are irreducible regular
noetherian schemes, then f must be flat, see [1, Chapter V].

Definition 2.4. Let f : X → Y be an isogeny. The degree of f is equal to the degree of the function field
extension [k(X) : f∗k(Y )], where f∗ : k(Y )→ k(X) is the pull-back.

As mentioned in the proof of Proposition 2.3, the fibres of f are translates of Ker(f). Hence, the sheaf
f∗OX is a locally free OY -module of finite rank. One can compute this rank to be equal to the degree of f .
Similar as to (homo)morphisms, if f : X → Y and g : Y → Z are isogenies, then so is g ◦ f and furthermore,
deg(g ◦ f) = deg(g) · deg(f).
One important isogeny is the multiplication map by a non-zero integer, which intuitively is the group law
applied multiple times to the same element. We will use the notation x + x for m(x, x). Note that for
m(x,m(x, x)) = x + x + x = m(m(x, x), x) there is no confusion due to associativity, so we can use this
notation for multiple iterative operations.

Definition 2.5. For an abelian variety X over a field k, the multiplication by n map given by

[n]X : X → X

x 7→ n · x = x+ x+ · · ·+ x︸ ︷︷ ︸
n times

,

where n ̸= 0 (for negative n, it maps x to n · i(x)). We write X[n] := Ker([n]X) for the kernel of the map,
which is the n-torsion of the abelian variety.
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One can show that the degree of the map [n]X is exactly n2g, where g = dimX. Furthermore, given an
isogeny f : X → Y of degree d, we can find a nice way to relate it to [d]X .

Proposition 2.6. Let f : X → Y be an isogeny of abelian varieties of degree d. There exists an isogeny
g : Y → X such that g ◦ f = [d]X and f ◦ g = [d]Y .

Proof. Since f is of degree d, we know that Ker(f) is a finite group scheme of rank d. It follows that Ker(f)
is annihilated by [d]X , so [d]X factors as

[d]X =
(
X

f−→ Y
g−→ X

)
for some isogeny g : Y → X. Then, we as isogenies must respect the group structure, we deduce that

g ◦ [d]Y = [d]X ◦ g = g ◦ f ◦ g.

In general, if f, g1, g2, h are isogenies of abelian varieties such that h ◦ g1 ◦ f = h ◦ g2 ◦ f , then g1 = g2. Thus
from the above, we find that [d]Y = f ◦ g if we compose both sides with the identity on Y .

With the above, we can state an important result for the goal of this thesis.

Corollary 2.7. Define the relation ∼ on abelian varieties over k by

X ∼k Y ⇐⇒ there exists an isogeny f : X → Y.

Then, ∼k is an equivalence relation.

Example 2.8. This example is from [19, Chapter III, Example 4.5]. Let k be a field with char(k) ̸= 2 and
A,B ∈ k such that B ̸= 0 and A2 − 4B ̸= 0. Consider the elliptic curves given by

E1 : y2 = x3 +Ax2 +Bx,

E2 : Y 2 = X3 − 2AX2 + (A2 − 4B)X

over k. Then, one can verify that the maps

ϕ : E1 → E2, ϕ̂ : E2 → E1,

(x, y) 7→
(
y2

x2
,
y(B − x2)

x2

)
, (X,Y ) 7→

(
Y 2

4X2
,
Y (A2 − 4B −X2)

8X2

)
.

define isogenies. The kernels of these maps are

Ker(ϕ) = {OE1
, (0, 0)},

Ker(ϕ̂) = {OE2 , (0, 0)}.

The map ϕ is unramified at both those points and similarly for ϕ̂. This shows that both maps are of degree
2. Note that on both elliptic curves, the point (0, 0) has order 2, which can be deduced from the formulas in

Example 1.4. Furthermore, a direct computation shows ϕ ◦ ϕ̂ = [2]E2 and ϕ̂ ◦ ϕ = [2]E1 .

Any isogeny can be factorised in a helpful way. For that, we will first make the following definition regarding
separability and inseparability of an isogeny. See [4, Chapter 5] for more details.

Definition 2.9. Let f : X → Y be an isogeny of abelian varieties. We call f separable if the function field
k(X) is a separable field extension of f∗k(Y ) and purely inseparable if k(X) is a purely separable extension
of f∗k(Y ).

Again, we have multiple equivalent definitions for the above, using the étale property.

Proposition 2.10. Let f : X → Y be an isogeny of abelian varieties.
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1. Then the following are equivalent:

(a) f is a separable isogeny;

(b) f is an étale morphism, i.e. the induced map df of tangent spaces at any point is an isomorphism;

(c) Ker(f) is an étale group scheme.

2. Furthermore, the following are equivalent:

(a) f is a purely inseparable isogeny;

(b) f is a purely inseparable morphism;

(c) Ker(f) is a connected group scheme.

See [16] to learn more about étale morphisms and schemes and [4, Proposition 5.6] for the proof.

Each isogeny can therefore be broken up into a separable part and an inseparable part.

Corollary 2.11. Let f : X → Y be an isogeny of abelian varieties. Then f can be factorised into a
composition f = h ◦ g with g : X → Z a purely inseparable and h : Z → Y a separable isogeny of abelian
varieties. Furthermore, if f = h′ ◦g′ : X → Z ′ → Y , then there is an isomorphism α : Z → Z ′ with g′ = α◦g
and h′ = α ◦ h.
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3 Tate-ℓ-module

Recalling the map given in Definition 2.5, one can prove that [n]X is separable if gcd(n, char(k)) = 1. In
particular, this lets us deduce the structure of the n-torsion subgroup, see [4, Corollary 5.11].

Proposition 3.1. Let X be an abelian variety over a field k. Let ks be the separable closure of k. If
gcd(char(k), n) = 1, then X[n](ks) ≃ (Z/nZ)2g.

Let ℓ be a prime different from char(k). Since [ℓn]X is in this case separable, it can be shown that X[ℓn] is
completely determined by the ℓn-torsion points X[ℓn](ks) in X(ks) and the natural action of the Galois group
Gal(ks/k). Furthermore, by Proposition 3.1, we find that X[ℓn](ks) ≃ (Z/ℓnZ)2g and note that multiplication
by ℓ induces a group homomorphism

X[ℓn+1](ks)
[ℓ]X−−→ X[ℓn](ks)

and so a homomorphism X[ℓn+1]→ X[ℓn] of group schemes as well. Taking the inverse limit of n, one finds
a construction similar to that of the ℓ-adic integers Zℓ from the finite groups Z/ℓnZ.

Definition 3.2. Let X be an abelian variety over a field k. The Tate-ℓ-module of X is the inverse limit

TℓX := lim←−
n

X[ℓn](ks),

where the inverse limit is taken with respect to the natural maps

X[ℓn+1](ks)
[ℓ]X−−→ X[ℓn](ks).

Using Proposition 3.1, we determine that the structure of TℓX is that of a free Zℓ-module of rank 2g, where
g = dimX. Explicitly, an element x of TℓX is the limit of an infinite sequence (x1, x2, . . .) in X(ks) such
that ℓ ·x1 = 0 in X(ks) and ℓ ·xj = xj−1 for each j > 1. In particular, it follows that xj ∈ X[ℓn](ks) for each
1 ≤ j ≤ n.

As Gal(ks/k) has a natural action on each X[ℓn](ks), we obtain a natural action of Gal(ks/k) on TℓX,
namely the ℓ-adic representation

ρ : Gal(ks/k)→ Aut(TℓX).

We will now describe a useful property of the Tate module. Let f : X → Y be a homomorphism of abelian
varieties over a field k. As f is a homomorphism, it must map ℓn-torsion points of X to ℓn-torsion points of
Y , i.e. for each integer n, f induces a map

f : X[ℓn](ks)→ Y [ℓn](ks).

In particular, it induces a map

Tℓf : TℓX → TℓY,

which is Zℓ-linear and Gal(ks/k)-equivariant. This leads to the following result, see [15, Theorem I.10.15]

Lemma 3.3. Let X and Y be abelian varieties over a field k. For any prime ℓ ̸= char(k), the natural map

Hom(X,Y )⊗ Zℓ → HomZℓ
(TℓX,TℓY )

given by f ⊗ c 7→ c · Tℓf is injective and has finite cokernel.

Tate [24] showed an even stronger result in the case where k is a finite field.



3 TATE-ℓ-MODULE 16

Theorem 3.4. Let k be a finite field, X and Y abelian varieties over k. Then

Hom(X,Y )⊗ Zℓ → HomZℓ[Gal(ks/k)](TℓX,TℓY )

is an isomorphism, where on the right-hand side we mean Zℓ-linear homomorphisms TℓX → TℓY that com-
mute with Gal(ks/k).

Since TℓX is a free Zℓ-module of rank 2 dimX and similarly for Y , we get the structure of Hom(X,Y ).

Corollary 3.5. Let X and Y abelian varieties over a field k. Then Hom(X,Y ) is a free Z-module of rank
≤ 4 · dim(X) · dim(Y ).

As TℓX is a free Zℓ-module, it can be embedded into the vector space VℓX := TℓX ⊗Zℓ
Qℓ. As an isogeny

f : X → Y of abelian varieties over k induces a map Tℓf : TℓX → TℓY , we also get an induced map
Vℓf : VℓX → VℓY . The map Vℓf is an isomorphism, as X and Y have the same dimension and f is surjective
by Proposition 2.3. Similar as Tℓf , it behaves well under the Galois group action Gal(ks/k).

In particular, if f : X → X is an endomorphism, then we obtain a linear transformation Vℓf on VℓX.

Definition 3.6. Let X be an abelian variety over a field k. Let ℓ be a prime such that ℓ ̸= char(k). The
characteristic polynomial Pf (x) of the endomorphism f : X → X is the characteristic polynomial of the
matrix induced by Vℓf : VℓX → VℓX, i.e. Pf (x) = det(x · id2g − Vℓf).

It can be shown that this definition does not depend on the choice of the prime ℓ, for example in [4, Theorem
12.18]. Note that VℓX is a vector space over Qℓ of dimension 2g. Hence, the matrix induced by Vℓf is a
2g× 2g-matrix with coefficients in Qℓ and so Pf (x) is a degree 2g monic polynomial in Qℓ by linear algebra.
In particular, we know that the coefficient of x2g−1 is minus the trace of the matrix, which we will call the
trace Tr(f) of f .

Moreover, an alternative way to define the characteristic polynomial is due to the following property, see [4,
Chapter 12]:

Proposition 3.7. Let X be an abelian variety over a field k. Let f : X → X be an endomorphism. Then
there is a unique monic polynomial Pf (x) ∈ Q[x] which has degree 2g and satisfies Pf (n) = deg(f − [n]X)
for all n ∈ Z.

An important consequence of this correspondence is that there is a factorisation of the characteristic poly-
nomial of the endomorphism f in accordance to how the abelian variety X can be decomposed.

Definition 3.8. An abelian variety X is called simple if there is no abelian subvariety Y ⊊ X such that
Y ̸= 0. We call X elementary if it is isogenous to a power of a simple abelian variety.

One can show that every abelian variety X can be decomposed into a product of elementary abelian varieties
such that none of the simple abelian varieties are isogenous, see [4, Corollary 12.5]. In other words, there are
simple abelian varieties X1, . . . , Xt with no two of them isogenous and positive integers m1, . . . ,mt with

X ∼k Xm1
1 × · · · ×Xmt

t . (3.1)

This decomposition then also tells us something about the Q-algebra End0(X) := End(X)⊗Q. Note that any
homomorphism between simple abelian varieties must be either 0 or an isogeny. Therefore, for simple abelian
varieties X, we have that End0(X) must be a division algebra, as we have seen that for any endomorphism
f there exists an endomorphism g with g ◦ f = [deg(f)]X and in End0(X), this has an inverse, namely as
deg(f) is an integer, so it has an inverse in Q. Furthermore, one can deduce that then End0(Xn) is then
isomorphic to Mn(End

0(X)), which consists of all n×n-matrices with coefficients in End0(X). From this, it
can be determined that if X is of the form as in (3.1), then the following result holds.

Lemma 3.9. Let X be an abelian variety over a field k such that it is isogenous to

X ∼k Xm1
1 × · · · ×Xmt

t
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where each X1, . . . , Xt is simple and no two of them are isogenous. Then,

End0(X) ≃Mm1(End
0(X1))× · · · ×Mmt(End

0(Xt)),

where End0(X) = End(X)⊗Q and Mm(End0(Xj)) is the m×m matrix ring with indices in End0(Xj).
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4 Frobenius endomorphism

An important isogeny is the Frobenius endomorphism when working with an abelian variety X over a finite
field Fq, where q is a prime power. On Fq, there exists an automorphism given by x 7→ xq, of which the fixed
points are exactly Fq. If we have an algebraic variety X over Fq, then this map induces a morphism X → X,
which fixes X(Fq).

Definition 4.1. For an algebraic variety X over Fq, the Frobenius endomorphism πX : X → X is defined to
be the identity on the underlying topological space X and f 7→ fq on the sections f of the sheaf OX .

Note that if f : X → Y is a morphism, then f ◦ πX = πY ◦ f . In particular, for any projective embedding
X → Pn, the Frobenius endomorphism induces the map (x0 : . . . : xn) 7→ (xq

0 : . . . : xq
n) on X(Fq) and

the fixed points are given by X(Fq). In other words, Ker(πX − id) = X(Fq) if we view the Frobenius
endomorphism as πX : X(Fq)→ X(Fq). One can show that the map πX − id is a separable map, which can
be deduced from observing that the map (dπ)0 is equal to 0 for any variety over a field of characteristic p. If
restricted to an affine open U ⊆ X, which can be embedded into An, the map π is given by Xi 7→ Xq

i , which

has differential d(Xq
i ) = qXq−1

i = 0 in characteristic p. Hence, it follows that

d(π − id)0 = (dπ)0 − d(id)0 = 0− 1 = −1,

which implies π − id is separable at the origin by Proposition 2.10. In particular due to the structure of
abelian varieties, it follows that it is separable at every point.
Hence, if X is an abelian variety over Fq, then the identity element is fixed under the Frobenius. It follows
that πX is an endomorphism. Moreover, one can show that its degree is qg and that it is a purely inseparable
map, refer to [4, Theorem 5.15]. Furthermore, we can consider its characteristic polynomial PπX

(x) and
deduce some properties, as explained in [15, Theorem II.1.1].

Definition 4.2. Let X be an abelian variety over a finite field Fq and πX the Frobenius endomorphism. The
characteristic polynomial of X is the characteristic polynomial PπX

(x) ∈ Z[x] of the Frobenius endomorphism.

Theorem 4.3. Let X be an abelian variety over a finite field k = Fq. Let PπX
(x) be its characteristic

polynomial. Write PπX
(x) =

∏2g
i=1(x− αi) for some α1, . . . , α2g ∈ C. Then

(a) |X(Fqm)| =
∏2g

i=1(1− αm
i ),

(b) |αi| = q
1
2 .

Example 4.4. Let E be an elliptic curve over Fq. Then the characteristic polynomial of the Frobenius
endomorphism on E is given by the polynomial x2 − tx+ q, where t is the trace of Frobenius and |E(Fq)| =
q + 1− t.

To see why Theorem 4.3 (a) holds, note that we explained above that πX − idX is a separable map. This
implies

|X(Fq)| = deg(πX − id),

as the kernel of πX − idX is exactly X(Fq). Then by Proposition 3.7, it follows that PπX
(1) = deg(πX − idX)

as [1]X = idX . If we replace q with qm and πX with πm
X , we get a similar result. Note that by linear algebra,

if α1, α2, . . . , α2g are the eigenvalues of πX , then αm
1 , αm

2 , . . . , αm
2g are those of πm

X . For (b), one uses the
Rosati involution on End(X)⊗Q, see [15, Section I.14, Lemmas II.1.2 and II.1.3].

Theorem 4.3 is closely related to the Weil conjectures for abelian varieties.

Definition 4.5. Let X be a projective variety over Fq. Let N1, N2, . . . be the sequence such that Nm =
|X(Fqm)|. The zeta function of X is defined as the power series

Z(X; t) = exp

( ∞∑
m=1

Nm
tm

m

)
∈ Q[[t]].
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Example 4.6. Let X = P1 be the projective line over Fq. We know that P1 over any field k is the union
P1(j) = {(x : 1) | x ∈ j} ∪ {(1 : 0)}. Thus, Nm = |X(Fqm)| = qm + 1 and we deduce

Z(X; t) = exp

( ∞∑
m=1

(qm + 1)
tm

m

)
.

Moreover, due to the power series expansion of the logarithm we find

logZ(P1; t) =

∞∑
m=1

(qm + 1)
tm

m
= − log(1− t)− log(1− qt) = log

(
1

(1− t)(1− qt)

)
.

In particular, we have determined that

Z(P1; t) =
1

(1− t)(1− qt)
.

Theorem 4.7. Let X be an abelian variety over Fq of dimension g. Then the following holds:

1. Rationality

Z(X; t) ∈ Q(t),

i.e. Z(t) is a rational function.

2. Functional equation

Z

(
X;

1

qgt

)
= ±qgϵ/2tϵZ(X; t),

where ϵ is the Euler characteristic of X.

3. Riemann hypothesis

Z(X; t) =
P1(t)P3(t) · · ·P2g−1(t)

P0(t)P2(t) · · ·P2g(t)
,

where Pi(t) ∈ Z[t] for each i such that P0(t) = 1− t and P2g(t) = 1− qgt and for each 1 ≤ i ≤ 2g − 1,
the polynomial Pi(t) factors over C as

Pi(t) =
∏

(1− αijt),

with |αij | = q1/2. The degree of Pi(t) is called the ith Betti number of X.

See Weil’s article [27] for more details.

From Theorem 4.3 and the fact that the characteristic polynomial has real coefficients, we can deduce some
properties regarding multiplicities of roots, as described in [4, Theorem 16.4].

Corollary 4.8. Let X be an abelian variety over Fq and PπX
(x) its characteristic polynomial. If α is a

non-real root of PπX
(x), then its conjugate α = q/α is as well and they both have the same multiplicity.

Furthermore, if α =
√
q or α = −√q is a root of PπX

(x) is a root, then it has an even multiplicity.

Proof. As |α| = √q due to Theorem 4.3, we have α = q/α. Furthermore, because PπX
(x) is a real polynomial,

it is clear that α and α must have the same multiplicity. It follows that we can pair the non-real roots with
their complex conjugates to factor PπX

(x) over R into

PπX
(x) = (x−√q)k(x+

√
q)ℓ

∏
PπX

(α)=0

Im(α)>0

(x2 − (α+ α)x+ q), (4.1)
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where the product is taken over all non-real roots with positive imaginary part to ensure conjugate roots are
not counted twice. Since PπX

is a polynomial of degree 2g and all non-real roots occur in pairs with their
complex conjugate, we must have that k + ℓ is even. Suppose k and ℓ are both odd and that without loss of
generality k ≤ ℓ. Then

(x−√q)k(x+
√
q)ℓ = (x2 − q)k(x+

√
q)ℓ−k.

As ℓ−k is even, the constant term of (x+
√
q)ℓ−k is q(ℓ−k)/2. As k is odd, the constant coefficient of (x2−q)k

is −qk and so we would get that the right-hand side of (4.1) will be equal to −qg. However, from linear
algebra, we know that PπX

(0) = deg(πX(x)) = qg, which is a contradiction. Hence, the multiplicities of the
even roots are even.

Hence, we can factor the characteristic polynomial into quadratic polynomials in R, of the form

PπX
(x) =

g∏
i=1

(x2 − (αi + αi)x+ q),

with |αi + αi| ≤ 2
√
q. From this, we can deduce that the characteristic polynomial is of the form

PπX
(x) = x2g + a1x

2g−1 + · · ·+ ag−1x
g+1 + agx

g + ag−1qx
g−1 + · · ·+ a1q

g−1x+ qg

= x2g + agx
g + qg +

g−1∑
i=1

ai
(
x2g−i + qg−ixi

)
.
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5 Isogeny classification

The importance of the characteristic polynomial of the Frobenius endomorphism of abelian varieties over
finite fields is due to the following result by Tate [24, Theorem 1].

Theorem 5.1. Let X and Y be abelian varieties over a finite field k and let πX and πY be the characteristic
polynomials of their respective Frobenius endomorphisms. Then the following are equivalent:

1. X and Y are k-isogenous.

2. PπX
(x) = PπY

(x).

3. Z(X; t) = Z(Y ; t).

4. |X(k′)| = |Y (k′)| for any finite extension k′ of k.

By Theorem 4.3 and Definition 4.5 it is very clear why the last three statements are equivalent. For the
equivalence of the first two statements, one uses Theorem 3.4. Namely, one shows that PπX

(x) divides PπY
(x)

if and only if Vℓ(X) is isomorphic to a subspace of Vℓ(Y ) for some ℓ, which follows from the semisimple actions
of the Frobenius endomorphisms on the Tate modules and that the latter statement equivalent is to X being
isogenous to an abelian subvariety of Y using Theorem 3.4.

Furthermore, if we decompose any abelian variety X over a finite field k into a product of elementary abelian
varieties, say

X ∼k Xm1
1 × · · · ×Xmn

n ,

then by Lemma 3.9, if PπX
(x) denotes the characteristic polynomial of X and PπX1

(x), . . . , PπXn
(x) of

X1, . . . , Xn respectively, we get

PπX
(x) =

n∏
i=1

(PπXi
(x))mn .

Therefore, we will assume that X is a simple abelian variety until the end of this chapter. By Tate [24,
Theorem 2], we know that the center Q[πX ] of End(X) ⊗ Q is a field and that PπX

(x) is a power of a
polynomial P (x) ∈ Q[x] that is irreducible over Q, say PπX

(x) = P (x)d. More precisely, the polynomial
P (x) is the minimal polynomial of πX over Q, where we identify the Frobenius endomorphism with a root
of the characteristic polynomial and consider the embedding Q[πX ]→ C. Moreover, it holds that deg(P ) =
[Q(πX) : Q] and d = [End0(X) : Q(πX)]1/2, consequently 2 dim(X) = d · deg(P ).

Definition 5.2. Let q be a prime power. A q-Weil number π is an algebraic integer such that |σ(π)| = √q
for every embedding σ : Q[π] → C. The set of all q-Weil numbers is denoted by W (q). We say that two
q-Weil numbers are conjugate if they have the same minimal polynomial over Q. A monic polynomial P (x)
with integer coefficients is called a q-Weil polynomial if every root of P (x) is a q-Weil number.

By Theorem 4.3, we see that the Frobenius endomorphism represents a conjugacy class of q-Weil numbers,
so we can indeed identify the Frobenius endomorphism with an algebraic integer π ∈ Q. Let π be any
algebraic integer. Due to the restrictions on q-Weil numbers and its conjugates, one can show that π must
be either one of the following forms, see [3, Lemma 2.2].

Lemma 5.3. π is a q-Weil number if and only if either

1. π =
√
q or π = −√q, or

2. π is a (complex) root of x2− (π+ q/π)x+ q with Q(π+ q/π) a totally real field in which (π+ q/π)2−4q
is totally negative.
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Firstly, if π =
√
q (or π = −√q), then its minimum polynomial is given by x −√q (or x +

√
q) if

√
q ∈ Z

and x2 − q if
√
q /∈ Z. If π does not have a real embedding note that the complex conjugate of π is π = q/π,

so that Q(π + q/π) is totally real and Q(π) is a quadratic extension of it. Furthermore, |π + q/π| < 2
√
q.

Conversely, for any algebraic number β ∈ R with |β| < 2
√
q, the solutions of the equation π2 − βπ + q = 0

give q-Weil numbers π with Q(π) quadratic over Q(β), since the polynomial x2 − βx + q has a negative
discriminant for β < 2

√
q and so its roots are complex conjugates with absolute value

√
q.

With the definition of q-Weil numbers, one can now make a classification of simple abelian varieties up
to isogeny, as we have seen in Theorem 4.3 that isogenous abelian varieties have the same characteristic
polynomial, hence the same q-Weil numbers up to conjugacy. The following result has been proven by Honda
[10] and Tate [23].

Theorem 5.4. Let q be a prime power. There exists a bijection between isogeny classes of simple abelian
varieties over Fq and conjugacy classes of q-Weil numbers given by associating a simple abelian variety X
over Fq to a root of its characteristic polynomial.

We can distinguish the cases between real q-Weil numbers, which are
√
q and −√q, and non-real q-Weil

numbers. A useful result from [8, Lemma 2.4] states that the simple abelian variety corresponding to a
real q-Weil numbers is either of dimension 1 or 2, which can be deduced from the fact that the minimal
polynomials of

√
q and −√q have degree 1 if q is a square or degree 2 if q is not a square.

Lemma 5.5. Let X be a simple abelian variety over Fq = Fpn and PπX
(x) its characteristic polynomial. If

PπX
(x) has a real root, then either

1. dim(X) = 1 if n is even, or

2. dim(X) = 2 if n is odd.
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6 Classification of q-Weil polynomials

We know that the characteristic polynomial of an abelian variety is a Weil polynomial. However, the converse
is not necessarily true. Hence, in order to determine the isogeny classes of simple abelian varieties over a
given finite field Fq as described in [8, Chapter 2], we will first have to determine a criterion for which a
polynomial with integer coefficients of the form

x2g + a1x
2g−1 + · · ·+ ag−1x

g+1 + agx
g + ag−1qx

g−1 + · · ·+ a1q
g−1x+ qg (6.1)

is a q-Weil polynomial. Furthermore, as X is simple and thus PπX
(x) = (P (x))d where P (x) is an irreducible

q-Weil polynomial and d is a positive integer, we would also need to determine all possible d. Lastly for each
of these d, we need to find the criteria for which a q-Weil polynomial of the form (6.1) is the characteristic
polynomial of some simple abelian variety of dimension g over Fq.

For isogeny classes of abelian varieties that are not simple, we can use and combine the results from lower
dimensions, as the decomposition of an abelian variety into simple abelian varieties corresponds one-to-one
with the factorisation of the characteristic polynomial into the characteristic polynomials of the simple abelian
varieties.

6.1 Characteristic polynomial

Again, assuming we only consider simple abelian varieties over Fq = Fpn , the characteristic polynomials will
be of the form PπX

(x) = (P (x))d, where P (x) is an irreducible q-Weil polynomial over Q, i.e. P (x) is the
minimal polynomial of a q-Weil number.

For a polynomial of the form

h(x) = x2g + a1x
2g−1 + · · ·+ ag−1x

g+1 + agx
g + ag−1qx

g−1 + · · ·+ a1q
g−1x+ qg,

we note that h(x) = x2g

qg h
(
q
x

)
for x ̸= 0, so we can rearrange the roots of h into α1, q/α1, α2, q/α2, . . . , αg, q/αg.

Pairing the root αi with q/αi gives

h(x) =

g∏
i=1

(x2 − (αi + q/αi)x+ q).

By Lemma 5.3, we must have αi+q/αi ∈ R and |αi+q/αi| ≤ 2
√
q for all i in order to get a q-Weil polynomial

by the abc-formula. Equivalently, the polynomials

h+(x) =

g∏
i=1

(x− (2
√
q − (αi + q/αi))),

h−(x) =

g∏
i=1

(x− (2
√
q + (αi + q/αi))),

only have non-negative roots. This results in the following statement.

Proposition 6.1. Let h(x) be an integer polynomial of degree 2g of the form

h(x) = x2g + a1x
2g−1 + · · ·+ ag−1x

g+1 + agx
g + ag−1qx

g−1 + · · ·+ a1q
g−1x+ qg.

Then, h(x) is a q-Weil polynomial if and only if there exists ω1, . . . , ωg ∈ C such that h(x) can be factored
into

h(x) =

g∏
i=1

(x2 + ωix+ q)
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over C and the polynomials

h+(x) =

g∏
i=1

(x− (2
√
q − ωi)),

h−(x) =

g∏
i=1

(x− (2
√
q + ωi)),

only have real roots that are all non-negative. Moreover, h(x) has no real roots if and only if the roots of
h+(x) and h−(x) are all positive.

The coefficients of h+(x) and h−(x) are related to those of h(x) and can be described using the degree and
coefficients of h(x) without knowing the values of the ωi’s. The reason we formulate Proposition 6.1 in this
way is because the degrees of h+(x) and h−(x) are equal to a half of the degree of h(x). This means we can
more easily determine conditions on the coefficients of h+(x) and h−(x) with unknown ωi’s using formulas
for their roots.

If P (x) does not have a real root, then by [26, Theorem 8] one can make a criterion on which d can occur
given P (x).

Lemma 6.2. Let P (x) be a q-Weil polynomial without real roots that is irreducible over Q, where q = pn.
Let f1(x), . . . , ft(x) be its irreducible factors over Qp. Then, (P (x))d is the characteristic polynomial of a
simple abelian variety of dimension 1

2 · d · deg(P ) over Fq, where d is the least common denominator of

vp(f1(0))

n
, . . . ,

vp(ft(0))

n
,

where vp(fi(0)) is the p-adic valuation of fi(0).

If P (x) does have a real root, we can simply apply Lemma 5.5.

In general, it is difficult to consider all possible powers d such that (P (x))d is the characteristic polynomial
of an abelian variety of dimension g = 1

2 · d · deg(P ), as g could have many divisors. The following result by
Hayashida [8, Theorem 1.2] gives a clear criterion for the case where d = g > 2, i.e. characteristic polynomials
of simple abelian varieties of dimension g that are of the form (x2+ax+ b)g, where x2+ax+ b is irreducible.

Theorem 6.3. Let a, b ∈ Z and 2 < g ∈ Z. Set h(x) = (x2 + ax+ b)g ∈ Z[x]. Then the polynomial h(x) is
the characteristic polynomial of a simple abelian variety of dimension g over Fq = Fpn if and only if g divides
n, b = q, |a| < 2

√
q and a = kqs/g, where k, s ∈ Z satisfying gcd(k, p) = 1, gcd(g, s) = 1 and 1 ≤ s < g/2.

Example 6.4. Suppose g = ℓ is an odd prime. We want to find the d such that (P (x))d is the characteristic
polynomial of a simple abelian variety, where P (x) is an irreducible q-Weil polynomial. Clearly, d has to
divide 2ℓ = deg((P (x))d), so d ∈ {1, 2, ℓ, 2ℓ}. Suppose d = 2ℓ or d = 2, which means deg(P ) is odd, so it must
have a real root. However, this contradicts Lemma 5.5 as real q-Weil numbers correspond to simple abelian
varieties of dimension 1 or 2. Therefore, the only characteristic polynomials of simple abelian varieties of
dimension ℓ are those from Theorem 6.3 or irreducible q-Weil polynomials of degree 2ℓ satisfying Lemma 6.2
with d = 1.

6.2 Newton polygon

To check if an irreducible q-Weil polynomial without real roots satisfies Lemma 6.2 for a given d, one can
look at its Newton polygon.

Definition 6.5. Let P (x) = b0 + b1x+ · · ·+ bd−1x
d−1 + bex

e be a polynomial with integer coefficients and p
a prime integer. The Newton polygon of P (x) with respect to p is the lower convex hull of the following set
of points in the real coordinate plane:

Sp(P ) = {(0, vp(b0)), (1, vp(b1)), . . . , (d, vp(be))}.
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A Newton polygon can be constructed from Sp(P ) by rotating a vertical line counterclockwise about
(0, vp(b0)) and (0, vp(b0)) until it hits a point (i, vp(bi)) and taking the line segment from (0, vp(b0)) to
the greatest i1 such that (i1, vp(bi1)) is on the line. Afterwards, rotating the line counterclockwise about
(i1, vp(bi1)) until it hits another point in SP gives another edge by taking the line segment from (i1, vp(bi1))
to (i2, vp(bi2)), where i2 is the largest index such that (i2, vp(bi2)) is on the line. Then continuing by rotating
the line about (i2, vp(bi2)) and so on until the point (e, vp(be)) is reached.

Example 6.6. Let p = 2 and

P (x) = x14+3x13+30x12+28x11+10x10+16x9+160x8+224x7+320x6+64x5+80x4+448x3+960x2+192x+128.

Then the set S2(P ) is

S2(P ) = {(0, 7), (1, 6), (2, 6), (3, 6), (4, 5), (5, 6), (6, 6), (7, 5), (8, 5), (9, 4), (10, 2), (11, 2), (12, 1), (13, 0), (14, 0)}.

The Newton polygon of P (x) is therefore as in Figure 2.

Figure 2: The Newton polygon for Example 6.6

Clearly, the initial point and endpoint of the Newton polygon with respect to p of a polynomial of the form

h(x) = x2g + a1x
2g−1 + · · ·+ ag−1x

g+1 + agx
g + ag−1qx

g−1 + · · ·+ a1q
g−1x+ qg,

with q = pn are (0, n · g) and (2g, 0) respectively. Furthermore, as bi = qg−ib2g−i for 1 ≤ i ≤ g − 1, we have
vp(bi) = n(g− i)+ vp(b2g−i) for 1 ≤ i ≤ g− 1. If α is a root of a q-Weil polynomial, then q/α is a root of the
same multiplicity. This gives us a lot of information about the Newton polygon due to the following lemma
[12, IV, Lemma 4].

Lemma 6.7. Let P (x) be a polynomial of degree 2g and LP its splitting field in C. Let P (x) = (x−α1)(x−
α2) · · · (x− α2g) be the factorisation of P (x) in LP . Denote by vp the extension of the p-adic valuation from
Qp to LP . Let λi = −vp(αi). If λ is the slope of a segment of the Newton polygon of P (x) with respect to p
with horizontal length m, then precisely m of the λi’s are equal to λ.

Corollary 6.8. Let P (x) be an irreducible q-Weil polynomial of degree 2g, where q = pn. Then P (x) is the
characteristic polynomial of a simple abelian variety of dimension g over Fq if and only if its Newton polygon
satisfies the following conditions.

1. The initial point is (0, gn) and the end point is (2g, 0).

2. Every vertex is contained in the lattice Z× nZ.

3. If the Newton polygon has an edge with slope −λ, then it has another edge with slope −(n−λ) with the
same horizontal length.
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Proof. The first statement is clear. Assuming the second statement holds, the third statement follows from
Lemma 6.7 and

vp(q/α) = vp(q)− vp(α) = n− vp(α).

By Lemma 6.2, we must have that vp(fj(0)) ∈ nZ for each irreducible factor fj(x) of P (x) in Qp[x]. Further-
more, for each segment of the Newton polygon of P (x), the length ℓj of its projection onto the horizontal
axis is exactly the degree of a factor fj(x) of P (x) in Qp and all of the roots of fj(x) have valuation equal to
−sj , where sj is the slope of the edge. Hence, we have that vp(fj(0)) = lj ·sj , i.e. the condition that vp(fj)/n
is an integer is equivalent to lj · sj being a multiple of n. This, in combination with the first statement, gives
us that every vertex must have a multiple of n as y-coordinate.

Constructing all possible Newton polygons satisfying these conditions and considering the possibilities for
the coefficients gives us a classification of all possible characteristic polynomials.

Remark 6.9. Recall that if P (x) is a q-Weil polynomial, we can write

P (x) = x2g + a1x
2g−1 + · · ·+ ag−1x

g+1 + agx
g + ag−1qx

g−1 + · · ·+ a1q
g−1x+ qg

= x2g + agx
g + qg +

g−1∑
i=1

ai
(
x2g−i + qg−ixi

)
.

As vp(q
g−i) = (g − i)n, we have that the Newton polygon of P (x) is uniquely determined by the values

of vp(a1), vp(a2), . . . , vp(ag). Since the endpoints of the Newton polygon are (0, gn) and (2g, 0), we can
determine all possible Newton polygons by looking at all lattice points with x-coordinate corresponding to
a1, . . . , ag that are below the line between (0, gn) and (2g, 0) and on or above the x-axis.

The Newton polygons can be partially distinguished by the length of the segment with horizontal horizontal,
which shows a property of the corresponding isogeny class.

Definition 6.10. Let X be an abelian variety over Fq = Fpn . The p-rank of X is the integer 0 ≤ r(X) ≤ g
such that X[p](k) ≃ (Z/pZ)r(X).

By Gonzalez [5, Proposition 3.1], we have the following proposition.

Proposition 6.11. Let X be an abelian variety of dimension g over a finite field k = Fq = Fpn with
characteristic polynomial PπX

(x). Let r(X) be the p-rank of X. Then r(X) is equal to the sum of the
multiplicities of the non-zero roots of the (mod p)-reduced polynomial PπX

(x) in C.

If the characteristic polynomial is reduced modulo p, then it will be of the form

x2g + a1x
2g−1 + . . .+ agx

g ≡ xg(xg + a1x
g−1 + . . .+ ag) (mod p).

The number of non-zero roots of this polynomial in C counted with multiplicity is equal to the largest index
0 ≤ i ≤ g such that ai ̸≡ 0 (mod p), equivalently the highest index i such that vp(ai) = 0, since the ai’s are
all integers, so vp(ai) ≥ 0. Hence, we immediately obtain the following result.

Corollary 6.12. The p-rank of an abelian variety over Fq = Fpn with characteristic polynomial PπX
(x) is

equal to the length of the horizontal slope of the Newton polygon of PπX
(x).
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7 Robinson’s method

7.1 Explanation of the method

The method Haloui [6, Chapter 2] and Sohn [21] use to determine bounds on the coefficients of q-Weil
polynomials is called Robinson’s method, originally explained in [20, Chapter 2]. The method relies on two
results. The first result is Rolle’s theorem which implies that if a polynomial has only real roots that are all
positive, then so does all its derivatives. The second result is the following lemma.

Lemma 7.1. Let k ≥ 2 and h(x) be a monic polynomial of degree k − 1 with real roots β1 > β2 > . . . >
βk−1 > 0. Consider the monic polynomial H(x) = k

∫ x

0
h(t)dt. Let c ∈ R. Then every root of H(x) − c is

real and positive if and only if (−1)kc < 0 and

⌊k/2⌋
max
i=1

H(β2i−1) ≤ c ≤
⌊(k−1)/2⌋
min
i=1

H(β2i). (7.1)

Proof. The statement can be deduced from looking at the graph of H(x) which can be determined using the
graph of h(x). Namely, since h(x) is a (multiple) of the derivative of H(x), we know that β1, . . . , βk−1 are the
critical points of the graph of H(x), i.e. the local minima and local maxima, since all roots are distinct. Since
H(x) is monic, there is some x0 ∈ R such that H(x) is only increasing for x > x0. In particular, H(x) attains
a local minimum at x = β1. Subsequently, as all roots are distinct and functions defined by polynomials are
continuous, H(x) attains a local maximum at x = β2. Inductively, H(β2i−1) are all local minima and H(β2i)
are all local maxima. In order for all roots of H(x)− c to be real, i.e. for the graph to have k distinct values
of x for which H(x) = c, we must have that c is a value between all those local minima and maxima. In other
words, c is a value greater than or equal to the highest local minimum and less than or equal to the lowest
local maximum. Conversely, if c satisfies (7.1), then by looking at the graph we can determine that H(x)− c
has k real roots α1 ≥ α2 ≥ . . . ≥ αk satisfying αi ≥ βi for 1 ≤ i ≤ k − 1 and αj ≤ βj−1 for 2 ≤ j ≤ k.

In particular, α1, . . . , αk−1 are positive roots. The condition (−1)kc < 0 follows from Descartes’ rule of sign
change, which states that the number of positive roots (counted with multiplicity) of a polynomial is either
equal to the number of sign changes between consecutive coefficients of the polynomial or an even number less
than that. Since h(x) is a monic polynomial with all roots real and positive, it follows that the coefficients
of h(x) and subsequently H(x) changes k − 1 times, i.e. the sign of the coefficient of xn in H(x) is (−1)k−n.
In order for α1 to be a positive root, we must have that the coefficients of H(x)− c changes k times, as we
know it has already at least k − 1 positive roots. Hence, the condition (−1)kc < 0 follows.

Remark 7.2. The condition that h(x) and H(x) are monic polynomials is not strictly necessary, if we scale
c appropriately, since the roots of h(x) do not change if we multiply h(x) by some real constant. Hence, the
extrema of the primitives of h(x) remain also at the same values of x. However, one should be careful when
h(x) has a negative leading coefficient. If that is the case, the primitives of h(x) will have local maxima at
the even-numbered roots of h(x), while the local minima are at the odd-numbered roots of h(x).

Corollary 7.3. Let H(x) be a polynomial with a derivative that has only real roots that are all positive. Let
c ∈ R. Then every root of H(x)− c is real and positive, one of which being a multiple root, if and only if

⌊k/2⌋
max
i=1

H(β2i−1) = c ≤
⌊(k−1)/2⌋
min
i=1

H(β2i) or
⌊k/2⌋
max
i=1

H(β2i−1) ≤ c =
⌊(k−1)/2⌋
min
i=1

H(β2i).

Proof. We will use the same notation as in Lemma 7.1. If H(x)− c has a multiple root at some x = α if and
only if α is also a root of its derivative, i.e. h(α) = 0. This means α = βi for some 1 ≤ i ≤ k− 1. Due to the
restrictions on c in Lemma 7.1, the result follows.

Example 7.4. Let

h(x) = x4 − 10x3 + 35x2 − 50x+ 24 = (x− 1)(x− 2)(x− 3)(x− 4),
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so that βi = 5− i for 1 ≤ i ≤ 4. Then, we easily compute∫ x

0

h(t)dt =
1

5
x5 − 5

2
x4 +

35

3
x3 − 25x2 + 24x. (7.2)

We will simply define H(x) as the integral in (7.2) and make the graph of H(x), see Figure 3. Since h(x)
is a polynomial of degree 4, we know H(x)− c is a polynomial of degree 5 and hence has exactly 5 roots in
C, counted with multiplicity. We can see from the graph that H(x)− c has exactly 5 real roots that are all
positive if and only if

7 +
11

15
= max{H(4), H(2)} ≤ c ≤ min{H(3), H(1)} = 8 +

1

10
.

The condition that (−1)5c < 0 is in this case automatically satisfied.

Figure 3: The values of c for which every root of H(x)− c is real and positive

Henceforth, we will simply assume that the leading coefficient of h(x) is positive and that H(x) =
∫ x

0
h(t)dt,

i.e. H(x) is the primitive of h(x) with a root at x = 0.

Lemma 7.1 is still valid if β1 ≥ β2 ≥ . . . ≥ βk−1 > 0 instead of β1 > β2 > . . . > βk−1 > 0, at least for the
degrees k we will work with, which we will now explain. In particular, if x = βi is a multiple root, then either
we must have c = H(βi) or such c does not exist. This is due to the following arguments.

Note that if βi is a root of h(x) with odd multiplicity, then it is a local minimum or maximum of H(x),
while if it is a root of h(x) with even multiplicity, it is an inflection point of H(x). Hence, it does not
change the fact that in the labelling, the values for which H(x) attains a local minima are all contained
in {β2j−1 : 1 ≤ j ≤ ⌊k/2⌋}, while the values for which H(x) attains a local maxima are all contained in
{β2j : 1 ≤ j ≤ ⌊(k − 1)/2⌋}.

In the case that h(x) has a multiple root at x = βi > 0, say h(x) = (x− βi)
nh̃(x), where h̃ is a polynomial

of degree k− 1−n with h̃(βi) ̸= 0, note that h(x) has at most k−n distinct roots and so H(x) = k
∫ x

0
h(t)dt

has at most k − n critical points, as it is a primitive of h(x). Therefore, the number of peaks and valleys in
the graph of H(x) is at most k−n. Hence, the number of distinct roots of H(x)− c will be at most k−n+1.
In order for all the roots of H(x) − c to be real, it must have a root of higher multiplicity, i.e. one of its
critical points must be a root.
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Lemma 7.5. Let h(x) = (x − βi)
nh̃(x) be a polynomial, where h̃(βi) ̸= 0. Let H(x) be a primitive of

h(x). If H(βi) = 0, then H(x) = (x − βi)
n+1G(x) for some polynomial G(x) with G(βi) ̸= 0, otherwise,

H(x) = (x − βi)
n+1G(x) + c for some constant c. In particular, if H(x) =

∫ x

0
h(t)dt and c = H(βi), then

H(x)− c has a root at x = βi of multiplicity n+ 1.

Proof. We know that H(x) is a primitive of h(x) if and only if H(x) + c is for any c ∈ R. Furthermore, we
also have that if H(βi) = 0, then it is of the form H(x) = (x − βi)

ℓg(x) for some ℓ ∈ Z>0 and polynomial
g(x) with g(βi) ̸= 0. Then computing its derivative gives

d

dx
H(x) = ℓ(x− βi)

ℓ−1g(x) + (x− βi)
ℓg′(x)

= (x− βi)
ℓ−1 (ℓ · g(x) + (x− βi)g

′(x)) .

Note that since g(βi) ̸= 0, we have

(ℓ · g(x) + (x− βi)g
′(x))|x=βi

= ℓ · g(βi) ̸= 0.

Hence, as h(x) is equal to the derivative of H(x), we find that ℓ−1 = n and ℓ ·g(x)+(x−βi)g
′(x) = h̃(x).

Corollary 7.6. Let k be an integer with 2 ≤ k ≤ 5. Let h(x) be a polynomial of degree k− 1 such that all of
its roots are real and positive and at least one of which is a multiple root. Let βi be a multiple root of h(x)
of multiplicity n. Suppose there exists a primitive H(x)− c of h(x) with all roots real and positive. Then βi

is necessarily a root of H(x)− c.

Proof. Write h(x) = (x−βi)
nh̃(x) with h̃(βi) ̸= 0. If βi is not a root of H(x)−c, the sum of the multiplicities

of the real roots of H(x)− c is equal to the number of distinct real roots plus their multiplicities as roots of
h̃(x). The number of distinct real roots of H(x)− c at most the number of local maxima and local minima
plus 1, i.e. the number of distinct roots of h(x) plus 1, so k−n+1. The polynomial h̃(x) is of degree k−1−n,
so the sum of the roots of the roots of H(x)− c as roots of h̃(x) is at most k − 1− n.
If there is a critical point before a local minimum, the last such has to be a local maximum or a strictly
decreasing point of inflection. Similarly, if there is a critical point before a local maximum, the last such has
to be a local minimum or a strictly increasing point of inflection. This means that H(x) does not attain
the same value at all the different critical points. More precisely, if H(x) − c has the same value at a local
maximum x1 as at a local minimum x2, the graph must attain another local minimum and local maximum in
the interval (x1, x2) and vice versa. Furthermore, H(x)−c can only have the same value at an inflection point
x1 as at another critical point x2 if H(x) − c attains local maximum and/or local minimum in the interval
(x1, x2). Therefore, the number of distinct real roots of H(x) − c that are also roots of h̃(x) is actually at
most 1

2 (k − 1− n).
Computing the possible variations of the number of possible distinct roots and their multiplicities as roots of
h̃(x) for each n will always result in either βi being a root of H(x)− c or H(x)− c having a complex root.

Example 7.7. Take k = 5. If h(x) has a triple root βi, it can have at most 2 distinct real roots, so that
its primitive H(x) has at most two local extrema (exactly two to be precise). Hence, the number of distinct
real roots that H(x) − c can have is at most 3. If it has exactly 3 distinct real roots, then one of them has
to be a triple root or two of them have to be double roots. However, neither can happen, since its derivative
h(x) has a triple root βi and one simple real root. Hence, the number of distinct real roots is at most 2,
which means there must be a real root of multiplicity at least 3. That is, the only possibility is a root of
multiplicity 4 at βi.
If h(x) instead has two distinct double real roots βi, βj , then they are both inflection points of H(x). Thus,
H(x) has no local minima or local maxima, so that H(x) − c is increasing for all c, which shows it is not
possible to have 5 real roots for H(x)− c.
Lastly, suppose h(x) has one double root βi and two simple roots βj1 , βj2 . A double root corresponds to an
inflection point on H(x). Therefore, H(x) has exactly one local maxima and one local minima, namely at
the simple roots x = βj1 and x = βj2 of h(x). The number of distinct real roots of H(x)− c is hence at most
3. Again, one of them must be a triple real root, which would correspond to x = βi or two of them have to be
double real roots, which would correspond to βj1 and βj2 . However, since H(x) has no other local minima or



7 ROBINSON’S METHOD 30

local maxima, the function is strictly decreasing (or increasing) between βj1 and βj2 , which shows it cannot
happen that the values H(βj1) and H(βj2) are equal.

7.2 Application to low degrees

Lemma 7.8. Let g(x) := a2x
2 + a1x + a0 be a real polynomial with a2 > 0 such that its derivative g′(x) =

2a2x+ a1 has a positive root. Then, all roots of g(x) are real and positive if and only if

0 < a0 ≤
a21
4a2

.

Proof. Note that the root of g′(x) is at x = − a1

2a2
, so in particular a1 < 0. By Lemma 7.1, we compute that

every root of g(x) is real and positive if and only if a0 > 0 and

− a21
4a2

= a2

(
− a1
2a2

)2

+ a1

(
− a1
2a2

)
≤ −a0.

Hence, we obtain the bounds 0 < a0 ≤ a2
1

4a2
.

Lemma 7.9. Let g(x) := a3x
3 + a2x

2 + a1x+ a0 be a real polynomial with a3 > 0 such that all roots of its
derivative are real and positive. Then every root of g(x) is real and positive if and only if

−2a32 + 9a1a2a3 − 2(a22 − 3a1a3)
3/2

27a23
≤ a0 ≤

−2a32 + 9a1a2a3 + 2(a22 − 3a1a3)
3/2

27a23
,

and a0 < 0.

Proof. The derivative g′(x) = 3a3x
2 + 2a2x+ a1 has roots

α1 =
−a2 +

√
a22 − 3a1a3
3a3

,

α2 =
−a2 −

√
a22 − 3a1a3
3a3

,

by the abc-formula. Clearly α1 ≥ α2. We compute

a3α
3
1 + a2α

2
1 + a1α1 =

2a32 − 9a1a2a3 − 2(a22 − 3a1a3)
3/2

27a23
,

a3α
3
2 + a2α

2
2 + a1α2 =

2a32 − 9a1a2a3 + 2(a22 − 3a1a3)
3/2

27a23
.

Hence by Lemma 7.1, the roots of g(x) are real and positive if and only if

−2a32 − 9a1a2a3 + 2(a22 − 3a1a3)
3/2

27a23
≤ a0 ≤ −

2a32 − 9a1a2a3 − 2(a22 − 3a1a3)
3/2

27a23
,

and a0 < 0.

Lemma 7.10. Let g(x) := a4x
4 + a3x

3 + a2x
2 + a1x + a0 be a real polynomial with a4 > 0 such that its

derivative only has real roots that are all positive. Define

u2 =
8a2a4 − 3a23

16a24
,

u3 =
a33 − 4a2a3a4 + 8a1a

2
4

32a34
,

ζ3 = e
2πi
3 ,

η =

(
−u6

2

27
− 5u3

2u
2
3 +

27

2
u4
3 +

27|u3|(u2
3 +

4
27u

3
2)

3/2

2

)1/3



7 ROBINSON’S METHOD 31

and let Sη be the set

Sη :=

{
η + η +

2u2
2

3
, ζ3η + ζ23η +

2u2
2

3
, ζ23η + ζ3η +

2u2
2

3

}
.

Observe that every element in Sη is real, since ζk3 η = ζ−k
3 η and u2 ∈ R. Let θ1 ≤ θ2 ≤ θ3 be the three

elements in Sη ordered from least to greatest. Then every root of g(x) is real and positive if and only if

3a43
256a34

− a23a2
16a24

+
a3a1
4a4

+ a4θ1 ≤ a0 ≤
3a43
256a34

− a23a2
16a24

+
a3a1
4a4

+ a4θ2,

and a0 > 0

Proof. Assume the derivative g′(x) = 4a4x
3 + 3a3x

2 + 2a2x + a1 only has real roots that are all positive.
To obtain the roots of g′(x), we will apply Cardano’s method. Firstly, we make the substitution f(y) =
1

4a4
g′(y − a3

4a4
) to obtain the depressed cubic

f(y) = y3 + u2y + u3,

where

u2 =
8a2a4 − 3a23

16a24
,

u3 =
a33 − 4a2a3a4 + 8a1a

2
4

32a34
.

Since by assumption the roots of g′(x) are all real, we know that those of f(y) are also all real. Hence, the
discriminant ∆ = u2

3 +
4
27u

3
2 of f is non-positive and the roots of f are given by

S := {ω + ω, ζ3ω + ζ23ω, ζ
2
3ω + ζ3ω} ⊆ R,

where ζ3 is a primitive third root of unity and ω =
(

−u3+
√
∆

2

)1/3
∈ C is some third root. Note that no

matter the choice of the third root you take, the set S will remain the same. Therefore, the roots of g′(x)
are given by

S′ :=

{
ω + ω − a3

4a4
, ζ3ω + ζ23ω −

a3
4a4

, ζ23ω + ζ3ω −
a3
4a4

}
⊆ R.

Suppose γ1 ≥ γ2 ≥ γ3 are the three elements in S′ ordered from least to greatest. In order for g(x) to have
only real roots, we must have

−
∫ γ2

0

g′(t)dt ≤ a0 ≤ −max

{∫ γ1

0

g′(t)dt,

∫ γ3

0

g′(t)dt

}
,

by Lemma 7.1. Note that

−max

{∫ γ1

0

g′(t)dt,

∫ γ3

0

g′(t)dt

}
= min

{
−
∫ γ1

0

g′(t)dt,−
∫ γ3

0

g′(t)dt

}
.

As discussed in the proof of Lemma 7.1, assuming the roots are distinct, the primitives of g′(x) (in particular
g(x)) have a local maximum at x = γ2 and local minima at x = γ1 and x = γ3. Therefore, the negative of
the primitives of g′(x) have a local minima at x = γ2 and local maxima at x = γ1 and x = γ3. In the case in
which some of the γi’s are equal, we can describe the behaviour of the negative of the primitive analogously.
Furthermore, since the negatives of the primitives have at most three distinct critical points, at most one of
which is a local minimum, we automatically have that γ1 ≥ γ2 ≥ γ3 implies

−
∫ γ2

0

g′(t)dt ≤ −max

{∫ γ1

0

g′(t)dt,

∫ γ3

0

g′(t)dt

}
.
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Say γi = ζk3ω + ζ−k
3 ω − a3

4a4
for some k. A computation shows∫ γi

0

g′(t)dt = − 3a43
256a34

+
a23a2
16a24

− a3a1
4a4

+ a4
(
(ζk3ω + ζ−k

3 ω)4 + 2u2(ζ
k
3ω + ζ−k

3 ω)2 + 4u3(ζ
k
3ω + ζ−k

3 ω)
)
.

In particular, we find that the bounds for a0 are

3a43
256a34

− a23a2
16a24

+
a3a1
4a4

+ a4 · min
0≤k≤2

(
−(ζk3ω + ζ−k

3 ω)4 − 2u2(ζ
k
3ω + ζ−k

3 ω)2 − 4u3(ζ
k
3ω + ζ−k

3 ω)
)
≤ a0 (7.3)

and

a0 ≤
3a43
256a34

− a23a2
16a24

+
a3a1
4a4

+ a4 ·median
0≤k≤2

(
−(ζk3ω + ζ−k

3 ω)4 − 2u2(ζ
k
3ω + ζ−k

3 ω)2 − 4u3(ζ
k
3ω + ζ−k

3 ω)
)
.

(7.4)

We can further simplify the expression using the following observations:

(ζk3ω)
3 =
−u3 +

√
∆

2
,

(ζk3ω)
3 =
−u3 −

√
∆

2
,

ζk3ω · ζ3−k
3 ω =

(
u2
3 −∆

4

)1/3

=

(− 4
27u

3
2

4

)1/3

= −u2

3
.

This gives us

2u2(ζ
k
3ω + ζ−k

3 ω)2 = 2u2(ζ
2k
3 ω2 + ζ−2k

3 ω2)− 4u2
2

3

= −6ωω(ζ2k3 ω2 + ζ−2k
3 ω2)− 4u2

2

3

= −6

(
−u3 +

√
∆

2

)
ζ−k
3 ω − 6

(
−u3 −

√
∆

2

)
ζk3ω −

4u2
2

3

= 3u3(ζ
k
3ω + ζ−k

3 ω) + 3
√
∆(ζk3ω − ζ−k

3 ω)− 4u2
2

3
,

and

(ζk3ω + ζ−k
3 ω)4 = −5u3

2
(ζk3ω + ζ−k

3 ω)− 3
√
∆

2
(ζk3ω − ζ−k

3 ω) +
6u2

2

9
.

Hence,

(ζk3ω + ζ−k
3 ω)4 + 2u2(ζ

k
3ω + ζ−k

3 ω)2 + 4u3(ζ
k
3ω + ζ−k

3 ω) =
9u3

2
(ζk3ω + ζ−k

3 ω) +
3
√
∆

2
(ζk3ω − ζ−k

3 ω)− 2u2
2

3

= ζk3ω

(
9u3

2
+

3
√
∆

2

)
+ ζ−k

3 ω

(
9u3

2
− 3
√
∆

2

)
− 2u2

2

3
.

Observe that since ∆ ≤ 0, we have

ζk3ω

(
9u3

2
+

3
√
∆

2

)
= ζ−k

3 ω

(
9u3

2
− 3
√
∆

2

)
.
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Computing and substituting ∆ = u2
3 +

4
27u

3
2 back gives us(

9u3

2
+

3
√
∆

2

)3(
−u3 +

√
∆

2

)
= −729u4

3

16
+

243u2
3∆

8
+

27∆2

16
+

27u3∆
3/2

2

=
u6
2

27
+ 5u3

2u
2
3 −

27

2
u4
3 +

27u3(u
2
3 +

4
27u

3
2)

3/2

2
.

Define η to be

η :=

(
−u6

2

27
− 5u3

2u
2
3 +

27

2
u4
3 +

27|u3|(u2
3 +

4
27u

3
2)

3/2

2

)1/3

,

and let Sη be the set

Sη :=

{
η + η +

2u2
2

3
, ζ3η + ζ23η +

2u2
2

3
, ζ2η + ζ3η +

2u2
2

3

}
⊆ R.

Note that the definition of the set Sη does not depend on the sign of u3, since(
−u6

2

27
− 5u3

2u
2
3 +

27

2
u4
3 +

27u3(u2
3 +

4
27u

3
2)

3/2

2

)1/3

=

(
−u6

2

27
− 5u3

2u
2
3 +

27

2
u4
3 −

27u3(u
2
3 +

4
27u

3
2)

3/2

2

)1/3

.

Let θ1 ≤ θ2 ≤ θ3 be the three elements in Sη. Combining (7.3) and (7.4) we find the bounds

3a43
256a34

− a23a2
16a24

+
a3a1
4a4

+ a4θ1 ≤ a0 ≤
3a43
256a34

− a23a2
16a24

+
a3a1
4a4

+ a4θ2.

Lemma 7.11. Let g(x) := x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 be a real polynomial such that the roots of its

derivative are all real and positive. Define

u2 =
15a3 − 6a24

50
,

u3 =
4a34 − 15a3a4 + 25a2

250
,

u4 =
−3a44 + 15a24a3 − 50a4a2 + 125a1

625
.

If u3 = 0, let xi1,i2 be

xi1,i2 = i1

√
−u2 + i2

√
u2
2 − u4,

for i1, i2 ∈ {+1,−1}. Otherwise, define

v2 = −u2
2

3
− u4,

v3 =
2u2u4

3
− 2u3

2

27
− 2u2

3,

C =

−v3 +
√
v23 +

4
27v

3
2

2

1/3

,

y =

{
3
√
−v3 − 2u2

3 if v2 = 0,

C − v2
3C −

2u2

3 if v2 ̸= 0,
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and let xi1,i2 for i1, i2 ∈ {+1,−1} be defined by

xi1,i2 =
i1
√
2y + i2

√
−4u2 − 2y − i1

8u3√
2y

2
,

in other words xi1,i2 − a4

5 are the roots of the derivative g′(x) of g(x) and that by assumption, they are all
real.
Let γ1 ≥ γ2 ≥ γ3 ≥ γ4 be equal to xi1,i2 with each a distinct pair (i1, i2), so that they are ordered. Let g̃(x)
be the polynomial defined by

g̃(x) = −x5 − 10

3
u2x

3 − 10u3x
2 − 5u4x,

and define

λ1 = max{g̃(γ2), g̃(γ4)},
λ2 = min{g̃(γ1), g̃(γ3)}.

Then every root of g(x) is real and positive if and only if

− 4a54
3125

+
a3a

3
4

125
− a2a

2
4

25
+

a1a4
5

+ λ1 ≤ a0 ≤ −
4a54
3125

+
a3a

3
4

125
− a2a

2
4

25
+

a1a4
5

+ λ2, (7.5)

and a0 < 0.

Proof. In order to determine the bounds on a0, we need to determine the roots of g′(x) = 5x4 + 4a4x
3 +

3a3x
2 + 2a2x+ a1. Firstly, we make a substitution to obtain a depressed quartic

1

5
g′
(
x− a4

5

)
= x4 + 2u2x

2 + 4u3x+ u4,

where

u2 =
15a3 − 6a24

50
,

u3 =
4a34 − 15a3a4 + 25a2

250
,

u4 =
−3a44 + 15a24a3 − 50a4a2 + 125a1

625
.

First suppose u3 = 0. Then, x4 + 2u2x
2 + u4 = 0 has solutions

xi1,i2 = i1

√
−2u2 + i2

√
4u2

2 − 4u4

2
= i1

√
−u2 + i2

√
u2
2 − u4, (7.6)

where i1, i2 ∈ {+1,−1}. Hence, if u3 = 0, then the roots of g′(x) are{
±
√
−u2 +

√
u2
2 − u4 −

a4
5
,±
√
−u2 −

√
u2
2 − u4 −

a4
5

}
.

Now suppose u3 ̸= 0. The equation x4 + 2u2x
2 + 4u3x+ u4 = 0 is equivalent to

(x2 + u2)
2 = −4u3x− u4 + u2

2.

This is equivalent to

(x2 + u2 + y)2 = 2yx2 − 4u3x+ y2 + 2yu2 + u2
2 − u4, (7.7)
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for any number y. Choose y such that the right-hand side of (7.7) is a square. In other words, y is chosen
such that the discriminant of the quadratic polynomial in x on the right-hand side of (7.7) is zero, that is

16u2
3 − 4 · 2y · (y2 + 2yu2 + u2

2 − u4) = 0.

Equivalently, y satisfies the equation f(y) = 0 with

f(y) = y3 + 2u2y
2 + (u2

2 − u4)y − 2u2
3,

and y is non-zero due to the assumption that u3 ̸= 0. To solve the cubic, we first apply the substitution
f(y − 2u2

3 ) = h(y) to get a depressed cubic

h(y) = y3 + v2y + v3,

where

v2 = −u2
2

3
− u4,

v3 =
2u2u4

3
− 2u3

2

27
− 2u2

3.

If v2 = 0, then a solution to y3+v3 = 0 is simply 3
√
−v3. Hence, substituting backwards gives f( 3

√
−v3− 2u2

3 ) =
0 . Else, a solution of h(y) = 0 is y = C − v2

3C , where

C =

−v3 +
√
v23 +

4
27v

3
2

2

1/3

is some third root in C. The choice of C does not matter. Hence, a solution of f(y) = 0 is y = 3
√
−v3 − 2u2

3

if v2 = 0 and y = C − v2
3C −

2u2

3 if v2 ̸= 0, which in particular implies C ̸= 0.

By assumption, we have that y is non-zero. Consider the expression(
x
√
2y − 2u3√

2y

)2

= 2yx2 − 4u3x+
4u2

3

2y
.

We can substitute f(y) = 0 in
4u2

3

2y and combine this with (7.7) to get

(x2 + u2 + y)2 =

(
x
√
2y − 2u3√

2y

)2

.

Hence, (
x2 + u2 + y + x

√
2y − 2u3√

2y

)(
x2 + u2 + y − x

√
2y +

2u3√
2y

)
= 0.

Therefore, by the quadratic formula, the solutions of x4 + 2u2x
2 + 4u3x+ u4 = 0 are given by

xi1,i2 =
i1
√
2y + i2

√
−4u2 − 2y − i1

8u3√
2y

2
, (7.8)

where i1, i2 ∈ {+1,−1}. It follows that if u3 ̸= 0 the roots of g′(x) are given by
√
2y ±

√
−4u2 − 2y − 8u3√

2y

2
− a4

5
,
−
√
2y ±

√
−4u2 − 2y + 8u3√

2y

2
− a4

5

 .
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Let γ1 ≥ γ2 ≥ γ3 ≥ γ4 be equal to xi1,i2 with each a distinct pair (i1, i2), where xi1,i2 is as in (7.6) or (7.8)
if u3 = 0 respectively u3 ̸= 0. The bounds of a0 are

−min

{∫ γ1+
a4
5

0

g′(t)dt,

∫ γ3+
a4
5

0

g′(t)dt

}
≤ a0 ≤ −max

{∫ γ2+
a4
5

0

g′(t)dt,

∫ γ4+
a4
5

0

g′(t)dt

}
,

by Lemma 7.1. Equivalently,

max

{
−
∫ γ1+

a4
5

0

g′(t)dt,−
∫ γ3+

a4
5

0

g′(t)dt

}
≤ a0 ≤ min

{
−
∫ γ2+

a4
5

0

g′(t)dt,−
∫ γ4+

a4
5

0

g′(t)dt

}
. (7.9)

As discussed in the proof of Lemma 7.1, assuming the roots are distinct, the primitives of g′(x) (in particular
g(x)) have a local maximum at x = γ2 + a4

5 and x = γ4 + a4

5 , and a local minimum at x = γ1 + a4

5 and
x = γ3 +

a4

5 . Therefore, the negative of the primitives of g′(x) have a local minimum at x = γ2 +
a4

5 and
x = γ4 +

a4

5 , and a local maximum at x = γ1 +
a4

5 and x = γ3 +
a4

5 . In the case in which some of the γi’s
are equal, we can describe the behaviour of the negative of the primitive analogously. Note that since the
primitives can have multiple local minima and local maxima, it may happen that the value of the primitive
at a local minimum is higher than at one of the local maxima, in which case no value of a0 suffices the bounds
in (7.5), see Example 7.13.
A computation shows that for 1 ≤ j ≤ 4∫ γj+

a4
5

0

g′(t)dt =
4a54
3125

− a3a
3
4

125
+

a2a
2
4

25
− a1a4

5
+ γ5

j +
10

3
u2γ

3
j + 10u3γ

2
j + 5u4γj . (7.10)

Let g̃(x) = −x5 − 10
3 u2x

3 − 10u3x
2 − 5u4x. Observe that

−min

{∫ γ1+
a4
5

0

g′(t)dt,

∫ γ3+
a4
5

0

g′(t)dt

}
≤ −max

{∫ γ2+
a4
5

0

g′(t)dt,

∫ γ4+
a4
5

0

g′(t)dt

}
,

is equivalent to

λ1 := max
i=2,4

g̃(γi) ≤ min
j=1,3

g̃(γj) =: λ2.

Hence, by (7.9) and (7.10), every root of g(x) is real and positive if and only if

− 4a54
3125

+
a3a

3
4

125
− a2a

2
4

25
+

a1a4
5

+ λ1 ≤ a0 ≤ −
4a54
3125

+
a3a

3
4

125
− a2a

2
4

25
+

a1a4
5

+ λ2.

Remark 7.12. Note that y satisfies a degree 3 polynomial, which always has a real root. Also, note that
∆ = v23 +

4
27v

3
2 is (a multiple of) the discriminant of h(y). The discriminant is positive if and only if h(y) has

one real root and two complex roots, which in this case gives C ∈ R. Hence, v2
3C ∈ R, which leads to y ∈ R.

Clearly, C is also real if ∆ = 0. Furthermore, ∆ < 0 happens if and only if h(y) has three real roots. In this
case, one can compute − v2

3C = C. We know from Cardano’s method that y = C +C is a root of h(y). Thus,
our construction always gives y ∈ R.

Example 7.13. Let g(x) = x5

5 −3x4+ 49
3 x3−39x2+40x−15. Its graph is given in Figure 4. The derivative

of g(x) is given by g′(x) = (x−1)(x−2)(x−4)(x−5). Despite every root of the derivative of g(x) being real
and positive and g(x) satisfying the Descartes’ rule of sign change, there is no value c ∈ R for which every
root of g(x) − c is real and positive. This is because g(x) attains a higher value at the local minimum at
x = 5 than at the local maximum x = 1. Using the same notation as in Lemma 7.11, this would correspond
to the case where λ1 > λ2.
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Figure 4: Graph of g(x) = x5

5 − 3x4 + 49
3 x3 − 39x2 + 40x− 15
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8 Dimension 3

For abelian varieties over any finite field Fq of dimension 3, the bounds for the coefficients of q-Weil polyno-
mials of degree 6 has been computed by Haloui [6, Theorem 1.1]. In the same article, Haloui also determined
the conditions for which a q-Weil polynomial of degree 6 is irreducible and the conditions for which irreducible
q-Weil polynomial of degree 6 is the characteristic polynomial of a simple abelian variety of dimension 3.
Xing [28, Proposition 2] determined when the cube of a quadratic polynomial is the characteristic polyno-
mial of an abelian variety over Fq of dimension 3. This statement has been later generalised by Hayashida
for arbitrary dimensions, see Theorem 6.3. These results combined give a complete classification for simple
abelian varieties of degree 3. However, according to some contributors of the LMFDB [3, Chapter 3.1], the
explicit description of the space of q-Weil polynomials of degree 6 by Haloui was missing some non-simple
examples. After computing them myself, the missing q-Weil polynomials seem to be the ones with real roots
arising from the case when q is a square. This chapter will serve as a summary and correction of the results
stated by Haloui.

8.1 Weil polynomials of degree 6

Suppose we have a polynomial of the form

P (x) = x6 + a1x
5 + a2x

4 + a3x
3 + qa2x

2 + q2a1x+ q3, (8.1)

for some a1, a2, a3 ∈ Z. We want to consider the conditions for which P (x) is a q-Weil polynomial. For this,
we will first cover the cases where P (x) has a real root and afterwards cover the case where P (x) has no real
roots. Recall from Corollary 4.8 that the real roots of the characteristic polynomial of an abelian variety
must have even multiplicity. With a similar proof as the corollary due to the assumption of the constant
coefficient of (8.1), we can conclude that real roots of P (x) have even multiplicity.

8.1.1 Real root

Suppose P (x) has a real root, so at x = ±√q. If P (x) has a root at both x =
√
q and x = −√q with the

same multiplicities, then as the multiplicities at real roots of q-Weil polynomials have to be even, we get

P (x) = (x2 − q)2(x2 − (α+ α)x+ q).

with α a complex root of P (x) with |α| = √q, so |α + α| < 2
√
q. Then in particular, we determine that

α+ α ∈ Z by comparing the coefficient of x5, as P (x) has integer coefficients.

In the case where P (x) has a root at both x =
√
q and x = −√q, but their multiplicities differ, we must

have

P (x) = (x+
√
q)4(x−√q)2 = (x2 − q)2(x+

√
q)2 or P (x) = (x+

√
q)2(x−√q)4 = (x2 − q)2(x−√q)2,

which results in a polynomial with coefficients in Z[√q]. Hence, P (x) can be of this form only if
√
q ∈ Z.

Now suppose P (x) has a root at x = −√q of multiplicity 4 but no root at x =
√
q. Then,

P (x) = (x+
√
q)4(x2 − (α+ α)x+ q),

where |α| = √q and P (α) = 0 a complex root, so |α + α| < 2
√
q. As P (x) is a polynomial with integer

coefficients, we find by comparing the coefficients that

−(α+ α) + 4
√
q,

7q − 4(α+ α)
√
q, ∈ Z

−6q(α+ α) + 8q
√
q.

In particular, combining the first and the third restriction, we see again that P (x) can have this form only if√
q ∈ Z, so that subsequently also α+ α ∈ Z. The case with x =

√
q instead of x = −√q works analogously.
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Lastly, if P (x) has a root at x = −√q of multiplicity 2 but not a root at x =
√
q, we have

P (x) = (x+
√
q)2(x2 − (α1 + α1)x+ q)(x2 − (α2 + α2)x+ q),

with α1, α2 complex roots of P of absolute value
√
q, so that |αi + αi| < 2

√
q. Again comparing coefficients

gives

2
√
q − (α1 + α1)− (α2 + α2),

−2(α1 + α1)
√
q − 2(α2 + α2)

√
q + (α1 + α1)(α2 + α2), ∈ Z

2(α1 + α1)(α2 + α2)
√
q − 2q(α1 + α1)− 2q(α2 + α2) + 4q

√
q.

Substituting r = (α1+α1)+(α2+α2) in the first restriction gives us an expression for s = (α1+α1)(α2+α2)
in terms of integers,

√
q and r using the second restriction. Then combining this with the third restriction

tells us that
√
q ∈ Z. Then looking at the first two again, we see that both r and s must be integers.

8.1.2 No real roots

Now suppose P (x) has no real roots. We will use Proposition 6.1 and apply the results from Lemma 7.1 to
it. We may write

P (x) =

3∏
i=1

(x2 + ωix+ q), (8.2)

for some ω1, ω2, ω3 ∈ C. The polynomial P (x) is a q-Weil polynomial if and only if the polynomials

P+(x) =

3∏
i=1

(x− (2
√
q + ωi)), (8.3)

P−(x) =

3∏
i=1

(x− (2
√
q − ωi)), (8.4)

have only positive real roots.

Therefore, to determine conditions for which P (x) is a q-Weil polynomial with only complex roots, we can
simply determine the conditions for which P+(x) and P−(x) have only real positive roots and substitute the
result to get conditions on the coefficients P (x).

Let P (x), P+(x) and P−(x) be polynomials as in (8.2), (8.3) and (8.4), expanded to

P (x) = x6 + a1x
5 + a2x

4 + a3x
3 + qa2x

2 + q2a1x+ q3,

P+(x) = x3 + b+1 x
2 + b+2 x+ b+3 ,

P−(x) = x3 + b−1 x
2 + b−2 x+ b−3 .

We can write the coefficients at each power of x in terms of the symmetric polynomials in ω1, ω2 and ω3,

s1 = ω1 + ω2 + ω3,

s2 = ω1ω2 + ω2ω3 + ω1ω3,

s3 = ω1ω2ω3.

Expanding (8.2) gives

a1 = s1,

a2 = s2 + 3q,

a3 = s3 + 2qs1.
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Hence, the symmetric polynomials in terms of a1, a2 and a3 are

s1 = a1,

s2 = a2 − 3q,

s3 = a3 − 2qa1.

Expanding (8.3) and (8.4) gives

b+1 = −s1 − 6
√
q, b−1 = s1 − 6

√
q,

b+2 = s2 + 4
√
qs1 + 12q, b−2 = s2 − 4

√
qs1 + 12q,

b+3 = −s3 − 2
√
qs2 − 4qs1 − 8q

√
q, b+3 = s3 − 2

√
qs2 + 4qs1 +−8q

√
q.

We can apply substitution so that the coefficients b+1 , b
+
2 , b

+
3 and b−1 , b

−
2 , b

−
3 are in terms of a1, a2 and a3,

b+1 = −a1 − 6
√
q, b−1 = a1 − 6

√
q,

b+2 = a2 + 4
√
qa1 + 9q, b−2 = a2 − 4

√
qa1 + 9q,

b+3 = −a3 − 2
√
qa2 − 2qa1 − 2q

√
q, b+3 = a3 − 2

√
qa2 + 2qa1 − 2q

√
q.

Lemma 8.1. Let h(x) = x3 + r1x
2 + r2x+ r3 be a monic polynomial of degree 3 with real coefficients. Then

h(x) has only real positive roots if and only if the following conditions hold:

1. r1 < 0,

2. 0 < r2 ≤ r21
3 ,

3. r1r2
3 −

2r31
27 −

2
27 (r

2
1 − 3r2)

3/2 ≤ r3 ≤ r1r2
3 −

2r31
27 + 2

27 (r
2
1 − 3r2)

3/2,

4. r3 < 0.

Proof. Consider the derivatives of h(x):

h′(x) = 3x2 + 2r1x+ r2,

h′′(x) = 6x+ 2r1.

The bound for r1 follows from Descartes’ rule of sign change. For the other bounds, we can apply Lemma
7.8 to h′(x) to get the bounds for r2 and afterwards Lemma 7.9 to h(x) for r3 to get the desired result.

Now we can apply Lemma 8.1 to b+1 , b
−
1 , b

+
2 , b

−
2 , b

+
3 , b

−
3 to get specific bounds for a1, a2, a3.

Clearly b+1 , b
−
1 < 0 implies that |a1| < 6

√
q. The second part of Lemma 8.1 gives

0 < 9q + a2 + 4
√
qa1 ≤

(−6√q − a1)
2

3
and 0 < 9q + a2 − 4

√
qa1 ≤

(−6√q + a1)
2

3
.

After a computation, we get

−9q + 4
√
q|a1| < a2 ≤ 3q +

a21
3
.

Lastly, for a3, in both cases of the non-strict bounds for the third coefficient (b+3 and b−3 ) we obtain

−2a31
27

+
a1a2
3

+ qa1 −
2

27
(a21 − 3a2 + 9q)3/2 ≤ a3 ≤ −

2a31
27

+
a1a2
3

+ qa1 +
2

27
(a21 − 3a2 + 9q)3/2.

The conditions b+3 , b
−
3 < 0 give

−2qa1 − 2
√
qa2 − 2q

√
q < a3 < −2qa1 + 2

√
qa2 + 2q

√
q.

In short, we obtain the following theorem.
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Theorem 8.2. Let P (x) = x6 + a1x
5 + a2x

4 + a3x
3 + a2qx

2 + a1q
2x + q3 be a polynomial with integer

coefficients. The polynomial P (x) is a q-Weil polynomial if and only if one of the following conditions hold:

1. q is a square and P (x) = (x+
√
q)2k(x−√q)2ℓh(x), where 1 ≤ k + ℓ ≤ 3 and

h(x) =


1 if k + ℓ = 3,

x2 + ωx+ q if 1 < k + ℓ < 3, where ω ∈ Z and |ω| < 2
√
q,

(x2 + ω1x+ q)(x2 + ω2x+ q) if k + ℓ = 1, where |ω1|, |ω2| < 2
√
q and ω1 · ω2, ω1 + ω2 ∈ Z

2. q is not a square and P (x) = (x2 − q)2(x2 + ωx+ q), where ω ∈ Z and |ω| < 2
√
q;

3. the following conditions hold:

(a) |a1| < 6
√
q,

(b) 4
√
q|a1| < a2 ≤ a2

1

3 + 3q,

(c) − 2a3
1

27 + a1a2

3 + qa1 − 2
27 (a

2
1 − 3a2 + 9q)3/2 ≤ a3 ≤ − 2a3

1

27 + a1a2

3 + qa1 +
2
27 (a

2
1 − 3a2 + 9q)3/2,

(d) −2qa1 − 2
√
qa2 − 2q

√
q < a3 < −2qa1 + 2

√
qa2 + 2q

√
q.

Remark 8.3. One could simplify the first condition by saying that h(x) must be a q-Weil polynomial of
degree 2 if 1 < k+ ℓ < 3 or of degree 4 if k+ ℓ = 3. See [14, Lemma 2.1] for the bounds of the coefficients of
q-Weil polynomials of degree 4.
Comparing this result to [6, Theorem 1.1], the polynomials of the first case, where q is a square, is omitted
in Haloui’s paper, while the other statements are identical. After implementing the bounds in SageMath 9.3
[13] and comparing the result to built-in function in SageMath by Kedlaya [11], this indeed seems to be the
case.

8.2 Irreducibility

Since Theorem 6.3 describes the q-Weil polynomials of the form (x2+ωx+q)3 completely, the only remaining
q-Weil polynomials of degree 6 corresponding to simple abelian varieties of dimension 3 are the irreducible
q-Weil polynomials, see Example 6.4. We will determine when a given q-Weil polynomial of degree 6 is
irreducible, which will be very similar to what is done by Haloui in [6, Chapter 3].

Let P (x) =
∏g

i=1(x
2 + ωix+ q) be a q-Weil polynomial, that is, |ωi| ≤ 2

√
q. Define fP (x) =

∏g
i=1(x+ ωi).

We can find conditions for irreducibility of P (x) by determining the conditions for irreducibility of f(x). First
note that the coefficients of fP (x) are the symmetric polynomials s1, s2, . . . , sg in ω1, . . . , ωg. Since P (x) has
coefficients in Z, we get that s1 ∈ Z since it is the coefficient of x2g−1. Similarly, s2 + gq is the coefficient of
x2g−2 and so s2 ∈ Z. Inductively, one can determine that all symmetric polynomials in ωi result in integers
by looking at the coefficients of P (x), which is a Weil polynomial and hence has integer coefficients.

Lemma 8.4. Let g ≥ 2 and P (x) be a q-Weil polynomial of degree 2g. If
√
q /∈ Z, then assume that

P (x) ̸= (x − √q)2(x +
√
q)2. The polynomial P (x) is irreducible over Q if and only if fP (x) is irreducible

over Q.

Proof. If fP (x) is reducible, we can assume without loss of generality by reordering that for some 1 ≤ m ≤ g−1
we can factor fP in Q[x] as

fP (x) =

(
m∏
i=1

(x+ ωi)

) g∏
j=m+1

(x+ ωj)

 .

Since fP (x) is a monic polynomial with integer coefficients, the factors also have integer coefficients. In
particular, the factors of P (x) with integer coefficients are

P (x) =

(
m∏
i=1

(x2 + ωix+ q)

) g∏
j=m+1

(x2 + ωjx+ q)

 .
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Clearly, if P (x) is reducible, then its factors are also q-Weil polynomials, say P (x) = (x−√q)2k(x+√q)2ℓh(x),
where h(x) is a q-Weil polynomial without real roots. If k ̸= ℓ, or k = ℓ > 0 and h(x) ̸= 1, then since
P (x) ∈ Z[x], we must have

√
q ∈ Z. This means that in this case fP (x) can be factored into

fP (x) = (x− 2
√
q)k(x+ 2

√
q)ℓfh(x).

If k = ℓ > 1 and h(x) = 1, we can decompose

fP (x) = (x2 − 4q)(x2 − 4q)k−1.

Lastly, if k = ℓ = 0, then by assumption h(x) is reducible, say

h(x) =

(
m∏
i=1

(x2 + ωix+ q)

) g∏
j=m+1

(x+ ωjx+ q)

 .

for some k. Inductively, one can deduce that the symmetric polynomials in ω1, . . . , ωm are integers. Similarly,
the symmetric polynomials in ωm+1, . . . , ωg are integers as well. Hence, fh(x) factors into(

m∏
i=1

(x+ ωi)

) g∏
j=m+1

(x+ ωj)

 .

Haloui uses Cardano’s method to determine the conditions for which fP (x) is irreducible. That is, the
author makes a substitution to end up with a polynomial FP (x) = x3 + rx + s. Note that we can express
fP (x) in terms of the coefficients of P (x) as

fP (x) = x3 + a1x
2 + (a2 − 3q)x+ (a3 − 2qa1)

using the symmetric functions in ω1, ω2, ω3 and the same substitutions we made in the previous section.
Then, we end up with fP (x) = FP (x+ a1/3) and clearly fP (x) has a root in Q if and only if FP (x) has. In
other words, fP (x) is irreducible over Q if and only if FP (x) is. Explicitly, one can compute

r = −a21
3

+ a2 − 3q and s =
2a31
27
− a1a2

3
− qa1 + a3.

The discriminant ∆ of FP (x) is equal to (a multiple of)

∆ = s2 +
4

27
r3.

Note that due to the bounds we have on a1, a2, a3, one can compute that

r ≤ 0 and s2 ≤ − 4

27
r3.

Hence, we always have ∆ ≤ 0. Moreover, ∆ = 0 if and only if FP (x) has a root of multiplicity at least 2.
If r = 0, then also s = 0, so then FP (x) has a triple root at x = 0. If r ̸= 0, then its roots are − 3s

r and
3s
2r , where the latter is a double root. In particular, the roots of FP (x) are in these cases in Q, so that it is
reducible over Q.

If ∆ < 0, then all roots are distinct and real. Set u = −s+
√
∆

2 . By Cardano’s formula, the roots of FP (x)

are of the form v + v, where v is a cube root of u. If v ∈ Q(
√
∆), then clearly v + v ∈ Q, so then FP (x) is

reducible over Q. Conversely, if FP (x) is reducible over Q, meaning it has a root in Q, then u has a cube
root v = a+ bi with a ∈ Q, as v + v = 2a ∈ Q. A computation shows

−s

2
+ i

√
−∆
2

= u = v3 = (a3 − 3ab2) + ib(3a2 − b2).
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Suppose a = 0, then by comparing the real part on both sides of the equation, we must have that s = 0.
In particular, ∆ = 4

27r
3 = ( 23r)

2 r
3 and so u = (

√
r
3 )

3, so u is a cube in Q(∆) = Q(
√

r
3 ). In the case where

a ̸= 0, again identifying the real parts on both sides, we determine that b2 ∈ Q. Using the imaginary parts,
it follows that b ∈ Q(

√
−∆), so that v ∈ Q(

√
∆).

In conclusion, we get the following proposition:

Proposition 8.5. Let P (x) = x6 + a1x
5 + a2x

4 + a3x
3 + a2qx

2 + a1q
2x+ q3 be a q-Weil polynomial. Set

r = −a21
3

+ a2 − 3q and s =
2a31
27
− a1a2

3
− qa1 + a3

and define

∆ = s2 +
4

27
r3 and u =

−s+
√
∆

2
.

Then P (x) is irreducible over Q if and only if ∆ ̸= 0 and u is not a cube in Q(
√
∆).

8.3 Newton polygons

In order to determine conditions for which an irreducible q-Weil polynomial of degree 6 is the characteristic
polynomial of a simple abelian variety of dimension 3, we consider the possible Newton polygons. These
Newton polygons were first determined by Haloui [6].
The Newton polygons must satisfy the conditions stated in Corollary 6.8. Namely, the vertices must be in
the lattice Z× nZ with initial point (0, 3n) and endpoint (6, 0). Furthermore, if the Newton polygon has an
edge with slope −λ, then it has another edge with slope −(n−λ) of the same horizontal length. The possible
Newton polygons are shown in Figure 5.

This leads to the following classification by Haloui [6, Theorem 1.4], when combined with Theorem 6.3,
which was first determined by Xing [28, Proposition 2] for dimension 3 specifically.

Theorem 8.6. Let P (x) = x6+a1x
5+a2x

4+a3x
3+a2qx

3+a1q
2x+q3 be a q-Weil polynomial with q = pn.

Then P (x) is the characteristic polynomial of a simple abelian variety of dimension 3 if and only if one of
the following conditions holds:

1. n is a multiple of 3 and P (x) = (x2+ωx+ q)3, where |ω| < 2
√
q and ω = kq1/3 with k ∈ Z not divisible

by p,

2. the polynomial P (x) is irreducible over Q and one of the following conditions holds:

(a) vp(a3) = 0,

(b) vp(a3) ≥ n/2, vp(a2) = 0 and P (x) has no root of valuation n/2 in Qp,

(c) vp(a3) ≥ n, vp(a2) ≥ n/2, vp(a1) = 0 and P (x) has no root of valuation n/2 in Qp,

(d) vp(a3) = n, vp(a2) ≥ 2n/3, vp(a1) ≥ n/3 and P (x) has no root Qp,

(e) vp(a3) ≥ 3n/2, vp(a2) ≥ n, vp(a1) ≥ n/2 and P (x) has no root nor a factor of degree 3 in Qp.

The p-rank of abelian varieties in case (1) is 0, while the p-ranks of abelian varieties in cases (2a), (2b), (2c), (2d)
and (2e) are respectively 3, 2, 1, 0 and 0. Furthermore, the abelian varieties in case (2e) are supersingular.

Proof. For case (1), we have that ω is divisible by p. This means that the (mod p)-reduced polynomials in
this case are simply x6. By Theorem 6.11, it follows that the p-rank of abelian varieties in this case is 0.

For the irreducible case, the conditions regarding the valuations of the coefficients follow immediately from
their respective Newton polygons, since vp(a3), vp(a2) and vp(a1) correspond to the values at 3, 4 and 5 of
the x-axis respectively, see Figure 5. The p-ranks also follow from the Newton polygons and Corollary 6.12.
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(a) Ordinary case (b) p-rank 2 case

(c) p-rank 1 case (d) p-rank 0, non-supersingular case

(e) Supersingular case

Figure 5: Newton polygons of characteristic polynomials of simple abelian varieties of dimension 3. See [6].

The lattice points at x = 3, 4, 5 that are below the line between (0, 3n) and (6, 0) are (3, 0), (3, 1), (4, 0) and
(5, 0), each determining a unique Newton polygon.

Suppose (3, 0) is a vertex giving a p-rank of 3, which is equal to the dimension, see Figure 5a. This is called
the ordinary case. We determine from the corresponding Newton polygon that the q-Weil polynomial factors
into two polynomials in Qp, as there are two lines. Since these lines only pass lattice points at each integer
value of the x-axis, anything regarding the reducibility of these two factors is allowed.

Now suppose (4, 0) is the first vertex on the x-axis, corresponding to a p-rank of 2, see Figure 5b. In this
case, we see that the Newton polygon has an edge that goes through (3, n/2). Its slope is −n/2 and its
horizontal length is 2. Hence, the q-Weil polynomial has a factor in Qp of degree 2 which has two roots of
valuation n/2. This factor must be irreducible, since (3, n/2) is not a lattice point and hence, the q-Weil
polynomial cannot have a root of valuation n/2 in Qp.

Now let (5, 0) be the first vertex on the x-axis, resulting in a p-rank of 1, see Figure 5c. This Newton polygon
has a segment with slope −n/2 of horizontal length 4 that goes through (2, 3n/2), (3, n) and (4, n/2). This
corresponds to a polynomial factor of degree 4 in Qp that is allowed to be factored into a product of two
degree 2 polynomials, since (3, n) is a lattice point, but cannot be factored further. That is, the q-Weil
polynomial cannot have a root of valuation n/2 in Qp similar to the previous case.

Now let (3, 1) be a vertex, see Figure 2d. In this case is the p-rank is 0, but the abelian variety is not
supersingular. We can see that the polynomial factors into a product of two polynomials of degree 3.
However, as the only lattice points on the lines are (0, 3n), (3, n) and (6, 0), the q-Weil polynomial cannot be
factored further. In other words, those two polynomials of degree 3 must be irreducible in Qp. Equivalently,
they have no root in Qp.

Lastly, if none of the above is a vertex, we have the supersingular case, see Figure 5e. The only lattice points
on the line are (0, 3n), (2, 2n), (4, n) and (6, 0) and the slope is −n/2. Hence, it is possible that the q-Weil
polynomial in Qp is a product of three quadratic polynomials in Qp, but they have to be all irreducible, i.e.
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they must have no root in Qp. Furthermore, we must have that the polynomial is not able to be factored
into two degree 3 (irreducible) polynomials over Qp.
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9 Dimension 4

The isogeny classification of simple abelian varieties over finite fields of dimension 4 has been done by Haloui
and Singh [7] and Xing [28]. The former determines the bounds on the coefficients of q-Weil polynomials of
degree 8 and the conditions for which such an irreducible polynomial is the characteristic polynomial of a
simple abelian variety of dimension 4. The latter determines the cases when a power of an irreducible q-Weil
polynomial of lower degree is the characteristic polynomial of a simple abelian variety of dimension 4. This
chapter will summarise their results and provide some additional context for some statements.

As noted by some contributors of the LMFDB [3, Chapter 3.1], there is an error in the result regarding
the bounds of the coefficients of Weil polynomials of degree 8 by Haloui and Singh. A correction has been
stated in Bradford’s PhD thesis [2, Theorem 2.22], which still contained a small mistake, see Remark 9.3. We
will add some notes regarding the case where the q-Weil polynomial has a real root and compute the correct
bounds for the q-Weil polynomials of degree 8.

9.1 Weil polynomials of degree 8

First, we will determine the conditions for which a polynomial of the form

P (x) = x8 + a1x
7 + a2x

6 + a3x
5 + a4x

4 + qa3x
3 + q2a2x

2 + q3a1x+ q4 (9.1)

with a1, a2, a3, a4 ∈ Z is a q-Weil polynomial. Recall from Corollary 4.8 that the characteristic polynomial of
an abelian variety must have even multiplicity at real roots. With a similar proof as the corollary due to the
assumption of the constant coefficient of (9.1), we can conclude that real roots of P (x) have even multiplicity.

9.1.1 Real roots

Suppose P (x) has a real root, i.e. a root at x =
√
q or x = −√q. First consider the case where q is a square.

Because its multiplicity has to be at least 2, we can factor P (x) into

P (x) = (x+
√
q)2P̃ (x) or P (x) = (x−√q)2P̃ (x),

where P̃ (x) is a polynomial in Z[x] of degree 6. Then, P (x) is a q-Weil polynomial if and only if P̃ (x) is and
we know from Chapter 8.1 under which conditions on the polynomial P̃ (x) is a q-Weil polynomial.

Now consider the case where q is not a square. We know the multiplicity of the roots of P (x) at x =
√
q or

x = −√q are even and that their sum is at most 8, since that is the degree of P (x). Write

P (x) = (x+
√
q)2k(x−√q)2ℓh(x),

where 1 ≤ k + ℓ ≤ 4 and h(x) some polynomial in R[x]. First assume that the multiplicities are the same,
i.e. k = ℓ. The only possible ways to factor P (x) in R[x] such that the result is a q-Weil polynomial, are as
follows:

P (x) =

{
(x2 − q)4 if k = ℓ = 2

(x2 − q)2(x2 + ω1x+ q)(x2 + ω2x+ q) if k = ℓ = 1,

with ω1, ω2 ∈ R such that |ω1|, |ω2| ≤ 2
√
q and ω1 + ω2, ω1ω2 ∈ Z. If √q /∈ Z, then the minimal polynomial

of
√
q and −√q is x2 − q, which must divide P (x) if either of them is a root of P (x). Since the quotient is

still a q-Weil polynomial, now of degree 6, we can deduce from Theorem 8.2 that we must have k = ℓ.

9.1.2 No real roots

Similar to the case for dimension 3, we will apply results from Lemma 7.1 in order to determine when a
degree 8 polynomial of the form

P (x) = x8 + a1x
7 + a2x

6 + a3x
5 + a4x

4 + qa3x
3 + q2a2x

2 + q3a1x+ q4, (9.2)
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without real roots, is a q-Weil polynomial. Namely, as in Proposition 6.1, one can factorise P (x) over C into
a product of quadratic polynomials

P (x) =

4∏
i=1

(x2 + ωix+ q), (9.3)

for some ω1, ω2, ω3, ω4 ∈ C. Then P (x) is a q-Weil polynomial if and only if the polynomials

P+(x) =

4∏
i=1

(x− (2
√
q + ωi)), (9.4)

P−(x) =

4∏
i=1

(x− (2
√
q − ωi)), (9.5)

only have real positive roots. Let s1, s2, s3 and s4 denote the symmetric polynomials in the ωi’s, that is

4∏
i=1

(x+ ωi) = x4 + s1x
3 + s2x

2 + s3x+ s4.

Explicitly,

s1 = ω1 + ω2 + ω3 + ω4,

s2 = ω1ω2 + ω1ω3 + ω1ω4 + ω2ω3 + ω2ω4 + ω3ω4,

s3 = ω1ω2ω3 + ω1ω2ω4 + ω1ω3ω4 + ω2ω3ω4,

s4 = ω1ω2ω3ω4.

Expanding (9.3) and writing the coefficients in (9.2) in terms of the symmetric polynomials, we get

a1 = s1,

a2 = s2 + 4q,

a3 = s3 + 3qs1,

a4 = s4 + 2qs2 + 6q2.

Hence, writing the symmetric polynomials in terms of the coefficients of P (x) we get

s1 = a1,

s2 = a2 − 4q,

s3 = a3 − 3qa1,

s4 = a4 − 2qa2 + 2q2.

We write

P+(x) = x4 + b+1 x
3 + b+2 x

2 + b+3 x+ b+4 , (9.6)

P−(x) = x4 + b−1 x
3 + b−2 x

2 + b−3 x+ b−4 . (9.7)

Then expanding (9.4) and (9.5) and comparing it to (9.6) and (9.7) respectively leads to

b+1 = −s1 − 8
√
q, b−1 = s1 − 8

√
q,

b+2 = s2 + 6
√
qs1 + 24q, b−2 = s2 − 6

√
qs1 + 24q,

b+3 = −s3 − 4
√
qs2 − 12qs1 − 32q

√
q, b−3 = s3 − 4

√
qs2 + 12qs1 − 32q

√
q,

b+4 = s4 + 2
√
qs3 + 4qs2 + 8q

√
qs1 + 16q2, b−4 = s4 − 2

√
qs3 + 4qs2 − 8q

√
qs1 + 16q2.

Hence,

b+1 = −a1 − 8
√
q, b−1 = a1 − 8

√
q,

b+2 = a2 + 6
√
qa1 + 20q, b−2 = a2 − 6

√
qa1 + 20q,

b+3 = −a3 − 4
√
qa2 − 9qa1 − 16q

√
q, b−3 = a3 − 4

√
qa2 + 9qa1 − 16q

√
q,

b+4 = a4 + 2
√
qa3 + 2qa2 + 2q

√
qa1 + 2q2, b−4 = a4 − 2

√
qa3 + 2qa2 − 2q

√
qa1 + 2q2.



9 DIMENSION 4 48

Lemma 9.1. Let h(x) = x4+ r1x
3+ r2x

2+ r3x+ r4 be a monic polynomial of degree 4 with real coefficients.
Set

u2 :=
r2
2
− 3r21

16
,

u3 :=
r31
32
− r1r2

8
+

r3
4
,

ζ3 = e
2πi
3 ,

η :=

(
−u6

2

27
− 5u3

2u
2
3 +

27

2
u4
3 + i

27|u3|(−u2
3 − 4

27u
3
2)

3/2

2

)1/3

.

Let Sη := {η + η +
2u2

2

3 , ζ3η + ζ23η +
2u2

2

3 , ζ23η + ζ3η +
2u2

2

3 } ⊆ R. Let θ1 ≤ θ2 ≤ θ3 be the three elements in Sη.
Then, h(x) has only real roots that are all positive if and only if the following conditions hold:

1. r1 < 0,

2. 0 < r2 ≤ 3r21
8 ,

3. r1r2
2 −

r31
8 −

1
216 (9r

2
1 − 24r2)

3/2 ≤ r3 ≤ r1r2
2 −

r31
8 + 1

216 (9r
2
1 − 24r2)

3/2,

4. r3 < 0,

5.
3r41
256 −

r21r2
16 + r1r3

4 + θ1 ≤ r4 ≤ 3r41
256 −

r21r2
16 + r1r3

4 + θ2,

6. 0 < r4.

Proof. Consider derivatives of h(x), which are

h′(x) = 4x3 + 3r1x
2 + 2r2x+ r3,

h′′(x) = 12x2 + 6r1x+ 2r2,

h′′′(x) = 24x+ 6r1.

Clearly, r1 < 0 due to Descartes’ rule of sign change. We can conclude the result by applying Lemma 7.8
to h′′(x), afterwards applying Lemma 7.9 to h′(x) and lastly applying Lemma 7.10 to h(x).

We will apply Lemma 9.1 to b+i and b−i for i = 1, 2, 3, 4. First we compute u2 and u3 in terms of a1, a2, a3
using the expressions we have for b+1 , b

+
2 , b

+
3 and b−1 , b

−
2 , b

−
3 . We determine that

u2 = −3a21
16

+
a2
2
− 2q,

u3 =

{
−a3

1

32 + a1a2

8 + a1q
4 −

a3

4 with b+1 , b
+
2 , b

+
3 ,

a3
1

32 −
a1a2

8 − a1q
4 + a3

4 with b−1 , b
−
2 , b

−
3 .

Note that, due to u3 only appearing in the definition of η as an even power or absolute value |u3|, we will
the same result in Lemma 9.1 for both choices of b+1 , b

+
2 , b

+
3 , b

+
4 and b−1 , b

−
2 , b

−
3 , b

−
4 .

Substituting b+1 , b
+
2 , b

+
3 , b

+
4 and b−1 , b

−
2 , b

−
3 , b

−
4 in Lemma 9.1 and combining the results with the results for

the real root case, we obtain the following theorem.
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Theorem 9.2. Let P (x) = x8 + a1x
7 + a2x

6 + a3x
5 + a4x

4 + a3qx
3 + a2q

2x2 + a1q
3x+ q4 be a polynomial

with integer coefficients. Set

u2 = −3a21
16

+
a2
2
− 2q,

u3 = −a31
32

+
a1a2
8

+
a1q

4
− a3

4
,

ζ3 = e
2πi
3 ,

η =

(
−u6

2

27
− 5u3

2u
2
3 +

27

2
u4
3 + i

27|u3|(−u2
3 − 4

27u
3
2)

3/2

2

)1/3

.

Let Sη be the set

Sη =

{
η + η +

2u2
2

3
, ζ3η + ζ23η +

2u2
2

3
, ζ23η + ζ3η +

2u2
2

3

}
⊆ R.

Let θ1 ≤ θ2 ≤ θ3 be the three elements of Sη. Then P (x) is a q-Weil polynomial if and only if one of the
following conditions hold:

1. q is a square and P (x) = (x+
√
q)2P̃ (x) or P (x) = (x−√q)2P̃ (x), where P̃ (x) is a q-Weil polynomial

of degree 3, see Theorem 8.2;

2. q is not a square and P (x) = (x2−q)4 or P (x) = (x2−q)2(x2+ω1x+q)(x2+ω2x+q), where ω1, ω2 ∈ R
such that |ω1|, |ω2| < 2

√
q and ω1 · ω2, ω1 + ω2 ∈ Z;

3. the following conditions hold:

(a) |a1| < 8
√
q,

(b) 6
√
q|a1| − 20q < a2 ≤ 3a2

1

8 + 4q,

(c) a1a2

2 − a3
1

8 + a1q − 1
216 (9a

2
1 − 24a2 + 96q)3/2 ≤ a3 ≤ a1a2

2 − a3
1

8 + a1q +
1

216 (9a
2
1 − 24a2 + 96q)3/2,

(d) −4√qa2 − 9qa1 − 16q
√
q < a3 < 4

√
qa2 − 9qa1 + 16q

√
q,

(e)
3a4

1

256 −
a2
1a2

16 −
a2
1q
2 + a1a3

4 + 2a2q − 2q2 + θ1 ≤ a4 ≤ 3a4
1

256 −
a2
1a2

16 −
a2
1q
2 + a1a3

4 + 2a2q − 2q2 + θ2,

(f) 2
√
q|a1q + a3| − 2qa2 − 2q2 < a4.

Remark 9.3. For the second condition, one can use [14, Lemma 2.1] for the bounds of the coefficients of
q-Weil polynomials of degree 4 instead of the conditions in terms of ω1, ω2.
When comparing my bounds to the ones stated in Bradford’s thesis [2, Theorem 2.22], there seems to be a
typo in their statement, where ω should be

ω =
1

24

(
−8r62 − 540r32r

2
3 + 729r43 + i729|r3|

(
−r23 −

8

27
r32

)3/2
)1/3

.

Furthermore, the original statement is missing the q-Weil polynomials that have a real root.
After implementing the corrected bounds in SageMath 9.3 [13] and comparing the result to the built-in
function by [11], a few non-square-free q-Weil polynomials without real roots were determined by the in-built
function in SageMath that did not satisfy my result due to precision errors, which we will now explain. Since
they are non-square-free, they must have a multiple root. As explained in Corollary 7.6, a coefficient being
equal to one of its (non-strict) bounds necessarily means that there is a multiple root. Due to these precision
errors, some of the bounds were not correctly identified as integers. Increasing the precision of the code
solved this problem for the values of q for which the tests were done, but may still cause an issue for higher
values of q.
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9.2 Newton polygons

We will now determine which q-Weil polynomials of degree 8 correspond to a simple abelian variety of
dimension 4 over Fq = Fpn by combining results by Xing [28] and results by Haloui and Singh [7]. We know
that a simple abelian variety has a characteristic polynomial of the form P (x)d, where P (x) is an irreducible
q-Weil polynomial of degree 2g

d . The divisors of 8 are d = 1, 2, 4, 8. However, if d = 8, we would get that
P (x) is a q-Weil polynomial of degree 1, which can only have a real root. Hence, this case cannot happen
due to Lemma 5.5. For d = 4, 2, the result was determined by Xing [28, Propositions 3 and 4], while Haloui
and Singh [7, Theorem 1.2] determined the case for d = 1. Combining these two results are as follows.

Theorem 9.4. Let P (x) = x8 + a1x
7 + a2x

6 + a3x
5 + a4x

4 + a3qx
3 + a2q

2x2 + a1q
3x + q4 be a q-Weil

polynomial with q = pn. Then P (x) is the characteristic polynomial of a simple abelian variety of dimension
4 over Fq if and only if one of the following conditions holds:

1. n is a multiple of 4 and P (x) = (x2+ωx+ q)4, where |ω| < 2
√
q and ω = kq1/4 with k ∈ Z not divisible

by p,

2. P (x) = m(x)2, with m(x) = x4 + b1x
3 + b2x

2 + b1qx+ q2 ∈ Z[x] an irreducible q-Weil polynomial and
one of the following conditions hold:

(a) vp(b2) ≥ n/2, vp(b1) = 0 and m(x) has 4 roots in Qp counted with multiplicity,

(b) vp(b2) = n/2, vp(b1) ≥ n/4 and m(x) has no root in Qp,

(c) vp(b2) ≥ n, vp(b1) ≥ n/2 and m(x) has a root in Qp,

3. P (x) is irreducible over Q and one of the following conditions hold:

(a) vp(a4) = 0,

(b) vp(a4) ≥ n/2, vp(a3) = 0 and P (x) has no root of valuation n/2 in Qp,

(c) vp(a4) ≥ n, vp(a3) ≥ n/2, vp(a2) = 0 and P (x) has no root of valuation n/2 in Qp,

(d) vp(a4) = n, vp(a3) ≥ 2n/3, vp(a2) ≥ n/3, vp(a1) = 0 and P (x) has no root of valuation n/3 or
2n/3 in Qp,

(e) vp(a4) ≥ 3n/2, vp(a3) ≥ n, vp(a2) ≥ n/2, vp(a1) = 0 and P (x) has no root of valuation n/2 nor
an irreducible factor of degree 3 in Qp,

(f) vp(a4) = n, vp(a3) ≥ 3n/4, vp(a2) ≥ n/2, vp(a1) ≥ n/4 and P (x) has no root nor a factor of degree
2 in Qp,

(g) vp(a4) ≥ 3n/2, vp(a3) = n, vp(a2) ≥ 2n/3, vp(a1) ≥ n/3 and P (x) has no root in Qp,

(h) vp(a4) ≥ 2n, vp(a3) ≥ 3n/2, vp(a2) ≥ n, vp(a1) ≥ n/2 and P (x) has no root nor a factor of degree
3 in Qp.

The abelian varieties corresponding to case (1) have p-rank 0, while the p-ranks of abelian varieties in cases
(2a), (2b) and (2c) are respectively 2, 0 and 0. The p-ranks of abelian varieties in cases (3a), (3b), (3c),
(3d), (3e), (3f), (3g) and (3h) are respectively 4, 3, 2, 1, 1, 0, 0 and 0. Furthermore, case (3h) correspond to
supersingular abelian varieties.

Case (1) follows from Theorem 6.3, which was first determined by Xing [28, Propositions 3] for dimension
4 specifically. Note that these polynomials clearly have p-rank 0, since ω is divisible by p. We will explain
cases (2a), (2b) and (2c) in Section 9.2.1. The others are explained in Section 9.2.2.

9.2.1 Square polynomial

For dimension 4, the case with d = 2 has been determined by Xing [28]. Letm(x) = x4+b1x
3+b2x

2+b1qx+q2

be an irreducible q-Weil polynomial. An analogue to Corollary 6.8 can be made using Lemma 6.2 and Lemma
6.7, where the endpoints are (0, 2n) and (4, 0), and the vertices have to be contained in Z× (n/2)Z with at
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least one vertex not in Z × nZ. We must have at least one vertex not in Z × nZ, because otherwise m(x)
we would not get d = 2 in Lemma 6.2. This means we must have vp(b1) = n/2 or vp(b2) = n/2, since they
would not appear as vertices on the Newton polygon otherwise. The resulting Newton polygons are given in
Figure 6 and the conditions for vp(b1) and vp(b2) follow immediately.

(a) p-rank 2 case (b) p-rank 0, first case (c) p-rank 0, second case

Figure 6: Newton polygons of characteristic polynomials m(x)2 of simple abelian varieties of dimension 4.
See [28].

For the first case, suppose vp(b2) = n/2 and vp(b1) = 0, see Figure 6a. We can see from the Newton polygon
that m(x) can be factored into a product of two linear and one quadratic polynomial over Qp. However,
since (2, n/2) is a necessary vertex, the quadratic polynomial has to be a product of two linear polynomials
over Qp. Hence, the polynomial m(x) must have 4 roots in Qp. Equivalently, as determined by Xing in [28,
Proposition 4], (b22 + 2q)2 − 4qb21 is a square in Zp.

For the case where (2, n/2) is a vertex, but (3, 0) is not, see Figure 6b. We see from the Newton polygon
that m(x) can be factored into a product of two quadratic polynomials over Qp. However, as the values of
the Newton polygon at x = 1 and x = 3 are not in (n/2)Z, these quadratic polynomials must be irreducible.
Equivalently, m(x) has no root in Qp.

Lastly, if (3, n/2) is a vertex, see Figure 6c. Since (3, n/2) is a necessary vertex, m(x) must be factorisable
into a product of a linear and a cubic polynomial over Qp. Equivalently, m(x) has a root in Qp.

Since these Newton polygons are of m(x) and not of P (x), we cannot immediately determine the p-rank of
these cases. After observing that m(x)2 = P (x), we can express a1, a2, a3 and a4 in terms of b1 and b2 to
find the p-ranks. We compute

a1 = 2b1,

a2 = b21 + 2b2,

a3 = 2b1b2 + 2b1q,

a4 = 2b21q + b22 + 2q2.

Since by Proposition 6.11 the p-rank is equal to the largest index i with vp(ai) = 0, we immediately have that
the cases in Figures 6b and 6c have p-rank 0, as vp(b1), vp(b2) > 0, leading to vp(a1), vp(a2), vp(a3), vp(a4) > 0.
For case in Figure 6a, we have vp(b2) > 0, but vp(b1) = 0. This leads to vp(a2) = 0 and vp(a3), vp(a4) > 0,
so the p-rank is 2.

9.2.2 Irreducible polynomial

We now consider the case d = 1, that is, when P (x) is an irreducible q-Weil polynomial of degree 8 of the
form

P (x) = x8 + a1x
7 + a2x

6 + a3x
5 + a4x

4 + a3qx
3 + a2q

2x2 + a1q
3x+ q4.

Using Corollary 6.8, we can determine all possible Newton polygons of P (x) such that it is the characteristic
polynomial of a simple abelian variety of dimension 4. The lattice points under the line through (0, 4n) and
(8, 0) and on or above the x-axis with x-coordinate 4, 5, 6 or 7 are (4, 0), (4, 1), (5, 0), (5, 1), (6, 0) and (7, 0).
They all give one Newton polygon with another possible construction having vertices (4, 1) and (7, 0) and
the last construction being the line through (0, 4n) and (8, 0). This result was first determined by Haloui
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and Singh [7, Theorem 1.2]. The possible Newton polygons are given in Figure 7. The graphs immediately
give the conditions regarding the valuations of a1, a2, a3 and a4 and the horizontal slope gives the p-rank of
the respective case, see Corollary 6.12.

(a) Ordinary case (b) p-rank 3 case

(c) p-rank 2 case (d) p-rank 1, first case

(e) p-rank 1, second case (f) p-rank 0, first case

(g) p-rank 0, second case (h) Supersingular case

Figure 7: Newton polygons of irreducible characteristic polynomials of simple abelian varieties of dimension
4, c.f. [7].

First suppose (4, 0) is a vertex, so the case in Figure 7a. The Newton polygon tells us that in Qp[x], the
polynomial P (x) is a product of two degree 4 polynomials. Since the segments pass through a lattice point
at each integer value of x, these two polynomials are allowed to be factored in any possible way over Qp.

Now suppose (5, 0) is a vertex, but (4, 0) is not, see Figure 7b. We determine that P (x) is a product of two
degree 3 polynomials and one degree 2 polynomial in Qp[x]. However, at x = 4, the Newton polygon does
not pass through a lattice point. Hence, the degree 2 polynomial cannot be factored further, that is it cannot
have a root in Qp. Since the slope of this line is −n/2, we can simply say that P (x) cannot have a root of
p-adic valuation n/2 in Qp.

If (6, 0) is a vertex, but (5, 0) is not, we have the p-rank 2 case, see Figure 7c. The Newton polygon shows
that P (x) can be factored over Qp into a product of two degree 2 polynomials and one degree 4 polynomial.
The former may have roots in Qp, since the corresponding segments only pass through lattice points at integer
values of x. The latter may be factored into a product of two degree 2 polynomials, since the middle point
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(4, n) of the segment with horizontal length 4 is a lattice point, but cannot be further factored, which means
it cannot have a root. The slope of this segment is −n/2, while the other segments have a different slope, so
we can simply say that P (x) does not have a root of p-adic valuation n/2 in Qp.

In the first case of p-rank 1 where (4, 1) is a vertex, see Figure 7e, P (x) has two linear factors and two
factors of degree 3. Since the segments with horizontal length 3 do not go through any lattice point except
for their endpoints, they must be irreducible. Equivalently, they have no root in Qp. As the slopes of these
edges are −n/3 and −2n/3, the polynomial P (x) does not have a root in Qp of p-adic valuation n/3 or 2n/3.

The second case of p-rank 1 is given in Figure 7d. Here, P (x) has two linear factors and a factor of degree
6 in Qp. Since the edge with horizontal length 6 only passes through lattice points for every second integer
value of x, the polynomial factor of degree 6 is allowed to be factored into three quadratic polynomials, but
these cannot have roots. Furthermore, the degree 6 polynomial cannot be factored into two polynomials of
degree 3. The slope of the corresponding edge is −n/2. Hence, P (x) does not have a root of p-adic valuation
n/2 nor an irreducible factor of degree 3 in Qp.

In the case with p-rank 0 where (4, 1) is a vertex, see Figure 7f, we see that P (x) must have two irreducible
factors of degree 4 in Qp. This is because there are two segments of horizontal length 4 that do not go
through any lattice points except their endpoints. Equivalently, P (x) has no root nor a factor of degree 2 in
Qp.

The second case with p-rank 0, see Figure 7g, has two edges of horizontal length 3 and one of length 2.
These edges only pass through lattice points at their endpoints. Hence, the factorisation over P (x) over Qp

consists of two irreducible polynomials of degree 3 and one irreducible polynomial of degree 2. Equivalently,
P (x) has no root in Qp.

Lastly, we have the supersingular case, see Figure 7h. Only at even values of x does the Newton polygon
pass through lattice points. Hence, P (x) is allowed to be factored into a product of polynomials over Qp,
but none of them can have odd degree. Equivalently, P (x) has no root nor a factor of degree 3 over Qp.
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10 Dimension 5

The bounds on the coefficients of q-Weil polynomials of degree 10 have been determined by Sohn [22], while
Hayashida [8] has determined conditions for which a q-Weil polynomial of degree 10 is the characteristic poly-
nomial of an abelian variety of dimension 5 over a fixed finite field. However, according to some contributors
of the LMFDB [3, Chapter 3.1], the bounds by Sohn are incorrect. We will add some notes regarding the case
where the q-Weil polynomial has a real root and explain how to correctly compute the bounds. Afterwards,
we summarise Hayashida’s result on which q-Weil polynomials of degree 10 correspond to characteristic
polynomials of simple abelian varieties of dimension 5 over Fq.

10.1 Weil polynomials of degree 10

Let

P (x) = x10 + a1x
9 + a2x

8 + a3x
7 + a4x

6 + a5x
5 + qa4x

4 + q2a3x
3 + q3a2x

2 + q4a1x+ q5 (10.1)

be an integer polynomial. In order to determine the conditions on the coefficients in order for it to be a
q-Weil polynomial, we will again distinguish the cases with a real root and without a real root similar as our
procedures in Chapters 8 and 9.

10.1.1 Real roots

Recall from Corollary 4.8 that the characteristic polynomial of an abelian variety must have even multiplicity
at real roots. If P (x) has a real root and

√
q ∈ Z, then P (x) is a q-Weil polynomial if and only if

P (x) = (x+
√
q)2P̃ (x) or P (x) = (x+

√
q)2P̃ (x),

where P̃ (x) is a q-Weil polynomial of degree 8, for which we refer to Theorem 9.2.

In the case where q is not a square, if the root at x =
√
q is of the same multiplicity as the one at x = −√q,

then the following cases occur:

P (x) =

{
(x2 − q)4(x2 + ωx+ q) if k = ℓ = 2, where ω ∈ Z with |ω| < 2

√
q,

(x2 − q)2
∏3

i=1(x
2 + ωi + q) if k = ℓ = 1, where ωi ∈ R such that

∏3
i=1(x+ ωi) ∈ Z[x].

Moreover, if
√
q /∈ Z, the minimal polynomial of both

√
q and −√q is x2 − q, so it must divide P (x). The

quotient is then a q-Weil polynomial, now of degree 8, so we conclude using Theorem 9.2 that k ̸= ℓ does not
happen if

√
q /∈ Z.

10.1.2 No real roots

Write

P (x) =

5∏
i=1

(x2 + ωix+ q), (10.2)

for some ω1, . . . , ωi ∈ C. As explained in Proposition 6.1, P (x) is a q-Weil polynomial without real roots if
and only if the polynomials

P+(x) =

5∏
i=1

(x− (2
√
q + ωi)), (10.3)

P−(x) =

5∏
i=1

(x− (2
√
q − ωi)), (10.4)
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only have real positive roots. Let s1, s2, s3, s4 and s5 denote the symmetric polynomials in ωi, that is

5∏
i=1

(x+ ωi) = x5 + s1x
4 + s2x

3 + s3x
2 + s4x+ s5.

Expanding (10.2) and comparing it with (10.1) gives

a1 = s1,

a2 = s2 + 5q,

a3 = s3 + 4qs1,

a4 = s4 + 3qs2 + 10q2,

a5 = s5 + 2qs3 + 6q2s1.

Hence, the symmetric polynomials in terms of the coefficients of P (x) are

s1 = a1,

s2 = a2 − 5q,

s3 = a3 − 4qa1,

s4 = a4 − 3qa2 + 5q2,

s5 = a5 − 2qa3 + 2q2a1.

We write the coefficients of P+(x) and P−(x) as

P+(x) = x5 + b+1 x
4 + b+2 x

3 + b+3 x
2 + b+4 x+ b+5 , (10.5)

P−(x) = x5 + b−1 x
4 + b−2 x

3 + b−3 x
2 + b−4 x+ b−5 . (10.6)

Expanding (10.3) and (10.4) and comparing it to (10.5) and (10.6) respectively yields

b+1 = −s1 − 10
√
q, b−1 = s1 − 10

√
q,

b+2 = s2 + 8
√
qs1 + 40q, b−2 = s2 − 8

√
qs1 + 40q,

b+3 = −s3 − 6
√
qs2 − 24qs1 − 80q

√
q, b−3 = s3 − 6

√
qs2 + 24qs1 − 80q

√
q,

b+4 = s4 + 4
√
qs3 + 12qs2 + 32q

√
qs1 + 80q2, b−4 = s4 − 4

√
qs3 + 12qs2 − 32q

√
qs1 + 80q2,

b+5 = −s5 − 2
√
qs4 − 4qs3 − 8q

√
qs2 − 16q2s1 − 32q2

√
q, b−5 = s5 − 2

√
qs4 + 4qs3 − 8q

√
qs2 + 16q2s1 − 32q2

√
q.

Substituting the values of s1, . . . , s5 in terms of a1, . . . , a5 then gives

b+1 = −a1 − 10
√
q, b−1 = a1 − 10

√
q,

b+2 = a2 + 8
√
qa1 + 35q, b−2 = a2 − 8

√
qa1 + 35q,

b+3 = −a3 − 6
√
qa2 − 20qa1 − 50q

√
q, b−3 = a3 − 6

√
qa2 + 20qa1 − 50q

√
q,

b+4 = a4 + 4
√
qa3 + 9qa2 + 16q

√
qa1 + 25q2, b−4 = a4 − 4

√
qa3 + 9qa2 − 16q

√
qa1 + 25q2,

b+5 = −a5 − 2
√
qa4 − 2qa3 − 2q

√
qa2 − 2q2a1 − 2q2

√
q, b−5 = a5 − 2

√
qa4 + 2qa3 − 2q

√
qa2 + 2q2a1 − 2q2

√
q.

Lemma 10.1. Let h(x) = x5 + r1x
4 + r2x

3 + r3x
2 + r4x + r5 be a monic polynomial of degree 5 with real

coefficients. Set

u2 :=
3r2
10
− 3r21

25
,

u3 :=
2r31
125
− 3r1r2

50
+

r3
10

,

u4 =
−3r41
625

+
3r21r2
125

− 2r1r3
25

+
r4
5
,

ζ3 := e
2πi
3 ,

η := 5

(
−u6

2

27
− 5u3

2u
2
3 +

27u4
3

2
+ i

27|u3|
(
−u2

3 − 4
27u

3
2

)3/2
2

)1/3

.
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Define Sη :=
{
η + η +

10u2
2

3 , ζ3η + ζ23η +
10u2

2

3 , ζ23η + ζ3η +
10u2

2

3

}
⊆ R and let θ1 ≤ θ2 ≤ θ3 be the three

elements of Sη ordered from least to greatest. If u3 = 0, let xi1,i2 be

xi1,i2 = i1

√
−u2 + i2

√
u2
2 − u4,

for i1, i2 ∈ {+1,−1}. Otherwise, define

v2 = −u2
2

3
− u4,

v3 =
2u2u4

3
− 2u3

2

27
− 2u2

3,

C =

−v3 +
√
v23 +

4
27v

3
2

2

1/3

,

y =

{
3
√
−v3 − 2u2

3 if v2 = 0,

C − v2
3C −

2u2

3 if v2 ̸= 0,

and let xi1,i2 for i1, i2 ∈ {+1,−1} be defined by

xi1,i2 =
i1
√
2y + i2

√
−4u2 − 2y − i1

8u3√
2y

2
.

Note that under the conditions on r1, r2, r3, r4 below, all xi1,i2 ’s will be real. Let γ1 ≥ γ2 ≥ γ3 ≥ γ4 be equal
to xi1,i2 with each a distinct pair (i1, i2), so that they are ordered. Let g̃(x) be a polynomial defined by

g̃(x) = −x5 − 10

3
u2x

3 − 10u3x
2 − 5u4x,

and define

λ1 = max{g̃(γ2), g̃(γ4)},
λ2 = min{g̃(γ1), g̃(γ3)}.

Then h(x) has only real roots that are all positive if and only if the following conditions hold:

1. r1 < 0,

2. 0 < r2 ≤ 2r21
5 ,

3. − 4
25r

3
1 +

3
5r1r2 −

1
50 (4r

2
1 − 10r2)

3/2 ≤ r3 ≤ − 4
25r

3
1 +

3
5r1r2 +

1
50 (4r

2
1 − 10r2)

3/2,

4. r3 < 0,

5.
3r41
125 −

3r21r2
25 + 2r1r3

5 + θ1 ≤ r4 ≤ 3r41
125 −

3r21r2
25 + 2r1r3

5 + θ2,

6. r4 > 0,

7. − 4r51
3125 +

r31r2
125 −

r21r3
25 + r1r4

5 + λ1 ≤ r5 ≤ − 4r51
3125 +

r31r2
125 −

r21r3
25 + r1r4

5 + λ1,

8. r5 < 0.

Proof. Once again, we will be applying the results obtained from Robinson’s method, Lemma 7.1, in order
to prove the statements. The derivatives of h(x) are

h′(x) = 5x4 + 4r1x
3 + 3r2x

2 + 2r3x+ r4,

h′′(x) = 20x3 + 12r1x
2 + 6r2x+ 2r3,

h′′′(x) = 60x2 + 24r1x+ 6r2,

h′′′′(x) = 120x+ 24r1.
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We obtain the bounds of r2 by applying Lemma 7.8 to h′′′(x), then apply Lemma 7.9 to h′′(x) for the bounds
of r3, afterwards use Lemma 7.10 on h′(x) for the bounds of r4 and lastly the bounds for r5 follow from
Lemma 7.10 with h(x).

We will be applying the bounds described in Lemma 10.1 to b+1 , . . . , b
+
5 and b−1 , . . . , b

−
5 . First we compute

u2 = −3a21
25

+
3a2
10
− 3q

2
,

u3 =

{
− 2a3

1

125 + 3a1a2

50 + a1q
10 −

a3

10 with b+1 , . . . , b
+
5 ,

2a3
1

125 −
3a1a2

50 − a1q
10 + a3

10 with b−1 , . . . , b
−
5

,

u4 = −3a41
625

+
3a21a2
125

+
a21q

5
− 2a1a3

25
− 3qa2

5
+

a4
5

+ q2.

We claim that the bounds for P (x) do not depend on the sign of u3. The only definitions in Lemma 10.1
with an odd power of u3 are in η and xi1,i2 . For η, note that the definition of Sη does not change, since a
sign change of u3 in η gives the complex conjugate η. For xi1,i2 , note that

i1
√
2y + i2

√
−4u2 − 2y − i1

8(−u3)√
2y

2
=

i1
√
2y + i2

√
−4u2 − 2y + (−i1) 8u3√

2y

2

= −
(−i1)

√
2y + (−i2)

√
−4u2 − 2y + (−i1) 8u3√

2y

2
.

Hence, a sign change of u3 applied to xi1,i2 gives−x−i1,−i2 and so the elements of {x+1,+1, x+1,−1, x−1,+1, x−1,−1}
are re-ordered and change sign. However, we notice that the sign of a5 in b+5 is different from a5 in b−5 . Hence,
if we are careful with the signs in the definition of λ1 and λ2, the bounds for a5 are the same in either case.
Substituting b+1 , b

+
2 , b

+
3 , b

+
4 , b

+
5 and b−1 , b

−
2 , b

−
3 , b

−
4 , b

−
5 in Lemma 10.1 results in the following.

Theorem 10.2. Let P (x) = x10 + a1x
9 + a2x

8 + a3x
7 + a4x

6 + a5x
5 + a4qx

4 + a3q
2x3 + a2q

3x2 + a1q
4x+ q5

be an integer polynomial.

u2 = −3a21
25

+
3a2
10
− 3q

2
,

u3 =
2a31
125
− 3a1a2

50
− a1q

10
+

a3
10

,

u4 = −3a41
625

+
3a21a2
125

+
a21q

5
− 2a1a3

25
− 3qa2

5
+

a4
5

+ q2,

ζ3 := e
2πi
3 ,

η := 5

(
−u6

2

27
− 5u3

2u
2
3 +

27u4
3

2
+ i

27|u3|
(
−u2

3 − 4
27u

3
2

)3/2
2

)1/3

.

Define Sη :=
{
η + η +

10u2
2

3 , ζ3η + ζ23η +
10u2

2

3 , ζ23η + ζ3η +
10u2

2

3

}
⊆ R and let θ1 ≤ θ2 ≤ θ3 be the three

elements of Sη. If u3 = 0, let xi1,i2 be

xi1,i2 = i1

√
−u2 + i2

√
u2
2 − u4,
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for i1, i2 ∈ {+1,−1}. Otherwise, define

v2 = −u2
2

3
− u4,

v3 =
2u2u4

3
− 2u3

2

27
− 2u2

3,

C =

−v3 +
√
v23 +

4
27v

3
2

2

1/3

,

y =

{
3
√
−v3 − 2u2

3 if v2 = 0,

C − v2
3C −

2u2

3 if v2 ̸= 0,

and let xi1,i2 for i1, i2 ∈ {+1,−1} be defined by

xi1,i2 =
i1
√
2y + i2

√
−4u2 − 2y − i1

8u3√
2y

2
.

Note that under the conditions on a1, a2, a3, a4 below, all xi1,i2 ’s will be real. Let γ1 ≥ γ2 ≥ γ3 ≥ γ4 be equal
to xi1,i2 with each a distinct pair (i1, i2), so that they are ordered. Let g̃(x) be a polynomial defined by

g̃(x) = −x5 − 10

3
u2x

3 − 10u3x
2 − 5u4x,

and define

λ1 = max{g̃(γ2), g̃(γ4)},
λ2 = min{g̃(γ1), g̃(γ3)}.

Then P (x) is q-Weil polynomial if and only if one of the following conditions holds:

1. q is a square and P (x) = (x+
√
q)2P̃ (x) or P (x) = (x−√q)2P̃ (x), where P̃ (x) is a q-Weil polynomial

of degree 8, see Theorem 9.2;

2. q is not a square and P (x) = (x2− q)4(x2+ωx+
√
q) with ω ∈ R, |ω| < 2

√
q, or P (x) = (x2− q)2P̃ (x),

where P̃ (x) is a q-Weil polynomial of degree 6, see Theorem 8.2;

3. the following conditions hold:

(a) |a1| < 10
√
q

(b) 8
√
q|a1| − 35

√
q < a2 ≤ 2

5a
2
1 + 5q,

(c) − 4
25a

3
1+

3
5a1a2+a1q− 1

50 (4a
2
1+50q−10a2)3/2 ≤ a3 ≤ − 4

25a
3
1+

3
5a1a2+a1q+

1
50 (4a

2
1+50q−10a2)3/2,

(d) −6√qa2 − 20qa1 − 50q
√
q < a3 < 6a2

√
q − 20qa1 + 50q

√
q,

(e)
3a4

1

125 −
3a2

1a2

25 − a21q +
2a1a3

5 + 3qa2 − 5q2 + θ1 ≤ a4 ≤ 3a4
1

125 −
3a2

1a2

25 − a21q +
2a1a3

5 + 3qa2 − 5q2 + θ2,

(f) 4
√
q|4qa1 + a3| − 9qa2 − 25q2 < a4,

(g) − 4a5
1

3125 + a31
(
15q+a2

125

)
− a2

1a3

25 + a1

(
a4−3qa2−5q2

5

)
+ 2qa3 + λ1 ≤ a5 ≤ − 4a5

1

3125 + a31
(
15q+a2

125

)
− a2

1a3

25 +

a1

(
a4−3qa2−5q2

5

)
+ 2qa3 + λ2,

(h) −2√qa4 − 2qa3 − 2q
√
qa2 − 2q2a1 − 2q2

√
q < a5 < 2

√
qa4 − 2qa3 + 2q

√
qa2 − 2q2a1 + 2q2

√
q.

Remark 10.3. When comparing this result to the original result by Sohn [22, Theorem 2.1], one notable
difference is in the non-strict bound for a3, where Sohn was missing a term 50q inside the base with expo-
nent 3/2. Furthermore, similar to the original result for dimension 4 by Haloui and Singh [7], the q-Weil
polynomials with real roots were missing and the bound for a4 needed more attention to which of the cube
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roots were chosen for the bounds of a4. There also seems to be a typo in Sohn’s result, where the strict and
non-strict bounds for a5 were merged and an extra bound for a4 was written but nowhere explained.
After implementing my bounds [13] and comparing the resulting polynomials with the built-in SageMath 9.3
function by Kedlaya [11], my bounds missed some polynomials without real roots that contained a multiple
root. These occurred due to precision errors, similar to the ones for degree 8, see Remark 9.3 and Corollary
7.6. Increasing the precision of the code solved this problem for the values of q for which the tests were done,
but may still cause an issue for higher values of q.

10.2 Newton polygons

We want to determine the conditions for which a q-Weil polynomial of degree 10 corresponds to the charac-
teristic polynomial of a simple abelian variety of dimension 5 over Fq. This contents of this section was first
determined by Hayashida [8]. Compared to the original result, the Newton polygons will be reordered based
on p-rank and value of vp(a5), similar to how Haloui and Haloui-Singh ordered their Newton polygons for
dimension 3 and 4 respectively.
Firstly, since we only look at simple abelian varieties, the characteristic polynomial must be a power of an
irreducible q-Weil polynomial. The positive divisors of 10 are 1, 2, 5 and 10. Note that if the degree of a
polynomial is odd, it will have a real root, which would not give a simple abelian variety of dimension 5, see
Lemma 5.5. Hence, either the characteristic polynomial is of the form (x2 + ax+ q)5, as in Theorem 6.3 or
it is irreducible over Q.

Let

P (x) = x10 + a1x
9 + a2x

8 + a3x
7 + a4x

6 + a5x
5 + qa4x

4 + q2a3x
3 + q3a2x

2 + q4a1x+ q5

be an irreducible q-Weil polynomial. We can use Corollary 6.8 to determine the conditions on the coefficients.
The lattice points of Z×nZ that are under the line through (0, 5n) and (10, 0) with x-coordinate corresponding
to the coefficients a1, a2, a3, a4 or a5 are (5, 0), (5, 1), (5, 2), (6, 0), (6, 1), (7, 0), (7, 1), (8, 0) and (9, 0). These
all give one construction of a possible Newton polygon. Constructions that can be made using multiple of
these points are one with (5, 1) and (8, 0), another one with (5, 1) and (9, 0) and a third Newton polygon with
(6, 1) and (9, 0). Together with the line through (0, 5n) and (10, 0), we get all possible Newton polygons, see
Figure 8. This result was first determined by Hayashida [8, Theorem 1.3].

Theorem 10.4. Let P (x) = x10 + a1x
9 + a2x

8 + a3x
7 + a4x

6 + a5x
5 + qa4x

4 + q2a3x
3 + q3a2x

2 + q4a1x+ q5

be a q-Weil polynomial. Then P (x) is the characteristic polynomial of a simple abelian variety of dimension
5 over Fq = Fpn if and only if one of the following conditions holds:

1. n is a multiple of 5 and P (x) = (x2 + ωx + q)5, where |ω| < 2
√
q and ω = kq1/5 or ω = kq2/5 with

k ∈ Z not divisible by p,

2. the polynomial P (x) is irreducible over Q and one of the following conditions holds:

(a) vp(a5) = 0,

(b) vp(a5) ≥ n/2, vp(a4) = 0 and P (x) has no root of valuation n/2 in Qp,

(c) vp(a5) ≥ n, vp(a4) ≥ n/2, vp(a3) = 0 and P (x) has no root of valuation n/2 in Qp,

(d) vp(a5) = n, vp(a4) ≥ 2n/3, vp(a3) ≥ n/3, vp(a2) = 0 and P (x) has no root of valuation n/3 or
2n/3 in Qp,

(e) vp(a5) ≥ 3n/2, vp(a4) ≥ n, vp(a3) ≥ n/2, vp(a2) = 0 and P (x) has no root of valuation n/2 nor
an irreducible factor of degree 3 in Qp,

(f) vp(a5) = n, vp(a4) ≥ 3n/4, vp(a3) ≥ n/2, vp(a2) ≥ n/4, vp(a1) = 0 and P (x) has no root of
valuation n/4 or 3n/4 nor an irreducible factor of degree 2 in Qp,

(g) vp(a5) ≥ 3n/2, vp(a4) = n, vp(a3) ≥ 2n/3, vp(a2) ≥ n/3, vp(a1) = 0 and P (x) has no root of
valuation n/3, n/2 or 2n/3 in Qp,
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(h) vp(a5) ≥ 2n, vp(a4) ≥ 3n/2, vp(a3) ≥ n, vp(a2) ≥ n/2, vp(a1) = 0 and P (x) has no root of valuation
n/2 nor an irreducible factor of degree 3 in Qp,

(i) vp(a5) = n, vp(a4) ≥ 4n/5, vp(a3) ≥ 3n/5, vp(a2) ≥ 2n/5, vp(a1) ≥ n/5 and P (x) has no root nor
a factor of degree 2 in Qp,

(j) vp(a5) ≥ 3n/2, vp(a4) = n, vp(a3) ≥ 3n/4, vp(a2) ≥ n/2, vp(a1) ≥ n/4 and P (x) has no root and
exactly one irreducible factor of degree 2 in Qp,

(k) vp(a5) ≥ 2n, vp(a4) ≥ 3n/2, vp(a3) = n, vp(a2) ≥ 2n/3, vp(a1) ≥ n/3 and P (x) has no root in Qp,

(l) vp(a5) = 2n, vp(a4) ≥ 8n/5, vp(a3) ≥ 6n/5, vp(a2) ≥ 4n/5, vp(a1) ≥ 2n/5 and P (x) has no root
nor a factor of degree 2 in Qp,

(m) vp(a5) ≥ 5n/2, vp(a4) ≥ 2n, vp(a3) ≥ 3n/2, vp(a2) ≥ n, vp(a1) ≥ n/2 and P (x) has no root nor a
factor of degree 3 or 5 in Qp.

The abelian varieties corresponding to case (1) have p-rank 0. Furthermore, the p-ranks of abelian varieties
corresponding to cases (2b), (2c), (2d), (2e), (2f), (2g), (2h), (2i), (2j), (2k), (2l), (2m) are respectively
5, 4, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0. The abelian varieties corresponding to (2m) are supersingular.

Proof. The statements regarding the valuation of the coefficients follow immediately from the Newton poly-
gons. Furthermore, by Corollary 6.12, we can also immediately see the p-ranks in each case.

Let (5, 0) be a vertex, as in Figure 8a. Since the Newton polygon has two edges of horizontal length 5, we
know P (x) can be factored into two polynomials of degree 5 in Qp. These polynomials are allowed to be
factored in any possible way in Qp, as every point on the Newton polygon with integer value x-coordinate is
contained in the lattice.

Now suppose (6, 0) be a vertex, as in Figure 8b. The Newton polygon has two segments of horizontal length
4 and one of length 2, so P (x) can be factored into a product of two degree 4 polynomials and one degree
2 polynomial in Qp. This Newton polygon passes through only lattice points at every integer value except
for x = 5. The slope of this segment is −n/2 and it has horizontal length 2. Hence, anything regarding the
factorisation of the degree 4 polynomials in Qp is allowed, while the degree 2 polynomial must be irreducible
in Qp. Equivalently, P (x) has no root of valuation n/2 in Qp.

If (7, 0) is a vertex, as in Figure 8c, the Newton polygon has two edges of horizontal length 3 and one of
length 4. It follows that P (x) is the product of two degree 3 polynomials and one degree 4 polynomial in Qp.
Only the edge with horizontal length 4, which has slope −n/2, does not pass through lattice points, namely
at x = 4 and x = 6. This means that the polynomial of degree 4 must not have a root. Equivalently, P (x)
has no root of valuation n/2 in Qp.

Now suppose (5, 1) and (8, 0) are both vertices as in Figure 8d. There are two edges of horizontal length
2 and two edges of length 3. The edges of length 2 only pass through lattice points at integer values of x,
while the edges of length 3 only have their respective endpoints as lattice points. It follows that the degree
3 polynomials must be irreducible over Qp, while the polynomial of degree 2 is allowed to be reducible over
Qp. The slope of the edges of length 3 are −n/3 and −2n/3, so equivalently P (x) must not have a root of
valuation n/3 or 2n/3 in Qp.

Suppose that (8, 0) is a vertex again, but not (5, 1), as in Figure 8e. The two segments of horizontal length
2 only go through lattice points at integer values of x, while the segment of length 6 only passes through
lattices points for even values of x. Hence, P (x) is a product of two degree 2 polynomials and one degree
6 polynomial in Qp, where the degree 2 polynomials may be reducible and the degree 6 polynomial can
only have factors of even degree. The edge of length 6 has slope −n/2, so equivalently P (x) has no root of
valuation −n/2 nor an irreducible factor of degree 3 in Qp.

Let (5, 1) and (9, 0) be vertices of the Newton polygon, see Figure 8f. Two segments of horizontal length 1
indicate two roots in Qp. Furthermore, the two segment of length 4 only go through lattice points at their
respective endpoints. This indicates two irreducible polynomials of degree 4 of P (x) in Qp. The slopes of
these edges are −n/4 and −3n/4, so P (x) cannot have a root of valuation −n/4 or −3n/4 nor can P (x) have
an irreducible factor of degree 2 in Qp.
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(a) Ordinary case (b) p-rank 4 case

(c) p-rank 3 case (d) p-rank 2, first case

(e) p-rank 2, second case (f) p-rank 1, first case

(g) p-rank 1, second case (h) p-rank 1, third case

(i) p-rank 0, first case (j) p-rank 0, second case

(k) p-rank 0, third case (l) p-rank 0, fourth case

(m) Supersingular case

Figure 8: Newton polygons of irreducible characteristic polynomials of simple abelian varieties of dimension
5, c.f. [8].

Let both (6, 1) and (9, 0) be vertices of the Newton polygon, as in Figure 8g. Two edges of horizontal length
1 indicate two roots in Qp. Furthermore, the two edges of length 3 and the edge of length 2 only go through
lattice points at their respective endpoints. This indicates two irreducible polynomials of degree 3 and one
irreducible polynomial of degree 2 of P (x) in Qp. The slopes of these edges are −n/3,−n/2,−2n/3, so P (x)
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cannot have a root of valuation n/3, n/2 or 2n/3 in Qp.

Now suppose (9, 0) is a vertex, but not (5, 1) or (6, 1), see Figure 8h. Again, two edges of horizontal length
1 indicate two roots in Qp. The edge of length 8 only passes through lattice points at every other integer
value of x, which means that the corresponding polynomial factor of degree 8 of P (x) in Qp may only be
factored into a product of polynomials of even degrees. The slope of this edge is −n/2. Hence, P (x) cannot
have a root of valuation n/2 nor an irreducible factor of degree 3 in Qp.

Let (5, 1) be a vertex, but (8, 0) and (9, 0) not, see Figure 8i. These two segments of length 5 only pass
through lattice points at their respective endpoints. Hence, P (x) factors in Qp into a product of two ir-
reducible degree 5 polynomials. Equivalently, P (x) has no root nor an irreducible factor of degree 2 in
Qp.

If (6, 1) is a vertex, but not (9, 0), as in Figure 8j, we have three segments which only pass through lattice
points at their respective endpoints. The horizontal lengths are 4, 2 and 4. Hence, P (x) has two irreducible
factors of degree 4 and one of degree 2 in Qp. Equivalently, P (x) has exactly one factor of degree 2 and no
roots in Qp.

If (7, 1) is a vertex, as in Figure 8k, there are two segments of horizontal length 3 and one of length 4 with
the only lattice points being their endpoints and the middle point of the segment of length 4. Hence, the
factorisation of P (x) in Qp consists of two irreducible polynomials of degree 3 and one of degree 4 or two of
degree 2. Given the Newton polygon, it is equivalent to say that P (x) has no roots in Qp.

Let (5, 2) be a vertex, see Figure 8l. There are two edges of length 5 and the only lattice points on the
Newton polygon are the endpoints and the middle. Hence, P (x) in Qp must factor into a product of two
irreducible polynomials of degree 5. Equivalently, given the Newton polygon, P (x) has no roots nor a factor
of degree 2 in Qp.

Lastly, suppose the Newton polygon is simply the line through (0, 5n) and (10, 0), as in Figure 8m. The line
only passes through lattice points at even values of x. Hence, P (x) may be factorisable in Qp into a product
of polynomials of even degrees, but not odd degrees.
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