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Abstract

Forecasting earthquakes is a prime future target of Solid Earth research to which
geodynamics research can contribute by providing a deep understanding of the physical
drivers generating the lithosphere stress driving earthquakes. Processes confined to the
lithosphere are known to cause stress build-up. However, the contribution of the Earth’s
mantle is less substantiated. Assessing the contribution of deep dynamic drivers to
lithosphere deformation can be done by numerical modelling by creating predictions of
deformation that are then tested against observations, e.g., the GNSS surface motion field.

Here we present the findings of 3D geodynamic modelling of the Vrancea (east
Carpathians) and Aegean subduction zones in south-eastern Europe. Two differing
tectonic settings - in Vrancea seismically active continent-continent collision and in the
Aegean roll-back subduction- of differing scale are present, providing a suitable case to
test interplay of mantle drivers and their effect on surface/crustal flow. To this end a 3D
initial temperature-density model is designed from published lithospheric thickness and
tomography models down to a depth of 800 km. We solve the equations describing the
conservation of mass and momentum pertinent to a viscoplastic continuum, using the
finite-element code ASPECT (Kronbichler, Heister and Bangerth 2012). Surface motion
predictions from these models are then validated against the observed GNSS field (Global
Navigation Satellite System, such as the Global Positioning System (GPS)). First a
reference model is constructed that shows a good first-order fit of the crustal flow field,
namely the characteristic westward movement of Anatolia and a rotation to the SW of the
Aegean region towards the Hellenic trench. Predictions of the flow in the upper mantle
show that the surface flow is correlated to the predicted mantle flow pattern and models
without the Aegean slab fail to explain the rotation of the Aegean region. Experiments on
the seismically active Vrancea slab cannot show differences in predicted surface
observables between a slab that is continuous or a detached slab, but the models predict
that a continuous slab experiences more resistance from the mantle against slab dragging
by the Eurasian plate which could increase seismic activity. Second, experiments are
performed to determine the sensitivity of the surface flow field for the make-up and
rheology of the lithosphere and slabs. Potential model improvements such as STEP faults
and a rheologically heterogeneous Eurasian plate are explored. Furthermore, the 3D
models provide novel insight into the correlation between mantle flow and the pattern of
seismic mantle anisotropy in subduction zones, as well as the 3D interaction between
mantle flow, basal tractions on the lithosphere and tectonic plate motions. This research
provides a steppingstone to more detailed studies of subduction plate boundary regions,
which may lead to a better understanding of the physical drivers of crustal deformation
and flow and may provide constraints for future seismic-hazard modelling.
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Introduction

Mechanical stress within the Earth’s lithosphere causes earthquakes. The amplitude of
stress is not directly measurable, but it can be predicted from a 3D geodynamical model
of (a part of) the Earth. A model useful for stress field analysis would correctly predict
various observations of crustal deformation, particularly the observed variable motion of
Earth’s surface. The buildup of lithosphere stress in plate tectonic settings is ultimately a
combination of lithosphere and mantle drivers. The geodynamic drivers confined to the
lithosphere have been thoroughly investigated using models that are confined to the
lithosphere domain, for instance for the complex tectonic setting of the eastern
Mediterranean region (e.g. Carafa et al.,, 2015; England et al., 2016; Go6gis et al., 2016;
Ozbakir et al, 2017; Warners-Ruckstuhl et al., 2012). In such modelling, the specific
contribution of mantle processes, i.e.,, mantle flow and lithosphere subduction and its
interaction with the ambient mantle, to lithosphere stress buildup is absent or
underrepresented and warrants closer investigation.

In this MSc thesis, Eastern Europe, encompassing the Pannonian-Carpathian region and
the Aegean-West-Anatolia region, is chosen as the natural laboratory to investigate the
effect of mantle drivers to surface deformation by 3D geodynamic crust-mantle modelling
(Figure 1.1, 1.2). The Carpathian mountain belt and Hellenic arc are the surface
signatures of two important plate tectonic settings. The Carpathians are an orogen
resulting from a slow continent-continent convergence (e.g. Cloetingh et al., 2004;
Faccenna et al,, 2014; Schmid et al., 2020; van Hinsbergen et al., 2020) and the Hellenic
arc is a slow-convergence subduction system experiencing roll-back (e.g. Wortel and
Spakman 2000; Jolivet et al., 2013; Schmid et al. 2020).
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Figure 1.1 opographical map of the Mediterranean Sea. Source: mdps-for—free
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Figure 1.2 Map of the model domain with dots exemplifying the earthquake

occurrence (source: International Seismological Centre).




The Vrancea slab at the SE corner of the Carpathians is a location of significant
intracontinental earthquakes, yet the type of tectonic setting producing these
earthquakes remains elusive (Fuchs et al., 1979)(Figure 1.2). Many arguments for crustal
delamination (Girbacea and Frisch, 1998; Knapp et al., 2005), a subducting slab (e.g.
Bokelmann and Rodler, 2014; Sperner et al., 2001), and whether the slab is continuous or
detached have been provided (Koulakov et al., 2010; Petrescu et al., 2021) but are not yet
in agreement. Recent research alludes that added compression from ambient mantle flow
could cause this anomalous seismicity (Petrescu et al. 2021), a hypothesis that can be
examined by 3D geodynamical modelling that includes slab-mantle interaction.

The Hellenic arc has been widely investigated by geological, geodynamical, and
seismological research (summarized by Faccenna et al. 2014). Outstanding questions
comprise the morphology and composition of the Aegean slab. This feature extends into
the lower mantle (Bijwaard et al., 1998; Spakman et al., 1993) and laterally extends from
the NW-Greece to its eastern slab edge under western Anatolia (De Boorder et al. 1998).
Details of Aegean slab age, composition, and rheology are ill-constrained. The slab’s
tomographic image below the Hellenides between 200-400 km depth offers multiple
interpretations, creating a dichotomy between a horizontal tear (Wortel and Spakman,
2000) or an slab segment of a different (i.e. continental) type (van Hinsbergen et al. 2005).
Additionally, possible lateral transitions in slab morphology exist, e.g., reflected by the
Kephalonia fault and a slab edge under Rhodos (Govers and Wortel, 2005; Ozbakir et al,,
2020), of which the impact on the regional surface and mantle flow field are still largely
unclear.

Studies up to now were mostly conducted with 2D elastic/viscous sheet modelling (e.g.
Bird, 1998) The method is computationally efficient compared to 3D crust-mantle
modelling and its merits are summarized in Carafa et al. (2015). 3D modelling has more
unconstrained natural properties, the vertical composition and rheological makeup of the
lithosphere is more important in a full 3D description but may not provide much
additional information when compared to the results of 2D modelling (Bendick and
Flesch, 2013) and for large-scale deformation the 2D thin sheet approximation is
considered appropriate (Lechmann et al, 2011). However, these models require
boundary tractions usually imposed on plate boundaries including subduction trenches
which is presumably complex due to the impact of the slab’s sinking effect, the coupling
between overriding and subducting plate, and the tractions of the mantle acting at depth
on the slab. Additionally, boundary tractions along the other edges have to be either
assumed or become tunable parameters (e.g. Carafa et al. 2015, England et al. 2016).
Finally, this type of model cannot discriminate between active (convective) and passive
(plate motion friction) basal shear tractions. A hybrid approach is to compute mantle
tractions acting on the base of thin-sheet models from a separate mantle convection
simulation but this involves an approximate approach to match the pressure between
lithosphere model and mantle model (Warners-Ruckstuhl et al. 2012). These
approximations and problems can all be avoided when using a full 3D crust-mantle
modelling approach (e.g., Glerum et al. 2019).
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From these various model designs several conflicting conclusions have developed
regarding key drivers which are difficult to reconcile. 2D thin sheet models were able to
explain the Aegean-Anatolia crustal flow field based solely on GPE-gradients and model
boundary tractions (England et al. 2016), in which differences in lithostatic pressure, with
its minimum on the African plate in the Mediterranean Sea (GPE sink) and the maximum
in central Anatolia (GPE source) lead to the characteristic SW-ward flow of the crustal
flow field, disregarding the observed collisional effect of Africa deflecting the Aegean and
Eurasia NE-ward (Warners-Ruckstuhl et al. 2012). Carafa et al. (2015) explain the motion
of the Aegean-Anatolia microplate by the interplay of inter-plate and basal tractions. The
retreat of the slab results in a return flow, inducing trench oriented basal shear and a
gradient in the lithosphere thickness. This basal traction and pressure gradient together
balance the compression by the collision of Africa in this model.

The merit of 3D geodynamic modelling in a mantle reference frame is that it can
incorporate all physical processes of the lithosphere and mantle and explicitly
discriminates between active (convectional) and passive (resistance to plate motion)
shear tractions at the base of the lithosphere. Additionally, it will create a steppingstone
for future 3D models towards more realistic numerical models.

Here, we build on developments of instantaneous 3D geodynamic crust-mantle modelling
initiated by Glerum et al. (2019). We use the novel Geodynamic World Builder (Fraters et
al,, 2019) to construct the complex 3D temperature and density structure appropriate for
the unique tectonic setting that will be input of the geodynamic modelling. This tool
allows for rapid design of tectonic plates, weak zones mimicking plate boundaries, and
3D slab geometry. The tool is integrated in the open source numerical finite element code
ASPECT (Kronbichler et al., 2012).

This research 1) aims to create a new 3D temperature-density model of Eastern Europe
and the Aegean region for geodynamic modelling. 2) By experimenting with model
rheology, this model is then refined to a reference model that provides a reasonable fit to
the GNSS observed surface flow field. The dynamic coupling between the mantle and
surface deformation will be evaluated from 3) a sensitivity analysis of the model to find
the mantle dynamic drivers for the first-order characteristics of the surface flow field of
Eastern Europe & the Aegean-West-Anatolian regions. Lastly, 4) it aims to address
regional geodynamic questions on how far north the dynamic effect of the Aegean slab
roll-back reaches, and what the impact of the Vrancea slab is on the local flow field.

We start by describing the region’s lithosphere-mantle structure and the surface
kinematics. Next, we present the governing geodynamic equations, the numerical solver
ASPECT and the construction of the complex initial conditions using the Geodynamic
World Builder & the tomographic model UU-P07 (Amaru, 2007), and the model boundary
conditions. An initial batch of experiment leads to a reference model which is next used
for sensitivity tests by varying model properties to illustrate the response of the predicted
surface flow field and to search for model improvements.
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Geodynamic setting

General geography

The present plate-tectonic configuration of Mediterranean & Eastern European regions
(Figure 1.1, 1.2) are ultimately a result of the closure of the Tethys ocean since Mesozoic
time (Handy et al., 2010; van Hinsbergen et al. 2020). The closure of the ocean is in its
final stages and convergence has slowed to a pace where roll-back and back-arc basin
development is dominant (Wortel and Spakman 2000, Jolivet et al., 2013). This study
focuses on two active geodynamic systems: the Vrancea subduction at the SE of the
Carpathian mountain range and the Hellenic subduction below the Aegean region. The
northern end of the arcuate Carpathian mountain range starts in Slovakia, curves
southeastward into Romania where it strongly bends southwestward into Serbia and
connects in the south with the Balkans, Hellenides and Dinarides. The Vrancea subduction
system in the SE is the only presently active part of the Carpathian arc. The Hellenic trench
is the site where the African plate subducts below Eurasia. It traces from the Cyprus and
Antalya subduction zones in the east westward along the south of the accreted wedge
islands Rhodos and Crete, northwestward along Peloponnese, the Hellenides mountain
range and further along the east coast of the Adriatic sea at the base of the Dinaride
mountain range.

Plate convergence and crustal motions

The region is characterized by three domains: the Eurasian plate, the African (Nubian)
plate and the Aegean-Anatolia microplate. The convergence between the large continents
Eurasia and Africa is oriented about NW-SE with a magnitude of ~5.5 +0.5 mm yr-! at the
latitude of Cyprus, decreasing to ~4.4 £0.3 mm yr-1 at the latitude of Algiers (Nocquet,
2012). Within the Eurasian plate southward motion is observed in the Balkan mountain
range and mainland Greece relative to a fixed Eurasia (Figure 2.1). The sparse dataset
north at the Carpathians and the Pannonian basin shows a coherent movement with the
rest of Eurasia.
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Figure 2.1 GNSS field of the Carpathians-Aegean region (Kreemer et al.,, 2014; Métois et al.,
2015; Pifia-Valdés et al, 2022; Serpelloni et al, 2022). Synthetic motion vectors in the
Eastern Mediterranean Sea show the motion of Africa relative to Eurasia.

The movement of the Aegean-Anatolia microplate is more complex. GNSS stations across
the area display a dominant westward movement of the microplate Anatolia, rotating to
a south-west, trench-perpendicular motion within the Aegean Sea in a Eurasia-fixed
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reference frame (Figure 2.1). The boundary between the Aegean-Anatolia microplate and
Eurasian continent is the North Anatolian Fault (Figure 1.2). This prominent strike-slip
fault traces from the north of the Anatolian microplate westward, passing just south of
I[stanbul and terminating in the north Aegean Sea. This fault accommodates all of the
relative Eurasia-Anatolia movement (McClusky et al, 2000; Nocquet, 2012). Further
tectonic weak zones can be traced along the Gulf of Corinth.

Hellenic subduction system

The African plate subducts below the Aegean-Anatolia microplate and Eurasian plate
along the Hellenic trench. The subducting slab has been well imaged (Piromallo and
Morelli, 2003; Spakman et al., 1993, 1988; van der Meer et al., 2018; Wortel and Spakman,
2000)(Figure 2.2). In the east Mediterranean, the slab is segmented into the Cyprus slab
in the east, the Antalya slab in the center and the larger Aegean slab further to the west
(Berk Biryol et al,, 2011; De Boorder et al., 1998)(Figure 2.3). The slab curves in an
amphitheater style around the Aegean to a maximum depth of 1500 km (Bijwaard et al.
1998; van der Meer et al. 2018) consisting of intermittently oceanic and continental
lithosphere (van Hinsbergen et al., 2005). Beneath Albania, the maximum depth of the
slab decreases to ~150-180 km (Handy et al., 2019). This relatively short slab persists
below and along the east Adriatic coast, following the Dinarides to the NW, at a maximum
depth of 150-200 km (El-Sharkawy et al., 2020).
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Figure 2.2 Tomographic slices of model UU-P0O7 (Amaru 2007) for various depths, converted
to temperature anomalies. The subduction interfaces are highlighted in purple. The
longitude-Ilatitude grid belongs to the rotated spherical frame with the origin in 40.5N
24.5E.
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Figure 2.3 Synthesis of the morphology of the Aegean (right), Antalya (center) and Cyprus
(left) slabs (Berk Biryol et al. 2011)

The overriding plate in this subduction system is the Eurasian plate, particularly the
Aegean-Anatolia platelet. Anatolia consists of four domains: the contractional East
Anatolian, the North Anatolian, the Central Anatolian and the extensional West Anatolian
province (Berk Biryol et al. 2011, and references therein). Crustal thicknesses are ~ 30
km for the west domain and ~ 35 km for the north and central domain (Karabulut et al.,
2019), and the lithosphere is generally thinned. The Aegean sea lies in a back-arc basin
that has been extended by southward roll-back of the Aegean slab since Eocene times (e.g.
Brun et al,, 2016; van Hinsbergen and Schmid, 2012), with a total of 400 km trench-
perpendicular extension and 650 km trench-parallel extension, and is highly
heterogeneous in crustal strength (Jolivet et al. 2013). This resulted in a thinned Aegean
lithosphere of ~40-60 km based on surface wave dispersion (Endrun et al,, 2011). The
Africa-Eurasia contact is traced by the Hellenide and Dinaride mountain ranges. Below
the Dinarides, the crustal thickness is 40 km and decreasing to 30 km below the Moesian
platform (Marovi¢ et al., 2002).
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Vrancea slab

The Carpathians are the intracontinental mountain belt in Romania that connects the
Ticia-Dacia microplate (Girbacea and Frisch, 1998) and the East Europe craton. It formed
during continental collision in middle Miocene times and its collision peaked at 8-9 Ma
(Matenco and Radivojevi¢, 2012). The south-east corner of the Carpathians is our area of
interest, as a high-velocity seismic anomaly with high seismicity was discovered. This
region close to the Romanian capital Bucharest produces intense earthquakes (Oncescu
and Bonjer, 1997) despite its large distance from present day plate boundaries.
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Figure 2.4 Left: Horizontal maps of the
Vrancea seismic anomaly. Right: 3D model of
the Vrancea seismic anomaly, consisting of a
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seismic NE and aseismic SW section (Martin et
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The high-velocity anomaly has progressively been imaged in higher resolution (Figure
2.2, 2.4) (Baron and Morelli, 2017; Bokelmann and Rodler, 2014; Koulakov et al., 2010;
Martin et al., 2006; Weidle et al., 2005; Wortel and Spakman, 2000). First imaged by
Wortel & Spakman (2000), they infer a subducted slab that is in a state of detachment.
The anomaly consists of a seismic NE section and an aseismic SW section (Martin et al.
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2006). The seismic section is limited to a small volume at intermediate depth recognized
as an ‘earthquake nest, a feature usually found in continental collision settings with
previous oceanic subduction but presently removed from active convergent margins
(Fuchs et al. 1979, Oncescu et al. 1997). Above the anomaly exists a vertical gap in
seismicity at 40 - 70 km depth, which has been attributed to a detached oceanic slab
(Fuchs et al. 1979).

The nature of the high-velocity anomaly in the Vrancea zone is under debate. As noted by
Bokelmann & Rodler (2014), seismic tomography cannot distinguish between the two
leading options: subducted lithosphere (oceanic or continental) or delaminated
lithosphere. Arguments for delaminated continental lithosphere are borehole logs
showing continental crust in locations incompatible with oceanic subduction (Knapp et
al. 2005) and (Girbacea and Frisch, 1998) recognize the match between a 130 km
horizontal gap in the lower crust (between epicentral of the earthquake nest and the
Miocene suture zone) with the 70-200 km deep earthquake nest volume. The case for
subducted oceanic lithosphere is argued in (Sperner et al, 2001) and Bokelmann &
Rodler (2014). There are also arguments for a hybrid where continental delamination
occurred after subduction, leading to a steep slab and an upwelling of the asthenosphere
NW of the subduction zone (Girbacea & Frisch 1998). Additionally, there is discussion
whether the anomaly is continous or detached from the overlying lithosphere. P- and S-
wave tomography shows that the earthquake nest starts at a depth of~ 60 km in a low
velocity zone, 30 km above the fast anomaly (Koulakov et al. 2010) implying a possible
detachment between the anomaly and overlying lithosphere.
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Methods

Overview & aim

We design a 3D instantaneous dynamics model excited by thermal density perturbations.
Firstly we describe the numerical formulation and used numerical solver. Secondly, the
domain and its imposed boundary conditions are expanded upon. Thirdly, we elaborate
on the design and implementation of our custom complex initial temperature-density
conditions. Finally, we provide a description of the material parameters and deformation
mechanisms.

Numerical formulation

The instantaneous flow problem posed in this thesis are solved by the Finite Element
Model ASPECT, the Advanced Solver for Problems in Earth’s ConvecTion (Kronbichler,
Heister and Bangerth 2012). The physical flow laws that are solved are (1) the momentum
conservation equation, (2) the continuity of mass equation for compressible flow and (3)
conservation of energy. (4) describes how the compositional fields are advected.

V- [2n ) ~ (V- wI| + Vp = pg (1)
V-(pu)=0 (2)
pCy (5o +u: V)=V kVT = pH 3)
+ 25 () = 2(V-wI): (é@) -1 (V- wI)
+aT(u - Vp)

+pTAS (2 +u- VX)

%+u-Vci=qi (4)

Here 1) is viscosity (Pa s), € is the strain rate tensor (s1), u is the velocity vector (m s1), p
is the pressure (Pa), p is the mass density (kg m-3), g is the gravity vector (m s-2), C,, is the
heat capacity (J K1), T is temperature (K), t is time (s), k is the thermal conductivity (W
m-1K-1), H is the radiogenic heat production, « is the thermal expansion coefficient (K1),
AS is the entropy change, X is the material fraction related to phase change, ci describes
the compositional fields used and gi is the allowed reaction rate between materials.
Equations (3) and (4) are added for completeness but does not bear further consideration
in this instantaneous model.

Domain

The Aegean and Vrancea region are captured in a spherical chunk (Figure 3.1) The curved
rectangular surface has its origin in 40.5N 24.5E. The domain spans from -5.5 to +5.5 local
longitude and -8.5 to +8.5 local latitude. The model is 800 km deep and is subdivided in
an outer and inner chunk at 120 km depth (elaborated upon in the section on boundary
conditions). This domain is discretized by an adaptive mesh (Figure 3.2). The base
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resolution is a near-cubic chunk with sides of ~30 km. Two additional levels of refinement

are imposed on the slab, lithosphere and plate boundary faults. This increases their
resolution to near-cubic chunks with sides of ~7 km.

Figure 3.1 Model domain.

Figure 3.2 Adaptive mesh for a representative cross section of the model (N-S through Crete).

Boundary conditions
The boundary conditions of the model are summarized in Figure 3.1. The surface of the
model allows perpendicular flow but no vertical movement. This choice was made to

restrict the complexities introduced when allowing for topography and topography
changes.

The sidewalls of the inner chunk are also impermeable, which is an unrealistic constraint

for subduction zone evolution (Chertova et al., 2012) but poses a stable and predictable
condition for our instantaneous model.
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The boundary conditions on the outer chunk are kinematic. The African plate motion is
adopted from the Global Mantle Hotspot Reference Frame (GMHRF) (Doubrovine et al,,
2012) averaged over the past 10 Myr which is defined by the Euler pole (lon, lat, deg/My)
= (-33.28, 36.66, 0.1608). The motion of Eurasia is determined by adding the relative
Eurasia-Africa Euler pole in ITRF2014 (Altamimi et al. 2017) to the African GMHRF pole
leading to (-38.02, 55.27, 0.1232). The GMHREF pole of Anatolia is (27.94, 34.13, 1.196) and is
obtained from the relative Euler pole of Central Anatolia relative to Africa, which is
obtained from an analysis of the central Anatolian GNSS field (Spakman, personal
communications) and is next added to the absolute motion of Africa.

The Eurasia plate motion boundary conditions are imposed from the Dinarides in the
west, along the north boundary to the NAF in the east. Here, the Anatolia boundary
conditions are imposed between the NAF and the Antalya trench. The Africa boundary
conditions are imposed at the Antalya trench, along the south edge to the Dinarides in the
west. The boundary conditions are imposed and linearly scaled down between 0 and 120
km depth using the ratio (6371-depth)/6371. To maintain mass preservation under the
prescribed convergence within the model domain, a net outflow is imposed on the bottom
of the model that compensates the total inflow in the outer chunk.

Complex initial temperature-density conditions

We use the Geodynamic World Builder (Fraters et al. 2019) to design the complex initial
conditions of our physical problem (Figure 3.3). The model space consists of two layered
compositional fields (the upper and lower mantle) and three laterally varying
compositional fields (the lithosphere, weak zones and the subducting slabs, Figure 3.4).
The upper mantle resides between the Lithosphere Asthenosphere Boundary (LAB,
varying in depth) to 660 km depth. The lower mantle resides between 660 km depth and
800 km depth.

I 0.0e+00
+- 200000
400000

depth

— 600000

8.0e+05
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Figure 3.3 Model domain with the three laterally varying layers shown (see Figure 3.4). Red:
lithosphere, Yellow: weak zones, White-black: slab. Sidewalls and model floor are shown in
blue-red (depth).

16 L



Figure 3.4 Detailed expansion of the three laterally varying compositional fields.

The lithosphere is subdivided into the Eurasian, the Aegean-Anatolia and African plates
(Figure 3.4) with a maximum depth of 120 km, 60 km and 100 km, respectively. Its
composition is homogeneous (described in this chapter’s final section). Two weak zones
separate these lithosphere domains. The plate boundary fault along the Hellenic trench is
represented as a 30 km thick weak zone, following the geometry of the trench and
reaching a maximum depth of 120 km following the varying dip of the slab. The North
Anatolian Fault is represented by a 50 km wide vertical weak zone also reaching a
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maximum depth of 120 km. This weak zone continues SW and connects via the Gulf of
Corinth to the plate boundary weak zone.

Slab morphology

Figure 3.5 shows the morphology of the Dinarides-Aegean-Antalya slab (Aegean slab for
short), and the Vrancea slab. Its design is informed by the tomographic model UU-P07
(Amaru, 2007; Hall and Spakman, 2015) and earthquake hypocenters. The choice was
made to use UU-PO7 for its high resolution and distinct transitions for features ~100-200
km thick. This choice was made after also consulting other (P- and S-wave) models using
SubMachine (http://www.earth.ox.ac.uk/~smachine/cgi/index.php). Slab temperatures

are approximated by a plate model approximation (McKenzie, 1969) assuming a
subduction velocity of 2 cm yr-1.

Slabs are prescribed in the GWB along a line on the surface (trench). At this trench, it
allows to describe the thickness and dip of the slab along a certain length. This can be
done in one segment or several segments where the thickness and dip can linearly
increase or decrease. In the case of the Aegean and Antalya slab, the GWB requires several
segments to describe its geometry. This model holds a balance between a simple model
geometry, common slab thicknesses and a degree of adherence to inherently uncertain
tomography. To this end, all slab segments in this model start horizontally at 100 km thick
and curve downwards to a certain dip, after which multiple other segments may be
described (Figure 3.7). The angle and length of segments are informed by the local
tomography, but the thickness is 100 km for all segment, increasing to 150 km thickness
from the third curved segment onward where applicable. These sections are then laterally
interpolated to construct a 3D model.

Figure 3.6 provides the overview of the used sections for the Aegean slab, which are then
presented in Figure 3.8.
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Figure 3.5 left: top view of the 3D slabs constructed using the GWB. Right: View from the NE

to SW of the 3D model. Visible are the main Aegean slab, the Antalya slab segment, the
shallow Dinarides slab attached to the Aegean slab and finally the separate Vrancea slab.
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Figure 3.6 Map of the region and the 3D GWB model superposed on each other. Indicated in
orange with red dashed line are the chosen sections used to construct the slab from the UU-
P07 tomographic model (Figure 3.8). These are then laterally interpolated to the 3D model

seen here.

Figure 3.7 Typical geometry of a GWB section of the subducting slab, consisting of linear
(black) or curved (grey) segments. Shallow segments are 100 km thick, increasing to a
constant 150 km thickness from the third linear segment onward (where applicable).

T —




N
o
+
o]
Q
™

o) ainipladws |

20




) aunpoladuis |

21




Figure 3.8 Sections of the Aegean slab, displaying the temperature distribution, the local
earthquake hypocenters in black, and the used contour of the UU-P07 tomographic model.

Similar to the Aegean slab, the Vrancea slab was constructed by using four local
tomographic slices. Its geometry is presented in Figure 3.9 which is comparable to the
observed anomaly by Martin et al. (2006) (Figure 2.4). The slab encompasses the
seismogenic NE segment and an aseismic deeper segment in the SW.
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Figure 3.9 Top: map view of the Vrancea slab and earthquake hypocenters. Bottom: South-
north cross section through the model displaying the Vrancea slab on the right. The Vrancea

slab has a shallow seismogenic section in the NE and aseismic deep and detached section in
the SW.
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Initial temperature distribution

The initial model has a 1D temperature distribution (Figure 3.10), which is locally
overwritten by the temperature field of slabs. The field increases in temperature linearly
between the surface, LAB, and the 410, 520 and 660-discontinuities. The depth of the LAB
is 120 km (Eurasia), 60 km (Aegean-Anatolia) and 100 km (Africa) where the
temperature is set to 1682 K, 1650 K and 1672 K, respectively. These temperatures are
taken from a recent study on the 410 km discontinuity temperature, where the
temperature is extrapolated by assuming adiabatic behavior (Katsura, 2022).
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Figure 3.10 1D Temperature & viscosity distribution of the model.

Rheology & Material properties

The mechanical behavior of the model is prescribed by a visco-plastic rheology, which
envelops dislocation and diffusion creep, and brittle-plastic failure. The viscosity
following from diffusion and dislocation creep is described as:

1 1m IR E+pV

where 7 is viscosity, A is the diffusion/dislocation creep prefactor, d is the grain size, %ii is
the second invariant of the strain rate tensor (in s1), E is the activation energy, p is
pressure, V is activation volume, R is the gas constant and T is the temperature. m and n
are constants, where m=2 or 3 and n=1 gives pure diffusion creep, and m=0 and n~3
describes power law creep by glide & climb of lattice dislocations. Plastic deformation in
this model follows a Drucker-Prager formulation for the effective viscosity in 3D:
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Here, oy is the yield stress (in Pa), ¢ is the internal angle of friction (in degrees) and C is
the material cohesion (in Pa). The effective viscosity is a harmonic average of the three
deformation mechanisms. This amounts to the weakest deformation mechanism
dominating the effective viscosity. Further material parameters used for all compositional
fields are described in Table 1. A 1D viscosity profile is shown in Figure 3.10 for a region
relatively undisturbed by large scale mantle flow. The model has a minimum and
maximum viscosity cut-off at 5*101° and 5*1023 Pa s. However this is merely indicative
and not necessarily an exact plot for the majority of the domain.

Table 1 Material parameters used in this study. Creep parameters are based on CiZkovd et
al. (2020) and tuned to a more viscous rheology considering Olivine flow laws from Hirth
and Kohlstedt (2003) and personal communications with E. van der Wiel. Cohesion & angle
of internal friction follow Glerum et al. (2021). As flow in the lower mantle is dominated by
diffusion creep, the model uses a near-zero prefactor and arbitrary activation energy and
volume for dislocation creep.

Parameter Symbol Unit Slab Upper Mantle Lower Mantle Lithosphere Plate boundaries
Diffusion creep
Prefactor Ay Pa's’ 7.0-10™° 7.0-10™"° 1.0-10™ 7.0:10"° 7.0-10™"°
Activation energy Ean Jmol™ 3.70-10° 3.70-10° 2.00-10° 3.35-10° 3.35-10°
Activation volume Vg | m® mol” 6.4-10° 6.4-10° 1.1-10° 1.1-10° 4.8-10°
Grain size exponent m - 3
Dislocation creep
Prefactor Agg  |Pa™els? 6.51-10"° 6.51-10'° 1.70-1077° 6.51-10¢ 7.70-10°%°
Activation energy Eaist Jmol™ 5.10° 5.10° 5-10° 9.10° 9.10°
Activation volume Vgg | m® mol™ 13-10° 13-10° 13-10° 13-10° 13-10°
Stress exponent n - 3 1
Cohesion C Pa 5-107 1-10° 1-10° 1-10° 1-10°
Angle of friction b ° 0 15 15 25 0
Other parameters
Density p kgm? 3300 3300 4600 3200 3200
Heat capacity Cp Jkg'K? 1250 1250 1250 1250 1250
Thermal conductivity k wm'K? 3 3 3 3 3
Thermal diffusivity K m’s’ 1-10° 1-10° 1-10°® 1-10° 1-10°
Thermal expansivity a K! 3.5:10° 2.0:10° 2.0:107° 3.5:10° 3.5:10°
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Results

Pre-reference model

From the model setup described previously, numerous experiments were run to obtain a
reference model. First improvement of the surface motion response was obtained by
lowering the viscosity of the plate boundary fault and NAF to ~ 5*101° Pa s. The
temperature profile of the Aegean slab was tuned from a 5 cm yr-! to 2 cm yr-1 plate model
velocity to increase overall temperature and consequently decrease the overall viscosity
of the slab. The Aegean slab is extended eastward with a segment attached to Africa but
not to the rest of the slab. This segment corresponds to the Antalya slab which we attach
to the African plate laterally to the Aegean and Cyprus slabs (Berk Biryol et al. 2011). This
improved the flow across the plate boundary interface and the general rotation of
Anatolia.

The overall viscosity during pre-reference model explorations was likely skewed to high
values and possibly still is. The reason for this is purely practical: a more viscous model
leads to lower model run time allowing for a higher frequency of experimental
refinement. The experience from previous work (van Amerongen 2023, Guided Research)
is that a more rigid model behaves more predictably for inexperienced modelers and
novel model set-ups. Aegean slab viscosity, related to the roll-back of the Aegean region,
was the central factor in finding the reference model which is presented next.

Reference model

Surface flow pattern

Figures 4.1a-d show the reference model predicted surface flow field and the observed
surface flow field, in both a Eurasia fixed reference frame as in a Global Hotspot Mantle
Reference Frame (GMHRF). The reference model reproduces the first order characteristic
features of the region. The model reproduces the westward motion of Anatolia (in
GMHRF) and rotation to a near trench-perpendicular orientation within the Aegean
region. The motion of the peninsula Peloponnese in the south of Greece, coherent with
the central Aegean, is reproduced. Lastly, the model fits the rigid northeast motion of
Eurasia and Africa, both in the order of ~10 mm yr-1.

[ 26 L



-
A
Predicted
- == -
-
N\ & — =k N
NN = =N
ATy
NEARN
A - SYE A
\ N VUL S~ g X ARy
NN
AR
\ A g8
Y
SARN
R ERY
Ny
4 SNRATA
‘7 ol
\ vy
\ 7 8
A wrEy
¥ .
NRVVIN Vi Lot g
Ui Y NAX F , 4
4
I v
SN
LR §
]
]
" i
— 7
s
7 =
S
S
f CE e
2
(s
55
ety seaks 10 mimiygeag
sw aw w w w o 13 2 3E 4E SE 18E 20E 2F 24E 28E 28E 30E

Y2 —




S i v z z T T Ra® i
alt + 4+ A i PSR 4
o it U e e e
ARRRRARSHY NSNS NANNNNNNAN N.fifo/f . = h
POCECE U - 12 SN R e e R T 4 ST T e T
A A A A SR IR NN NN S SN N NN N N A RN ARG 0, ) \ T e T T T T,
i S R NN >

N e RN
R R e S
ANNANNANS i R
AN AR N R A A A S A SO TR AU N R SRR AN
SRR R SRR R AR AR RN NN SRR NARNARRARAN

SRR S AR R R R B Y SANNRARAAN
AR R R RN AN N SR N

PSSR N RN N AN NANNNNN
Fadinsn N S S A R NN AN
PO SR NN SN NEEN NN RS
- ///JT.//// ,//J?/x//
RSN AR R NSNRN NN NN
RS SONNANNNSNN CANNNAA
RSasasssss ANNAN
ERRAANNANSANANNNNN
| ARANNNANNNN .//y
SRR N NN S N AN
PSRRA NN NN NNANNK
N AN
LSS NS S N A A SR S N
PSSR N R AN N H 3
N

Observed

T

Vslusity sealz: 10 mrnl/':;%

¥ R GRS B
BN e e
RN e T

O

RARARTRARRKRARRKRARNRA AR TR « ¢
O [Sees SAARARARARARNARNRN AR L /T |
Y S s Y A &

Pl
ettt

¢WFhm-hh-ﬁ

e e o P

O i

ARAERRAR AR AR N VUNNNN f
N N N N N N N VN TN © (N NVUNNN !
b SANNAHPAN N NN b o
LEARARARAARRARRAA AR ARAALD QR
ARARAARARARRARNA R ARRA )
bassassanssssssiassadashaass AR
O FASSARRARARARARRARRANAA A
PAARARAARRARARARRR RN A
QO [osssnsanansaasgnssdaaaaahal s W
= PRARRARARRARARARNRAR AR QAR 9 A
O POSSSARARARAARANARANAAARAA NN
PAARARARAARAARANARR AL RS L
T PRARARARAARRAAR KRR LA A NS S
S

e

(s

CE

PARARAAARARRARATR AR YLRR A H ARG A
PARARARARARAARALARL LA AR

ey

&

S

B

e

N

[y

B

B

B!

N

B

B

&

N PRASARARRAARARNAARAANRAAAARARAKSYL

N PRARRSAARAAARAARAA SR A A ARRA AR S

PRARARARARAAARAAR KR AR S ARGA S

SAARRRRRRARARRAAS

PSSARNASAANNAN AN L5 N NS
ARANARSANSSNANAN

f
h ARARAAL AR ARARARGLARRA VR AR RS
PRAREARAS P PPPOOP NP PP OO NP PPN
L
A

BT S 2
eSS O ARRA ARAANRRANANS SRR ARARS
I

ARAKAARRRRARNARRRAANNRRAAY RAARARRAN 5
i b b i b B e R S N L L T R SR
AASARARRARRNRN 5 S8 NN NOAA
ASAAARARARKAAN] SRRANEBAANARRAN ANA
SAASAARARRNANNATRANRRNN{A AARTTTTATRRNAAN
ARAYRARRAR AV A LARA LA S VAR NN AR
R A R n
N N <<%
ARA AR AR ASRANNAANARA AR N /IIIITJ Ny

ARARARNAARRA LA AR

GMHRF

z z z z
g g g F

N
N

z ) @
Z 2 &

as
as
58
6s
7S
8s

°

28

4E

2E

aw 2w

, the velocity magnitude is low throughout,

SE

w

w

Figure 4.1 a) The predicted reference model surface flow field displayed in the Eurasia-fixed

reference frame. Velocity scale is indicated in the bottom left (10 mm yr1). Boundary
in zoomed-in figures used later this chapter. d) The observed GNSS surface flow field in

GMHRE interpolated to a regular grid.
Differences between the reference model surface flow field and the observed flow field

velocities are fixed. b) The observed GNSS surface flow field measured at GNSS stations. The
plate velocity of Africa is visualized in the data-sparse Mediterranean Sea. c) The predicted
reference model surface flow field in the GMHRE The highlighted red box is the domain used
are spatially varying and can be subdivided in several regions (Figure 4.2). Misfit is lowest
(0-5 mm/yr) in the Eurasian and African plates and Anatolia mainland. The misfit within
the Aegean region is complex. In general

trending from low misfit (5-10 mm/yr) around Peloponnese, to medium misfit at and
north of Crete (~10+ mm/yr) to high (~20 mm/yr) southeast of Crete on the plate
interface. The orientation of misfit is trench-perpendicular from Peloponnese to Crete,
and north-south directed along the west-coast of Turkiye up to Rhodes. Misfit is high and
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of varying direction west of Peloponnese, through the Gulf of Corinth weak zone and

northeast along the North Anatolian Fault.

A coherent misfit pattern is found on the mainland of Greece extending northward to
North-Macedonia. The pattern shows a lack of southward velocity in the model and

increasing misfit of magnitude further south. The orientation misfit here also shows a lack

of a clockwise rotation in the area. Other misfits are mainly associated with the plate

boundary zones of 30 km width.
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Figure 4.2 The difference between the observed GNSS surface flow field and the reference

model surface flow field. Vectors opposing the observed direction of flow implies the

reference model underpredicts the observed local velocity in amplitude.




Predicted vertical flow pattern
The north-south vertical flow profile predicted by our reference model is shown in Figure

4.3. Subduction and sinking of the Aegean slab is fastest in the top 300 km. Sinking is
slowed in the lower section where the slab rests on top of the more viscous lower mantle.
Viscous coupling of the slab to the surrounding mantle results in a similar flow pattern,
albeit of lower magnitude. The Vrancea slab is modelled as mostly detached from the
Eurasian plate. The slab displays some northward flow but is dominated by vertical
sinking. The flow in the mantle is high in the low viscosity asthenosphere and highest in
the mantle wedge. Overall velocity throughout the model decreases strongly with depth.

The vertical viscosity profile shows a coherent Eurasian and Anatolian lithosphere of
5*1023 Pa s. The viscosity of the Aegean slab varies from 5*1023 Pa s at the surface to
1*1023 Pa s at depth, increasing locally at its tip resting on the lower mantle. A higher
strain rate is correlated to lowered viscosity as can be clearly seen in the Aegean slab at
~ 400 km depth, around the Aegean and Vrancea slabs at ~ 200 km depth, in the mantle
wedge (note that mantle flow velocity is high in the invisible lateral direction) and
through the two prescribed weak zones (Plate boundary fault and the NAF transform
fault, clearly visible as zones of high strain rate in Figure 4.4).
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Figure 4.3 A 2D south-north cross section of the Aegean slab subducting beneath Anatolia
and Eurasia. Velocity vectors are shown in black (vectors at the trench and within Eurasia
are ~ 14 mm yr1 and 9 mm yr respectively). The background shows the viscosity profile in
blue-red. Dashed lines are shown at 200 km, 400 km and 600 km depth, through which
horizontal cross sections are made (Figure 4.5-4.8).

The viscosity in this model is the harmonic average of three deformation mechanisms -
diffusion creep, dislocation creep and plastic yielding - of which the latter two are strain-
rate dependent. Comparisons can be drawn to previous subduction modelling (Garel et
al, 2014) to better understand the viscosity field. Plastic yielding is the dominant

30 L




deformation mechanism at shallow depth and low temperatures, here seen in the locally
low viscosity and higher strain rate in the slab bend. Dislocation creep is dominant in the
upper mantle under high strain rates, mostly visible here in the disturbed mantle
surrounding the subducting slabs. Diffusion creep is dominant in the lower mantle and in

the undisturbed upper mantle, seen here at the north and south edge of the profile with
relatively low strain rates and high viscosity.
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Figure 4.4 The 2D south-north cross section shown in Figure 4.3, through the Aegean slab
subducting beneath Anatolia and Eurasia. The background shows the strain rate.
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Predicted horizontal mantle flow pattern

200 km depth flow pattern

The prediction of the mantle flow field at 200 km depth (Figure 4.5 and 4.6) shows a
dominant flow towards the center of the sinking Aegean slab. As the slabs sinks, the
vertical sinking component of this diagonal interface creates a low pressure region in
front of the slab. Ambient mantle is also pushed away from behind the slab and flowing
around the edges of the slab. In Figure 4.6 it is visible how the sub-slab mantle is viscously
coupled to the slab and dragged NE and downwards into the mantle. At this depth it is
also seen that flow from the Aegean slab edge impinges on the front side of the Vrancea
slab, which could be correlated to its anomalous verticality. Finally, Figure 4.6 shows the
vertical sinking of the Vrancea slab into the mantle.

North ' 96.10

N-component velocity (m s-1)

Figure 4.5 3D model of the subducting slabs colored in white to black. A cross section is given
at 200 km. The velocity vectors are shown for the flow of the slabs and of the surrounding
mantle. The magnitude of N-S flow is shown in blue (north) to red (south).
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Figure 4.6 A map-view slice of t. elocity field at 200 km depth, identical to figure 4.4.
Red areas show the location of the Aegean, Antalya and Vrancea slabs at these depths. Vector
size is equal to Figure 4.5.

400 km depth

Figure 4.7 and 4.8 show the mantle flow field at 400 km depth (note the 3x+ scale
difference. General velocity is lower and should be compared via the vertical cross section
Figure 4.3). This depth is below the mantle wedge and is characterized not by a dominant
flow into the Aegean slab center, but by a general ‘push’ of mantle material away from the
slab. Flow north of the Aegean slab converges locally to below the Bosporus Strait, where
it flows upward to fill the void left by the material flowing into the mantle wedge (Figure
4.5 & 4.6). Flow south of the slab is low in magnitude and diverging. Below west Greece

the flow is generally NW, coupled to the Aegean slab.
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Figure 4.7 3D model of the subducting slabs colored in white to black. A cross section is given
at 400 km. The 3D velocity vectors are shown for the flow of the slabs and of the surrounding
mantle. The magnitude of vertical flow is shown in red (up) to blue (down). The relative
vector scale 333% larger than Figure 4.5 & 4.6.
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Figure 4.8 A map-view slice of the velocity field at 400 km depth, idehtical to figure 4.4. Red
areas show the location of the Aegean and Antalya slabs at these depths. The relative vector
scale 333% larger than Figure 4.5 & 4.6.

600 km depth

Figures 4.8 and 4.9 show how flow velocity is much lower at 600 km depth and is simple
in direction. Only the Aegean slab propagates significant flow in a direction (northeast).
Flow surrounding the slab is generally diverging and of lower magnitude than at
shallower depths. Flow in and around the slab is downward, flow in the ambient mantle

is upward.
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Figure 4.9 A map-view slice of the velocity field at 200 km depth, identical to figure 4.4. Red
areas show the location of the Aegean and Antalya slabs at these depths. The relative vector
scale 333% larger than Figure 4.5 & 4.6.
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Reference model sensitivities

Increased coupling of Vrancea slab

Figures 4.10 and 4.11 demonstrate a model with a Vrancea slab, is attached to the
Eurasian plate. The Vrancea slab has a higher NE-velocity as it is now attached to the
overriding Eurasian plate. This implies that the slab is being pulled/dragged through the
surrounding mantle, increasing the compressive stresses on the slab.
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Figure 4.10 The 2D south-north cross section of the Aegean slab subducting beneath
Anatolia and Eurasia also shown in Figure 4.3, for a Vrancea slab attached to the Eurasian
plate. Velocity vectors are shown in black (vectors at the trench and within Eurasia are ~ 14
mm/yr and 9 mm/yr respectively). The background shows the viscosity profile in blue-red.
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Figure 4.11 3D model of the subducting slabs colored in white to black. A cross section is
given at 200 km. The velocity vectors are shown for the flow of the slabs and of the
surrounding mantle. The magnitude of N-S flow is shown in blue (north) to red (south). The
relative vector scale is 100%, equal to Figure 4.5 & 4.6.
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Removing the Aegean slab

Figure 4.12 shows the resulting surface flow fields for experiments where the Aegean and
Antalya slab were removed. The model yields two distinctly different interpretations,
depending on the choice of reference frame.

In a Eurasia fixed reference frame (Figure 4.12a), the characteristic westward motion of
Aegean - Anatolia is present even without the Aegean slab, which is a commonly
hypothesized main driver of the region. Visualizing the result in a mantle reference
frame(Figure 4.12b), however, shows a pure westward motion of Anatolia with no S-
component and a more gradual turn SW. This displays that the Euler pole rotation
between Eurasia and Africa in a Eurasia-fixed reference frame adds an apparent S-
component to the Aegean flow field. This emphasizes that the roll-back in the Aegean
region should be viewed in a mantle reference frame. The misfit of the velocity field
(4.12c) further shows that the impact of the slab on the flow field is S-oriented nearly
everywhere in the Aegean region. At and east of Crete the surface flow shows that the
decrease in motion is not S- but SE-oriented, which could be related to its proximity to
the east margin of the slab and its local impact on roll-back.

The predicted westward motion of Anatolia and minute rotation in the Aegean are
explained in context of the boundary conditions in Anatolia. The prescribed kinematic
boundary conditions in the reference model are the local expression of, in part, the slab
pull driving its westward flow. In the absence of this pull, the boundary conditions now
act as an external force pushing Anatolia westward. The rest of the microplate
accommodates this movement. In this area, the NAF weak zone is backed by the strong
Eurasian lithosphere. The Anatolia plate cannot indent or deform the Eurasian plate and
is deflected along the NAF in a WSW orientation as can be seen in the predicted flow field.
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surface flow field in GMHRF c) Difference between the reference model and No slab

experiment.
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Plate boundary viscosity versus slab viscosity

Figure 4.13 (to be used with Table 1) demonstrates the effect that slab viscosity and plate
boundary viscosity have on the reference model. 4.13b shows that an increase in plate
boundary viscosity from 5*101° Pa s to 1020 Pa s creates a reduction in the Aegean -
Anatolia plate velocity in the order of several mms yr-1. The azimuth of the reduced
velocity is NW on Peloponnese and the south Aegean, and N in the north Aegean. We
explain this as a redistribution of lithosphere material to the west of the domain, as the
south margin resists the incoming flow from the north.

This effect is compared to the weak slab experiment Figure 4.13c. In this experiment, the
plastic cohesion of the Aegean slab is lowered from 5 * 107 to 2 * 107 Pa s, which reduces
the viscosity of the Aegean slab from 5*1022 — 5*1023 Pa s to 5*1021 - 2*1022 Pa s. This
increases surface flow by ~ 7 mm yr-1 in the Aegean region, oriented S and SSE east of
Crete. The combination of these two effects is shown in Figure 4.13d. The flow field is still
increased southward relative to the reference model but tempered in magnitude to 2-5
mm yr-1,

The effect of the weakened slab experiment is not unexpected if it is regarded as the
opposite of the ‘no slab’ experiment displayed in the previous chapter. The viscosity
decrease of the slab increases its vertical sinking potential as its rigidity is reduced and
flexing of the hinge is easier. This vertical sinking of a dipping slab translates to the trench
as a trench-retreat, facilitating roll-back of the Aegean region and therefore increased
southward velocity. The difference in orientation along the trench, exemplified in the SE-
oriented retreat east of Crete, indicates that this phenomenon could be dependent on the
local slab geometry and not of the regional trend (S to SW-ward).

However, the lack of SW-oriented roll-back west of Crete is not in line with this
interpretation. A possible cause for this could be in the rigidity of Aegean - Anatolia. At
5*%1023 Pa s, the viscosity of the microplate could be considered high for lithosphere that
has underwent high levels of extension (Jolivet et al. 2013). A rigid Aegean - Anatolia plate
in this geometrical setup could advance westwards and ‘collide’ with the Eurasian
continent, rotating counter-clockwise along the SW bend of the NAF. The next set of
experiments investigate this effect of Aegean - Anatolia viscosity.

Table 4.1 Overview of the experiments conducted with relation to slab cohesion and plate
boundary cohesion.

Plate boundary plastic cohesion (Pa) (1e24 anatolia)
Slab plastic cohesion (Pa) 1.00E+06 2.50E+06
5.00E+07 Reference I
2.00E+07 1l 1]
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Figure 4.13 a) Reference model surface flow field (GMHRF) b) Difference (residual) field
between the reference model and experiment I (table 4.1) c) experiment Il d) experiment I11.
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Sensitivity to Anatolia & Aegean plate viscosity

Table 4.2 Overview of the experiments conducted with relation to the Aegean - Anatolia
plate viscosity.

Aegean - Anatolia plastic cohesion (Pa)
Aeg-Ana angle of friction (°) 3.E+07 5.E+07 1.E+08
0 degrees 1le23 Pas (IV) le23+ Pas 5e23 Pas
15 degrees 5e23 Pas 5e23 Pas 5e23 Pas
25 degrees S5e23 Pas 5e23 Pas 5e23 Pa s (Ref)

The parameterisation of the model is complex and reductions in viscosity are a strongly
nonlinear response to small changes in the prescribed material parameters. The section
of the slab most relevant for roll-back is in its hinge and shallow (<150 km) domain (Holt,
Becker & Buffett 2015), where plastic deformation is the dominant deformation
mechanism (Garel et al. 2014). Therefore nine experiments were conducted on the
material parameters relevant for plastic deformation, namely the internal angle of friction
and the material cohesion (Table 4.2), and two end-members were found. The reference
model lies in the higher-viscosity end-member and only a single tested model lies in the
lower-viscosity end-member. This lower viscosity end-member is compared to the
reference model in Figure 4.14a-c.

Differences between the reference model and the experiment are mostly confined to the
Aegean region, and can be distinguished as a rotation regime (reference) or ‘free flow’
regime (weak Aeg - Ana). The orientation of the flow field in the weak Aeg - Ana
experiment is near trench-perpendicular in the central Aegean region and around Crete
(Figure 4.14b). Flow changes direction from SW to W on Peloponnese, following the flow
pattern at the plate boundary and Gulf of Corinth weak zones. The flow east of Crete is
undisturbed by the adjacent trench and also is largely oriented toward the SW trench.

The experiment does not predict the same strong southward flow around Crete and
Rhodes, nor the coherent motion of Peloponnese. Figure 4.14c shows that the velocity
field of the low Aegean - Anatolia viscosity experiment is enhanced by ~ 5 mm yr-1 in the
W-direction at Rhodes and east Crete, and NW in the rest of the Aegean, Peloponesse and
west Anatolia. Figure 4.14d illustrates that this model correctly predicts the magnitude of
the E-W component of flow in the Aegean and SW Anatolia. The magnitude of the S-
component of flow is too low in this model by ~ 10 mm yr-1.

This experiment demonstrates that a lower Aegean - Anatolia plate viscosity enhances W
flow of the Aegean region (via faster westward flow) and NW on Peloponnese (via faster
westward flow, and reduced southward flow as its coherency to the Aegean is reduced).
A higher viscosity shows more rigid rotation, with Peloponnese showing the same trend
as central Aegean and the clear rotation along the south of Anatolia and east of Crete.
Using the results from this experiment, and the knowledge from the previous experiment
that a weaker slab enhances southward flow of the overriding plate, a new experiment is
constructed where these parameters (overriding plate viscosity and slab viscosity) are
combined.
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Figure 4.14 a) Reference model surface flow field (GMHRF) b) Experiment IV predicted

surface flow field (GMHRF) c) Difference between the reference model and experiment IV
(note the change in scale.) d) Difference between the reference model and the observed GNSS

flow field.




Anatolia & Aegean viscosity versus slab viscosity

The experiments from previous chapter were expanded to investigate the sensitivity of a
lower slab viscosity in relation to the overriding plate viscosity (Table 4.3).

Table 4.3 Overview of the experiments conducted with relation to slab viscosity and plate
boundary viscosity.

Slab cohesion (Pa) 1le23 Pa s Ana/Aeg viscosity 1le24 Pa s Ana/Aeg viscosity
5.00E+07 v Reference model

2.00E+07____ Vo I >

Experiments were conducted on the sensitivity of the reference model to the Aegean -
Anatolia microplate viscosity vs. slab viscosity (Figure 4.15). The overall velocity in both
models is increased by 5-10 mm yr-! which is almost a doubling (Figure 4.15a-b). The
orientation of the velocity field for both experiments show several different areas with a
good and poor fit to the observed field (Figure 4.1d).

Experiment V (Figure 4.15a) shows an azimuth of the velocity field in the Aegean region
which is antiparallel to the African plate velocity field, a feature recognized in the
observed GNSS field for the west (Figure 4.1d). This orientation is mismatched on
Peloponnese, where the field is rotated clockwise to a W-direction, and south of Crete,
where the distinct S-direction is not reproduced. Experiment II (Figure 4.15b) reproduces
the rigid SW movement of Peloponnese and S-direction of the region east of Crete but
overestimates the clockwise rotation of the field within the Aegean region.

The differences in modelled flow field between the experiments and the reference model
are shown in Figure 4.15c-d. The effect of a weaker slab on the reference model
(Experiment I, Figure 4.15d) is also described in Figure 4.13c. In general, the weaker slab
results in stronger southward motion of the overriding plate, per consequence of the
geometrical gap created when the dipping slab sinks faster in the mantle. This applies for
both the high and low Aegean - Anatolia plate viscosity.

The combined effect of both a lower Aegean - Anatolia plate viscosity and slab viscosity
results in a model with an added 3-5 mm yr-! S-directed flow component and a 3-7 mm
yr'1 W-directed flow component. This is in first order interpreted to result from an
increase in slab-pull and rollback, and the higher mobility of the overriding Aegean -
Anatolia plate.
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Figure 4.15 a) Experiment V predicted surface flow field, for a weakened slab and overriding
plate (GMHRF)(See Table 4.3) b) Experiment Il predicted surface flow field, for a weakened
slab and strong overriding plate (GMHRF) c) Difference (residual) field between the
reference model and experiment V. d) Difference (residual) field between the reference

model and experiment I1.
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The result of these sensitivity tests is that a new better fitting model has been found.
Figure 4.16 shows the difference between the set of experiments and the observed flow
field, sorted following Table 4.3.

A strong Aegean - Anatolia plate fits the data better in the Peloponnese region (4.16b/d);
The rigid lithosphere results in a more coherent movement of the Aegean and
Peloponnese towards the southwest. A weak Aegean - Anatolia plate results in
Peloponnese having too much westward motion (4.16a/c), which could imply
Peloponnese being rheologically stronger than the central Aegean basin. A weak slab
applies, in general, a south component to the velocity field of ~ 5mm yr-1 (4.16c-d). This
improves the fit over the strong slab models run (4.16a-b). The misfit in experiment V is
roughly symmetrical along a trench-perpendicular, NE oriented line centered between
Peloponnese and Crete. Misfit is lowest in the center and increases towards the sides. The
misfit in experiment Il is lowest in the NW of the Aegean sea, increasing to the sides with
its maximum in the SE. Both models Il and V are improvements of the reference model
and a preference for a final improved model lies in experiment V due to its symmetry.

This preferred model is left with misfit that is acceptable and misfit that invites further
research. Acceptable misfit is the remainder within the Aegean region that appears to be
reconcilable within the parameter space explored previously. Misfit at and around plate
boundaries and weak zones are acceptable due to the limited time available for this
project. Misfit that is further investigated is the sizable misfit in the mainland of Greece
and North Macedonia, and the region south of Rhodos & Kephalonia.
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Figure 4.16 Difference between the observed GNSS surface flow field and the flow field

predicted




Model explorations

Following up on the findings in the previous chapter, an attempt is made to explain the
misfit on the Greek mainland and North Macedonia. The Eurasian domain was separated
in several subdomains: the Pannonian Basin & Carpathians, the East European platform
(EEP), the Balkans and the Dinarides (60 km, 120 km, 80 km and 60 km thick,
respectively) (Figure 4.17). The plastic cohesion of the Pannonian and Dinaride regions
was lowered from 1*108 Pa to 4*107 Pa and the plastic cohesion of the Balkan region was
lowered from 1*108 Pa to 5*107 Pa to increase susceptibility to stresses.

The results of this heterogeneous Eurasia experiment are shown in Figure 4.18a, which is
comparable to the difference between the results and the reference model (Figure 4.18c)
as the velocity in mainland Greece is zero in the reference model. The prediction shows
the mainland of Greece moving relative to the rest of Eurasia. The direction is SW - W and
~ 15 mm yr! of magnitude, displaying an increased susceptibility to the local dynamic
forcings. Comparing this to the observed field and the difference field between observed
and the experiment (4.18b,d) shows that the south-component is still too low in the new
model, and that the misfit in the west-direction is exasperated.
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Figure 4.17 The observed GNSS surface flow field. Indicated are the subdivisions of the
Eurasian continent. These are the Pannonian Basin (60 km thick), the East European Craton
(120 km), the Dinarides (60 km) and the Balkans (80 km).

This mismatch can be interpreted either in context of 1) the coupling between the
lithospheric domains, or 2) the effect of the mantle on the lithosphere. The observed GNSS
field (Figure 4.18b) clues to the possibility that a higher NAF viscosity could better couple
Greece to the Aegean - Anatolia plate; opposite sides of the NAF-Corinth weak zone show
an increasing SW orientation of the velocity field from Thessaloniki to Athens. This
coupling could provide a dynamic source of southward traction, dragging this domain SW.
Attempts to model this have as of yet been unsuccessful. Problems arose in finding a
suitable viscosity of the subdomains (which this chapter shows have yet to be optimized),
a problem which is only exacerbated with the addition of further parameterization of the
viscosity of (one or multiple segments of) the NAF-Corinth weak zone.
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between the reference model and the experiment.
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Facilitating slab roll-back by implementing vertical slab tears at Rhodes deep and

Kephalonia

This section addresses the misfit east of Crete and near the Gulf of Corinth stated in the
last paragraph of the sensitivity test. The location of the misfit corresponds to the location
of two Subduction-Transform-Edge-Propagation (STEP) Faults, at Kephalonia and Rhodos
(Govers & Wortel, 2005). These faults would act as vertical separators cutting the slab and
lithosphere, providing more mobility in the vertical direction for the slab to roll back and
enhance S-directed flow in the Aegean region. These features are implemented in two
experiments (figure 4.19a,b) as two weak zones, 120 / 200 km deep and 30 / 40 km wide,
with an identical composition as the NAF, Gulf of Corinth and plate boundary weak zones.

Figure 4.19 show the results of these experiments. The difference in flow field between
the reference model and the experiment are displayed. It is clear that the experiment does
not (4.19a) or barely (4.19b) yield the roll-back hypothesized. Large displacement is

present in the weak zones, tapering off at the sides.
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Figure 4.19 a) Difference (residual) field between the reference model and an experiment
with a 120 km deep, 30 km wide STEP b) 200 km deep 40 km wide STEP
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Discussion

Comment on the quality of the reference model

Misfit at Aegean slab edges

The reference model produced in this research predicts the first-order characteristics of
the region. The most important deviations within the central Aegean region were
reconciled with a lowered slab viscosity and lowered Aegean - Anatolia plate viscosity
(Experiment V, Figure 4.16c/Figure 5.1). The remaining misfit is primarily found at the
plate’s sides at Peloponnese and Rhodes and directed southward. This local lack of
southward flow could be caused by a lack of local rollback, but implementing STEP-faults
but this did not yield the desired outcome (Figure 4.19). Further analysis in what causes
this misfit could be done in the direction of regional effects. Our Aegean-Anatolia
lithosphere is described as a single composition plate of 60 km with no internal
weaknesses such as pre-existing fault structures, which would localise deformation
(Naliboff et al., 2017). Local heterogeneities in plastic strength such as the Menderes
normal fault system in west Anatolia or a better description of the Kephalonia/Gulf of
Corinth faults could increase the sensitivity at Rhodos and Kephalonia to the south-

directed roll-back caused by slab pull.
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Figure 5.1 (Figure 4.16¢ repeated)

Misfit at mainland Greece

The similarities between the predicted mantle flow at 200 km depth (Figure 4.5) and the
observed surface flow (Figure 4.1) warrant further consideration. Mantle flow at this
depth displays the first-order features mentioned previously, plus a clockwise toroidal
flow below the Dinarides around the Aegean slab’s edge, towards the center of the Aegean
slab which is not replicated in the predicted surface flow field (Figure 4.1c, at
Albania/Greece). While the reference model contradicts that this flow is translated to the

[ s0 L




surface (the predicted surface flow is markedly different from the flow at 200 km depth),
a degree of uncertainty is warranted due to its limited level of refinement. In a plate-
tectonic setting such as the Aegean, the prevailing convective mantle flows (which are
larger than the passive flow from lithosphere friction, Figure 4.3) could hypothetically
add to the surface flow by viscous coupling. One previous research found that basal flow
in the Aegean region dictates its crustal movement (Carafa et al. 2015) (while this should
be considered in context of other studies explaining this movement with solely lateral
differences in density structure (England et al. 2016)). But this basal drag mechanism
does not appear to be prominent in this reference model.

It is possible that the modelled lithosphere is too viscous as tested in the Model
Explorations chapter, or that the sub-lithospheric mantle is not viscous enough. This
latter explanation would reduce the coupling between lithosphere and the mantle flow
and per consequence the way basal tractions from active convection are translated to the
surface. Suggested follow-up experiments are to decrease the viscosity contrast between
the asthenosphere and lithosphere to establish the surface flow response. The values
used for these parameters in this study fall within a range of uncertainty and can therefore
be used as a ‘weak’ benchmark from which weaker tunings can be initially disregarded in
future experiments. We suggest advancing the model by increasing the activation
prefactor, energy or volume of dislocation creep the upper mantle, or decreasing the
power law creep exponent.

Comment on the predictions of mantle flow by the reference model
The reference model produces predictions of the mantle flow field that can be compared
to seismic anisotropy maps.

We observe a trench-perpendicular flow for the mantle in the Aegean back-arc region
which are associated in various other research with NE SKS splitting azimuths
(Summarized in Faccenna et al. 2014, Chapter 4.2)(Figure 5.2, 5.3). The subduction and
roll-back of the Aegean slab excites trench-perpendicular flow below the Aegean sea,
leading to NE-SW-oriented Lattice Preferred Orientations (LPO) in olivine which are
recognized in seismic anisotropy.

Our model however deviates from the hypothesis posed by previous research regarding
the mantle flow pattern directly below the slab. These studies assume sub-slab mantle
flow to be trench-parallel to evacuate from the backside toward the front of the
backstepping slab, especially in the mantle below the Hellenides (e.g. Brun and Sokoutis,
2010). Our reference model predicts however high trench-perpendicular flows directly
below the slab, as the coupling between the slab and mantle here is high. Trench-parallel
flow is only observed below the Hellenic section of the slab (and at much lower velocity).
The flow here may therefore not be associated to roll-back induced flow in general since
the trend is not observed in the section east of Crete. A possible explanation is that the
ambient mantle below the Hellenic trench is not related to this inherent back-to-front
return flow, but to the absolute NNE oriented plate motion of the subducting slab,
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dragging the ambient mantle in the same direction and imprinting this motion in the
mantle mineral texture.
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Figure 5.2 Top: seismic anisotropy distribution from shear-wave splitting (colored in delay
time and oriented along fast-axis) superposed on a smoothed map of a combination of the
regional tomographic image of Piromallo & Morelli (2003) and the global model of Simmons
et al. (2007) averaged between 100 - 400 km (Taken from Faccenna et al. 2014). Bottom:
seismic anisotropy distribution from shear-wave splitting with a background coloring
indicating the interpolated azimuth (Paul et al. 2014).
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Figure 5.3 3D Mantle flow pattern prediction of the reference model at 200 km depth.

Comment on the sensitivity tests of the reference model
Slab dragging Vrancea

Both the reference model and the sensitivity test with a continuous Vrancea slab show no
surface flow effect in the Vrancea zone (Figure 4.1, 4.10). However, the degree of coupling
between the Vrancea slab and Eurasia makes the difference between a mantle-dragging
regime or a free-sinking regime. As noted by Petrescu et al. (2021), the local seismic
anisotropy direction and maximum horizontal stress direction correlate and indicate a
possible relation between the ambient mantle flow and stress build-up and release. They
also observe vertical tension within the slab and a transfer of the deeper compressive
stresses upward to the crust, which are in favor of a continuous slab model. Our model
predicts a dynamic link between the absolute plate motion of the Eurasian slab and the
increased compressive horizontal stresses from the slab dragging through the upper
mantle when the slab is continuous. Our model does not provide other predictions that
can be linked to surface observables (i.e. uplift/subsidence rates or a detailed local stress
field) but these are clear avenues for future research.
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Gravitational potential energy

Our model implementation does not allow for incorporating effects of topography,
therefore excluding the contribution of topography to the Gravitational Potential Energy
(GPE). As the tectonic plates are modelled as homogeneous blocks of lithosphere of
identical composition but varying thickness, the only GPE gradients exist at depth along
the plate interfaces.

GPE effects are proposed in the literature. One 2D viscous sheet model found that GPE
gradients are key in the driving of Anatolia and basal & side tractions drive the motion of
the Aegean region (Carafa et al. 2015). A different study using a 2D viscous sheet model
was able to fit the surface velocity field with GPE gradients in the area, without the
inclusion of mantle tractions, roll-back or slab pull, but with tension along the Aegean
trench south of Crete and compression along its east boundary through Anatolia (England
et al. 2016). This finding is in contrast however with a geodetic strain rate analysis that
does require Aegean slab roll-back (Jiménez-Munt et al. 2006). Another 2D thin sheet
model does explicitly incorporate for roll-back by imposing the relative velocity between
the Aegean and Nubia as a boundary condition, along with all other forces driving this
roll-back (Ozbakir et al., 2017). Glerum et al. (2019) suggest that the observed GPS RMS
misfit is such thin sheet modelling is primarily reduced by plate boundary forces and the
thin-sheet viscosity, and only secondarily by GPE forcing.

Recommendations how to advance the modelling towards a better data fit

Further investigation of implementing STEP faults or lowering Eurasia viscosity does not
lead to improved roll-back or better flow field fit, respectively. It appears that the effect of
the subduction of the Aegean slab affects the flow field of only the Aegean - Anatolia plate,
but not the adjacent Eurasian plate. This is not expected, as the coupling between the
different plates would propagate changes in flow field. An analysis on the mechanical
equilibrium of the Eurasian plate led to the conclusion that, although mantle flow and
lithospheric body forces are dominant drivers, the collision of Africa on Eurasia’s south
border is a significant contribution in the absolute northward direction of the Eurasian
plate (Warners-Ruckstuhl et al. 2012).

This model possibly suffers in the degree of coupling between the individual plates due
to a high viscosity contrast at the plate boundary weak zones. The viscosity of our
lithosphere is realistic (maximized at 5*1023 Pa s, oceanic lithosphere is possibly 1023 to
1024 Pa s (Burov, 2011), a factor of 10* higher than asthenosphere (101°-5*101° Pa s)),
and much higher than the effective viscosity of ~ 1021 - 1022 Pa s found by England et al.
(2016). The question whether the plates are too viscous is also tendentious in the light
that previous authors concluded that the geodetic velocity field is best represented by
undeformable blocks separated by weak zones <<100 km wide (Reilinger et al., 2006).
We recommend implementing additional weak zones between north and central Greece,
and between Anatolia & Aegean sensu the “hybrid dynamic” sheet model used by Carafa
et al. (2015)(Figure 5.4 left), with which they adequately reproduce the flow field at
mainland Greece and acceleration towards the Hellenic trench (Figure 5.4 right).
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Figure 5.4 Left: Model topography by Carafa et al. (2015), with weak zones indicated in red.
Right: Preferred model output by Carafa et al. (2015).
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Conclusion

This research uses a 3D instantaneous dynamics model of subduction in the Aegean and
Vrancea regions to reproduce and analyze surface flow. The reference model reproduces
the first-order features of the region’s observed surface flow field. Anatolia displays
westward movement, rotating counterclockwise to a SW, trench-parallel orientation in
the Aegean region and Peloponnese. The Eurasian and African plates move as coherent
blocks NE in the Global Mantle Hotspot Reference Frame (GMHRF), a movement in which
the Vrancea slab does not show an effect on the local crustal flow pattern. The predictions
of the reference model show that flow in the mantle is dominated by the roll-back of the
Aegean slab. At 200 km depth, flow converges to the center of the slab, filling in the space
created by its sinking. Flow velocities decrease dramatically deeper into the upper
mantle, and its flow pattern is generally diverging away from the slab or oriented upward
in a poloidal flow manner.

The sensitivity tests conducted on the reference model are, in order of importance on the
surface flow field: 1) the presence of the Aegean slab, 2) the viscosity of the subducting
Aegean slab, 3) the viscosity of the Aegean - Anatolia plate, 4) the viscosity of the plate
boundary interface, and 5) the coupling of the Vrancea slab. The degree of coupling of the
Vrancea slab to the Eurasian plate is not recognized in the predicted surface flow field.
The mantle impact of a continuous/detached regime is significant, as a detached Vrancea
slab displays vertical sinking, whereas the continuous Vrancea slab is predicted to be
dragged through the mantle. This bears consequences on the friction from slab dragging
resistance and an accompanying increase in horizontal compression on the slab, possibly
increasing the seismicity in the Vrancea slab (Petrescu et al. 2021).

Misfit in the reference model appears to be refinable using the parameter space explored
in the Sensitivity Tests subsection, except for two features: misfit on the Eurasian plate on
the mainland of Greece, and the general misfit in magnitude of roll-back of the Aegean
region, specifically at the Aegean slab edges. Two subsequent tests were conducted 1) to
increase the susceptibility of Eurasia to changes in its surface flow field by subdividing
the plate into 4 regions of varying depth and viscosity and 2) to try and explain the
remaining misfit within the Aegean region by implementing vertical lithosphere-piercing
weak zones imitating STEP-faults at Kephalonia and the Rhodos Deep. The lowering of
Eurasia’s viscosity has the potential to better fit the surface flow field of mainland Greece
but needs to be further analyzed in a parameter space that includes the viscosity contrast
between & coupling of the main tectonic plates. The implementation of the vertical weak
zones does not provide the magnitude of roll-back required, nor indicate insightful
changes to the surface flow pattern. Further model advancements should be sought in the
coupling between the different tectonic plates and in more heterogeneity of the
lithosphere both in plastic strength as well as lateral density structure. This 3D model
provides valuable new insight in the interactions between mantle flow and seismic
anisotropy patterns, as well as the interactions between convective mantle flow, basal
tractions on the lithosphere and the surface flow field.
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