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A B S T R A C T

This thesis investigates the potential for enhancing transformer-based models, widely
used in Natural Language Processing (NLP), for the task of writing style representation.
I propose a novel approach wherein a RoBERTa model (Liu et al., 2019) is trained on
the Contrastive Authorship Verification (CAV) task using semantically similar utterances.
These are pairs of utterances that encapsulate the same semantic information but differ in
their stylistic expression. This methodology encourages the model to concentrate more on
style rather than content, fostering a more discerning representation of stylistic nuances.
The training data comprised a broad array of conversations from the online platform
Reddit, providing a wide representation of authorship and topics.

To assess the performance of the models, the STyle EvaLuation (STEL) framework
(Wegmann and Nguyen, 2021) was utilized. The results of the STEL evaluation helped
ascertain the models’ ability to accurately capture writing style and delineate the impact
of introducing semantically similar pairings.

While incorporating semantically similar utterances greatly improved performance
over models without any form of content control, it was discovered that relying solely on
semantically similar utterances was not the most efficient approach. Instead, the findings
suggested that a combination of this technique with conversation-based sampling of
examples could further enhance the models’ performance. Additionally, the research
underlined various effective strategies for preparing input data, such as maintaining
diversity in authorship and topics.

The final model, coined as the SAURON (Stylistic AUthorship RepresentatiON) model,
considerably improved upon previous iterations. This advancement contributes to the
advancement of style-content disentanglement tasks and paves the way for more nuanced
and robust style representations.

The code developed for this project is freely available on GitHub1 and the trained
SAURON model can be accessed on the Huggingface Hub2. These resources are provided
for public use, further development, and to encourage reproducibility and transparency
in research.

1 https://github.com/TimKoornstra/SAURON
2 https://huggingface.co/TimKoornstra/SAURON
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1
I N T R O D U C T I O N

1.1 problem statement

Language plays a crucial role in our daily lives, serving as a means of communication and
self-expression. Specifically, the written dimension of natural language is becoming increas-
ingly important, as evidenced by the rising global literacy rates and internet connectivity.
In 2016, 86% of the global population above the age of 15 were able to read and write (vs.
42% in 1961) (Roser and Ortiz-Ospina, 2016), and by 2022, 63% of the world’s population
was connected to the internet (vs. 41.5% in 2015) (Clement, 2022). As a result, the written
dimension of natural language has become an important tool for sharing ideas, emotions,
and information, as well as for building and maintaining social connections. With the rise
of social media and other online platforms, the volume of written language has grown
exponentially, making it a crucial area of study for understanding human communication
and expression.

1.1.1 The components of written language

Written language is a complex medium of communication that can be divided into
different parts. Two of the main components traditionally studied in linguistic analysis
are syntax, which refers to how words are arranged in a sentence, and semantics, which
refers to the meaning conveyed by those words. Style, on the other hand, is an aspect that
is independent of meaning and can be analyzed separately, encompassing elements such
as word choice, sentence length, and tone. It’s worth noting that this distinction is not
exhaustive and other elements such as cultural and social context, the author’s personality,
and the intended audience can also play a role (Funkhouser and Maccoby, 1973; Wolfradt
and Pretz, 2001).
One way to understand style in written language is as the set of linguistic choices an
author makes to convey a message in a distinct way or express a certain tone (Hacker,
1994; Ross-Larson, 1999). According to Sebranek, Kemper and Meyer (2006), these choices
can include but are not limited to, basic elements such as grammar and punctuation,
as well as more intricate choices like sentence structure, vocabulary, and paragraph
organization. These choices can greatly impact how a message is received by the reader,
even if the underlying message is the same. For example, the style of a formal business
report will typically be more structured, precise, and professional than that of a casual
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email to a friend, which may use informal language and a more conversational tone. While
the content of the two messages could theoretically be the same, their different styles
convey different attitudes and expectations about the message and the intended audience.
The manner in which language is used in a text can thus greatly influence audience
perceptions of its quality and persuasiveness. A study conducted by Chartprasert (1993)
found that subjects rated authors with a wordy and difficult-to-understand writing style
to have higher expertise than authors who wrote in a simple style. Other research has
found that language style has a significant impact on the perceived usefulness of online
reviews (Liu, Xie and Zhang, 2019; Yang, Zhou and Chen, 2021), as well as increased
conversion rates on websites (Ludwig et al., 2013). Van den Besselaar and Mom (2022) also
found that the use of complex language (e.g., longer text and longer sentences), alongside
technical content (e.g., less common words) on research grant applications increases the
chances of acquiring them.

Additionally, the way in which we express ourselves in written language is also im-
portant since the nuances and subtleties of spoken language, such as intonation and
stress, are not as easily conveyed, which poses different challenges and difficulties in
effectively conveying the intended meaning. Although other factors than style play a part
here, a great example of such challenges is sarcasm (Filik, Hunter and Leuthold, 2015),
which can be difficult to recognize in written language without additional context. It
often requires lexical or pragmatic stylistic features, such as the ending a comment or
post with "/s" on Reddit (Emerson, 2022) or the use of emoticons (Thompson and Filik,
2016), to contextualize or motivate an utterance (Skovholt, Grønning and Kankaanranta,
2014). These features are a part of written language, and the way they are used can greatly
impact how the intended meaning is conveyed.

1.1.2 Authorship Attribution and Verification

As previously established, the writing style of an author holds great significance in written
language. In fact, it can be so distinct that it can serve as a unique fingerprint that can be
used to help identify unknown authors (Bergs, 2015). This idea is utilized in the fields of
Authorship Attribution (AA) and Authorship Verification (AV). The goal of the former
task is to determine the identity of the author of a given piece of text. This is sometimes
done as a means of identifying the source of a document or determining whether a partic-
ular individual wrote a given piece of writing (Stamatatos, 2009). The goal of Authorship
Verification, on the other hand, is to certify the author of a text. The task takes as input
a pair of texts and outputs a decision of whether both texts were written by the same
author. This is often used as a means of verifying the authenticity of a document or estab-
lishing the identity of an individual (Stamatatos, 2016). So, Authorship Attribution aims to
identify the author of a given text, while Authorship Verification aims to confirm whether
a specific individual is the author of a given text. Models trained on these tasks should not
only be able to determine the identity of the author and certify the authorship of a text,



1.1 problem statement 3

but should also be able to distinguish different individuals based on factors such as the
content of the text, and their writing style. Both tasks also provide (i) a means of testing
and evaluating the effectiveness of the models developed, by assessing their performance
on unseen data, and (ii) provide a way to check the robustness and generalizability of the
models, which are important factors in evaluating the performance of the models (Good-
fellow, Shlens and Szegedy, 2015). Some examples of this are: determining the author of
misinformation (Buda and Bolonyai, 2020), verifying the authenticity of tweets (Theophilo,
Giot and Rocha, 2021), establishing the credibility of a source (Choi and Lim, 2019), or
detecting whether a text was truly generated by a human. Long-established research fields
such as humanities and history could use these techniques to determine who authored
a document (Ouamour and Sayoud, 2013), and whether they were influenced or helped
by someone when writing it (Zhao and Zobel, 2007). The police could employ AA or AV
to determine who wrote anonymous messages when tapping criminal phones, or when
analyzing extremist forums, for instance (Chaski, 2005).

1.1.3 Style modeling

One way to verify the authorship of a document is through the analysis of writing style.
This aspect of an individual’s writing can be captured computationally through style rep-
resentation or style modeling. Style representation involves extracting and representing
the characteristics of an author’s writing style in a numerical or symbolic form, using fea-
tures such as vocabulary, grammar, sentence structure, and other patterns (e.g., Holmes
and Forsyth (1995) and Kestemont et al. (2012)). These features are then used to create a
model that can represent and distinguish the writing style of one author from another.
Traditionally, manual feature engineering has been the most prominent technique for
researchers to describe style, but this method comes with the drawback of being time-
consuming and data-intensive (Amir et al., 2016). Another challenge with this approach is
that style is sometimes very subtle and hard to manually craft rules for. Even small vari-
ations in the frequency distribution of certain words or linguistic patterns, for example,
may not be captured by traditional manual feature engineering methods, which can lead
to an incomplete representation of an author’s writing style (Rudman, 1997). Furthermore,
manual feature engineering can sometimes involve improving accuracy iteratively by find-
ing new features that distinguish a specific author from other authors (Koppel and Schler,
2004). Although this technique succeeds in verifying the authorship of specific authors, it
does not do well when the goal is to verify authors that are not within the training data,
since there are no rules available for those authors yet. In other words: although the style
of individual writers can be expressed as a set of crafted rules through this method, the
creation of a general representation of writing style might not be possible this way.
Thanks to advances in computing power and machine learning in the 2000s and 2010s, it
has become easier to computationally process text and apply deep neural network-style
methods in natural language processing (NLP). Despite that overall there has been great
progress in NLP, there has been less focus on the area of style representation because state-
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of-the-art linguistic representation methods (e.g., Sentence-BERT (Reimers and Gurevych,
2019)) tend to focus on the semantic rather than the stylistic embeddings since these meth-
ods are primarily designed for tasks such as text classification, machine translation, and
question answering, which require a representation of the meaning of text rather than its
style (Devlin et al., 2019; Vig and Belinkov, 2019).

1.1.4 Challenges in style modeling

One of the main challenges in automated style modeling is the separation of style from
content. Because style and content are intertwined (Kaplan, 1968), it is difficult to separate
the two. The task of separating style from content is complicated by the fact that many
modern approaches do not explicitly differentiate between the two. These models often
rely on complex, high-dimensional representations of text, which can capture both content
and style information in a single representation. This makes it difficult to disentangle the
two and extract only the style information. Additionally, style is often intertwined with
the meaning of the text, and so separating the two can result in a loss of information.
This problem can be mitigated by controlling for content, which refers to ensuring
that the stylistic variations in the text being analyzed are not due to variations in the
underlying content, but rather the choice of language used by the author. An example of
controlling for content in automated style modeling is the use of text distortion to mask
words that do not occur often in a language (Stamatatos, 2017; Stamatatos, 2018). The idea
here is that these words tend to be specific to a topic, making them less likely to carry
information about style and more likely to carry information about the content of the text.
Although there are some good results with approaches to the AV and AA tasks that do not
control for content (as listed in Stamatatos (2016), for example), verifying the authorship
of a document becomes difficult when an author writes about something different than
they would usually write about (Bischoff et al., 2020). This is because an author’s choice
of words and phrases may be influenced by the topic they are writing about, which
could lead to inaccuracies in the Authorship Verification and Attribution tasks if the
model is not able to separate the author’s writing style from the content-specific semantics.

The recent innovation of transformer-based architectures such as BERT (Devlin et
al., 2019) or RoBERTa (Liu et al., 2019) has led to numerous breakthroughs in NLP and
language modeling. Although there has been some research that has tried to model
stylistic vector representations using transformer-based architectures, such as the work
by Rivera-Soto et al. (2021) and Wegmann, Schraagen and Nguyen (2022), the models
developed in these studies have shown limitations in terms of cross-domain transferability
and the ability to effectively disentangle content and style in the representations.
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1.2 objectives

In this project, the primary goal is to enhance the representation of writing styles by
leveraging transformer-based approaches, building upon previous work in the field. The
principal strategy for overcoming the limitations of previous work is to train models on
the AV task with similar utterances that convey the same meaning, which might mitigate
bias towards the content of the utterances and improve generalization across different
domains. This is because, when training on semantically similar utterances, the model is
exposed to variations in writing style while being presented with similar content. The idea
is thus that since the content of the utterance is almost the same, the way in which it is
said must be different. This allows the model to focus on learning the nuances of writing
style to verify the authorship of a document, rather than being distracted by variations in
content. This is an interesting area of research that has yet to be fully explored and has
the potential to improve the performance of stylistic vector representations.
The effectiveness of the proposed approach will be evaluated using the STEL framework
as introduced by Wegmann and Nguyen (2021), which allows for the ability to determine
to which extent a model can disentangle style from content. The results from this novel
approach will be benchmarked against a key baseline: Wegmann, Schraagen and Nguyen
(2022). This baseline was chosen based on its utilization of transformer-based architectures
for style modeling and the fact that their model is openly available. Furthermore, this
work was selected as a benchmark due to its demonstrated effectiveness at disentangling
style from content and its use of a content-control approach similar to the one proposed
in this thesis.

A more comprehensive description of the project setup and research methods can
be found in Chapter 3. While certain potential solutions such as leveraging data from
diverse social media sources to increase model robustness and generalization performance
have been discussed in previous works, this thesis will primarily focus on the strategy
of training models on semantically similar but stylistically diverse utterances. Other
solutions, though promising, are outside the scope of this work.

1.3 research questions

This thesis aims to answer the following research questions and sub-questions as compre-
hensibly as possible:

RQ1. How does incorporating semantically similar utterances affect the performance of
transformer-based approaches for writing style representation?

SQ1. How does the use of semantically similar utterances compare to using other
types of control data (e.g. unrelated sentences, sentences from the same con-
versation)?

SQ2. What are the most effective sampling techniques for preparing the input data?
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1.4 thesis outline

In this thesis, I will first conduct a literary study on the topic and provide the motivation
for the methods I have chosen for my research in Chapter 2. Then, in Chapter 3, I will
describe the methods I will use in my research. This will include the process of collecting
and pre-processing data, developing and training models, and evaluating the proposed
approach. In Chapter 4, I will present an iterative evaluation of the proposed approach,
including the use of baseline models, the STEL framework, and performance metrics. Fi-
nally, in Chapter 5, I will provide a summary of the main findings of the thesis, discuss
their implications, and suggest potential future directions for research in this area.



2
R E L AT E D W O R K

In this chapter, I will be analyzing some related works that are relevant to the topic of this
thesis and that will assist me in answering the research questions and sub-questions. In
Section § 2.1, I will first look at the linguistic debate about style to find a definition that
I will use throughout this thesis. Then, in Section § 2.2 I will look into the traditional ap-
proaches to modeling style, their shortcomings, and what we can learn from them. Section
§ 2.3 will describe modern deep learning approaches and I will weigh their advantages
and disadvantages. The last section in this chapter - Section § 2.4 - describes an evaluation
method that can be used for the Authorship Verification task.

2.1 the definition of style

What defines style? This is not a trivial question to answer, and there has indeed been ample
debate on this topic. However, in order to answer my research questions and conduct my
research, I will characterize writing style and present a rough definition that I shall use
throughout this thesis.

Style, which is not limited to language, can be found across various fields and is
often distinguished between individual and group styles. Individual style can refer to
the unique characteristics and features that distinguish an individual’s style from others,
while group style can refer to the shared characteristics and features that are common
among members of a group (Kent, 1986). For example, in architecture, the Gothic style
is characterized by the use of pointed arches, rib vaults, and flying buttresses, and is
common among buildings built in the Middle Ages (Fraser, 2018). In music, the blues
genre is characterized by the use of a 12-bar chord progression and the use of the blues
scale and is common among blues musicians (Wikipedia, 2023).
Chan (1994) found that not only can architectural group style be discovered by recognizing
common features present in buildings, but individual style is also represented. In music,
individual style is often characterized by the use of particular instruments, melodies,
and harmonies (Juslin and Sloboda, 2001). Jazz musicians such as Miles Davis and John
Coltrane are known for their unique approaches to improvisation and the use of specific
melodies and harmonies, while classical composers such as Ludwig van Beethoven and
Wolfgang Amadeus Mozart are known for their distinctive styles characterized by specific
instrumentation and formal structure.

7



8 related work

We can see that the recognition of both individual and group styles is usually achieved by
recognizing common features. Holmes (1994) thus describes style as a "set of measurable
patterns which may be unique to an author", and the Cambridge Dictionary defines it as
"a way of doing something, especially one that is typical of a person, group of people,
place, or period" (Cambridge Dictionary (2023)). Interestingly, Biber and Conrad (2009)
separate the way of expressing oneself into three different concepts: register, genre, and
style. They define genre as a category of texts that share similar communicative purposes
and social contexts, such as news articles, scientific research articles, and fiction novels.
They define register as a variation of language associated with a particular subject matter
or situational context, such as the language used in a legal document versus casual
conversation. Lastly, they define style as the choices a writer makes in terms of vocabulary,
grammar, and other linguistic features that are associated with their individual writing
habits or the conventions of a particular genre or register.
From all these definitions it becomes apparent that style is an important factor in distin-
guishing one’s work from that of others. This is especially true in the realm of writing,
where individual style allows writers to convey their message in a unique and personal
way through the use of specific words, literary devices, structure, and tone (Sebranek,
Kemper and Meyer, 2006) — an idea that is exploited in forensic linguistics by means
of "linguistic fingerprinting" (Coulthard, 2014). In contrast, some scholars in the field of
sociolinguistics understand group style as a category of written or spoken communication
that is characterized by shared features and conventions (Wardhaugh and Fuller, 2021).
These conventions may be associated with particular fields or disciplines and serve as a
means of creating and communicating within a specific group or style. The combination
of both individual and group style is important for the creation of unique writing. Great
literary examples of this are the writers F. Scott Fitzgerald (Keshmiri and Mahdikhani,
2015) and Ernest Hemingway (Xie, 2008); both managed to create a distinctly individual
style within a well-established group style to create unique works. In fact, the ability to
effectively weigh the conventions of a particular group style against the personal touch
of individual style is essential for the tasks of Authorship Attribution and Authorship
Verification. Thus, by considering both the group style and the individual style of a piece
of writing, it is possible to accurately attribute the work to a particular author or verify
that an author is the true creator of a piece of writing.

In this thesis, style refers to the distinct patterns and features of language use, such
as word choice, sentence structure, and use of punctuation, that can be used to identify
and distinguish the writing of a particular author from others. It is important to know
that these patterns and features may be influenced by the conventions and trends within
a specific group or community, but do not include the content of the writing.
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2.2 traditional approaches to modeling style

Stylometry, which involves the examination and evaluation of the language and literary
techniques used in written texts, has a long history. Early efforts in this field often relied
on manual analysis of specific features, such as word choice and punctuation, without con-
sidering other criteria such as parts of speech and sentence length, which are considered
to be more objective and less subject to interpretation. Some notable examples of this type
of approach include the evaluations of writers by Addison and Steele (1711) in their 18th-
century periodical, The Spectator. In this publication, they used their own personal criteria
and observations to assess the style of various writers. This likely included elements such
as word choice, sentence structure, and literary techniques, but it is not clear exactly what
criteria they used as it is not specified in the historical record. In the 20th century, writers
such as William Strunk Jr. and E.B. White took a more systematic approach, writing "The
Elements of Style," a guide to effective writing that covers topics such as word choice,
sentence structure, and the use of figurative language (Strunk and White, 1972). Scholars
such as Cleanth Brooks and Robert Penn Warren also used close readings of literature to
evaluate the style of writers in the 20th century, focusing on the use of rhetorical devices
and the structure of poetry (Brooks, 1947; Warren, 1952).
The issue with these methods is that they are widely divergent and they are not repro-
ducible, as they rely on personal criteria and observations which can vary greatly from
person to person. This makes it difficult to replicate results or compare evaluations of
different writers. Furthermore, the wide divergence in these approaches makes it challen-
ging to compare and replicate the results of different studies, as the criteria and methods
used can vary greatly. This lack of standardization can lead to inconsistent and unreliable
results, making it difficult to draw meaningful conclusions about the writing styles being
examined. Additionally, the wide divergence in these approaches also makes it hard to
establish a consensus or understanding about what constitutes good writing or effective
stylistic analysis. The issue of reproducibility and standardization can pose a challenge
in Authorship Attribution, as it can be difficult to determine the true author of a piece
of writing (Stamatatos, 2009), as is seen with historical examples such as The Federalist
Papers (Adair, 1944) — a series of 85 essays written in the late 1700s to promote the ratific-
ation of the United States Constitution. Without a clear and objective evaluation method,
it becomes difficult to assess the accuracy and reliability of the results.
The work of Mosteller and Wallace (1963), however, marked a turning point, as they intro-
duced a more systematic and reproducible quantitative approach based on function words,
which led to the development of another widely used method: character n-grams. In this
section, I will review the early history of style analysis and the contributions of Mosteller
and Wallace, and discuss how these approaches have been used in subsequent research.
I will also delve deeper into the use of function words and character n-grams for style
analysis, and discuss their strengths and limitations.
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2.2.1 Function words

Function words are words that indicate the grammatical relationship between other
words or phrases in a sentence. They include words such as articles (e.g., "a," "an," "the"),
pronouns (e.g., "I," "you," "he"), conjunctions (e.g., "and," "but," "or"), and prepositions
(e.g., "in," "on," "under"). In their pioneering research on Authorship Attribution, Mosteller
and Wallace (1963) found that function words are more stable and less likely to vary
across different writing contexts compared to content words (i.e., words that convey
meaningful content). This stability in function words across different writing contexts
makes them a valuable tool for Authorship Attribution, as they can provide a more
consistent measurement for comparison. Mosteller and Wallace developed a statistical
model that used the distribution of function words in texts to predict the likelihood that
a given text was written by a particular author. They applied this model to a case of
disputed authorship, specifically the authorship of some of the Federalist Papers, and
found that it was able to correctly1 identify the true author in many instances, despite the
lack of verified labels in the dataset.

In the early days of computational stylistics, Damerau (1975) confirmed Mosteller
and Wallace’s work and proposed that function words, along with other linguistic
features, could indeed be used to identify the authorship of a text, albeit that he deemed
"the satisfactoriness of function words [...] to be doubtful". He recommended that the
search for "minor encoding habits" (i.e., the small and often unconscious choices that
an author makes when writing a text), such as the use of function words, as indicators
of style and authorship should be pursued more vigorously in other areas. On top of
that, as pointed out by Damerau and Mandelbrot (1973), the clustering of high-frequency
functional words was computationally infeasible at the time. Due to these difficulties, it
took many years for function words to actually become popular.
Because of a massive improvement in computational power in the last two decades,
several recent studies have used function words to analyze authorship and style. For
instance, Argamon et al. (2003) found that different authors have distinct function
word signatures and used this in combination with other linguistic features to identify
the authorship of texts, such as parts of speech, to identify the authorship of texts.
Pennebaker, Mehl and Niederhoffer (2003) used function words in personal emails as
stylistic features to predict the writer’s extraversion and emotional state. Pennebaker
(2011a) has also proposed that function words can be used to study the psychological
underpinnings of writing style in his book "The Secret Life of Pronouns" and has
shown how function words can be used to identify aggressive intent and language style
(Pennebaker, 2011b). Thus, function words have been used for both identifying author-
ship and studying the psychological underpinnings of writing style and these studies
demonstrate the potential of function words in understanding and analyzing writing style.

1 Correct in this case is defined as a prediction that aligns with the consensus of experts on the authorship of a
given text.



2.2 traditional approaches to modeling style 11

The use of function words to describe writing style can be problematic for a num-
ber of reasons, however. Firstly, a number of studies have shown that function words,
and especially personal pronouns, do not solely reflect an author’s writing style, but also
correlate with other factors such as narrative perspective, an author’s gender, or even a
text’s topic. For example, Paisley (1964) found that not all acknowledged function words
are free of context and that certain words such as "I" and "we" were more topic-oriented
rather than style-oriented. Secondly, it can be difficult to determine which function words
are the "best" to use for style analysis. Damerau and Mandelbrot (1973) found that differ-
ent function words can have different degrees of usefulness for different types of writing,
making it challenging to establish a consistent method for style analysis. A third reason
is that the highly reductionistic nature of function words also seems unsatisfying as they
rarely give a good insight into underlying stylistic issues (Argamon and Levitan, 2005).
Another point of concern raised is that the restriction to function words for stylometric
research seems sub-optimal for languages that make less use of function words (Rybicki
and Eder, 2011). Finally, the use of function words as a sole indicator of writing style
can also be problematic as it limits the scope of stylistic analysis. There are certain style
features that cannot be captured by examining function words alone, such as spelling
variations, use of emojis, and other non-verbal forms of expression that are prevalent in
social media communication. These features, which are not captured by function words,
can be crucial for understanding the unique writing style of an author, especially in the
context of social media. Therefore, relying solely on function words to describe writing
style may not provide a comprehensive understanding of the nuances of an author’s style.

2.2.2 Burrow’s delta

In addition to the use of function words, another common, related method in stylometry
is the application of Burrows’ Delta (Burrows, 2002). Burrows’ Delta is a measure of the
difference between the frequency of words in a given text and the frequency of those
same words in a reference corpus. By comparing an author’s use of words to the general
patterns of language use in a reference corpus, it is possible to identify the distinctive
vocabulary and style of an author. Burrows’ Delta has been used successfully in a number
of studies, including identifying the authorship of disputed texts and tracing the evolution
of an author’s style over time (Hoover, 2004; Hoover, 2012). However, Burrows’ Delta has
some limitations as well. For example, it may not be effective in identifying certain types
of stylistic features that do not involve word frequency, such as sentence structure or use
of metaphors. Furthermore, it may be less effective in identifying the style of authors who
use a limited vocabulary, or in languages with a smaller corpus of reference texts (Juola,
2008) Despite these limitations, Burrows’ Delta remains a useful tool in stylometry and
can be used in conjunction with other methods, such as the analysis of function words, to
gain a more complete understanding of an author’s style.
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2.2.3 Character n-grams

Another frequency-based approach that was popularized by the success of Mosteller
and Wallace (1963) was the use of character n-grams. Character n-grams are contiguous
sequences of n characters in a text. For example, the character n-grams for the word "hello"
include "hel," "ell," and "llo" (for n = 3). The concept of n-grams has a long history, with
roots dating back to a few years after the end of World War II. One of the earliest uses of
n-grams was in the development of language models, where they were used to predict
the likelihood of a sequence of words in a text. Claude Shannon introduced the use of
n-grams for this purpose in his 1951 paper, "Prediction and Entropy of Printed English"
(Shannon, 1951). As a variation on regular n-grams, character n-grams can be used to
analyze the style of a text by looking at the frequency of different n-grams in the text.
By analyzing the frequency of different character n-grams in a text, it is possible to gain
insights into the writing style of the author and identify patterns that may be unique to a
particular individual. In the study by Kjell, Woods and Frieder (1994), character n-grams
were used to determine the authorship of 12 unattributed papers in the Federalist Papers.
The authors utilized visualization techniques to help organize the vast amount of data
generated in computational studies of literary style. These techniques were demonstrated
by using a Karhunen-Loève transform to transform a feature vector into two-dimensional
representations of the style of the authors, which determine a point in an image. It was
found that the authorship assigned to these papers was consistent with that found in
other studies, and that character n-grams were the best-performing feature type at that
time. Another example is Juola (2008) in his work on Authorship Attribution, where he
proposed the use of character n-grams and showed that they are particularly helpful for
uncovering the writing style of authors.

Although character n-grams have been a useful feature in stylometry and author-
ship verification, there are several limitations and drawbacks to this approach. Firstly, as
Kestemont (2014) points out, n-grams capture a wide range of information, including
both style and content ("n-grams capture a bit of everything"). This can make it difficult
to accurately identify and distinguish an author’s writing style from the content of the
text. To mitigate this problem, Stamatatos (2017) and Stamatatos (2018) proposed masking
all words that are infrequent in a language. This approach, however, may not account for
spelling mistakes or variations in writing commonly found on social media. Additionally,
Koppel, Schler and Argamon (2009) have raised concerns about the caveats of character
n-grams, specifically that many of them will be closely associated with particular content
words and roots. This can lead to unreliable and inconsistent results, making it challenging
to draw meaningful conclusions about an author’s writing style.
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2.3 deep learning approaches

Deep learning is a subfield of machine learning that uses neural networks to model com-
plex patterns in data. In recent years, it has become increasingly popular in natural lan-
guage processing tasks, including Authorship Verification and Attribution. The use of deep
learning in Authorship Verification and Attribution is relatively new, but it has already
shown promise in improving the performance of traditional methods. One of the key ad-
vantages of deep learning approaches is their ability to learn representations of the text
that are more abstract and meaningful than traditional methods. This allows them to cap-
ture more subtle stylistic differences between authors, which can be useful for identifying
authorship.

2.3.1 Neural Networks

Neural networks (NNs) are a type of machine learning algorithm that are inspired by
the structure and function of the human brain. They consist of interconnected layers of
artificial neurons that are designed to process and analyze complex data, such as images,
text, and audio. NNs are capable of learning from data and can be trained to perform
a variety of tasks, such as image recognition, natural language processing, and speech
recognition. In recent years, the use of architectures based on neural network models has
grown in popularity rapidly. This is mainly due to the advances in computational power,
which have made it possible to train very large neural networks on massive amounts of
data.
This rise in popularity can also be seen within the field of style modeling. NNs are
particularly well-suited for capturing complex patterns in written texts due to their ability
to learn high-dimensional representations of data and their capacity to handle large
amounts of data. One of the earliest examples of NNs used in style modeling is the work
of Kjell (1994). He explored the use of neural network classifiers for authorship recognition
on the Federalist Papers by analyzing the relative frequencies of letter pairs within text
samples. Although the classification of the twelve papers of uncertain authorship was
inconsistent, the study already highlighted the potential of neural network classifiers
for the task of Authorship Attribution. One notable success that fulfilled this potential
was that of Koppel, Argamon and Shimoni (2002), where they trained a feedforward
NN to distinguish between the writing styles of authors. They used a combination of
words, punctuation, and capitalization as input features and achieved high accuracy in
Authorship Attribution.
Other researchers have explored the use of NNs in style modeling by using different
types of architectures, such as the use of Convolutional Neural Networks (CNNs). CNNs
are a type of deep learning algorithm that are particularly well-suited for processing and
analyzing sequential data, such as text. The effectiveness of this type of architecture is
demonstrated in several studies, including Shrestha et al. (2017) and Ruder, Ghaffari and
Breslin (2016). These studies have shown that CNNs are able to outperform the previously
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mentioned methods for Authorship Attribution on large datasets. The ability of CNNs
to process character-level information, in addition to word-level information, is one of
the main reasons why they are able to achieve better performance. The ability to process
character-level information allows CNNs to capture subtle stylistic patterns that might be
missed by traditional methods that rely on word-level information only. Additionally, the
use of convolutional layers in CNNs allows them to automatically learn and extract the
most informative features from the input text, which further improves their performance.

Despite the success of neural networks in style modeling, there are still challenges
and limitations that need to be addressed. One of the main issues is the need for large
amounts of training data to achieve good performance. This can be a problem for
low-resource languages or for authors with a small number of samples. Additionally, the
interpretability of neural network models is often limited, making it difficult to under-
stand the factors that contribute to their predictions. This can be especially problematic
for style modeling, where understanding the underlying factors of the written style might
be of interest. Furthermore, NNs and CNNs are highly complex models that require
significant computational resources, making them less suitable for real-time applications.
Finally, there is still room for improvement in terms of robustness and generalization,
especially when dealing with noisy or out-of-domain data.

2.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of neural network used to process
sequential data, such as text. They have a memory component called the hidden state,
which is updated at each time step to make predictions. RNNs can be unrolled to process
a sequence of inputs, and the hidden state at each time step is used to make predictions.
The most common types of RNNs are Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) networks, introduced by Hochreiter and Schmidhuber (1997) and
Cho et al. (2014), respectively.
Some studies have used RNNs for the Authorship Attribution and Verification tasks. Zhao
et al. (2018), for example, used RNNs and an attention mechanism to capture important
information in the sequence, showing that this approach was superior to traditional
machine learning methods, such as Support Vector Machines (SVMs). Jafariakinabad,
Tarnpradab and Hua (2019) introduced a syntactic recurrent neural network to encode the
syntactic patterns of a document - learned from the sequence of part-of-speech (POS) tags
- which outperformed lexical models for authorship attribution.
Encoder-decoder models, consisting of an encoder RNN and a decoder RNN, have
been applied to natural language processing tasks such as machine translation, text
summarization, and image captioning (Cho et al., 2014; Nallapati, Xiang and Zhou, 2016;
Xiao et al., 2019). They work by encoding the input sequence into a context vector and
then decoding it into the output sequence. Lample et al. (2019) used this architecture
for style transfer in natural language, but this is not directly applicable to authorship
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verification.

RNNs, while powerful in modeling sequential data, have several limitations when it
comes to style modeling. One issue is the difficulty of capturing long-term dependencies
in text, as the hidden state of an RNN can only capture information from a limited
context. Additionally, RNNs struggle to handle the large amounts of data required for
style modeling, as the computational complexity of training RNNs grows with the size of
the input sequence. Furthermore, RNNs are sensitive to the ordering of the input, making
it difficult to model the style of text written in different languages or from different
domains.

2.3.3 Transformer-based architectures

Transformer-based architectures are a recent development in the field of natural language
processing, first introduced by Vaswani et al. (2017). These architectures are based on the
transformer, a novel mechanism for attention-based neural networks. The transformer
allows for the parallel computation of attention mechanisms, significantly increasing
the efficiency and effectiveness of the model. Before the transformer, RNNs were the
dominant architecture for natural language processing tasks (see § 2.3.2). Convolutional
neural networks were also used for some natural language processing tasks, but they
struggle to model dependencies between different positions in the input sequence (see
§ 2.3.1). The transformer architecture addresses these issues by introducing self-attention
mechanisms, which allow the model to weigh the importance of different positions in the
input sequence. This allows the transformer to better capture long-term dependencies
and global context, resulting in improved performance on a variety of natural language
processing tasks.
Since its introduction, transformer-based architectures have been widely adopted and
have achieved state-of-the-art results on a number of natural language processing tasks,
including language translation, language modeling, and text summarization (Liu et al.,
2020; Wang, Li and Smola, 2019; Liu and Lapata, 2019). Some examples of transformer-
based models are: BERT (Devlin et al., 2019), GPT-4 (OpenAI, 2023), and RoBERTa (Liu
et al., 2019).
Transformer-based architectures have been increasingly used in recent years for the
Authorship Verification and Authorship Attribution tasks, as well as for style modeling.
These models, such as BERT and its variations, have been shown to be powerful in extract-
ing features from text, making them well-suited for these tasks. For example, Rivera-Soto
et al. (2021) have used transformer-based architectures for domain transfer in the AV
task. The researchers discovered that there was a substantial degree of transferability
across the Reddit, Amazon reviews, and fanfiction domains that were tested. Additionally,
they found that models trained on the Reddit dataset demonstrated consistently strong
transfer performance. Wegmann, Schraagen and Nguyen (2022) introduced a variation of
the AV task that controls for content using conversation or domain labels. They found
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that representations trained by controlling for conversation are better at representing
style independent from content than representations trained with domain or no content
control. Manolache et al. (2021) have proposed five new public splits over the PAN_2020
dataset2, specifically designed to isolate and identify biases related to the text topic and
to the author’s writing style. They found that models trained without the named entities
obtain better results and generalize better when tested on DarkReddit, a new dataset for
AV. Furthermore, Zhu and Jurgens (2021) proposed a new approach to studying idiolects
through a massive cross-author comparison to identify and encode stylistic features. The
neural model achieves strong performance at authorship identification on short texts and
through an analogy-based probing task, showing that the learned representations exhibit
surprising regularities that encode qualitative and quantitative shifts of idiolectal styles.
Fabien et al. (2020) presented a deep learning-based approach for Authorship Attribution
that fine-tunes a pre-trained BERT language model and explicitly includes additional
stylistic features. This approach achieves competitive performance on multiple datasets,
outperforming state-of-the-art models at the time.

While transformer-based architectures have been shown to be powerful in the AV
and AA tasks, they also have limitations. For example, works such as Fabien et al. (2020)
and Rivera-Soto et al. (2021) lack control for content, meaning that the model may not be
able to distinguish between style and content, which can lead to models that are biased
towards certain topics or named entities. Additionally, while these studies utilize data
from diverse sources like Reddit, they don’t fully exploit the range of writing conventions
and styles present across different social media platforms. For instance, Marko and Buker
(2022) emphasized that each social media platform has its unique writing conventions and
styles, suggesting the value of using varied and representative data sources for training
models. While the value of leveraging data from diverse social media platforms to capture
a broader range of writing styles seems promising, it’s important to note that exploring
this avenue is beyond the scope of this thesis.
Other research, such as that by Wegmann, Schraagen and Nguyen (2022) does include
some level of content control, but this can still be improved upon, as is suggested in
Chapter 3 of this thesis.
Another limitation of transformer-based architectures for style modeling is their lack of
interpretability. Transformer models are highly complex and their internal workings are
not easily understood, making it difficult to determine why a particular prediction was
made. This can limit their usefulness for certain applications, such as in situations where
the reasoning behind a prediction is crucial. However, it is important to note that this
issue of interpretability is not the primary focus of this thesis.

2 https://pan.webis.de/clef20/pan20-web/author-identification.html

https://pan.webis.de/clef20/pan20-web/author-identification.html
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2.4 evaluation methods

Evaluating style representations poses several challenges, which must be considered
when developing and comparing different approaches. Firstly, there is no agreed-upon
definition of writing style, which makes it difficult to determine the criteria for a good
style representation. Secondly, there is limited annotated data available for training and
evaluating style representations, which can impact the performance and generalizability
of models. Additionally, there is a lack of standard evaluation metrics for style represent-
ation, which makes it difficult to compare the performance of different models. Finally,
style is subjective, and what one person considers a good representation of style may not
align with another person’s perspective. These challenges must be carefully considered
when designing experiments to evaluate style representations, and appropriate methods
must be used to mitigate their impact on the results.

The STEL (STyle EvaLuation) framework, proposed by Wegmann and Nguyen (2021) is
a modular, fine-grained, and content-controlled similarity-based evaluation framework
for testing a model’s ability to capture the style of a sentence. The framework has been
designed to test the style-measuring capability of different models, and it uses tasks that
require ordering sentences to match the order of anchor sentences based on their style.
An example of such a task is illustrated in Fig. 2.1.
The framework uses different characteristics, such as contraction and number substitution,
and more general dimensions of style, such as formal/informal and simple/complex.
By using both complex style dimensions and simpler characteristics, STEL allows for
very controlled and fine-grained testing, meaning that it is able to test for small, subtle
differences in style, rather than just broad distinctions. This allows researchers to easily
make sure that only the characteristics and no other aspects change.

Figure 2.1: A STEL task instance. Anchor 1 (A1) and anchor 2 (A2) and the alternative sentences 1
(S1) and 2 (S2) are split along one of the proposed style dimensions: simple/complex.
The task is to order S1 and S2 to match them to the same style as A1 and A2. In this
figure, the utterances belonging to the same style have the same background color. Here,
the correct order is thus S2-S1.

One of the main challenges in evaluating style is disentangling it from content. To control
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for content, the framework uses parallel paraphrase datasets, which consist of a set of
sentences written in one style and a parallel set of sentences written in another. This
allows for a more accurate evaluation of a model’s ability to capture style, independent
of content. The STEL framework contains several components, including formal/informal
and simple/complex dimensions, and contraction and number substitution characteristics.
These components are designed to be easy to identify, allowing for a more straightforward
evaluation of a model’s style measuring capability.
As previously mentioned, one of the key innovations of the STEL framework is its ability
to control for content. By using parallel paraphrase datasets, where sentences are written
in different styles but convey the same content, the authors are able to control for content
and more accurately evaluate the model’s ability to capture style.

The STEL framework is evaluated using two different task setups, the quadruple
and triple setups, which are similar to the triple and quadruple training instances in the
field of metric learning. In the quadruple setup, the model is given four sentences, two
anchors, and two test sentences, and is asked to order the test sentences to match the style
order of the anchors. In the triple setup, the model is given three sentences, one anchor,
and two test sentences, and is asked to decide which of the two test sentences matches the
style of the anchor the most.



3
M E T H O D S

This chapter outlines the steps taken to conduct the research presented in this thesis. The
aim of this research is to investigate the use of transformer-based approaches for style rep-
resentation, with an emphasis on controlling for content. In Section § 3.1, the data hand-
ling process is outlined, including the collection and pre-processing of data from Reddit.
In Section § 3.2, the training task for the Authorship Verification task is described in detail,
including the contrastive learning approach and the supervised Contrastive Authorship
Verification task. The preparation for the input data and the fine-tuning process are also
explained in that section. The evaluation of the proposed approach is described in Sec-
tion § 3.3, including the use of a baseline model, the STEL framework, and performance
metrics.

3.1 dataset

In order to effectively train a transformer-based model for the Authorship Verification
task, a substantial amount of data is required. Transformers, being a complex architecture,
require an enormous amount of data to learn from in order to accurately capture the
nuances of writing styles. For this thesis, I collected a dataset of 5,255,875 utterances,
to ensure that my model has enough data to learn from. While in the field of Natural
Language Processing, 5 million utterances may not seem excessive, it is a considerable
amount in comparison to related work that used transformers for style representations.

A concise comparison with other studies, as demonstrated in Table 3.1, brings this
amount of data into perspective. It illustrates the number of utterances and distinct
authors utilized in their respective datasets, categorized by data sources. Of note is the
variance in dataset sizes, from the relatively modest collection of Wegmann, Schraagen
and Nguyen (2022) to the extensive corpus employed by Rivera-Soto et al. (2021).
It is important to mention that the dataset for this thesis, as represented in the table, is
prior to the implementation of any pre-processing or selection procedures. Post-processing,
the final quantity of data used is significantly reduced, with the specifics outlined in the
subsequent subsection.

Given this landscape, the choice of a 5 million utterance dataset in this thesis was
motivated by several considerations.

19
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Paper Total Utterances Total Authors Data Source Utterances Authors

Wegmann, Schraagen and Nguyen (2022) 630,000 385,157 Reddit 630,000 385,157
Zhu and Jurgens (2021) 1,843,130 184,313 Reddit 553,680 55,368

Amazon reviews 1,289,450 128,945
Rivera-Soto et al. (2021) 113,778,169 1,176,000 Reddit 100,000,000 1,000,000

Amazon reviews 13,500,000 135,000
Fanfiction 278,169 41,000

This thesis 5,255,875 1,038,249 Reddit 5,255,875 1,038,249

Table 3.1: Comparison of utterances and authors used by relevant related works, broken down by
data source. In the case of this thesis, the listed figures represent data quantities before
the implementation of any pre-processing or selection steps. The final quantity of data
utilized, post-processing, is notably less and will be detailed in the ensuing section.

Firstly, it is important to note that, in this work, I am not training the model from scratch
but I am fine-tuning an existing model. As a result, the model has already mostly only
learned semantic embeddings from a large-scale dataset. Since the goal is to shift the
model’s focus from semantic to stylistic embeddings, a substantial amount of data is still
necessary for effective fine-tuning.
Secondly, a balance between dataset size and available computational resources was
essential. Although Rivera-Soto et al. (2021)’s datasets are considerably larger than the
dataset used in this work, the chosen dataset size in this thesis is still sufficient for the task
at hand, given the dataset size and performance of the model from Wegmann, Schraagen
and Nguyen (2022).
The chosen dataset size for this thesis offers a promising foundation for the investigation
of the model’s performance on stylistic tasks, particularly given that I am fine-tuning the
model rather than training it from scratch. Yet, it is important to bear in mind that there is
an opportunity for further exploration in this area. As a suggestion for future work, one
could conduct experiments with larger datasets. This would provide insights into whether
an increase in data volume could potentially enhance the model’s performance, and it
would be interesting to compare these findings with the outcomes of the current approach.

The data for this study was collected from Reddit. The reason for using social me-
dia data as opposed to other types of data is that social media platforms have become a
prevalent form of communication for a great number of people and have a vast amount
of written content that is publicly accessible. Additionally, social media platforms have a
large user base, which provides a wide range of writing styles to learn from.
In this subsection, I describe the process of collecting my data. An overview of the number
of utterances and authors can be found in Table 3.3.

collection The data was collected using the ConvoKit tool developed by Chang et al.
(2020). This tool allows for the collection of conversation threads and comments from a
variety of subreddits, providing a large and diverse sample of written language. Specific-
ally, I used the Reddit Corpus generated by Wegmann, Schraagen and Nguyen (2022). This
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is a sample of conversations (i.e., comment threads) on Reddit from 100 active subreddits1

from 2018. For each subreddit, there are at least 600 comment threads, each having at least
10 comments. This leaves a total of 5,255,875 utterances by 1,038,249 unique authors from
a total of 60,000 conversations.

pre-processing To prepare the data for further use, I applied several pre-processing
steps. A full overview of the number of removed authors and utterances for each step can
be found in Table 3.2. Steps that do not remove any utterances or authors were left out for
brevity.

Firstly, the data was cleaned by masking irrelevant information and text that can
not be attributed to style. This includes user mentions - indicated by the "/u/" or "u/"
prefix - as well as subreddit mentions — indicated by the "/r/" or "r/" prefix. These
mentions were masked by replacing them with the "[MENTION]" token.
Secondly, all URLs were masked by replacing them with the "[URL]" mask. Care was
taken that stylistic features from these URLs were not removed during this process. Given
that Reddit utilizes Markdown for links, the process involved removing only the "link"
part, not the text itself. This way the stylistic difference between formatted hyperlink text
(e.g., "Take a look at Utrecht University!"), and a regular link (e.g., "Take a look at Utrecht
University: https://www.uu.nl/!") was retained.
The third pre-processing step is specific to Reddit and includes the removal of utterances
that contain the "RemindMe!" bot command. This bot lets you set a reminder but does not
actually contribute anything to a discussion.
Fourthly, all other invalid utterances were removed. All utterances of only spaces, tabs,
line breaks, emojis, or of the form: "[ deleted ]", "[deleted]", "[ removed ]", and "[removed]"
were disregarded. Utterances that contained only mentions, URLs, or a combination of
both were also removed.
In the fifth step, all utterances by invalid authors or authors for whom the unique
authorship of the utterances could not be verified were removed. This includes authors
with the username "[deleted]", but also the "AutoModerator" bot, as well as any user who
either has "bot" in their username or uses the word "bot" in all of their utterances. While it
is possible that some non-bot authors may have been filtered out, I expect this number to
be non-significant, as this is only 1.51% of the total authors in the dataset.
The sixth step consisted of removing all authors who only had one utterance in the dataset.
The reason for this removal is that it is not possible to find other utterances written by the
same author.
Finally, in the seventh step, all utterances that were too long to fit in the RoBERTa model
(> 512 tokens) were removed from the dataset. This was done by using the RoBERTa
tokenizer to tokenize each utterance and filtering the utterances based on their length.

1 https://zissou.infosci.cornell.edu/convokit/datasets/subreddit-corpus/subreddits_small_sample.
txt

https://www.uu.nl/
https://www.uu.nl/
https://zissou.infosci.cornell.edu/convokit/datasets/subreddit-corpus/subreddits_small_sample.txt
https://zissou.infosci.cornell.edu/convokit/datasets/subreddit-corpus/subreddits_small_sample.txt
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Preprocessing
step

Utterances
removed

Authors re-
moved

% Ut-
terances
removed

% Authors
removed

Remaining
utterances

Remaining
authors

Utterances
/ author

RemindMe! 1,526 344 0.03% 0.03% 5,254,349 1,037,905 5.062
Invalid utterances 488,979 5,109 9.31% 0.49% 4,765,370 1,032,796 4.614
Mention/URLs 25,351 4,753 0.53% 0.46% 4,740,019 1,028,043 4.611
Invalid authors 51,919 3 1.10% 0.00% 4,688,100 1,028,040 4.560
Likely bots 164,599 15,488 3.51% 1.51% 4,523,501 1,012,552 4.467
1 utterance 474,339 474,339 10.49% 46.85% 4,049,162 538,213 7.523
Too long 10,415 14 0.26% 0.00% 4,038,747 538,199 7.504

Table 3.2: Summary of preprocessing steps and their impact on the dataset, showing the number of
removed utterances and authors, percentage of data removed, and remaining data after
each step, along with the ratio of remaining utterances per author. Steps that do not
remove any utterances or authors were left out for brevity.

data summary After the pre-processing, 4,038,747 utterances from 538,199 unique au-
thors remained. That means that there is an average of 7.5 utterances per author, and the
maximum number of utterances by one author is 2,962. These utterances were sampled
from a total of 59,962 conversations. This means that the data contains almost all conversa-
tions from the original corpus. As suggested by Wegmann, Schraagen and Nguyen (2022),
preserving such a wide array of conversations potentially enhances the generalization of
style embeddings, as it offers a more comprehensive representation of stylistic diversity
and variability across different conversational contexts.

Before pre-processing After pre-processing
# Utterances # Authors Avg. per author # Utterances # Authors Avg. per author

5,255,875 1,038,239 5.06 4,038,747 538,199 7.50

Table 3.3: Overview of the number of utterances and number of authors for the dataset before and
after pre-processing.

3.2 training task

Recall that in this thesis, the primary goal is to enhance the representation of writing styles
by building upon and refining transformer-based approaches. To achieve this, I focused
on the Authorship Verification (AV) task, which is a binary classification problem that
aims to determine whether two given texts are written by the same author. Specifically,
I experimented with controlled content during the fine-tuning process by introducing
semantically similar texts, which should encourage the model to concentrate on stylistic
nuances rather than content. By training models on this task, the models should not only
learn to distinguish between authors by the difference in topics but also by nuances in
their writing style and thus - hopefully - encode writing style in the learned represent-
ations. The traditional approach to AV is to train a model on a labeled dataset of text
pairs, where each pair is labeled as either "same author" or "different author", following
a supervised learning paradigm. In recent years, contrastive learning has emerged as an
approach that can enhance the representation of natural language in machine learning
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models. Contrastive learning involves learning representations by comparing similar and
dissimilar examples. Essentially, an anchor example is chosen, and positive (i.e. written
by the same author as the anchor) and negative (i.e. written by a different author than
the anchor) examples are identified with respect to this anchor. The model then learns to
bring the anchor and positive examples closer in the representation space, while pushing
the anchor and negative examples apart. This method is not purely prediction-based,
which sets it apart from some traditional supervised and unsupervised learning methods.
It’s also worth noting that this approach leverages the structure within the data itself
to learn meaningful representations, much like some other machine learning techniques.
Examples of a training instance of both a positive pair and a negative pair can be found
in Fig. 3.1.

Figure 3.1: Two example text pairs for the AV task (these examples are made up). The task is to
determine whether Utterances 1 (U1) and 2 (U2) were written by the same person or
not. In the case of the first example, both utterances were written by the same author.
This is thus a positive example. In the case of the second example, both utterances were
written by a different author. This is thus a negative example.

In this thesis, I applied the supervised contrastive learning approach as proposed in
"SimCSE: Simple contrastive learning of sentence embeddings" (Gao, Yao and Chen, 2021),
which was designed to learn semantic similarity representations, to the AV task. While the
method has shown promising results in capturing semantic information, it might not yield
the same results when applied to learning stylistic representations. In the SimCSE paper,
a contrastive loss function is utilized, an idea originally conceived by Hadsell, Chopra and
LeCun (2006) for binary classification tasks. This concept of contrastive learning involves
bringing closer the representations of similar instances and distancing dissimilar ones. In
my work, I adopt the same contrastive loss function as employed in the SimCSE paper,
thus following the path that Hadsell, Chopra and LeCun (2006) blazed. The specific form
of the loss function can be found in Equation 3.1. This type of loss function is particularly
effective for learning representations of text, as it allows the model to learn to distinguish
between similar inputs (i.e. in this case, the writing style of different authors). This is
important for this research, as the goal is to be able to accurately distinguish the writing
style of individual authors in order to learn style representations. The contrastive loss
function was used to fine-tune the model on the collected data for the AV task. In the
paper by Gao, Yao and Chen (2021) this has led to state-of-the-art semantic sentence
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embeddings, and the approach is expected to result in a better representation of writing
styles that can be used for the AV task, as is shown in both Zhu and Jurgens (2021) and
Wegmann, Schraagen and Nguyen (2022). While the latter two papers do not use the
exact same loss function as proposed by Gao, Yao and Chen (2021), they both employ
contrastive learning approaches to achieve improved performance in capturing writing
styles for the AV task.

li = − log
esim(hi ,h

+
i )/τ

∑N
j=1(e

sim(hi ,h
+
j )/τ + esim(hi ,h

−
j )/τ)

Equation 3.1: The training objective for a set of paired examples D = (xi, x+i , x−i )
m
i=1 is shown above,

where:
- m represents the total number of paired examples,
- xi is the anchor utterance,
- x+i is another utterance by the same author (positive example),
- x−i is an utterance by a different author (negative example),
- hi, h+

i , and h−
i denote the representations of xi, x+i , and x−i , respectively,

- τ is the temperature hyperparameter,
- sim is the cosine similarity function,
- N is the mini-batch size.
This is a batched contrastive loss function, aiming to minimize the similarity between
the anchor example and all other negative examples within the same batch while
maximizing the similarity between the anchor and its paired positive example. The
final loss for a batch is the average of the li for all i in the batch.

The aforementioned loss function is implemented in the Sentence-Transformers library as
the MultipleNegativesRankingLoss (Reimers and Gurevych, 2019). This implementation
takes other inputs from the same batch into account, meaning that the model learns to
distinguish between different positive and negative pairs in the same batch. The loss
function behaves in such a way that it encourages the model to produce higher similarity
scores for positive pairs (anchor and positive examples) and lower similarity scores for
negative pairs (anchor and negative examples). The loss is minimized when the similarity
score between the anchor and the positive example is higher than the similarity scores
between the anchor and all the negative examples in the batch. By learning to rank
multiple negatives, the model becomes better at distinguishing between the writing styles
of different authors. This approach is different from other loss functions in the library as
it explicitly focuses on ranking and comparing multiple negative examples. It has been
shown to improve the performance of the semantic representations compared to using
only one positive and one negative example per batch (Wang et al., 2020).

To apply the supervised contrastive learning approach to the Authorship Verifica-
tion task and create the Contrastive Authorship Verification (CAV) task, three more steps
need to be taken. First, I need to mine possible paraphrases (§ 3.2.1). This is done to
generate a rich set of semantically similar examples, which serves as the backbone of the
training task. By doing so, I can create challenging negative examples that are integral
to my approach of improving style representations. After that, I need to pair the texts,
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such that the input examples for the model consist of (Anchor, Positive, Negative) triplets
(§ 3.2.2). Finally, I need to fine-tune the transformer itself (§ 3.2.3).

3.2.1 Paraphrase mining

First, it is important to select semantically similar pairs of utterances for training the
model. The goal of this approach is not only to predict whether a text pair is a "positive"
or "negative" example, but it also aims to develop a nuanced understanding of the texts
by learning style-specific representations that capture the distinctive characteristics of
each author’s writing. By including text pairs that are semantically similar, the model
should focus on stylistic variations rather than content-based differences, as the content
itself is controlled for and remains relatively constant across pairs. This way, the model is
encouraged to learn features that are more specific to an author’s writing style and less
dependent on the content of the texts.
To illustrate the importance of content control, consider an example where we do not
control for content. Suppose we have two text pairs for training: one pair where two
texts discuss the same topic, "climate change," for example, and another pair where the
texts discuss completely different topics, one being "climate change" and the other a
"music concert." If the model isn’t guided to focus on stylistic variations, it might learn to
differentiate authors based on the content of their texts rather than their unique writing
styles. In this case, the model could incorrectly attribute the differences between the texts
discussing "climate change" and "a music concert" to stylistic variations rather than the
stark difference in their content.

To find these paraphrases, I used the paraphrase_mining utility function from the
Sentence-Transformers2 library (Reimers and Gurevych, 2019). The first step in this process
involves creating semantic embeddings for each text. In this thesis, I used the "all-mpnet-
base-v2" model3, since this model is considered the best quality general-purpose model
offered by the library and is suitable for generating high-quality semantic embeddings.
Once these semantic embeddings are generated, they are compared using the cosine
similarity function. This function finds and ranks the top-k semantically similar sentences
for each sentence in the dataset. For this thesis, the top-k parameter was set to 100,
meaning that for each sentence, the function attempts to identify up to 100 other sentences
as potential paraphrases. The max_pairs parameter was set at 100,000,000. This parameter
indicates the maximum number of paraphrase pairs that the function returns across the
entire dataset, not just for one utterance. It was set to a large number to ensure that I
retrieve as many paraphrase pairs as possible across all utterances in the dataset. It’s
important to note that the top-k and max_pairs parameters serve different purposes. While
top-k limits the number of paraphrase candidates for each individual sentence, max_pairs
limits the total number of paraphrase pairs that are returned from the entire dataset. It

2 https://www.sbert.net/examples/applications/paraphrase-mining/README.html
3 https://huggingface.co/sentence-transformers/all-mpnet-base-v2

https://www.sbert.net/examples/applications/paraphrase-mining/README.html
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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should be noted that I do not set a range on semantic similarity, but it is instead limited
by taking the best 100,000,000 paraphrases.

In order to ensure the quality of the paraphrase pairs, I temporarily hid two types
of texts from utterances before the mining. More specifically, I first removed all lines
from a text that start with the ">" symbol, since this indicates a quoted text, and often
implied a reply to another text in the same conversation. This would result in an unfairly
high similarity score since both texts have a lot of overlap of the utterance. Secondly, I
also removed texts that only consisted of emojis because the paraphrase mining model
cannot deal with such texts. If a sentence consisted only of emojis, it would be considered
a paraphrase of every other sentence that also consisted only of emojis, resulting in a
similarity score close to 1, and a lot of "similar" paraphrases.
After mining the paraphrases, I also performed a filtering step to remove sentences by the
same author, and duplicate sentences, where sentence 1 and sentence 2 of a paraphrase
are the same. This was done to ensure the quality of the resulting paraphrase pairs.

The result of this process is a set of text pairs, where the first text is semantically
similar but written by a different author than the second text. An example of a text pair
that is semantically similar but written by a different author is illustrated in Fig. 3.2.

Figure 3.2: An example text pair for the AV task where the texts are semantically similar (cosine
similarity of 0.93) but stylistically different. In this case, both utterances were written by
a different author. This is thus a negative example.

3.2.2 Pairing utterances

The main novelty of the approach presented in this thesis lies within the combination
of the previous step (§ 3.2.1) and this one. In this step, I paired each utterance from an
author with positive examples (i.e., other utterances from the same author) and negative
examples (i.e., utterances from different authors). For the positive examples, I paired each
utterance with all other utterances written by the same author. For the negative examples,
I selected the semantically similar utterances that are described in the previous subsection.
Despite the intent to match as many utterances as possible with semantically similar
counterparts, not all data could be paired this way. Therefore, for the remaining data, I
generated the negative pairs by uniformly sampling texts written by a different author.
This was done to ensure the model also gains experience dealing with dissimilar pairs
and doesn’t rely solely on semantic similarity for Authorship Verification.
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The first phase of my iterative experiment focused on manipulating the percentage
of paraphrases in the training data. Specifically, I explored how changing this percentage
affects the performance of the RoBERTa models. The aim was to determine whether
increasing or decreasing the concentration of semantically similar negative examples
influences the model’s ability to distinguish writing styles. After gathering insights from
this initial experiment, I conducted subsequent experiments, each building on the findings
of the previous. This iterative process was designed to continually refine and optimize the
performance of the RoBERTa models.

3.2.3 Fine-tuning pre-trained transformers

The fine-tuning process involved training the model on the collected data, to improve its
ability to distinguish and verify the writing style of individual authors. To achieve this, I
used the Sentence-Transformers library (Reimers and Gurevych, 2019) to fine-tune several
"roberta-base" models (Liu et al., 2019). This model is a transformer-based neural network
language model that has been trained on a large corpus of text data, making it effective for
a range of natural language processing tasks, including Authorship Verification (Zhu and
Jurgens, 2021; Wegmann and Nguyen, 2021; Wegmann, Schraagen and Nguyen, 2022). I ex-
perimented with different values for hyperparameters such as the loss function, learning
rate, batch size, and the number of epochs during fine-tuning. In the case of the Multi-
pleNegativesRankingLoss, the batch size is more important since it compares each example
with other examples in the same batch. Having a larger batch size thus allows the model
to compare to more negative examples.

3.3 evaluation

3.3.1 STEL framework

In this study, I use the STyle EvaLuation (STEL) framework as proposed by Wegmann and
Nguyen (2021) to evaluate the performance of the models (see Section ??). In addition to
the standard STEL framework, I also employed the STEL-or-content task introduced by
Wegmann, Schraagen and Nguyen (2022). This task presents an additional challenge as
it requires the model to differentiate between writing styles and content. In this task, the
model has to choose between two options: one that matches the anchor style but with
unrelated content, and another that matches the content but with a different writing style.
A visual representation of the STEL-or-content task is provided in Fig. 3.3.

I used the framework to evaluate the model’s performance on specific characteristics of
style such as contraction and number substitution. I also utilized the framework to eval-
uate the model’s performance on more general dimensions of style like formal/informal
and simple/complex. I used the STEL evaluation results and the STEL-or-content task
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Figure 3.3: An example instance of a STEL-or-content task on the formal/informal dimension. In
this case, the formal style of the Anchor sentence matches the style of Utterance 2, even
though the content overlaps more with Utterance 1.

to determine whether the model has improved over previous work, and how much the
addition of semantically similar text pairs has impacted the final results.

3.3.2 Authorship Verification performance

In addition to the evaluation using the STEL framework to determine how much the
model controls for content, I also evaluated my model on the Authorship Verification and
Contrastive Authorship Verification tasks. These evaluations primarily utilize accuracy
as the performance measure, a choice motivated by the balanced nature of my data.
While other metrics such as precision, recall, or F1 score could provide additional insight,
especially in cases of class imbalance or when false positives and false negatives have
significantly different costs, I deemed accuracy to be sufficient for this study given
the nature of the task and the data distribution. As such, accuracy can give a clear,
easy-to-understand assessment of how well my models are performing on the AV and
CAV tasks.
Recall that in the AV task, we input a pair of texts and predict if they share the same
author, resulting in a binary output. The CAV task, conversely, inputs a triplet of texts and
predicts which text matches the anchor in authorship.

For this evaluation, I created two test sets, each consisting of 100,000 input examples. The
data was split into training, validation, and test sets using an 80:10:10 ratio. Importantly, I
ensured that there was no overlap of authors between these splits. This non-overlapping
split is crucial to ensure that the model is not exposed to any data it has seen during
training when it is validated and tested, which would artificially inflate performance
metrics.
One test set contains 100% semantically similar negative examples, while the other consists
of 0% semantically similar (randomly sampled) negative examples. It is important to note
that although these test sets have a big overlap in authors, they still differ somewhat. The
reason for using both test sets is to thoroughly assess the performance and robustness of
the models under different conditions. By evaluating the models on test sets with varying
degrees of semantic similarity between the anchor and negative examples, I can gain
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insights into how well the models generalize to different types of input data.

The test set with 100% semantically similar negative examples provides a more
challenging evaluation environment, as the models need to focus on capturing the
nuanced differences in writing styles rather than relying on content differences. This test
set allows me to evaluate how well the models have learned to disentangle writing style
from content during training.
On the other hand, the test set with 0% semantically similar (randomly sampled) negative
examples represents a more traditional AV and CAV evaluation setup. This test set allows
me to compare the performance of the models to existing research and baselines, as
well as assess their ability to adapt to a wider variety of negative examples that may not
necessarily be semantically similar to the anchor sentences.

Since I am working with Sentence-Transformers (Reimers and Gurevych, 2019), which
generate embeddings rather than performing classification directly, I determine whether
two texts are written by the same author using a threshold-based approach. First, I
generate embeddings for the sentences in the validation set and calculate the cosine
similarity for each pair. I then use these cosine similarity scores to calculate the Receiver
Operating Characteristic (ROC) curve and determine the optimal threshold as the value
that maximizes the difference between the True Positive Rate (TPR) and the False Positive
Rate (FPR). In the test set, if the cosine similarity between two authors is greater than this
threshold, I classify the pair as being written by the same author. If the cosine similarity is
lower, I classify them as being written by different authors.

3.3.3 Baseline

When comparing the performance of the proposed model in this thesis, it is important
to consider the performance of previous models that have been used for the Authorship
Verification task. In this thesis, I compared the performance against one principal baseline
in the field of Authorship Verification. This baseline is strong and well-established,
providing a rigorous point of comparison.

The baseline chosen is from the work of Wegmann, Schraagen and Nguyen (2022).
They introduced a variant of the Authorship Verification task that implements content
control using conversation (same comment thread) or domain (same subreddit) labels.
Their findings suggest that representations trained by controlling for conversation yield
superior capabilities in representing style independently from content. Their model is
publicly available on the Huggingface website4, negating the need for retraining.

The performance of the proposed model in this thesis is evaluated against this baseline
to gauge its effectiveness and its ability to generalize in representing writing styles for

4 https://huggingface.co/AnnaWegmann/Style-Embedding

https://huggingface.co/AnnaWegmann/Style-Embedding
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the Authorship Verification task. This comparison will provide valuable insights into the
model’s proficiency in disentangling style from content and its potential for practical
application in the broader field of style modeling.



4
E VA L U AT I O N

In this chapter, I present the evaluation of my model for writing style representation
using the fine-tuned RoBERTa model and the Sentence-Transformers Python library. My
approach involves an iterative process of refining the model to better capture stylistic dif-
ferences between authors. I employ the constrastive version of the Authorship Verification
(AV) task - the Contrastive Authorship Verification (CAV) task - as the training task to
learn the representations. Although these tasks are valuable for training purposes, they
may not fully reflect the nuances of style modeling, as they primarily focus on author
differentiation. Consequently, I put less emphasis on the performance of the AV and CAV
tasks during the evaluation of the model and focus more on the model’s ability to capture
stylistic features and its applicability to a broader range of style-related tasks.
The AV and CAV tasks are both split into two test sets: one where all the different-author
examples are a paraphrase of the anchor - the 100% AV/CAV task - and one where all the
different-author examples are chosen at random — the 0% AV/CAV task.

To evaluate the model’s primary focus on style modeling, I use the STEL frame-
work, and I employ the STEL-or-content evaluation. Both of these evaluation methods are
further elaborated upon in Section § 3.3.

Before delving into the evaluation, I will initially analyze the quality of the para-
phrases in § 4.1. This analysis will provide a deeper understanding of the characteristics
of the paraphrases and set the groundwork for subsequent evaluations.

In Section § 4.2 I provide a comprehensive overview of the results of this research.
After that, each subsequent subsection will discuss the methods, results, and implica-
tions for each iteration, allowing readers to follow the development of my model and
understand the rationale behind the changes I made. Finally, in Section § 4.9, I engage
in a more overarching discussion of the results, synthesizing the findings from the
various models explored throughout this thesis and analyzing them within a broader
context to underscore their implications and potential applications for the field of style
representation. By presenting my research in this manner, I provide a comprehensive view
of the model’s evolution and the impact of different modifications on its performance in
style modeling.

31
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4.1 semantic similarity analysis

Since the novelty of my approach lies in the effective use of semantically similar different-
author examples, it is paramount to verify the quality of these examples. In this section, I
will do exactly that. The following subsections will dissect the paraphrases that I use as
semantically similar examples, beginning with a look at the overall score distribution.

It’s important to clarify that the term "paraphrase" as used in this thesis does not
strictly adhere to its conventional usage in related literature. Instead, it specifically refers
to the method employed in this study for sampling different-author examples. This
distinction is crucial for the interpretation of the results and discussions presented in this
work.

4.1.1 Score analysis

An important step in analyzing the quality of paraphrases is examining the overall distri-
bution of the paraphrase scores since this is the criterion that the paraphrases are selected
on. Fig. 4.1 shows a histogram of paraphrase scores, which helps visualize the distribution
of scores across the dataset.

Figure 4.1: Histogram of paraphrase scores showing the distribution of scores across the dataset.
The kernel density estimate (KDE) is also plotted to give a smooth estimate of the score
distribution. The scores range from a minimum of 0.62 to a maximum of 1.00, with a
median of 0.68. The 25th and 75th percentiles are 0.64 and 0.73, respectively.

As intuition would have us expect, this distribution is skewed towards a higher frequency
of lower-scoring paraphrases. What also stands out, is the fact that the frequency of the
scores in the last bin is higher than the bins just before it, breaking the trend of diminishing
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frequencies.
If we look at Table 4.1, which shows 5 examples of the highest-scoring paraphrases, this dis-
ruption of the trend makes sense. Oftentimes, the sentences with similarity scores close to
1.0 differ only one or two characters. The lower the similarity scores, the more the anchor
and paraphrases start to differ. Moreover, these top-scoring paraphrases predominantly
consist of frequently used words or phrases in the English language. This observation is
further explored and discussed in Section § 4.1.2 and the subsequent sections.

Anchor Paraphrase Score

And my Axe! and My axe! 1.0
what an absolute unit What an absolute unit 1.0
hot take Hot Take 1.0
That’s a great fight. That’s a great fight 0.976
AlAbAmA dOeSnT bElOnG iN tHe
PlAyOfFs

AlAbAmA DoEs NoT DEseRvE To bE iN
ThE PlAYoFfS

0.976

Table 4.1: Examples of the highest scoring paraphrases from the data. These examples represent
paraphrases that are either identical or very similar to the anchor sentences, leading to
high cosine similarity scores.

The fact that my dataset contains more lower-scoring paraphrases can also be explained
by looking at Table 4.2. In that table, I listed 5 of the lowest-scoring paraphrase pairs that I
sampled. Compared to Table 4.1, the paraphrases here differ a lot more semantically from
the anchor. What is encouraging about this, however, is that even these lowest-scoring
paraphrases still share at minimum the same topic, and usually the same sentiment about
that topic as well.
While the tables Table 4.2 and Table 4.1 provide examples of the lowest and highest-scoring
paraphrase pairs, respectively, they are not exhaustive representations of the entire dataset.
To gain a more comprehensive understanding of the quality of the paraphrase pairs, I con-
ducted a manual inspection of 100 randomly sampled paraphrases from across the score
spectrum. This manual inspection confirmed that even the lower-scoring paraphrases gen-
erally maintained the same topic and sentiment as their respective anchors, despite their
greater semantic differences. Therefore, based on this more extensive analysis, it can be in-
ferred that the majority of the paraphrases in the dataset align with my goal of controlling
for content. However, it’s important to note that this conclusion is based on a sample and
may not hold true for every single paraphrase in the dataset.
An interesting pattern that emerged from inspecting the dataset, and is illustrated by the
examples in Table 4.1, is that not all paraphrases that differ only one or two characters
get assigned the same similarity score. We can see that the difference between the anchor
and the paraphrase in the fourth row is only the period at the end of the sentence, but the
cosine similarity score it gets is not 1.0 (which would indicate full semantic equivalence).
This indicates that the model used for the paraphrase mining is not always completely
unaffected by differences in writing style. However, it’s important to note that manual
inspection of the data shows that these examples are representative of a broader pattern
observed in the dataset, rather than isolated instances. A more comprehensive analysis
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Anchor Paraphrase Score

Cute and inquisitive, really captures the
intelligence of pigs in my opinion

What a cute pig! Is he/she just a small
potbelly or?

0.6166

A medical condition? What are you,
fucking Sanjay Gupta? Playing the god-
damn music.

He says he thinks he may have a condi-
tion. But I’m not convinced he’s a real
doctor tbh.

0.6166

That looks cool, but at the time it wasn’t
actually used in any phones. When the
iPhone was released, consumers had a
choice between an actually decent capa-
citive screen, and shitty resistive screens
that couldn’t even properly register a
light swipe. It’s really no wonder that
they picked the capacitive screen.

Oh yeah! That was such a cool concept
too. It’s such a bummer that nobody
really takes risks with design or ma-
terials anymore, outside of the random
phone here or there. Everything looks
like a Samsung or the Essential/iPhone
X.

0.6166

These birds are individuals who suffer
just like cats or dogs and who fight for
their lives just like cats or dogs. Con-
sider that when you vote with your wal-
let and consider leaving them off your
plate. This is coming from someone who
has rescued dogs, cats, goats, chickens,
guineas, sheep, etc. There are no differ-
ences between these animals in any way
that truly matters.

Something saddens me when I see a bird
as a pet!

0.6166

The Ravioli Lad, the Carbonara Kid. Ravioli Ravioli give me the Formuoli 0.6166

Table 4.2: This table presents 5 of the lowest scoring anchor-paraphrase pairs that were used. These
examples depict substantial variations in terms of length, wording, context, or semantic
meaning compared to the anchor sentences, which result in low cosine similarity scores.

would be needed to determine the extent and impact of this potential sensitivity across the
entire dataset.

4.1.2 Frequency distribution

Following the exploration of high and low-scoring paraphrases, I now move to examine
the overall frequency distribution of all paraphrases in the dataset. When I refer to a para-
phrase being "frequent in the dataset," it means that the same paraphrase appears multiple
times. In the subsequent analyses, I only look at the mined paraphrases, and disregard
their respective anchors.
To visualize this distribution, I created the plots presented in Fig. 4.2a and Fig. 4.2b. To
create these plots, I first sorted the sampled paraphrases based on their occurrences, after
which I plotted the occurrences of the first 10,000 indices (i.e., the 10,000 most frequently
sampled paraphrases). I opted for only plotting the first 10,000 indices since the distri-
bution is so heavily skewed towards the first indices that visualization on a larger scale
would impair its explainability.
Fig. 4.2a and Fig. 4.2b show that this method of collecting paraphrases not only favors
lower scoring paraphrases (as demonstrated in Section § 4.1.1) but is also skewed towards
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(a) Line plot of paraphrase frequency distribu-
tion.

(b) Line plot of paraphrase frequency distribution
in log scale.

Figure 4.2: Comparison of frequency distribution for the first 10,000 paraphrases in normal scale
(left) and log scale (right), sorted by occurrences. The x-axis represents the index of
the sorted paraphrases, while the y-axis represents the number of occurrences of each
paraphrase. Both plots depict a rapid decrease in occurrence frequency, indicating a
skewed distribution. The log scale on the right allows clearer visualization of the decline
for less frequent paraphrases. The shaded area in both plots emphasizes the rate of
decline.

reusing a small number of paraphrases a lot. To determine whether this apparent overrep-
resentation of a few paraphrases might be detrimental to the overall quality of the para-
phrases, a closer inspection of these top paraphrases is necessary.
Assisting in this inspection, Fig. 4.3a shows the top 15 most common paraphrases. From
an initial look-over of this graph, it seems that a lot of these paraphrases are very similar
in meaning to some of the other paraphrases (e.g., "LoL." and "LOL."). This means that the
diversity of these top paraphrases does not differ a lot semantically. This effect is especially
illustrated in Fig. 4.3b, where I first applied some text cleaning - converting to lowercase, re-
moving punctuation, and lemmatization - before plotting the most common paraphrases.
Indeed, as depicted here, these similar utterances constitute a substantial proportion of
the paraphrases. This is expected, given that short, one-word utterances such as "yes" and
"thanks" are prevalent in the dataset (see Section § 4.1.3). The fact that Fig. 4.3a shows a
lot of variations for the same paraphrases shows that there is a considerable amount of
diverse writing styles for these utterances, which can be a positive factor for the training
task. However, potential drawbacks could be that (i) these common paraphrases are dis-
proportionately represented, and (ii) the dataset predominantly consists of shorter, similar
paraphrases, while the occurrence of longer, unique utterances is relatively infrequent.

4.1.3 Paraphrase word count and score

The second concern highlighted in the previous section - the prevalence of shorter, similar
paraphrases in the dataset - can be further elucidated by referring to Fig. 4.4. This figure,
a hexbin plot, enables us to visualize the density and distribution of the data and also dis-
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(a) Top 15 most common paraphrases. (b) Top 15 most common paraphrases after clean-
ing.

Figure 4.3: Comparison of the top 15 most common paraphrases in the dataset before (left) and
after (right) applying text cleaning processes such as converting to lower case, removing
punctuation, and lemmatization. The total number of occurrences is represented on the
x-axis in both plots.

cern potential correlations between the word count of the paraphrases and their respective
scores. It should be noted that the color intensity of the hexagon bins corresponds to the
log scale values.
Several key observations can be drawn from this plot. Firstly, paraphrases of shorter length
appear to be favored across all scores. This is intuitive as text with less content is likely to
have more semantically similar examples. Secondly, although they are still mostly shorter,
paraphrases with lower scores tend to be more verbose. This can be attributed to the
increased "freedom" in paraphrase selection associated with lower scores, which allows
for more extensive expressions. This point is also illustrated in my interpretation of the
lowest-scoring paraphrases in Table 4.2. The drawback of this phenomenon is that it may
inadvertently lead to an overrepresentation of shorter, semantically similar phrases in the
dataset. While these phrases indeed offer valuable insight into the nature of the most com-
mon conversational exchanges, their dominance may overshadow more complex, unique,
and nuanced paraphrases which are essential for robust semantic understanding and vari-
ation in dialogues. Moreover, the trend of lower scores being associated with longer para-
phrases may induce a bias in the model to perform better on simpler paraphrases over
their complex counterparts, as the latter would likely be underrepresented in the training
data.

4.1.4 Comparison with Wegmann, Schraagen and Nguyen (2022)

To highlight the differences between my approach for sampling negative examples and
the method proposed by Wegmann, Schraagen and Nguyen (2022), I will give a short
comparative analysis in this subsection. In their approach, for each utterance A1, another
utterance B is randomly selected from the same conversation but written by a different
author. Then, for all (A1, B)-pairs, a second utterance A2 is randomly chosen from all
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Figure 4.4: Hexbin plot comparing the word count of the paraphrases and their corresponding co-
sine similarity scores. The x-axis represents the word count in the paraphrases, and the
y-axis represents the score associated with the paraphrases. The color of the hexagons
represents the count of paraphrase-score pairs that fall into the area, with darker colors
indicating higher counts, plotted on a log scale. This plot visualizes the density and
distribution of the data, as well as any potential correlations between paraphrase word
count and the score assigned by the model.

utterances written by the same author as A1, ensuring that A1 and A2 are not the same.
Their version of content control is thus on the conversation level.

As the counterpart of Fig. 4.5b (or Fig. 4.1), Fig. 4.5a also presents a histogram of
cosine similarity score frequencies. These scores were extracted from the training dataset
of Wegmann, Schraagen and Nguyen (2022), using the same "all-mpnet-base-v2" model1.
As expected, the distribution of scores is substantially different from that of my approach.
The scores range from a minimum of -0.20 to a maximum of 1.00, with a median of 0.15.
The 25th and 75th percentiles are 0.06 and 0.27, respectively. This contrasts sharply with
the score distribution from my approach, which ranges from a minimum of 0.62 to a
maximum of 1.00, with a median of 0.68 and 25th and 75th percentiles of 0.64 and 0.73,
respectively.
The lower scores in the dataset of Wegmann, Schraagen and Nguyen (2022) are not
surprising, given that their sampling approach is not based on similarity. Instead, it in-
volves randomly selecting utterances from the same conversation but written by different
authors, which can lead to a wider range of semantic differences and thus lower similarity
scores.
In contrast, my approach is similarity-based, which naturally leads to higher similarity

1 https://huggingface.co/sentence-transformers/all-mpnet-base-v2

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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scores. This difference in score distributions underscores the fundamental differences
between the two sampling approaches and their potential implications for the resulting
datasets.

(a) Histogram of different-author example cosine
similarity scores across the dataset used by
Wegmann, Schraagen and Nguyen (2022). The
scores range from a minimum of -0.20 to a
maximum of 1.00, with a median of 0.15. The
25th and 75th percentiles are 0.06 and 0.27, re-
spectively.

(b) Histogram of different-author example cosine
similarity scores across the dataset used by
me. The scores range from a minimum of 0.62
to a maximum of 1.00, with a median of 0.68.
The 25th and 75th percentiles are 0.64 and 0.73,
respectively.

Figure 4.5: Side-by-side comparison of the distribution of cosine similarity of the anchor-negative
example pairs. The left plot shows the histogram for the sampling method that Weg-
mann, Schraagen and Nguyen (2022) used, while my sampling method is highlighted
in the plot on the right. The kernel density estimate (KDE) is also plotted to give a
smooth estimate of the score distribution. For a fair comparison, both plots have the
same x and y limits.

This difference in sampling approaches becomes even more apparent when examining the
frequency distribution of the first 10,000 different-author examples, sorted by occurrences,
as shown in Fig. 4.6a. The line representing the frequency distribution in their dataset
"falls flat" to about 3 occurrences almost immediately. This suggests that there is a high
level of diversity in their different-author examples, with most of them appearing only
a few times in the dataset. In stark contrast, the frequency distribution of my approach,
illustrated on the same axes in Fig. 4.6b, does not exhibit the same rapid decline. Instead,
there is a more gradual decrease in the frequency of occurrences, indicating that the same
paraphrases are sampled more frequently in my dataset. My similarity-based approach
thus tends to sample the same paraphrases more frequently.

The distinctions between the two approaches are further highlighted in a hexbin plot
comparing the word count of the different-author examples and their corresponding
cosine similarity scores, as shown in Fig. 4.7a. Two key observations can be made from
this plot. First, the word counts in their dataset are generally much higher than in my
dataset (Fig. 4.7b). This discrepancy is likely due to two main factors: (i) their method of
handling longer examples, where they opt to trim or "truncate" examples that exceed a
certain length limit, whereas in my approach, I filter out and exclude any examples that
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(a) Frequency distribution for the first 10,000
different-author examples used by Wegmann,
Schraagen and Nguyen (2022), sorted by oc-
currences.

(b) Frequency distribution for the first 10,000
different-author examples used by me, sorted
by occurrences.

Figure 4.6: Side-by-side comparison between the frequency distribution for the first 10,000 different-
author examples used by Wegmann, Schraagen and Nguyen (2022) (left) and by me
(right), sorted by occurrences. The x-axis represents the index of the sorted different-
author examples, while the y-axis represents the number of occurrences of each
different-author example. For a fair comparison, both plots have the same x and y limits.

are too long, and (ii) the previously mentioned notion that it is easier to find semantically
similar examples for shorter utterances. Second, despite the higher word counts, their
approach still favors shorter sentences. However, this does not appear to be correlated
with the similarity score (as is the case in my dataset) but rather seems to be a general
property of language, where shorter sentences are more common.

Lastly, an additional important aspect to consider is the number of conversations from
which the different-author examples are sampled. This is crucial because if most of my
different-author examples were drawn from the same conversation, it would suggest
that my approach for content control is actually quite similar to the approach taken by
Wegmann, Schraagen and Nguyen (2022). In their approach, all different-author examples
are from the same conversation as the anchor. However, in my approach, only 320,824 out
of 2,995,445 examples, or 10.71%, are from the same conversation. This is a substantial
difference and suggests that my approach is not merely a different conversation sampling
method.

4.1.5 Conclusion

In this analysis, I’ve highlighted the important differences in the sampling approach used
in my dataset compared to the method proposed by Wegmann, Schraagen and Nguyen
(2022). While their approach tends to result in fewer similar different-author examples, my
similarity-based approach provides a more focused context, which could be advantageous
depending on the task of style representation.
The overrepresentation of shorter, semantically similar paraphrases might initially appear
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(a) Hexbin plot comparing the word count of
the different-author examples and their corres-
ponding cosine similarity scores used by Weg-
mann, Schraagen and Nguyen (2022).

(b) Hexbin plot comparing the word count of
the different-author examples and their corres-
ponding cosine similarity scores used by me.

Figure 4.7: Side-by-side comparison between hexbin plots comparing the word count of the
different-author examples and their corresponding cosine similarity scores. This com-
parison is between the data used by Wegmann, Schraagen and Nguyen (2022) (left) and
me (right). The x-axis represents the word count in the different-author examples, and
the y-axis represents the score associated with the different-author examples. The color
of the hexagons represents the count of example-score pairs that fall into the area, with
darker colors indicating higher counts, plotted on a log scale. This plot visualizes the
density and distribution of the data, as well as any potential correlations between ex-
ample word count and the score assigned by the model. For a fair comparison, both
plots have the same x and y limits.

beneficial for the specific task at hand, but an overemphasis on these types of paraphrases
can potentially lead to an unintended consequence: they might dominate the learning pro-
cess to such an extent that the model fails to adequately capture the essence of complex
and distinctive phrases. Similarly, the phenomenon of lower-scoring paraphrases being
longer could induce a bias in the model to perform better on simpler paraphrases, poten-
tially neglecting complex counterparts.
Moreover, the presence of both lower-scoring and frequently used paraphrases in the data-
set, combined with a diverse range of writing styles for the same utterances, results in a
unique structure. This could be advantageous for training, as the frequent paraphrases,
which represent common structures and patterns in the language, provide the model with
a wide array of base scenarios to learn from. Essentially, these common structures serve as
the groundwork upon which the model can learn more intricate patterns. However, there
is a potential drawback to this distribution pattern: it may result in the overrepresentation
of certain scenarios, skewing the model’s understanding and leading to an imbalance in
representation.
The degree to which these characteristics impact the performance of the model, and the
manner in which they do so, will require further exploration. As such, the potential up-
sides and downsides of these factors will only become fully evident upon the actual
evaluation of the model results. By proceeding with this training and subsequent test-
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ing, a clearer understanding of the effectiveness of this paraphrase-based method for the
sampling of the different-author examples can be achieved.

4.2 overview of experiments

In this section, I provide an overview of the entire experimental process, summarizing the
main steps undertaken and pointing toward the sections where each stage is described
in more detail. The experiments, as visualized in Fig. 4.8, were carried out in a step-wise
fashion, where each successive model builds on the results of the previous one.

Figure 4.8: A flowchart summarizing the various different experiments and resulting models
presented in the following sections of this thesis.

1. Initial model: The experiment started with the hyperparameter tuning phase, res-
ulting in the creation of an initial model. This model employed the most suitable
hyperparameters identified during the tuning phase. Moreover, it was tested with
varying proportions of semantically similar different-author examples, with a 100%
proportion proving to be optimal. For a comprehensive description of this initial
model and the hyperparameter tuning process, please refer to Section § 4.3.

2. 1 utterance authors: The initial model only included authors with at least two ut-
terances, since it is also possible to sample same-author examples for those authors.
In this next step, I adapted the data such that authors with only a single utterance
could also be considered for the different-author examples. The motivation for this
step was to increase the range of writing styles by including substantially more au-
thors. More information about this model, and the modifications made, can be found
in § 4.4.

3. Positive-negative: To experiment with the effectiveness of the training task setup,
the third step involved a serious modification to the data sampling method for the
different-author examples. Instead of finding the paraphrases of the anchor utter-
ances, I instead mined them based on the same-author examples. An example of
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the new training task is displayed in Fig. 4.10b, and detailed discussions about this
model are provided in § 4.5.

4. Random sampling: To improve the results further after finding the results of the
third step to be inferior to previous iterations, the training data was diversified using
a random sampling method. This involved randomly selecting utterances from each
author, rather than the first 10 chronological — as was the case for the previous
experiments. The motive for this experiment was to increase the average number of
topics for each author, which increase the diversity of writing styles even further. The
random sampling model is thoroughly discussed in § 4.6.

5. Non-uniform: To improve the overall variety of paraphrases, a non-uniform
sampling method to sample the different-author examples was applied to further
change the model’s performance. The intricacies of the non-uniform model and the
motivation behind its creation are described in § 4.7.

6. SAURON: The final step involved the creation of the Stylistic AUthorship Repres-
entatiON (SAURON) model, which made two significant changes inspired by the
approach of Wegmann, Schraagen and Nguyen (2022). The MultipleNegativesRankin-
gLoss function was replaced with the Triplet loss function, aimed to foster a more
nuanced and balanced representation by ensuring a clearer distinction between the
anchor’s relationships with positive and negative examples. Furthermore, the data
sampling strategy was altered to deploy each anchor only once, necessitating a shift
in the model’s learning to glean stylistic information from a less populated, albeit
more distinct, set of examples. The motivation for this experiment was to explore
the possibility of achieving a more optimized balance between style and content con-
trol by integrating elements from the model developed by Wegmann, Schraagen and
Nguyen (2022). An extensive discussion of the SAURON model, its development,
and its performance can be found in § 4.8.

A comprehensive summary of the results from each of these stages is provided in Table 4.3.
This iterative process has allowed for continuous refinements to the model, and this section
serves to provide an overview of how each step contributed to the final results. In the
following sections, the results of each of these models will be analyzed in more depth to
provide a better understanding of how each modification impacts the model’s performance.

4.3 initial experiments

As a starting point for my experiments, I used a dataset structured in a triplet setup,
with each input example consisting of an anchor, a positive (same-author), and a negative
(different-author) text. The anchor text is written by author A, the positive example is
another text that is also written by author A, and the negative example is a text written by
another author B. To enhance the challenge of distinguishing between authors, the negat-
ive example is selected based on its semantic similarity to the anchor text, as measured by
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AV task CAV task Formal Complex Nb3r C’tion
Model 0% 100% 0% 100% Original o-c Original o-c Original o-c Original o-c

RoBERTa 0.58 0.50 0.63 0.57 0.83 0.09 0.73 0.01 1.00 0.00 0.94 0.13
Wegmann et al. (2022) 0.67 0.63 0.73 0.68 0.83 0.70 0.58 0.27 0.56 0.03 0.96 0.02

Initial model 0.72 0.60 0.80 0.64 0.81 0.48 0.59 0.04 0.65 0.06 0.95 0.00
Adjusted authors 0.75 0.62 0.82 0.68 0.78 0.47 0.57 0.04 0.72 0.03 1.00 0.00
Positive-negative 0.78 0.55 0.85 0.55 0.76 0.16 0.58 0.00 0.63 0.04 1.00 0.00

Random sampling 0.73 0.61 0.83 0.67 0.81 0.48 0.55 0.05 0.61 0.03 1.00 0.00
Non-uniform 0.75 0.62 0.83 0.68 0.80 0.48 0.58 0.04 0.67 0.04 1.00 0.00

SAURON 0.64 0.64 0.71 0.73 0.78 0.68 0.55 0.25 0.49 0.04 0.95 0.09

Table 4.3: Table comparing the performance of the RoBERTa base model, the model from Wegmann,
Schraagen and Nguyen (2022), and all models presented in this thesis on the AV and CAV
tasks using 0% and 100% semantically similar negative examples, as well as the STEL
framework. The Formal, Complex, Number substitution and Contraction task columns
are subdivided into Original (standard STEL dataset) and o-c (STEL-or-content dataset)
subcolumns. The values with the highest accuracy in each column are reported in bold.
The underlined values correspond to the highest accuracy in each column for the models
that I present throughout this chapter.

cosine similarity scores. Whenever possible, I opted for the highest-scoring semantically
similar text by a different author as the negative example. Furthermore, I sampled the
texts chronologically to capture the natural evolution of an author’s writing style over time.

This approach was used across the initial experiments. In Section § 4.3.2, I subsequently
experiment with the proportion of different-author examples that are semantically similar.
For more details on the collection method and the dataset description, refer to Section
§ 3.1.

4.3.1 Hyperparameters

To establish a baseline for the rest of my research, I experimented with different loss func-
tions, learning rates, and the number of training epochs, fine-tuning these hyperparamet-
ers to optimize the model’s performance in capturing stylistic nuances. A brief justification
for the choices made regarding these hyperparameters is provided below, and detailed res-
ults of these experiments can be found in Appendix A.

4.3.1.1 Loss function

I first compared the performance of two different loss functions: MultipleNegativesRankin-
gLoss (MNRL)2 (Gao, Yao and Chen, 2021) and the Contrastive loss3 (Hadsell, Chopra and
LeCun, 2006). These loss functions were chosen because both are designed for contrastive
learning tasks, which aim to learn representations that distinguish between similar and
dissimilar data points.
The MNRL loss is originally designed for learning semantic sentence embeddings. It
considers other inputs from the same batch, thereby enabling the model to learn from

2 https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss
3 https://www.sbert.net/docs/package_reference/losses.html#contrastiveloss

https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss
https://www.sbert.net/docs/package_reference/losses.html#contrastiveloss
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multiple positive and negative pairs simultaneously. Essentially, for a given positive pair,
it treats all other negatives in the batch as valid negatives, which adds diversity to the
negative samples.
The Contrastive loss, on the other hand, is a more general-purpose contrastive loss
function that aims to push positive pairs close together and negative pairs apart in the
embedding space. Comparing these two loss functions helps to identify the most suitable
one for learning stylistic embeddings in the context of the Authorship Verification task.
Comparing the performance of these two loss functions provides insights into the most
suitable loss function for learning stylistic embeddings. To ensure a fair comparison, the
model was trained using each loss function with the number of epochs fixed at 5 and all
other hyperparameters kept consistent.

The results reported in Table A.1 revealed that the model trained with MultipleNeg-
ativesRankingLoss outperformed the one trained with the Contrastive loss on almost all
tasks. The differences in performance ranged from 2 to 9 percentage points on the AV and
CAV tasks, and 0 to 6 percentage points on the STEL tasks. Therefore, MNRL was chosen
as the preferred loss function for the subsequent experiments.

4.3.1.2 Learning rate

After determining the loss function, I experimented with different learning rates, includ-
ing 1e-5, 2e-5, 3e-5, and 4e-5, using the AdamW optimizer. To ensure a fair comparison, I
used the best settings from the previous experiments, which included the optimal number
of epochs and the most effective loss function.
After analyzing the results from Table A.2, I found that the performance did not con-
vincingly change when varying the learning rate. As such, I decided to keep the default
learning rate for RoBERTa (2e-5) for the subsequent experiments.

4.3.1.3 Number of epochs

In the third part of the hyperparameter tuning, I experimented with various values of
epochs (2, 3, 4, 5, and 6) to determine the optimal number. During these experiments, all
other hyperparameters were kept constant: the learning rate was set to the default value
for RoBERTa (2e-5), the batch size was 8 (the maximum that could fit into the GPU), and
the loss function used was MultipleNegativesRankingLoss.

The results from Table A.3 showed that using 5 epochs provided the best perform-
ance, as the accuracy on the AV task continued to improve on the validation data for
up to 5 epochs. However, when training for more than 5 epochs, the accuracy started to
decrease, likely due to overfitting. Consequently, a maximum of 5 epochs were chosen as
the optimal value for this hyperparameter. It is important to note, however, that the model
with the best validation accuracy is used. This means that the model is not guaranteed to
train for 5 epochs.
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4.3.1.4 Batch size

After establishing the initial hyperparameters, I proceeded to conduct further experiments,
focusing specifically on the batch size. The batch size plays an important role in the train-
ing process of machine learning models, as it determines the number of examples used
to compute the gradient for each update step. Smaller batch sizes can lead to a noisier
gradient, which can help the model escape local minima, while larger batch sizes provide
a more accurate estimation of the gradient, leading to more stable and consistent training.

In the context of the MultipleNegativesRankingLoss function, the choice of batch size
has a particularly meaningful impact on the model’s ability to learn meaningful style
representations. This is because the loss function operates by comparing the similarity
scores of positive and negative examples within a batch. A larger batch size provides
more negative examples for the model to learn from, potentially leading to better discrim-
ination between different writing styles. However, larger batch sizes can also increase the
computational requirements and memory usage, which may become a limiting factor in
the training process.
In contrast, some other loss functions, such as the cross-entropy loss used in classification
tasks, may be less sensitive to batch size changes, as they compute the loss based on a
single correct class label for each example rather than relying on the relationships between
multiple examples within a batch.

After experimenting with a few different values for the batch size (2, 4, 8), I found
that a batch size of 8 results in the best performance (see Table A.4). This result is gener-
ally not surprising, as larger batch sizes often lead to better generalization performance
in deep learning models due to more accurate estimates of the gradient during training.
Furthermore, a batch size of 8 coincides with the maximum size that could fit into the
GPU used in these experiments. Thus, this further reinforces the choice of 8 as the optimal
batch size for the subsequent phases of this study.

4.3.2 Impact of random different-author sampling

In this subsection, I investigate the impact of randomly sampling different-author ex-
amples as opposed to using semantically similar samples. I compare the performance
of the model trained with different proportions of semantically similar different-author
examples (100%, 50%, and 0%) to understand the importance of using semantically
similar samples for learning writing style representations in the context of the Authorship
Verification and Contrastive Authorship Verification tasks.

To conduct this experiment, I used the same anchor sentences and positive examples as
in the previous experiments. However, I varied the different-author examples depending
on the proportion of semantically similar samples used. For the 100% semantically similar
setup, I used the best model from the last step of Section § 4.3.1. For the 50% semantically
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similar setup, half of the different-author examples were semantically similar to the anchor
sentences, while the other half were sampled randomly. Finally, for the 0% semantically
similar setup, I used randomly sampled different-author examples without considering
their semantic similarity to the anchor sentences.

It’s important to note that I did not perform hyperparameter tuning for each indi-
vidual setup (i.e., 100%, 50%, and 0% semantically similar). Instead, the hyperparameters
were kept constant across the different configurations. This decision was guided by
practical considerations, as extensive hyperparameter tuning across different setups
would substantially increase computational time and complexity. However, it should be
noted that this approach may not yield the optimal performance for each individual setup,
as different levels of semantic similarity might benefit from different hyperparameter
configurations. This limitation is a trade-off that was accepted in the interest of broader
and more efficient experimentation.

4.3.2.1 Results

Training task AV task CAV task Formal Complex Nb3r C’tion
% Semantic 0% 100% 0% 100% Original o-c Original o-c Original o-c Original o-c

0% 0.59 0.53 0.82 0.53 0.76 0.24 0.56 0.01 0.65 0.05 0.99 0.00
50% 0.64 0.55 0.82 0.61 0.79 0.34 0.58 0.01 0.65 0.06 0.98 0.00

100% 0.72 0.60 0.80 0.64 0.81 0.48 0.59 0.04 0.65 0.06 0.95 0.00

Table 4.4: The table above presents the experiments’ results on the impact of random different-
author sampling on model performance, with accuracies displayed as percentages.
Columns for the AV Task and CAV Task show results for 0% and 100% semantically sim-
ilar conditions, respectively. The Formal, Complex, Number substitution and Contraction
task columns are subdivided into Original (standard STEL dataset) and o-c (STEL-or-
content dataset) subcolumns. The values with the highest accuracy in each column are
reported in bold.

When examining the results of the AV and CAV tasks, I find that the model trained with
100% semantically similar different-author examples consistently achieves the highest
performance in the more challenging settings — the 100% AV and CAV tasks, and all the
STEL-or-content tasks. This reinforces my belief that training with semantically similar
different-author examples effectively equips the model to differentiate writing styles
under semantically demanding circumstances. However, the benefits of semantically
similar different-author examples extend beyond the most challenging scenarios. When
looking at the 50% semantically similar condition, it’s noticeable that this model generally
outperforms the 0% semantic model and closely follows the performance of the 100%
semantic model. This indicates that a higher share of semantically similar different-author
examples is positively correlated with better performance.
Interestingly, for the simpler CAV task, where different-author examples are expected
to have a low semantic resemblance to the anchor, the model trained without any
semantically similar different-author examples outperforms the other models. This result
might hint at the particularity of the training scenario: the model seems to perform better
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when its training conditions more closely align with the testing conditions. In this case,
both training and testing used contrastive and non-semantically similar different-author
examples. It highlights the potential advantage of matching the training environment
with the anticipated testing conditions for optimal performance.

Looking at the performance on the STEL framework dimensions, the impact of the
proportion of semantically similar different-author examples appears to be less pro-
nounced. However, the 100% semantically similar model does exhibit marginally better
performance in the STEL-or-content (o-c) tasks. The accuracy on the "Formal" dimension
doubles from the 0% training task to the 100%, while the "Complex" and "Number Substi-
tution" dimensions improve by 3 percentage points and 1 percentage point, respectively.
This suggests that incorporating these semantically similar different-author examples
during training can offer an edge in these tasks, which - in turn - might indicate improved
stylistic representations.

4.3.3 Summary of findings and baseline comparison

Based on the previous experimentation, it was determined that a batch size of 8 works
best for the fine-tuned RoBERTa model using the MultipleNegativesRankingLoss function
that has a learning rate of 2e-5 using the AdamW optimizer. Additionally, upon reflection
of the results in Table 4.4, I also opted to fully sample the negative examples from the
paraphrases of the anchor sentence. With these hyperparameters established in Section
§ 4.3.1, I now present a comparison between the best model I have created so far and the
chosen baseline model from Wegmann, Schraagen and Nguyen (2022). The descriptions
and motivations of the chosen baseline models can be found in Section § 3.3. A table
summarizing the results can be found in Table 4.5.

AV task CAV task Formal Complex Nb3r C’tion
Model 0% 100% 0% 100% Original o-c Original o-c Original o-c Original o-c

RoBERTa 0.58 0.50 0.63 0.57 0.83 0.09 0.73 0.01 1.00 0.00 0.94 0.13
Wegmann et al. (2022) 0.67 0.63 0.73 0.68 0.83 0.70 0.58 0.27 0.56 0.03 0.96 0.02

Initial model 0.72 0.60 0.80 0.64 0.81 0.48 0.59 0.04 0.65 0.06 0.95 0.00

Table 4.5: Table comparing the performance of the RoBERTa base model, the model from Wegmann,
Schraagen and Nguyen (2022), and the proposed model ("Initial model") on the AV and
CAV tasks using 0% and 100% semantically similar different-author examples, as well
as the STEL framework. The table shows the results for both the original tasks and the
STEL-or-content (o-c) tasks. The values with the highest accuracy in each column are
reported in bold.

Upon analysis of the results, a few things stand out. Firstly, it is evident that the proposed
model consistently outperforms the RoBERTa base model in both AV and CAV tasks. This
suggests that the fine-tuning process and contrastive learning approach have been effective
in capturing writing styles for the Authorship Verification task. Interestingly, while the
proposed model surpasses previous work in the relatively simpler AV and CAV tasks,
which use randomly sampled different-author examples, it falls short when compared to
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the model by Wegmann, Schraagen and Nguyen (2022) in the more challenging setting
of the AV task with 100% semantically similar different-author examples. This is an
interesting observation, considering that their model was not explicitly trained on this
task. However, it is important to consider the possibility that their model may have been
trained on some of the same data used in the testing set for the evaluation. In order to
further investigate this impact, the proposed model was also evaluated on the AV and
CAV test sets from their paper. Those results can be found in Table 4.6.

AV task CAV task

Wegmann et al. (2022) 0.63 0.68
Initial model 0.61 0.68

Table 4.6: Table comparing the performance of the model from Wegmann, Schraagen and Nguyen
(2022) and my initial model on the AV and CAV tasks, using the test sets from their
paper. This testing task features their conversation-level content control. The values with
the highest accuracy in each column are reported in bold.

A quick analysis of the results presented in Table 4.6 reveals that the proposed model
performs competitively when evaluated on the AV and CAV tasks from Wegmann,
Schraagen and Nguyen (2022). In the AV task, the model from Wegmann, Schraagen
and Nguyen (2022) demonstrates slightly superior performance. However, in the CAV
task, both models achieve equal performance. It’s worth noting that these tasks apply
conversation-level content control, a feature that was a part of the training strategy for
the model from Wegmann, Schraagen and Nguyen (2022). Even so, the proposed model,
which was not explicitly trained in this way, manages to perform on par in the CAV task
and very close in the AV task.

The proposed model’s performance on the STEL dimensions is mixed. While it out-
performs the RoBERTa base model in some cases, it does not consistently surpass the
results of the Wegmann, Schraagen and Nguyen (2022) model, suggesting that there is
still room for improvement in capturing stylistic features across various dimensions. Ad-
ditionally, the performance of the proposed model on STEL-or-content (o-c) tasks appears
to be weaker than on the original tasks, indicating that the model is still somewhat reliant
on content features rather than purely learning stylistic features.

4.4 adjusting author sampling

From the aforementioned insights, I identified potential areas of improvement, such as
increasing the amount of data, the number of conversations the data was sampled from,
or both. Upon closer examination of the dataset, I discovered that almost all conversations
were already included (59,962 used out of 60,000 total). Therefore, expanding the number
of conversations was not a viable option without creating an entirely new corpus.

However, in the previous experiments, I had intentionally left out authors with only
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one utterance, as it was not possible to create anchor-positive pairs for them. By revisiting
this decision, I found a potential avenue to enhance the dataset: using the single-utterance
authors as paraphrases and negative examples. This approach would not only increase the
amount of data but also introduce more authors and, possibly, a wider variety of writing
styles into the dataset.

To prevent the overrepresentation of some authors and the underrepresentation of
others, I also limited the maximum number of utterances from each author. In this
experiment, I took the first 10 (chronologically ordered) utterances from each author,
aiming to create a more balanced representation of writing styles.
The result of this different sampling strategy is almost similar to that of Table 3.2, but
changes after the "1 utterance" pre-processing step. Instead of removing 474,339 utterances
and authors, I removed 1,431,857 utterances, without removing any authors. After
removing the utterances that were too long, 3,080,638 utterances by 1,011,947 authors
were left over. Although this decreased the number of utterances by 23,7% (from 4,038,747
to 3,080,638), the number of authors increased from 538,199 to 1,011,947 — an increase of
88%. By limiting the number of utterances per author to 10 while increasing the number
of authors, I prevented the problem of overrepresentation of some authors, while possibly
increasing the diversity of writing styles.

4.4.1 Results

In this experiment, I adapted the initial model setup, where optimal hyperparameters
were determined and 100% semantically similar different-author examples were found to
be most effective. The main modification involved adjusting the data to include authors
with only a single utterance and limiting the dataset to the first 10 utterances from each
author. This model is referred to as the "1 utterance authors" model.

The table below compares the performance of the RoBERTa base model, the model
from Wegmann, Schraagen and Nguyen (2022), the initial model, and the new "1 utterance
authors" model on the AV and CAV tasks, as well as the STEL framework dimensions
formal/informal, complex/simple, number substitution, and contraction tasks.

AV task CAV task Formal Complex Nb3r C’tion
Model 0% 100% 0% 100% Original o-c Original o-c Original o-c Original o-c

RoBERTa 0.58 0.50 0.63 0.57 0.83 0.09 0.73 0.01 1.00 0.00 0.94 0.13
Wegmann et al. (2022) 0.67 0.63 0.73 0.68 0.83 0.70 0.58 0.27 0.56 0.03 0.96 0.02

Initial model 0.72 0.60 0.80 0.64 0.81 0.48 0.59 0.04 0.65 0.06 0.95 0.00
1 utterance authors 0.75 0.62 0.82 0.68 0.78 0.47 0.57 0.04 0.72 0.03 1.00 0.00

Table 4.7: Table comparing the performance of the RoBERTa base model, the model from Wegmann,
Schraagen and Nguyen (2022), the model from § 4.3.3 ("Initial"), and the new proposed
model ("1 utterance authors") on the AV and CAV tasks using 0% and 100% semantically
similar different-author examples, as well as the STEL framework. The table shows the
results for both the original tasks and the STEL-or-content (o-c) tasks. The values with
the highest accuracy in each column are reported in bold.
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The results in Table 4.7 show that the "1 utterance authors" model demonstrates improved
performance in the AV and CAV tasks compared to the old proposed model, especially
in the 0% semantically similar different-author examples condition. When comparing the
old and new proposed models, it is also noteworthy that the performance on the STEL
framework dimensions remains relatively consistent. This observation suggests that the
alterations made to the dataset and experimental setup did not negatively impact the
model’s ability to capture stylistic features in the text, but also had no positive impact. It
is possible, however, that the performance on the STEL framework is relatively constant
between the old and new proposed models for several other reasons. Firstly, it could be
that the STEL framework may not be fully representative of the stylistic nuances present in
the data, causing the models to not exhibit notable differences in performance. Secondly,
the limited number of examples for each dimension (n = 815 for the formal and complex
dimensions, and n = 100 for number substitution and contraction) in the dataset could
lead to a lack of variability in the model’s learning of these dimensions. A third reason
could be that the dimension examples in the STEL framework may not translate well to
the full diversity of writing styles, as they might not capture the full range of stylistic
differences between authors. The following subsection will delve into a manual inspection
of several examples from the STEL-or-content tasks to further our understanding of the
specific challenges faced by the models, as well as to identify potential areas of improve-
ment in the way these tasks are designed. This closer examination could offer valuable
insights into the intricate complexities of style representation and disentanglement.

4.4.2 STEL-or-content analysis

The fact that the STEL framework’s dimension examples may not represent the full
spectrum of stylistic distinctions across authors is best illustrated in a figure. Fig. 4.9
shows an example from the formal dimension on the STEL-or-content task that the new
proposed model got wrong. It can be argued that, although the style also differs from
formal to informal, there are more stylistic differences between the Anchor and Utterance
2, than between the Anchor and Utterance 1. It is thus not surprising that the cosine
similarity that the model has calculated between A and U1 (0.707) is much higher than
between A and U2 (0.363).

Upon manual inspection of the mistakes that the model made on the STEL-or-content task,
it becomes clear that this is a problem for more of the style dimensions. This is particularly
apparent in the number substitution task, where the majority of misclassifications are
associated with serious stylistic alterations like the full capitalization of utterances,
varied punctuation use, or considerable sentence length disparities. The text pair initially
labeled as "same style" with the highest cosine similarity score obtained a value of 0.51.
Conversely, the text pair initially deemed as "not same style" achieved an exceptional
cosine similarity score of 0.99. This discrepancy highlights potential challenges with the
dataset. For instance, sourcing data from Reddit might not be the most conducive for the
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Figure 4.9: One of the STEL-or-content task instances on the formal/informal dimension. In this
case, the ground truth is that the Anchor and Utterance 2 are written in the same style.
My model assigns a cosine similarity score of 0.363 to the Anchor and U2, and a score
of 0.707 to the Anchor and U1.

number substitution task, as the platform generally exhibits a relatively "clean" language
style. Consequently, this type of writing style is underrepresented in the training data.
Furthermore, the examples from this dimension often seem to involve other style changes,
indicating a probable overlap of style dimensions.
The contraction dimension presents similar issues. The stylistic differences between utter-
ances labeled as "different style" are often marginal when compared to the corresponding
"correct" sentence, which brings the appropriateness of categorizing this as a separate
dimension into question. This observation suggests that the style dimensions might not
be mutually exclusive, and a more nuanced approach may be necessary to distinguish
stylistic changes more effectively.
This problem is less visible in the other dimensions but it is still prevalent. For instance,
approximately 25% of the errors made on the formal and complex dimensions can
be attributed to factors like the ones exhibited in Fig. 4.9 and differences in casing. A
substantial proportion of the remaining errors appears to stem from the model’s inability
to detect the sometimes subtle variations in writing style. In these instances, the model
appears to prioritize content over style, possibly due to the influence of the underlying
RoBERTa architecture. Trained with a strong focus on semantic understanding, RoBERTa
might inadvertently sway the fine-tuned model towards content-based decisions, even
when style is the defining factor. Even minute shifts in style can significantly alter the
text’s tone, register, or complexity. However, these nuanced changes often seem to evade
the model’s comprehension, pointing to a potential area of improvement.

Interestingly, the Wegmann, Schraagen and Nguyen (2022) model performs well on
the formal and complex dimensions of the STEL framework, which may be due to the
model’s training process that includes controlling for content by sampling different-author
examples from the same conversation. By choosing different-author examples within
the same conversation, the model is exposed to texts with related content, and as such,
it is prompted to differentiate authors based on variations in writing style rather than
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content. This approach may allow their model to better learn stylistic features that are
more aligned with the STEL dimensions.

4.5 experimentation with negative examples

In light of the previous discussions, another potential approach to consider is selecting
the different-author example as a paraphrase of the same-author example, rather than the
current method of choosing the different-author example as a paraphrase of the anchor.
Examples of the old and new approaches are given in Fig. 4.10a and Fig. 4.10b, respect-
ively.
Intuitively, this alternative approach would make the contrastive task more challenging for
the model, as the content of both the positive and negative examples would be the same.
Consequently, the model would be forced to focus more on capturing stylistic differences
between authors, as relying on content differences would no longer be a viable strategy
for distinguishing between positive and negative examples. This modification could poten-
tially lead to a more robust model for writing style representation and better performance
on tasks related to Authorship Verification and style modeling.

(a) An input example where the different-author
utterance is sampled as a paraphrase of the
anchor sentence. This is the "old" approach.

(b) An input example where the different-author
utterance is sampled as a paraphrase of the
same-author utterance. This is the approach
experimented with in this section.

Figure 4.10: Comparison of input examples for the Contrastive Authorship Verification task with
the old (left) and new (right) sampling approach. In both scenarios, Utterance 1 and
Utterance 2 correspond to the same-author and different-author examples, respectively.

4.5.1 Results

In this setup, I tweaked the "1 utterance authors" model as described in Section § 4.4. The
alteration involved the selection of the different-author example which, in this case, is a
paraphrase of the same-author example instead of the anchor. This new model variant is
termed the "Positive-negative" model.

Upon examining the results presented in Table 4.8, I find them a bit surprising.
When compared to the previous experiments, the model underperforms on almost all
tasks, even falling short of the performance of the base RoBERTa model on the 100%
semantically similar CAV task. This discrepancy is quite intriguing, especially considering
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AV task CAV task Formal Complex Nb3r C’tion
Model 0% 100% 0% 100% Original o-c Original o-c Original o-c Original o-c

RoBERTa 0.58 0.50 0.63 0.57 0.83 0.09 0.73 0.01 1.00 0.00 0.94 0.13
Wegmann et al. (2022) 0.67 0.63 0.73 0.68 0.83 0.70 0.58 0.27 0.56 0.03 0.96 0.02

1 utterance authors 0.75 0.62 0.82 0.68 0.78 0.47 0.57 0.04 0.72 0.03 1.00 0.00
Positive-negative 0.78 0.55 0.85 0.55 0.76 0.16 0.58 0.00 0.63 0.04 1.00 0.00

Table 4.8: Table comparing the performance of the RoBERTa base model, the model from Wegmann,
Schraagen and Nguyen (2022), the previously proposed model ("1 utterance authors"),
and the new proposed model ("Positive-negative") on the AV and CAV tasks using 0%
and 100% semantically similar negative examples, as well as the STEL framework. The
table shows the results for both the original tasks and the STEL-or-content (o-c) tasks.
The values with the highest accuracy in each column are reported in bold.

the intuition behind the strategy: by choosing the different-author example as a para-
phrase of the same-author example, the model should be pushed towards focusing more
on stylistic elements, as the content should be virtually identical. However, this strategy
seems to excel in the simpler setting of the AV and CAV tasks when there is no semantic
similarity between the anchor and the different-author example. The model delivers the
best performance overall for both the 0% semantically similar AV task and CAV tasks,
which suggests that when the content of the different-author example differs greatly from
the anchor, the model successfully leverages stylistic features to distinguish authors.
Taking into account these findings alongside the results from the STEL-or-content task, it
seems plausible that the model potentially assigns greater importance to features that are
not strictly stylistic for Authorship Verification. It is possible that the content or thematic
elements of the text may play a substantial role in the model’s decision-making process,
influencing its ability to accurately verify authorship.

As for why this strategy may not have lived up to expectations on the 100% CAV
and AV tasks, and the STEL tasks, it could be that the training task was simply too chal-
lenging. By forcing the model to differentiate authors based solely on stylistic elements,
without any clear content-related cues to rely upon, the model might have struggled to
learn meaningful stylistic representations. This increased difficulty may be reflected in the
poor performance on tasks that require a nuanced understanding of stylistic differences
between authors.
Another possibility worth considering is the quality and nature of the paraphrases used
in the training data. As mentioned in § 4.1.5, one of the drawbacks of my paraphrase
mining approach could be that the occurrence of shorter paraphrases is more prevalent
than the use of longer ones. In other words: the model might simply not perform well
on longer sentences, since it has seen less of those in the training data. Upon quick
inspection of the sentences from the STEL dataset, it seems that those sentences tend
to be longer than most of my best-scoring different-author examples. Given that in the
STEL-or-content task, we also want to distinguish content from style using a paraphrase
(with near-identical semantics), my model might run into even more problems. The
combination of longer, semantically equivalent texts is not common in my data — instead,
semantically equivalent texts tend to be shorter. The different-author example sampling
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approach employed by Wegmann, Schraagen and Nguyen (2022) is relatively independent
of utterance length, which might give them an edge. Their method allows them to sample
longer, albeit sometimes less semantically similar sentences. Another benefit of their
approach is that they can find a negative example for each of their positives — something
I cannot do since I can not always find a semantically similar counterpart for an utterance
in my data.

A potential way to verify some of these hypotheses would be to conduct an ana-
lysis of the model’s errors on the AV task. By examining instances where the model
failed to correctly classify authors, I could gain insights into the specific challenges that
this training strategy posed. These investigations could potentially shed light on the
limitations of the current strategy and provide direction for future experiments.

4.5.2 AV error analysis

Upon analyzing the confusion matrix from my model on the 100% Authorship Verification
task (see Fig. 4.11a), a few key observations can be made. While the accuracy of the model
is 0.55, slightly better than a random guess, the precision, recall, and F1-score are 0.60,
0.53, and 0.44, respectively. These metrics suggest significant room for improvement.

A closer look at the model’s behavior, as illustrated in Fig. 4.11a, reveals it has a
tendency to classify 90.8% of all examples as "different authors." Given that the class
distribution is perfectly balanced (50-50), this differs quite a lot from the expectation of a
more even prediction distribution. One might initially think the classification threshold for
"same author" could be set too high. However, adjustments to this threshold based on the
test set rather than the validation set did not considerably change the results, indicating
the threshold might not be the main issue.
As mentioned in the previous subsection, a plausible explanation for this behavior could
be that in the way this particular task is set up, the training process does not adequately
help the model disentangle style from content. Consequently, the model may be overly
reliant on content cues, which are not as prominent in the 100% task. As a result, adjusting
the threshold might not yield substantial improvements because it does not address the
underlying issue of the model’s tendency to focus on content over style.

This conjecture is somewhat supported when examining the confusion matrix for the
model on the 0% AV task, as depicted in 4.11b. The accuracy in this scenario notably
improves compared to the more challenging task, with the "Positive-negative" model
achieving the highest score on the 0% AV and CAV tasks out of all tested models so far
(see Table 4.3). This success can likely be attributed to the training tasks enabling the
model to focus effectively on content cues.
However, the model does not favor predicting "Different author" as frequently in this task,
indicating its dependency on content for decision-making. When the task adjusts to make
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(a) Confusion matrix of the results on the 100%
AV task. The accuracy is 0.55, precision is 0.60,
recall is 0.53, and F1-score is 0.44.

(b) Confusion matrix of the results on the 0% AV
task. The accuracy is 0.78, precision is 0.78, re-
call is 0.78, and F1-score is 0.78.

Figure 4.11: Comparison of confusion matrices of the results on the Authorship Verification task
with the 100% (left) and 0% (right) semantically similar different-author examples test
sets.

content cues less reliable (as in the 100% AV task), the model’s performance decreases
considerably. This reinforces the idea that my training methodology may need further
refinement to improve the disentanglement of style from content.
This dependency on content also sheds light on the low performance on the STEL-or-
content tasks. As these tasks are designed to evaluate the model’s ability to disentangle
style from content, the model struggles to highlight its challenges in accurately identifying
stylistic nuances independent of content.

4.6 randomly selecting utterances

Based on the conclusion that the "Positive-negative" model performs poorly at detaching
style from content, I will revert back to the approach employed for my previous model ("1
utterance authors" — § 4.4). Another aspect I am considering based on the deliberations
from the previous evaluations, is how the selection of utterances from each author could
affect the model’s performance. Until now, I have been using the first 10 utterances from
each author, which are ordered chronologically. However, this approach could potentially
limit the diversity of the training data in terms of the number of conversations included.
The chronological ordering of utterances might result in a concentration of samples from
a few conversations that occurred early in an author’s contribution to the dataset. This
limitation could potentially hinder the model’s ability to capture the full breadth of an
author’s stylistic range, as the author’s style might evolve across different conversations.

To address this concern, I adopt a strategy of selecting 10 random utterances from
each author instead of the first 10. This approach would likely result in a more diverse set
of utterances for each author and encompass a wider range of conversations. By increasing
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the diversity of the training data in this way, I could potentially enable the model to better
learn and generalize the stylistic characteristics of each author, which might improve its
performance on the Authorship Verification and Contrastive Authorship Verification tasks,
and subsequently also learn better style representations. I will explore this strategy in the
following analysis.

The key change of this experiment is thus the adaption of the "1 utterance authors"
model to select 10 random utterances from each author, rather than the first 10. This
variant is referred to as the "Random sampling" model.

AV task CAV task Formal Complex Nb3r C’tion
Model 0% 100% 0% 100% Original o-c Original o-c Original o-c Original o-c

RoBERTa 0.58 0.50 0.63 0.57 0.83 0.09 0.73 0.01 1.00 0.00 0.94 0.13
Wegmann et al. (2022) 0.67 0.63 0.73 0.68 0.83 0.70 0.58 0.27 0.56 0.03 0.96 0.02

1 utterance authors 0.75 0.62 0.82 0.68 0.78 0.47 0.57 0.04 0.72 0.03 1.00 0.00
Random sampling 0.73 0.61 0.83 0.67 0.81 0.48 0.55 0.05 0.61 0.03 1.00 0.00

Table 4.9: Table comparing the performance of the RoBERTa base model, the model from Wegmann,
Schraagen and Nguyen (2022), the previously proposed model ("1 utterance authors"),
and the new proposed model ("Random sampling") on the AV and CAV tasks using 0%
and 100% semantically similar different-author examples, as well as the STEL framework.
The table shows the results for both the original tasks and the STEL-or-content (o-c) tasks.
The values with the highest accuracy in each column are reported in bold.

Table 4.9 compares the performance of various models, including the RoBERTa base
model, the model proposed by Wegmann, Schraagen and Nguyen (2022), a previously
proposed model referred to as "1 utterance authors," (§ 4.4) and my newly proposed
model, "Random sampling." The results show a similar performance of the "Random
sampling" model compared to the "1 utterance authors" model across all tasks. For the AV
and CAV tasks, the model presents mixed results. More specifically, while the model is
outperformed by the "1 utterance authors" and Wegmann, Schraagen and Nguyen (2022)
models on the 100% tasks, it performs exceptionally well on the 0% tasks.
The "Random sampling" model shows similar performance on the formal original and o-c
tasks compared to the "1 utterance authors" model, demonstrating the model’s unchanged
capability to capture these stylistic features. An interesting observation can be made for
the number substitution task, where all the models presented still have lower performance
than the RoBERTa model. This could potentially be due to the inherent complexity of
the task, indicating areas for future model improvements. A further explanation of the
underperformance on the STEL tasks compared to Wegmann, Schraagen and Nguyen
(2022) has also been given in Section § 4.4.2.

Taken together, these results suggest that the "Random sampling" model offers a
similar performance across different tasks and styles, which brings into question the
utility of randomly sampling the utterances of each author. The limited impact of this
strategy on the model’s performance might potentially be explained by the fact that a
serious portion of authors in the dataset has fewer than ten utterances. Consequently,
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shuffling the utterances would only affect a relatively small subset of authors, leading to
a minor overall impact on the performance across various tasks. However, it’s important
to note that for larger datasets, exploring and potentially employing this strategy is
recommended. Random sampling of the author’s utterances could have a bigger impact
when applied to larger and more diverse sets of authors and utterances.

4.7 non-uniform sampling of paraphrases

Building upon the learnings from the "Random sampling" model, the next area to explore
involves addressing the issue of paraphrase overrepresentation. One of the concerns raised
in Section § 4.1 was the possibility of an overrepresentation of the same paraphrases
when always selecting the highest-rated paraphrase as the different-author example. To
diversify the sampling and ensure a more representative coverage of various paraphrases,
I propose a different sampling strategy in this subsection.
In this approach, I begin by selecting the top 10 highest-rated paraphrases for a given
sentence. Instead of invariably picking the top-rated paraphrase, I introduce a weighted
selection mechanism. The weights are inversely proportional to the square root of the rank
of the paraphrase. Formally, the weight for a paraphrase with rank i is given in Equation
4.1.

wi =
1

1 +
√

i

Equation 4.1: The weighting function for sampling paraphrases. The weights are subsequently nor-
malized such that they sum up to 1. This makes the weight function a valid probab-
ility distribution over the top 10 paraphrases. Here, i is the rank of the paraphrase in
the list of possible paraphrases and wi is the probability of choosing paraphrase i.

The square root term
√

i, where i represents the rank of the paraphrase, ensures that
the decay in the weights is not too steep. Consequently, the top-rated paraphrases are
preferred, but not overwhelmingly so, thereby ensuring a decent representation from the
entire top 10 list. By using this sampling strategy, the highest-ranked paraphrase is still
more likely to be selected, but other high-ranking paraphrases are also given a reasonable
chance. This non-uniform sampling method helps to diversify the different-author
examples used during training and might improve the model’s generalization by exposing
it to a broader range of paraphrase variations.

Upon reviewing the score distribution in Fig. 4.12b, it is apparent that the distribu-
tion of paraphrase similarity scores has become even more skewed towards lower values,
compared to the previous sampling method (Fig. 4.12a). This trend might initially
appear concerning, but considering the distribution of scores from Wegmann, Schraagen
and Nguyen (2022) depicted in Fig. 4.5a, it provides another perspective. Their model,
despite using examples with substantially lower semantic similarity scores than mine,
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demonstrates desirable performance. In other words, high semantic similarity scores are
not necessarily indicative of superior performance. In fact, it presents an opportunity for
an in-depth exploration of the relationship between model performance and semantic
similarity. Through this experimental setup, I aim to uncover insights about how the
semantic proximity of paraphrases may impact the effectiveness of style-learning models.

(a) Histogram of paraphrase scores showing the
distribution of scores across the dataset. The
scores range from a minimum of 0.62 to a max-
imum of 1.00, with a median of 0.68. The 25th
and 75th percentiles are 0.64 and 0.73, respect-
ively.

(b) Histogram of paraphrase scores showing the
distribution of scores across the dataset. The
scores range from a minimum of 0.61 to a max-
imum of 1.00, with a median of 0.66. The 25th
and 75th percentiles are 0.63 and 0.71, respect-
ively.

Figure 4.12: The cosine similarity score distribution before (left) and after (right) applying the new
weighted sampling method. The kernel density estimate (KDE) is also plotted to give
a smooth estimate of the score distribution. For a fair comparison, both plots have the
same x and y limits.

In this variation, I adapted the "Random sampling" model outlined in Section § 4.6 by
incorporating a weighted sampling function for paraphrase selection. I refer to this model
as the "Non-uniform" model.

AV task CAV task Formal Complex Nb3r C’tion
Model 0% 100% 0% 100% Original o-c Original o-c Original o-c Original o-c

RoBERTa 0.58 0.50 0.63 0.57 0.83 0.09 0.73 0.01 1.00 0.00 0.94 0.13
Wegmann et al. (2022) 0.67 0.63 0.73 0.68 0.83 0.70 0.58 0.27 0.56 0.03 0.96 0.02

Random sampling 0.73 0.61 0.83 0.67 0.81 0.48 0.55 0.05 0.61 0.03 1.00 0.00
Non-uniform 0.75 0.62 0.83 0.68 0.80 0.48 0.58 0.04 0.67 0.04 1.00 0.00

Table 4.10: Table comparing the performance of the RoBERTa base model, the model from Weg-
mann, Schraagen and Nguyen (2022), the previously proposed model ("Random
sampling"), and the new proposed model ("Non-uniform") on the AV and CAV tasks
using 0% and 100% semantically similar different-author examples, as well as the STEL
framework. The table shows the results for both the original tasks and the STEL-or-
content (o-c) tasks. The values with the highest accuracy in each column are reported in
bold.

An analysis of the results, as shown in Table 4.10, reveals several noteworthy patterns. The
newly proposed "Non-uniform" model shows the best performance in the "easy" AV and
CAV tasks, with an accuracy of 0.75 and 0.83 on the 0% tasks respectively. However, this
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model’s performance in the more challenging tasks is either similar or inferior to that of
the Wegmann, Schraagen and Nguyen (2022) model, particularly in the 100% AV and CAV
tasks. Interestingly, while the performance of the "Non-uniform" model in the STEL tasks
shows minor improvements over the previous "Random Sampling" model, particularly in
the number substitution and contraction tasks, it does not exhibit the same trend in the
STEL-or-content tasks. This suggests that while the "Non-uniform" model might be a bit
better at generalizing style cues, it still struggles with disentangling style from content, a
critical aspect of style-based tasks.

Formal Complex Nb3r C’tion
Model Original o-c Original o-c Original o-c Original o-c

RoBERTa 0.83 0.09 0.73 0.01 1.00 0.00 0.94 0.13
Wegmann conversation 0.83 0.70 0.58 0.27 0.56 0.03 0.96 0.02

Wegmann topic 0.82 0.61 0.57 0.12 0.64 0.03 0.99 0.01
Wegmann none 0.85 0.50 0.56 0.04 0.59 0.06 0.98 0.00

Non-uniform 0.80 0.48 0.58 0.04 0.67 0.04 1.00 0.00

Table 4.11: Table comparing the performance of the RoBERTa base model, the three contrastive
models from Wegmann, Schraagen and Nguyen (2022), and the proposed model ("Non-
uniform") on the STEL framework. The table shows the results for both the original
tasks and the STEL-or-content (o-c) tasks. The values with the highest accuracy in each
column are reported in bold.

Upon analyzing table Table 4.11 - which compares the performance of the RoBERTa base
model, the three contrastive models from Wegmann, Schraagen and Nguyen (2022), and
the proposed model ("Non-uniform") on the STEL framework - it is intriguing to note that
"Wegmann none", which does not employ any content control, surpasses the performance
of the "Non-uniform" model on the STEL-or-content "formal" dimension. This seems
counterintuitive, given the expectation that this model would be more focused on content
than style, as discussed in Sections § 4.3 and § 4.5.
The comparatively less impressive result might be attributed to a variety of factors,
including the different loss function used, the experimental setup which involves using
each anchor only once, or other unidentified variables, such as potential biases in the
dataset, or the balance between style and content in the training data.

On a related note, despite the slight improvements observed in the original STEL
tasks, it’s worth mentioning that neither of my models tested here perform exceptionally
well on the STEL-or-content (o-c) tasks. This indicates that the challenge of distinguishing
style from content continues to be a difficult problem for all tested models. This could be
due to a number of reasons that I elucidated in § 4.4.1.

Overall, these results highlight the utility of my "Non-uniform" sampling approach
in improving performance on certain tasks. However, they also underline the ongoing
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challenges of training models to disentangle and accurately classify text based on stylistic
nuances.

4.8 moving closer to Wegmann , Schraagen and Nguyen (2022)

Reflecting on these results, it becomes evident that there’s potential for further investig-
ation. In the following section, I aim to harmonize my approach with that of Wegmann,
Schraagen and Nguyen (2022). My models, which apply semantically-driven content
control, exhibit similar performance on the STEL tasks as the model developed by
Wegmann, Schraagen and Nguyen (2022) that does not implement any form of content
control. This parallelism, although unexpected, introduces a compelling avenue for further
investigation: what if I could harmonize my experimental approach with theirs, retaining
my semantically similar approach, and simultaneously achieve a more optimized balance
between style and content control?

To explore this hypothesis, I execute two key modifications inspired by their ap-
proach. First, I replace my original loss function, the MultipleNegativesRankingLoss, with
the Triplet loss function employed by Wegmann, Schraagen and Nguyen (2022). The
Triplet loss function uses an anchor, a positive example, and a negative example with the
aim to maximize the representation space distance between the anchor and the negative
example and simultaneously minimize the distance between the anchor and the positive
example. Notably, the margin and cosine distance metric used are identical to those in the
Wegmann, Schraagen and Nguyen (2022) model, set at 0.5. A description of the Triplet
loss function is presented in Equation 4.2.

L(a, p, n) = max(0, cos(a, p)− cos(a, n) + α)

Equation 4.2: The Triplet loss function, using the cosine similarity distance measure, where:
- a is the embedding of the anchor example
- p is the embedding of the positive example
- n is the embedding of the negative example
- cos is the cosine similarity distance function
- α is the margin between the positive and negative pairs

In the previous stages of my research, I employed the MultipleNegativesRankingLoss
function, which primarily focuses on minimizing the distance between the anchor and
positive examples. This approach guided the model to disentangle style from content by
emphasizing the stylistic similarity between the anchor and the positive examples. While
this method does consider negative examples, it does so in a more implicit manner by
utilizing them to establish a boundary or a decision rule, rather than explicitly pushing the
anchor away from these negative examples. Contrastingly, the Triplet Loss function adopts
a more balanced strategy. It strives not only to bring the anchor and positive examples
closer but also to widen the distance between the anchor and negative examples. This ap-
proach, consequently, fosters a more nuanced and balanced representation by ensuring a
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clearer distinction between the anchor’s relationships with positive and negative examples.

The second modification involves the data sampling strategy. Contrary to my ori-
ginal approach of generating as many (anchor, positive) pairs per anchor as feasible, their
strategy deploys each anchor only once. This approach necessitates a shift in the model’s
learning, requiring it to glean stylistic information from a less populated, albeit more
distinct, set of examples.

In this final variation of my thesis experiments, I transformed the "Non-uniform"
model described in Section § 4.7 by introducing the Triplet loss function and employing
each anchor only once. This version, referred to as the Stylistic AUthorship Represent-
atiON (SAURON) model, encapsulates the culminating experiment that attempts to
bridge the methodological gap between my original model and the approach outlined by
Wegmann, Schraagen and Nguyen (2022).

AV task CAV task Formal Complex Nb3r C’tion
Model 0% 100% 0% 100% Original o-c Original o-c Original o-c Original o-c

RoBERTa 0.58 0.50 0.63 0.57 0.83 0.09 0.73 0.01 1.00 0.00 0.94 0.13
Wegmann et al. (2022) 0.67 0.63 0.73 0.68 0.83 0.70 0.58 0.27 0.56 0.03 0.96 0.02

Non-uniform 0.75 0.62 0.83 0.68 0.80 0.48 0.58 0.04 0.67 0.04 1.00 0.00
SAURON 0.64 0.64 0.71 0.73 0.78 0.68 0.55 0.25 0.49 0.04 0.95 0.09

Table 4.12: Table comparing the performance of the RoBERTa base model, the model from Weg-
mann, Schraagen and Nguyen (2022), the previously proposed model ("Non-uniform"),
and the new proposed model ("SAURON") on the AV and CAV tasks using 0% and
100% semantically similar different-author examples, as well as the STEL framework.
The table shows the results for both the original tasks and the STEL-or-content (o-c)
tasks. The values with the highest accuracy in each column are reported in bold.

The results, as shown in Table 4.12, reveal several intriguing points about the SAURON
model. This new approach heavily outperforms the previous model on the STEL-or-
content tasks. Particularly, the model’s performance on the formal dimension jumped
by 20 percentage points, while it increased by 21 points on the complex dimension. For
the contraction, this model even scores the highest among all other style embedding
models (see Table 4.3), excluding the RoBERTa base model. While this performance is
still not superior to the one achieved by Wegmann, Schraagen and Nguyen (2022), it does
validate the assertion that incorporating a form of content control can yield improved
style representation. The reasons why it doesn’t surpass the performance of Wegmann,
Schraagen and Nguyen (2022) align with the potential pitfalls identified in the previous
sections.

Interestingly, the SAURON model outshines all the other models on the 100% AV
and CAV tasks, indicating the effectiveness of the new approach in style-content disen-
tanglement when semantically similar utterances are considered. However, when this
condition is removed (0% tasks), the model’s relative performance drops considerably,
landing the worst results among all models. Despite this, it is noteworthy that the
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accuracies that the model achieved in the 0% and 100% tasks are reasonably close, suggest-
ing that the model’s capability of distinguishing authors remains relatively unchanged
regardless of the proportion of semantically similar utterances. This implies a certain
robustness of the SAURON model in handling variations in the semantic content of the
utterances, thereby maintaining its performance in Authorship Verification tasks even
when the degree of semantic similarity is altered.

Regarding the original STEL tasks, the SAURON model performs worse than the
"Non-uniform" model and the model from Wegmann, Schraagen and Nguyen (2022). This
indicates that there is still room for improvement, particularly in designing models that
can excel in both the STEL tasks and the style-content disentanglement tasks. However,
this experiment confirms the promising potential of integrating the Triplet loss function
and other methodological modifications inspired by Wegmann, Schraagen and Nguyen
(2022) in the task of style-content disentanglement.

Of notable importance is that this model was developed without any hyperpara-
meter tuning for the loss function or optimization of the "margin" parameter in the Triplet
loss. The potential for enhanced performance through such adjustments is an area that
could be fruitfully explored in future work.

4.9 main discussion

In this main discussion section, I undertake a comprehensive comparison of all the models
developed throughout the course of this thesis. I examine their performances and indi-
vidual characteristics, highlighting noteworthy differences and commonalities. The aim of
this discussion is not only to understand the strengths and weaknesses of each model in
isolation but also to draw meaningful conclusions about the broader implications of differ-
ent modeling strategies for capturing writing style. This section will provide an overarch-
ing narrative, linking the various aspects of the research and drawing out key points for
discussion. It is intended to offer a clear synthesis of the experimental findings, grounding
them within the broader context of the research question, and outlining potential pathways
for future exploration in this field.

4.9.1 (Contrastive) Authorship Verification

Overall, the approach employed in this study exhibited masterful performance in the
Authorship Verification and Contrastive Authorship Verification tasks. In Table 4.13 we
can see that my approach systematically outperforms the base RoBERTa model, as well as
improve or perform similarly to the model from Wegmann, Schraagen and Nguyen (2022)
on both the AV and CAV tasks. The only exception to this trend is the "Positive-negative"
model, which all style representation models on the 100% tasks outperform.
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AV task CAV task Formal Complex Nb3r C’tion
Model 0% 100% 0% 100% Original o-c Original o-c Original o-c Original o-c

RoBERTa 0.58 0.50 0.63 0.57 0.83 0.09 0.73 0.01 1.00 0.00 0.94 0.13
Wegmann et al. (2022) 0.67 0.63 0.73 0.68 0.83 0.70 0.58 0.27 0.56 0.03 0.96 0.02

Initial model 0.72 0.60 0.80 0.64 0.81 0.48 0.59 0.04 0.65 0.06 0.95 0.00
Adjusted authors 0.75 0.62 0.82 0.68 0.78 0.47 0.57 0.04 0.72 0.03 1.00 0.00
Positive-negative 0.78 0.55 0.85 0.55 0.76 0.16 0.58 0.00 0.63 0.04 1.00 0.00

Random sampling 0.73 0.61 0.83 0.67 0.81 0.48 0.55 0.05 0.61 0.03 1.00 0.00
Non-uniform 0.75 0.62 0.83 0.68 0.80 0.48 0.58 0.04 0.67 0.04 1.00 0.00

SAURON 0.64 0.64 0.71 0.73 0.78 0.68 0.55 0.25 0.49 0.04 0.95 0.09

Table 4.13: Table comparing the performance of the RoBERTa base model, the model from Weg-
mann, Schraagen and Nguyen (2022), and all models presented in this thesis on the AV
and CAV tasks using 0% and 100% semantically similar negative examples, as well as
the STEL framework. The Formal, Complex, Number substitution and Contraction task
columns are subdivided into Original (standard STEL dataset) and o-c (STEL-or-content
dataset) subcolumns. The values with the highest accuracy in each column are repor-
ted in bold. The underlined values correspond to the highest accuracy in each column
for the models that I present throughout this chapter. Note: This table is the same as
Table 4.3.

Most interestingly, the SAURON model, which introduced a setup that more closely
resembled Wegmann, Schraagen and Nguyen (2022), emerged with the best performance
on the 100% tasks, surpassing all previous models. These results provide evidence
supporting the efficacy of the SAURON model in situations with a high proportion
of semantically similar different-author examples, attesting to its ability to balance the
intricate interaction between style disentanglement and content control.
The relatively consistent performance of the SAURON model in both the 0% and 100%
tasks presents a noteworthy observation. Despite having the lowest score in the 0%
tasks, the closeness of the scores between these two extremes suggests that the model’s
capacity to differentiate authors remains relatively stable, regardless of the proportion of
semantically similar different-author examples. This result indicates the model’s potential
robustness in Authorship Verification tasks.

Conversely, the "Positive-negative" model, as discussed in its respective subsection
(§ 4.5), demonstrates superior performance in the 0% tasks, where no semantically similar
different-author examples are used. It excels in both the AV and CAV tasks, reaching an
accuracy of 0.78 and 0.85, respectively. However, as the proportion of semantically similar
different-author examples increases to 100%, the model’s performance diminishes enorm-
ously. This phenomenon underscores the complex balance that needs to be maintained
between ensuring content control and achieving effective style disentanglement.

4.9.2 STEL tasks

Continuing from my discussion on the "Positive-negative" model in the context of the
AV and CAV tasks, this model’s inability to discern style from content becomes more
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pronounced in the STEL-or-content tasks. Despite demonstrating superior performance in
"easy" AV and CAV tasks, it struggles to perform effectively in the STEL-or-content tasks.
As seen in Table 4.13, it underperforms substantially in these tasks, reaching a maximum
accuracy of 0.16 on the formal/informal dimension (vs. 0.70 from Wegmann, Schraagen
and Nguyen (2022)), and 0.00 on the simple/complex dimension (vs. 0.27) — a result
starkly contrasting its intended purpose.

Regarding the remaining models that were trained using the MultipleNegativesRank-
ingLoss (i.e., "Initial model", "Adjusted authors", "Random sampling", "Non-uniform"),
similar trends are observed in the STEL-or-content tasks, with only marginal gains
between iterations. For the formal/informal and simple/complex dimensions, none of
the models substantially outperform the others, and all fell short when compared to
the model from Wegmann, Schraagen and Nguyen (2022). This performance disparity
suggests potential improvements in the training procedure that could be harnessed to
achieve better results in these tasks.

In contrast to its predecessors, the SAURON model managed to attain considerably
improved results in these tasks. While earlier models barely exceeded 0.48 accuracy
in the formal/informal STEL-or-content task, the SAURON model almost reached the
performance level of Wegmann, Schraagen and Nguyen (2022), hitting 0.68 accuracy.
Similarly, in the simple/complex STEL-or-content task, the SAURON model achieved
an accuracy of 0.25, a huge leap from the maximum 0.05 observed in earlier models.
However, it’s worth noting that despite these improvements, the SAURON model still fell
short of the performance of Wegmann, Schraagen and Nguyen (2022), suggesting there
are further enhancements to be made in the models’ approach to the STEL-or-content
tasks. One potential direction for improvement could be conducting a more extensive
hyperparameter search specifically tailored for these tasks, to optimize the model’s ability
to accurately discern style from content. Also, exploring the use of different initial seeds
during training might provide some performance variance, offering yet another avenue
for potential improvements.

The results from the original STEL tasks offer some interesting insights. Although
they serve as an initial benchmark, the observed performance does not correlate
strongly with the more complex tasks, such as the STEL-or-content tasks. For instance,
the "Positive-negative" model, despite its apparent poor ability to unravel style from
content, shows competitive performance on the simple/complex, number substitution,
and contraction dimensions. This observation raises questions about the efficacy of the
original STEL tasks as an indicative measure for evaluating models designed for more
nuanced style-content disentanglement. The disparity suggests that success in these
original tasks does not necessarily translate to similar proficiency in more challenging
tasks. Consequently, the argument could be made that these tasks might be less useful
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for informing the development of models intended for more complex tasks involving
style-content disentanglement.

4.9.3 Conclusion of proposed approaches

In examining the performance of the various approaches used in this thesis, it remains
clear that no single model conclusively outperforms the rest across every task. Each
model exhibits its own strengths and weaknesses, demonstrating prowess in certain tasks
while lagging in others. For instance, while the "Positive-negative" model shows superior
performance in the AV and CAV tasks, it falters in the more intricate STEL-or-content
tasks, struggling to effectively separate style from content. On the other hand, models
like "Adjusted authors", "Random sampling", and the previous contender "Non-uniform",
display relative consistency in their performance across all tasks.

That being said, the SAURON model makes a strong case for being considered the
most promising solution. Although it doesn’t achieve the highest scores in the 0% AV and
CAV tasks, it is the strongest performer in the 100% AV and CAV tasks and outperforms
all models in the STEL-or-content tasks. Moreover, its performance on the AV and CAV
tasks is fairly robust. The SAURON model successfully incorporates benefits observed
in previous models, further fortifying its capabilities. Building on the "Adjusted authors"
model, it enhances the breadth of available data by incorporating one utterance authors.
The addition of the random selection of utterances - rather than using the first 10 chronolo-
gical - from the "Random sampling" model mitigates the potential for overrepresentation
and bias arising from authors having too many utterances from the same conversation.
Importantly, it introduces a new advantage: it allows for a more varied set of paraphrases
as different-author examples. This approach not only enhances the model’s robustness
but also makes it more adept at handling real-world data, where stylistic expressions can
be quite diverse.

Nonetheless, it is worth noting that the model from Wegmann, Schraagen and Nguyen
(2022) still outperforms all my models in most of the STEL tasks. This stands as an
important reminder of the room for further improvement and refinement in my training
and modeling techniques.
While it might be too early to definitively label the SAURON model as the "best", its
performance and the innovative strategies it incorporates undoubtedly showcase its
potential. With its capability to incorporate the strengths of different approaches, the
SAURON model signifies a substantial stride toward separating style from content in
complex AV/CAV and STEL tasks. Looking ahead, it will be crucial to build upon these
findings, focusing on strategies that can further enhance my model’s ability to manage
increasing data complexity and scale.





5
C O N C L U S I O N

This chapter brings together the various threads of the research presented in this thesis,
providing a comprehensive summary of the findings and reflecting on their implications.
The aim is to revisit the research questions outlined in Section § 1.3, providing clear and
concise answers based on the evidence gathered throughout the course of this study. Fol-
lowing the summary of findings, this chapter will delve into a discussion of the limitations
of the current study. Recognizing these limitations not only ensures a balanced and honest
reflection on the work conducted but also helps to identify areas where further research
could be beneficial.

5.1 research question

How does incorporating semantically similar utterances affect the performance of transformer-based
approaches for writing style representation? To comprehensively answer this primary research
question, I will delve into two related subquestions: first, examining the effect of using
semantically similar utterances in comparison with other control data; and second, in-
vestigating the impact of various sampling methods for these utterances. Analyzing these
facets will provide a thorough understanding to address my main research question.

5.1.1 Subquestion 1

When addressing the first research subquestion, "How does the use of semantically similar
utterances compare to using other types of control data (e.g. unrelated sentences, sentences
from the same conversation)?", the data clearly suggests that the use of semantically
similar utterances can indeed positively impact the model’s ability to disentangle style
from content. As seen from the results of the initial experiments, the introduction of
semantically similar different-author examples led to marked improvements in both
the STEL and AV/CAV tasks (Section § 4.3.2). These improvements were observed in
comparison to the models that either did not use semantically similar different-author
examples at all or only incorporated them partially. To illustrate, the accuracy for the
formal/informal STEL-or-content dimension improved systematically, from 0.24 to 0.48,
as the proportion of semantically similar different-author examples was increased from
0% to 100%. Similarly, the accuracy on the 100% AV and CAV tasks increased from 0.53 to
0.60 and from 0.53 to 0.64, respectively, when increasing the ratio of semantically similar
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different-author examples.

The pivotal shift in this research comes with the introduction of the SAURON model.
This model, which utilizes semantically similar utterances and innovatively adjusts the
loss function and use of anchors, substantially improved upon the earlier models. In
fact, it outperformed both the initial models and the model from Wegmann, Schraagen
and Nguyen (2022) where different-author examples are sampled from the same topic
(i.e., subreddit), as well as their model that does not use any content control at all. The
SAURON model does not only achieve better performance on the 100% AV and CAV tasks
but also surpasses all models in the STEL-or-content tasks, cementing the effectiveness
of the semantically similar utterance approach. However, it is important to note that the
SAURON model still underperforms the conversation-level control model from Wegmann,
Schraagen and Nguyen (2022) in several STEL tasks, indicating that there remains room
for further improvement.

It can thus be concluded that despite these advancements, the semantically similar
approach still exhibits some limitations, especially when compared to the conversation-
based sampling method. The restrictions on the length of the paraphrases and the
tendency to favor high-frequency paraphrases in the semantically similar approach can
limit their diversity. Conversely, the conversation-based approach potentially exposes
the model to a wider range of stylistic expressions, which may account for its better
performance in some STEL tasks.

These observations provide valuable directions for future research. It is plausible
that an optimal balance might be struck by integrating the stylistic diversity benefits
gleaned from conversation-based sampling with the semantic similarity aspect, which
could potentially enhance the model’s capacity to effectively disentangle style from
content. Alternatively, future advancements could also be achieved by further refining the
semantic similarity approach itself.

5.1.2 Subquestion 2

The results of the experiments reveal several key strategies that can be beneficial for an-
swering the subquestion "What are the most effective sampling techniques for preparing the input
data?" The following aspects emerged as crucial considerations:

• Author diversity: It is essential to incorporate as many different authors as possible,
as demonstrated in § 4.4. By doing this, the model gets exposure to a vast range
of distinct writing styles, which enhances its ability to recognize and differentiate
between various styles.

• Balanced representation: Section § 4.4 also showed that the overrepresentation of
certain authors should be avoided. In this study, the maximum number of utterances
per author was set to 10. However, this value should be adjusted based on the size
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and diversity of one’s dataset. Balanced representation helps the model avoid devel-
oping a bias towards overrepresented authors.

• Topic Diversity: Broadening the array of topics in the dataset is instrumental for
enhancing the model’s capacity to generalize across diverse topics, as discussed in
the introduction of § 4.4. This approach ensures the model does not cultivate a bias
towards certain topics. Even though the available dataset constrained the number
of conversations, the experiment in § 4.6 did highlight the marginal benefits of ex-
panding topic diversity. However, the potential value of increasing the topic diversity
specifically within each author’s work was less explored. The theory here is that the
richness of an author’s writing style could be further exposed by incorporating var-
ied topics from them, as an author’s style may subtly fluctuate depending on the
topic. Yet, the dataset’s limited size and scope might have precluded a comprehens-
ive investigation into this aspect in the experiment of Section § 4.6. Therefore, while
the marginal benefits of more diverse topics are apparent, future research with lar-
ger, more diverse datasets might be necessary to concretely affirm the advantages of
within-author topic diversity.

• Paraphrase diversification: The thesis also highlights the need to avoid oversampling
the same top paraphrases. A diverse set of paraphrases leads to a more robust and
nuanced understanding of style, as it prevents the model from overfitting to particu-
lar phrases or structures — something that is expanded upon in Section § 4.7.

5.1.3 Answer to main research question

The results of this thesis help answer the main research question: "How does incorporating
semantically similar utterances affect the performance of transformer-based approaches for writing
style representation?" By investigating various methodologies and conducting extensive
experiments, it has been established that integrating semantically similar utterances does
indeed lead to substantial improvements over not using any form of content control at
all. However, it has also become clear that relying exclusively on semantically similar
utterances as different-author examples is not the most optimal strategy.
The use of semantically similar utterances as different-author examples, as detailed in
subquestion 1, led to substantial improvements in both the STEL and AV/CAV tasks.
Particularly, these gains were amplified when the model, which was previously trained on
data devoid of these utterances, was subsequently trained with an increased proportion
of semantically similar utterances. This underlines the effectiveness of incorporating
semantically similar utterances. However, it’s important to note that this method fell short
of the approach where different-author examples are sampled from the same conversation,
as per the methodology of Wegmann, Schraagen and Nguyen (2022) — their method
achieved better performance in almost all STEL tasks and comparable performance in the
100% AV and CAV tasks.
The disparities in results between the two methodologies suggest that there might be
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a potential sweet spot in combining the two approaches. This could involve integrating
semantically similar utterances, while also allowing for a less strict sampling approach,
which would permit more diverse examples.

In response to subquestion 2, the effectiveness of input data preparation techniques
was also examined. The key takeaways include the importance of incorporating as many
different authors as possible to increase the number of distinct writing styles, ensuring
topic diversity within each author and across the dataset, avoiding overrepresentation of
the same authors, and diversifying the sampling of top paraphrases.

In conclusion, while incorporating semantically similar utterances does enhance the
performance of transformer-based models in writing style representation tasks, it should
not be viewed as the sole solution. Future research should look into combining this
approach with others, such as the conversation-based sampling of different-author
examples proposed by Wegmann, Schraagen and Nguyen (2022), and further optimizing
the input data preparation techniques. Such strategies can potentially lead to more robust
and nuanced style representations and improved performance in various tasks.

5.2 limitations and future work

The development and evaluation of writing style embedding models, such as the one
proposed in this thesis, are subject to several limitations that should be acknowledged. The
forthcoming subsections aim to offer a comprehensive overview of these limitations. They
cover a spectrum of constraints, from methodological to data-based to evaluation-related,
each contributing to the multifaceted challenge of this research area. This collection is not
organized hierarchically but is intended to present a realistic picture of the constraints
encountered in this study.

5.2.1 Evaluation methods

While there is a vast amount of data available, the field of style modeling lacks a
standardized benchmark dataset. Without a standard benchmark dataset, determining
the quality of a style representation model becomes a challenging task. Although the
STEL framework from Wegmann and Nguyen (2021) is a step in the right direction, their
framework also has its limitations.
For instance, the limited number of examples for each dimension in the dataset (n = 815
for the formal and complex dimensions, and n = 100 for number substitution and
contraction) can impact the reliability of the results. This scarcity of examples also limits
the ability to test for small, subtle differences in style, which could be crucial for certain
applications. Moreover, the STEL framework may not be fully representative of the
stylistic nuances present in the data. This lack of representativeness could cause models
to not exhibit significant differences in performance, thereby limiting the usefulness
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of the framework for evaluating the style-measuring capability of different models.
Finally, while the STEL framework uses both complex style dimensions and simpler
characteristics, such as contraction and number substitution, it may not capture all the
relevant dimensions of writing style. This limited scope can impact the ability to fully
evaluate the style-measuring capability of different models and suggests a need for more
comprehensive frameworks in future research.

Future work could focus on expanding the STEL framework or creating a different
benchmark, perhaps through the use of crowd-sourcing or other data collection methods.
This could help to create a more robust and representative benchmark dataset for
evaluating style representation models.

5.2.2 Interpretability

Transformer-based models, despite their impressive performance in various NLP tasks,
are often criticized for their lack of interpretability (Chefer, Gur and Wolf, 2020). The
complexity of these models, coupled with their multi-layered architecture and millions
of parameters, makes it difficult to understand their internal workings and to determine
why a particular prediction was made. This opacity, often referred to as the ’black box’
problem, can limit their applicability in scenarios where the reasoning behind a prediction
is crucial. In the context of style representation, understanding why a model identifies
two pieces of text as having a similar style could provide valuable insights into the
characteristics of writing style that the model is capturing.
Moreover, the lack of interpretability can also hinder the process of model improvement.
Without a clear understanding of how the model is making its decisions, it is difficult
to identify the sources of errors or areas where the model’s performance could be
improved. This can slow down the process of model refinement and limit the potential for
performance gains.

Future work in this area could focus on developing methods to improve the inter-
pretability of transformer-based models, specifically for style representation. This could
involve techniques such as attention visualization (Vig, 2019), or the development of
inherently interpretable models. While some of these techniques are available for classi-
fication tasks, they are still in the early stages of representation learning. By improving
the interpretability of these models, we can not only enhance their usefulness in various
applications but also gain deeper insights into the nature of writing style itself.

5.2.3 The definition of style

The lack of a universally agreed-upon definition of writing style complicates the develop-
ment and evaluation of writing style embedding models. Without clear criteria for what
constitutes a good style representation, the task of developing an effective model becomes
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more challenging.
In this thesis, a definition for style is provided in Section § 2.1. However, it’s important
to note that this definition is not widely accepted across the field. Different researchers
may have different interpretations of what constitutes writing style, and different models
may focus on different aspects of style. This lack of consensus can complicate the task of
developing and evaluating writing style embedding models. Without a clear target to aim
for, it becomes more challenging to determine whether a model is effectively capturing the
nuances of writing style.

5.2.4 Semantic optimization

The incorporation of semantically similar utterances improves the performance of writing
style embedding models over models that do not employ any content control at all but is
still outperformed by models that employ conversation-level content control. Determining
the optimal parameters for generating these utterances is a non-trivial task. The effective-
ness of the proposed approach can be impacted by these choices, and finding the right
balance between the quality and the number of paraphrases requires careful consideration
and experimentation. For instance, future work could explore how the size of the dataset
from which paraphrases are sampled impacts their quality, as a larger dataset potentially
offers a broader selection of suitable matches.
Moreover, the impact of scores on the quality of the paraphrases is another aspect that
warrants further investigation. While higher scores generally indicate greater semantic
similarity, the optimal score threshold for generating high-quality paraphrases may not be
immediately apparent and could vary depending on the specific task or application. The
analysis of the sampled paraphrases in Section § 4.1 shows that paraphrases with a lower
similarity score can also show similar content. The experimentation with the similarity
threshold is also something that future work can explore.

Additionally, two limiting factors were also touched upon in Section § 4.1.2: the
frequency distribution showed that (i) a limited number of paraphrases were dispro-
portionally represented in the dataset and (ii) the dataset predominantly consisted of
shorter, similar paraphrases. The problem here is not necessarily with the paraphrase
mining approach I utilized, but rather with the fact that - in general - it is easier to find
semantically similar utterances for shorter sentences, and that the Reddit data source also
contains a lot of these short utterances.

As a possible solution for the issues raised in this subsection, the approach pro-
posed in this thesis could potentially be combined with other methods, such as the one
proposed by Wegmann, Schraagen and Nguyen (2022). For example, one could first
attempt to generate as many semantically similar examples as possible using the approach
proposed in this thesis, and then for the remaining texts, sample from within the same
conversation as per their method. This hybrid approach could potentially leverage the
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strengths of both methods and is another promising direction for future work.
Another possible avenue to explore could be to split the utterances into sentences to take
advantage of the fact that paraphrases are easier to find for shorter texts. This strategy
could substantially increase the number of paraphrases available, thereby augmenting the
dataset. However, potential drawbacks of this approach might be that the model becomes
less adept at handling longer texts, and some stylistic nuances could be lost in the process
of breaking down longer utterances into shorter sentences.

5.2.5 Data diversity

The scope of this work is confined to the context of data from Reddit, specifically, a
selected sample of 100 subreddits. While this platform indeed provides a rich source of
different writing styles, it is important to bear in mind that the findings of this study are
contingent upon this specific data source and the limited number of subreddits considered.
Therefore, the effectiveness of the methodologies used might not seamlessly generalize to
other types of written language, different social media platforms, or even other subreddits
outside the ones used in this study. This limitation could restrict the applicability of the
approach to certain applications.

Further expanding the diversity of data sources could be a promising direction for
future research. As was briefly discussed in the introduction of this thesis (Chapter 1),
different social media platforms such as Twitter, Facebook, and even distinct subreddits
within Reddit, each host unique writing conventions and styles (Marko and Buker, 2022).
Therefore, integrating data from a wider array of sources, or considering a more diverse
selection of subreddits, could enhance the model’s understanding of various writing
styles, and potentially improve its capacity to disentangle style from content. Ultimately,
diversifying data sources could broaden the applicability of the techniques developed in
this study, potentially offering more robust and generalized models of authorial style.

5.2.6 Time constraints

This study, while comprehensive in its approach, was subject to certain time constraints
that limited the extent to which the research could be conducted. Some of these limitations
are outlined below.

Firstly, only one seed was used for initializing each model. As a result, the out-
comes of the model training processes can be largely dependent on the choice of this
initial seed. The variability in performance among different seeds can lead to unstable
results, with some seeds potentially providing better outcomes than others. Although the
models used in this study yielded insightful findings, they may not represent the "best" or
most optimal models that could have been produced with a different initial seed. Hence,
the generalizability of the results may be somewhat limited. Future work should include
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more runs with different seeds to average the results and obtain a more reliable estimate
of the model’s performance.
Secondly, while potential benefits of a larger dataset have been highlighted in previous
discussions in Sections § 4.1 and § 4.4, such as providing more diverse and representative
samples of various writing styles, the decision was made not to pursue this expansion.
Increasing the dataset’s size would have required additional computational resources and
processing time. Given the scope of this study and the need to focus on methodological
developments, the decision was taken to work with the current dataset size. While this
decision streamlined the project and allowed for a concentrated focus on the techniques
being developed, it may have had implications for the scope and diversity of writing
styles the models could learn and represent.
Finally, the SAURON model implemented the approach of using each anchor only once,
following the method used by Wegmann, Schraagen and Nguyen (2022). This was a
valuable development in reducing the overrepresentation of certain phrases. However,
due to time constraints, the effects of using each anchor multiple times, as was done in
previous models, were not explored within this setup. Additionally, potential perform-
ance improvements from tuning hyperparameters in the SAURON model setup remain
unexplored. Future work could look into these aspects to possibly enhance the model’s
performance and robustness. The implementation and evaluation of these methods would,
however, require additional time and computational resources.



A
H Y P E R PA R A M E T E R T U N I N G

a.1 loss function

AV task CAV task Formal Complex Nb3r C’tion
Loss function 0% 100% 0% 100% Original o-c Original o-c Original o-c Original o-c

MNRL 0.72 0.60 0.80 0.64 0.81 0.48 0.59 0.04 0.65 0.06 0.95 0.00
Contrastive 0.70 0.52 0.78 0.53 0.78 0.42 0.56 0.04 0.62 0.07 0.93 0.00

Table A.1: The table above presents the results of the impact of two different loss functions on the
test tasks. Columns for the AV Task and CAV Task show results for 0% and 100% se-
mantically similar conditions, respectively. The Formal, Complex, Number substitution,
and Contraction task columns are subdivided into Original (standard STEL task) and
o-c (STEL-or-content task) subcolumns. The values with the highest accuracy in each
column are reported in bold.

a.2 learning rate

AV task CAV task Formal Complex Nb3r C’tion
Learning rate 0% 100% 0% 100% Original o-c Original o-c Original o-c Original o-c

1e-5 0.72 0.59 0.80 0.62 0.82 0.47 0.59 0.04 0.64 0.05 0.97 0.00
2e-5 0.72 0.60 0.80 0.64 0.81 0.48 0.59 0.04 0.65 0.06 0.95 0.00
3e-5 0.72 0.56 0.80 0.63 0.79 0.49 0.58 0.04 0.63 0.04 1.00 0.00
4e-5 0.72 0.59 0.80 0.62 0.79 0.46 0.55 0.04 0.71 0.00 0.96 0.08

Table A.2: The table above presents the results of the impact of various learning rates on the test
tasks. Columns for the AV Task and CAV Task show results for 0% and 100% semantic-
ally similar conditions, respectively. The Formal, Complex, Number substitution, and
Contraction task columns are subdivided into Original (standard STEL task) and o-c
(STEL-or-content task) subcolumns. The values with the highest accuracy in each column
are reported in bold.
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a.3 number of epochs

AV task CAV task Formal Complex Nb3r C’tion
Epochs 0% 100% 0% 100% Original o-c Original o-c Original o-c Original o-c

2 0.70 0.56 0.80 0.62 0.77 0.24 0.57 0.02 0.58 0.04 0.92 0.01
3 0.70 0.57 0.81 0.62 0.78 0.34 0.60 0.04 0.63 0.04 0.99 0.01
4 0.71 0.59 0.80 0.63 0.80 0.40 0.55 0.03 0.64 0.03 0.96 0.00
5 0.72 0.60 0.80 0.64 0.81 0.48 0.59 0.04 0.65 0.06 0.95 0.00
6 0.72 0.60 0.80 0.64 0.81 0.47 0.58 0.04 0.65 0.06 0.94 0.00

Table A.3: The table above presents the results of the impact of the number of training epochs on
the test tasks. Columns for the AV Task and CAV Task show results for 0% and 100% se-
mantically similar conditions, respectively. The Formal, Complex, Number substitution,
and Contraction task columns are subdivided into Original (standard STEL task) and
o-c (STEL-or-content task) subcolumns. The values with the highest accuracy in each
column are reported in bold.

a.4 batch size

AV task CAV task Formal Complex Nb3r C’tion
Batch size 0% 100% 0% 100% Original o-c Original o-c Original o-c Original o-c

2 0.69 0.53 0.77 0.60 0.78 0.46 0.57 0.04 0.64 0.05 1.00 0.00
4 0.70 0.54 0.78 0.63 0.78 0.48 0.56 0.04 0.66 0.05 1.00 0.00
8 0.72 0.60 0.80 0.64 0.81 0.48 0.59 0.04 0.65 0.06 0.95 0.00

Table A.4: The table above presents the results of the impact of various batch sizes. Columns for the
AV Task and CAV Task show results for 0% and 100% semantically similar conditions,
respectively. The Formal, Complex, Number substitution, and Contraction task columns
are subdivided into Original (standard STEL task) and o-c (STEL-or-content task) sub-
columns. The values with the highest accuracy in each column are reported in bold.
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