
MASTER’S THESIS

Monotone Oblique Decision Trees

Author:
Maarten Al Sadawi
m.t.i.alsadawi@students.uu.nl

Program:
Computing Science

Supervisors:

Dr. Ad Feelders
Prof. Dr. Marc van Kreveld

July 7, 2023

mailto:m.t.i.alsadawi@students.uu.nl

Acknowledgement

I would like to express my gratitude to my supervisors, Dr. Ad Feelders and Prof.
Dr. Marc van Kreveld, for their advice, feedback and guidance throughout my
research. Special thanks to Dr. Ad Feelders, who served as my main supervisor
and provided invaluable comments and support.

1

Abstract

In many data analysis applications, it is often reasonable to assume that the re-
sponse variable increases or decreases in relation to one or more attributes or
features. These relationships between the response and features are referred to as
monotone. Monotonicity is not only plausible but can also be a desirable property
of a decision model for the sake of explanation, justification, and fairness. Because
the monotonicity constraint is common in practice, several data analysis tech-
niques have been adapted to accommodate such constraints. For instance, various
algorithms have been developed for learning monotone decision trees. However,
these algorithms only consider splits on single attributes, resulting in axis-parallel
splits and a partitioning of the attribute space into rectangular areas. In contrast,
oblique decision trees allow for linear combination splits like w1x1 + w2x2 > c.

To the best of our knowledge, no existing algorithms enforce monotonicity for
this more complex partitioning of the attribute space. We have developed such an
algorithm and evaluated its performance (MSE or accuracy) through experiments
using well-known datasets for monotone classification and regression, as well as
artificially constructed data.

Appealingly, enforcing monotonicity constraints is beneficial to enhance per-
formance in both classification and regression tasks. Furthermore, the smaller the
train set is, the more prominent the effect is of enforcing monotonicity constraints,
as the performance gap between the algorithm mode that enforces monotonicity
compared to its unconstrained counterpart tends to decline on the test sets.

Moreover, when dealing with artificial data, we discovered that all else equal,
accuracy tends to significantly decline with the number of features. This effect is
most emphatic with respect to the zero and negative datasets. Furthermore, all
else equal, accuracy tends to significantly increase with correlation between the
features.

Thus, assuming the underlying nature of the data adheres to monotone re-
lationships between features and the response variable, enforcing monotonicity
constraints is advantageous.

2

Contents

1 Introduction and problem statement 5

2 Preliminaries 8
2.1 Background . 8
2.2 Concepts . 11

2.2.1 Monotone prediction . 12
2.2.2 Partial monotone classification or regression 18
2.2.3 Pruning trees . 19

3 Related work 20
3.1 Isotonic classification trees . 20
3.2 Monotone rule random forest . 20
3.3 Multivariate decision trees with monotonicity constraints 24
3.4 Partially monotone decision tree using rank mutual information . . 27
3.5 Oblique decision tree induction by the cross-entropy optimisation . 27
3.6 Convex polytope trees . 28
3.7 Induction system for oblique decision trees 28

4 Methods 29
4.1 Setup . 29
4.2 Description of IDT-oblique . 33

5 Experimentation 41
5.1 Datasets . 41

5.1.1 Real datasets . 41
5.1.2 Artificial datasets . 53
5.1.3 Train set size and regulation 55

5.2 Approach . 56
5.2.1 Train/validation/test set . 57
5.2.2 Cross-validation . 58

5.3 Results and discussion . 58

3

5.3.1 Real data . 59
5.3.2 Artificial data . 64

6 Conclusion 70
6.1 Answers to research questions . 70
6.2 Future work . 72

Appendices 78

A Algorithm for generating monotone labelling 79

B Tables of all datasets with their features and description 81

C Examples of generated classification / regression trees 89

D Tables of experiments 95
D.1 Performance tables for different metrics for real classification datasets 95
D.2 Additional tables artificial datasets 99

4

Chapter 1

Introduction and problem
statement

In many data analysis applications, it is reasonable to assume that the response
variable, also known as the target variable, increases or decreases in relation to
one or more features. These relationships are referred to as monotone relations.
Given the common occurrence of monotonicity constraints, various data analysis
techniques have been adapted to handle them. Examples of such techniques include
classification and regression trees, nearest neighbor algorithms, neural networks,
and support vector machines [1]–[4].

Monotonicity is not only plausible but also a desirable property in decision
models for the purpose of explanation, justification, and fairness. For instance,
banks use monotonicity when making acceptance or rejection decisions on loan
applications [3]. In the context of house pricing, it has been observed that the
selling price of a house generally increases with factors like the size of the lot
and the number of rooms, while decreasing with factors such as crime rate or
pollution concentration in the area [5]. Additionally, research has demonstrated
that rules learned with monotonicity constraints are more readily accepted by
medical experts compared to rules learned without such constraints [6].

Oblique decision trees offer the potential for more compact models compared
to decision trees that only allow axis-parallel splits. This is because oblique trees
enable more complex splitting rules and, consequently, a more intricate partition-
ing of the feature space. Figure 1.1 illustrates this concept, where the oblique
decision tree achieves a more compact structure with only two leaves instead of
three.

5

(a) Decision tree with an oblique split. (b) Decision tree without oblique split.

Figure 1.1: Two examples of decision trees where there are two features f1, f2 and
two class labels: a circle and a cross. Images are from [7].

Algorithms for oblique decision trees already exist [8]. As far as our knowledge
goes, however, there is currently no algorithm available for generating a globally
monotone oblique decision tree. By globally monotone, we mean that the resulting
decision tree always satisfies the monotonicity constraint. Since oblique decision
trees can offer more compact models compared to non-oblique ones, it is desirable
to enforce this constraint on these types of trees as well.

The objective of this research is to develop an algorithm such that the mono-
tonicity constraint with respect to oblique decision trees is always satisfied. We aim
to evaluate this algorithm through experiments conducted on well-known datasets
for monotone classification and regression tasks.

In this thesis, our objective is to address the following research questions:

1. How can one verify whether a given oblique classification/regression tree is
monotone?

2. How can one develop a justified approach to construct a monotone oblique
classification/regression tree?

3. How does the predictive performance of a monotone oblique classification/re-
gression tree compare to that of its unconstrained counterpart?

This thesis is structured as follows. The upcoming chapter will introduce the
fundamental concepts and notation that will be utilised throughout the thesis.
Chapter 3 will encompass an exploration of related works pertaining to mono-
tone/oblique decision trees. The subsequent chapter, chapter 4, will delve into
the developed algorithm and the specific design choices made. In chapter 5, a
comprehensive overview of the utilised datasets and their selected features will

6

be presented, along with the primary findings resulting from evaluating the algo-
rithm. The thesis will conclude in chapter 6, summarising significant discoveries
and providing avenues for future research. The appendices will furnish additional
details on the algorithm, datasets, and evaluation tables incorporating multiple
metrics. Finally, https://github.com/ZazeyManda/IDT-oblique.git contains
our complete code and used datasets.

7

https://github.com/ZazeyManda/IDT-oblique.git

Chapter 2

Preliminaries

2.1 Background

Different classification and regression models are helping the task of decision-
making, such as linear/logistic regression or artificial neural networks. This re-
search however will focus on classification and regression trees. A classification
tree (also known as a decision tree) is a predictive model (classifier) in the field of
data mining which uses a supervised learning approach. With supervised learning
the model is trained using labelled examples from a dataset. The label is also
known as the class of the example. Thus on unseen data (where the class is un-
known), the classifier will make an educated guess on its class label. For example,
good/bad credit for loan applicants, spam/no spam for e-mail messages or the
numbers 0 through 9 for handwritten digits [9]. The first two are associated with
binary classifiers as they only have two output classes. The last one is associated
with a multiclass classifier. An example binary classification tree built from table
2.1 is found in figure 2.1. Consider a new applicant with the following information;
age: 44, married: yes, own house: yes, income: 30,000, gender: male. We follow
along the appropriate splits (starting from the root node) until we reach a leaf
node. At this point, the leaf node predicts the majority class (that is, the most
common class of the data points in the leaf). So for our example applicant we will
end up in the second leaf node, thus predicting class ’good’ credit for a loan. The
construction of such a tree from the data is also discussed in [9], but the main idea
is that we try to aim for leaf purity using some impurity function (like Gini) to
determine the best split for each node. With leaf purity, we mean that leaves con-
tain only examples of the data with the same class. In the case of regression trees,
we predict a number such as the sale prices of houses in a neighbourhood. The
impurity function is in that case the residual sum of squares (RSS). The formula
is

8

RSS =
n∑

i=1

(yi − ŷi)
2 (2.1)

where n is the amount of data points in a node, yi is the value of the target
variable of data point i and ŷi is the predicted value of the target variable of data
point i. In the case of sale prices of houses, the target variable is not a class label
but a continuous number starting from $0 (in reality no house will probably be
sold for $0). Suppose further that a node contains the following values for the
target: 12,16,19 and 45. The mean is 23. The residual sum of squares equals

(12− 23)2 + (16− 23)2 + (19− 23)2 + (45− 23)2.

This is the impurity of the node with respect to the target.
One interesting point to note about Gini impurity is that it is the variance of

a Bernoulli random variable. If p is the relative frequency of class label 1 at some
node, then its Gini impurity is p(1− p) (in the case of binary class labels). Thus
when splitting, we try to minimise the variance of the class label within a node;
consequently making a node purer. Note further that ŷi of equation 2.1 is the
prediction of the node, in case of regression there is no majority class and thus
this is equal to the mean of the target variable of the data points in the node.
Thus, if we divide the equation by n, we would get the mean squared error. This
corresponds directly to the variance around the fitted regression line. Thus both
impurity functions try to minimise the variance of the target variable within a
node.

Since regression tasks are analogues to classification tasks, the examples in the
remainder of this chapter are only given for classification.

Record age married own house income gender class
1 22 no no 28,000 male bad
2 46 no yes 32,000 female bad
3 24 yes yes 24,000 male bad
4 25 no no 27,000 male bad
5 29 yes yes 32,000 female bad
6 45 yes yes 30,000 female good
7 63 yes yes 58,000 male good
8 36 yes no 52,000 male good
9 23 no yes 40,000 female good
10 50 yes yes 28,000 female good

Table 2.1: Example of bank credit data [9].

9

Figure 2.1: Classification tree built on credit scoring data [9]. Here, rec# stands
for the record numbers in table 2.1

We have seen an example of a binary classification tree in figure 2.1. With
binary, we mean that the splits are binary and that the class label is binary. A
split of this tree is one of the following forms:

• x ≤ c,

• x ∈ X,

where x is a feature/attribute (for example income or gender), c is a constant and
X is a set in the case that x is a variable taking categorical values. In regular
trees, a split happens only on a single feature at a time. This gives rise to axis-
parallel splits and partitioning of the feature space into rectangular areas. The
problem with that is for example if the true decision boundary is not parallel to
an axis but some linear function, a tree would resort to potentially many axis-
aligned splits instead of a linear combination (of features) split. Hence, oblique
trees have been developed [8] which allow linear combination splits of the form
wTx ≤ c where x = (x1, x2, ·, xp) is the feature-vector and w = (w1, w2, ·, wp) the
weights/coefficients-vector; c is again a constant and p is the number of features.
Note that this is a generalisation to an axis parallel split on a numeric feature. One

10

possible way to construct these oblique trees is to apply repeated logistic regression
on the data since logistic regression gives exactly such a linear combination decision
boundary.

2.2 Concepts

In this section, the concepts mentioned in section 2.1 are formally described and
explained. Throughout the remainder of this thesis, we assume there are p features
(unless otherwise stated), and we define the feature space X to be X1×X2×· · ·×Xp

where Xi is the domain of feature i (1 ≤ i ≤ p). We assume that X consists of only
numerical features. A feature is a numerical feature if its domain is a set of numbers
that are in an ordered relationship, for example, {R}. In the remainder we use the
word polytope, with this we mean a geometric object with flat sides (faces) in X .
We would like to note that polytopes are a generalisation of polyhedra in three
dimensions, which in its turn is a generalisation of polygons in two dimensions. A
convex polytope is a polytope that is also a convex set in X . This means that a
line segment between any two points in a polytope t also belongs to t (all points
of the line segment belong to t). A convex polytope can also be defined as an
intersection of a finite number of half-spaces, the so-called H-representation. A
half-space is specified via a linear inequality a1x1 + a2x2 + · · · + anxn ≤ b where
a1, . . . , an, b ∈ R. This half-space is called closed as there is no strict inequality, if
we were to use < the half-space would be called open. For our purposes, it does
not matter if a polytope is bounded or unbounded. We now define a closed convex
polytope.

Definition 2.2.1 (Closed convex polytope). A closed convex polytope is as a set
of solutions to a system of linear inequalities. That is, all x that satisfy Ax ≤ b
where A is a m × n matrix of real-valued coefficients, x is a n × 1 column vector
whose coordinates are the variables x1 to xn and b is a m×1 column vector whose
coordinates are the right-hand side of the linear inequalities.

The intersection of the splits on the path from the root node to a leaf node
in the oblique tree forms a convex polytope. This is not necessarily a fully closed
convex polytope because the splits could contain strict inequalities. We say that
a boundary of a convex polytope is open if it does not belong to that polytope.

It is important to note that features in the feature space could take on real
values, integer values or even binary values. Furthermore, the features do not need
to be bounded.

11

2.2.1 Monotone prediction

The classification task is to build a classification/regression function f : X → C
that predicts a value c ∈ C given an input point x = (x1, x2, . . . , xp), where X is the
feature space and p is the number of features. In the case of ordinal classification,
C = {c1, c2, . . . cC} consists of C classes such that there is a total order on them:
c1 ≤ c2 ≤ · · · ≤ cC . However, the distance between classes is undefined. In our
context, a monotone ordinal classifier has a non-decreasing (non-increasing) impact
on the output class (response variable) for every feature in X . Furthermore, we
assume that each feature i in X takes values xi in a linearly ordered set Xi. In the
case of regression, C is not a set of labels but usually a number in N, Z or R. In
the remaining parts of our thesis, we use C in the context of classification as well
as regression. We will now define the product order ⪯ on X .

Definition 2.2.2 (Product order). Let x,x′ ∈ X where x = (x1, x2, . . . , xp) and
x′ = (x′

1, x
′
2, . . . , x

′
p). We define the product order ⪯ on X as x ⪯ x′ if and only if

xi ≤ x′
i for all 1 ≤ i ≤ p.

Note that our product order is a partial ordering on X = X1 × X2 × · · · × Xp.
The assumption that X solely includes numerical features is important here.

A monotone ordinal classification or regression function is a function f : X → C
for which

x ⪯ x′ =⇒ f(x) ≤ f(x′) (2.2)

for all instances x,x′ ∈ X . This type of monotone relation is also known as
isotonic.

Definition 2.2.3 (Monotone dataset). A dataset {xi, ci}ni=1 is called monotone if
for all i, j we have xi ⪯ xj =⇒ ci ≤ cj.

Local vs. global monotonicity We shall now return to the context of binary
classification trees with binary class labels. In this paragraph, we say that a data
point is predicted to be 1 if it falls in a leaf whose relative frequency of class label
1 is greater than or equal to 1

2
and 0 otherwise. That is, we are rounding the

prediction to the nearest integer (0 or 1). The leaf prediction of some leaf ℓ is
calculated as the sum of all class labels of all data points inside ℓ, divided by the
total number of data points in ℓ.

There are two paradigms to ensure monotonicity for a tree: local or global.
Global monotonicity implies that the tree always satisfies equation 2.2. Local
monotonicity on the other hand can only guarantee that the splits are monotone.
This means that for some parent node, if a splitting rule has the form xi ≤ c,
then data points that comply with the rule go to a child node that does not
predict a higher class label than data points that do not comply with the rule, for

12

some feature xi and constant c. That this does not guarantee global monotonicity
becomes clear in figure 2.2a. Here, the classes are either 0 or 1, t0 is the root node
and we only have two features. The tree is locally monotone but not globally due
to leaf t5. For example given A = (3, 21

2
) and B = (5, 21

2
), we have that A ⪯ B

but f(A) > f(B), as can be seen in figure 2.2b.

13

(a) A classification tree.

(b) Leaves of tree in figure 2.2a visualised.

Figure 2.2: Example of classification tree with two numerical features, and the
leaves visualised. The tree is locally but not globally monotone.

14

On the other hand, a tree that is globally monotone does not need to be locally
monotone. An example of such a tree is found in figure 2.3. We have that t1, t4 are
children of t0 and the data points in t1 comply with the first split, yet t1 predicts
a higher class label than t4.

(a) A classification tree.

(b) Leaves of tree in figure 2.3a visualised.

Figure 2.3: Example of a tree with two numerical features, and the leaves visu-
alised. The tree is globally but not locally monotone.

15

We introduce three additional definitions with respect to point and leaf domi-
nation.

Definition 2.2.4 (Point domination). Let x,x′ ∈ X . We say that x′ dominates
x if and only if x ⪯ x′.

Definition 2.2.5 (Leaf domination). Let t, t′ be convex polytopes (leaves) in X .
We say that t′ dominates t if there exists a point in the closed part of t′ that
dominates a point in the closed part of t, written as t ⪯ t′. If both leaves dominate
each other, we say t = t′.

Definition 2.2.6 (Incomparable points). Let x,x′ ∈ X . We say that x and x′

are incomparable, written as x ∼ x′, if and only if there is no dominance relation
between them. That is, there exists i, j such that xi > x′

i and xj < x′
j.

Definition 2.2.7 (Incomparable leaves). Let t, t′ be convex polytopes (leaves) in
X We say that t and t′ are incomparable, written as t ∼ t′, if and only if there is
no dominance relation between them.

Leaf order With these definitions, we are able to talk about an ordering on the
leaves. Leaf t precedes leaf t′ in the order if t ⪯ t′. If t = t′, then they share an
equal position in the ordering. The ordering between t and t′ is not defined in
the case of t ∼ t′. For simplicity, this ordering on the leaves is called leaf order.
To gain a better understanding of the leaf order, see figure 2.4. In this figure,
we present two examples to demonstrate the lack of transitivity in our leaf order.
Figure 2.4a shows that leaf l1 ⪯ l2 and l2 ⪯ l3 but l1 ∼ l3. Figure 2.4b shows that
mutual dominance is also not transitive, since l1 = l2 and l2 = l3 but l1 ∼ l3.

16

(a) Example of three leaves of some tree, assuming we have two features f1 and
f2. We have x1 ⪯ x2 and x′

2 ⪯ x3.

(b) Example of three leaves of some tree, assuming we have two features f1 and
f2. We have x1 ⪯ x2, y2 ⪯ y1, x

′
2 ⪯ x3 and y3 ⪯ y′

2.

Figure 2.4: Here are two examples of three leaves, with dashed lines indicating
point domination between points in different leaves.

17

As the convex polytopes resulting from the splitting of oblique trees are not
necessarily closed, an open boundary of a polytope does not belong to that poly-
tope. More specifically, there could be a point on an open boundary of some
polytope t that dominates a point on a boundary of another polytope t′ such that
all points in t are incomparable with all points in t′. See for example figure 2.5
where this is the case. Whether such polytopes (leaves) are constructed by a tree
depends on the allowed splitting rules.

Figure 2.5: Here, a dashed line segment denotes an open boundary. Point H on
the open boundary j of the rectangle dominates point C on the boundaries g,i of
the triangle. But, no point in the rectangle dominates a point of the triangle.

2.2.2 Partial monotone classification or regression

If we allow categorical features, the feature space is extended from X to X × Z
where Z = Z1×Z2×. . .Zq and Zi is the domain of categorical feature i (1 ≤ i ≤ q).
There are q categorical features. The domain of a categorical feature is a set
of discrete values that are not in an ordered relationship. A partial monotone
classification or regression function is defined as a function f : X × Z → C for

18

which
x ⪯ x′ ∧ z = z′ =⇒ f(x, z) ≤ f(x′, z) (2.3)

for all instances (x, z), (x′, z′) ∈ X × Z.
In the remaining parts of this thesis, however, we use (regular) monotone clas-

sification/regression for the sake of simplicity and only mention partial monotone
classification/regression if it becomes relevant within the given context.

2.2.3 Pruning trees

In general, tree algorithms grow the tree by continuing splitting until all leaf nodes
all pure i.e., contain examples of a single class. This gives rise to the problem of
overfitting. Two solutions are to either prune the tree (merge child nodes back to
parent node) or include stopping rules (no node expansion if the impurity reduc-
tion of the best split is below some threshold) [9]. The main disadvantage of using
stopping rules is that sometimes a ’weak’ split (achieving less impurity reduction)
must be made to follow up with a ’strong’ split (achieving higher impurity reduc-
tion). Pruning can be done in various ways but one of the more popular techniques
is called cost complexity pruning [10].

19

Chapter 3

Related work

In this chapter, we review related work on algorithms that opt to enforce mono-
tonicity on a classification tree, as well as algorithms that provide techniques to
construct an oblique classification tree.

3.1 Isotonic classification trees

The isotonic classification tree (ICT) algorithm is introduced by Van de Kamp et
al. [1]. They discussed it in the context of regular binary classification trees which
allow for more than two class labels. The algorithm adjusts the leaf predictions
(also called relabelling) in such a way that the tree guarantees global monotonicity.
To determine whether a given tree is monotone, consider the minimum and maxi-
mum element of some leaf t, respectively t′. The claim is that if min(t) ≺ max(t′),
then node t contains points that are smaller than some points in the node t′, so
the class label of leaf t should not be greater than the class label of leaf t′. In case
of violation of this requirement, the class labels of the leaf nodes are repaired via
isotonic regression. Van de Kamp et al. do not adjust the splitting conditions of
a tree in their work. Their experiments have shown that ICT usually has a lower
error on real-life datasets compared to standard trees, while also producing smaller
trees.

3.2 Monotone rule random forest

Bartley et al. [2] claimed that the monotone classification tree produced by the
ICT algorithm has high loss/bias. Since high bias cannot be corrected in hindsight,
accuracy suffers. For that reason, the monotone rule random forest (MR-RF) al-
gorithm was developed. We note that the proposed algorithm was developed for
random forests, as opposed to the earlier discussed ICT which was developed for a

20

single tree. The authors used -1 and 1 as class labels in the case of binary classifi-
cation. MR-RF enforces global monotonicity by adjusting the splitting conditions
of the trees. Since their context is binary classification using random forest, the
final prediction, given a feature vector x is calculated as follows:

sign

(
T∑
t=1

Lt∑
l=1

at,lft,l(x)

)
(3.1)

where ft,l(x) = 1 if x ∈ leaf l of tree t and 0 otherwise and

at,l =
1

N

N∑
i=1

ci
bi,t,l
Kt,l

(3.2)

is the leaf prediction, such that ci ∈ {−1, 1}, bi,t,l is the number of occurrences of
data point xi in the bootstrap sample in leaf l of tree t, Kt,l is the total number
of bootstrap data points in leaf l of tree t and T,N, Lt are the number of trees,
training points and leaves in tree t respectively. The ci

bi,t,l
Kt,l

in the sum of equation

3.2 is the contribution of the i’th data point in the training set to the proportion
of the positive/negative cases in leaf l of tree t. For example, suppose that for a
fixed i the point xi occurs twice in the bootstrap sample of tree t, and xi ends up
in some leaf l of tree t, and ci = −1, Kt,l = 100. We then have that

ci
bi,t,l
Kt,l

= −1 · 2

100
= − 1

50
(3.3)

It follows that equation 3.2 can be interpreted as the proportion of positive cases
minus the proportion of negative cases in leaf l of tree t. This means that the leaf
prediction on itself is not necessarily -1 or 1. Rather, the individual leaf prediction
is a number in the interval [−1, 1]. Therefore, Bartley et al. distinguish whether
a leaf prediction is positive or negative (≤ 0).

For a single tree, consider the path from the root node to some leaf node ℓ.
Suppose that monotonicity needs to hold for all features. (The features where this
does not need to hold for are simply ignored). Denote with Rℓ(x) = r1(x) ∧ · · · ∧
rℓ(x) the conjunction of splitting conditions from the root node to a leaf node ℓ,
where rk(x) ∈ {xi ≤ uk, xi > lk} for some real values uk, lk and where xi is the
value of feature i of data point x. If the leaf prediction of ℓ is positive, MR-RF will
transform the leaf (conjunctions) as Rℓ(x) = x ≻ xℓ, where xℓ = (x1, x2, . . . , xp)
is constructed for each leaf ℓ as follows:

xi = max[{−∞∪ {lk | 1 ≤ k ≤ ℓ}}]. (3.4)

21

Otherwise, if the leaf prediction is negative, the transformation is going to be
Rℓ(x) = x ≺ xℓ, where

xi
ℓ = min[{∞ ∪ {uk | 1 ≤ k ≤ ℓ}}]. (3.5)

Note, the leaf ℓ after this transformation does not necessarily have the same shape
in the feature space as the original leaf. If all splitting conditions leading to
leaf nodes are changed like this, then the classification tree is globally monotone.
Consider for example the classification tree in figure 3.1.

Figure 3.1: Example of binary classification tree that is neither globally nor locally
monotone.

See figures 3.2a and 3.2b as an example of the effect on the leaves after trans-
formation using MR-RF on the leaves of this tree.

22

(a)

(b)

Figure 3.2: Subfigure (a) is the visualisation of the leaves of the tree in figure 3.1.
Subfigure (b) is the visualisation after applying the MR-RF transformation. Note
that leaf t4 comprises the entire feature space.

Consider leaf t3 of figure 3.2 as an example. The splits leading to this leaf are
x1 ≤ 2, x2 > 2. Since the leaf prediction is positive, the base point xt3 = (−∞, 2).

23

Thus leaf t3 is after transformation represented by its base point xt3 : all data
points greater than xt3 will fall into leaf t3.

However, the leaves may now overlap and they do not necessarily contribute
equally to the final prediction of some feature vector x. The algorithm proposes
two solutions that re-calculate leaf predictions: constrained logistic regression and
naive Bayesian approximation.

Bartley et al. claimed that MR-RF is the state-of-the-art monotone tree en-
semble in terms of performance (speed and accuracy). More specifically, their
hypothesis is: MR-RF achieves lower loss monotonisation (bias) and higher accu-
racy, compared to other globally/locally monotone random forest algorithms. So
Bartley et al. changed regular monotone classification tree algorithms such as ICT
to work in a random forest setting. Their experiments are based on 17 datasets
from UCI and KEEL repositories, taken from medical and finance fields.

Both variants of MR-RF (constrained and Bayesian) outperformed various
other globally and locally monotone algorithms in three different accuracy met-
rics: kappa, F1 score and Mean Absolute Error (MAE) score. They used Hommel’s
significance testing on the rank differences of these accuracy metrics with a signifi-
cance level of α = 0.05. Both variants however were not significantly more accurate
than the ICT algorithm based on the MAE score. In terms of speed (complexity),
the constrained variant turns out to be quite slow whereas the Bayesian variant is
highly competitive in predictive performance and speed.

3.3 Multivariate decision trees with monotonic-

ity constraints

Pei et al. [11] claim (without proof) an algorithm that guarantees local monotone
splits in oblique trees, only if a dataset itself is monotone. A dataset is monotone
if for two points x,y in the set we have x ⪯ y, then the class label of point y is at
least as high as of point x. They denote the splitting conditions for some input x
as linear functions of the form f(x) = wTx+ b, for some weight vector w and bias
b. These linear functions are constructed within each node via a variant of linear
regression known as the non-negative least squares method (applied to the data
points of that splitting node). A reason for doubt whether this technique gives
the desired local monotone split is illustrated in figure 3.3. The dataset consisting
of four points is monotone, yet it could be that a split is constructed which is not
locally monotone.

24

1

1

0
0

Leaf 1

Leaf 2

X2

X1

Figure 3.3: Non-local monotone split with non-negative coefficients.

Furthermore, if the dataset is not monotone, local monotonicity does not need
to hold. For example, consider a dataset which contains points x,y where x ⪯ y.
An oblique split constructed by the non-negative least squares method does not
imply that y will end up in a child node whose class label is at least as high as
that of x. That depends on the labelling in the dataset.

In the conclusion of [11], the authors mention the challenging task of developing
a globally monotone classification algorithm, which is left open for future research.
Our objective is to precisely address this task by constructing such an algorithm.
However, in our approach, we adopt the non-negative least squares method when
creating splits in our oblique trees. If we do not do this, we could get unfavourable
splits as can be seen in figure 3.4. With binary classification, if the blue node would
predict a different label than the white, this would violate the global monotonicity

25

constraint since there exists points in the white node that dominate the blue node
and vice versa. This problem will not be fixed if we subdivide the white node into
multiple leaves by subsequent splits. Thus, since these types of split result in the
constraint violation that propagates to child leaves, we decide to avoid them.

It is interesting to note that even if all splits are generated by the non-negative
least squares method, it still does not guarantee global monotonicity, but we do,
however, have local monotonicity (provided that the dataset is monotone) as can
be seen in figure 3.5.

Figure 3.4: Example of a forbidden split. Blue area are all points x = (x1, x2)
such that 2x1 − x2 > 3.

26

1

0

x2

x1

0
1

Figure 3.5: Example of using only allowed splits that does not guarantee global
monotonicity.

3.4 Partially monotone decision tree using rank

mutual information

Two of the authors of [11], Pei and Hu also proposed a partially monotone decision
tree based on rank mutual information (RMI) in [12]. They use (slightly modified)
RMI scores to determine which features are monotonic, and also to create mono-
tone splits for these features based on RMI. It is in our view better if a domain
expert determines which features should be monotone with respect to the target
attribute, their algorithm does this exclusively in an automated way based on the
given dataset (which may or may not represent the real world).

3.5 Oblique decision tree induction by the cross-

entropy optimisation

Bollwein et al. [8] recently discussed a technique that adapts the cross-entropy
optimisation method to find near-optimal oblique splits. This is done via a ge-
ometrical approach by observing that equivalent oblique splits (splits that lead
to the same outcome) can be interpreted as connected regions on a unit hyper-

27

sphere which is defined by the points in the training data. In each iteration, their
algorithm samples multiple candidate solutions from this hypersphere using the
von Mises–Fisher distribution which is parameterised by a mean direction and a
concentration parameter. These parameters are then updated based on the best-
performing samples such that when the algorithm terminates a high probability
mass is assigned to a region of near-optimal solutions. Their results show that
the algorithm works well for the induction of both compact and accurate oblique
decision trees in a small amount of time.

3.6 Convex polytope trees

Armandpour et al. [13] proposed convex polytope trees (CPT) as a generalisation
to the class of oblique trees that improves their accuracy and shrinks their size,
which consequently provides better predictions. It does so by creating decision
boundaries (splitting conditions) based on noisy-OR [14] of multiple linear classi-
fiers (expert-voting model). Just like with an oblique tree, the decision boundaries
of a CPT tree are geometrically a convex polytope. They did not attempt to
guarantee any local or global monotonicity of the model.

3.7 Induction system for oblique decision trees

Murthy et al. [15] constructed an algorithm called OC1 which combines determin-
istic hill climbing with two forms of randomisation to find a good oblique split in a
given node (top-down approach as usual). The randomisation is there to avoid the
hill climber getting stuck in local minima. Simply stated, the algorithm chooses,
at a given node, random hyperplanes in the feature space (starting with the best
axis-parallel split) and picks the one with the lowest impurity (given some impurity
measure). The algorithm performs remarkably well compared to other techniques
(such as mentioned in [10]) and it also optimises the impurity reduction, but this
method is considerably slower compared to linear regression for oblique splits as
discussed in 3.3.

28

Chapter 4

Methods

In this chapter, our approach to enforcing global monotonicity, as well as the
datasets of use are discussed in detail. The algorithm that we construct is called
Isotonic Oblique Decision Tree, abbreviated as IDT-oblique.

4.1 Setup

Our setting will be a single oblique tree where features could be either categorical
or numerical (binary, integer or real numbers). These features can further have
a customised domain. For example, house prices are not negative. The target is
either a binary class label (0 or 1) in the case of classification or a (continuous)
numeric value in the case of regression. In the case of classification, leaf predictions
are numbers in the interval [0, 1] calculated as the relative frequency of class label
1 of data points of a train set that fall into the specific leaf. If a leaf prediction is
greater than or equal to 1

2
, the predicted class label for a data point falling into the

leaf is going to be 1 and 0 if it does not fall into the leaf. In other words, the leaf
label is rounding the leaf prediction to the nearest integer. In the case of regression,
the leaf prediction is the mean of the target variable of training observations in a
leaf.

Leaves are disjoint by construction. To enforce global monotonicity in our
setting, we would like to check whether pairs of leaf nodes violate the monotonicity
constraint. Note that a leaf is a conjunction of linear constraints that together form
a convex polytope in X . The convex polytopes are disjoint and non-degenerate by
construction. The constraint violation happens if for two leaves t, t′ we have that
t ⪯ t′, but t′ has a higher predicted value (e.g. leaf prediction). If t ∼ t′, then
all pairs of points in the respective leaves are incomparable. The monotonicity
constraint is then vacuously satisfied. Simply checking every pair of points inside
the respective leaves is infeasible as there could be infinitely many such points.

29

Constraint programming To determine whether there exists a monotonicity
violation between two leaf nodes, we cannot simply look at the minimum and
maximum element of the leaves as in [1] since they might not exist in the case of
an oblique tree. For example, if the visualisation of a leaf node is an equilateral
triangle.

Since a leaf node corresponds to a convex polytope, it can be represented
by a set of linear inequalities of the form: w1x1 + w2x2 + · · · + wpxp ≤ c or
w1x1 + w2x2 + · · ·+ wpxp > c, in p dimensions. Here w is a vector of coefficients.
All the points x that satisfy these inequalities belong to the leaf node. Our leaf
domination problem is formally defined as follows. Let t and t′ denote arbitrary
leaf nodes of a tree, and let m and n denote the length of the path from the root
node to t and t′ respectively. Furthermore, let Cti denote the condition at depth i
on the path from the root node to t, where C(x) ∈ {w⊤x ≤ c,w⊤x > c}.

To determine whether t is dominated by t′, we verify whether the following set
of linear constraints is satisfiable:

(1) Ct1(x) ∧ . . . ∧ Ctm(x), and

(2) Ct′1
(x′) ∧ . . . ∧ Ct′n(x

′), and

(3) x ⪯ x′.

This problem belongs to the family of Constraint Satisfaction Problems [16].
To solve such a problem, we can use a constraint satisfaction system where we
want to know whether there exists a feasible solution (points x,x′) that satisfies
the constraints. In case the domain of a feature is integers, we have a mixed integer
constraint programming problem. These problems are known to be NP-hard1. If
all feature-domains are real values, a constraint satisfaction problem belongs to
complexity class P . After all, the constraint programming problem can be cast
to a linear programming problem by adding a constant as the objective function,
and linear programming problems belong to P [17].

The constraint satisfaction system we use is an API written in Python, which
is based on a high-performance theorem prover called Z32 [18]. This solver can
handle strict inequalities as compared to for example LP-solver of Google OR-
Tools3. According to the creators of the Z3-solver, it is known as a satisfiability
modulo theories (SMT) solver, which works as a sort of extension to SAT solver.
One way to think of it is that Z3 contains a SAT solver at its core, augmented
by multiple libraries (the ’modulo theories’ part of SMT) that allow for formulas
which are more complicated than simple literals (x,¬x) such as x > 2 [19]. In
other words, the language of SMT solvers is first-order logic.

1http://myweb.usf.edu/~molla//2015_spring_math482/satisfiability.pdf
2https://ericpony.github.io/z3py-tutorial/guide-examples.htm.
3https://developers.google.com/optimization/lp/lp_example.

30

http://myweb.usf.edu/~molla//2015_spring_math482/satisfiability.pdf
https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://developers.google.com/optimization/lp/lp_example

Oblique tree generation To grow the oblique tree, we use the non-negative
least squares method, applied to the data points in each splitting node, as described
in section 3.3. The output of this method is (for p numerical features) of the form:
b+a1x2+a2x2+ · · ·+apxp where the b is a bias term and ai are coefficients greater
than 0 (if a coefficient is 0, the feature is dropped). We will neglect the bias term
(effectively setting it to 0) since we use standard split methods [9] for numerical
features to determine the best split value. In that case, a1x2 + a2x2 + · · · + apxp

is viewed as being one numerical feature. In the case of classification, we keep
splitting until we reach leaf purity, i.e., all leaf nodes contain only data points
with the same class label. In the case of regression, splitting to leaf purity could
make the tree too large, since the target attribute could assume many different
values, and so each leaf will probably contain close to one data point. Already
with 150 data points the tree would have somewhere about 150 leaves. For this
reason, two variables nmin and minleaf are introduced to prevent the tree from
growing towards leaf purity. If a node contains less than nmin data points, then
it becomes a leaf node. Furthermore, a split is not allowed if it produces a child
node with less than minleaf data points.

One might wonder why linear regression is used to compute linear combination
splits instead of linear discriminant analysis. The reason is that they are equivalent
in the case of binary class labels, save for a bias term which we disregard anyway
[20].

Isotonic regression We use the isotonic regression as described in [1] by solving
at most m maximal flow problems if the tree contains m leaves. The weights of
the leaves are the number of data points (from the train set) that they contain.
Isotonic regression is then applied to correct predictions of leaf nodes that violate
the monotonicity constraint. We perform isotonic regression on the leaves of a tree
only if there are monotonicity violations. The isotonic regression algorithm expects
an ordering of the leaves. This ordering is determined via constraint programming
as described in the previous paragraph. Then, the algorithm produces for each
leaf a new prediction such that it minimises the weighted sum of squared errors
with respect to the current leaf predictions, subject to the global monotonicity
constraint. This is done for both classification and regression trees. The high-level
outline of isotonic regression is found in algorithm 1. Let T̃ denote the set of leaf
nodes of tree T , ȳt denote the average y (target) value of all observations that fall
into node t, and n(t) is the number of observations that fall into node t, and D be
our leaf order relation.

A new partial ordering is determined as follows:

1. For each pair t, t′ ∈ T̃ , determine whether tDt′, t′Dt, both, or neither.

2. Take the transitive closure of D.

31

3. Partition T̃ into blocks B such that such that for each t, t′ ∈ B: tDt′ and
t′Dt, and B cannot be extended without losing this property. Give each
block B the weight and value:

w(B) =
∑
t∈B

n(t), g(B) =

∑
t∈B n(t)ȳt

w(B)
.

4. Define the following ordering on the blocks:

B1 ⪯ B2 ⇔ ∃t1 ∈ B1, t2 ∈ B2 : t1Dt2.

The relation (⪯,B) is a partial order. Then, we perform isotonic regression on
(⪯,B) as our order.

Algorithm 1 High-level isotonic regression, given a classification/regression tree
T

1: compute the order (⪯,B) on leaf nodes of T
2: let for each t ∈ T , g(t) be the prediction (which equals mean target value), let

w(t) be the number of data points in t
3: compute isotonic regression of function g on order (⪯,B) with weight function

w, which returns function g∗

4: let for each leaf t ∈ T , g∗(t) be the new prediction

Cost complexity pruning We use cost complexity pruning as described in [9]
to find the globally monotone oblique tree that has the lowest error rate, using
cross-validation.

Four modes of the algorithm The algorithm can be run in four different
modes:

1. Oblique tree without any monotonicity constraints,

2. Oblique tree using only non-negative least squares (positive coefficients since
we drop features with zero-coefficients) for its linear combination splits,
which we refer to as local monotonicity,

3. Oblique tree using only the ICT algorithm to repair predictions of leaf nodes
such that we enforce global monotonicity,

4. Oblique tree enforcing both, local and global monotonicity.

32

The downside of the local monotonicity constraint is that it cannot guarantee
a model where the predicted target values always respect global monotonicity,
as it is a heuristic. Furthermore, if the dataset is not monotone, then there is
no guarantee that the resulting tree satisfies local monotonicity constraint (even
though IDT-oblique enforces it). The downside of global monotonicity is that it
might be the case that only relatively few data points in a leaf get the ’wrong’
label, but isotonic regression changes the label for all points in a leaf and thus it
might hurt the performance (e.g. accuracy) of the model.

4.2 Description of IDT-oblique

In this section, the details of IDT-oblique are discussed, following a top-down
approach. Relevant parts are discussed and listed in more depth. First, the tree
generation is performed as listed in algorithm 2. X is the training dataset without
labels and y is the corresponding labelling.

Algorithm 2 Recursively grow tree starting at the root and creating possible
children

1: if all instances have the same class or all data points are the same or node
contains less than nmin data points then

2: current node becomes leaf
3: return
4: end if
5: if oblique tree == true then
6: oblique feature← linear regression(X, y, non negative least squares)
7: end if
8: (split feature, split value) ← best split()

9: determine Xleft, Xright, yleft, yright
10: recursively create and append left child node and right child node to current

node

We further note two important functions: linear regression and best split.
The former determines via linear regression an optimal linear combination of fea-
tures with respect to mean squared error, given whether we want to apply non-
negative least squares or not (Boolean value). This linear combination is then
applied to the training data to form the new linear combination feature with its
values. This feature is considered for splits, thus allowing for possible oblique
splits. We further set the intercept equal to 0, following the recommendation of
[11] to not include the bias. This is no problem as the calculation to determine the
best split introduces its own ’bias’. For example, suppose that the linear regression

33

procedure gives 3x1 + x2 for some features x1, x2. In the case of classification, the
decision boundary becomes 3x1 + x2 =

1
2
. If for a points x: 3x1 + x2 ≥ 1

2
the pre-

dicted label is 1, and 0 otherwise. Observe that this is the same as 3x1+x2− 1
2
= 0

Here, ’1
2
’ is the bias term. To determine a split, we only use the left-hand side.

Suppose the split is 3x1+x2−3 ≤ 0. What essentially happened was that our split
calculation method adjusted the bias to maximise impurity (e.g. Gini impurity)
reduction. However, if we started with a different bias than 1

2
the split calculation

method would still give 3x1 + x2 − 3 ≤ 0. Note further that we essentially have
created a new feature z = 3x1 + x2. Thus we calculate z for each data point, and
then z is considered as a ’single’ feature for the best split calculation.

Algorithm 3 shows the functions used to determine the best split given the
features and their values.

Algorithm 3 Determine best split in a given node

1: (best feature, best feature value) ← None

2: for feature in features of X do
3: if feature is categorical then
4: feature value ← subset of values to split on that maximises impurity re-

duction
5: else
6: sort unique values of the feature and check halfway between each pair

of consecutive values whether it maximises impurity reduction; assign
optimal halfway to feature value

7: end if
8: if feature gives a higher impurity reduction than best feature and left and

right child nodes will each have at least minleaf data points then
9: (best feature, best feature value) ← (feature, feature value)

10: end if
11: end for
12: return (best feature, best feature value)

We maximise impurity reduction in algorithm 3. In the case of classification,
the Gini impurity (essentially the variance of a Bernoulli random variable) is used.
In the case of regression, however, this is the residual sum of squares as explained
in chapter 8 of [21].

Thus far, we have explained the basis of IDT-oblique without global mono-
tonicity. To enforce global monotonicity in hindsight, we need to determine the
ordering between the leaves of a tree. The ordering is stored in a matrix consisting
of zeroes and ones and it is based on our leaf order discussed in chapter 2. The
check whether there is a dominance relation between two leaves is done by the

34

constraint solver as mentioned in the previous section. Let l1, l2 be two leaves. We
check whether a point that falls into l2 (respects the splitting rules) dominates (is
greater than or equal to) a point that falls into l1 (in all its coordinates). There is
only a slight note to be made if we are in a situation of partial monotonicity (that
is, we allow for categorical features). A categorical feature does not necessarily
have an ordering between its values. See also subsection 2.2.2. For each categor-
ical feature that is present in the spilling rules of l1 and l2, the values should be
overlapping for a dominance relation. Should it be that for a categorical feature
x, the intersection of the set of values of x found in the splitting rules of l1 with
the set of values of x found in the splitting rules of l2 is empty, then l1 and l2
are incomparable (no dominance relation). If a categorical feature is not present
in the splitting rules, we assume that the data points can take on any value of
that categorical feature. Consider for example the following situation. Suppose
we want to predict house prices in Utrecht with only two features: lot size (contin-
uous number starting from 0) and whether the seller is male or female. Suppose
we only have two data points: one where the lot size equals 55 where the seller is
male, but the other has a lot size 40 with a female seller. The intersection of the
categorical feature is empty and thus we cannot say whether one house is better
(dominates) the other.

Given the order matrix between the leaves, the isotonic algorithm described in
[1] is used to then correct the predictions of the leaves such that the global mono-
tonicity constraint is enforced. To highlight the important parts, see algorithm
4. The time complexity of this algorithm is asymptotically equal to the time it
takes to solve the maximum flow problem on line 19. Given that |V | ≈ |E|, it
does not matter for example whether we use the algorithm of Edmonds-Karp or
the push-relabel maximum flow algorithm. We have chosen for Edmonds-Karp.
In general, if a graph contains more edges than nodes then push-relabel is more
efficient whereas if the graph contains more nodes than edges it is more efficient to
use Edmonds-Karp [22]. In our context, if there exist relatively many leaf domina-
tions then push-relabel would be a better choice. However, for simplicity, we have
chosen to use Edmonds-Karp regardless of the number of leaf dominations present.
Line 19 of the algorithm denotes the return value of the isotonic regression, the
new leaf predictions.

To give an example of algorithm 4, consider 4 leaves V = {a, b, c, d} and let a
be dominated by b, c and d. Let b and c both be dominated by d. Let the function
g be defined as

35

Algorithm 4 Determine new leaf predictions given leaf order matrix X and cur-
rent leaf predictions; the algorithm is also called the isotonic regression algorithm

1: construct a graph G = (V,E) where V are the leaves and let E be a directed
edge (li, lj) if a point in leaf li is dominated by a point in leaf lj

2: let g(x) be the current leaf prediction of some leaf x ∈ V
3: let w(x) be a weight assigned to some leaf x ∈ V

4: compute x̄ =
∑

x∈V
g(x)w(x)∑
x∈V w(x)

5: let node capacities be as follows: c(x) = w(x)(g(x)− x̄) for x ∈ V
6: for x, y ∈ V do
7: if x ⪯ y then
8: add directed edge with capacity ∞ from x to y
9: end if

10: end for
11: add two nodes s, t to V
12: for x in V \ {s, t} do
13: if c(x) > 0 then
14: add directed edge from s to x with edge capacity c(x)
15: else if c(x) < 0 then
16: add directed edge from x to t with edge capacity −c(x)
17: end if
18: end for
19: solve maximum flow problem on graph G and find a minimum S − T cut
20: split graph G in two parts: L = T \ {t} and U = S \ {s}
21: if U ̸= ∅ and L ̸= ∅ then
22: recursively solve on U and L individually
23: else
24: return new leaf predictions f(x) = x̄ for x ∈ V
25: end if

36

g(x) =

2
5

if x = a,
1
5

if x = b,
4
5

if x = c,
2
5

if x = d.

(4.1)

Note that these leaves violate the global monotonicity constraint as the leaf
prediction of a is 2

5
which is greater than the leaf prediction of b, which is 1

5
. In

addition, the leaf prediction of c is 4
5
but the leaf prediction of d is smaller, namely

2
5
. Thus leaf b dominates leaf a but has a smaller leaf prediction. Likewise, leaf

d dominates leaf c but has a smaller leaf prediction. As for the leaf labelling, the
labels assigned to a, b and d are 0 and the label assigned to c is 1. Therefore, in
terms of labels, leaves c and d violate the global monotonicity constraint. Suppose
further that all weights are set to 1. We have that x = 2

5
. After adding the source,

sink and edge capacities we end up constructing the directed graph 4.1.

a

b

c

ds t

∞
∞

∞
∞

∞

1
5

2
5

Figure 4.1: Example a of directed graph with 4 leaves, a source and a sink, along
with edge capacities.

It is not possible to send flow in the graph from s to t as there is no path from
s to t, the max flow is thus equal to 0 and we find the minimum S − T cut to be
as follows: S = {s, c, d} and T = {t, a, b}. Thus L = {a, b} and U = {c, d}. As
neither sets are empty, we recursively solve the algorithm on the graph projected
on a, b and the graph projected on c, d. Starting with the former, we construct
graph 4.2. Since a, b are the only leaves we have x = 3

10
.

a bs t
∞

1
10

1
10

Figure 4.2: Directed graph with edge capacities generated from graph 4.1 using
only leaves a, b and adding a source and sink.

37

We can see that in graph 4.2 the max flow is 1
10

and we have S = {s} and
T = {a, b, t}. As U = ∅ we set the new predictions of leaves a, b equal to 3

10
.

If we also were to construct a directed graph projected on leaves c and d (and
adding a source and sink) we get 1

2
as new leaf predictions for these two leaves.

Thus we have a new prediction function

f(x) =

3
10

if x = a,
3
10

if x = b,
1
2

if x = c,
1
2

if x = d.

(4.2)

We see that with the new prediction function, the violations of the global
monotonicity constraint have been resolved. As for the leaf labelling, the labels
of a and b stay 0, and the label of c stays 1 but the label of d is changed from
0 to 1. With this relabelling, both the predictions and labels respect the global
monotonicity constraint. In the end, we are interested in the leaf labels, these
should respect the global monotonicity constraint. This happens automatically if
we force the leaf predictions to respect the constraint with this algorithm.

As mentioned in the previous section, cost complexity pruning is performed as
discussed in [9].

An interesting finding pointed out by [1] is that in the case of classification,
when performing the procedure of algorithm 4 two leaves with a common parent
might get new predictions such that they end up having the same label. That
is, both get a new prediction that is greater than or equal to 1

2
, or both get a

new prediction that is less than 1
2
. In that case, we prune back to their common

parent, which thus becomes a leaf. However, pruning back to the parent might
cause a violation of the global monotonicity constraint. Therefore, we again apply
algorithm 4. The procedure of pruning back to the parent and applying ICT is
alternated until there are no two leaves with a common parent that have the same
prediction (label). This procedure is referred to as ICT-prune. See algorithm 5.

Algorithm 6 shows how we use cross-validation in combination with cost com-
plexity pruning, isotonic regression and ICT-prune. We choose to make the tree
globally monotone only at the end of the algorithm for the sake of time savings.

There are different ways of doing the cross-validation, for example, we could
make every tree in the cost complexity pruning sequence globally monotone before
determining the error of βj. But for the sake of time savings we do isotonic
regression only at the end.

38

Algorithm 5 The ICT-prune procedure

1: change state← false
2: for leaf pair with the same label and common parent p do
3: prune back so that p becomes the new leaf
4: change state← true
5: end for
6: if change state == true then
7: apply algorithm 4
8: recursively apply ICT-prune again
9: end if

39

Algorithm 6 The cross-validation procedure

1: grow a classification/regression tree T1 on the entire training data
2: perform cost complexity pruning on T1 to obtain tree sequence S = T1 > T2 >
· · · > {t1} where {t1} denotes the root node and Tj > Tk means that Tk is
obtained in by pruning Tj in one or more nodes

3: for tree Tj in cost complexity tree sequence do
4: let βj =

√
αjαj+1 where αj is a cost parameter obtained via cost complexity

pruning
5: end for
6: divide training data into 5 equal-sized folds
7: let F be the set that contains all

(
5
4

)
ways of choosing 4 of the 5 folds

8: for 4 folds f ∈ F do
9: grow a tree T ′ on f

10: perform cost complexity pruning on T ′ to obtain new tree sequence S ′

11: for each βj do
12: retrieve T ′

j from sequence S ′

13: predict with T ′
j on the remaining unused fold, keep track of the errors

made for this specific βj

14: end for
15: end for
16: choose the βi that has lowest total error
17: retrieve Ti from the original cost complexity pruning sequence S
18: if global monotonicity then
19: make Ti globally monotone with isotonic regression algorithm 4
20: if Ti is a classification tree then
21: perform ICT-prune algorithm 5
22: end if
23: end if
24:

25: return Ti

40

Chapter 5

Experimentation

Our IDT-oblique algorithm discussed in the previous chapter is applied to multiple
different datasets. The specific datasets and results are discussed in this chapter.

5.1 Datasets

We use both real and artificially constructed datasets.

5.1.1 Real datasets

Some of the used real datasets are mentioned in section 5.1 of [1]. Within the
real datasets, a distinction is made between datasets used for classification and re-
gression. The classification is strictly binary (0/1) and regression is on a numeric
target variable. See table 5.1 for the full list of real datasets, along with some
statistics. Real datasets are observations of the real world, except for ’Water’. We
still include it in the list of real datasets because it describes a scenario which may
very well happen in the real world. These datasets are chosen because it is rea-
sonable to think that monotonicity constraints would hold (i.e., the datasets are
chosen in such a way that a subset of the features has a common sense monotone
relation with the target attribute). As we are not necessarily domain experts, we
employ an additional verification step by examining the sign of coefficients ob-
tained through linear regression on a dataset where we predict the specific target
value. If the signs of the coefficients comply with common sense, the dataset is
included. Using linear regression is better than for example looking at the individ-
ual correlation between each feature and the target, as explained in [23]. Linear
regression provides an isolated look (all else equal) at the relationship between a
feature and the target (even though this may not be a linear relationship in reality,
we are only interested in the sign of the coefficient). However, it is not possible to

41

get an isolated look at the relationship between a feature and the target in terms
of correlation. Consider for example two features: the number ice cream sales and
the temperature. Let the target be the number of violent crimes. If we look at the
individual correlation between the number of ice cream sales and the number of
violent crimes, we may get that they are positively correlated. This is, however,
not necessarily the case since the temperature could be positively correlated with
both features. Thus the correlation between the number of ice cream sales and the
number of violent crimes also includes the effects of temperature.

Furthermore, not all features are included. We only selected a subset of the
features for which a monotonicity constraint could be justified based on common
sense or domain knowledge, and the presumed direction of monotonicity was con-
firmed by the sign of the linear regression coefficient. Rows with missing values
have been removed. Because IDT-oblique makes the harmless assumption that
all monotone features have an increasing relationship with the target, if the ac-
tual relation is decreasing, the feature values have to be inverted. In case of a
monotone-decreasing relation between some feature and the target, we transform
the values x as follows

x· = xmax − x+ xmin (5.1)

where x· is the transformed value and xmax, xmin are the maximum and minimum
values of the feature. The listed datasets are in table 5.1. This includes the
cardinality after removing data points with missing values, and the number of
features per dataset listed is including the filtering of the features via common
sense reasoning and linear regression. The tables in appendix B show for each
dataset all features (before feature filtering, and including the target attribute)
and their corresponding description.

42

Real datasets

Name Cardinality
Number of

used features
Target mean Target-variance

Bankrupt [24] 440 5 0.5 0.25
Compas [25] 7214 4 0.45065 0.24756
Credit [26] 592 5 0.5 0.25
Haberman [27] 306 3 0.26471 0.19464
Water [28] 1824 9 0.5 0.25
Admission [29] 400 5 0.72 0.02
AutoMPG [30] 392 7 23.45 60.92
Computer [31] 6259 9 2219.58 337333.23
Kuiper [32] 804 5 21343.14 97710314.9
Wages [33] 526 7 5.9 13.64
Windsor [34] 546 11 68121.6 713032634.57

Table 5.1: Real datasets after preprocessing along with statistics. The initial five
datasets are for the purpose of classification, whereas the subsequent six datasets
are for the purpose of regression.

The Credit dataset is skewed in that only 296 out of 1319 are labelled 0. For this
reason, a random sample of size 296 is drawn from the data points with class label
1. Thus the total dataset that we use contains 592 data points. Some features such
as ’owner’ are encoded as ’no’/’yes’ in the original dataset. We modify such values
from ’no’/’yes’ to 0/1. The same preprocessing is performed with the Bankrupt
dataset, it is skewed in that only 220 out of the 6819 are labelled bankrupt. For this
reason, a random sample of size 220 is drawn from the remaining non-bankrupt
data points. Thus the total dataset that we use contains 440 data points. Dataset
Water is skewed in that only 912 out of the 7996 are labelled 1. For this reason, a
random sample of size 912 is drawn from the data points with class label 0. Thus
the dataset size is reduced to 1824 data points. Finally, with the Compas dataset,
we have changed the value ’Male’ of the ’sex’ attribute to 1 and ’Female’ to 0. For
’c charge degree’, the ’M’ is changed to 0 and ’F’ to 1. Even though the Haberman
dataset is skewed distributed (relative frequency of class 1 of 0.26), We decide to
not take a sample from it as the cardinality is already relatively small.

We now give two detailed examples of what we mean by common sense mono-
tone relation with the target attribute and use of linear regression, using the
Bankrupt and Credit datasets mentioned in table 5.1.

Bankrupt The target attribute of this dataset is to determine whether compa-
nies are bankrupt or not (1 if yes, 0 if not). All the features are normalised in the

43

range 0 to 1 by changing the values per future using the formula in equation 5.2
[35].

x· =
x− xmin

xmax − xmin

(5.2)

Here, x is the old feature value, x· is the transformed value and xmax, xmin are
the maximum and minimum values of the feature in discussion.

Using common sense reasoning with linear regression as validation, the fol-
lowing features are chosen: ’Debt ratio %’, ’Current Liability to Current Assets’,
’Cash Flow to Liability’, ’Net Income to Total Assets’ and ’Fixed Assets to As-
sets’. See also table 5.2 for the outcome of linear regression. We rely on the book
”Corporate Finance” by Berk and DeMarzo (2011) to explain these ratios [36].

’Debt ratio %’ is defined as Liability
Total Assets

. Firstly, as the debt ratio increases, it in-
dicates that a larger proportion of a company’s assets are financed by liability (such
as loans) rather than equity. This implies a higher risk of bankruptcy. Secondly, a
higher debt ratio means that a company has a larger amount of debt obligations
to fulfil. If the company faces financial difficulties or economic downturns, it may
struggle to meet its debt obligations, increasing the likelihood of bankruptcy. Ad-
ditionally, a high debt ratio can affect a company’s creditworthiness and ability
to obtain additional financing. Lenders may view a high debt ratio as a signal of
financial instability. This further enhances the risk of bankruptcy.

Regarding ’Current Liability to Current Assets’, the ratio indicates the pro-
portion of a company’s short-term liabilities compared to its short-term assets. A
higher ratio suggests difficulty for a company to cover immediate financial obliga-
tions, increasing its risk of bankruptcy.

Cash flow refers to the total amount of cash that flow in minus out of a com-
pany during a specific period. It is important to look at the cash flow because
accounting rules might allow a company to recognise revenue before services or
sales are executed [37]. These recorded events have not generated cash yet. Thus,
to get an overview of the financial resources available to a company, it is impor-
tant to look at the cash flow. A higher ’Cash Flow to Liability’ suggests that the
company has enough cash flow to maintain its operations and repay debts. In
contrast, a lower ratio may indicate financial instability and potential difficulties
in covering its liabilities, increasing the likelihood of bankruptcy.

The ratio ’Net Income to Total Assets’ is an indicator of a company’s prof-
itability. A higher ratio suggests that the company generates more profit relative
to its total assets, indicating strong financial performance. In contrast, a lower
ratio indicates lower profitability, potentially signalling financial distress (income
no longer fulfils financial obligations) which on its turn can lead to an increased
risk of bankruptcy.

Finally, ’Fixed Assets to Assets’ indicates the proportion of a company’s assets

44

that are allocated to fixed or long-term assets, such as buildings and machinery.
A higher ratio implies that a larger portion of a company’s assets are invested in
long-term assets. If a company faces financial difficulties or economic downturns,
it may struggle to meet its short-term debt obligations, because fixed assets cannot
easily be converted to cash, increasing the likelihood of bankruptcy.

Both ’Cash Flow to Liability’ and ’Net Income to Total Assets’ have a mono-
tone decreasing relation with the target, so the corresponding feature values are
modified using equation 5.1 to get a monotone increasing relation.

Feature Coefficient
Debt ratio % 3.18

Current Liability to Current Assets 1.26
Cash Flow to Liability −2.01

Net Income to Total Assets −1.77
Fixed Assets to Assets ϵ

Table 5.2: Linear regression on the Water dataset. Here, ϵ stands for a very small
positive number.

Credit dataset The dataset contains originally 11 features and 1 target at-
tribute. The target is simply whether the application for a credit card is accepted
given the feature values (1 if accepted, 0 if not). The dataset contains 1319 in-
stances without missing values.

It stands to reason that the banks tend to accept low-risk applicants [38]. So,
if there are negative reports (major derogatory reports) about the applicant, the
bank is less likely to accept the application. Thus we expect to see a minus sign
for the coefficient of the feature ’reports’. For ’age’, it is not that obvious. On
the one hand, if the applicant is relatively younger then he is more likely to be
able to work and cover the credit card expenses. But on the other hand, older
people tend to be more responsible for their expenses. For this reason, ’age’ is
left out. Of course, if the income is relatively high, the bank would likely see
no reason to assume that the applicant will abuse the credit card later on. The
’share’ feature is the ratio of monthly credit card expenditure to yearly income.
One would reason that if this ratio is relatively high, a bank would be more inclined
to accept the credit card application because the credit card would apparently play
an important role in someone’s expenditure and likely be used frequently (or used
in high-price scenarios). Furthermore, using the credit card frequently implies
a higher per-transaction profit for the bank (that stems from additional fees for
using the credit card). The feature ’homeowner’ stands for whether an applicant
owns a home. This could indicate a stable financial situation of the applicant and
is a better risk for the bank as it has more grip on the applicant, so we expect to

45

see a positive coefficient sign. Feature ’dependents’ stands for how many people
depend on the applicant’s income. This could indicate that the applicant has a
stable financial situation, but the applicant may also be unmarried and/or have
no children. This feature can lead to different interpretations and is therefore left
out. If an applicant is self-employed, then there is no necessary guarantee for
a source of income. Thus we expect a minus coefficient sign for ’selfemp’. The
feature ’months’ indicate how many months an applicant lives at their current
address. We reason that the longer an applicant lives at their current address,
the more likely he is going to stay there and is thus a good (’safe’) risk for banks.
This is however not a compelling argument in our opinion, thus this feature is left
out. The feature ’majorcards’ stands for the number of major credit cards the
applicant currently holds. If the applicant already has multiple credit cards, then
this implies that other banks find the applicant to be a good risk. We do not find
this a compelling argument, however, thus the feature ’majorcards’ is left out. The
feature ’expenditure’ stands for the mean monthly credit card expenditure. We
see no compelling reason as to why this has a monotone relation with the target.
Finally, ’active’ stands for the number of active credit accounts of an applicant,
which is also left out. Indeed, when we observe the linear regression output in
table 5.3 we get that each coefficient sign fits our common sense.

Feature Coefficient
reports −0.08
income 0.02
share 2.47
owner 0.15
selfemp −0.12

Table 5.3: Linear regression on the Credit dataset.

Note that for IDT-oblique we want to have monotone increasing relations as
mentioned above in this subsection, thus we change the feature values accord-
ingly with equation 5.1. To sum up, all the features in table 5.3 are used in our
experiments.

Following the same line of reasoning as in the paragraph above, we discuss the
other datasets as follows.

Compas For this dataset, the target attribute is the expected recidivism (new
arrest within two years, after release) of a criminal (1 if we expect it to happen,
0 if not). The features chosen are ’age’, ’sex’, ’priors count’ and ’c charge degree’.
Because ’age’ has a decreasing monotone relation, its feature values are modified
so that the relationship becomes monotone increasing.

46

Haberman The target attribute is the survival status of patients within 5 years
(1 if the patient survived, 2 if the patient died). Because the dataset contains 1/2
labels instead of 0/1, we modified it to 0/1. All features are used for this dataset.

Water The target attribute is whether the water in an urban environment is
safe or not (1 if safe, 0 if not). With common sense, we expect all features to
have a monotone decreasing relation with the target since all features are danger-
ous toxins. Yet, with linear regression, not all coefficient signs are negative. See
table 5.5. Some coefficients are positive. The reason for these unexpected posi-
tive coefficients could be because we took a sample from the entire dataset (due
to the skewness), noise in the data, the model may not be linear at all, or strong
correlation between (independent) features that cause this effect, also called multi-
collinearity. However, the sign of the coefficients when performing linear regression
is the same if we consider the entire dataset before preprocessing, see table 5.4.
However, after also considering figure 5.1 (which is created on the Water dataset
after preprocessing) multicollinearity seems plausible. See for example the strong
correlation of 0.72 between ’viruses’ and ’bacteria’.

After experimenting and removing some features we decided to choose all fea-
tures listed in table 5.6. Since all coefficients are negative, we changed the feature
values accordingly with equation 5.1.

47

Feature Coefficient
aluminium 0.09
ammonia −ϵ
arsenic −0.23
barium 0.01
cadmium −1.31
chloramine 0.02
chromium 0.13
copper −0.03
flouride 0.01
bacteria 0.07
viruses −0.09
lead −0.13

nitrates −ϵ
nitrites −0.02
mercury −3.04

perchlorate −ϵ
radium −ϵ
selenium -0.37
silver −0.09

uranium −0.88

Table 5.4: Linear regression on the Water dataset, before any preprocessing. Here,
ϵ stands for a very small positive number.

48

Feature Coefficient
aluminium 0.11
ammonia −ϵ
arsenic −0.43
barium 0.02
cadmium −3.07
chloramine 0.04
chromium 0.29
copper −0.08
flouride 0.01
bacteria 0.13
viruses −0.24
lead −0.45

nitrates −0.01
nitrites −0.08
mercury −2.22

perchlorate −ϵ
radium −0.01
selenium −1.17
silver −0.37

uranium −2.15

Table 5.5: Linear regression on the Water dataset. Here, ϵ stands for a very small
positive number.

Figure 5.1: Correlation matrix of the features of the Water dataset.

49

Feature Coefficient
ammonia −ϵ
arsenic −0.12
cadmium −6.03
copper −0.01
viruses −0.16
lead −0.35

nitrates −0.01
mercury −3.9
selenium −1.04
uranium −2.1

Table 5.6: Linear regression on the Water dataset using only a subset of the
features. Here, ϵ stands for a very small positive number.

Admission The target attribute is a number between 0 and 1 which represents
the probability to be admitted to some university. The ’University rating’ feature
should have a negative monotone relation with the target: the higher the rating,
the lower the probability to get admitted. All other features should be chosen
with common sense, and they all should have a monotone increasing relation with
the target because according to this dataset, the higher the scores and ratings, the
better the performance of the student. However, this turned out not to be the case
as can be seen in table 5.7. The ’University rating’ has a positive coefficient sign,
therefore we remove it. We then redo the linear regression without ’University
rating’ and we observe that the ’SOP’ still has a negative coefficient. As ’SOP’
stands for ’statement of purpose’ we find its negative coefficient contradicting our
common sense (we expect to see a positive coefficient). Thus, we decided to not
include ’SOP’ in our experiments. The selected features are found in table 5.8.

Feature Coefficient
GRE Score ϵ

TOEFL Score ϵ
University Rating 0.01

SOP −ϵ
LOR 0.02
CGPA 0.12

Research 0.02

Table 5.7: Linear regression on the Admission dataset using only a subset of the
features. Here, ϵ stands for a very small positive number.

50

Feature Coefficient
GRE Score ϵ

TOEFL Score ϵ
LOR 0.02
CGPA 0.12

Research 0.02

Table 5.8: Linear regression on the Admission dataset using only a subset of the
features as in table 5.7, but without ’University Rating’ and ’SOP’.

AutoMPG The target attribute is the miles per galon (MPG) of a car, which
is an integer number. The ’car name’ and ’origin’ are not included for they are
nominal features. It should not matter what the origin of the car is when we
are only interested in monotonicity. Similarly, there are a lot of unique names
thus this would imply that IDT-oblique cannot say anything about the relation
between two cars just because their name is different. Observe table 5.9 The
’displacement’ feature should have a monotone decreasing relation with the target,
yet the coefficient using linear regression is positive. However, as an exception, we
still keep this feature because the reason it has a negative coefficient is due to a
strong correlation with the other features, see table 5.10 [39]. The ’acceleration’
is the rate at which a car can increase its speed, common sense tells us that the
coefficient should be negative. However, according to the table, it is positive, so
we decided to drop that feature from our experiments. Thus all features minus
’acceleration’ in the table are included in our experiments.

Feature Coefficient
cylinders −0.33

displacement 0.01
horsepower −ϵ
weight −0.01

acceleration 0.09
model year 0.75

Table 5.9: Linear regression on the AutoMPG dataset using only a subset of the
features. Here, ϵ stands for a very small positive number.

51

class cylinders displacement horsepower weight acceleration model year
class 1 −0.78 −0.81 −0.78 −0.83 0.42 0.58
cylinders −0.78 1 0.95 0.84 0.90 −0.50 −0.35
displacement −0.81 0.95 1 0.90 0.93 −0.54 −0.37
horsepower −0.78 0.84 0.90 1 0.86 −0.69 −0.42
weight −0.83 0.90 0.93 0.86 1 −0.42 −0.31
acceleration 0.42 −0.50 −0.54 −0.69 −0.42 1 0.29
model year 0.58 −0.35 −0.37 −0.42 −0.31 0.29 1

Table 5.10: Correlation matrix for AutoMPG dataset.

Computer The target attribute of this dataset is the price of a personal com-
puter. The dataset contained a mistake however, the values of the ’FIRM’ feature
are inverted (meaning that instead of 1 they had 0, and instead of 0 they had
1). This was rectified. All of the features are chosen as they have a monotone
increasing relation with the target. The ’TREND’ feature stands for how long
the computer is available in the market. Logically, it has a monotone-decreasing
relation with the target, so its values are modified to obtain a monotone-increasing
relation with the target.

Kuiper The target attribute of this dataset is the suggested retail price of a
car. The chosen features are ’Mileage’, ’Cylinder’, ’Cruise’, ’Leather’ and ’Type’.
Feature ’Mileage’ has a monotone decreasing relation with the target, so its values
are modified to obtain a monotone increasing relation with the target. This dataset
is included as ’Type’ (e.g. sedan or coupe) is a categorical (nominal) feature,
making it the only dataset in our collection that has a categorical feature.

Wages The target attribute of this dataset is the hourly wage of a worker. The
features chosen are ’educ’, ’exper’, ’tenure’, ’female’, ’nonwhite’, ’numdep’, and
’married’. Note, however, that there is a decreasing monotone relation of ’female’
with the target, and of ’nonwhite’ with the target. The features (corresponding 0/1
values) are therefore changed to ’male’ and ’white’. This way, all chosen features
have an increasing monotone relation with the target.

Windsor The target attribute of this dataset is the price of a house. Some
features such as ’aircon’ (whether central air conditioning is available) are encoded
as ’no’/’yes’ in the original dataset. We modify such values from ’no’/’yes’ to 0/1.
All features should have a monotone increasing relation with the target, and indeed
this is confirmed via linear regression as all feature coefficients have a positive sign.
Thus, all features of this dataset are included.

52

5.1.2 Artificial datasets

Artificial datasets are constructed only for classification and used to study the
relationship between properties of the data and performance of IDT-oblique. The
artificial datasets are constructed in two phases. First, the dataset without labels
is constructed, and then random monotone labellings per dataset are produced
such that the relative frequency of the majority class is at most 60%.

Three types of datasets are drawn from a multivariate normal distribution,
one with a high positive (0.9) correlation between the features (from now referred
to as positive dataset), one with zero correlation between the features (from now
referred to as zero dataset) and one with a high negative correlation between the
features (from now referred to as negative dataset). With the latter, we create
two groups of equal size that constitute the feature set, such that the features
are highly positively correlated (0.9) within their respective groups, but highly
negatively correlated (-0.9) between the groups. This way, the positive dataset is
more likely to give us many comparable data points (using our product order), see
figure 5.2a. The negative dataset is more likely to give us few comparable points,
see figure 5.2b. The zero dataset is to observe the working of IDT-oblique in a
random setting, see figure 5.2c. See for example figure The number of features is
either 2, 6 or 10. The number of data points is 2000.

(a) Positive correlation. (b) Negative correlation. (c) Zero correlation.

Figure 5.2: Small illustrative datasets of 20 data points and 2 features each, with
different degrees of correlation between the features. Figure 5.2a has 175 compa-
rable pairs of points (dominance relation between two points), figure 5.2b has 49
comparable pairs of points and figure 5.2c has 115 comparable pairs of points.

After a dataset is constructed, multiple random monotone binary labellings
are generated. Because this is a random procedure, multiple labellings are selected
instead of one. This way, coincidences from drawing random labellings are averaged
out as we are interested in the general performance of IDT-oblique. The procedure
for generating a single random monotone binary labelling is called Propp-Wilson
and it is a Markov chain Monte Carlo algorithm, using a ”sandwiching” technique

53

as follows. Let X be a set of data points. A set L ⊆ X is a lower set of X
if x ∈ L and x′ ⪯ x implies x′ ∈ L. We start two Markov chains: one from
the empty lower set and one from X. Then, given some number of iterations,
we do the following. In each iteration, we draw a random data point from X,
and toss a fair coin to decide whether we will add the data point to both lower
sets, or remove the data point to both lower sets. Note that we only perform the
add/remove operation to a lower set if the resulting set is still a lower set. We
do this until the sets ”meet” (the lower sets contain the same data points and are
thus the same); if they did not meet within the specified number of iterations,
the number of iterations is doubled and the procedure is repeated. The algorithm
is proven to converge [40]. There is a one-to-one correspondence between lower
sets of X and monotone binary labellings on X: give all elements of the lower set
class label 0, and all other elements class label 1. This way, we have generated a
random monotone binary labelling. In appendix A, the algorithm is discussed in
its generality along with pseudocode. To give a concrete example, consider figure
5.3. In this example we have have X = {a,b, c,d} and lower set L = {a,b}. If
the data points in L get class label 0 and the data points in X \ L get class label
1, then this binary labelling is monotone.

a

0

b

0

c

1

d

1

Figure 5.3: Example of a lower set with 2 data points: a and b. An arrow from a
to b indicates that a ⪯ b. The numbers displayed above the nodes represent the
class labels.

After generating random monotone binary labellings, a dataset is split into
train/test sets. At most 5% noise is introduced independently to the train/test to
make the datasets more realistic. First, we determine the number of pairs of points
such that there is a domination relation between points within a pair. These pairs
need further to be disjoint, meaning that a data point can be present in at most
one pair. Lastly, the labels of the points within a pair need to be the same (either
both points are 0 or both are 1). Then, noise is introduced in one pair as follows.
Let the points in one pair be called x,y and suppose that point x ⪯ y. Then,

54

if both labels are 0, we change the label of x to 1. Otherwise, if both labels are
1, we change the label of y to 0. The amount of noise we introduce divided by
the size of the train/test set is at most 5% (meaning that 5% is the goal, but if
we could not find that many pairs to introduce noise with, we introduce as much
noise as possible). This method to introduce noise is from now on referred to as
the disjoint pairs method.

This method of noise introduction guarantees that the number of labels that
need to be re-labelled to regain monotone labelling is precisely equal to the amount
of noise introduced. See the following lemma 5.1.1.

Lemma 5.1.1. The number of data points that need to be re-labelled to regain
the monotonicity of the labelling equals the amount of noise introduced using the
disjoint pairs method.

Proof. First, a pair is only considered for noise if there exists a domination relation
between the points of the pair. Observe further that for a given pair where noise is
introduced, the monotonicity of the labels cannot be fixed if we change the labels
of points outside this pair. The only way to restore monotonicity between the
points of the pair is to re-label one point of the pair. Since the pairs are disjoint,
the total number of re-labels necessary to regain the monotonicity of the labelling
is at least equal to the total amount of noise introduced.

The total number of re-labels necessary to regain the monotonicity of the la-
belling is of course at most the amount of noise introduced: simply undo the
noise.

Thus, the number of labels that need to be re-labelled to regain the monotonic-
ity of the labelling equals the amount of noise introduced using the disjoint pairs
method.

To conclude this subsection, the splitting of a dataset into train/test tests in
case of a classification task is done in a stratified way on the labels. This means
that the train set and test set will have roughly the same labelling distribution.
This is useful since otherwise we might train/test a tree on skew data, which could
lead to unfair conclusions on the performance of the tree.

5.1.3 Train set size and regulation

In all of our experiments, three different train set sizes are taken into consideration
(determined via preliminary experimentation): 50, 100 or 150. The reason for these
three sizes is that if the train set is large enough, then the regression tree tends to
satisfy the constraints without explicitly enforcing them. Consequently, it becomes
hard to see the effect of enforcing monotonicity constraints via IDT-oblique for
larger train sets. If the dataset is 50 then we set nmin = 2, minleaf = 1. If the

55

dataset is 100 then we set nmin = 8, minleaf = 4. If the dataset is 150 then we
set nmin = 12, minleaf = 6. The values for nmin and minleaf are determined
via preliminary experimentation such that the growth of a tree does not take too
long, and we do not have a lot of leaves which helps to speed up IDT-oblique.

5.2 Approach

To reiterate, all four modes of IDT-oblique are applied to the datasets. We per-
form cost-complexity pruning using cross-validation. For classification, we also
perform ICT-pruning as explained earlier in the modes where global monotonicity
is enforced.

Statistics For classification tasks, we use the following metrics:

• Accuracy

• Precision

• Recall

• F1

(
which is equal to 2 precision·recall

precision+recall

)
• Area under ROC curve (auroc)

For regression tasks, we settle with the mean squared error (MSE) as a metric.
Statistical significance testing can be performed in multiple ways. For example,
McNemar’s tests compare all pairs of the modes of the tree or pairwise t-tests.
But there is a downside, as there are so many multiple tests, the probability of a
type 1 error also increases. To counter that Bonferroni correction could be applied,
which is however considered conservative and weak [41]. Since we have multiple
trees (different modes of IDT-oblique), and would like to compare them over mul-
tiple datasets, we follow the recommendation of [41] to use the Friedman test to
check whether we can reject a null-hypothesis (significance level at α = 0.05 as
standard done in these tests). In the case we reject it, a post-hoc significance test
called Nemenyi is applied to know which mode of IDT-oblique performs signifi-
cantly better compared to the others. Since the Nemenyi only gives a statistically
significant difference between the test statistics (not which mode is better com-
pared to the other), we manually look at the test statistics and see which mode
contains higher values compared to another mode. According to the same paper,
these two tests work very well together and are one of the best choices for our use
case. Another benefit of using these two tests is that in comparisons over multiple
datasets, we do not have to deal with an elevated type 1 error, as the sources of

56

the variance are the differences in performance over (independent) datasets and
not on (usually dependent) samples.

The statistic for significance testing in the case of classification is accuracy.
The reason for that is that this metric is more intuitive than for example F1 which
combines two other metrics: precision and recall. A higher F1 score is good as it
implies that a model’s prediction has relatively few false positives and few false
negatives. Accuracy is a simple metric that only denotes how many times a model
is correct (proportion of true positives and true negatives with respect to test set
size). As the used classification/artificial datasets are balanced with respect to
their class labels, our choice fell on accuracy.

There are multiple ways to train a tree and determine its performance statistics
as mentioned above. For example, splitting a dataset in train/validation/test set.
In this case, we would train a regression/classification tree on the training data,
then prune our tree and pick the one with the lowest error on the validation set.
Finally, the statistics are determined by applying this tree to the test set. There is
however one major drawback of using this conventional approach: the cardinality
of the dataset needs to be large enough so that the results are more reliable.
Given that our real datasets are sometimes quite small, such as the Haberman
dataset which contains relatively few data points, this train/validation/test split
might not be the best choice. We could remedy this problem by augmenting the
dataset with bootstrap sampling. However, bootstrap sampling does not treat the
original dataset as if it is the population as it involves sampling with replacement
from the original dataset. Thus, an augmented dataset by bootstrap sampling
does not contain more information about the population than what is given in the
original dataset. For that reason, it may not work well with small datasets (i.e.,
we do not gain additional information and thus the results are still potentially
unreliable). Instead, for real datasets we opt for implementing the cross-validation
technique for regression/classification trees as explained in section 4.2. But for
artificially constructed datasets, since we have enough data points, we apply a
train/validation/test set split on the dataset.

5.2.1 Train/validation/test set

First, we train a classification/regression tree on the train set. Then a pruning
sequence is determined. Then the best tree (based on accuracy) is chosen by ap-
plying the trees of the tree sequence to the validation set. In the case of global
monotonicity, ICT-prune is applied in the chosen tree. Finally, the required statis-
tics are determined by applying the chosen tree to the test set. The validation set
size is set to be 50% of the size of the dataset minus the train set. The test set
contains the remaining 50% of the data points.

57

5.2.2 Cross-validation

With cross-validation we split a dataset as train/test set. To highlight an im-
portant part of algorithm 6, for each βj we follow along the pruning sequence
and retrieve the corresponding tree and with it we perform predictions on the re-
maining fold which was left out. This way, for each βj, we have 5 out-of-sample
predictions (as one fold was left out each time), and we choose the corresponding
tree that has the lowest total error. That is, we sum the error of all 5 out-of-
sample predictions together and determine which βj corresponds to the lowest er-
ror and pick the corresponding tree (after possible isotonic regression/ICT-prune)
from the original/first tree sequence. Its error is estimated as the following ratio:
total error from cross-validation

size of dataset
. More details are found in [42]. In literature, this method

is considered good and useful [43]. To illustrate the working with a small example
(no local or global monotonicity constraint), consider table 2.1 again. Here, we get
the following α sequence: α1 = 0, α2 = 0.1, α3 = 0.4. Then we can compute the βs
as β1 =

√
0 · 0.05 = 0, β2 =

√
0.1 · 0.4 = 0.2, β3 =

√
0.4 · ∞ = ∞. By performing

cross-validation we get a total error of 3 for both β1 and β2. For β3 we get an error
of 9. As both β1, β2 are equally good, we can choose either of them, say β1 (even
though β2 is a smaller tree). The total error of the corresponding tree is estimated
as 3

10
= 0.3.

The chosen tree from the train set is then applied to the test set to calculate
the desired statistics.

5.3 Results and discussion

Certain values in the classification and artificial result tables are highlighted in
grey. In the case of classification, this indicates the mode or modes of the IDT-
oblique with the highest accuracy on the test set being considered. In the case of
regression, this indicates the mode or modes with the smallest mean squared error.
In our evaluation tables, the abbreviation LG refers to the mode where both local
and global monotonicity constraints are enforced. L̄G corresponds to the mode
where only the global monotonicity constraint is enforced. LḠ represents the mode
where only the local monotonicity constraint is enforced. Finally, L̄Ḡ indicates the
fully unconstrained mode. Furthermore, in the tables where the p-value is smaller
than the significance level, those values are also highlighted in grey. Additional
statistical tables regarding classification and artificial datasets can be found in
appendix D.

58

5.3.1 Real data

For the classification task, the labels of the train and test set are stratified and
statistical significance testing is conducted with accuracy as metric. For regression
tasks, the target is not stratified (as it is not a label anymore), and statistical
significance testing is conducted with MSE as metric. The training size is 150 for
each dataset. We have the following results. For statistical significance testing,
we take as null hypothesis H0 = All modes of IDT-oblique perform equally well
on the datasets with respect to accuracy in the case of classification; MSE in the
case of regression. The significance level is set to α = 0.05.

Regression Table 5.11 shows the MSE for each mode of IDT-oblique applied on
the regression test sets, for all train set sizes.

We can deduce from these tables that the smaller the train set is, the more
prominent the effect of enforcing monotonicity constraints as in general the differ-
ence of the MSE values between LG and L̄Ḡ tends to decline on the test sets. For
example, with AutoMPG the difference is 0.85 when train set size is 50. When the
train set size is 100, the difference is 0.73. When the train set is 150, the difference
is 0.21. This phenomenon has been discussed in subsection 5.1.3: If the train set
is large enough, then the regression tree tends to satisfy the constraints without
explicitly enforcing them.

Furthermore, for all training set sizes, the mode where both monotonicity con-
straints are enforced seems to be the top performer as it has the lowest MSE in 4
out of the 6 datasets (for train set size 100 even 5 out of 6). The mode where the
only local monotonicity constraint is enforced comes in second place. Only once
do the modes that do not enforce the local monotonicity constraint beat the rest,
when the train set size is 150 with respect to the Kuiper dataset, L̄Ḡ is the best
performing mode. This seems to be an outlier in our results. A reason could be
that the chosen features do not represent the need for enforcing (global) mono-
tonicity constraint enough. Or, if we were to enforce global monotonicity, it affects
prediction of the entire leaf. This implies that enforcing the global monotonicity
constraint would only correct for a small number of incorrect labels for data points
in a leaf while introducing relatively more wrong new labels for the rest of the leaf.
Another reason could be that the global monotonicity constraint is more often
vacuously satisfied due to difference of data points in the values for the categorical
feature ’Type’.

The statistical significance testing results of comparing the IDT-oblique modes
are as follows. If the train size is 50, we get a p-value from the Friedman test equal
to 0.0035. As this is smaller than α = 0.05, it implies that there is a statistically
significant difference between some MSE values. See table 5.12 for the post-hoc
Nemenyi test. We can conclude that there is a statistical significance between

59

mode L̄G compared to mode LG. If we look at the individual MSE values for
both modes in table 5.11, we can conclude that the MSE values are smaller for
LG and thus it performs significantly better than the L̄G. Similarly, mode L̄G is
significantly worse based on MSE than LḠ. From this, we deduce that the local
monotonicity constraint is more critical than the global monotonicity constraint.
Even though there is no significant difference, we still see that the MSE is lower
in the case of the mode LG compared to L̄G.

Proceeding with significance testing if the train size is 100, we get a p-value
from the Friedman test equal to 0.051. This is larger than our α and thus we
cannot reject H0 in this case.

For train test size 150 the p-value of the Friedman test is 0.035. We proceed
with the post-hoc Nemenyi test to determine the significant differences, see table
5.13. Unfortunately, the post-hoc Nemenyi test could not find any significant
differences (α still at 0.05) between the MSE values. This is because the test is
known to be less accurate than the Friedman test [41]. We reject the H0 but
cannot give a conclusive answer which mode of IDT-oblique outperforms another,
although one may assume from table 5.13 that LG significantly outperforms L̄G
(looking at the respective MSE values gives an indication which mode outperforms
the other). So having the local monotonicity constraint (all coefficients are positive
in oblique splits) has its benefits if the train set size is relatively large.

We see that if the train set size declines, the differences between the modes
of IDT-oblique become more significant, indeed giving more ground to our theory
that if the train set is large enough, then the regression tree tends to satisfy the
constraints without explicitly enforcing them.

Finally, in general, not enforcing the local monotonicity constraint generates
a worse model compared to enforcing it. This is likely due to the tree making
splits early on with negative coefficients, which results in an unrecoverable split
as discussed in section 3.3. Another reason is that enforcing local monotonicity
will likely set the negative coefficients to zero, effectively using less features when
determining the splits. This combats overfitting of the model on the data.

60

Train set size LG L̄G LḠ L̄Ḡ
50 0.0072 0.0114 0.0093 0.0109

Admission 100 0.0055 0.0072 0.0073 0.0070
150 0.0056 0.0072 0.0062 0.0066

50 17.53 26.08 17.53 18.38
AutoMPG 100 11.29 25.38 11.29 12.02

150 11.99 60.65 10.55 12.2

50 142200 351550 212403 218503
Computer 100 94112 106919 97988 116586

150 87466 92163 88271 95291

50 101475000 103377100 64724450 69963970
Kuiper 100 106261200 85241970 49858290 50385930

150 103304700 103198100 40536170 38513820

50 10.86 34.46 10.74 13.03
Wages 100 9.14 14.33 9.7 13.3

150 9.11 16.83 9.41 10.61

50 363860200 420322200 412652000 574990300
Windsor 100 311893800 415459900 325382200 413842200

150 284492000 334268700 299826600 335350300

Table 5.11: Test set MSE for regression datasets.

LG L̄G LḠ L̄Ḡ
LG 1
L̄G 0.014 1
LḠ 0.9 0.014 1
L̄Ḡ 0.23 0.66 0.23 1

Table 5.12: The p-values of the post-hoc Nemenyi test for regression where train
set size equal to 50.

61

LG L̄G LḠ L̄Ḡ
LG 1
L̄G 0.07 1
LḠ 0.9 0.11 1
L̄Ḡ 0.28 0.9 0.4 1

Table 5.13: The p-values of the post-hoc Nemenyi test for regression where train
test size equal to 150.

Classification Table 5.14 shows the accuracies for each mode of IDT-oblique
applied on the classification test sets, for all train set sizes.

In the classification case we witness the same phenomenon as with regression:
the smaller the train set is, the more prominent the effect is of enforcing mono-
tonicity constraints. For example, with Bankrupt the difference between LG and
L̄Ḡ is 0.05 when train set size is 50. When the size of the train set is 100, the
difference is 0.01. However, when the train set size increases to 150, the differ-
ence becomes 0. It should be noted that for certain datasets like Compas, the
difference between 100 and 150 may actually increase. Nevertheless, overall, when
considering the trend from 50 to 150, the differences tend to decrease. For train
set sizes 50 and 150, the LG mode is the best performer (or ties with other modes)
on all datasets. Only if train set size 100, the LG mode has 0.001 less accuracy
compared to L̄Ḡ on Compas. Given the relatively small difference, this could be
a coincidence.

Observe further that for train set sizes 50 and 100 the L̄Gmode has an accuracy
of 0.5 on the test set of Water. This is due to the pruning of the specific tree back
to the root. In that case, the prediction is the majority class in the train set. Since
we use stratified sampling, the class labels of data points are evenly distributed
in the train set, resulting in about 50% chance of predicting the correct label.
We would like to point out another interesting observation concerning the Water
dataset, for example, if the train set size is 50. When we do not enforce any
monotonicity constraint, the split that occurs at the root (which also happens to
be the only split in the entire model) can be found in equation 5.3.

0.009 · ammonia− 0.64 · arsenic + 9.4 · cadmium− 0.07 · copper
− 0.23 · viruses− 1.06 · lead− 0.017 · nitrates + 37.18 ·mercury

+ 1.18 · selenium− 0.59 · uranium ≤ 0.41

(5.3)

We see that monotonicity constraints are necessary because split 5.3 does not
comply with common sense: if there are more viruses in the water, the water would
be safer according to the model (remember the features have been transformed such

62

that they are monotone increasing with the target, thus the plus and minus signs
need to be read vice versa).

The accuracies for Haberman perhaps do not mean as much since the dataset
has a relative frequency of class 1 of 0.26 (see table 5.1).

On Credit all of the modes perform equally well. Consider as an example the
following tree that is constructed without enforcing any monotonicity constraints,
and without pruning (train set size 50 and tree is traversed via depth-first traver-
sal).

1 Node level) splitting rule to current node ; #data points ;

impurity ; relative frequency of class 1 ; star (*) if node is

leaf

2 0) root ; 50 ; 0.25 ; 0.5

3 1) share <= 0.0016 ; 26 ; 0.037 ; 0.0385

4 2) 0.0102* reports -0.0101* income +565.0641* share +0.2496* homeowner

-0.1033* selfemp <= 0.5861 ; 25 ; 0.0 ; 2.22e-16 ; *

5 2) 0.0102* reports -0.0101* income +565.0641* share +0.2496* homeowner

-0.1033* selfemp > 0.5861 ; 1 ; 0.0 ; 1 ; *

6 1) share > 0.0016 ; 24 ; 0.0 ; 1 ; *

The second split of the tree is a complex oblique split that uses all of the features.
This split lets the tree overfit on the train set, and no further splitting is necessary
afterwards as the child leaves are pure. However, due to cost complexity pruning,
we prune back such that the tree consists only of one root and two leaves. In
that case, the only feature taken into consideration is ’share’. Thus, the ratio of
monthly credit card expenditure to yearly income becomes the deciding factor as
to whether a credit card application is accepted. That is why, if train set size is
the same for all modes, the accuracy on Credit is the same for all modes. This is
because all models generate a tree with only one split on the ’share’ feature. More
examples of generated trees for various datasets are found in appendix C.

The statistical significance testing results of comparing the IDT-oblique modes
are as follows. For train set size 50 the p-value of Friedman test is 0.039, this
means that we reject H0. See table 5.15 for the p-values of the post-hoc Nemenyi
test. Although the p-values are all greater than α due to the inexactness of the
post-hoc test, it can be deduced that mode LG is significantly better than L̄Ḡ
based on accuracy.

For train set size 100 the p-value is 0.26 and therefore we cannot reject H0.
For train test size 150 the p-value of the Friedman test is 0.39, again we can

not reject H0.
We can come to the conclusion that the various modes of IDT-oblique exhibit

comparable performance in classification tasks when considering the accuracy met-
ric and train set sizes of 100 and 150. However, upon observing the tables, it is
evident that enforcing both local and global monotonicity constraints results in
an overall better performance for these train set sizes. This improvement could

63

be attributed to either the absence of decisive features in our experiments, or the
datasets lacking a decisive feature altogether. Nevertheless, for a train set size
of 50, we discovered a significant improvement by enforcing both monotonicity
constraints when compared to the fully unconstrained counterpart.

Train set size LG L̄G LḠ L̄Ḡ
50 0.77 0.75 0.76 0.72

Bankrupt 100 0.82 0.5 0.82 0.81
150 0.82 0.82 0.82 0.82

50 0.644 0.62 0.636 0.549
Compas 100 0.669 0.549 0.669 0.67

150 0.64 0.64 0.6 0.62

50 0.95 0.95 0.95 0.95
Credit 100 0.99 0.99 0.99 0.99

150 0.98 0.98 0.98 0.98

50 0.72 0.72 0.71 0.71
Haberman 100 0.757 0.757 0.699 0.748

150 0.74 0.74 0.74 0.74

50 0.71 0.5 0.66 0.57
Water 100 0.674 0.5 0.638 0.633

150 0.77 0.77 0.77 0.77

Table 5.14: Test set accuracy for classification datasets.

LG L̄G LḠ L̄Ḡ
LG 1
L̄G 0.32 1
LḠ 0.6 0.9 1
L̄Ḡ 0.07 0.87 0.6 1

Table 5.15: The p-values of the post-hoc Nemenyi test for classification with train
set size equal to 50.

5.3.2 Artificial data

In this subsection, the results for the artificially constructed datasets are discussed.
The same hypothesis and statistical significance testing from the previous subsec-
tion is adopted. Some statistics about the generated labels (before introducing
noise) are provided in tables D.13, D.14 and D.15 of appendix D. The datasets are

64

all for the purpose of classification. The different modes of IDT-oblique are run on
each degree of correlation (positive/zero/negative). For each correlation degree,
the metric (accuracy) is the mean of the metric taken over all labellings for that
particular degree of correlation (and number of features). The results are found in
table 5.16. In general, we do not observe the same trend as with the real datasets:
a smaller train set does not seem to make enforcing monotonicity constraints more
prominent. However, we make the following two observations.

1. All else equal, accuracy tends to decline with the number of features. This
effect is most emphatic with respect to the zero and negative datasets. For
example, if train set size is 50 and the correlation is negative, then we have
for the mode LG the following accuracies: {(2, 0.813), (6, 0.581), (10, 0.497)},
where the first item of a tuple is the number of features and the second item
of the tuple is the corresponding accuracy value.

2. All else equal, accuracy tends to increase with correlation between the fea-
tures. For example, if the train set size is 150 and the number of features is
2, then we have for the mode LG the following accuracies: {(negative, 0.84),
(zero, 0.9), (positive, 0.92)}.

A plausible explanation for the first observation is that for a fixed correlation
degree between the features (e.g. positive correlation), having fewer features im-
plies more comparable pairs of data points, as two points x,x′ are only comparable
if x ⪯ x′ or x′ ⪯ x. If there are p features, then x ⪯ x′ holds if and only if xi ≤ x′

i

for all 1 ≤ i ≤ p. For a fixed correlation degree, the data is randomly generated.
Thus, if there are relatively many features, then it is more probable to have xi > x′

i

for some i. To validate this observation, we conduct a statistical test between the
number of features. For each fixed number of features there are 3 degrees of corre-
lation, 4 modes of IDT-oblique and 3 different test set sizes; constituting a total of
36 accuracy values. We set α = 0.05. The p-value of Friedman test is 2.32 · 10−16.
See table 5.17, the performance on 2 features is significantly better than on 6 or
10, and the performance on 6 features is significantly better than on 10.

As for the second observation, a plausible explanation is that higher correla-
tion implies more comparable pairs, see figure 5.2. To validate this observation, we
again conduct a statistical test but now between the correlation degrees. For each
fixed degree of correlation, there are 36 accuracy values. Again we set α = 0.05.
The p-value of Friedman test is 1.04·10−14. See table 5.18, the performance on pos-
itive datasets is significantly better than on zero or negative, and the performance
on zero datasets is significantly better than on negative.

Also worth noting is that the mode LG performs better on positive/zero
datasets as compared to negative datasets. Just like with real datasets, enforcing
monotonicity constraints is favourable.

65

Observe also that in table 5.16 we have an accuracy of 0.494 on the negative
dataset where the number of features is 50 and train set size is 50 with mode LḠ.
An accuracy worse than 0.5 means that this model is worse (accuracy-wise) than
just predicting a label randomly in a uniform way. Also unique is that the accuracy
value on this negative dataset worsens when both local and global monotonicity
constraints are enforced, compared to only enforcing the global monotonicity con-
straint.

To give an illustration of how enforcing monotonicity constraints can make the
tree smaller, see figure 5.4. In the example we have two features, negative correla-
tion between them, a train set size of 50. In one case we enforce both monotonicity
constraints (LG), in the other we have the fully unconstrained counterpart (L̄Ḡ).
The dataset used is entitled 2features.pickle negative labelling 9.csv and
can be found in our supplemented GitHub repository.

(a) Leaves of mode LG. (b) Leaves of mode L̄Ḡ.

Figure 5.4: Illustrated leaves of classification trees, generated with two modes of
IDT-oblique: LG and L̄Ḡ. The train set size used is 50 and there are two features
with negative correlation between them. No cost complexity pruning is performed.

Statistical significance testing between the modes of IDT-oblique is conducted
as follows. The same hypothesis as classification is adopted and all modes of IDT-
oblique are tested with respect to all datasets given a particular train set size.
Per train set size, there are 9 datasets since for each correlation degree we have
a variant with 2,6 or 10 features. Thus per mode, we have a list of 9 accuracies.
The results are as follows.

If the train set size is 50, then the p-value of the Friedman test is 0.03. The
post-hoc Nemenyi test however could not find significant differences, see table 5.19,
but it is safe to assume that it is between LG and L̄G. The Friedman test probably
found a significant difference between these modes and a manual observation of

66

table 5.16 tells us that LG performs significantly better based on accuracy than
L̄G.

If the train set size is 100, then the p-value of the Friedman test is 0.31. Thus
all modes perform equally well, which makes sense when we inspect the accuracy
tables.

If the train set size is 150, then the p-value of the Friedman test is 0.0053. See
table 5.20 for the p-values of the post-hoc Nemenyi test. Mode LḠ is significantly
better compared to L̄G. Thus only enforcing the local monotonicity constraint
is significantly better for accuracy as opposed to only enforcing the global mono-
tonicity constraint.

67

Number of features Train set size LG L̄G LḠ L̄Ḡ
50 0.8883 0.8831 0.8875 0.8822

Positive 2 100 0.9 0.9 0.9 0.9
150 0.921 0.917 0.921 0.917
50 0.86 0.74 0.86 0.84

Positive 6 100 0.873 0.678 0.872 0.858
150 0.87 0.61 0.87 0.86
50 0.8385 0.7017 0.8398 0.8125

Positive 10 100 0.85 0.64 0.85 0.83
150 0.86 0.58 0.86 0.83

50 0.8786 0.8776 0.8786 0.8781
Zero 2 100 0.892 0.892 0.891 0.891

150 0.9 0.9 0.9 0.9
50 0.643 0.56 0.641 0.629

Zero 6 100 0.655 0.63 0.655 0.657
150 0.6682 0.6495 0.6678 0.665
50 0.508 0.498 0.507 0.503

Zero 10 100 0.5174 0.5058 0.5134 0.5129
150 0.515 0.509 0.518 0.512

50 0.813 0.828 0.826 0.83
Negative 2 100 0.8455 0.8445 0.8444 0.8435

150 0.8417 0.8411 0.8434 0.8427
50 0.581 0.532 0.583 0.572

Negative 6 100 0.583 0.55 0.59 0.587
150 0.587 0.555 0.584 0.577
50 0.497 0.502 0.494 0.496

Negative 10 100 0.4945 0.5086 0.4971 0.4999
150 0.506 0.511 0.51 0.507

Table 5.16: Test set accuracy for artificial datasets.

2 6 10
2 1
6 0.001 1
10 0.001 0.001 1

Table 5.17: The p-values of the post-hoc Nemenyi test between the number of
features.

68

Positive Zero Negative
Positive 1
Zero 0.001 1
Negative 0.001 0.001 1

Table 5.18: The p-values of the post-hoc Nemenyi test between the correlation
degrees.

LG L̄G LḠ L̄Ḡ
LG 1
L̄G 0.052 1
LḠ 0.9 0.13 1
L̄Ḡ 0.26 0.88 0.46 1

Table 5.19: The p-values of the post-hoc Nemenyi test based on accuracy where
train set size is 50.

LG L̄G LḠ L̄Ḡ
LG 1
L̄G 0.082 1
LḠ 0.9 0.018 1
L̄Ḡ 0.46 0.77 0.18 1

Table 5.20: The p-values of the post-hoc Nemenyi test based on accuracy where
train set size is 150.

69

Chapter 6

Conclusion

The objective of this research has been to develop the first monotone oblique
decision tree algorithm, known as IDT-oblique. This was achieved by incorporating
isotonic regression and constraint solving. Isotonic regression is applied to the
order matrix of the leaves based on a domination relation between them, and
the leaf predictions, ensuring that the new leaf predictions uphold a monotone
decision tree. The dominance relation is determined by recognising that the leaves
can be represented as convex polytopes in the feature space, allowing them to be
expressed as linear inequalities. These inequalities are then given to the constraint
solver, Z3, along with an inequality expressing whether a point in leaf t dominates
(is greater than) a point in leaf t′ based on the product order.

In addition to guaranteeing monotonicity, the option to only allow oblique splits
with positive coefficients has also been incorporated. This is because, without this
constraint, a split could occur in a way that cannot be corrected for in subsequent
splits, potentially requiring a relabelling of a significant portion of the leaves (see
section 3.3).

IDT-oblique has been evaluated by conducting experiments on well-known
datasets for monotone classification and regression, as well as artificially con-
structed data.

6.1 Answers to research questions

In the first chapter, we formulated three research questions that we will address
in this section. Research question 1 inquired about how we can verify whether a
given oblique tree is monotone. This is achieved by constructing the leaf order
matrix using the Z3 constraint solver. Subsequently, for each pair of leaves, we
check whether the leaf prediction correspond with the dominance relation stored
in the matrix. If leaf t dominates leaf t′, the mean target value in the case of

70

regression (leaf label in the case of classification) of t should be at least as high as
that of t′.

The second research question pertained to generating a decision tree in a jus-
tified manner. Justification comes from not randomly assigning new monotone
predictions, but rather optimising for performance by minimising the weighted
sum of squared errors with respect to the current leaf predictions, subject to the
global monotonicity constraint.

The final research question examined the predictive performance of our tree
with enforced monotonicity constraints compared to the unconstrained counter-
part. We have measured this using the MSE metric with respect to regression and
the accuracy metric with respect to classification.

In the case of regression, we observed that when IDT-oblique enforces both
local and global monotonicity constraints, it significantly outperforms the other
modes that do not enforce them, in most cases. Furthermore, the smaller the
train set is, the more prominent the effect is of enforcing monotonicity constraints,
as the difference in MSE of the algorithm mode that enforces both monotonicity
constraints compared to its fully unconstrained counterpart tends to decline on
the test sets. If the train set is large enough, then a regression tree tends to satisfy
the constraints without explicitly enforcing them. The Kuiper dataset seems to
be an outlier to this. A reason could be that the chosen features do not represent
the need for enforcing monotonicity constraint enough. Another reason could be
that the global monotonicity constraint is more often vacuously satisfied due to
difference of data points in the values for the categorical feature. Furthermore, for
a relatively small train set size of 50, the mode that enforces local monotonicity but
not global monotonicity significantly outperforms the mode that does not enforce
local monotonicity but enforces global monotonicity. In general, not enforcing the
local monotonicity constraint generates a worse model compared to enforcing it.
This is likely due to the tree making splits early on with negative coefficients,
which results in an unrecoverable split. Another reason is that enforcing local
monotonicity will likely set the negative coefficients to zero, effectively using less
features when determining the splits. This combats overfitting of the model on
the data.

In the case of classification we observe the same phenomenon as with regres-
sion: a smaller train set makes enforcing monotonicity constraints more prominent
and favourable in terms of accuracy. For train set size of 50 we find a significant
improvement by enforcing both monotonicity constraints compared to the fully
unconstrained counterpart. For larger train set sizes, the gain in accuracy is very
minimal. The unconstrained model tends to implicitly adhere to the monotonicity
present in the training data. However, it might also be due to the fact that we are
not domain experts in the fields where the data is collected, and we might have

71

missed crucial features. Additionally, we have seen that monotonicity constraints
are necessary for the explanation of the model. For the Water dataset, not enforc-
ing the local monotonicity constraints leads to a model that contradicts common
sense: if there are more viruses in the water, the water would be safer accord-
ing to an unconstrained model. In general, the mode where both monotonicity
constraints are enforced produces the best results compared to the other modes.

In the case of artificial datasets (also classification tasks), we have made two
observations. We discovered that all else equal, accuracy tends to significantly de-
cline with the number of features. This effect is most emphatic with respect to the
zero and negative datasets. The second observation is that, all else equal, accuracy
tends to significantly increase with correlation between the features. A plausible
explanation for both of these observations is that higher correlation/fewer number
of features implies more comparable pairs of data points. Furthermore, the accu-
racy on the negatively correlated dataset with 10 features and a train set size of
50 is worse than random guessing of a class label (accuracy of 0.494). Addition-
ally, accuracy for this negatively correlated dataset worsens when both local and
global monotonicity constraints are enforced, compared to only enforcing global
monotonicity. We have not encountered a situation with real data where enforc-
ing both constraints is worse compared to only enforcing the global monotonicity
constraint.

We have also observed that, in general, enforcing the monotonicity constraints
improves the performance of IDT-oblique compared to not enforcing them, assum-
ing the underlying nature of the data adheres to monotone relationships between
the features and the target.

6.2 Future work

The IDT-oblique algorithm focuses on trees for classification tasks with binary la-
belling. A potential extension could involve incorporating any ordinal labelling by
exploring the First-order Stochastic Dominance discussed in [1], or the Kotlowski
approach discussed in [2].

Another straightforward extension is enabling an ensemble of trees, such as a
random forest, to reduce bias, as ensemble models tend to be more complex [44].

Further research could also investigate the generated unconstrained oblique
splits. These allow for negative feature-coefficients. Currently, no form of regu-
larisation is implemented. However, it is apparent that an unconstrained oblique
split always uses all features, which can lead to overly complex splits that overfit
the training data. Consequently, this can result in IDT-oblique performing worse,
as seen with artificial datasets when there is a relatively large number of features.
One possible solution might involve incorporating regularisation and tuning the

72

regularisation parameter correctly (e.g., through grid search), allowing only a sub-
set of the features to be used.

Finally, an open question is whether it is possible to assume that all numeric
feature domains are real valued for constraint solving, so that the problem will
belong to P .

73

Bibliography

[1] R. van de Kamp, A. Feelders, and N. Barile, “Isotonic classification trees,” in
Advances in Intelligent Data Analysis VIII, 8th International Symposium on
Intelligent Data Analysis, IDA 2009, Lyon, France, August 31 - September 2,
2009. Proceedings, N. M. Adams, C. Robardet, A. Siebes, and J. Boulicaut,
Eds., ser. Lecture Notes in Computer Science, vol. 5772, Springer, 2009,
pp. 405–416. doi: 10.1007/978-3-642-03915-7_35. [Online]. Available:
https://doi.org/10.1007/978-3-642-03915-7%5C_35.

[2] C. Bartley, W. Liu, and M. Reynolds, “Enhanced random forest algorithms
for partially monotone ordinal classification,” in The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innova-
tive Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, AAAI Press,
2019, pp. 3224–3231. doi: 10.1609/aaai.v33i01.33013224. [Online]. Avail-
able: https://doi.org/10.1609/aaai.v33i01.33013224.

[3] W. Duivesteijn and A. Feelders, “Nearest neighbour classification with mono-
tonicity constraints,” inMachine Learning and Knowledge Discovery in Databases,
European Conference, ECML/PKDD 2008, Antwerp, Belgium, September
15-19, 2008, Proceedings, Part I, W. Daelemans, B. Goethals, and K. Morik,
Eds., ser. Lecture Notes in Computer Science, vol. 5211, Springer, 2008,
pp. 301–316. doi: 10.1007/978-3-540-87479-9_38. [Online]. Available:
https://doi.org/10.1007/978-3-540-87479-9%5C_38.

[4] J. R. Cano, P. A. Gutiérrez, B. Krawczyk, M. Wozniak, and S. Garcia,
“Monotonic classification: An overview on algorithms, performance measures
and data sets,” CoRR, vol. abs/1811.07155, 2018. arXiv: 1811.07155. [On-
line]. Available: http://arxiv.org/abs/1811.07155.

[5] R. Potharst and A. J. Feelders, “Classification trees for problems with mono-
tonicity constraints,” SIGKDD Explor., vol. 4, no. 1, pp. 1–10, 2002. doi:
10.1145/568574.568577. [Online]. Available: https://doi.org/10.1145/
568574.568577.

74

https://doi.org/10.1007/978-3-642-03915-7_35
https://doi.org/10.1007/978-3-642-03915-7%5C_35
https://doi.org/10.1609/aaai.v33i01.33013224
https://doi.org/10.1609/aaai.v33i01.33013224
https://doi.org/10.1007/978-3-540-87479-9_38
https://doi.org/10.1007/978-3-540-87479-9%5C_38
https://arxiv.org/abs/1811.07155
http://arxiv.org/abs/1811.07155
https://doi.org/10.1145/568574.568577
https://doi.org/10.1145/568574.568577
https://doi.org/10.1145/568574.568577

[6] M. J. Pazzani, S. Mani, and W. R. Shankle, “Acceptance of rules generated
by machine learning among medical experts,” Methods of information in
medicine, vol. 40, no. 05, pp. 380–385, 2001.

[7] “Decision trees.” (2013), [Online]. Available: https://blackquest.files.
wordpress.com/2013/12/lecture24.pdf (visited on 06/23/2022).

[8] F. Bollwein and S. Westphal, “Oblique decision tree induction by cross-
entropy optimization based on the von mises-fisher distribution,” Comput.
Stat., vol. 37, no. 5, pp. 2203–2229, 2022. doi: 10.1007/s00180-022-01195-
7. [Online]. Available: https://doi.org/10.1007/s00180-022-01195-7.

[9] A. Feelders. “Classification trees.” (2021), [Online]. Available: http://www.
cs.uu.nl/docs/vakken/mdm/trees-2021.pdf (visited on 12/07/2022).

[10] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and regression trees. Routledge, 2017.

[11] S. Pei, Q. Hu, and C. Chen, “Multivariate decision trees with monotonicity
constraints,” Knowl. Based Syst., vol. 112, pp. 14–25, 2016. doi: 10.1016/
j.knosys.2016.08.023. [Online]. Available: https://doi.org/10.1016/
j.knosys.2016.08.023.

[12] S. Pei and Q. Hu, “Partially monotonic decision trees,” Inf. Sci., vol. 424,
pp. 104–117, 2018. doi: 10.1016/j.ins.2017.10.006. [Online]. Available:
https://doi.org/10.1016/j.ins.2017.10.006.

[13] M. Armandpour, A. Sadeghian, and M. Zhou, “Convex polytope trees and its
application to VAE,” in Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, M. Ranzato, A. Beygelzimer,
Y. N. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021, pp. 5038–5051.
[Online]. Available: https://proceedings.neurips.cc/paper/2021/
hash/285a25c17f351708754cdb6d56f3962e-Abstract.html.

[14] J. Pearl, Probabilistic reasoning in intelligent systems. Elsevier, 2014, vol. 88.

[15] S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of oblique
decision trees,” J. Artif. Intell. Res., vol. 2, pp. 1–32, 1994. doi: 10.1613/
jair.63. [Online]. Available: https://doi.org/10.1613/jair.63.

[16] C. Lecoutre, Constraint Networks: Targeting Simplicity for Techniques and
Algorithms. John Wiley & Sons, 2013.

[17] N. Karmarkar, “A new polynomial-time algorithm for linear programming,”
Comb., vol. 4, no. 4, pp. 373–396, 1984. doi: 10.1007/BF02579150. [Online].
Available: https://doi.org/10.1007/BF02579150.

75

https://blackquest.files.wordpress.com/2013/12/lecture24.pdf
https://blackquest.files.wordpress.com/2013/12/lecture24.pdf
https://doi.org/10.1007/s00180-022-01195-7
https://doi.org/10.1007/s00180-022-01195-7
https://doi.org/10.1007/s00180-022-01195-7
http://www.cs.uu.nl/docs/vakken/mdm/trees-2021.pdf
http://www.cs.uu.nl/docs/vakken/mdm/trees-2021.pdf
https://doi.org/10.1016/j.knosys.2016.08.023
https://doi.org/10.1016/j.knosys.2016.08.023
https://doi.org/10.1016/j.knosys.2016.08.023
https://doi.org/10.1016/j.knosys.2016.08.023
https://doi.org/10.1016/j.ins.2017.10.006
https://doi.org/10.1016/j.ins.2017.10.006
https://proceedings.neurips.cc/paper/2021/hash/285a25c17f351708754cdb6d56f3962e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/285a25c17f351708754cdb6d56f3962e-Abstract.html
https://doi.org/10.1613/jair.63
https://doi.org/10.1613/jair.63
https://doi.org/10.1613/jair.63
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/BF02579150

[18] B. Dutertre and L. M. de Moura, “A fast linear-arithmetic solver for DPLL(T),”
in Computer Aided Verification, 18th International Conference, CAV 2006,
Seattle, WA, USA, August 17-20, 2006, Proceedings, T. Ball and R. B.
Jones, Eds., ser. Lecture Notes in Computer Science, vol. 4144, Springer,
2006, pp. 81–94. doi: 10.1007/11817963_11. [Online]. Available: https:
//doi.org/10.1007/11817963%5C_11.

[19] N. Bjørner and L. de Moura. “The inner magic behind the z3 theorem
prover.” (2019), [Online]. Available: https://www.microsoft.com/en-
us/research/blog/the-inner-magic-behind-the-z3-theorem-prover/

(visited on 05/06/2023).

[20] G. S. Maddala, Limited-dependent and qualitative variables in econometrics.
Cambridge university press, 1983.

[21] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to sta-
tistical learning. Springer, 2013, vol. 112.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 3rd Edition. MIT Press, 2009, isbn: 978-0-262-03384-8. [Online].
Available: http://mitpress.mit.edu/books/introduction-algorithms.

[23] M. Magdon-Ismail and J. Sill, “A linear fit gets the correct monotonicity
directions,” Mach. Learn., vol. 70, no. 1, pp. 21–43, 2008. doi: 10.1007/
s10994-007-5028-4. [Online]. Available: https://doi.org/10.1007/
s10994-007-5028-4.

[24] Bankrupt dataset, https://www.kaggle.com/datasets/fedesoriano/
company-bankruptcy-prediction, Accessed: 2023-05-05.

[25] Compas dataset, https://www.kaggle.com/datasets/danofer/compass,
Accessed: 2023-05-05.

[26] Credit dataset, https://www.kaggle.com/datasets/dansbecker/aer-
credit-card-data, Accessed: 2023-05-05.

[27] Haberman dataset, https : / / www . kaggle . com / datasets / gilsousa /

habermans-survival-data-set, Accessed: 2023-05-05.

[28] Water dataset, https://www.kaggle.com/datasets/mssmartypants/
water-quality, Accessed: 2023-05-05.

[29] Admission dataset, https://www.kaggle.com/datasets/akshaydattatraykhare/
data-for-admission-in-the-university, Accessed: 2023-05-05.

[30] Autompg dataset, https://www.kaggle.com/datasets/uciml/autompg-
dataset, Accessed: 2023-05-05.

[31] Computer dataset, http://qed.econ.queensu.ca/jae/2006- v21.3/
stengos-zacharias/, Accessed: 2023-05-05.

76

https://doi.org/10.1007/11817963_11
https://doi.org/10.1007/11817963%5C_11
https://doi.org/10.1007/11817963%5C_11
https://www.microsoft.com/en-us/research/blog/the-inner-magic-behind-the-z3-theorem-prover/
https://www.microsoft.com/en-us/research/blog/the-inner-magic-behind-the-z3-theorem-prover/
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1007/s10994-007-5028-4
https://doi.org/10.1007/s10994-007-5028-4
https://doi.org/10.1007/s10994-007-5028-4
https://doi.org/10.1007/s10994-007-5028-4
https://www.kaggle.com/datasets/fedesoriano/company-bankruptcy-prediction
https://www.kaggle.com/datasets/fedesoriano/company-bankruptcy-prediction
https://www.kaggle.com/datasets/danofer/compass
https://www.kaggle.com/datasets/dansbecker/aer-credit-card-data
https://www.kaggle.com/datasets/dansbecker/aer-credit-card-data
https://www.kaggle.com/datasets/gilsousa/habermans-survival-data-set
https://www.kaggle.com/datasets/gilsousa/habermans-survival-data-set
https://www.kaggle.com/datasets/mssmartypants/water-quality
https://www.kaggle.com/datasets/mssmartypants/water-quality
https://www.kaggle.com/datasets/akshaydattatraykhare/data-for-admission-in-the-university
https://www.kaggle.com/datasets/akshaydattatraykhare/data-for-admission-in-the-university
https://www.kaggle.com/datasets/uciml/autompg-dataset
https://www.kaggle.com/datasets/uciml/autompg-dataset
http://qed.econ.queensu.ca/jae/2006-v21.3/stengos-zacharias/
http://qed.econ.queensu.ca/jae/2006-v21.3/stengos-zacharias/

[32] Kuiper dataset, https://jse.amstat.org/jse_data_archive.htm, Ac-
cessed: 2023-06-09.

[33] Wages dataset, https://rdrr.io/cran/wooldridge/man/wage1.html,
Accessed: 2023-05-05.

[34] Windsor dataset, https://www.kaggle.com/datasets/photosho/house-
prices-for-the-city-of-windsor-canada, Accessed: 2023-05-05.

[35] D. Liang, C. Lu, C. Tsai, and G. Shih, “Financial ratios and corporate
governance indicators in bankruptcy prediction: A comprehensive study,”
Eur. J. Oper. Res., vol. 252, no. 2, pp. 561–572, 2016. doi: 10.1016/j.
ejor.2016.01.012. [Online]. Available: https://doi.org/10.1016/j.
ejor.2016.01.012.

[36] J. Berk and P. DeMarzo, Corporate Finance: Global Edition. Pearson Edu-
cation, 2011.

[37] M. C. Inc. “Accounting and auditing requirements for taiwan company or
branch.” (2013), [Online]. Available: http : / / www . matchest . com / en _

US/aboutusDetail.asp?id=20#:~:text=Businesses%5C%20are%5C%

20required%5C%20to%5C%20maintain,(IFRS)%5C%20and%5C%20US%5C%

20GAAP..

[38] W. H. Greene, “A statistical model for credit scoring,” 1992.

[39] A. Feelders. “Data mining introduction.” (2022), [Online]. Available: http:
//www.cs.uu.nl/docs/vakken/mdm/Slides/dm-intro2022.pdf.

[40] J. G. Propp and D. B. Wilson, “Exact sampling with coupled markov chains
and applications to statistical mechanics,” Random Structures & Algorithms,
vol. 9, no. 1-2, pp. 223–252, 1996.

[41] J. Demsar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006. [Online]. Available: http :
//jmlr.org/papers/v7/demsar06a.html.

[42] A. Feelders. “Classification trees (2).” (2021), [Online]. Available: http :
//www.cs.uu.nl/docs/vakken/mdm/Slides/dm-classtrees-2-2021.pdf

(visited on 05/06/2023).

[43] H. Blockeel and J. Struyf, “Efficient algorithms for decision tree cross-validation,”
J. Mach. Learn. Res., vol. 3, pp. 621–650, 2002. [Online]. Available: http:
//jmlr.org/papers/v3/blockeel02a.html.

[44] A. Feelders. “Bagging and random forests.” (2021), [Online]. Available: http:
//www.cs.uu.nl/docs/vakken/mdm/Slides/dm-bias-variance2021.pdf

(visited on 06/17/2023).

77

https://jse.amstat.org/jse_data_archive.htm
https://rdrr.io/cran/wooldridge/man/wage1.html
https://www.kaggle.com/datasets/photosho/house-prices-for-the-city-of-windsor-canada
https://www.kaggle.com/datasets/photosho/house-prices-for-the-city-of-windsor-canada
https://doi.org/10.1016/j.ejor.2016.01.012
https://doi.org/10.1016/j.ejor.2016.01.012
https://doi.org/10.1016/j.ejor.2016.01.012
https://doi.org/10.1016/j.ejor.2016.01.012
http://www.matchest.com/en_US/aboutusDetail.asp?id=20#:~:text=Businesses%5C%20are%5C%20required%5C%20to%5C%20maintain,(IFRS)%5C%20and%5C%20US%5C%20GAAP.
http://www.matchest.com/en_US/aboutusDetail.asp?id=20#:~:text=Businesses%5C%20are%5C%20required%5C%20to%5C%20maintain,(IFRS)%5C%20and%5C%20US%5C%20GAAP.
http://www.matchest.com/en_US/aboutusDetail.asp?id=20#:~:text=Businesses%5C%20are%5C%20required%5C%20to%5C%20maintain,(IFRS)%5C%20and%5C%20US%5C%20GAAP.
http://www.matchest.com/en_US/aboutusDetail.asp?id=20#:~:text=Businesses%5C%20are%5C%20required%5C%20to%5C%20maintain,(IFRS)%5C%20and%5C%20US%5C%20GAAP.
http://www.cs.uu.nl/docs/vakken/mdm/Slides/dm-intro2022.pdf
http://www.cs.uu.nl/docs/vakken/mdm/Slides/dm-intro2022.pdf
http://jmlr.org/papers/v7/demsar06a.html
http://jmlr.org/papers/v7/demsar06a.html
http://www.cs.uu.nl/docs/vakken/mdm/Slides/dm-classtrees-2-2021.pdf
http://www.cs.uu.nl/docs/vakken/mdm/Slides/dm-classtrees-2-2021.pdf
http://jmlr.org/papers/v3/blockeel02a.html
http://jmlr.org/papers/v3/blockeel02a.html
http://www.cs.uu.nl/docs/vakken/mdm/Slides/dm-bias-variance2021.pdf
http://www.cs.uu.nl/docs/vakken/mdm/Slides/dm-bias-variance2021.pdf

Appendices

78

Appendix A

Algorithm for generating
monotone labelling

Let (X,⪯) be a partially ordered set. A set L ⊆ X is a lower set of X if x ∈ L
and x′ ⪯ x implies x′ ∈ L. Let L denote the collection of all lower sets of X. Note
that there is a one-to-one correspondence between lower sets of X and monotone
binary labellings on X: give all elements of the lower set the label 0, and all other
elements the label 1. The downset of x is defined as ↓ x = {x′ ∈ X : x′ ⪯ x}.
Likewise, the upset of x is ↑ x = {x′ ∈ X : x ⪯ x′}. If L is a lower set, then L ∪ x
is a lower set if and only if ↓ x ⊆ L. Likewise, if L is a lower set, then L \ x is a
lower set if and only if ↑ x ∩ L = ∅.

See algorithm 7 for the pseudocode. The algorithm performs a random walk
on a state space, where each state corresponds to a lower set of X. We start two
Markov chains: one from the empty lower set (all elements of X get label 1), and
one from X (all elements of X get the label 0). These chains are coupled in the
sense that they use the same random numbers. In each iteration we draw a random
element from X, and toss a fair coin to decide whether we will add or remove this
element. If the two chains ”meet” (end up in the same state) in (less than) T
iterations, we have a random draw from L. Otherwise, we double the number of
iterations, and run the chains again from their initial states. It is important that
the same random numbers are used in the same iteration numbers of different runs
of the chains. In the pseudocode this is done by running the chain from time T
down to time 1, and storing the random draws in the vectors x and u.

79

Algorithm 7 Generate random lower set

1: T ← 1
2: draw x[1] uniformly at random from X
3: draw u[1] uniformly at random from {0, 1}
4: repeat
5: L1 ← ∅
6: L2 ← X
7: for t = T downto 1 do
8: x← x[t]
9: u← u[t]

10: if u = 1 then
11: if L1 ∪ x ∈ L then
12: L1 ← L1 ∪ x
13: end if
14: if L2 ∪ x ∈ L then
15: L2 ← L2 ∪ x
16: end if
17: else
18: if L1 \ x ∈ L then
19: L1 ← L1 \ x
20: end if
21: if L2 \ x ∈ L then
22: L2 ← L2 \ x
23: end if
24: end if
25: end for
26: T ← 2× T
27: x← append(x, sample(X, size = T/2))
28: u← append(u, sample({0, 1}, size = T/2))
29: until L1 = L2

30: return L1

80

Appendix B

Tables of all datasets with their
features and description

These tables are derived from the datasets of table 5.1. The features include the
target attribute in these tables. Note that the features included here are prior to
feature filtering.

Bankrupt
Feature Description
target Bankrupt?: Class label 0/1
X1 ROA(C) before interest and depreciation before interest: Re-

turn On Total Assets(C)
X2 ROA(A) before interest and percentage after tax: Return On

Total Assets(A)
X3 ROA(B) before interest and depreciation after tax: Return

On Total Assets(B)
X4 Operating Gross Margin: Gross Profit/Net Sales
X5 Realized Sales Gross Margin: Realized Gross Profit/Net Sales
X6 Operating Profit Rate: Operating Income/Net Sales
X7 Pre-tax net Interest Rate: Pre-Tax Income/Net Sales
X8 After-tax net Interest Rate: Net Income/Net Sales
X9 Non-industry income and expenditure/revenue: Net Non-

operating Income Ratio
X10 Continuous interest rate (after tax): Net Income-Exclude Dis-

posal Gain or Loss/Net Sales
X11 Operating Expense Rate: Operating Expenses/Net Sales
X12 Research and development expense rate: (Research and De-

velopment Expenses)/Net Sales
X13 Cash flow rate: Cash Flow from Operating/Current Liabilities

81

X14 Interest-bearing debt interest rate: Interest-bearing Debt/E-
quity

X15 Tax rate (A): Effective Tax Rate
X16 Net Value Per Share (B): Book Value Per Share(B)
X17 Net Value Per Share (A): Book Value Per Share(A)
X18 Net Value Per Share (C): Book Value Per Share(C)
X19 Persistent EPS in the Last Four Seasons: EPS-Net Income
X20 Cash Flow Per Share
X21 Revenue Per Share (Yuan ¥): Sales Per Share
X22 Operating Profit Per Share (Yuan ¥): Operating Income Per

Share
X23 Per Share Net profit before tax (Yuan ¥): Pretax Income Per

Share
X24 Realized Sales Gross Profit Growth Rate
X25 Operating Profit Growth Rate: Operating Income Growth
X26 After-tax Net Profit Growth Rate: Net Income Growth
X27 Regular Net Profit Growth Rate: Continuing Operating In-

come after Tax Growth
X28 Continuous Net Profit Growth Rate: Net Income-Excluding

Disposal Gain or Loss Growth
X29 Total Asset Growth Rate: Total Asset Growth
X30 Net Value Growth Rate: Total Equity Growth
X31 Total Asset Return Growth Rate Ratio: Return on Total As-

set Growth
X32 Cash Reinvestment %: Cash Reinvestment Ratio
X33 Current Ratio
X34 Quick Ratio: Acid Test
X35 Interest Expense Ratio: Interest Expenses/Total Revenue
X36 Total debt/Total net worth: Total Liability/Equity Ratio
X37 Debt ratio %: Liability/Total Assets
X38 Net worth/Assets: Equity/Total Assets
X39 Long-term fund suitability ratio (A): (Long-term Liabil-

ity+Equity)/Fixed Assets
X40 Borrowing dependency: Cost of Interest-bearing Debt
X41 Contingent liabilities/Net worth: Contingent Liability/E-

quity
X42 Operating profit/Paid-in capital: Operating Income/Capital
X43 Net profit before tax/Paid-in capital: Pretax Income/Capital
X44 Inventory and accounts receivable/Net value: (Inven-

tory+Accounts Receivables)/Equity

82

X45 Total Asset Turnover
X46 Accounts Receivable Turnover
X47 Average Collection Days: Days Receivable Outstanding
X48 Inventory Turnover Rate (times)
X49 Fixed Assets Turnover Frequency
X50 Net Worth Turnover Rate (times): Equity Turnover
X51 Revenue per person: Sales Per Employee
X52 Operating profit per person: Operation Income Per Employee
X53 Allocation rate per person: Fixed Assets Per Employee
X54 Working Capital to Total Assets
X55 Quick Assets/Total Assets
X56 Current Assets/Total Assets
X57 Cash/Total Assets
X58 Quick Assets/Current Liability
X59 Cash/Current Liability
X60 Current Liability to Assets
X61 Operating Funds to Liability
X62 Inventory/Working Capital
X63 Inventory/Current Liability
X64 Current Liabilities/Liability
X65 Working Capital/Equity
X66 Current Liabilities/Equity
X67 Long-term Liability to Current Assets
X68 Retained Earnings to Total Assets
X69 Total income/Total expense
X70 Total expense/Assets
X71 Current Asset Turnover Rate: Current Assets to Sales
X72 Quick Asset Turnover Rate: Quick Assets to Sales
X73 Working capitcal Turnover Rate: Working Capital to Sales
X74 Cash Turnover Rate: Cash to Sales
X75 Cash Flow to Sales
X76 Fixed Assets to Assets
X77 Current Liability to Liability
X78 Current Liability to Equity
X79 Equity to Long-term Liability
X80 Cash Flow to Total Assets
X81 Cash Flow to Liability
X82 CFO to Assets
X83 Cash Flow to Equity
X84 Current Liability to Current Assets

83

X85 Liability-Assets Flag: 1 if Total Liability exceeds Total Assets,
0 otherwise

X86 Net Income to Total Assets
X87 Total assets to GNP price
X88 No-credit Interval
X89 Gross Profit to Sales
X90 Net Income to Stockholder’s Equity
X91 Liability to Equity
X92 Degree of Financial Leverage (DFL)
X93 Interest Coverage Ratio (Interest expense to EBIT)
X94 Net Income Flag: 1 if Net Income is Negative for the last two

years, 0 otherwise
X95 Equity to Liability

Compas
target Recidivism within two years?: Class label, 1 if yes, 0 if not
age The age of a criminal
sex The gender of a criminal: Male/Female
priors count Amount of prior arrests of a criminal
c charge degree The charge degree: Felony/Misdemeanor (F/M)

Credit
target Class label, 1 if application for credit card accepted, 0 if not
reports Number of major derogatory reports
age Age n years plus twelfths of a year
income Yearly income (divided by 10,000)
share Ratio of monthly credit card expenditure to yearly income
expenditure Average monthly credit card expenditure
owner 1 if owns their home, 0 if rent
selfempl 1 if self employed, 0 if not.
dependents 1 + number of dependents
months Months living at current address
majorcards Number of major credit cards held
active Number of active credit accounts

84

Haberman
target Survival status: 0 = the patient survived 5 years or longer, 1

= the patient died within 5 year
age Age of patient at time of operation
operation year Patient’s year of operation (year - 1900)
nodes Number of positive axillary nodes detected

Water
target class attribute: 0 = water not safe, 1 = water is safe
aluminium dangerous if greater than 2.8
ammonia dangerous if greater than 32.5
arsenic dangerous if greater than 0.01
barium dangerous if greater than 2
cadmium dangerous if greater than 0.005
chloramine dangerous if greater than 4
chromium dangerous if greater than 0.1
copper dangerous if greater than 1.3
flouride dangerous if greater than 1.5
bacteria dangerous if greater than 0
viruses dangerous if greater than 0
lead dangerous if greater than 0.015
nitrates dangerous if greater than 10
nitrites dangerous if greater than 1
mercury dangerous if greater than 0.002
perchlorate dangerous if greater than 56
radium dangerous if greater than 5
selenium dangerous if greater than 0.5
silver dangerous if greater than 0.1
uranium dangerous if greater than 0.3

Admission
target Chance of Admit (ranging from 0 to 1)
GRE Score The Graduate Record Examinations test (out of 340)
TOEFL Score Test of English as a Foreign Language (out of 120)
University Rating Rating of a university (out of 5)
SOP Statement of Purpose (out of 5)
LOR Letter of Recommendation Strength (out of 5)
CGPA Undergraduate GPA (out of 10)
research Research Experience (either 0 or 1)

85

AutoMPG
target Miles per galon (mpg)
cylinders Amount of cylinders in car
displacement Displacement of car
horsepower Horsepower of car
weight Weight of car
acceleration Acceleration of car
model year Model year of car - 1900
origin Origin region of car
car name Name of a car

Computer
target Price in US dollars of 486 PCs
SPEED Clock speed in MHz
HARD DRIVE Size of hard drive in MB
RAM Size of Ram in in MB
SCREEN Size of screen in inches
CD Variable equals 1 if there is a CD-ROM present
MULTI Variable equals 1 if a multimedia kit is included (speakers,

sound card)
FIRM Variable equals 1 if the manufacturer was a ”premium” firm:

IBM, COMPAQ
ADS Number of 486 price listings for each month
TREND Time trend indicating month starting from January of 1993

to November of 1995.

86

Kuiper
target Suggested retail price of the used 2005 GM car in excellent

condition. The condition of a car can greatly affect price. All
cars in this data set were less than one year old when priced
and considered to be in excellent condition.

Mileage Number of miles the car has been driven.
Make Manufacturer of the car such as Saturn, Pontiac, and Chevro-

let.
Model Specific models for each car manufacturer such as Ion, Vibe,

Cavalier Trim (of car): specific type of car model such as SE
Sedan 4D, Quad Coupe 2D.

Type Body type such as sedan, coupe, etc.
Cylinder Number of cylinders in the engine.
Liter A more specific measure of engine size.
Doors Number of doors.
Cruise Indicator variable representing whether the car has cruise con-

trol (1 = has cruise).
Sound Indicator variable representing whether the car has upgraded

speakers (1 = has upgraded).
Leather Indicator variable representing whether the car has leather

seats (1 = has leather).

87

Wages
target Average hourly earnings
educ Years of education
exper Years potential experience
tenure Years with current employer
nonwhite =1 If nonwhite
female =1 If female
married =1 If married
numdep Number of dependents
smsa =1 if live in SMSA
northcen =1 if live in north central U.S
south =1 if live in southern region
west =1 if live in western region
construc =1 if work in construc. indus.
ndurman =1 if in nondur. manuf. indus.
trcommpu =1 if in trans, commun, pub ut
trade =1 if in wholesale or retail
services =1 if in services indus.
profserv =1 if in prof. serv. indus.
profocc =1 if in profess. occupation
clerocc =1 if in clerical occupation
servocc =1 if in service occupation
lwage log(wage)
expersq exper2

tenursq tenure2

Windsor
target Sale price of a house
lotsize Lot size of a property in square feet
bedrooms Number of bedrooms
bathrooms Number of full bathrooms
stories Number of stories excluding basement
driveway Factor. Does the house have a driveway?
recreation Factor. Does the house have a recreational room?
fullbase Factor. Does the house have a full finished basement?
gasheat Factor. Does the house use gas for hot water heating?
aircon Factor. Is there central air conditioning?
garage Number of garage places
prefer Factor. Is the house located in the preferred neighborhood of

the city?

88

Appendix C

Examples of generated
classification / regression trees

The trees are traversed via depth-first traversal. In the following trees EPSILON

stands for a very small positive number.

1 Node level) splitting rule to current node ; #data points ;

impurity ; relative frequency of class 1 ; star (*) if node is

leaf

2 0) root ; 150 ; 0.2498 ; 0.5133

3 1) 0.1264* X1 +0.1031* X2 +0.0956* X3 +0.0928* X4 +0.1061* X5 <= -0.0233;

64 ; 0.1619 ; 0.2031 ; *

4 1) 0.1264* X1 +0.1031* X2 +0.0956* X3 +0.0928* X4 +0.1061* X5 > -0.0233 ;

86 ; 0.1904 ; 0.7442

5 2) 0.0842* X1 +0.108* X2 +0.0743* X3 +0.0442* X4 <= 0.1083 ; 48 ; 0.2287

; 0.6458

6 3) 0.0475* X1 +0.0837* X2 +0.1181* X3 +0.1126* X4 +0.0322* X6 <= 0.02 ; 21

; 0.2494 ; 0.4762

7 4) 0.1205* X1 +0.1323* X2 +0.1042* X3 +0.0509* X5 +0.0846* X6 <= 0.0607 ; 9

; 0.1728 ; 0.2222 ; *

8 4) 0.1205* X1 +0.1323* X2 +0.1042* X3 +0.0509* X5 +0.0846* X6 > 0.0607 ; 12

; 0.2222 ; 0.6667 ; *

9 3) 0.0475* X1 +0.0837* X2 +0.1181* X3 +0.1126* X4 +0.0322* X6 > 0.02 ; 27 ;

0.1728 ; 0.7778 ; *

10 2) 0.0842* X1 +0.108* X2 +0.0743* X3 +0.0442* X4 > 0.1083 ; 38 ; 0.1143 ;

0.8684; *

1 Node level) splitting rule to current node ; #data points ;

impurity ; relative frequency of class 1 ; star (*) if node is

leaf

2 0) root ; 100 ; 6205973224.3298 ; 20025.6187

3 1) Type in [’Convertible ’, ’Coupe ’, ’Hatchback ’] ; 35 ;

2370238865.1284 ; 18764.3946

4 2) Type in [’Convertible ’] ; 5 ; 44063450.4795 ; 10995.7287 ; *

5 2) Type not in [’Convertible ’] ; 30 ; 1148271700.0074 ; 16396.0481

89

6 3) 0.0542* Mileage +4202.8796* Cylinder +584.7598* Cruise <= 27529.6603

; 26 ; 290978985.4805 ; 14443.8844

7 4) Cylinder <= 5; 17 ; 34580285.1767 ; 12377.064

8 5) Type in [’Coupe ’] ; 11 ; 16142097.2142 ; 13129.8272

9 6) Mileage <= 32064.5 ; 7 ; 7019706.4758 ; 12944.2903 ; *

10 6) Mileage > 32064.5 ; 4 ; 5370096.9844 ; 13446.4907 ; *

11 5) Type not in [’Coupe ’] ; 6 ; 777520.4014 ; 13617.0104 ; *

12 4) Cylinder > 5; 9 ; 46608474.5121 ; 18347.8786

13 5) Type in [’Coupe ’] ; 4 ; 33354160.6906 ; 18461.3818 ; *

14 5) Type not in [’Coupe ’] ; 5 ; 1708994.5524 ; 19513.7689 ; *

15 3) 0.0542* Mileage +4202.8796* Cylinder +584.7598* Cruise > 27529.6604

; 4 ; 114158827.4432 ; 19513.7689 ; *

16 1) Type not in [’Convertible ’, ’Coupe ’, ’Hatchback ’] ; 65 ;

3750082029.7031 ; 20704.7393

17 2) Cylinder <= 7; 61 ; 2101841281.8652 ; 19432.3856

18 3) 0.1747* Mileage +8895.1079* Cruise +4237.4151* Leather <= 13944.2298

; 22 ; 196234882.1082 ; 14080.34

19 4) 0.1394* Mileage +3261.5966* Cylinder +828.3051* Leather <=

22026.2558 ; 17 ; 50316215.9429 ; 12791.7983

20 5) Mileage <= 27010; 4 ; 9773060.5793 ; 19513.7689; *

21 5) Mileage > 27010; 13 ; 23669394.5928 ; 13344.4351

22 6) Mileage <= 34557.5 ; 9 ; 12875939.3045 ; 13522.2773

23 7) Mileage <= 29746.5 ; 4 ; 8915502.5278 ; 19513.7689 ; *

24 7) Mileage > 29746.5 ; 5 ; 3895821.3288 ; 19513.7689 ; *

25 6) Mileage > 34557.5 ; 4 ; 9868341.3307 ; 19513.76891 ; *

26 4) 0.1394* Mileage +3261.5966* Cylinder +828.3051* Leather > 22026.2558

; 5 ; 21725255.5516 ; 19513.76891 ; *

27 3) 0.1747* Mileage +8895.1079* Cruise +4237.4151* Leather > 13944.2298

; 39 ; 919945510.4052 ; 22451.4883

28 4) Type in [’Sedan ’] ; 34 ; 601349566.5558 ; 21396.5966

29 5) Cylinder <= 5; 8 ; 180547783.2748 ; 24948.1217

30 6) Mileage <= 26682; 4 ; 156231333.766 ; 22611.9518 ; *

31 6) Mileage > 26682; 4 ; 3802321.2547 ; 22611.9518 ; *

32 5) Cylinder > 5; 26 ; 288846941.5599 ; 20303.8197

33 6) 0.1426* Mileage +2901.7214* Leather <= 5704.5447 ; 4 ;

5448729.6675 ; 22611.95187 ; *

34 6) 0.1426* Mileage +2901.7214* Leather > 5704.5447 ; 22 ;

225632420.0005 ; 20939.3955

35 7) Mileage <= 29287.5 ; 12 ; 123334958.7914 ; 20121.7373

36 8) Mileage <= 23747 ; 5 ; 56076020.5795 ; 22611.9518 ; *

37 8) Mileage > 23747 ; 7 ; 42883005.8794 ; 22611.9518 ; *

38 7) Mileage > 29287.5 ; 10 ; 84647346.4934 ; 21920.5853

39 8) Mileage <= 40195.5 ; 5 ; 63333732.4139 ; 22611.9518 ; *

40 8) Mileage > 40195.5 ; 5 ; 13374749.372 ; 22611.9518 ; *

41 4) Type not in [’Sedan ’] ; 5 ; 23482322.6359 ; 22611.9518 ; *

42 2) Cylinder > 7; 4 ; 43522053.3229 ; 40108.1332 ; *

1 Node level) splitting rule to current node ; #data points ;

impurity ; average target value ; star (*) if node is leaf

90

2 0) root ; 100 ; 70911881600; 69872

3 1) 3.1825* lotsize +82.8341* bedrooms +16807.1833* bathrooms +3716.2305*

stories +3717.2915* driveway +9685.9931* recreation +7049.1971*

fullbase +12264.6674* gasheat +17439.6493* aircon +5547.4447* garage

+11752.355* prefer <= 81554.0288783031 ; 71 ; 17213889295.7746 ;

57323.9437

4 2) 2.4082* lotsize +4168.9304* bedrooms +4469.1694* bathrooms

-1869.1536* stories +1873.478* driveway +3900.1773* recreation

+8125.5082* fullbase +19502.024* gasheat +9656.5426* aircon

+2887.4921* garage +11156.1676* prefer <= 35181.9792 ; 38 ;

3378450526.3158 ; 48484.2105

5 3) 2.7697* lotsize +5339.2773* bedrooms +1774.4207* bathrooms

-2136.7676* stories -3154.9456* driveway +12598.1181* recreation

+871.9266* fullbase -EPSILON*gasheat +14147.7296* aircon +3544.4235*

garage +14338.0527* prefer <= 21075.2505 ; 9 ; 282500000 ;

37666.6667

6 4) -0.1469* lotsize -6949.7062* bedrooms+EPSILON*bathrooms -6949.7062*

stories -5211.3809* driveway +12185.7121* fullbase -2489.0212* garage

<= -27446.9228 ; 4 ; 96750000 ; 57139.3707 ; *

7 4) -0.1469* lotsize -6949.7062* bedrooms+EPSILON*bathrooms -6949.7062*

stories -5211.3809* driveway +12185.7121* fullbase -2489.0212* garage

> -27446.9228 ; 5 ; 45300000 ; 57139.3707 ; *

8 3) 2.7697* lotsize +5339.2773* bedrooms +1774.4207* bathrooms

-2136.7676* stories -3154.9456* driveway +12598.1181* recreation

+871.9266* fullbase -EPSILON*gasheat +14147.7296* aircon +3544.4235*

garage +14338.0527* prefer > 21075.2505 ; 29 ; 1715930344.8276 ;

51841.3793

9 4) -0.76* lotsize +2316.1223* bedrooms -1872.7957* bathrooms -1780.0551*

stories +3546.0938* driveway +10792.4654* recreation -5789.0335*

fullbase -EPSILON*gasheat +972.0171* aircon +231.2239* garage

+2045.4286* prefer <= 3927.0859 ; 24 ; 1328545000 ; 50225

10 5) -2.8891* lotsize -4031.9171* bedrooms -1969.0816* bathrooms

-1279.107* stories +3452.5744* driveway -EPSILON*recreation

-8480.0726* fullbase+EPSILON*gasheat -8435.8382* aircon -6571.3347*

garage -6997.4673* prefer <= -27182.9530 ; 14 ; 673052142.8571 ;

46635.7143

11 6) 10.1112* lotsize +18930.39* bedrooms +5799.0463* bathrooms

-3223.7135* stories -9459.6992* driveway +20882.3991* fullbase

+14556.0125* garage +43315.5646* prefer <= 105539.1111 ; 7 ;

271500000 ; 57139.3707 ; *

12 6) 10.1112* lotsize +18930.39* bedrooms +5799.0463* bathrooms

-3223.7135* stories -9459.6992* driveway +20882.3991* fullbase

+14556.0125* garage +43315.5646* prefer > 105539.1111 ; 7 ;

162094285.7143 ; 57139.3707 ; *

13 5) -2.8891* lotsize -4031.9171* bedrooms -1969.0816* bathrooms

-1279.107* stories +3452.5744* driveway -EPSILON*recreation

-8480.0726* fullbase+EPSILON*gasheat -8435.8382* aircon -6571.3347*

garage -6997.4673* prefer > -27182.9530 ; 10 ; 222625000 ; 55250

14 6) 9.0874* lotsize +19493.9289* bedrooms +2178.8089* bathrooms

91

+6861.7616* stories -2178.8089* driveway -EPSILON*recreation

+18809.2898* aircon +21630.3363* garage +18628.0235* prefer <=

102236.3882 ; 6 ; 9708333.3333 ; 57139.3707 ; *

15 6) 9.0874* lotsize +19493.9289* bedrooms +2178.8089* bathrooms

+6861.7616* stories -2178.8089* driveway -EPSILON*recreation

+18809.2898* aircon +21630.3363* garage +18628.0235* prefer >

102236.3882 ; 4 ; 11250000 ; 57139.3707 ; *

16 4) -0.76* lotsize +2316.1223* bedrooms -1872.7957* bathrooms -1780.0551*

stories +3546.0938* driveway +10792.4654* recreation -5789.0335*

fullbase -EPSILON*gasheat +972.0171* aircon +231.2239* garage

+2045.4286* prefer > 3927.0859 ; 5 ; 23700000 ; 57139.3707 ; *

17 2) 2.4082* lotsize +4168.9304* bedrooms +4469.1694* bathrooms

-1869.1536* stories +1873.478* driveway +3900.1773* recreation

+8125.5082* fullbase +19502.024* gasheat +9656.5426* aircon

+2887.4921* garage +11156.1676* prefer > 35181.9792 ; 33 ;

7446829696.9697 ; 67503.0303

18 3) 1.804* lotsize +1098.7594* bedrooms +5176.0107* bathrooms -111.6903*

stories +8948.7435* driveway -8782.7751* recreation +12426.9128*

fullbase +15108.4726* gasheat +5447.2623* aircon +1208.838* garage

+5497.4776* prefer <= 44526.1943 ; 27 ; 2598085185.1852 ;

64559.2593

19 4) 1.1901* lotsize -3519.5818* bedrooms +1997.9127* bathrooms

+4227.1671* stories -6289.5327* driveway -3025.0043* recreation

+102.8325* fullbase -11699.3256* gasheat +6319.9316* aircon

-101.2794* garage +7096.9602* prefer <= 5208.1578 ; 20 ;

1324445500 ; 60915

20 5) -1.2718* lotsize -2321.481* bedrooms -1915.4909* bathrooms

-9168.5683* stories +7474.5438* driveway +7789.9035* recreation

+5064.6062* fullbase -7474.5438* gasheat -2836.6256* aircon

+522.7835* garage -7841.1007* prefer <= -26519.4095 ; 8 ;

378340000 ; 54800

21 6) 15.8416* lotsize +705.9052* bedrooms +76493.0693* bathrooms

+48188.1895* stories -36779.8444* driveway+EPSILON*recreation

+36779.8444* fullbase +36779.8444* gasheat +89422.8076* aircon

+4645.5092* garage +106888.0835* prefer <= 299022.5955 ; 4 ;

33207500 ; 57139.3707 ; *

22 6) 15.8416* lotsize +705.9052* bedrooms +76493.0693* bathrooms

+48188.1895* stories -36779.8444* driveway+EPSILON*recreation

+36779.8444* fullbase +36779.8444* gasheat +89422.8076* aircon

+4645.5092* garage +106888.0835* prefer > 299022.5955 ; 4 ;

73687500; 57139.3707 ; *

23 5) -1.2718* lotsize -2321.481* bedrooms -1915.4909* bathrooms

-9168.5683* stories +7474.5438* driveway +7789.9035* recreation

+5064.6062* fullbase -7474.5438* gasheat -2836.6256* aircon

+522.7835* garage -7841.1007* prefer > -26519.4095 ; 12 ;

447529166.6667 ; 64991.6667

24 6) -0.6843* lotsize -EPSILON*bedrooms -9833.2559* bathrooms -1337.0514*

stories+EPSILON*driveway +8145.8125* recreation +2438.9925*

fullbase -8519.6831* aircon +1465.9379* garage -15061.7401* prefer <=

92

-21183.0345 ; 4 ; 106127500; 57139.3707 ; *

25 6) -0.6843* lotsize -EPSILON*bedrooms -9833.2559* bathrooms -1337.0514*

stories+EPSILON*driveway +8145.8125* recreation +2438.9925*

fullbase -8519.6831* aircon +1465.9379* garage -15061.7401* prefer >

-21183.0345 ; 8 ; 219000000; 67250

26 7) -1.5128* lotsize -EPSILON*bedrooms -8484.1328* bathrooms -4845.0262*

stories +2394.8104* recreation -4845.0262* fullbase +1244.2963*

aircon +6047.6369* garage +2394.8104* prefer <= -26026.1717 ; 4 ;

50187500; 57139.3707 ; *

27 7) -1.5128* lotsize -EPSILON*bedrooms -8484.1328* bathrooms -4845.0262*

stories +2394.8104* recreation -4845.0262* fullbase +1244.2963*

aircon +6047.6369* garage +2394.8104* prefer > -26026.1717 ; 4 ;

123687500; 57139.3707 ; *

28 4) 1.1901* lotsize -3519.5818* bedrooms +1997.9127* bathrooms

+4227.1671* stories -6289.5327* driveway -3025.0043* recreation

+102.8325* fullbase -11699.3256* gasheat +6319.9316* aircon

-101.2794* garage +7096.9602* prefer > 5208.1578 ; 7 ;

249134285.7143 ; 57139.3707 ; *

29 3) 1.804* lotsize +1098.7594* bedrooms +5176.0107* bathrooms -111.6903*

stories +8948.7435* driveway -8782.7751* recreation +12426.9128*

fullbase +15108.4726* gasheat +5447.2623* aircon +1208.838* garage

+5497.4776* prefer > 44526.1943 ; 6 ; 3561875000; 57139.3707 ; *

30 1) 3.1825* lotsize +82.8341* bedrooms +16807.1833* bathrooms +3716.2305*

stories +3717.2915* driveway +9685.9931* recreation +7049.1971*

fullbase +12264.6674* gasheat +17439.6493* aircon +5547.4447* garage

+11752.355* prefer > 81554.0288 ; 29 ; 15148978620.6896 ;

100593.1034

31 2) 2.2366* lotsize -1635.8265* bedrooms +23509.875* bathrooms

+4892.6759* stories -EPSILON*driveway +13705.5008* recreation

+12977.5338* fullbase +4985.3512* gasheat +29799.388* aircon

+10382.7418* garage +14683.9257* prefer <= 119293.8081 ; 19 ;

3359325263.1579 ; 88984.2105

32 3) 1.5014* lotsize +5294.6804* bedrooms -5071.979* bathrooms -4584.0887*

stories+EPSILON*driveway -19549.3876* recreation -4858.1512*

fullbase -16126.1351* gasheat -897.4326* aircon -11300.0444* garage

-13316.6288* prefer <= -17104.4824 ; 10 ; 300396000; 79720

33 4) 1.2897* lotsize -34205.1822* bedrooms +32190.2306* bathrooms

+6976.3795* stories -EPSILON*driveway +7082.8788* recreation

-2774.1083* fullbase +18430.9295* gasheat +23786.9585* aircon

+18332.5549* garage +26950.5619* prefer <= 4599.5962 ; 6 ;

76500000; 102319.4444 ; *

34 4) 1.2897* lotsize -34205.1822* bedrooms +32190.2306* bathrooms

+6976.3795* stories -EPSILON*driveway +7082.8788* recreation

-2774.1083* fullbase +18430.9295* gasheat +23786.9585* aircon

+18332.5549* garage +26950.5619* prefer > 4599.5962 ; 4 ; 5010000;

102319.4444 ; *

35 3) 1.5014* lotsize +5294.6804* bedrooms -5071.979* bathrooms -4584.0887*

stories+EPSILON*driveway -19549.3876* recreation -4858.1512*

fullbase -16126.1351* gasheat -897.4326* aircon -11300.0444* garage

93

-13316.6288* prefer > -17104.4825 ; 9 ; 1247055555.5556 ;

99277.7778

36 4) 14.9985* lotsize -2539.6581* bedrooms -3710.1878* bathrooms

+417.2464* stories -EPSILON*driveway -19356.0399* recreation

+14791.7436* fullbase +16169.2156* garage -6934.506* prefer <=

83508.8786 ; 5 ; 209200000; 102319.4444 ; *

37 4) 14.9985* lotsize -2539.6581* bedrooms -3710.1878* bathrooms

+417.2464* stories -EPSILON*driveway -19356.0399* recreation

+14791.7436* fullbase +16169.2156* garage -6934.506* prefer >

83508.8786 ; 4 ; 48500000; 102319.4444 ; *

38 2) 2.2366* lotsize -1635.8265* bedrooms +23509.875* bathrooms

+4892.6759* stories -EPSILON*driveway +13705.5008* recreation

+12977.5338* fullbase +4985.3512* gasheat +29799.388* aircon

+10382.7418* garage +14683.9257* prefer > 119293.8081 ; 10 ;

4364025000; 122650

39 3) -18.2486* lotsize -46302.8317* bedrooms +73005.506* bathrooms

+44834.8191* stories -EPSILON*driveway +101632.9313* recreation

+88459.8846* fullbase+EPSILON*gasheat +106828.5265* aircon

+39818.8254* garage +108718.4059* prefer <= 295927.8972 ; 6 ;

293208333.3333 ; 102319.4444 ; *

40 3) -18.2486* lotsize -46302.8317* bedrooms +73005.506* bathrooms

+44834.8191* stories -EPSILON*driveway +101632.9313* recreation

+88459.8846* fullbase+EPSILON*gasheat +106828.5265* aircon

+39818.8254* garage +108718.4059* prefer > 295927.8972 ; 4 ;

1638750000; 102319.4444 ; *

94

Appendix D

Tables of experiments

D.1 Performance tables for different metrics for

real classification datasets

local global not local global local not global not local not global
Bankrupt 0.76087 0.790497 0.768473 0.721228
Compas 0.538350 0.635474 0.615066 0.455189
Credit 0.949612 0.949612 0.949612 0.949612
Haberman 0.474074 0.474074 0.369748 0.369748
Water 0.722162 0.666667 0.629200 0.450437

Table D.1: Experiments run for classification, statistic is F1 and train set size is
50.

local global not local global local not global not local not global
Bankrupt 0.774359 0.751282 0.758974 0.720513
Compas 0.627333 0.630693 0.637023 0.536880
Credit 0.952030 0.952030 0.952030 0.952030
Haberman 0.642209 0.642209 0.584637 0.584637
Water 0.710259 0.500000 0.657835 0.574972

Table D.2: Experiments run for classification, statistic is auroc and train set size
is 50.

95

local global not local global local not global not local not global
Bankrupt 0.809249 0.682836 0.739336 0.719388
Compas 0.646957 0.560151 0.587804 0.498892
Credit 1.000000 1.000000 1.000000 1.000000
Haberman 0.477612 0.477612 0.431373 0.431373
Water 0.693666 0.500000 0.686667 0.637113

Table D.3: Experiments run for classification, statistic is precision and train set
size is 50.

local global not local global local not global not local not global
Bankrupt 0.712821 0.938462 0.8 0.723077
Compas 0.460967 0.734201 0.644981 0.418525
Credit 0.904059 0.904059 0.904059 0.904059
Haberman 0.470588 0.470588 0.323529 0.323529
Water 0.753100 1.000000 0.580609 0.348365

Table D.4: Experiments run for classification, statistic is recall and train set size
is 50.

local global not local global local not global not local not global
Bankrupt 0.717949 0.666667 0.805031 0.804878
Compas 0.568073 0.000000 0.568073 0.622487
Credit 0.989858 0.989858 0.989858 0.989858
Haberman 0.431818 0.431818 0.436364 0.458333
Water 0.672112 0.666667 0.664516 0.626549

Table D.5: Experiments run for classification, statistic is F1 and train set size is
100.

local global not local global local not global not local not global
Bankrupt 0.817647 0.5 0.817647 0.811765
Compas 0.652374 0.500000 0.652374 0.664112
Credit 0.989837 0.989837 0.989837 0.989837
Haberman 0.626370 0.626370 0.615533 0.637086
Water 0.674014 0.500000 0.638051 0.632831

Table D.6: Experiments run for classification, statistic is auroc and train set size
is 100.

96

local global not local global local not global not local not global
Bankrupt 0.864865 0.5 0.864865 0.835443
Compas 0.689840 0.000000 0.689840 0.642644
Credit 0.987854 0.987854 0.987854 0.987854
Haberman 0.575758 0.575758 0.436364 0.536585
Water 0.676056 0.500000 0.619238 0.637455

Table D.7: Experiments run for classification, statistic is precision and train set
size is 100.

local global not local global local not global not local not global
Bankrupt 0.752941 1 0.752941 0.776471
Compas 0.482845 0.000000 0.482845 0.603556
Credit 0.991870 0.991870 0.991870 0.991870
Haberman 0.345455 0.345455 0.436364 0.400000
Water 0.668213 1.000000 0.716937 0.616009

Table D.8: Experiments run for classification, statistic is recall and train set size
is 100.

local global not local global local not global not local not global
Bankrupt 0.823129 0.823129 0.823129 0.823129
Compas 0.523738 0.523738 0.563289 0.560026
Credit 0.983982 0.983982 0.983982 0.983982
Haberman 0.000000 0.000000 0.000000 0.000000
Water 0.760615 0.760615 0.760615 0.760615

Table D.9: Experiments run for classification, statistic is F1 and train set size is
150.

local global not local global local not global not local not global
Bankrupt 0.82069 0.82069 0.82069 0.820695
Compas 0.623655 0.623655 0.596377 0.614320
Credit 0.984163 0.984163 0.984163 0.984163
Haberman 0.500000 0.500000 0.500000 0.500000
Water 0.767622 0.767622 0.767622 0.767622

Table D.10: Experiments run for classification, statistic is auroc and train set size
is 150.

97

local global not local global local not global not local not global
Bankrupt 0.812081 0.812081 0.812081 0.812081
Compas 0.654118 0.654118 0.552401 0.589379
Credit 0.995370 0.995370 0.995370 0.995370
Haberman 0.000000 0.000000 0.000000 0.000000
Water 0.784264 0.784264 0.784264 0.784264

Table D.11: Experiments run for classification, statistic is precision and train set
size is 150.

local global not local global local not global not local not global
Bankrupt 0.834483 0.834483 0.834483 0.834483
Compas 0.436695 0.436695 0.574615 0.533459
Credit 0.972851 0.972851 0.972851 0.972851
Haberman 0.000000 0.000000 0.000000 0.000000
Water 0.738351 0.738351 0.738351 0.738351

Table D.12: Experiments run for classification, statistic is recall and train set size
is 150.

98

D.2 Additional tables artificial datasets

Artificial datasets with two features
Correlation Number of generated labels Relative frequency of label 1 per labelling

Positive

0.5245
0.481

6 0.522
0.5135
0.475
0.4965

Zero

0.484
0.5115

6 0.5815
0.429
0.6

0.486

Negative

0.539
0.4835
0.5875
0.5635

10 0.4685
0.4935
0.466
0.4635
0.572
0.587

Table D.13: Statistics of the generated labellings for datasets with two features.

99

Artificial datasets with six features
Correlation Number of generated labels Relative frequency of label 1 per labelling

Positive

0.5205
0.489
0.4755
0.4715

10 0.494
0.522
0.4995
0.4885
0.4765
0.5145

Zero

0.4685
0.5185
0.4995
0.4985

10 0.4885
0.5105
0.515
0.5005
0.479
0.4975

Negative

0.5005
0.504
0.4855

0.5
10 0.511

0.4935
0.511
0.5005
0.472
0.4925

Table D.14: Statistics of the generated labellings for datasets with six features.

100

Artificial datasets with ten features
Correlation Number of generated labels Relative frequency of label 1 per labelling

Positive

0.462
0.4925
0.4815
0.491

10 0.487
0.477
0.4745
0.477
0.491
0.4855

Zero

0.4845
0.4905
0.4935
0.512

10 0.4855
0.5145
0.52
0.482
0.4975
0.4915

Negative

0.5145
0.509
0.5135
0.52

10 0.4905
0.497
0.5015
0.4835
0.487
0.493

Table D.15: Statistics of the generated labellings for datasets with ten features.

101

local global not local global local not global not local not global
Positive 0.890428 0.884290 0.889444 0.883306
Zero 0.877482 0.877609 0.877482 0.877638
Negative 0.809724 0.839917 0.835204 0.839616

Table D.16: Experiments run for artificial data with 2 features, statistic is F1 and
train set size is 50.

local global not local global local not global not local not global
Positive 0.888277 0.882879 0.887416 0.882018
Zero 0.880090 0.876864 0.880090 0.878285
Negative 0.807845 0.825655 0.822381 0.826863

Table D.17: Experiments run for artificial data with 2 features, statistic is auroc
and train set size is 50.

local global not local global local not global not local not global
Positive 0.881814 0.882494 0.881669 0.882348
Zero 0.917897 0.909537 0.917897 0.912844
Negative 0.807438 0.809792 0.810474 0.817985

Table D.18: Experiments run for artificial data with 2 features, statistic is precision
and train set size is 50.

local global not local global local not global not local not global
Positive 0.903462 0.890642 0.901740 0.888920
Zero 0.842121 0.849159 0.842121 0.846344
Negative 0.827414 0.878173 0.865855 0.866763

Table D.19: Experiments run for artificial data with 2 features, statistic is recall
and train set size is 50.

local global not local global local not global not local not global
Positive 0.903978 0.903978 0.903978 0.903978
Zero 0.896897 0.896897 0.895154 0.895154
Negative 0.854417 0.852407 0.851774 0.849765

Table D.20: Experiments run for artificial data with 2 features, statistic is F1 and
train set size is 100.

102

local global not local global local not global not local not global
Positive 0.905157 0.905157 0.905157 0.905157
Zero 0.892853 0.892853 0.891621 0.891621
Negative 0.840099 0.839960 0.838500 0.838361

Table D.21: Experiments run for artificial data with 2 features, statistic is auroc
and train set size is 100.

local global not local global local not global not local not global
Positive 0.909476 0.909476 0.909476 0.909476
Zero 0.880573 0.880573 0.882340 0.882340
Negative 0.832704 0.836931 0.838054 0.842282

Table D.22: Experiments run for artificial data with 2 features, statistic is precision
and train set size is 100.

local global not local global local not global not local not global
Positive 0.899214 0.899214 0.899214 0.899214
Zero 0.916332 0.916332 0.909796 0.909796
Negative 0.879540 0.870677 0.869834 0.860971

Table D.23: Experiments run for artificial data with 2 features, statistic is recall
and train set size is 100.

local global not local global local not global not local not global
Positive 0.922758 0.918026 0.922758 0.918026
Zero 0.899106 0.899106 0.899106 0.899106
Negative 0.845936 0.844081 0.847037 0.845182

Table D.24: Experiments run for artificial data with 2 features, statistic is F1 and
train set size is 150.

local global not local global local not global not local not global
Positive 0.920353 0.916294 0.920353 0.916294
Zero 0.895284 0.895284 0.895284 0.895284
Negative 0.839808 0.838582 0.841290 0.840064

Table D.25: Experiments run for artificial data with 2 features, statistic is auroc
and train set size is 150.

103

local global not local global local not global not local not global
Positive 0.913770 0.916483 0.913770 0.916483
Zero 0.889251 0.889251 0.889251 0.889251
Negative 0.844009 0.847009 0.848720 0.851721

Table D.26: Experiments run for artificial data with 2 features, statistic is precision
and train set size is 150.

local global not local global local not global not local not global
Positive 0.857481 0.725310 0.857481 0.835226
Zero 0.630846 0.439255 0.621969 0.598894
Negative 0.561449 0.370740 0.576655 0.574359

Table D.27: Experiments run for artificial data with 6 features, statistic is F1 and
train set size is 50.

local global not local global local not global not local not global
Positive 0.855551 0.741006 0.855551 0.835937
Zero 0.643776 0.552564 0.640858 0.628848
Negative 0.580855 0.531392 0.582334 0.571806

Table D.28: Experiments run for artificial data with 6 features, statistic is auroc
and train set size is 50.

local global not local global local not global not local not global
Positive 0.849366 0.682753 0.849366 0.832623
Zero 0.656738 0.418768 0.657063 0.654743
Negative 0.582782 0.325225 0.578106 0.564232

Table D.29: Experiments run for artificial data with 6 features, statistic is precision
and train set size is 50.

local global not local global local not global not local not global
Positive 0.868982 0.802974 0.868982 0.840766
Zero 0.627364 0.521662 0.607954 0.569975
Negative 0.576410 0.461988 0.604655 0.596944

Table D.30: Experiments run for artificial data with 6 features, statistic is recall
and train set size is 50.

104

local global not local global local not global not local not global
Positive 0.874451 0.492747 0.873855 0.858632
Zero 0.671988 0.543841 0.671988 0.668032
Negative 0.611436 0.437192 0.588860 0.579953

Table D.31: Experiments run for artificial data with 6 features, statistic is F1 and
train set size is 100.

local global not local global local not global not local not global
Positive 0.872611 0.675118 0.871791 0.857790
Zero 0.655514 0.628316 0.655514 0.657753
Negative 0.583815 0.550818 0.589498 0.586856

Table D.32: Experiments run for artificial data with 6 features, statistic is auroc
and train set size is 100.

local global not local global local not global not local not global
Positive 0.857944 0.467938 0.854310 0.845174
Zero 0.635877 0.512414 0.635877 0.638829
Negative 0.574429 0.392241 0.584566 0.581924

Table D.33: Experiments run for artificial data with 6 features, statistic is precision
and train set size is 100.

local global not local global local not global not local not global
Positive 0.893374 0.534786 0.895572 0.874019
Zero 0.727473 0.595928 0.727473 0.710528
Negative 0.692980 0.527421 0.614174 0.597424

Table D.34: Experiments run for artificial data with 6 features, statistic is recall
and train set size is 100.

local global not local global local not global not local not global
Positive 0.873336 0.521270 0.873336 0.859819
Zero 0.683822 0.671545 0.679722 0.671329
Negative 0.585609 0.466756 0.576639 0.552933

Table D.35: Experiments run for artificial data with 6 features, statistic is F1 and
train set size is 150.

105

local global not local global local not global not local not global
Positive 0.872490 0.601872 0.872490 0.860114
Zero 0.668186 0.647427 0.667171 0.663315
Negative 0.585943 0.553026 0.582121 0.574823

Table D.36: Experiments run for artificial data with 6 features, statistic is auroc
and train set size is 150.

local global not local global local not global not local not global
Positive 0.863846 0.455900 0.863846 0.856395
Zero 0.647539 0.634178 0.649228 0.649252
Negative 0.581792 0.455398 0.578767 0.581024

Table D.37: Experiments run for artificial data with 6 features, statistic is precision
and train set size is 150.

local global not local global local not global not local not global
Positive 0.884908 0.650676 0.884908 0.864145
Zero 0.736653 0.747779 0.725849 0.715986
Negative 0.601084 0.537467 0.583633 0.565478

Table D.38: Experiments run for artificial data with 6 features, statistic is recall
and train set size is 150.

local global not local global local not global not local not global
Positive 0.833968 0.630298 0.834298 0.811984
Zero 0.495516 0.464085 0.508867 0.485212
Negative 0.379014 0.459481 0.460310 0.372538

Table D.39: Experiments run for artificial data with 10 features, statistic is F1

and train set size is 50.

local global not local global local not global not local not global
Positive 0.838384 0.700551 0.839403 0.813447
Zero 0.509944 0.500000 0.508476 0.501601
Negative 0.496340 0.497039 0.492782 0.491526

Table D.40: Experiments run for artificial data with 10 features, statistic is auroc
and train set size is 50.

106

local global not local global local not global not local not global
Positive 0.832854 0.588033 0.837537 0.792295
Zero 0.507698 0.347179 0.504867 0.501615
Negative 0.439086 0.349752 0.440924 0.343914

Table D.41: Experiments run for artificial data with 10 features, statistic is preci-
sion and train set size is 50.

local global not local global local not global not local not global
Positive 0.838860 0.709040 0.834586 0.835375
Zero 0.515778 0.700000 0.542482 0.486483
Negative 0.388450 0.673374 0.502682 0.426002

Table D.42: Experiments run for artificial data with 10 features, statistic is recall
and train set size is 50.

local global not local global local not global not local not global
Positive 0.852164 0.394358 0.852164 0.819812
Zero 0.378082 0.267781 0.424172 0.350794
Negative 0.506166 0.388598 0.486871 0.498882

Table D.43: Experiments run for artificial data with 10 features, statistic is F1

and train set size is 100.

local global not local global local not global not local not global
Positive 0.854473 0.630786 0.854473 0.825782
Zero 0.511676 0.500000 0.510744 0.508858
Negative 0.493832 0.500350 0.495367 0.497458

Table D.44: Experiments run for artificial data with 10 features, statistic is auroc
and train set size is 100.

local global not local global local not global not local not global
Positive 0.842115 0.381064 0.842115 0.829617
Zero 0.411574 0.201263 0.409939 0.365426
Negative 0.444419 0.303582 0.444344 0.446496

Table D.45: Experiments run for artificial data with 10 features, statistic is preci-
sion and train set size is 100.

107

local global not local global local not global not local not global
Positive 0.866427 0.427268 0.866427 0.813757
Zero 0.409441 0.400000 0.451727 0.352693
Negative 0.621630 0.555187 0.572387 0.590394

Table D.46: Experiments run for artificial data with 10 features, statistic is recall
and train set size is 100.

local global not local global local not global not local not global
Positive 0.84931 0.234264 0.849310 0.815415
Zero 0.40134 0.264667 0.436167 0.456217
Negative 0.39190 0.337282 0.403522 0.343964

Table D.47: Experiments run for artificial data with 10 features, statistic is F1

and train set size is 150.

local global not local global local not global not local not global
Positive 0.854933 0.567188 0.854933 0.824456
Zero 0.512552 0.505300 0.514321 0.509669
Negative 0.497685 0.500000 0.502253 0.499071

Table D.48: Experiments run for artificial data with 10 features, statistic is auroc
and train set size is 150.

local global not local global local not global not local not global
Positive 0.855450 0.209117 0.855450 0.832026
Zero 0.463931 0.259369 0.463657 0.454862
Negative 0.349469 0.254486 0.355187 0.303426

Table D.49: Experiments run for artificial data with 10 features, statistic is preci-
sion and train set size is 150.

local global not local global local not global not local not global
Positive 0.845005 0.277258 0.845005 0.804061
Zero 0.387933 0.339951 0.437108 0.493395
Negative 0.478059 0.500000 0.493097 0.414265

Table D.50: Experiments run for artificial data with 10 features, statistic is recall
and train set size is 150.

108

	Introduction and problem statement
	Preliminaries
	Background
	Concepts
	Monotone prediction
	Partial monotone classification or regression
	Pruning trees

	Related work
	Isotonic classification trees
	Monotone rule random forest
	Multivariate decision trees with monotonicity constraints
	Partially monotone decision tree using rank mutual information
	Oblique decision tree induction by the cross-entropy optimisation
	Convex polytope trees
	Induction system for oblique decision trees

	Methods
	Setup
	Description of IDT-oblique

	Experimentation
	Datasets
	Real datasets
	Artificial datasets
	Train set size and regulation

	Approach
	Train/validation/test set
	Cross-validation

	Results and discussion
	Real data
	Artificial data

	Conclusion
	Answers to research questions
	Future work

	Appendices
	Algorithm for generating monotone labelling
	Tables of all datasets with their features and description
	Examples of generated classification / regression trees
	Tables of experiments
	Performance tables for different metrics for real classification datasets
	Additional tables artificial datasets

