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Abstract

The correctness of variable representations used in compilers usually depends
on the compiler writers’ diligence to maintain complex invariants. Program
transformations that manipulate the binding structure are therefore tricky to
get right. In a dependently typed programming language such as Agda, we
can however make use of intrinsically typed syntax trees to enforce type- and
scope-safety by construction, ruling out a large class of binding-related bugs.
We show how to perform (and prove correct) dead binding elimination and let-
sinking using intrinsically typed de Bruijn indices. To avoid repeated traversals
of the transformed expression, we include variable liveness information into the
syntax tree and later employ a co-de-Bruijn representation. Finally, we perform
transformations in this style syntax-generically.
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Chapter 1

Introduction

When writing a compiler for a programming language, an important considera-
tion is the treatment of binders and variables. They are part of most languages
and there are several options for representing them, each with different impli-
cations for operating on and reasoning about programs. Often, it is possible to
represent ill-formed syntax trees where variables do not refer to a suitable bind-
ing. This makes it easy to introduce compiler bugs that change the meaning of
a program or make it invalid.

When using a dependently typed programming language such as Agda [16],
intrinsically typed syntax trees can be used to make such ill-formed programs
unrepresentable. Using this well-known technique, expressions become scope-
and type-correct by construction, allowing for a total evaluation function [2].
Intrinsically typed constructions have featured in several papers, exploring basic
operations like renaming and substitution [1] as well as compilation to different
target languages [22, online supplementary material].

At the same time, there are large classes of important transformations that
have not yet received much attention in an intrinsically typed setting. Optimi-
sations, for example, play a central role in practical compilers, but establishing
their correctness is often not trivial, with ample opportunity for binding-related
mistakes [24, 12]. Letting the type checker keep track of invariants promises to
remove common sources of bugs. A mechanised proof of semantics preservation
can further increase confidence in the transformation’s correctness.

In return for the guarantees provided, some additional work is required.
Program analysis not only needs to identify optimisation opportunities, but
potentially also provide a proof witness that the optimisation is safe, e.g. that
some dead code is indeed unused. For the transformation of the intrinsically
typed program, the programmer then has to convince the type checker that
type- and scope-correctness invariants are preserved, which can be cumbersome.
The goal of this thesis is to understand these consequences better and explore
techniques for dealing with them.

A crucial aspect is that of variable liveness. Whether it is safe to apply a
binding-related transformation usually depends on which parts of the program
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make use of which binding. We employ several ways of providing and using
variable liveness information for program transformations.

Structure Chapter 2 introduces the simple expression language we will work
with and then gives some background information on program analysis and
transformation, as well as different binding representations and their pitfalls.

In chapter 3 we start by showing a typical intrinsically typed de Bruijn rep-
resentation of our expression language. We then explain thinnings and motivate
their application to computing variable liveness. Equipped with these tools, we
implement dead binding elimination and let-sinking, first on the standard de
Bruijn representation, later more efficiently on a syntax tree annotated with the
results of live variable analysis. We prove that both versions of dead binding
elimination preserve semantics.

Chapter 4 continues the development by showing that variable liveness in-
formation can serve as the main mechanism for representing bindings, as wit-
nessed by McBride’s co-de-Bruijn representation [14]. After explaining how co-
de-Bruijn terms work and can be constructed from de Bruijn terms, we again
implement dead binding elimination and prove it correct. Finally, we also man-
age to implement let-sinking, but encounter several complications and struggle
with the proof of correctness.

In chapter 5, we explain the idea of syntax-generic programming as presented
by Allais, Atkey, Chapman, McBride and McKinna [1] and extend it with basic
support for the co-de-Bruijn representation. This allows us to convert between
de Bruijn and co-de-Bruijn terms and perform dead binding elimination syntax-
generically.

In the end, chapter 6 discusses our main observations, open questions, and
opportunities to continue the work presented here.

Contributions Our main contributions are:

• an implementation of (strongly) live variable analysis resulting in anno-
tated intrinsically typed syntax trees (sections 3.3 and 3.4.2)

• an implementation of dead binding elimination on intrinsically typed syn-
tax trees of three different flavours: de Bruijn (section 3.4.1), annotated
de Bruijn (section 3.4.2), and co-de-Bruijn (section 4.3)

• proofs of correctness (preservation of semantics) for each implementations
of dead binding elimination

• an implementation of let-sinking on intrinsically typed syntax trees of
three different flavours (sections 3.5.1, 3.5.2 and 4.4)

• an incomplete proof of correctness for co-de-Bruijn let-sinking, with an
explanation of the main challenges

• a generic interpretation of the syntax descriptions presented by Allais et al.
[1] into co-de-Bruijn terms (section 5.2)
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• syntax-generic conversion between de Bruijn and co-de-Bruijn terms (sec-
tion 5.3)

• a syntax-generic implementation of dead binding elimination on co-de-
Bruijn terms (section 5.4)

The Agda code and LATEX source of this document are available online1.

1https://github.com/mheinzel/correct-optimisations
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Chapter 2

Preliminaries

As a running example, we will consider a simple expression language based
on the λ-calculus [3]. On top of variables with names {x, y, z, a, b, c, f, g, . . .},
function application and λ-abstraction, we add let-bindings, primitive values
v ∈ B ∪ N (with B = {true, false}) and a binary addition operator. Since we
are primarily concerned with variables and binders, the choice of possible values
and primitive operations on them is mostly arbitrary and can be extended easily.

P,Q ::= x∣∣ P Q∣∣ λx. P∣∣ let x = P in Q∣∣ v∣∣ P +Q

To reduce the number of required parentheses, we give function application the
highest and let-bindings the lowest precedence.

Let-bindings allow to bind a declaration P to a variable x. While any
let-binding let x = P in Q can be emulated using an immediately applied
λ-abstraction (λx. Q) P , they are very common and can benefit from trans-
formations that target them specifically. We omit further constructs such as
branching operators, recursive bindings or a fixpoint operator, but discuss some
potential additions and their implications at the end (section 6.1.1).

2.1 Program Analysis and Transformation
We mainly consider transformations aimed at optimising functional programs.
A large number of program analyses and optimisations are presented in the
literature [15, 23] and used in production compilers such as the Glorious Haskell
Compiler (GHC). We generally focus on transformations dealing with variable
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binders, such as inlining, let-floating, common subexpression elimination and
dead binding elimination.

Dead Binding Elimination An expression is not forced to make use of all
bindings to which it has access. Specifically, a let-binding introduces a new
variable, but it might never be used in the body. Consider for example the
following expression:

let x = 42 in
let y = x+ 6 in
let z = y + 7 in
x

Here, the binding for z is clearly unused, as the variable never occurs in the body.
Such dead bindings can be identified by live variable analysis and consequently
be removed.

Note that y is not needed either: Removing z will make y unused. Therefore,
multiple iterations of live variable analysis and binding elimination might be
required to remove as many bindings as possible. Alternatively, strongly live
variable analysis can achieve the same result in a single pass by ignoring variable
occurrences in the declaration of variables unless that variable is live itself.

Let-sinking Even when a binding cannot be removed, it can still be beneficial
to move it to a different location. Several such strategies have for example
been described and evaluated in the context of lazy functional programs [19].
Of those, we will focus on the let-sinking transformation (called let-floating in
the paper). Generally, the further inward a let binding is moved, the better:
other optimisations might get unlocked, and in the presence of branching, the
declaration might never be evaluated.

Of course, we must ensure that the binding remains in scope for all of the
variable’s occurrences and should consider some exceptions to the rule of sinking
as far as possible. We generally do not want to duplicate bindings or move them
inside λ-abstractions, which can also duplicate work if the function is applied
multiple times.

Let us look at what this means when sinking the binding for x in the following
example with free variables f and g:

let x = f 42 in (g 1) (f x+ x)

⇓

(g 1) (let x = f 42 in f x+ x)

The variable x is only used in the right side of the function application, but we
cannot sink it any further, since it occurs on both sides of the addition.

7



Interestingly, let-sinking also covers a central part of inlining. When a vari-
able only occurs once (and would thus benefit from inlining), the binding will be
moved inwards until it reaches the single occurence, which can then be replaced
by the binding’s declaration.

let x = f 42 in
let y = f 43 in
f y + (y + x)

⇓

let y = f 43 in
f y + (y + let x = f 42 in x)

⇓

let y = f 43 in
f y + (y + f 42)

2.2 Binding Representations
The notation used so far treats variables as letters, or more generally strings.
This is how humans usually write programs and makes it fairly natural to match
a variable with its binding. For representing variables in a compiler or mecha-
nised proof, however, different trade-offs apply.

Explicit names Using strings for variables is quite common in practical com-
pilers, but comes with several disadvantages. For example, additional work is
necessary if we want the equality of expressions to be independent of the spe-
cific variable names chosen (α-equivalence). Also, there are pitfalls like variable
shadowing and variable capture during substitution, requiring the careful appli-
cation of variable renamings [3]. Consider for example the following expression,
where x is a free variable:

let y = x+ 1 in λx. y

Naively inlining y here causes x to be captured by the λ-abstraction, incorrectly
resulting in the program λx. (x+ 1).

There have been various approaches to help compiler writers maintain the
relevant invariants, such as GHC’s rapier [18], but these are generally still error-
prone. The developers of Dex for example used the rapier, but encountered
multiple binding-related compiler bugs, leading them to create the foil to “make
it harder to poke your eye out” [12].
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De Bruijn indices With de Bruijn indices [11], one can instead adopt a
nameless representation. Each variable is represented as a natural number,
counting the number of nested bindings between variable occurrence and its
binding: ⟨0⟩ refers to the innermost binding, ⟨1⟩ to the next-innermost etc. If
we adapt the syntax for let-bindings to omit the unnecessary variable name, the
example expression from dead binding elimination is represented as follows:

let x = 42 in let 42 in
let y = x+ 6 in let ⟨0⟩+ 6 in
let z = y + 7 in let ⟨0⟩+ 7 in
x ⟨2⟩

This makes α-equivalence of expressions trivial and avoids variable capture,
but there are still opportunities for mistakes during transformations. Inserting
or removing a binding requires us to traverse the binding’s body and add or
subtract 1 from all its free variables. We can see this in our example when
removing the innermost (unused) let-binding. If we naively leave the variable
⟨2⟩ untouched, it will not refer to the declaration 42 anymore, but become a
free variable:

let 42 in
let ⟨0⟩+ 6 in
⟨2⟩ – incorrect, should be 1

While useful for machines, de Bruijn representation can be unintuitive for
humans to reason about. This can be alleviated by formally describing the
necessary invariants and using tools to make sure they are upheld. An intrin-
sically typed de Bruijn representation is one possible way to achieve that, as
demonstrated in section 3.1.

Co-de-Bruijn representation Another nameless option we only briefly men-
tion here is the co-de-Bruijn representation [14]. It does not only admit a trivial
α-equivalence, but its terms are also unchanged by adding or removing bindings
in its context. On the other hand, it is even harder for humans to compre-
hend than de Bruijn syntax. McBride writes that “only a fool would attempt
to enforce the co-de-Bruijn invariants without support from a typechecker” and
makes heavy use of Agda’s dependent type system. We follow his approach
closely, as shown in section 4.1.

Other representations There are many other techniques1 such as higher-
order abstract syntax [21] and also combinations of multiple techniques, e.g.
the locally nameless representation [7].

1There is an introductory blogpost by Jesper Cockx [8] comparing several approaches and
their properties using Agda.
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Chapter 3

De Bruijn Representation

The main objective of this chapter is to show how to manipulate the binding
structure of intrinsically typed de Bruijn syntax. We start by demonstrating
how the intrinsically typed representation enforces type- and scope-correctness
by making the context of expressions explicit in their type. To talk about
the relationship between contexts, we give an introduction to thinnings and
some operations on them that will prove useful later. This leads us to the
discovery that thinnings can nicely capture the notion of variable liveness, which
is fundamental for manipulating bindings. Finally, we use them to describe
program transformations and prove their correctness.

For brevity, we will make use of Agda’s ability to quantify over variables
implicitly. The types of these variables should be clear from their names and
context.

3.1 Intrinsically Typed Syntax
Whether we use explicit names or de Bruijn indices, the language as seen so far
makes it possible to represent expressions that are ill-typed (e.g. performing
addition on Booleans) or -scoped. In Agda, we can similarly define expressions
as follows:

data RawExpr : Set where
Var : Nat → RawExpr
App : RawExpr → RawExpr → RawExpr
Lam : RawExpr → RawExpr
Let : RawExpr → RawExpr → RawExpr
Num : Nat → RawExpr
Bln : Bool → RawExpr
Plus : RawExpr → RawExpr → RawExpr

But how should expressions like Plus (Bln False) (Var 42) be evaluated?
What is the result of adding Booleans and how do we ensure that a value (of
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the right type) is provided for each variable used? Clearly, evaluating such an
expression must lead to a runtime error.

Sorts The first problem can be addressed by indexing each expression with
its sort U, the type that it should be evaluated to.

data U : Set where
_⇒_ : U → U → U
BOOL : U
NAT : U

variable
σ τ : U

J_K : U → Set
J σ ⇒ τ K = J σ K → J τ K
J BOOL K = Bool
J NAT K = Nat
data RawExpr : U → Set where

Var : Nat → RawExpr σ
App : RawExpr (σ ⇒ τ) → RawExpr σ → RawExpr τ
Lam : RawExpr τ → RawExpr (σ ⇒ τ)
Let : RawExpr σ → RawExpr τ → RawExpr τ
Val : J σ K → RawExpr σ
Plus : RawExpr NAT → RawExpr NAT → RawExpr NAT

Note that the values not only consist of natural numbers and Booleans, but
also functions between values, introduced by λ-abstraction. Sorts can further
be interpreted as Agda types, which we use to represent values, for example
during evaluation.

Context Sorts help, but to know if a variable occurrence is valid, one must
also consider its context, the (typed) bindings that are in scope. We represent
the context as a list of sorts: One for each binding in scope, from innermost to
outermost.

Ctx = List U
variable
Γ ∆ : Ctx

De Bruijn indeces can then ensure that they reference an element of a specific
type within the context.

data Ref (σ : U) : Ctx → Set where
Top : Ref σ (σ :: Γ)
Pop : Ref σ Γ → Ref σ (τ :: Γ)

By also indexing expressions with their context, the invariants can finally
guarantee type- and scope-correctness by construction.
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data Expr : (Γ : Ctx) (τ : U) → Set where
Var : Ref σ Γ → Expr σ Γ
App : Expr (σ ⇒ τ) Γ → Expr σ Γ → Expr τ Γ
Lam : Expr τ (σ :: Γ) → Expr (σ ⇒ τ) Γ
Let : Expr σ Γ → Expr τ (σ :: Γ) → Expr τ Γ
Val : J σ K → Expr σ Γ
Plus : Expr NAT Γ → Expr NAT Γ → Expr NAT Γ

Note how the context changes when introducing a new binding in the body of
a Lam or Let.

Evaluation During evaluation, each variable in scope has a value. Together,
these are called an environment for a given context.

data Env : Ctx → Set where
Nil : Env []
Cons : J σ K → Env Γ → Env (σ :: Γ)

Since variable Ref σ Γ acts as a proof that the environment Env Γ contains
an element of type σ, variable lookup is total.

lookup : Ref σ Γ → Env Γ → J σ K
lookup Top (Cons v env) = v
lookup (Pop i) (Cons v env) = lookup i env

As a result, we can define a total evaluator that can only be called with an
environment that matches the expression’s context.

eval : Expr σ Γ → Env Γ → J σ K
eval (Var x) env = lookup x env
eval (App e1 e2) env = eval e1 env (eval e2 env)
eval (Lam e1) env = λ v → eval e1 (Cons v env)
eval (Let e1 e2) env = eval e2 (Cons (eval e1 env) env)
eval (Val v) env = v
eval (Plus e1 e2) env = eval e1 env + eval e2 env

3.2 Thinnings
Since the context of an expression plays such an important role for its scope-
safety, we want some machinery for talking about how different contexts relate
to each other. One such relation, which will prove useful soon, is that of being
a subcontext, or more precisely a context with an embedding into another.
We formalise this notion in the form of thinnings, also called order-preserving
embeddings (OPE) [6].

As several operations on thinnings are used pervasively throughout the rest
of the thesis, we briefly introduce them here in a central location we can refer
back to. Their applications will become apparent starting from section 3.4.
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We closely follow the syntactic conventions of McBride [14], but grow our
lists towards the left instead of using backwards lists and postfix operators.

data _⊑_ {I : Set} : List I → List I → Set where
o′ : ∆ ⊑ Γ → ∆ ⊑ (τ :: Γ) -- drop
os : ∆ ⊑ Γ → (τ :: ∆) ⊑ (τ :: Γ) -- keep
oz : [] ⊑ [] -- empty

Intuitively, a thinning tells us for each element of the target context whether
it also occurs in the source target or not (keep or drop). As an example, let us
embed the list a :: c :: [] into a :: b :: c :: []:

os (o′ (os oz)) : (a :: c :: []) ⊑ (a :: b :: c :: [])

Identity and composition Contexts and the thinnings between them form a
category with the inital object []. Concretely, this means that there is an empty
and identity thinning (keeping none or all elements, respectively), as well as
composition of thinnings in sequence, followingidentity and associativity laws.

oe : [] ⊑ Γ
oe {Γ = []} = oz
oe {Γ = :: } = o′ oe
oi : Γ ⊑ Γ
oi {Γ = []} = oz
oi {Γ = :: } = os oi
_#_ : Γ1 ⊑ Γ2 → Γ2 ⊑ Γ3 → Γ1 ⊑ Γ3

θ # o′ ϕ = o′ (θ # ϕ)
o′ θ # os ϕ = o′ (θ # ϕ)
os θ # os ϕ = os (θ # ϕ)
oz # oz = oz
law-#oi : (θ : ∆ ⊑ Γ) → θ # oi ≡ θ
law-oi# : (θ : ∆ ⊑ Γ) → oi # θ ≡ θ
law-## : (θ : Γ1 ⊑ Γ2) (ϕ : Γ2 ⊑ Γ3) (ψ : Γ3 ⊑ Γ4) →

θ # (ϕ # ψ) ≡ (θ # ϕ) # ψ

Concatenating thinnings Thinnings cannot just be composed in sequence,
but also concatenated.

_++⊑_ : ∆1 ⊑ Γ1 → ∆2 ⊑ Γ2 → (∆1 ++ ∆2) ⊑ (Γ1 ++ Γ2)
o′ θ ++⊑ ϕ = o′ (θ ++⊑ ϕ)
os θ ++⊑ ϕ = os (θ ++⊑ ϕ)
oz ++⊑ ϕ = ϕ

This interacts nicely with sequential composition, specifically we prove that
(θ1 # θ2) ++⊑ (ϕ1 # ϕ2) ≡ (θ1 ++⊑ ϕ1) # (θ2 ++⊑ ϕ2).
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Splitting thinnings If we have a thinning into a target context that is con-
catenated from two segments, we can also split the source context and thinning
accordingly. To help the typechecker figure out what we want, we quantify over
Γ1 explicitly, Γ2 can then usually be inferred.

record Split (Γ1 : List I) (θ : ∆ ⊑ (Γ1 ++ Γ2)) : Set where
constructor split
field
{∆1} : List I
{∆2} : List I
θ1 : (∆1 ⊑ Γ1)
θ2 : (∆2 ⊑ Γ2)
eq : Σ (∆ ≡ ∆1 ++ ∆2) λ {refl → θ ≡ θ1 ++⊑ θ2}

_⊣_ : (Γ1 : List I) (θ : ∆ ⊑ (Γ1 ++ Γ2)) → Split Γ1 θ

To show it in action, let us return to the previous example thinning and
observe that we could have built it by concatenating two smaller thinnings:

θ1 : (a :: []) ⊑ (a :: [])
θ1 = os oz
θ2 : (c :: []) ⊑ (b :: c :: [])
θ2 = o′ (os oz)
θ : (a :: c :: []) ⊑ (a :: b :: c :: [])
θ = θ1 ++⊑ θ2 -- evaluates to os (o′ (os oz))

To go into the other direction, we split θ by calling (a :: []) ⊣ θ, resulting in a
split θ1 θ2 eq : Split (a :: []) θ. The target context’s first segment (a :: []) needs
to be supplied explicitly to specify at which place the splitting should happen.
The second segment is then determined by θ’s target context.

Things with thinnings We will later deal with things (e.g. expressions)
indexed by a context that we do not statically know. We will know, however,
that it embeds into a specific context Γ via some thinning. As we have so far
been careful to always use the context as the last argument to types, this concept
of a thing with a thinning can be defined in a general way, to be used for a wide
range of different datatypes.

record _⇑_ (T : List I → Set) (Γ : List I) : Set where
constructor _↑_
field
{∆} : List I
thing : T ∆
thinning : ∆ ⊑ Γ

To avoid manual un- and re-packing, some combinators come in handy:
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map⇑ : (∀ {∆} → S ∆ → T ∆) → S ⇑ Γ → T ⇑ Γ
bind⇑ : (∀ {∆} → S ∆ → T ⇑ ∆) → S ⇑ Γ → T ⇑ Γ
thin⇑ : ∆ ⊑ Γ → T ⇑ ∆ → T ⇑ Γ

3.3 Variable Liveness
We want to compute an expression’s live variables, i.e. the part of the context
that is live. However, while an expression’s context is just a list of sorts, a
similar list is not sufficient as the result of this bottom-up analysis.

For example, knowing that two subexpressions both have a single live vari-
able of sort NAT is not enough to deduce whether the combined expression has
one or two live variables. We cannot know whether the two variables are the
same, unless we have a way to connect them back to the context they come
from. Another way of thinking about variable liveness is that for each variable
in the context we want a binary piece of information: is it live or dead?

Thinnings support both of these interpretations: A thinning ∆ ⊑ Γ can
be used to represent the live variables ∆ together with an embedding into the
context Γ. At the same time, looking at how it is constructed reveals for each
element of the context whether it is live (os) or dead (o′).

We will now show for each constructor of our language how to compute its
live variables, or rather their thinning into the context.

Values Starting with the most trivial case, values do not use any variables.
The thinning from the (empty) list of their life variables consequently drops
everything.

oe : [] ⊑ Γ

Variables A variable occurrence trivially has one live variable. To obtain a
suitable thinning, we can make use of the fact that thinnings from a singleton
context are isomorphic to references.

o-Ref : Ref σ Γ → (σ :: []) ⊑ Γ
o-Ref Top = os oe
o-Ref (Pop x) = o′ (o-Ref x)

Ref-o : (σ :: []) ⊑ Γ → Ref σ Γ
Ref-o (o′ θ) = Pop (Ref-o θ)
Ref-o (os θ) = Top
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Binary constructors Variables in the context are live if they are live in one
of the subexpressions (i.e. some thinning is os ).

∪-vars : (θ1 : ∆1 ⊑ Γ) (θ2 : ∆2 ⊑ Γ) → List I
∪-vars (o′ θ1) (o′ θ2) = ∪-vars θ1 θ2
∪-vars {Γ = σ :: } (o′ θ1) (os θ2) = σ :: ∪-vars θ1 θ2
∪-vars {Γ = σ :: } (os θ1) (o′ θ2) = σ :: ∪-vars θ1 θ2
∪-vars {Γ = σ :: } (os θ1) (os θ2) = σ :: ∪-vars θ1 θ2
∪-vars oz oz = []

To precisely describe the merged variable liveness information, we then construct
a thinning from these combined live variables.

_∪_ : (θ1 : ∆1 ⊑ Γ) (θ2 : ∆2 ⊑ Γ) → ∪-vars θ1 θ2 ⊑ Γ
o′ θ1 ∪ o′ θ2 = o′ (θ1 ∪ θ2)
o′ θ1 ∪ os θ2 = os (θ1 ∪ θ2)
os θ1 ∪ o′ θ2 = os (θ1 ∪ θ2)
os θ1 ∪ os θ2 = os (θ1 ∪ θ2)
oz ∪ oz = oz

Furthermore, we can construct the two thinnings into the combined live vari-
ables and show that this is exactly what we need to reconstruct the original
thinnings.

un-∪1 : (θ1 : ∆1 ⊑ Γ) (θ2 : ∆2 ⊑ Γ) → ∆1 ⊑ ∪-vars θ1 θ2
un-∪2 : (θ1 : ∆1 ⊑ Γ) (θ2 : ∆2 ⊑ Γ) → ∆2 ⊑ ∪-vars θ1 θ2

law-∪1-inv : (θ1 : ∆1 ⊑ Γ) (θ2 : ∆2 ⊑ Γ) →
un-∪1 θ1 θ2 # (θ1 ∪ θ2) ≡ θ1

law-∪2-inv : (θ1 : ∆1 ⊑ Γ) (θ2 : ∆2 ⊑ Γ) →
un-∪2 θ1 θ2 # (θ1 ∪ θ2) ≡ θ2

Binders When moving up over a binder, the bound variable gets removed
from the context. In case it was part of the live variables, it also has to be
removed there. This is done using pop, again with thinnings from and into the
resulting context.

pop-vars : ∆ ⊑ Γ → List I
pop-vars {∆ = ∆} (o′ θ) = ∆
pop-vars {∆ = :: ∆} (os θ) = ∆
pop-vars oz = []
pop : (θ : ∆ ⊑ (σ :: Γ)) → pop-vars θ ⊑ Γ
pop (o′ θ) = θ
pop (os θ) = θ

un-pop : (θ : ∆ ⊑ (σ :: Γ)) → ∆ ⊑ (σ :: pop-vars θ)
law-pop-inv : (θ : ∆ ⊑ (σ :: Γ)) → un-pop θ # os (pop θ) ≡ θ
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Let-bindings For let-bindings, one option is to treat them as an immediate
application of a λ-abstraction, combining the methods we just saw. This cor-
responds to weakly live variable analysis, since even if the variable is dead, we
end up considering other variables to be live if they are used in its declaration.

_∪let_ : (θ1 : ∆1 ⊑ Γ) (θ2 : ∆2 ⊑ (σ :: Γ)) → ∪-vars θ1 (pop θ2) ⊑ Γ
θ1 ∪let θ2 = θ1 ∪ pop θ2

The other option is to do strongly live variable analysis with a custom operation
_∪let_ that ignores the declaration’s context if it is unused in the body.

∪let-vars : (θ1 : ∆1 ⊑ Γ) (θ2 : ∆2 ⊑ (σ :: Γ)) → Ctx
∪let-vars {∆2 = ∆2} θ1 (o′ θ2) = ∆2

∪let-vars θ1 (os θ2) = ∪-vars θ1 θ2
_∪let_ : (θ1 : ∆1 ⊑ Γ) (θ2 : ∆2 ⊑ (σ :: Γ)) → ∪let-vars θ1 θ2 ⊑ Γ
θ1 ∪let (o′ θ2) = θ2
θ1 ∪let (os θ2) = θ1 ∪ θ2

We do not need the composed thinnings into the live variables, as we will always
distinguish the two cases of θ2 anyways and can then rely on the thinnings
defined for _∪_.

To illustrate the difference, let us return to an example shown earlier:

let x = 42 in let 42 in
let y = x+ 6 in let ⟨0⟩+ 6 in
let z = y + 7 in let ⟨0⟩+ 7 in
x ⟨2⟩

If we focus on the subexpression in the last two lines, we see that in our syntax
representation it is an Expr NAT (NAT :: NAT :: []), where the first element of
the context correspondes to y, the second to x.

Let (Plus (Var Top) (Val 7))
(Var (Pop (Pop Top)))

In the declaration, only the innermost binding y is live, so we have a thin-
ning os (o′ oz). In the body (with an additional binding in scope), we have
o′ (o′ (os oz)). With the weak version of _∪let_ we get

os (o′ oz) ∪let o′ (o′ (os oz)) = os (o′ oz) ∪ o′ (os oz) = os (os oz)

stating that both variables in scope are live. With the strong version, on the
other hand, only y is considered live:

os (o′ oz) ∪let o′ (o′ (os oz)) = os (o′ oz)
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3.4 Dead Binding Elimination

3.4.1 Direct Approach
To make the decision whether a binding can be removed, we need to find out if
it is used or not. This can be achieved by returning liveness information as part
of the transformation’s result and use that after the recursive call on the body.
Precisely, we return an Expr σ ⇑ Γ, the transformed expression in a reduced
context of only its live variables, together with a thinning into the original one.

Transformation The transformation proceeds bottom-up. Once all subex-
pressions have been transformed and we know their live variables, we calculate
the overall live variables with their corresponding thinnings. Since the construc-
tors of Expr require the subexpressions’ context to match their own, we need to
rename the subexpressions accordingly.

rename-Ref : ∆ ⊑ Γ → Ref σ ∆ → Ref σ Γ
rename-Expr : ∆ ⊑ Γ → Expr σ ∆ → Expr σ Γ

Each renaming traverses the expression and we end up renaming the same
parts of the expressions repeatedly (at each binary constructor). While this is
clearly inefficient, it cannot be avoided easily with the approach shown here. If
we knew upfront which context the expression should have in the end, we could
immediately produce the result in that context, but we only find out which
variables are live after doing the recursive call. Separately querying liveness
before doing the recursive calls would also require redundant traversals, but we
will show a solution to this issue in the next section.

Most cases of the implementation keep the expression’s structure unchanged,
only manipulating the context:

dbe : Expr σ Γ → Expr σ ⇑ Γ
dbe (Var x) =

Var Top ↑ o-Ref x
dbe (App e1 e2) =

let e′1 ↑ θ1 = dbe e1
e′2 ↑ θ2 = dbe e2

in App (rename-Expr (un-∪1 θ1 θ2) e′1) (rename-Expr (un-∪2 θ1 θ2) e′2)
↑ (θ1 ∪ θ2)

dbe (Lam e1) =
let e′1 ↑ θ = dbe e1
in Lam (rename-Expr (un-pop θ) e′1) ↑ pop θ

dbe (Let e1 e2) with dbe e1 | dbe e2
... | e′1 ↑ θ1 | e′2 ↑ o′ θ2 =

e′2 ↑ θ2
... | e′1 ↑ θ1 | e′2 ↑ os θ2 =

Let (rename-Expr (un-∪1 θ1 θ2) e′1) (rename-Expr (os (un-∪2 θ1 θ2)) e′2)
↑ (θ1 ∪ θ2)
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dbe (Val v) =
(Val v) ↑ oe

dbe (Plus e1 e2) =
. . . -- just as App

For Let, we split on the binding being live or dead in dbe e2. Only if it is
dead will the typechecker allow us to return e′2 without the binding. Finally,
note that checking liveness after already removing dead bindings from the body
corresponds to strongly live variable analysis.

Correctness We prove preservation of semantics based on the total evaluation
function. Since we allow functions as values, reasoning about equality requires
us to postulate extensionality. This does not impact the soundness of the proof
and could be avoided by moving to a different setting, such as homotopy type
theory [25].

postulate
extensionality :
{S : Set} {T : S → Set} {f g : (x : S) → T x} →
(∀ x → f x ≡ g x) → f ≡ g

As the transformed expression generally has a different context than the
input expression, they cannot be evaluated under the same environment. We
project the environment to match the smaller context, dropping all its unneeded
elements.

project-Env : ∆ ⊑ Γ → Env Γ → Env ∆

dbe-correct :
(e : Expr σ Γ) (env : Env Γ) →
let e′ ↑ θ = dbe e
in eval e′ (project-Env θ env) ≡ eval e env

Alternatively, it is possible to rename the expression (and law-eval-rename-Expr
witnesses that both approaches are exchangable), but in this case it turns out
to be more convenient to reason about context projection.

law-eval-rename-Expr :
(e : Expr σ ∆) (θ : ∆ ⊑ Γ) (env : Env Γ) →
eval (rename-Expr θ e) env ≡ eval e (project-Env θ env)

The inductive proof requires combining a large number of laws about eval-
uation, renaming, environment projection and the thinnings we constructed.
The Lam case exemplifies that. We omit most of the proof terms except for
the inductive hypothesis, as they are rather long. The intermediate terms still
demonstrate how we need to apply several lemmas.
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dbe-correct (Lam e1) env =
let e′1 ↑ θ1 = dbe e1
in extensionality λ v →

eval (rename-Expr (un-pop θ1) e′1) (project-Env (os (pop θ1)) (Cons v env))
≡⟨ law-eval-rename-Expr e′1 (un-pop θ1) ⟩

eval e′1 (project-Env (un-pop θ1) (project-Env (os (pop θ1)) (Cons v env)))
≡⟨ . . . ⟩

eval e′1 (project-Env (un-pop θ1 # os (pop θ1)) (Cons v env))
≡⟨ . . . ⟩

eval e′1 (project-Env θ1 (Cons v env))
≡⟨ dbe-correct e1 (Cons v env) ⟩

eval e1 (Cons v env)
■

. . .

The cases for binary operators have a similar structure, but are even longer,
as they need to apply laws once for each subexpression. Since the implementa-
tion uses a with-abstraction for the Let-case, the proof does the same:

dbe-correct (Let e1 e2) env with dbe e1 | dbe e2 | dbe-correct e1 | dbe-correct e2
... | e′1 ↑ θ1 | e′2 ↑ o′ θ2 | h1 | h2 =

h2 (Cons (eval e1 env) env)
... | e′1 ↑ θ1 | e′2 ↑ os θ2 | h1 | h2 =

let v = eval (rename-Expr (un-∪1 θ1 θ2) e′1) (project-Env (θ1 ∪ θ2) env)
in

eval (rename-Expr (os (un-∪2 θ1 θ2)) e′2)
(Cons v (project-Env (θ1 ∪ θ2) env))

≡⟨ . . . ⟩
. . . -- long proof

≡⟨ . . . ⟩
eval e2 (Cons (eval e1 env) env)

■

Note that we also with-abstract over the inductive hypothesis. When abstract-
ing over e.g. dbe e1, the statement we need to prove gets generalised and then
talks about e′1. However, dbe-correct e1 talks about dbe e1 and Agda is not
aware of their connection. Generalising dbe-correct e1 makes it refer to e′1 as
well. 1

3.4.2 Using Annotations
In compilers, it is a common pattern to perform separate analysis and transfor-
mation passes, for example with strictness and occurrence analysis in GHC [20].
We can do the same to make variable liveness information available without
repeatedly having to compute it on the fly. For dead binding elimination, this
allows us to avoid the redundant renaming of subexpressions.

1https://agda.readthedocs.io/en/v2.6.3/language/with-abstraction.html
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Liveness annotations To annotate each part of the expression with its live
variables, we first need to define a suitable datatype of annotated expressions
LiveExpr τ θ. The thinning θ here captures liveness information in the same way
as during the direct transformation in section 3.4.1. Its target context Γ plays
the same role as in Expr σ Γ, but ∆ only contains the live variables.

data LiveExpr {Γ : Ctx} : U → {∆ : Ctx} → ∆ ⊑ Γ → Set where
Var :
(x : Ref σ Γ) →
LiveExpr σ (o-Ref x)

App :
{θ1 : ∆1 ⊑ Γ} {θ2 : ∆2 ⊑ Γ} →
LiveExpr (σ ⇒ τ) θ1 →
LiveExpr σ θ2 →
LiveExpr τ (θ1 ∪ θ2)

Lam :
{θ : ∆ ⊑ (σ :: Γ)} →
LiveExpr τ θ →
LiveExpr (σ ⇒ τ) (pop θ)

Let :
{θ1 : ∆1 ⊑ Γ} {θ2 : ∆2 ⊑ (σ :: Γ)} →
LiveExpr σ θ1 →
LiveExpr τ θ2 →
LiveExpr τ (θ1 ∪let θ2)

Val :
J σ K →
LiveExpr σ oe

Plus :
{θ1 : ∆1 ⊑ Γ} {θ2 : ∆2 ⊑ Γ} →
LiveExpr NAT θ1 →
LiveExpr NAT θ2 →
LiveExpr NAT (θ1 ∪ θ2)

The operator _∪let_ used here can refer to either one of the two versions we
introduced, but for the remainder of this thesis we will use the strongly live
version.

Analysis To create such an annotated expressions, we need to perform strongly
live variable analysis. As we do not know the live variables upfront, analyse com-
putes an existentially qualified context and thinning, together with a matching
annotated expression. The implementation is straightforward, directly following
the expression’s structure.

analyse : Expr σ Γ → Σ[ ∆ ∈ Ctx ] Σ[ θ ∈ ∆ ⊑ Γ ] LiveExpr σ θ
analyse (Var {σ} x) =
(σ :: []) , o-Ref x , Var x
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analyse (App e1 e2) =
let ∆1 , θ1 , le1 = analyse e1

∆2 , θ2 , le2 = analyse e2
in ∪-vars θ1 θ2 , (θ1 ∪ θ2) , App le1 le2

. . .

It is sensible to assume that the only thing analysis does is to attach an-
notations without changing the structure of the expression. We capture this
property by stating that we can always forget the annotations to obtain the
original expression (forget ◦ analyse ≡ id).

forget : {θ : ∆ ⊑ Γ} → LiveExpr τ θ → Expr τ Γ

analyse-preserves :
(e : Expr τ Γ) →
let , , le = analyse e
in forget le ≡ e

Note that we can evaluate LiveExpr directly, differing from eval in two points:
Firstly, since the annotations make it easy to identify dead let-bindings, we
can skip their evaluation. Secondly, evaluation works under any environment
containing at least the live variables. This makes it possible to get by with the
minimal required environment, but still gives some flexibility. For example, we
can avoid projecting the environment for each recursive call, just manipulating
the thinning instead.

evalLive : {θ : ∆ ⊑ Γ} → LiveExpr τ θ → Env Γ′ → ∆ ⊑ Γ′ → J τ K
. . .
evalLive (Let {θ1 = θ1} {θ2 = o′ θ2} e1 e2) env θ′ =

evalLive e2 env θ′

evalLive (Let {θ1 = θ1} {θ2 = os θ2} e1 e2) env θ′ =
evalLive e2
(Cons (evalLive e1 env (un-∪1 θ1 θ2 # θ′)) env)
(os (un-∪2 θ1 θ2 # θ′))

. . .

We will later use this to split the correctness proof into multiple small parts.

Transformation The second pass we perform is similar to dbe in the direct
approach, but with a few key differences. Firstly, it operates on annotated ex-
pressions LiveExpr τ θ for a known thinning θ : ∆ ⊑ Γ instead of discovering
the thinning and returning it with the result. However, the transformed expres-
sion will not necessarily be returned in the smallest possible context ∆, but any
chosen larger context Γ′. This way, instead of inefficiently having to rename
afterwards, the result gets created in the desired context straight away. Most
cases now simply recurse while accumulating the thinning that eventually gets
used to create the variable reference.
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transform : {θ : ∆ ⊑ Γ} → LiveExpr τ θ → ∆ ⊑ Γ′ → Expr τ Γ′

transform (Var x) θ′ =
Var (ref-o θ′)

transform (App {θ1 = θ1} {θ2 = θ2} e1 e2) θ′ =
App (transform e1 (un-∪1 θ1 θ2 # θ′))

(transform e2 (un-∪2 θ1 θ2 # θ′))
transform (Lam {θ = θ} e1) θ′ =

Lam (transform e1 (un-pop θ # os θ′))
transform (Let {θ1 = θ1} {θ2 = o′ θ2} e1 e2) θ′ =

transform e2 θ′

transform (Let {θ1 = θ1} {θ2 = os θ2} e1 e2) θ′ =
Let (transform e1 (un-∪1 θ1 θ2 # θ′))

(transform e2 (os (un-∪2 θ1 θ2 # θ′)))
transform (Val v) θ′ =

Val v
transform (Plus {θ1 = θ1} {θ2 = θ2} e1 e2) θ′ =

Plus (transform e1 (un-∪1 θ1 θ2 # θ′))
(transform e2 (un-∪2 θ1 θ2 # θ′))

Finally, we can compose analysis and transformation into an operation with
the same signature as the direct implementation.

dbe : Expr σ Γ → Expr σ ⇑ Γ
dbe e = let , θ , le = analyse e in transform le oi ↑ θ

Correctness The goal is again to show that dead binding elimination pre-
serves semantics, which we can express with the same statement as before, or
conceptually as eval ◦ dbe ≡ eval. We could again immediately attempt a
proof by structural induction, but each case would require cumbersome massag-
ing of the thinnings supplied to various operations. Instead, we aim to simplify
the proof by breaking it down into smaller parts using the optimised semantics:

evalLive ≡ eval ◦ forget
evalLive ≡ eval ◦ transform

Both proofs work inductively on the expression, with most cases being a straight-
forward congruence. The interesting one is again Let, where we split cases on
the variable being used or not and need some auxiliary facts about evaluation,
renaming and contexts.

After doing two relatively simple proofs, we can combine them and do the
remaining reasoning without having to handle each constructor separately. Con-
ceptually, we pre-compose analyse on both sides and remove forget ◦ analyse
(which we know forms an identity) to obtain the desired equality.

eval ◦ transform ≡ eval ◦ forget
eval ◦ transform ◦ analyse ≡ eval ◦ forget ◦ analyse
eval ◦ dbe ≡ eval
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Just as transform itself, the proof statements in Agda are generalised to
evaluation under any Env Γ′, as long as it contains the live variables. This gives
us more flexibility when using the inductive hypothesis, showing that it can
sometimes be easier to prove something more general.

3.5 Let-sinking
As outlined in section 2.1, we want to move a single let-bindings as far inward as
possible without duplicating it or pushing it into a λ-abstraction. Again, we will
first show a direct implementation and then employ the annotated expression
type.

3.5.1 Direct Approach
Type signature We want to replace a let-binding Let decl e with the result
of the transformation sink-let decl e, which suggests a signature like sink-let :
Expr σ Γ → Expr τ (σ :: Γ) → Expr τ Γ. However, while we initially deal with
the topmost entry in the context, this changes when going under other binders.
The solution chosen here uses list concatenation in the context to allow σ to
occur at any position.

sink-let :
Expr σ (Γ1 ++ Γ2) →
Expr τ (Γ1 ++ σ :: Γ2) →
Expr τ (Γ1 ++ Γ2)

Choosing [] as the prefix then again results in the signature above.

Transformation Just as dead binding elimination, let-sinking heavily relies
on variable liveness information. To know where a binding should be moved, we
need to know where it is used. As we are working with a plain (unannotated)
syntax tree in this section, we need to query the subexpressions’ variable usage
on demand, which repeatedly traverses the expression. This is difficult to avoid,
since usage information is computed bottom-up, but let-sinking needs to proceed
top-down.

More concretely, we need to find out for each subexpression whether it uses
the binding we are let-sinking or not. If the binding is unused, we need to make
that clear to the typechecker by removing it from the subexpression’s context.
Therefore, we combine querying and the context change into a single operation
we refer to as strengthening.

strengthen : Expr τ (Γ1 ++ σ :: Γ2) → Maybe (Expr τ (Γ1 ++ Γ2))

We now give the complete implementation of let-sinking before highlighting
specific parts.
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sink-let : Expr σ (Γ1 ++ Γ2) → Expr τ (Γ1 ++ σ :: Γ2) → Expr τ (Γ1 ++ Γ2)
sink-let decl (Var x) with rename-top-Ref x
... | Top = decl
... | Pop x’ = Var x’
sink-let decl e@(App e1 e2) with strengthen e1 | strengthen e2
... | just e′1 | just e′2 = App e′1 e′2
... | nothing | just e′2 = App (sink-let decl e1) e′2
... | just e′1 | nothing = App e′1 (sink-let decl e2)
... | nothing | nothing = Let decl (rename-top e)
sink-let decl e@(Lam e1) =

Let decl (rename-top e) -- Do not sink into λ-abstractions!
sink-let decl e@(Let e1 e2) with strengthen e1 | strengthen e2
... | just e′1 | just e′2 = Let e′1 e′2
... | nothing | just e′2 = Let (sink-let decl e1) e′2
... | just e′1 | nothing = Let e′1 (sink-let (weaken decl) e2)
... | nothing | nothing = Let decl (rename-top e)
sink-let decl (Val v) =

Val v
sink-let decl e@(Plus e1 e2) with strengthen e1 | strengthen e2
... | just e′1 | just e′2 = Plus e′1 e′2
... | nothing | just e′2 = Plus (sink-let decl e1) e′2
... | just e′1 | nothing = Plus e′1 (sink-let decl e2)
... | nothing | nothing = Let decl (rename-top e)

Variables When sinking a binding into a variable, there are two possible cases:

1. If the variable references exactly the let-binding we are sinking, we can
replace it by the declaration, effectively inlining it.

2. If the variable references a different element of the context, the declaration
is unused and we only need to rename the variable into the smaller context.

To distinguish the two cases, we rename the reference (moving the variable in
question to the front).

rename-top-Ref : Ref τ (Γ1 ++ σ :: Γ2) → Ref τ (σ :: Γ1 ++ Γ1)

If the result is Top, we learn that σ ≡ τ and can return the declaration. If it
is Pop x’, we can return x’, as it does not have the variable of the declaration in
its context anymore.

Creating the binding Once we stop sinking the let-binding (e.g. when we
reach a λ-abstraction), we insert the declaration. However, the typechecker will
not accept a plain Let decl e. It is still necessary to rename the expression, since
it makes use of the newly created binding, but expects it at a different de Bruijn
index.

rename-top : Expr τ (Γ1 ++ σ :: Γ2) → Expr τ (σ :: Γ1 ++ Γ2)
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Binary constructors For binary operators, we need to check which subex-
pressions make use of the declaration. There are four possible cases:

1. Both of the subexpressions can be strengthened. This means that we are
sinking a dead let-binding, which normally should not happen. Neverthe-
less, we need to handle the case, simply dropping the binding.

2. The right subexpression can be strengthened. We recurse into the left one.

3. The left subexpression can be strengthened. We recurse into the right one.

4. Neither subexpression can be strengthened, as both use the declaration.
To avoid duplicating code, we do not sink further, but create a let-binding
at the current location.

Binders If we recurse into the body of a let-binding, an additional variable
comes into scope. This means that we need to add it to the context prefix Γ1

and weaken the declaration.

weaken : Expr τ Γ → Expr τ (σ :: Γ)
weaken = rename-Expr (o′ oi)

This traverses the declaration for each binder it is moved across, but in the next
section we will use a simple trick to avoid that.

3.5.2 Using Annotations
Perhaps unsurprisingly, we can again avoid the repeated querying using liveness
annotations. As during dead binding elimination, we first do an analysis pass
and later simply look at the annotated thinnings to find out where a declaration
is used.

The structure of the implementation is the same as for the direct approach,
so we will only highlight a few differences.

Type signature Similarly to section 3.4.2, we first perform the analysis and
then a transformation that results in a plain Expr again. Combined, this has
the same signature as the direct version.

transform :
{θ : ∆ ⊑ (Γ1 ++ σ :: Γ2)} →
Expr σ ⇑ (Γ1 ++ Γ2) →
LiveExpr τ θ →
Expr τ (Γ1 ++ Γ2)

sink-let : Expr σ (Γ1 ++ Γ2) → Expr τ (Γ1 ++ σ :: Γ2) → Expr τ (Γ1 ++ Γ2)
sink-let decl e = let , θ , le = analyse e in transform (decl ↑ oi) le
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Note that only the body is annotated, as we do not need liveness information
for the declaration. The declaration however is passed with a thinning. This
change is independent of the others, but will avoid repeatedly having to rename
the declaration when going under binders.

Binary constructors The Let case shows all major changes. The main one is
that instead of traversing the subexpressions (attempting to strengthen them),
it is sufficient to work with the thinnings found during analysis. We make use
of the ability to split and concatenate them, as shown in section 3.2.

transform {Γ1 = Γ1} decl e@ (Let {θ1 = θ} {θ2 = ϕ} e1 e2)
with Γ1 ⊣ θ | ( :: Γ1) ⊣ ϕ

... | split θ1 (o′ θ2) (refl , refl) | split ϕ1 (o′ ϕ2) (refl , refl) =
Let (DBE.transform e1 (θ1 ++⊑ θ2)) (DBE.transform e2 (ϕ1 ++⊑ ϕ2))

... | split θ1 (os θ2) (refl , refl) | split ϕ1 (o′ ϕ2) (refl , refl) =
Let (transform decl e1) (DBE.transform e2 (ϕ1 ++⊑ ϕ2))

... | split θ1 (o′ θ2) (refl , refl) | split ϕ1 (os ϕ2) (refl , refl) =
Let (DBE.transform e1 (θ1 ++⊑ θ2)) (transform (thin⇑ (o′ oi) decl) e2)

... | split θ1 (os θ2) (refl , refl) | split ϕ1 (os ϕ2) (refl , refl) =
Let (rename-Expr⇑ decl) (rename-top (forget e))

. . .

Focusing on the first subexpression, we use _⊣_ to split the annotated thinning
θ : (∆1 ++ ∆2) ⊑ (Γ1 ++ σ :: Γ2) from the context of e1 into two thinnings
θ1 : ∆1 ⊑ Γ1 and θ2 : ∆2 ⊑ σ :: Γ2. If the declaration is unused, we obtain a
smaller θ2, which we can use to construct θ1 ++⊑ θ2 : (∆1 ++ ∆2) ⊑ (Γ1 ++ Γ2),
which shows that σ is not required in the context of e1. To then turn the
annotated e1 into an Expr σ (Γ1 ++ Γ2), we could forget the annotations
followed by renaming, but we instead use the already defined DBE.transform,
which does the job in a single traversal.

Binders Instead of weakening the declaration every time we go under a binder,
we manipulate the thinning it is wrapped in thin⇑ (o′ oi). As a result, we only
need to rename the declaration once at the end, when the binding is created.

rename-Expr⇑ : Expr σ ⇑ Γ → Expr σ Γ
rename-Expr⇑ (e ↑ θ) = rename-Expr θ e

3.6 Discussion
We used thinnings to implement live variable analysis and two program transfor-
mations. In both cases, the approach of directly performing the transformation
on de Bruijn syntax required us to traverse a number of syntax nodes roughly
quadratic in the size of the tree. At the cost of a single analysis pass upfront
(and some additional code), we were able to replace the redundant traversals
with simple operations on thinnings.
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Reordering the context When changing the order of let-bindings during
let-sinking, the order of the variables in the context changes as well. As thin-
nings present order-preserving embeddings, they are not suited to describe such
a change of context. Consequently, we had to resort to concatenation and de-
fine an additional set of operations, such as for renaming expressions. The
complexity of the transformation was significantly higher than for dead binding
elimination.

We will continue using the order-preserving flavour of thinnings, but discuss
potential alternatives in chapter 6.

3.6.1 Alternative Designs
Iterating transformations As discussed in section 2.1, more than one pass
of dead binding elimination might be necessary to remove all unused bindings.
While in our simple setting all these bindings could be identified in a single pass
using strongly live variable analysis, in general it can be beneficial to iterate
optimisations a fixed number of times or until a fixpoint is reached. For example,
it is reported that GHC’s simplifier pass is iterated up to 4 times [20].

As an example, we defined a function that keeps applying dbe as long as the
number of bindings in the expression decreases. Such an iteration is not struc-
turally recursive, so Agda’s termination checker needs our help. We observe that
the algorithm must terminate, since the number of bindings decreases with each
iteration (but the last) and clearly can never be negative. This is an instance of
to the ascending chain condition in program analysis literature [15]. To convince
the termination checker, we used the technique of well-founded recursion [4] on
the number of bindings. The correctness was then straightforward to prove, as
it follows directly from the correctness of each individual iteration step.

Signature of let-sinking We remind ourselves of the type signature of sink-let.
To talk about removing an element from the context at a specific position, we
used list concatenation.

sink-let :
Expr σ (Γ1 ++ Γ2) →
Expr τ (Γ1 ++ σ :: Γ2) →
Expr τ (Γ1 ++ Γ2)

Note that we could alternatively have used other ways to achieve the same,
such as insertion at a position n : Fin (length Γ) or removal of σ at a position
i : Ref σ Γ.

pop-at : (Γ : Ctx) → Ref σ Γ → Ctx
pop-at (σ :: Γ) Top = Γ
pop-at (τ :: Γ) (Pop i) = τ :: pop-at Γ i

Expr σ (Γ1 ++ Γ2) → Expr τ (Γ1 ++ σ :: Γ2) → Expr τ (Γ1 ++ Γ2)
Expr σ (pop-at Γ i) → Expr τ Γ → Expr τ (pop-at Γ i)
Expr σ Γ → Expr τ (insert n σ Γ) → Expr τ Γ
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Using list concatenation, however, seems more principled and allows us to make
use of general operations and properties of the concatenation of contexts and
thinnings.

Keeping annotations In both transformations, we used annotated expres-
sions for the input, but returned the result without annotations. When per-
forming multiple different transformations in sequence (or the same one multi-
ple times), each pass requires us to do live variable analysis anew, just to then
throw away the results.

If instead transformations computed updated liveness annotations as they
are constructing the resulting expression, we could stay in LiveExpr world all
the time. However, each transformation would then effectively need to include
analysis, making it more complex. This could potentially be factored out, but
a first attempt for let-sinking encountered various practical issues. In addition,
indexing LiveExpr by two different contexts seems redundant. Could a represen-
tation considering only the live variables be simpler, while providing the same
benefits? The next chapter will feature such a representation.
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Chapter 4

Co-de-Bruijn Representation

After showing that de Bruijn representation can be made type- and scope-correct
by indexing expressions with their context (the variables in scope), we found
out how useful it is to also know the live variables. The type of annotated
expressions we created was therefore indexed (perhaps redundantly) by both
of these, as well as the thinning between them. Here however, we will work
with McBride’s co-de-Bruijn syntax [14], another nameless intrinsically typed
representation, which is indexed by its weakly live variables alone.

In this representation, bindings can be added or removed without having
to traverse their body to rename the variables. The bookkeeping required is
relatively complex, but Agda’s typechecker helps us maintain the invariants.

We will begin by giving an intuition for the co-de-Bruijn representation and
show how it translates into a few core building blocks, each with a convenient
smart constructor. Based on these, we define a co-de-Bruijn-based syntax tree
for our expression language and demonstrate that it can be converted to and
from our original de Bruijn expressions. Once the foundations are in place,
we again perform dead binding elimination and let-sinking, making use of the
variable liveness information inherent in co-de-Bruijn terms.

4.1 Intrinsically Typed Syntax
Intuition The intuition that McBride gives (and uses to motivate the name
co-de-Bruijn) is that de Bruijn representation keeps all introduced bindings in
its context and only selects one of them as late as possible, when encountering
a variable, i.e. de Bruijn index. Co-de-Bruijn representation follows the dual
approach, shrinking down the context as early as possible to only those variables
that occur in the respective subexpression. When reaching a variable, only a
singleton context remains, so there is no need for an index.

After dealing with live variable analysis in the previous chapter, we also think
about it in a way similar to liveness annotations: starting from the variables,
the live variables get collected and turned into annotations, bottom-up.
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Relevant pairs The most insightful situation to consider is that of handling
multiple subexpressions, for example with addition. Assuming we have e1 :
Expr NAT ∆1 and e2 : Expr NAT ∆2, each indexed by their live variables, how
do we construct the syntax node representing e1 + e2? It should be indexed by
the smallest Γ with thinnings θ1 : ∆1 ⊑ Γ and θ2 : ∆2 ⊑ Γ. For LiveExpr,
we specified the resulting context using _∪_, ensuring that it is the smallest
context into which we can embed both ∆1 and ∆2. Here, we achieve the same
using a cover of the thinnings to ensure that every element of Γ is part of ∆1,
∆2, or both (“everybody’s got to be somewhere”). Fundamentally, we can never
construct a Cover (o′ ) (o′ ).

data Cover : ∆1 ⊑ Γ → ∆2 ⊑ Γ → Set where
c’s : Cover θ1 θ2 → Cover (o′ θ1) (os θ2)
cs’ : Cover θ1 θ2 → Cover (os θ1) (o′ θ2)
css : Cover θ1 θ2 → Cover (os θ1) (os θ2)
czz : Cover oz oz

As each binary operator will in some form contain two thinnings and their
cover, we combine them into a reusable datatype called relevant pair.

record _×R_ (S T : List I → Set) (Γ : List I) : Set where
constructor pairR
field

outl : S ⇑ Γ -- containing S ∆1 and ∆1 ⊑ Γ
outr : T ⇑ Γ -- containing T ∆2 and ∆2 ⊑ Γ
cover : Cover (thinning outl) (thinning outr)

As an example, let us construct the relevant pair of the two expressions
e1 : Expr NAT (σ :: []) and e2 : Expr NAT (τ :: []), each with a (different)
single live variable in their context. The combined live variables then contain
both variables, so one thinning will target the first element, and one the other:
pairR (e1 ↑ os (o′ oz)) (e2 ↑ o′ (os oz)) c : (Expr NAT ×R Expr NAT) (σ :: τ :: []).
The cover c = cs’ (c’s czz) follows the same structure.

Manually finding the combined live variables and constructing the cover
everytime a relevant pair gets constructed quickly gets cumbersome. We can
delegate the work to a smart constructor, but note that nothing about e1 and
e2 tells us which element should come first in the context – the choice was made
(arbitrarily) by creating the thinnings. As part of the input, we therefore require
thinnings into a shared context. Any shared context will do, since we only need
it to relate the two subexpressions’ contexts and can still shrink it down to the
part that is live.

_,R_ : S ⇑ Γ → T ⇑ Γ → (S ×R T) ⇑ Γ

We will not show the implementation here, but it is generally similar to that of
_∪_, recursing over each element of Γ to check which of the thinnings use it,
decide whether to include it in the resulting context, and construct the matching
thinnings and cover.
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Bindings Another important consideration are bindings. Not all bound vari-
ables are required to be used, they can be dropped from the context of their
subexpressions immediately. For example, λ-abstractions that don’t use their ar-
gument are perfectly valid and cannot be removed as easily as dead let-bindings.

With the goal of creating another general building block that can be used
for a wide range of language constructs, we allow a list of multiple simultaneous
bindings. Instead of an operation like pop dealing with a single binding, we now
use a thinning ϕ : ∆′ ⊑ Γ′ to express which of the bound variables Γ′ are
used, and concatenate the live variables ∆′ to the context.

record _⊢_ (Γ′ : List I) (T : List I → Set) (Γ : List I) : Set where
constructor _)_
field
{∆′} : List I
thinning : ∆′ ⊑ Γ′

thing : T (∆′ ++ Γ)

Given an expression, wrapping it into this datatype requires us to find out
which part of its context is bound here. Luckily, with the right thinning at
hand, this can be handled by a general smart constructor.

_)R_ : (Γ′ : List I) → T ⇑ (Γ′ ++ Γ) → (Γ′ ⊢ T) ⇑ Γ

Again, we will not spend much time explaining the implementation, but briefly
mention that it relies on the ability to split the thinning that goes into Γ′ ++ Γ
into two parts using _⊣_, as seen in section 3.2.

Expression language Using the building blocks defined above, our expres-
sion language can be defined pretty concisely.

data Expr : (σ : U) (Γ : Ctx) → Set where
Var : Expr σ (σ :: [])
App : (Expr (σ ⇒ τ) ×R Expr σ) Γ → Expr τ Γ
Lam : ((σ :: []) ⊢ Expr τ) Γ → Expr (σ ⇒ τ) Γ
Let : (Expr σ ×R ((σ :: []) ⊢ Expr τ)) Γ → Expr τ Γ
Val : J σ K → Expr σ []
Plus : (Expr NAT ×R Expr NAT) Γ → Expr NAT Γ

Let-bindings make use of both a relevant pair and binding, without us having
to think much about what the thinnings involved should look like. Since the
context of the declaration is considered relevant irrespective of the let-binding
itself being live, it corresponds to the weakly live variables. Achieving strong
variable liveness would require a custom combinator, but more importantly, we
will show that it is not necessary for an efficient implementation of the strong
version of dead binding elimination.
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Evaluation To later be able to talk about preservation of semantics, we first
need to define a semantics, which we again do in form of a total evaluation
function. As with evalLive, we allow supplying an environment that is larger
than strictly needed. This allows us to compose a thinning instead of having to
project the environment for each recursive call.

eval : Expr τ ∆ → ∆ ⊑ Γ → Env Γ → J τ K
eval Var θ env =

lookup (ref-o θ) env
eval (App (pairR (e1 ↑ θ1) (e2 ↑ θ2) cover)) θ env =

eval e1 (θ1 # θ) env
(eval e2 (θ2 # θ) env)

eval (Lam (ψ ) e)) θ env =
λ v → eval e (ψ ++⊑ θ) (Cons v env)

eval (Let (pairR (e1 ↑ θ1) ((ψ ) e2) ↑ θ2) c)) θ env =
eval e2 (ψ ++⊑ (θ2 # θ))
(Cons (eval e1 (θ1 # θ) env) env)

. . .

At the variable occurrences, the expression’s context is a singleton and we
can convert the thinning into an index (Ref) to do a lookup on the environment.
The thinning ψ for bindings that get introduced needs to concatenated with the
accumulated binding. Finally note that despite all the similarities to evalLive, we
do not skip the declaration’s evaluation when encountering a dead let-binding.

4.2 Conversion from/to de Bruijn Syntax
The conversion between de Bruijn and co-de-Bruijn representation is very sim-
ilar to computing and forgetting annotations in the second part of section 3.4.

To de Bruijn Since the converted expression often needs to be placed in a
larger context than just its live variables, we allow to specify the desired context
using a thinning.

toDeBruijn : ∆ ⊑ Γ → CoDeBruijn.Expr σ ∆ → DeBruijn.Expr σ Γ

The recursive calls work the exact same way as during evaluation, composing the
thinning on the way down to turn it into into a de Bruijn index when reaching a
variable. The only difference is that instead of computing a value, the resulting
expressions are just packaged up into a syntax tree again.

From de Bruijn The other direction is slightly more work, as it effectively
needs to perform live variable analysis. Luckily, we benefit greatly from the
smart constructors. As we do not know the context of the resulting co-de-Bruijn
expression upfront, we once more return the result with a thinning.
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fromDeBruijn : DeBruijn.Expr σ Γ → CoDeBruijn.Expr σ ⇑ Γ
fromDeBruijn (Var x) =

Var ↑ o-Ref x
fromDeBruijn (App e1 e2) =

map⇑ App (fromDeBruijn e1 ,R fromDeBruijn e2)
fromDeBruijn (Lam e) =

map⇑ Lam ( )R fromDeBruijn e)
fromDeBruijn (Let e1 e2) =

map⇑ Let (fromDeBruijn e1 ,R ( )R fromDeBruijn e2))
fromDeBruijn (Val v) =

Val v ↑ oe
fromDeBruijn (Plus e1 e2) =

map⇑ Plus (fromDeBruijn e1 ,R fromDeBruijn e2)

After using the smart constructors to obtain a relevant pair or binder (with a
thinning), it only remains to wrap things up using the right constructor.

Correctness While the conversion is pretty straightforward, mapping con-
structors one-to-one to their counterparts, we can prove that the semantics of
the two representations agree.

toDeBruijn-correct :
(e : CoDeBruijn.Expr τ ∆) (env : Env Γ) (θ : ∆ ⊑ Γ) →
let e′ = toDeBruijn θ e
in DeBruijn.eval e′ env ≡ CoDeBruijn.eval e θ env

fromDeBruijn-correct :
(e : DeBruijn.Expr τ Γ) (env : Env Γ) →
let e′ ↑ θ = fromDeBruijn e
in CoDeBruijn.eval e′ θ env ≡ DeBruijn.eval e env

The first proof works by a completely straightforward structural induction, with-
out requiring any further lemmas. The other direction is slightly more interest-
ing: As the smart constructors are defined using with-abstraction, the case for
each constructor first requires us to mirror that structure before being able to
use the induction hypothesis.
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4.3 Dead Binding Elimination
Co-de-Bruijn expressions enforce that every variable in their context must occur
somewhere. However, there can still be dead let-bindings: the declaration of
type σ bound by ψ ) e2 : ((σ :: []) ⊢ Expr τ) Γ can be immediately discarded
in ψ, never to occur in e2. We need to identify such dead let-bindings and
eliminate them.

Since an expression’s context contains its weakly live variables and removing
dead bindings can make some of them dead, we return the result in a (generally)
smaller context with a thinning.

dbe : Expr τ Γ → Expr τ ⇑ Γ

Transformation The weakly live variables are already present as part of the
co-de-Bruijn representation, so no further analysis is necessary. For the weak
version of dead binding elimination, we simply need to find all let-bindings in
the input expression that have a thinning o′ oz : [] ⊑ (σ :: []).

The change in context caused by the transformation has several conse-
quences: Firstly, these new thinnings coming from each recursive call need to
be composed with the existing ones on the way up (e.g. using thin⇑). Secondly,
we need to rebuild the variable usage information, i.e. calculate new contexts
and covers at each node using the smart constructors _)R_ and _,R_.

dbe : Expr τ Γ → Expr τ ⇑ Γ
dbe Var =

Var ↑ oi
dbe (App (pairR (e1 ↑ ϕ1) (e2 ↑ ϕ2) c)) =

map⇑ App (thin⇑ ϕ1 (dbe e1) ,R thin⇑ ϕ2 (dbe e2))
dbe (Lam (ψ ) e)) =

map⇑ (Lam ◦ thin⊢ ψ) ( )R dbe e)
dbe (Let (pairR (e1 ↑ ϕ1) ((o′ oz ) e2) ↑ ϕ2) c)) =

thin⇑ ϕ2 (dbe e2)
dbe (Let (pairR (e1 ↑ ϕ1) ((os oz ) e2) ↑ ϕ2) c)) =

map⇑ Let (thin⇑ ϕ1 (dbe e1) ,R thin⇑ ϕ2 ( )R dbe e2))
dbe (Val v) =

Val v ↑ oz
dbe (Plus (pairR (e1 ↑ ϕ1) (e2 ↑ ϕ2) c)) =

map⇑ Plus (thin⇑ ϕ1 (dbe e1) ,R thin⇑ ϕ2 (dbe e2))

thin⊢ : Γ1 ⊑ Γ2 → (Γ1 ⊢ T) Γ → (Γ2 ⊢ T) Γ
thin⊢ ϕ (θ ) t) = (θ # ϕ) ) t

To get the strong version, we can do the recursive calls first and check the
thinnings afterwards. For that we use a small helper function Let?, which be-
haves like the constructor Let if the binding is live, but otherwise removes the
declaration. The other cases are the same as in the previous section.
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Let? : (Expr σ ×R ((σ :: []) ⊢ Expr τ)) Γ → Expr τ ⇑ Γ
Let? p@(pairR ((o′ oz ) e2) ↑ θ2) ) = e2 ↑ θ2
Let? p@(pairR ((os oz ) ) ↑ ) ) = Let p ↑ oi

dbe (Let (pairR (e1 ↑ ϕ1) ((ψ ) e2) ↑ ϕ2) c)) =
bind⇑ Let?
(thin⇑ ϕ1 (dbe e1) ,R thin⇑ ϕ2 (map⇑ (thin⊢ ψ) ( )R dbe e2)))

Due to the combinators applying and mapping over thinnings, the definition
is concise, but opaque. To give a better feeling for how much plumbing is
involved, we can also inline all combinators and compose the thinnings manually:

dbe (Let (pairR (e1 ↑ ϕ1) ((ψ ) e2) ↑ ϕ2) c)) =
let e′1 ↑ ϕ′1 = dbe e1

(ψ′ ) e′2) ↑ ϕ′2 = )R dbe e2
p′ ↑ θ = (e′1 ↑ (ϕ′1 # ϕ1)) ,R (((ψ′ # ψ) ) e′2) ↑ (ϕ′2 # ϕ2))
e′ ↑ θ′ = Let? p′

in
e′ ↑ (θ′ # θ)

Additionally inlining the smart constructors to show how they construct their
thinnings would make the code even more noisy and difficult to follow.

Correctness As seen in the inlined version, a lot of nontrivial operations are
involved in constructing the thinnings and covers in the result. This also makes
the proofs more complicated. Often, conceptually simple parts of the proof
require extensive massaging of deeply buried thinnings using commutative laws
or helpers with types like θ′1 # θ1 ≡ θ′2 # θ2 → θ′1 # (θ1 # ϕ) ≡ θ′2 # (θ2 # ϕ).

dbe-correct :
(e : Expr τ ∆) (env : Env Γ) (θ : ∆ ⊑ Γ) →
let e′ ↑ θ′ = dbe e
in eval e′ (θ′ # θ) env ≡ eval e θ env

While the combinators and smart constructors used in the implementation
compose seamlessly, the same is not quite true for proofs about them. We
were able to factor out lemmas dealing with _⊢_ and _×R_, such that e.g.
the cases for application and addition in dbe-correct are both instances of the
same proof, using either _$_ or _+_ as an argument. However, defining these
building blocks in a way that allowed composing them to handle Let proved
more difficult than expected. In the end, we simply handled Let as a similar
but separate special case. The main issue for proof composability seems to be
that some type equalities need to be matched on (e.g. using with-abstraction)
just for the required call to the lemma or induction hypothesis to typecheck.
Some attempts to break the proof into components also failed to satisfy the
termination checker.

For let-bindings in the strong version, we additionally made use of a lemma
stating that Let? p and Let p are semantically equivalent.
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4.4 Let-sinking
In addition to the expected benefits of readily available variable liveness in-
formation, we will see that co-de-Bruijn representation also affords us more
precision when specifying the inputs to the transformation. On the flipside, the
reordering of the context inherent to let-sinking causes even more complications
than in the de Bruijn version.

Type signature We again start from the observation that the signature for
let-sinking should be similar to the Let constructor, but allowing for a prefix
in context that we need when going under binders. But here, declaration and
binding form a relevant pair, each in their own context with a thinning into
the overall context. To make it clear what this type consists of, we flatten the
structure:

sink-let :
(decl : Expr σ ⇑ (Γ1 ++ Γ2)) →
(body : Expr τ ⇑ (Γ1 ++ σ :: Γ2)) →
Cover (thinning decl) (thinning body) →
Expr τ (Γ1 ++ Γ2)

For now, we will ignore the cover and return the result with a thinning (i.e.
without having to show that the whole context Γ1 ++ Γ2 is relevant). As we
will see later, this avoids complicated reasoning about covers.

sink-let :
Expr σ ⇑ (Γ1 ++ Γ2) →
Expr τ ⇑ (Γ1 ++ σ :: Γ2) →
Expr τ ⇑ (Γ1 ++ Γ2)

However, this type is imprecise in a different way: The context of the body is
thinned into a precisely specified overall context, but its own structure is opaque.
We know that it consists of two parts (thinned into Γ1 and Γ2 respectively), but
that information first needs to be discovered. Furthermore, we want to require
that the declaration is live in the body we want to move it into, so we know
even more about the context. To make that structure more apparent, we can
make stronger assumptions about the context of the body (not just the context
it is thinned into). The structure of the overall context on the other hand is less
important to us.

sink-let :
Expr σ ⇑ Γ →
Expr τ (Γ1 ++ σ :: Γ2) →
Γ1 ++ Γ2 ⊑ Γ →
Expr τ ⇑ Γ

The knowledge that the binding is used eliminates some edge cases we previously
had to deal with. Using a simple wrapper, we can still get back the less restrictive
type signature that can be applied to any let-binding:
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sink-let-top : (Expr σ ×R ((σ :: []) ⊢ Expr τ)) Γ → Expr τ ⇑ Γ
sink-let-top (pairR (decl ↑ ϕ) ((os oz ) e) ↑ θ) c) =

sink-let [] (decl ↑ ϕ) e refl θ
sink-let-top (pairR decl ((o′ oz ) e) ↑ θ) c) =

e ↑ θ -- binding is unused, why bother with let-sinking?

Variables We immediately observe this when dealing with variables. Since
we know that a variable’s context contains exactly one element, and also that
the declaration is part of that of the context, the variable must refer to the
declaration. After making this clear to Agda using a pattern match with an
absurd case, we can replace the variable with the declaration.

Creating the binding As in the de Bruijn setting, we need to rename the
body of the newly created binding. However, it becomes more cumbersome
here:

reorder-Ctx :
Expr τ Γ → (Γ ≡ Γ1 ++ Γ2 ++ Γ3 ++ Γ4) →
Expr τ (Γ1 ++ Γ3 ++ Γ2 ++ Γ4)

The context is split into four segments (where Γ3 is (σ :: [])) that get reordered,
which means that we also need to split every thinning and cover into four parts
and carefully reassemble them.

cover++⊑4 :
(θ1 : Γ′

1 ⊑ Γ1) (θ2 : Γ′
2 ⊑ Γ2) . . . →

Cover (θ1 ++⊑ θ2 ++⊑ θ3 ++⊑ θ4) (ϕ1 ++⊑ ϕ2 ++⊑ ϕ3 ++⊑ ϕ4) →
Cover (θ1 ++⊑ θ3 ++⊑ θ2 ++⊑ θ4) (ϕ1 ++⊑ ϕ3 ++⊑ ϕ2 ++⊑ ϕ4)

The need for such an operation suggests that co-de-Bruijn representation, and
in particular the notion of thinnings it is based on, might not be very well suited
for the reordering of bindings.

Binary constructors Variable usage information is immediately available:
We split and examine the thinnings of the subexpressions to see where the
declaration is used. Using the cover, we can rule out the case where no subex-
pression uses the declaration. In contrast to the previous implementation of
let-sinking, no strengthening is necessary: discovering that a variable is unused
is enough. The subexpressions are then combined using _,R_, creating new
thinnings and a cover for us.

Binders No weakening of the declaration is necessary when going under a
binder, as we simply update its thinning. But recursing into the body of another
let-binding still complicates things: Although we know that the liveness of the
bound variable should be unaffected by let-sinking, the imprecise type signature
allows for changes in context, so we need to find out again whether the binding
is used or not.
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Correctness Work on the proof is incomplete, as the sheer number of oper-
ations and bindings involved makes it messy. There are many lemmas about
splitting thinnings and reordering the context that are cumbersome to state and
prove correct. It seems like some of the complications could be avoided if we
managed to avoid the usage of _,R_ as explained in section 4.5.1.

4.5 Discussion
Useful properties Co-de-Bruijn expressions generally seem promising for
defining transformations, with several useful properties:

1. Liveness information is present at each syntax node.

2. Changing the context in a way expressible with thinnings does not require
a traversal of the expression.

3. The type of an expression only depends on the expression itself, not on
the (potentially unused) bindings around it. One situation where this can
be useful is when identifying identical expressions in different parts of the
expression, as is needed for common subexpression elimination.

Complications On the other hand, the elaborate bookkeeping that is part
of co-de-Bruijn syntax trees makes the construction of expressions more com-
plicated. While this complexity can be hidden behind smart constructors, it
leaks easily. For example, the proofs about transformed expressions are signifi-
cantly more complex than their de Bruijn counterparts, which especially became
apparent for let-sinking. It might be possible to create a general set of proof
combinators that mirror the structure of the smart constructors, but this kind
of abstraction over proofs is usually difficult (or impossible) to achieve.

4.5.1 Alternative Designs
Covers As hinted at when choosing a type signature for the let-sinking trans-
formation in section 4.4, it should not be necessary to return the result with
a thinning. If all variables occur in either declaration or body, they will still
occur in the result, no matter where exactly the declaration is moved. There-
fore, the context should always remain the same, just the thinnings and covers
have to be rebuilt. This could potentially simplify parts of the implementation
and especially the proof, since directly constructing a relevant pair creates fewer
indirections than using _,R_ to discover new thinnings.

It seems desirable to reflect this observation in the type signature, specifying
the result more precisely. However, making it clear to the typechecker involves
relatively complex manipulation of the covers.

The issue boils down to quite fundamental associative and commutative
operations on relevant pairs: we want to be able to turn any (S ×R (T ×R U)) Γ
into ((S ×R T) ×R U) Γ or also (T ×R (S ×R U)) Γ etc., and intuitively it’s
clear that the live variables Γ are unaffected by these operations.
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Chapter 5

Syntax-generic Co-de-Bruijn
Representation

So far, we worked with specialised types for the syntax trees of the language
we defined. Modifying the language or defining a new one would require us to
also modify the implementation of each transformation. However, the core of
the transformation would likely remain unchanged: dead binding elimination
for example only needs to know where variables are bound and occur in the
expression, and then exclusively modifies let-bindings. All other parts of the
syntax tree get traversed in a highly uniform way.

This problem is addressed by Allais et al. [1] with the concept of syntax-
generic programming, although based on a de Bruijn representation. The main
idea is to:

1. define a datatype of syntax descriptions Desc

2. describe a family of terms Tm d for each (d : Desc I)

3. implement operations once, generically over descriptions

4. describe your language using Desc to get access to the generic operations

To define the syntax-generic co-de-Bruijn terms, we build on top of the
generic-syntax 1 Agda package, which is an artefact of the abovementioned
paper. It failed to compile with recent versions of Agda, mainly due to issues
with sized types, which were used to show termination. Therefore, we trimmed
the package down to the parts interesting to us and removed the size information
from all types. The paper still serves as a great introduction to the topic, but
we will start with a short overview of the main constructions we use.

1https://github.com/gallais/generic-syntax
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5.1 Descriptions of Syntax
At the core of this chapter is the the type of syntax descriptions, taken verbatim
from Allais et al.

data Desc (I : Set) : Set1 where
‘σ : (A : Set) → (A → Desc I) → Desc I
‘X : List I → I → Desc I → Desc I
‘■ : I → Desc I

The argument I represents the type associated with each expression and variable
brought into scope, typically their sort. Variable occurrences do not need to be
modeled in the description, as they are part of any language implicitly.

The constructor ‘σ is then used to store data of some type A. Since the
remaining description can then depend on the value of the data, it can be used
as a tag deciding which constructor of the syntax tree is present. ‘X can be
used for recursion (i.e. subexpressions) with a list of variables that come into
scope and specified sort. After building a product-like structure (including sums
by using the dependent product ‘σ), the descriptions are terminated with ‘■,
stating their sort.

Example Let us give a description of our expression language to get a feeling
for syntax descriptions. We start by defining a type of tags for each type of
syntax node (except variable occurrences, as noted above). Each tag also carries
the sorts it will use.

data ‘Lang : Set where
‘App : U → U → ‘Lang
‘Lam : U → U → ‘Lang
‘Let : U → U → ‘Lang
‘Val : U → ‘Lang
‘Plus : ‘Lang

Once we plug the type into ‘σ, we can give a description for each of the con-
structors. Those are typically a product of multiple subexpressions. While the
details can be hard to follow, some similarities with the original Expr type we
defined should become apparent.

Lang : Desc U
Lang = ‘σ ‘Lang λ where
(‘App σ τ) → ‘X [] (σ ⇒ τ) (‘X [] σ (‘■ τ))
(‘Lam σ τ) → ‘X (σ :: []) τ (‘■ (σ ⇒ τ))
(‘Let σ τ) → ‘X [] σ (‘X (σ :: []) τ (‘■ τ))
(‘Val τ) → ‘σ J τ K λ → ‘■ τ
‘Plus → ‘X [] NAT (‘X [] NAT (‘■ NAT))
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5.2 Intrinsically Typed Syntax
The generic-syntax package only interprets syntax descriptions into de Bruijn
terms. McBride shows a syntax-generic interpretation into co-de-Bruijn terms
[14], but it is based on a different structure of syntax descriptions. Since we
want to interpret a single description type into both types of terms, it is not
directly reusable. However, the building blocks for bindings and relevant pairs
still help us to create our own co-de-Bruijn interpretation.

We start be interpreting descriptions into flat (non-recursive) types repre-
senting a single syntax node, where the argument X marks the recursive occur-
rences and can later be used to form a fixpoint.

_-Scoped : Set → Set1
I -Scoped = I → List I → Set

J_K : Desc I → (List I → I -Scoped) → I -Scoped
J ‘σ A d K X i Γ = Σ[ a ∈ A ] (J d a K X i Γ)
J ‘X ∆ j d K X i = X ∆ j ×R J d K X i
J ‘■ j K X i Γ = i ≡ j × Γ ≡ []

The interpretation of ‘σ is exactly the same as for de Bruijn terms, storing a
value of type A and (based on its value) continuing with the remaining descrip-
tion. The other two cases however need to enforce the invariants on the live
variables Γ by which the expressions are indexed: ‘X uses relevant pairs and ‘■
requires that the context starts out empty until something explicitly extends it.

Based on that, we can build the recursive type of terms. At each recursive
occurrence, a new scope is introduced. While this could be done as ∆ ⊢ T i
independent of the bound variables ∆, a single case distinction avoids a trivial
wrapper with a thinning [] ⊑ [].

Scope : I -Scoped → List I → I -Scoped
Scope T [] i = T i
Scope T ∆@( :: ) i = ∆ ⊢ T i

data Tm (d : Desc I) : I -Scoped where
‘var : Tm d i (i :: [])
‘con : J d K (Scope (Tm d)) i Γ → Tm d i Γ

We also see that variables still always have a single live variable in their context.

Instantiation the terms We can obtain co-de-Bruijn terms of our expression
language using the description we created.

Expr : U -Scoped
Expr = Tm Lang
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These are isomorphic to the co-de-Bruijn syntax tree we defined manually. How-
ever, there are some practical differences coming from the way relevant products
are used in the interpretation. At the end, each description is terminated by a
‘■ resulting in an expression indexed by an empty list of live variables, which
means that even constructing a unary product J ‘X ∆ i (‘■ j) K requires trivial
thinnings and covers.

This is not an issue when working generically, but when constructing a term
for a concrete description, it causes some boilerplate, even for a simple program
such as foo = f 1.

-- de Bruijn
foo :: Expr BOOL ((NAT ⇒ BOOL) :: [])
foo = App (Var Top) (Val 1)

-- co-de-Bruijn
foo :: Expr BOOL ((NAT ⇒ BOOL) :: [])
foo = App (pairR (os oz ↑ Var) (o′ oz ↑ Val 1) (cs’ czz))

-- syntax-generic co-de-Bruijn
foo : Expr BOOL ((NAT ⇒ BOOL) :: [])
foo =

‘con (‘App NAT BOOL ,
pairR
(‘var ↑ os oz)
(pairR ((‘con ((‘Val NAT) , (1 , (refl , refl)))) ↑ oz)

((refl , refl) ↑ oz)
czz

↑ o′ oz)
(cs’ czz))

Luckily, the boilerplate during construction of terms can be reduced using
smart constructors (e.g. pattern synonyms App, Lam, . . . ) or a general helper
of this shape:

×R-trivial : {T : List I → Set} →
T Γ → (T ×R λ ∆ → τ ≡ τ × ∆ ≡ []) Γ

×R-trivial t = pairR (t ↑ oi) ((refl , refl) ↑ oe) cover-oi-oe

However, when deconstructing a term, it is not clear to the typechecker that
the redundant thinnings must be identity and empty thinning (oi and oe) re-
spectively, so we cannot just use pattern synonyms to hide them away. We first
need to make the fact obvious in a with-abstraction calling a helper function:

×R-trivial−1 : {T : List I → Set} →
(T ×R λ ∆ → τ ≡ τ ′ × ∆ ≡ []) Γ → T Γ × τ ≡ τ ′

×R-trivial−1 (pairR (t ↑ θ1) ((refl , refl) ↑ θ2) cover)
with refl ← cover-oi-oe−1 cover =

t , refl
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This affects any operation on our language by introducing additional with-
abstractions. Evaluation or also converting into the concrete co-de-Bruijn rep-
resentation, for example, should be absolutely trivial, but end up somewhat
verbose.

5.3 Conversion from/to de Bruijn Syntax
The conversion between de Bruijn and co-de-Bruijn terms can be done generi-
cally for any description.

toDeBruijn : (d : Desc I) → ∆ ⊑ Γ →
CoDeBruijn.Tm d τ ∆ → DeBruijn.Tm d τ Γ

fromDeBruijn : (d : Desc I) →
DeBruijn.Tm d τ Γ → CoDeBruijn.Tm d τ ⇑ Γ

While the operations used in the implementation are generally the same as in the
concrete setting, the structure is noticeably different. Instead of handling each
constructor of the language, we use three mutually recursive functions to handle
scopes, variables and constructors, respectively. We will see the same approach
in more detail when doing dead binding elimination in the next section.

5.4 Dead Binding Elimination
Dead binding elimination can be written in a way that abstracts over most of
the language, but it does not quite work for any description. The description
at least needs to feature let-bindings, but how can we express this requirement
in the type signature? While it would be useful to be able to directly plug
in our description type together with some kind of witness of how it contains
let-bindings, this comes with some complexity. Since this is mainly an issue of
ergonomics and not directly relevant to our goal of performing transformations,
we adopt a simpler solution from Allais et al.’s paper.

Type signature We make use of the fact that descriptions are closed under
sums. This allows to describe constructors of a language separately and then
combine them.

_‘+_ : Desc I → Desc I → Desc I
d ‘+ e = ‘σ Bool λ isLeft →

if isLeft then d else e

pattern inl t = true , t
pattern inr t = false , t

For our use case, we describe let-bindings and then define dead binding elimi-
nation for any description that has explicitly been extended with them.
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‘Let : Desc I
‘Let {I} = ‘σ (I × I) $ uncurry $ λ σ τ →

‘X [] σ (‘X (σ :: []) τ (‘■ τ))

dbe : Tm (d ‘+ ‘Let) σ Γ → Tm (d ‘+ ‘Let) σ ⇑ Γ

The observations made about the return type in the concrete setting still
apply, so the result again comes with a thinning.

Transformation The implementation is mostly similar to the concrete ver-
sion, but we split it into three mutually recursive functions, each handling a
different “layer” of the term datatype.

dbe :
Tm (d ‘+ ‘Let) σ Γ →
Tm (d ‘+ ‘Let) σ ⇑ Γ

dbe-J·K :
(d’ : Desc I) →
J d’ K (Scope (Tm (d ‘+ ‘Let))) τ Γ →
J d’ K (Scope (Tm (d ‘+ ‘Let))) τ ⇑ Γ

dbe-Scope :
(∆ : List I) →
Scope (Tm (d ‘+ ‘Let)) ∆ τ Γ →
Scope (Tm (d ‘+ ‘Let)) ∆ τ ⇑ Γ

The last two of these functions traverse a single syntax node, apply dbe to each
subexpression and combine the resulting live variables using the co-de-Bruijn
smart constructors.

dbe-J·K (‘σ A d) (a , t) =
map⇑ (a ,_) (dbe-J·K (d a) t)

dbe-J·K (‘X ∆ j d) (pairR (t1 ↑ θ1) (t2 ↑ θ2) c) =
thin⇑ θ1 (dbe-Scope ∆ t1) ,R thin⇑ θ2 (dbe-J·K d t2)

dbe-J·K (‘■ i) t =
t ↑ oi

dbe-Scope [] t = dbe t
dbe-Scope ( :: ) (ψ ) t) = map⇑ (map⊢ ψ) ( )R dbe t)

The implementation of dbe itself is split into a case for variables, a case for
the description d and finally a case for let-bindings, where most of the work
happens. We would like to write the following:

dbe ‘var = ‘var ↑ oi
dbe (‘con (inl t)) = map⇑ (‘con ◦ inl) (dbe-J·K t)
dbe (‘con (inr t@(a , pairR (t1 ↑ θ1) (p ↑ θ2) )))

with ×R-trivial−1 p
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... | (o′ oz ) t2) , refl =
thin⇑ θ2 (dbe t2)

... | (os oz ) t2) , refl =
map⇑ (‘con ◦ inr) (dbe-J·K ‘Let t)

However, this definition fails Agda’s termination checker. This can for example
be solved by manually inlining the call to dbe-J·K ‘Let in the last line, resulting
in a more verbose implementation.

For the strong version, we again introduce a helper function Let? and now
everything works nicely: since it only checks for dead bindings afterwards, the
recursive call happens directly on the subexpression from the input, which is
clearly structurally smaller. Therefore, the following definition is accepted by
the termination checker:

Let? : J ‘Let K (Scope (Tm (d ‘+ ‘Let))) τ Γ → Tm (d ‘+ ‘Let) τ ⇑ Γ
Let? t@(a , pairR (t1 ↑ θ1) (p ↑ θ2) )

with ×R-trivial−1 p
... | (o′ oz ) t2) , refl = t2 ↑ θ2
... | (os oz ) t2) , refl = ‘con (inr t) ↑ oi
dbe ‘var = ‘var ↑ oi
dbe (‘con (inl t)) = map⇑ (‘con ◦ inl) (dbe-J·K t)
dbe (‘con (inr t)) = bind⇑ Let? (dbe-J·K ‘Let t)

5.5 Discussion
Given the generality of the dead binding elimination presented in this chap-
ter, its implementation turned out concise and relatively readable. However,
the syntax-generic representation adds considerable complexity, be it when de-
scribing a language’s syntax through the Desc type, defining mutually recursive
functions to operate on terms, or dealing with the trivial relevant pairs that get
introduced by the interpretation into co-de-Bruijn syntax. Furthermore, there
remain some questions that would need to be answered to migrate the remaining
work from chapter 4 to the syntax-generic setting.

Let-sinking Making the concrete version of let-sinking syntax-generic is not
quite as straightforward as for dead binding elimination, since some rules for
when to stop let-sinking depend on specific language constructs. The rule of not
duplicating bindings can be implemented generically, but the constraint on not
moving a let-binding into λ-abstractions is more ad-hoc. The presence of bound
variables is not enough to make a conclusion: we do want to sink into other let-
bindings and we can imagine a number of other language constructs for which
it is not immediately obvious whether it is beneficial to sink through them or
not. This suggests the need for a mechanism by which the desired behaviour
can be specified as an additional input to the let-sinking transformation.
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Correctness We did not attempt to prove preservation of semantics for syntax-
generic transformations, but note that it raises the question of which semantics
to use for that. We can certainly prove that the syntax-generic dead binding
elimination behaves correctly for our example language with its semantics, but
we do not have a semantics for any arbitrary description at hand.

Ideally, it should be possible to do the proof for any semantics with some
property, like being defined as a fold of the syntax tree. However, the exact
constraints are not obvious. A good candidate is the notion of Semantics as
defined by Allais et al. [1], which indeed is based on a fold (catamorphism with
an algebra) with the constraint that the values it operates on are thinnable.

Unfortunately, “applying” a Semantics to co-de-Bruijn terms becomes more
complicated than it is for de Bruin terms, as the relationship between the context
of an expression and the context of its subexpressions is more involved. It seems
worthwhile to attempt finding a solution to this issue, which then might make it
possible to prove that a transformation preserves any Semantics for any syntax
description.
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Chapter 6

Discussion

Summary As demonstrated in this thesis, binding-related program transfor-
mations can be performed on intrinsically typed syntax trees. To avoid redun-
dant traversals, it is beneficial to compute variable liveness information upfront,
e.g. providing it as part of the syntax tree.

Thinnings proved to be useful for reasoning about variable liveness of expres-
sions and, in simple cases, manipulating their context. This is also witnessed
by the connection between weakly live variable analysis and the co-de-Bruijn
representation, which is itself built around thinnings.

Finally, it seems promising to define binding-related transformations syntax-
generically, as they often handle most language constructs in a uniform way.
This was showcased by performing dead binding elimination generically on co-
de-Bruijn expressions of any language containing let-bindings.

Reordering bindings While thinnings worked well for dead binding elimina-
tion, the let-sinking transformation suffered from their order-preserving nature,
requiring another mechanism to describe the reordering of bindings.

One could attempt to address this issue by extending thinnings to allow
for permutations, but this might just move the complexity elsewhere, as the
operations on thinnings then become more difficult to define. For example, it is
not obvious how to perform the liveness union operation _∪_ without a way
of ensuring that the reorderings in both its arguments agree with each other.

Another approach that is also used by Allais et al. is to define thinnings
as a function (∀ σ → Ref σ ∆ → Ref σ Γ) on references. This has some
advantages, as it naturally supports reordering and inherits associativity and
identity laws by virtue of being a function. However, the representation as a
function is opaque and not even guaranteed to be injective (so the source context
could be larger than the target context). This makes it difficult to talk about
equality and define operations on thinnings.
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6.1 Further Work
In addition to the challenges around reordering bindings, there are several other
open ends that we could not address due to lack of time. For example, at-
tempting a proof of correctness for the de Bruijn version of let-sinking might
be simpler than for the co-de-Bruijn variant we failed to complete in section
4.4. However, it might be wiser to first improve the implementation (regarding
reordering bindings) before trying to prove it correct.

The syntax-generic co-de-Bruijn approach could also benefit from further
exploration. As noted in section 5.5, syntax-generic let-sinking comes with
some interesting questions. Another large topic we only discussed briefly is that
of correctness, which first requires a suitable notion of semantics. The most
promising avenue for that is to extend the work by Allais et al. [1] not just with
basic support for co-de-Bruijn terms, but also for notions such as Semantics.

There are several techniques that are related to aspects of the work shown
here. For example, we saw several distinct definitions of syntax trees, each with
a different amount of extra information: raw expressions, intrinsically typed
expressions with some invariants, and annotated expressions that also contain
the results of program analysis. However, the language they describe is funda-
mentally the same. Making this relationship explicit using ornamentations [9]
could replace ad-hoc definitions like forget. Similarly, many program analyses
can be studied through the common framework of coeffects [17].

Finally, the existing work can be extended with additional language con-
structs and transformations, each posing new challenges.

6.1.1 Extending the Language
Recursive bindings In a recursive let-binding, the bound variable is available
in its own declaration. While this only requires a small change in the definition of
the syntax tree, evaluation can now diverge. The treatment of semantics requires
significant changes to account for this partiality [4, 5, 13, 10]. Program analysis
of recursive functions poses additional challenges [15] and transformations are
affected as well: In the presence of effects such as non-termination, removing or
reordering let-bindings is only semantics-preserving if their declarations can be
shown to be pure (i.e. terminating).

Mutually recursive binding groups Since mutual recursion allows multiple
bindings to refer to each other, the current approach of handling one binding
at a time is not sufficient. Instead, there is a list of simultaneous declarations
where the scope of each is extended with variables for all the declarations.
This can be represented in the syntax tree without too much effort, even using
the generic syntax descriptions seen before. Manipulating this structure, e.g.
splitting binding groups into strongly connected components, is expected to be
challenging, but potentially instructive.
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6.1.2 Other Transformations
Local rewrites There is a number of local transformations that simply rewrite
a specific pattern into an equivalent one. Most examples can always be per-
formed safely:

• constant folding and identities,
e.g. P + 0 ⇒ P

• turning beta redexes into let-bindings,
i.e. (λx. Q) P ⇒ let x = P in Q

• floating let-bindings out of function application,
i.e. (let x = P in Q) R ⇒ let x = P in Q R

A general fold-like function should allow to specify a single instance of a rewrite
and then apply it wherever possible in a pass over the whole program. Similarly,
the overall preservation of semantics should follow from that of a single rewrite
instance.

Common subexpression elimination The aim of this transformation is to
find subexpressions that occur multiple times and replace them with a variable
refering to a single matching declaration, reducing both code size and work per-
formed during evaluation. For a basic implementation it suffices to try finding
occurrences of expressions that are the same as the declaration of a binding al-
ready in scope. A more powerful approach is to put more work into identifying
common subexpressions and making the transformation itself introduce shared
bindings at suitable points.

In de Bruijn representation, identifying identical subexpressions is challeng-
ing, since their context (and thus their type) may differ. This problem is avoided
by co-de-Bruijn representation.
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