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Abstract

The correctness of variable representations used in compilers usually depends
on the compiler writers’ diligence to maintain complex invariants. Program
transformations that manipulate the binding structure are therefore tricky to
get right. In a dependently typed programming language such as Agda, we
can however make use of intrinsically typed syntax trees to enforce type- and
scope-safety by construction, ruling out a large class of binding-related bugs.
We show how to perform (and prove correct) dead binding elimination and let-
sinking using intrinsically typed de Bruijn indices. To avoid repeated traversals
of the transformed expression, we include variable liveness information into the
syntax tree and later employ a co-de-Bruijn representation. Finally, we perform
transformations in this style syntax-generically.
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Chapter 1

Introduction

When writing a compiler for a programming language, an important considera-
tion is the treatment of binders and variables. They are part of most languages
and there are several options for representing them, each with different impli-
cations for operating on and reasoning about programs. Often, it is possible to
represent ill-formed syntax trees where variables do not refer to a suitable bind-
ing. This makes it easy to introduce compiler bugs that change the meaning of
a program or make it invalid.

When using a dependently typed programming language such as Agda [16],
intrinsically typed syntax trees can be used to make such ill-formed programs
unrepresentable. Using this well-known technique, expressions become scope-
and type-correct by construction, allowing for a total evaluation function [2].
Intrinsically typed constructions have featured in several papers, exploring basic
operations like renaming and substitution [I] as well as compilation to different
target languages [22], online supplementary material].

At the same time, there are large classes of important transformations that
have not yet received much attention in an intrinsically typed setting. Optimi-
sations, for example, play a central role in practical compilers, but establishing
their correctness is often not trivial, with ample opportunity for binding-related
mistakes [24] [T2]. Letting the type checker keep track of invariants promises to
remove common sources of bugs. A mechanised proof of semantics preservation
can further increase confidence in the transformation’s correctness.

In return for the guarantees provided, some additional work is required.
Program analysis not only needs to identify optimisation opportunities, but
potentially also provide a proof witness that the optimisation is safe, e.g. that
some dead code is indeed unused. For the transformation of the intrinsically
typed program, the programmer then has to convince the type checker that
type- and scope-correctness invariants are preserved, which can be cumbersome.
The goal of this thesis is to understand these consequences better and explore
techniques for dealing with them.

A crucial aspect is that of variable liveness. Whether it is safe to apply a
binding-related transformation usually depends on which parts of the program



make use of which binding. We employ several ways of providing and using
variable liveness information for program transformations.

Structure Chapter [2]introduces the simple expression language we will work
with and then gives some background information on program analysis and
transformation, as well as different binding representations and their pitfalls.

In chapter [3] we start by showing a typical intrinsically typed de Bruijn rep-
resentation of our expression language. We then explain thinnings and motivate
their application to computing variable liveness. Equipped with these tools, we
implement dead binding elimination and let-sinking, first on the standard de
Bruijn representation, later more efficiently on a syntax tree annotated with the
results of live variable analysis. We prove that both versions of dead binding
elimination preserve semantics.

Chapter [ continues the development by showing that variable liveness in-
formation can serve as the main mechanism for representing bindings, as wit-
nessed by McBride’s co-de-Bruijn representation [I4]. After explaining how co-
de-Bruijn terms work and can be constructed from de Bruijn terms, we again
implement dead binding elimination and prove it correct. Finally, we also man-
age to implement let-sinking, but encounter several complications and struggle
with the proof of correctness.

In chapter[5] we explain the idea of syntax-generic programming as presented
by Allais, Atkey, Chapman, McBride and McKinna [I] and extend it with basic
support for the co-de-Bruijn representation. This allows us to convert between
de Bruijn and co-de-Bruijn terms and perform dead binding elimination syntaz-
generically.

In the end, chapter [f] discusses our main observations, open questions, and
opportunities to continue the work presented here.

Contributions Our main contributions are:

e an implementation of (strongly) live variable analysis resulting in anno-
tated intrinsically typed syntax trees (sections and 3.4.2)

e an implementation of dead binding elimination on intrinsically typed syn-
tax trees of three different flavours: de Bruijn (section [3.4.1)), annotated

de Bruijn (section [3.4.2)), and co-de-Bruijn (section

e proofs of correctness (preservation of semantics) for each implementations
of dead binding elimination

e an implementation of let-sinking on intrinsically typed syntax trees of

three different flavours (sections and

e an incomplete proof of correctness for co-de-Bruijn let-sinking, with an
explanation of the main challenges

e a generic interpretation of the syntax descriptions presented by Allais et al.
[1] into co-de-Bruijn terms (section [5.2))



e syntax-generic conversion between de Bruijn and co-de-Bruijn terms (sec-

tion

e a syntax-generic implementation of dead binding elimination on co-de-

Bruijn terms (section

The Agda code and TEX source of this document are available onlineﬂ

Thttps://github.com/mheinzel/correct-optimisations
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Chapter 2

Preliminaries

As a running example, we will consider a simple expression language based
on the A-calculus [3]. On top of variables with names {z,y, z,a,b,¢, f,g,...},
function application and A-abstraction, we add let-bindings, primitive values
v € BUN (with B = {true,false}) and a binary addition operator. Since we
are primarily concerned with variables and binders, the choice of possible values
and primitive operations on them is mostly arbitrary and can be extended easily.

PQ: ==z
R
’)\x.P
|letx:PinQ
| v

| P+Q

To reduce the number of required parentheses, we give function application the
highest and let-bindings the lowest precedence.

Let-bindings allow to bind a declaration P to a variable . While any
let-binding let x = P in ) can be emulated using an immediately applied
A-abstraction (Az. Q) P, they are very common and can benefit from trans-
formations that target them specifically. We omit further constructs such as
branching operators, recursive bindings or a fixpoint operator, but discuss some
potential additions and their implications at the end (section .

2.1 Program Analysis and Transformation

We mainly consider transformations aimed at optimising functional programs.
A large number of program analyses and optimisations are presented in the
literature [15] 23] and used in production compilers such as the Glorious Haskell
Compiler (GHC). We generally focus on transformations dealing with variable



binders, such as inlining, let-floating, common subexpression elimination and
dead binding elimination.

Dead Binding Elimination An expression is not forced to make use of all
bindings to which it has access. Specifically, a let-binding introduces a new
variable, but it might never be used in the body. Consider for example the
following expression:

let x =42 in
let y=2+6in
let z=y+7in

T

Here, the binding for z is clearly unused, as the variable never occurs in the body.
Such dead bindings can be identified by live variable analysis and consequently
be removed.

Note that y is not needed either: Removing z will make y unused. Therefore,
multiple iterations of live variable analysis and binding elimination might be
required to remove as many bindings as possible. Alternatively, strongly live
variable analysis can achieve the same result in a single pass by ignoring variable
occurrences in the declaration of variables unless that variable is live itself.

Let-sinking Even when a binding cannot be removed, it can still be beneficial
to move it to a different location. Several such strategies have for example
been described and evaluated in the context of lazy functional programs [19].
Of those, we will focus on the let-sinking transformation (called let-floating in
the paper). Generally, the further inward a let binding is moved, the better:
other optimisations might get unlocked, and in the presence of branching, the
declaration might never be evaluated.

Of course, we must ensure that the binding remains in scope for all of the
variable’s occurrences and should consider some exceptions to the rule of sinking
as far as possible. We generally do not want to duplicate bindings or move them
inside A-abstractions, which can also duplicate work if the function is applied
multiple times.

Let us look at what this means when sinking the binding for x in the following
example with free variables f and g:

let z=f42in (g 1) (f =+ x)

4

(g1) (let z=f42in f z+ )

The variable x is only used in the right side of the function application, but we
cannot sink it any further, since it occurs on both sides of the addition.



Interestingly, let-sinking also covers a central part of inlining. When a vari-
able only occurs once (and would thus benefit from inlining), the binding will be
moved inwards until it reaches the single occurence, which can then be replaced
by the binding’s declaration.

let x = f 42 in
let y=f 43 in
fy+y+a)

¢

let y=f 43 in
fy+(y+let x = f 42 in z)

4

let y=f 43 in
Ty+(y+f42)

2.2 Binding Representations

The notation used so far treats variables as letters, or more generally strings.
This is how humans usually write programs and makes it fairly natural to match
a variable with its binding. For representing variables in a compiler or mecha-
nised proof, however, different trade-offs apply.

Explicit names Using strings for variables is quite common in practical com-
pilers, but comes with several disadvantages. For example, additional work is
necessary if we want the equality of expressions to be independent of the spe-
cific variable names chosen (a-equivalence). Also, there are pitfalls like variable
shadowing and variable capture during substitution, requiring the careful appli-
cation of variable renamings [3]. Consider for example the following expression,
where x is a free variable:

let y=x+4+1in Az. y

Naively inlining y here causes z to be captured by the A-abstraction, incorrectly
resulting in the program Az. (z + 1).

There have been various approaches to help compiler writers maintain the
relevant invariants, such as GHC’s rapier [I8], but these are generally still error-
prone. The developers of Dex for example used the rapier, but encountered
multiple binding-related compiler bugs, leading them to create the foil to “make
it harder to poke your eye out” [12].



De Bruijn indices With de Bruigjn indices [II], one can instead adopt a
nameless representation. Each variable is represented as a natural number,
counting the number of nested bindings between variable occurrence and its
binding: (0) refers to the innermost binding, (1) to the next-innermost etc. If
we adapt the syntax for let-bindings to omit the unnecessary variable name, the
example expression from dead binding elimination is represented as follows:

let £ =42 in let 42 in
let y=2+6 in let (0) +6 in
let z=y+7 in let (0) + 7 in
x (2)

This makes a-equivalence of expressions trivial and avoids variable capture,
but there are still opportunities for mistakes during transformations. Inserting
or removing a binding requires us to traverse the binding’s body and add or
subtract 1 from all its free variables. We can see this in our example when
removing the innermost (unused) let-binding. If we naively leave the variable
(2) untouched, it will not refer to the declaration 42 anymore, but become a
free variable:

let 42 in
let (0) +6 in
(2) - incorrect, should be 1

While useful for machines, de Bruijn representation can be unintuitive for
humans to reason about. This can be alleviated by formally describing the
necessary invariants and using tools to make sure they are upheld. An intrin-
sically typed de Bruijn representation is one possible way to achieve that, as
demonstrated in section 3.1l

Co-de-Bruijn representation Another nameless option we only briefly men-
tion here is the co-de-Bruijn representation [14]. It does not only admit a trivial
a-equivalence, but its terms are also unchanged by adding or removing bindings
in its context. On the other hand, it is even harder for humans to compre-
hend than de Bruijn syntax. McBride writes that “only a fool would attempt
to enforce the co-de-Bruijn invariants without support from a typechecker” and
makes heavy use of Agda’s dependent type system. We follow his approach
closely, as shown in section [£.1]

Other representations There are many other techniquesﬂ such as higher-
order abstract syntax [21] and also combinations of multiple techniques, e.g.
the locally nameless representation [7].

IThere is an introductory blogpost by Jesper Cockx [8] comparing several approaches and
their properties using Agda.



Chapter 3

De Bruijn Representation

The main objective of this chapter is to show how to manipulate the binding
structure of intrinsically typed de Bruijn syntax. We start by demonstrating
how the intrinsically typed representation enforces type- and scope-correctness
by making the context of expressions explicit in their type. To talk about
the relationship between contexts, we give an introduction to thinnings and
some operations on them that will prove useful later. This leads us to the
discovery that thinnings can nicely capture the notion of variable liveness, which
is fundamental for manipulating bindings. Finally, we use them to describe
program transformations and prove their correctness.

For brevity, we will make use of Agda’s ability to quantify over variables
implicitly. The types of these variables should be clear from their names and
context.

3.1 Intrinsically Typed Syntax

Whether we use explicit names or de Bruijn indices, the language as seen so far
makes it possible to represent expressions that are ill-typed (e.g. performing
addition on Booleans) or -scoped. In Agda, we can similarly define expressions
as follows:

data RawExpr : Set where
Var : Nat — RawExpr
App : RawExpr — RawExpr — RawExpr
Lam : RawExpr — RawExpr
Let : RawExpr — RawExpr — RawExpr
Num : Nat — RawExpr
Bln : Bool — RawExpr
Plus : RawExpr — RawExpr — RawExpr

But how should expressions like Plus (Bln False) (Var 42) be evaluated?
What is the result of adding Booleans and how do we ensure that a value (of

10



the right type) is provided for each variable used? Clearly, evaluating such an
expression must lead to a runtime error.

Sorts The first problem can be addressed by indexing each expression with
its sort U, the type that it should be evaluated to.

data U : Set where
= :U->U-—>U
BOOL : U
NAT : U
variable
ot : U
[ ]:U — Set
[o =7] =[] = 1[7]
[ BOOL] = Bool

[ NAT ] = Nat
data RawExpr : U — Set where
Var : Nat — RawExpr o
App : RawExpr (0 = 7) — RawExpr o — RawExpr 7
Lam : RawExpr 7 — RawExpr (¢ = 1)
Let : RawExpr 0 — RawExpr 7 — RawExpr 7
Val  :[o] — RawExpro

Plus : RawExpr NAT — RawExpr NAT — RawExpr NAT

Note that the values not only consist of natural numbers and Booleans, but
also functions between values, introduced by A-abstraction. Sorts can further
be interpreted as Agda types, which we use to represent values, for example
during evaluation.

Context Sorts help, but to know if a variable occurrence is valid, one must
also consider its context, the (typed) bindings that are in scope. We represent
the context as a list of sorts: One for each binding in scope, from innermost to
outermost.

Ctx = ListU
variable
I' A : Ctx

De Bruijn indeces can then ensure that they reference an element of a specific
type within the context.

data Ref (o : U) : Ctx — Set where
Top : Refo (o ::T)
Pop : RefoI' — Refo (7 : 1)

By also indexing expressions with their context, the invariants can finally
guarantee type- and scope-correctness by construction.

11



data Expr : (" : Ctx) (7 : U) — Set where
Var : RefoT' — Expro '
App : Expr(c = 7)T — ExproT' — Expr7 T
Lam : Expr7 (¢ =:T) — Expr(oc = 7)T
Let : Expro' — Expr7 (c::T) — Exprr T
Val : [o] = ExproT
Plus : Expr NATT' — Expr NATT' — Expr NAT T’

Note how the context changes when introducing a new binding in the body of
a Lam or Let.

Evaluation During evaluation, each variable in scope has a value. Together,
these are called an environment for a given context.

data Env : Ctx — Set where
Nil  : Env]]
Cons : [o] — Envll — Env(c:T)

Since variable Ref o T' acts as a proof that the environment Env I' contains
an element of type o, variable lookup is total.

lookup : Refe ' — EnvI — [o]
lookup Top  (Consvenv) = v
lookup (Pop i) (Cons v env) = lookup i env

As a result, we can define a total evaluator that can only be called with an
environment that matches the expression’s context.

eval : ExproT' — Envl — [o]

eval (Var x) env = lookup x env

eval (App e; e2) env = eval e; env (eval e; env)

eval (Lame;) env = Av — evale; (Consvenv)
eval (Let e; e3) env = eval e (Cons (eval e; env) env)
eval (Val v) env = v

eval (Plus e; e2) env = eval e; env + eval e; env

Py

3.2 Thinnings

Since the context of an expression plays such an important role for its scope-
safety, we want some machinery for talking about how different contexts relate
to each other. One such relation, which will prove useful soon, is that of being
a subcontext, or more precisely a context with an embedding into another.
We formalise this notion in the form of thinnings, also called order-preserving
embeddings (OPE) [6].

As several operations on thinnings are used pervasively throughout the rest
of the thesis, we briefly introduce them here in a central location we can refer
back to. Their applications will become apparent starting from section

12



We closely follow the syntactic conventions of McBride [I4], but grow our
lists towards the left instead of using backwards lists and postfix operators.

data C {l: Set} : List| — List| — Set where

o :ACT — A C (r=T) --drop
os : ACT —» (r2A) C (7:T) - keep
oz:[] C[] - empty

Intuitively, a thinning tells us for each element of the target context whether
it also occurs in the source target or not (keep or drop). As an example, let us
embed the lista::c::[Jintoa=b:ci|):

os (o' (0so0z)) : (ax=c:]) E (@a=buc:]))

Identity and composition Contexts and the thinnings between them form a
category with the inital object []. Concretely, this means that there is an empty
and identity thinning (keeping none or all elements, respectively), as well as
composition of thinnings in sequence, followingidentity and associativity laws.

ce: [ET

oe {T' = [|} = oz

oe{ll = _u_} = o oe

oo : ' C T

ol {T =[]} = oz

ol {I' = _::_} = osoi

_;_:F1§F2—>FQEF3—>F1EF3

0 50¢  =0(0309)

of so0s¢dp =003 )

osf 3 oso = os (0 § ¢)

oz 5 oz = oz

law-30i : (0 : ACT) > 630 =6

law-0is : (0 : ACT) - o0i g6 =296

Iaw—;; (9 Iy CE Iy (¢ : Iy C ].—‘3) (w :I's C F4) —
035(@35¢)=05¢) 59

Concatenating thinnings Thinnings cannot just be composed in sequence,
but also concatenated.

_Ho. AT ET = Ay ETy = (A H Ay) & (I # Ty)
o0 Hc ¢ =0 (0 Hc ¢)
0sf Hc ¢ = os (0 Hc o)

oz Hc ¢ = ¢

This interacts nicely with sequential composition, specifically we prove that
(01 5 02) Hc (¢1 3 ¢2) = (1 He ¢1) § (02 HC ¢2).

13



Splitting thinnings If we have a thinning into a target context that is con-
catenated from two segments, we can also split the source context and thinning
accordingly. To help the typechecker figure out what we want, we quantify over
I'y explicitly, I's can then usually be inferred.

record Split (I'y : Listl) (0 : A T (I'y # I'3)) : Set where
constructor split

field
{Al} : List |
{A;} : List |
91 : (Al E Fl

)
92 : (Ag E Fg)
eq : L (A = A1 H D) A{refl - 0 = 61 Hc 02}

_|_ : (Fl : LISt') (9 A C (Fl +H Fg)) — Spllt Fl 0

To show it in action, let us return to the previous example thinning and
observe that we could have built it by concatenating two smaller thinnings:

01 : (@:=[]) C (@)

0, = osoz

0 (D) C (brcl)

0 = o (os oz)

:(@=cx]]) C(axbuci]])

6 = 01 Hc 02 - evaluates to os (o’ (os 0z))

To go into the other direction, we split 6 by calling (a :: []) - 6, resulting in a
split 01 02 eq : Split (a :: []) 0. The target context’s first segment (a :: []) needs
to be supplied explicitly to specify at which place the splitting should happen.
The second segment is then determined by 6’s target context.

Things with thinnings We will later deal with things (e.g. expressions)
indexed by a context that we do not statically know. We will know, however,
that it embeds into a specific context I' via some thinning. As we have so far
been careful to always use the context as the last argument to types, this concept
of a thing with a thinning can be defined in a general way, to be used for a wide
range of different datatypes.

record {_ (T : List| — Set) (I' : Listl) : Set where
constructor _ 1

field
{A} : Listl
thing : T A

thinning : A C T

To avoid manual un- and re-packing, some combinators come in handy:

14



mapft : (V{A} - SA = TA) S AT =THT
bindf : (V{A} 2 SA =Tt A) =->SAHT -T4HT
thinff : A CT - THA->TqT

3.3 Variable Liveness

We want to compute an expression’s live variables, i.e. the part of the context
that is live. However, while an expression’s context is just a list of sorts, a
similar list is not sufficient as the result of this bottom-up analysis.

For example, knowing that two subexpressions both have a single live vari-
able of sort NAT is not enough to deduce whether the combined expression has
one or two live variables. We cannot know whether the two variables are the
same, unless we have a way to connect them back to the context they come
from. Another way of thinking about variable liveness is that for each variable
in the context we want a binary piece of information: is it live or dead?

Thinnings support both of these interpretations: A thinning A E T can
be used to represent the live variables A together with an embedding into the
context I'. At the same time, looking at how it is constructed reveals for each
element of the context whether it is live (os) or dead (o').

We will now show for each constructor of our language how to compute its
live variables, or rather their thinning into the context.

Values Starting with the most trivial case, values do not use any variables.
The thinning from the (empty) list of their life variables consequently drops
everything.

oe:[]ET

Variables A variable occurrence trivially has one live variable. To obtain a
suitable thinning, we can make use of the fact that thinnings from a singleton
context are isomorphic to references.

o-Ref : Refo T — (o:[]) E T
o-Ref Top = o0soe
o-Ref (Popx) = o' (o-Ref x)

Ref-o : (6::[]) T T — RefoT
Ref-o (o’ 8) = Pop (Ref-0 0)
Ref-o (0s 8) = Top

15



Binary constructors Variables in the context are live if they are live in one
of the subexpressions (i.e. some thinning is os _).

U-vars : (91 A C F) (92 Ay T F) — List |

U-vars (o' 1) (o' B2) = U-vars 61 6,
U-vars {T' = o :: _} (o' 61) (0sb2) = o :: U-vars 0y 0,
U-vars {T' = o :: _} (0s61) (o' 62) = o :: U-vars 6y 0,
U-vars {I' = o :: _} (0s 61) (0s b2) = o :: U-vars 6y 6,
U-vars oz oz =]

To precisely describe the merged variable liveness information, we then construct
a thinning from these combined live variables.

_U_ ( Al C F)( AQ C F) — U-vars 91 02 C r

o 91 @] o 9 = o (91 92)
o' 6y Uosby = os (0 U 6s)
0sfy U o by = os(f; U bs)
0sf; U osfy = os(0; U 6)
oz U oz = oz

Furthermore, we can construct the two thinnings into the combined live vari-
ables and show that this is exactly what we need to reconstruct the original
thinnings.

un-Up (01 : Al C F) (92 : AQ
r

C U-vars 01 05
un-Usg : (01 : Al E

U-vars 61 65

11

-
C

Iaw—Ul—inv : (91 : Al C F) (92 : AQ C F) —

|aW—U2—inv : (91 : Al C F) (92 : AQ F) —
un-Usp 01 92 ; (01 @] 92) = 02

Binders When moving up over a binder, the bound variable gets removed
from the context. In case it was part of the live variables, it also has to be
removed there. This is done using pop, again with thinnings from and into the
resulting context.

pop-vars : A C I" — Listl

pop-vars {A = A} (0/0) = A

pop-vars {A = _:: A} (osh) = A

pop-vars oz =1

pop: (6 : A C (0:T)) — popvars§ C T
pop (o' ) = 0

pop (os0) = 6

un-pop : ( : A C (¢6::T)) - A C (c:: pop-vars 0)
law-pop-inv : (6 : A T (0::T)) — un-pop 8 ¢ os (pop8) = 0

16



Let-bindings For let-bindings, one option is to treat them as an immediate
application of a A-abstraction, combining the methods we just saw. This cor-
responds to weakly live variable analysis, since even if the variable is dead, we
end up considering other variables to be live if they are used in its declaration.

Ut (01 : Ay ET) (02 : Ay T (0:T)) — U-varsb; (popfy) C T
01 Uet 02 = 01 U pop b

The other option is to do strongly live variable analysis with a custom operation
_ Ujet__ that ignores the declaration’s context if it is unused in the body.

Ut-vars @ (01 : Ay T T') (02 : Ay T (0::T)) — Cix

Ulet-vars {AQ = AQ} 01 (O/ 92) = Ay

Ujet-vars 01 (os B3) = U-vars 6y 0

_Ulet_ : (01 : Al C F) (02 : AQ C (O’IZF)) — Ulet-vars 01 92 C I
01 Ut (o' 02) = 0o

01 Ulet (OS 92) = 601 U 0O,

We do not need the composed thinnings into the live variables, as we will always
distinguish the two cases of f5 anyways and can then rely on the thinnings
defined for U

To illustrate the difference, let us return to an example shown earlier:

let © =42 in let 42 in
let y=2+61in let (0) +6 in
let z=y+7in let (0) + 7 in
@ (2)

If we focus on the subexpression in the last two lines, we see that in our syntax
representation it is an Expr NAT (NAT :: NAT :: []), where the first element of
the context correspondes to y, the second to x.

Let (Plus (Var Top) (Val 7))
(Var (Pop (Pop Top)))

In the declaration, only the innermost binding ¥ is live, so we have a thin-
ning os (0’ 0z). In the body (with an additional binding in scope), we have
o' (o' (os 0z)). With the weak version of U we get

os (0’ 0z) Uit 0 (0 (0s0z)) = os (0’ 0z) U o (0so0z) = os (os 0z)

stating that both variables in scope are live. With the strong version, on the
other hand, only y is considered live:

0s (0’ 0z) Ujer 0 (0’ (0s0z)) = os (o' 0z)

17



3.4 Dead Binding Elimination

3.4.1 Direct Approach

To make the decision whether a binding can be removed, we need to find out if
it is used or not. This can be achieved by returning liveness information as part
of the transformation’s result and use that after the recursive call on the body.
Precisely, we return an Expr o {} I, the transformed expression in a reduced
context of only its live variables, together with a thinning into the original one.

Transformation The transformation proceeds bottom-up. Once all subex-
pressions have been transformed and we know their live variables, we calculate
the overall live variables with their corresponding thinnings. Since the construc-
tors of Expr require the subexpressions’ context to match their own, we need to
rename the subexpressions accordingly.

rename-Ref : AC T — Refoc A — RefoT
rename-Expr : A C I' - Exprc A — Expro T

Each renaming traverses the expression and we end up renaming the same
parts of the expressions repeatedly (at each binary constructor). While this is
clearly inefficient, it cannot be avoided easily with the approach shown here. If
we knew upfront which context the expression should have in the end, we could
immediately produce the result in that context, but we only find out which
variables are live after doing the recursive call. Separately querying liveness
before doing the recursive calls would also require redundant traversals, but we
will show a solution to this issue in the next section.

Most cases of the implementation keep the expression’s structure unchanged,
only manipulating the context:

dbe : Expro ' — Expro {4 T
dbe (Var x) =
Var Top 1 o-Ref x
dbe (App e; e2) =
lete] 1+ 6, = dbee
ey 1 02 = dbeey
in App (rename-Expr (un-U; 61 63) €}) (rename-Expr (un-Us 0 02) €})
+ (01 U 6s)
dbe (Lame;) =
lete] T 0 = dbee
in Lam (rename-Expr (un-pop ) €]) 1 pop 6
dbe (Let 1 e3) with dbee; | dbe ey
el 10| eyt ol =
ey T b2
o | € 161 | €y T osby =
Let (rename-Expr (un-U; 67 62) €}) (rename-Expr (os (un-Us 61 02)) €})
T (61 U 69)
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dbe (Valv) =
(Valv) 1 oe
dbe (Plus e; e3) =
-- just as App

For Let, we split on the binding being live or dead in dbe es. Only if it is
dead will the typechecker allow us to return e, without the binding. Finally,
note that checking liveness after already removing dead bindings from the body
corresponds to strongly live variable analysis.

Correctness We prove preservation of semantics based on the total evaluation
function. Since we allow functions as values, reasoning about equality requires
us to postulate extensionality. This does not impact the soundness of the proof
and could be avoided by moving to a different setting, such as homotopy type
theory [25].

postulate
extensionality :
{S :Set} {T:S — Set} {fg: (x:S) - Tx} —
(Vx > fx=gx) > f=g

As the transformed expression generally has a different context than the
input expression, they cannot be evaluated under the same environment. We
project the environment to match the smaller context, dropping all its unneeded
elements.

project-Env : A C T' — EnvI' —» EnvA

dbe-correct :
(e : ExproT) (env : EnvI') —
lete’ + 0 = dbee
in eval e’ (project-Env 6 env) = eval e env

Alternatively, it is possible to rename the expression (and law-eval-rename-Expr
witnesses that both approaches are exchangable), but in this case it turns out
to be more convenient to reason about context projection.

law-eval-rename-Expr :
(e : ExproA) (6 : A CT)(env: EnvI) —
eval (rename-Expr 6 €) env = eval e (project-Env 6 env)

The inductive proof requires combining a large number of laws about eval-
uation, renaming, environment projection and the thinnings we constructed.
The Lam case exemplifies that. We omit most of the proof terms except for
the inductive hypothesis, as they are rather long. The intermediate terms still
demonstrate how we need to apply several lemmas.
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dbe-correct (Lam e1) env =
lete) T 0, = dbee;
in extensionality A\ v —
eval (rename-Expr (un-pop 61) €) (project-Env (os (pop 61)) (Cons v env))
=( law-eval-rename-Expr €} (un-pop 61) _)
eval €| (project-Env (un-pop 61) (project-Env (os (pop 1)) (Cons v env)))
eval e} (project-Env (un-pop 61 § os (pop 61)) (Cons v env))
eval e] (project-Env 6, (Cons v env))
=( dbe-correct e; (Cons v env) )
eval e; (Cons v env)
|

The cases for binary operators have a similar structure, but are even longer,
as they need to apply laws once for each subexpression. Since the implementa-
tion uses a with-abstraction for the Let-case, the proof does the same:

dbe-correct (Let e; e3) env with dbe e; | dbe es | dbe-correct e; | dbe-correct ey
o | €176 | eyt o0y | hl | h2 =
h2 (Cons (eval e; env) env)
| ej 161 | ey Tosby | hl | h2 =
let v = eval (rename-Expr (un-U; 61 62) €}) (project-Env (61 U 653) env)
in
eval (rename-Expr (os (un-Us 61 65)) €})
(Cons v (project-Env (61 U 65) env))
eval ey (Cons (eval e; env) env)
]

-- long proof

Note that we also with-abstract over the inductive hypothesis. When abstract-
ing over e.g. dbe ey, the statement we need to prove gets generalised and then
talks about e]. However, dbe-correct e; talks about dbe e; and Agda is not
awareElof their connection. Generalising dbe-correct e; makes it refer to e} as
well.

3.4.2 Using Annotations

In compilers, it is a common pattern to perform separate analysis and transfor-
mation passes, for example with strictness and occurrence analysis in GHC [20].
We can do the same to make variable liveness information available without
repeatedly having to compute it on the fly. For dead binding elimination, this
allows us to avoid the redundant renaming of subexpressions.

Thttps://agda.readthedocs.io/en/v2.6.3/language/with-abstraction.html
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Liveness annotations To annotate each part of the expression with its live
variables, we first need to define a suitable datatype of annotated expressions
LiveExpr 7 6. The thinning 6 here captures liveness information in the same way
as during the direct transformation in section [3.4.1] Its target context I' plays
the same role as in Expr o I', but A only contains the live variables.

data LiveExpr {T" : Ctx} : U — {A : Ctx} - A C T' — Set where
Var :
(x: Refo ') —
LiveExpr o (o-Ref x)
App :
{HllAl EF}{GQAQ EF} —
LiveExpr (o = 7) 6, —
LiveExpr o 0, —
LiveExpr 7 (61 U 63)
Lam :
{§:AC (6:1)} —
LiveExpr 7 6 —
LiveExpr (¢ = 7) (pop 0)
Let :
{91 : Al E F}{eg : AQ [
LiveExpr o 61 —
LiveExpr 7 02 —
LiveExpr 7 (61 Ujer 62)
Val :
[o] —
LiveExpr o oe
Plus :
{012A1 EF}{GQAQ EF} —
LiveExpr NAT 0, —
LiveExpr NAT 6, —
LiveExpr NAT (6; U 6)

M
T
;
=

1

The operator Ut used here can refer to either one of the two versions we
introduced, but for the remainder of this thesis we will use the strongly live
version.

Analysis To create such an annotated expressions, we need to perform strongly
live variable analysis. As we do not know the live variables upfront, analyse com-
putes an existentially qualified context and thinning, together with a matching
annotated expression. The implementation is straightforward, directly following
the expression’s structure.

analyse : ExproT' — X[ AeCtx]|X[0 € A C I'] LiveExpr o @

analyse (Var {c} x) =
(o ::]]) , o-Ref x, Var x
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