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Abstract

The Normalized Cut problem is a graph partitioning problem that is known to be NP-
complete in general. Therefore, we look into the complexity of the Normalized Cut
problem on certain H-free graph classes. H-free graphs are those which do not contain
any graph of H as an induced subgraph, for any fixed set of graphs H. We show that the
Normalized Cut problem is NP-complete on claw-free, split, and complete graphs. Fur-
thermore, we show that the Normalized Cut problem with unweighted edges is strongly
NP-complete in general. On the other hand, we show that the partition with minimum
normalized cut value has two connected components and use this property to construct
polynomial-time algorithms on certain H-free graph classes. We show that we can solve
the Normalized Cut problem on forests in linear time and on outerplanar graphs in
quadratic time. Furthermore, we show that we can solve the Normalized Cut problem
with unweighted edges on cactus and cluster graphs in linear time. Lastly, we observe that
there exists an O(log(n))-approximation algorithm for another graph partitioning problem
to which we can reduce the Normalized Cut problem. Therefore, we have an O(log(n))-
approximation algorithm for the Normalized Cut problem.
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1 Introduction

The goal of graph partitioning is to divide a graph into multiple components. Graph parti-
tioning has been widely researched (see e.g. [2, 18, 10, 20, 17, 12]). A reason for this is its
wide applicability. For example, it is used for image segmentation [20], object and character
recognition, information retrieval, data mining [11], VLSI circuit design [3] and for all kinds
of networks such as road networks and social (media) networks [5].

A graph can be partitioned into components by removing its edges or vertices such that
there are no edges connecting the components. The set of removed edges or vertices is
called the cut of a graph. Which edges or vertices are removed to partition the graph is
determined by the objective of the graph partitioning problem being studied. In this thesis,
we only partition graphs by removing edges and we assume graphs to be undirected and
edge-weighted unless explicitly stated otherwise.

One of the best known graph partitioning problems is the Minimum Cut problem. The
Minimum Cut problem takes as input a graph and asks for a cut with the lowest cut value
i.e. lowest sum of edge-weights of the edges in the cut. The Minimum Cut problem can
result in one component with a small set of isolated vertices and one component with all
other vertices [20]. Often it is desired, however, that the components are roughly ’equal’.
Luckily, there are graph partitioning problems with an objective to partition the graph into
roughly ’equal’ components.

The Normalized Cut problem has the objective to minimize the cut value while also
balancing the total sum of edge-weights of the edges in the components. See Definition 4
in Section 2 for a precise definition. The Normalized Cut problem finds application in
image segmentation [20], pattern recognition [24], and community detection [21]. In Figure
1 we see an example of a graph with its edge-weights for which the Minimum Cut problem
is solved and in Figure 2 we see the same graph for which the Normalized Cut problem
is solved. We see that the solution of the Minimum Cut problem has ’unequal’ components
while the solution of the Normalized Cut problem has more ’equal’ components.
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Figure 1: Solution of the Minimum Cut problem of a graph

Shi and Malik [20] showed that the Normalized Cut problem is NP-complete. To
better understand the complexity of the Normalized Cut problem we will look at H-free
graph classes. Let H be a set of graphs. An H-free graph is a graph that does not contain
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Figure 2: Solution of the Normalized Cut problem of a graph

any graph from H as an induced subgraph. A graph class is H-free if every graph G in the
class is H-free. Several well-known H-free graph classes are forests, claw-free graphs, split
graphs, and cluster graphs.

The rest of this thesis is organized in the following way. In Section 2, we define the
Normalized Cut problem and some variations of the Normalized Cut problem. Fur-
thermore, we show previous work on the Normalized Cut problem and on the variations
of the Normalized Cut problem. Lastly, at the end of Section 2, we give an overview of
the results we present in this thesis. In Section 3 we define some other graph partitioning
problems and show previous work on these other graph partitioning problems.

In Section 5, we show that the Normalized Cut problem is NP-complete on claw-free,
split, and complete graphs. On the other hand, in Section 7, we show that we can solve the
Normalized Cut problem on forests in linear time and on outerplanar graphs in quadratic
time.

In Section 6 we look into the complexity of the Normalized Cut problem with un-
weighted edges. We show that the Normalized Cut problem with unweighted edges is
strongly NP-complete. On the other hand, in Section 8, we show that we can solve the
Normalized Cut problem with unweighted edges in linear time on cluster and cactus
graphs.

In Section 4 we answer an open research question asked in the thesis of Vincken [25],
namely if a partition with minimum normalized cut value has exactly two connected com-
ponents. We show that it is indeed the case that the partition with minimum normalized
cut value has exactly two connected components and use this property in the algorithms
mentioned above.

In Section 9, we observe that there exists an O(log(n))-approximation algorithm for
another graph partitioning problem to which we can reduce the Normalized Cut prob-
lem. Therefore, we have an O(log(n))-approximation algorithm for the Normalized Cut
problem.

Lastly, in Section 10, we finish this thesis with a conclusion and some open research
questions for the Normalized Cut problem.
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2 The Normalized Cut problem

In this section, we formally define graph partitioning, the Normalized Cut problem, and
some variations of the Normalized Cut problem. Furthermore, we show previous work
on the Normalized Cut problem and its variations. Lastly, at the end of this section, we
give an overview of the results we present in this thesis.

Graph partitioning is the partition of the set of vertices V of a graph G = (V,E) into
mutually disjoint non-empty vertex sets V = S1∪S2 · · ·∪Sk by removing the edges crossing
these vertex sets. These vertex sets are called components and the set of removed edges is
called the cut of the partition {S1, S2, . . . , Sk} of G. In this thesis, we assume that a cut
of a graph G = (V,E) is a partition of the vertices V into two components ∅ ⊂ S ⊂ V and
S̄ = V \S. If a graph is partitioned into k > 2 components V = S1 ∪S2 · · · ∪Sk, it is called
a k-cut of a graph. We assume every graph to be undirected and edge-weighted. If the
graph is also vertex-weighted or if the edges do not have weights, it is mentioned explicitly.
Furthermore, the weights of the edges and vertices of a graph are always strictly positive.

Before we can define the Normalized Cut problem and its variations, we first have to
define the cut value of a partition. The cut value of a partition {S, S̄} of a graph G = (V,E)
is defined as the sum of the edge-weights of the edges in the cut :

cut(S, S̄) =
∑
v∈S
u∈S̄

(u,v)∈E

w(v, u).
(1)

The k-cut value of a partition {S1, S2, . . . , Sk} of a graph G = (V,E) is defined as the
sum of the edge-weights of the edges in the cut :

cutk(S1, S2, . . . , Sk) =

k−1∑
i=1

k∑
j=i+1

∑
v∈Si
u∈Sj

(u,v)∈E

w(v, u).
(2)

Note that for k = 2, the k-cut value is equal to the cut value of a partition {S, S̄} of a
graph G.

Furthermore, we need to define the volume of a component S. The volume of a com-
ponent S is defined as the sum of the edge-weights of the edges with one vertex-endpoint
in component S and the other vertex-endpoint in the total set of vertices V of a graph
G = (V,E):
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vol(S, V ) =
∑
v∈S
u∈V

(v,u)∈E

w(v, u).
(3)

Note that an edge-weight w(v, u) of an edge (v, u) ∈ E with vertex-endpoints v and u
within the vertex set S is counted twice since S ⊆ V .

Now we can define the Normalized Cut problem. The Normalized Cut problem
takes as input a graph G and a real number N and asks if there exists a partition {S, S̄}
of G with a normalized cut value of at most N . The normalized cut value of a partition
{S, S̄} is defined as:

NCut(S, S̄) =
cut(S, S̄)

vol(S, V )
+

cut(S, S̄)

vol(S̄, V )
. (4)

The normalized cut value of a partition {S, S̄} can also be rewritten into a second form:

NCut(S, S̄) =
cut(S, S̄)(vol(S, V ) + vol(S̄, V ))

vol(S, V ) · vol(S̄, V )
. (5)

Note that the second term of the numerator is not dependent on the partition. It is ex-
actly two times the total edge-weight of the edges of graph G which is the volume vol(V, V )
of V .

The Normalized Cut problem was first introduced in a paper by Shi and Malik [20]
in which they also showed that the Normalized Cut problem is NP-complete. Further-
more, they showed that even for bipartite planar graphs the Normalized Cut problem
is NP-complete. Vincken [25] showed in her thesis that the Normalized Cut problem is
FPT parameterized by the vertex cover combined with the total sum of edge-weights of a
graph as well as parameterized by treewidth combined with the total sum of edge-weights
of a graph.

In this thesis, we introduce a new variant of the Normalized Cut problem, namely
the Simplified Normalized Cut problem. The Simplified Normalized Cut problem
takes as input a graph G and a real number N and asks if there exists a partition {S, S̄} of
G with a simplified normalized cut value of at most N . The simplified normalized cut value
of a partition {S, S̄} is defined as:

SNCut(S, S̄) =
cut(S, S̄)

vol(S, V ) · vol(S̄, V )
. (6)
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Note that we can reduce the Normalized Cut problem to the Simplified Normal-
ized Cut problem since NCut(S, S̄) = SNCut(S, S̄) · (vol(S, V ) + vol(S̄, V )) for a partition
{S, S̄} and (vol(S, V ) + vol(S̄, V )) is not dependent on {S, S̄} because it is always equal to
vol(V, V ).

The Normalized k-Cut problem takes as input a graph G, a natural number k, and a
real number N and asks if there exists a partition {S1, S2, . . . , Sk} of G with a normalized
k-cut value of at most N . The normalized k-cut value of a partition {S1, S2, . . . , Sk} is
defined as:

NCutk(S1, S2, . . . , Sk) =
∑

1≤i≤k

cut(Si, S̄i)

vol(Si, V )
. (7)

Since the Normalized Cut problem is a special case of the Normalized k-Cut prob-
lem, namely for k = 2, the Normalized k-Cut problem is also NP-complete.

There are a few more variations of the Normalized Cut problem. The Max Normal-
ized k-Cut problem takes as input a graph G, a natural number k, and a real number N
and asks if there exists a partition {S1, S2, . . . , Sk} of G with a max normalized k-cut value
of at most N . The max normalized k-cut value of a partition {S1, S2, . . . , Sk} is defined as:

MaxNCutk(S1, S2, . . . , Sk) = max
1≤i≤k

cut(Si, S̄i)

vol(Si, V )
. (8)

The Max Normalized k-Cut problem is NP-complete, since for k = 2 the Max Nor-
malized k-Cut problem is equal to the NP-complete Conductance problem, introduced
in Section 3. Furthermore, Daneshgar and Javadi [6] showed that even for weighted trees
the Max Normalized k-Cut problem is NP-complete.

The following two variations of the Normalized Cut problem are on vertex-weighted
graphs. The Mean Vertex-Weighted Normalized k-Cut problem takes as input a
graph G, a natural number k, and a real number N and asks if there exists a partition
{S1, S2, . . . , Sk} of G with a mean vertex-weighted normalized k-cut value of at most N .
The mean vertex-weighted normalized k-cut value of a partition {S1, S2, . . . , Sk} is defined
as:

MeanNCutkw(S1, S2, . . . , Sk) =
1

k

∑
1≤i≤k

cut(Si, S̄i)

w(Si)
. (9)

Note that the NP-complete Normalized k-Cut problem can be reduced to the Mean
Vertex-Weighted Normalized k-Cut problem by giving every vertex v ∈ V of a graph
G = (V,E) the weight of the sum of the weights of its incident edges:
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w(v) =
∑

(v,u)∈E

w(v, u). (10)

Therefore, theMean Vertex-Weighted Normalized k-Cut problem is NP-complete.

The Max Vertex-Weighted Normalized k-Cut problem takes as input a graph G,
a natural number k, and a real number N and asks if there exists a partition {S1, S2, . . . , Sk}
of G with a max vertex-weighted normalized k-cut value of at most N . The max vertex-
weighted normalized k-cut value of a partition {S1, S2, . . . , Sk} is defined as:

MaxNCutkw(S1, S2, . . . , Sk) = max
1≤i≤k

cut(Si, S̄i)

w(Si)
. (11)

Note that the NP-complete Max Normalized k-Cut problem can be reduced to the
Max Vertex-Weighted Normalized k-Cut problem by giving every vertex v ∈ V of
a graph G = (V,E) the weight of the sum of the weights of its incident edges:

w(v) =
∑

(v,u)∈E

w(v, u). (12)

Therefore, theMax Vertex-Weighted Normalized k-Cut problem is NP-complete.

The Normalized Cut problem and the Normalized Cut problem with unweighted
edges are investigated in Sections 4, 5, 6, 7, 8 and 9. In Section 4 we give some propositions
about the Normalized Cut problem and prove an interesting property of the partition
with the minimum normalized cut value. We show that a partition with minimum nor-
malized cut value has exactly two connected components. In Section 5 we investigate the
complexity of the Normalized Cut problem on a variety of H-free graphs. First, in
Subsection 5.1, we present a proof of the NP-completeness of the Normalized Cut prob-
lem on K1,3-free or claw-free graphs. Then, in Subsection 5.2 we present a proof of the
NP-completeness of the Normalized Cut problem on {2P2, C4, C5}-free graphs or split
graphs. Finally, in Subsection 5.3, we present a proof of the NP-completeness of the Nor-
malized Cut problem on complete graphs. In Section 6 we show that the Normalized
Cut problem with unweighted edges on general graphs is strongly NP-complete. In Section
7 we present two algorithms that solve the Normalized Cut problem in polynomial-time.
In Subsection 7.1 we present an algorithm that solves the Normalized Cut problem on
forests in linear time, and in Subsection 7.2 we present an algorithm that solves the Nor-
malized Cut problem on outerplanar graphs in quadratic time. Furthermore, in Section 8
we present two algorithms that solve the Normalized Cut problem with unweighted edges
in polynomial-time. In Subsection 8.1 we present an algorithm that solves the Normalized
Cut problem with unweighted edges on cluster graphs in linear time, and in Subsection
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8.3 we present an algorithm that solves the Normalized Cut problem with unweighted
edges on cactus graphs in linear time. Lastly, in Section 9, we observe that there exists an
O(log(n))-approximation algorithm for another graph partitioning problem to which we can
reduce the Normalized Cut problem. Therefore, we have an O(log(n))-approximation
algorithm for the Normalized Cut problem.

We give an overview of the Theorems presented in this thesis1:

Theorem 4.6. The partition of a connected graph with minimum normalized cut value has
exactly two connected components.

Theorem 5.1. The Normalized Cut problem is NP-complete on claw-free graphs.

Theorem 5.2. The Normalized Cut problem is NP-complete on split graphs.

Theorem 5.3. The Normalized Cut problem is NP-complete on complete graphs.

Theorem 6.1. The Normalized Cut problem is strongly NP-complete on general graphs
with unweighted edges.

Theorem 7.1. The Normalized Cut problem is solvable in linear time on forests.

Theorem 7.2. The Normalized Cut problem is solvable in quadratic time on outerplanar
graphs.

Theorem 8.1. The Normalized Cut problem is solvable in linear time on cluster graphs
with unweighted edges.

Theorem 8.3. The Normalized Cut problem is solvable in linear time on cactus graphs
with unweighted edges.

Theorem 9.1. The Normalized Cut problem has an O(log(n))-approximation algo-
rithm.

3 Related work

In this section, we define some other graph partitioning problems and show previous work
on these graph partitioning problems.

The best known graph partitioning problem is the Minimum Cut problem. The Mini-
mum Cut problem takes as input a graph G and a real number N and asks if there exists a
partition {S, S̄} of G with a cut value of at most N . The Minimum Cut problem of a graph
can be solved in polynomial-time. A simple algorithm that can solve the Minimum Cut

1Note that Theorem 5.3 implies Theorems 5.1 and 5.2. However, the proofs of Theorems 5.1 and 5.2
are still noteworthy. The proof of Theorem 5.1 uses an entirely different graph construction than the graph
construction used for the proof of Theorem 5.3. The proof of Theorem 5.2 is a good stepping stone for the
proof of Theorem 5.3
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problem of a graph G = (V,E) in O(|V ||E|+ |V |2 log(|V |)) time is the Stoer-Wagner algo-
rithm [22]. Note that there is a wealth of further algorithms, some quite recent. See e.g. the
algorithm with an O(|E| log2 |V |) running time by Gawrychowski, Mozes, and Weimann [8].

The Minimum k-Cut problem takes as input a graph G = (V,E), a natural number
k, and a real number N and asks if there exists a partition {S1, S2, . . . , Sk} of G with a
k-cut value of at most N . In contrary to the Minimum Cut problem, the Minimum k-Cut
problem is NP-complete as shown by Goldschmidt and Hochbaum [10].

The counterpart of the Minimum Cut problem is called the Maximum Cut problem.
The Maximum Cut problem takes as input a graph G and a real number N and asks
if there exists a partition {S, S̄} of G with a cut value of at least N . The Maximum
Cut problem is one of the famous 21 NP-complete problems of Karp [14]. Furthermore,
the Maximum Cut problem with unweighted edges is shown to be strongly NP-complete
by Garey et al. [7]. The best known approximation algorithm for solving the Maximum
Cut problem is presented by Williams and Goemans [9] and has an approximation ratio of
≈ 0.878. This approximation ratio is also optimal if the Unique Games Conjecture is true
as shown by Khot et al. [15].

The Maximum k-Cut problem takes as input a graph G = (V,E), a natural number k,
and a real number N and asks if there exists a partition {S1, S2, . . . , Sk} of G with a k-cut
value of at least N . Since the Maximum Cut problem is a special case of the Maximum
k-Cut problem, namely when k = 2, the Maximum k-Cut problem is also NP-complete.

The Edge Expansion problem takes as input a graph G and a real number N and
asks if there exists a partition {S, S̄} of G with an edge expansion of at most N . The edge
expansion of a partition {S, S̄} is defined as:

Φ(S, S̄) =
cut(S, S̄)

min(|S|, |S̄|)
. (13)

A solution of the Edge Expansion problem for a graph G is sometimes called the
Cheeger number/constant or isoperimetric number of G. The Edge Expansion problem
with unweighted edges is NP-complete as shown by Mohar [18] and Kaibel [13], which im-
plies NP-completeness of the Edge Expansion problem. The best known approximation
algorithm for solving the Edge Expansion problem with unweighted edges is presented by
Arora et al. [2] and has an approximation ratio of O(

√
log(n)).

The k-way Edge Expansion problem takes as input a graph G, a natural number
k, and a real number N and asks if there exists a partition {S1, S2, . . . , Sk} of G with a
k-way edge expansion value of at most N . The k-way edge expansion value of a partition
{S1, S2, . . . , Sk} is defined as:
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Φ(S1, S2, . . . , Sk) = max
1≤i≤k

Φ(Si, V \ Si). (14)

Since the Edge Expansion problem is a special case of the k-way Edge Expansion
problem, namely for k = 2, the k-way Edge Expansion problem is also NP-complete.

A variant of the Edge Expansion problem is the k-Small Set Expansion problem.
The k-Small Set Expansion problem takes as input a graph G, a natural number k, and
a real number N and asks if there exists a partition {S, S̄} of G with an edge expansion
value of at most N and where |S| or |S̄| is of size at most k. Note that we can reduce the k-
Small Set Expansion problem to the Edge Expansion problem by defining k = |V |/2.
The k-Small Set Expansion problem with unweighted edges is NP-complete as shown
by Raghavendra and Steurer [19]. Javadi and Nikabadi [12] showed that the k-Small Set
Expansion problem is fixed-parameter tractable (FPT) parameterized by the treewidth of
the graph. They also showed that the k-Small Set Expansion problem is FPT parame-
terized by the vertex cover of the graph. Furthermore, they showed that the k-Small Set
Expansion problem with unweighted edges is W [1]-hard for parameter k.

For the next graph partitioning problem, the Quotient Cut problem, we first need
to define the vertex-weighted edge expansion value for vertex-weighted graphs. For vertex-
weighted graphs, the vertex-weighted edge expansion value uses the total vertex-weight of
the vertices in a component S:

w(S) =
∑
v∈S

w(v). (15)

For vertex-weighted graphs the vertex-weighted edge expansion value of a component Si

of a partition {S1, S2, . . . , Sk} of a graph G = (V,E) is defined as:

Φw(S, S̄) =
cut(S, S̄)

min(w(S), w(S̄))
. (16)

The Quotient Cut problem resembles the Edge Expansion problem for vertex-
weighted graphs. The Quotient Cut problem takes as input a vertex-weighted graph G
and a real number N and asks if there exists a partition {S, S̄} of G with a vertex-weighted
edge expansion value of at most N . Since the Edge Expansion problem is a special case
of the Quotient Cut problem, namely with unweighted vertices, the Quotient Cut
problem is also NP-complete.

The next graph partitioning problem is the Sparsest Cut problem. Officially we should
call it the Uniform Sparsest Cut problem since the Sparsest Cut problem is a more
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general problem than the Uniform Sparsest Cut problem. However, in literature the
Uniform Sparsest Cut problem is often abbreviated to the Sparsest Cut problem [4,
16]. Therefore, from now on we will also abbreviate the Uniform Sparsest Cut problem
to the Sparsest Cut problem. Furthermore, note that the Sparsest Cut problem is
sometimes defined as the Edge Expansion problem [12]. The Sparsest Cut problem
takes as input a graph G and a real number N and asks if there exists a partition {S, S̄}
of G with a density cut value of at most N . The density cut value of a partition {S, S̄} is
defined as:

DensCut(S, S̄) =
cut(S, S̄)

|S| · |S̄|
. (17)

The Sparsest Cut problem is NP-complete as shown by Matula and Shahrokhi [17].
Later, Bonsma et al. [4] showed that the Sparsest Cut problem with unweighted edges
is strongly NP-complete. Furthermore, they showed that the Sparsest Cut problem of a
graph is FPT parameterized by the treewidth of the graph. They also showed that a par-
tition with minimum density cut value always results in two connected components. Using
this connectivity property of the two components they constructed algorithms that solve the
Sparsest Cut problem of a cactus graph with unweighted edges and a unit interval graph
with unweighted edges in linear time. Furthermore, they used this connectivity property
to solve the Sparsest Cut problem of an outerplanar graph in quadratic time. The best
known approximation algorithm for solving the Sparsest Cut problem with unweighted
edges is presented by Arora et al. [2] and has an approximation ratio of O(

√
log(n)).

There is also a vertex-weighted variant of the Sparsest Cut problem where instead of
the product of the sizes of the components, the product of the sums of the weights of the
vertices in the components is taken. The vertex-weighted Sparsest Cut problem takes as
input a vertex-weighted graph G and a real number N and asks if there exists a partition
{S, S̄} of G with a vertex-weighted density cut value of at most N . The vertex-weighted
density cut value of a partition {S, S̄} is defined as:

DensCut(S, S̄) =
cut(S, S̄)

w(S) · w(S̄)
. (18)

Note that we can reduce the Normalized Cut problem to the vertex-weighted Spars-
est Cut problem by giving every vertex the weight of the sum of the edge-weights of the
edges connected to this vertex:

w(v) =
∑

(v,u)∈E

w(v, u). (19)

Now the vertex-weighted density cut value of a partition is equal to the second form of
the normalized cut value if we ignore the second term in the numerator of the normalized

12



cut value which is not dependent on the partition. Since the Sparsest Cut problem is
a special case of the vertex-weighted Sparsest Cut problem, the vertex-weighted Spars-
est Cut problem is also NP-complete. Furthermore, Leighton and Rao [16] show in their
paper that the vertex-weighted Sparsest Cut problem has an O(log(n))-approximation
algorithm.

The following graph partitioning problem uses the volume of a component S. In Section
2 we already saw the definition of the volume of a component S. Nevertheless, we restate
the definition here. The volume of a component S is defined as the sum of the edge-weights
of the edges with one vertex-endpoint in component S and the other vertex-endpoint in the
total set of vertices V of the graph G = (V,E):

vol(S, V ) =
∑
v∈S
u∈V

(v,u)∈E

w(v, u).
(20)

Note that an edge-weight w(v, u) of an edge (v, u) ∈ E with vertex-endpoints v and u
within the vertex set S is counted twice since S ⊆ V .

The Conductance problem takes as input a graph G and a real number N and asks
if there exists a partition {S, S̄} of G with a conductance of at most N . The conductance
of a partition {S, S̄} is defined as:

CondCut(S, S̄) =
cut(S, S̄)

min(vol(S, V ), vol(S̄, V ))
. (21)

Note that the Conductance problem can be reduced to the Quotient Cut problem
by giving every vertex v ∈ V of a graph G = (V,E) the weight of the sum of the weights of
its edges:

w(v) =
∑

(v,u)∈E

w(v, u). (22)

Furthermore, note that the Max Normalized k-Cut problem introduced in Section
2 is equal to the Conductance problem for k = 2. The Conductance problem with
unweighted edges is NP-complete as shown by Sima and Schaeffer [26]. Since the Conduc-
tance problem with unweighted edges is a special case of the Conductance problem, the
Conductance problem is also NP-complete. The best known approximation algorithm
for the Conductance problem with unweighted edges is presented by Arora et al. [2] and
has an approximation ratio of O(

√
log(n)).
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4 Properties of the Normalized Cut

In this section, we show two Propositions 4.1 and 4.2 regarding the normalized cut value
of a partition. After that, we show an interesting property that a partition with minimum
normalized cut value has exactly two connected components.

Recall the second form of the normalized cut value of a partition {S, S̄} of a graph G
defined in Section 2:

NCut(S, S̄) =
cut(S, S̄) · (vol(S, V ) + vol(S̄, V ))

vol(S, V ) · vol(S̄, V )
. (23)

Proposition 4.1. Among all partitions of a graph with the same cut value, the one for
which the volumes differ the least has the lowest normalized cut value.

Proof. We look at the second form of the normalized cut value and see that if the cut value
is equal among all partitions, the numerator is also equal. The denominator is maximized
if the product of the volumes is maximized. Since the sum of the two volumes of every
partition is equal to the volume of the whole graph under consideration, this product is
maximized when the volumes differ the least in value.

Proposition 4.2. Among all partitions of a graph where the difference between the volumes
is equal, the one for which the cut value is lowest has the lowest normalized cut value.

Proof. First note that the sum of the two volumes of every partition is equal to the volume
of the whole graph under consideration. We look at the second form of the normalized cut
value and see that if the difference between the volumes is equal among all partitions, the
denominator is also equal. Therefore, we look at the numerator which is minimized if the
cut value is minimized.

Now we will prove an important property of a partition of a graph with minimum nor-
malized cut value. Theorem 4.6 states that the partition of a connected graph with minimum
normalized cut value has exactly two connected components. We will see in Sections 7 and
8 that this property is useful for creating polynomial-time algorithms on some H-free graph
classes. The proofs of Theorem 4.6 and corresponding Proposition 4.3 and Lemmas 4.4 and
4.5 are based on the proof of connected components for the partition with minimum density
cut value by Bonsma et al. [4].

We start with some new definitions. First, we define the simplified normalized cut value,
defined in Section 2, for pairs of vertex sets that do not necessarily partition V of a graph
G = (V,E). For a graph G = (V,E) and two vertex sets S, T ⊆ V with S ∩ T = ∅, S ̸= ∅
and T ̸= ∅ we denote by s(S, T ) the simplified normalized cut value of vertex sets S and T ,
now allowing S ∪ T ̸= V :
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s(S, T ) =
cut(S, T )

vol(S, V ) · vol(T, V )
. (24)

Furthermore, we define the excess of a pair S, T as e(S, T ) = s(S, T ) − z, where z is
the minimum simplified normalized cut value of G. Note that, if S and T are disjoint and
S ∪T = V , then e(S, T ) ≥ 0 and this is an equality if {S, T} is a partition with a minimum
simplified normalized cut value.

With these new definitions, we show for non-empty disjoint vertex sets S, T1, T2 ⊆ V
of a connected graph G = (V,E) that s(S, T1 ∪ T2) is a weighted average of s(S, T1) and
s(S, T2) and that e(S, T1 ∪ T2) is a weighted average of e(S, T1) and e(S, T2).

Proposition 4.3. Suppose we have a graph G = (V,E). For any non-empty disjoint vertex
sets S, T1, T2 ⊆ V , we have:

s(S, T1 ∪ T2) =
s(S, T1) · vol(T1, V ) + s(S, T2) · vol(T2, V )

vol(T1, V ) + vol(T2, V )
, (25)

e(S, T1 ∪ T2) =
e(S, T1) · vol(T1, V ) + e(S, T2) · vol(T2, V )

vol(T1, V ) + vol(T2, V )
. (26)

Proof. We rewrite the definition of s(S, T1 ∪ T2):

s(S, T1 ∪ T2) =
cut(S, T1 ∪ T2)

vol(S, V ) · (vol(T1, V ) + vol(T2, V ))

=
cut(S, T1) + cut(S, T2)

vol(S, V ) · (vol(T1, V ) + vol(T2, V ))

=

cut(S,T1)
vol(S,V )·vol(T1,V ) · vol(T1, V ) + cut(S,T2)

vol(S,V )·vol(T2,V ) · vol(T2, V )

vol(T1, V ) + vol(T2, V )

=
s(S, T1) · vol(T1, V ) + s(S, T2) · vol(T2, V )

vol(T1, V ) + vol(T2, V )
.

(27)

Now we use this result to rewrite the definition of e(S, T1 ∪ T2):
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e(S, T1 ∪ T2) =
s(S, T1) · vol(T1, V ) + s(S, T2) · vol(T2, V )

vol(T1, V ) + vol(T2, V )
− z

=
s(S, T1) · vol(T1, V ) + s(S, T2) · vol(T2, V )

vol(T1, V ) + vol(T2, V )
− z · vol(T1, V ) + vol(T2, V )

vol(T1, V ) + vol(T2, V )

=
s(S, T1) · vol(T1, V ) + s(S, T2) · vol(T2, V )− z · (vol(T1, V ) + vol(T2, V ))

vol(T1, V ) + vol(T2, V )

=
(s(S, T1)− z) · vol(T1, V ) + (s(S, T2)− z) · vol(T2, V )

vol(T1, V ) + vol(T2, V )

=
e(S, T1) · vol(T1, V ) + e(S, T2) · vol(T2, V )

vol(T1, V ) + vol(T2, V )
.

(28)

We now use Proposition 4.3 to show that if partition {S, T1∪T2} of graph G is a partition
with minimum simplified normalized cut value SNCut(S, T1 ∪ T2) = z then e(T1, T2) ≥ 0.

Lemma 4.4. If partition {S, T1 ∪ T2} is a partition with minimum simplified normalized
cut value of a graph G, then e(T1, T2) ≥ 0. If e(T1, T2) = 0, then partitions {S ∪ T1, T2}
and {S ∪ T2, T1} are also partitions of G with minimum simplified normalized cut value.

Proof. According to Proposition 4.3 and because {S, T1 ∪ T2} is a partition with minimum
simplified normalized cut value we have:

e(S, T1 ∪ T2) =
e(S, T1) · vol(T1, V ) + e(S, T2) · vol(T2, V )

vol(T1, V ) + vol(T2, V )
= 0, (29)

e(T1, S ∪ T2) =
e(T1, S) · vol(S, V ) + e(T1, T2) · vol(T2, V )

vol(S, V ) + vol(T2, V )
≥ 0, (30)

e(T2, S ∪ T1) =
e(T2, S) · vol(S, V ) + e(T2, T1) · vol(T1, V )

vol(S, V ) + vol(T1, V )
≥ 0. (31)

Recall that edge-weights are always positive. In Equation 29 we see that e(S, T1 ∪T2) is
a weighted average of e(S, T1) and e(S, T2). Therefore, we have that either e(S, T1) ≤ 0 and
e(S, T2) ≥ 0 or e(S, T1) ≥ 0 and e(S, T2) ≤ 0. Suppose that e(T1, T2) < 0. First assume that
e(S, T1) ≤ 0 and e(S, T2) ≥ 0. Now if we look at Equation 30 we see that e(T1, S ∪ T2) is a
weighted average of e(T1, S) and e(T1, T2). Therefore, since e(T1, T2) < 0 and e(T1, S) ≤ 0,
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it follows that e(T1, S ∪ T2) < 0. This is a contradiction, since this means that partition
{T1, S ∪ T2} has a lower simplified normalized cut value than {S, T1 ∪ T2}, which has a
minimum simplified normalized cut value. Now assume that e(S, T1) ≥ 0 and e(S, T2) ≤ 0.
Now if we look at Equation 31 we see that e(T2, S ∪ T1) is a weighted average of e(T2, S)
and e(T2, T1). Therefore, since e(T2, T1) < 0 and e(T2, S) ≤ 0, we have e(T2, S ∪ T1) < 0.
This is a contradiction, since this means that partition {T2, S ∪ T1} has a lower simplified
normalized cut value than {S, T1 ∪ T2}, which has a minimum simplified normalized cut
value. Therefore, it must be that e(T1, T2) ≥ 0. This proves the first part of the lemma.

For the second part of the lemma, if e(T1, T2) = 0, then we have that neither e(S, T1) < 0
nor e(S, T2) < 0, because partition {T1, S ∪ T2} or {T2, S ∪ T1} will have a lower simplified
normalized cut value than {S, T1 ∪ T2}. However, it still holds that either e(S, T1) ≤ 0 and
e(S, T2) ≥ 0 or e(S, T1) ≥ 0 and e(S, T2) ≤ 0. Furthermore, since e(S, T1 ∪ T2) = 0 is a
weighted average of e(S, T1) and e(S, T2), it must be that e(S, T1) = e(S, T2) = 0. Therefore,
e(S, T1∪T2) = e(T1, S∪T2) = e(T2, S∪T1) = 0 and partitions {T1, S∪T2} and {T2, S∪T1}
also have a minimum simplified normalized cut value.

Lemma 4.5. The partition of a connected graph with minimum simplified normalized cut
value has exactly two connected components.

Proof. Assume that partition {S, T} is a partition of a graph with minimum simplified nor-
malized cut value. Now assume w.l.o.g. that T is not connected and can be partitioned into
two subsets of vertices T1 and T2 such that there are no edges between T1 and T2 and thus
they are disconnected. Then s(T1, T2) = 0 and e(T1, T2) < 0, since it is s(T1, T2) subtracted
by the minimum simplified normalized cut value, contradicting Lemma 4.4. Therefore, it
must be that S is connected. By symmetry, S is also connected.

Theorem 4.6. The partition of a connected graph with minimum normalized cut value has
exactly two connected components.

Proof. Lemma 4.5 proves that a partition {S, T} of a graph G with minimum simplified
normalized cut value has connected components S and T . In Section 2 we saw that the
Normalized Cut problem can be reduced to the Simplified Normalized Cut problem.
This means that since {S, T} has a minimum simplified normalized cut value, {S, T} also
has a minimum normalized cut value. Therefore, we conclude that a partition of a graph
with minimum normalized cut value has exactly two connected components.

5 Complexity of the Normalized Cut problem onH-free graph
classes

In this section, the complexity of the Normalized Cut problem on H-free graph classes is
investigated. In the thesis of Vincken [25] the NP-completeness of the Normalized Cut
problem on a so-called diamond graph is proven. In Figure 3 the diamond graph is shown.

The diamond graph is H-free for the following non-exhaustive set of graphs H:
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Figure 3: Diamond graph

1. Pt for t ≥ 4

2. (P2 + sP1 for a constant s)

3. Ct for t ≥ 3 and t ̸= 4

Therefore, the Normalized Cut problem is NP-complete on the class of graphs that
are H-free for this set of graphs H. In Subsections 5.1, 5.2, and 5.3 we show that the Nor-
malized Cut problem is NP-complete on claw-free, split, and complete graphs respectively.

5.1 NP-complete on claw-free graphs

An important set of graphs that are not present in the set of graphsH for which the diamond
graph isH-free, are theK1,t graphs. Therefore, to show that theNormalized Cut problem
is NP-complete on K1,t-free graphs for a given t we need other NP-completeness proofs with
graph constructions that are K1,t-free. Luckily, a useful property of K1,t-free graphs is that
if we can prove for some t that the Normalized Cut problem is NP-complete, then the
Normalized Cut problem is also NP-complete on K1,l-free graphs for l > t. The reason
for this is if you have a K1,l graph we can just remove vertices from the set of l vertices
until we have a K1,t graph. Therefore, a proof of NP-completeness of the Normalized
Cut problem on K1,3-free graphs would imply NP-completeness of K1,t-free graphs with
t ≥ 3. K1,3-free graphs are also called claw-free graphs.

For the proof of NP-completeness of theNormalized Cut problem on claw-free graphs,
we use a reduction from another NP-complete problem, the Partition problem. The Par-
tition problem is defined in Definition 5.1.
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Definition 5.1 (Partition problem). For a given multiset S of p > 1 natural numbers

{x1, x2, . . . , xp} with total sum
p∑

i=1
xi = 2D, is it possible to partition S into two multisets

S1 and S2 where
∑

xi∈S1

xi = D and
∑

xi∈S2

xi = D?

Note that assuming p > 1 is reasonable since p = 1 is a trivial NO-instance.

The proof of NP-completeness of the Normalized Cut problem on claw-free graphs is
based on the proof of NP-completeness of the Normalized Cut problem on grids by Shi
and Malik [20].
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Figure 4: Claw-free graph for the reduction of Theorem 5.1

Theorem 5.1. The Normalized Cut problem is NP-complete on claw-free graphs.

Proof. First note that the Normalized Cut problem on claw-free graphs is in NP. We use
a reduction from the Partition problem to prove that the Normalized Cut problem on
claw-free graphs is NP-complete. For the graph construction we create a claw-free graph,
which can be found in Figure 4. The relation with the Partition problem is that for every
natural number xi ∈ S a cross-like structure is added to the graph. The top and bottom
edges of this structure have a weight of M = 2D and the cross edges all have a value of xi/2.
We call the vertices in the middle of the cross structures P = {v1, v2, . . . , vi, . . . , vp−1, vp}.
Furthermore, we call the set of p+ 1 vertices at the top of the graph T and we call the set
of p+ 1 vertices at the bottom of the graph B. Lastly, we call the set of edges with weight
xi/2 at the top of the crosses Q and the set of edges with weight xi/2 at the bottom of the
crosses R.

We show that there exists a partition with normalized cut value ≤ N if and only if we
have a YES-instance for the Partition problem. We define N as:

N =
2D(4pM + 8D)

(2pM + 4D) · (2pM + 4D)
. (32)

Assume we have a YES-instance for the Partition problem. This means that there is
a partition of S into S1 and S2 where

∑
xi∈S1

= D and
∑

xi∈S2

= D. A partition {S, S̄} with
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normalized cut value NCut(S, S̄) ≤ N of the claw-free graph G in Figure 4 cuts for every
xi ∈ S1 the top two cross edges {ti1, ti2} ∈ Q and for every xi ∈ S2 the bottom two cross
edges {bi1, bi2} ∈ R. Since S1 ∪ S2 = S, the cut value cut(S, S̄) is

∑
xi∈S

2 · xi/2 = 2D.

We claim that the volume vol(S, V ) consists of cut(S, S̄) = 2D and two times the edge-
weights of the edges in S. The edges that lie completely in S are the p edges between the
vertices of T at the top of the graph and the top two cross edges {ti1, ti2} ∈ Q of the crosses
where the bottom two cross edges {bi1, bi2} ∈ R are in the cut. The p edges have a total
weight of pM . The edges {bi1, bi2} ∈ R are in the cut when xi ∈ S2 and therefore have a
weight of

∑
xi∈S2

= D. Since ti1+ti2 = bi1+bi2 the total weight of the edges {ti1, ti2} ∈ Q that

lie completely in S is D. For the volume, we need to count the edge-weights of the edges
completely in the component twice. Therefore, we count the total edge-weight of the edges
in component S twice which is 2D+2pM . Together with cut value cut(S, S̄) = 2D we have
vol(S, V ) = 2D+2D+2pM = 2pM+4D. Similar, we can show that vol(S̄, V ) = 2pM+4D.

The normalized cut value NCut(S, S̄) of {S, S̄} is:

NCut(S, S̄) =
2D(4pM + 8D)

(2pM + 4D) · (2pM + 4D)
≤ N. (33)

Conversely, assume that we have a partition {S, S̄} with normalized cut value NCut(S, S̄) ≤
N . We need to show that we have a YES-instance for the Partition problem. We distin-
guish three possible ways to partition the claw-free graph G in Figure 4. The first way we
can partition G is defined by its cut, which has at least one edge with weight M in it. The
first partition therefore covers all partitions that have one or more edges with weight M in
their cut. The second way we can partition G has some subset of vertices Pa ⊆ P in S,
and all other vertices T , B, and P \ Pa in S̄. The third way we can partition G has a cut
from left to right, cutting either the top two edges {ti1, ti2} ∈ T of each cross or the bottom
two edges {bi1, bi2} ∈ B of each cross. Note that these last two partitions have a cut where
either no edges, the two top edges, the two bottom edges, or all four edges around a vi are
in the cut. Therefore, these last two partitions cover all possible partitions where there is
no edge with weight M in the cut, precisely all partitions we did not cover with the first
way we can partition the graph. We investigate the three ways we can partition G to see if
they can have NCut(S, S̄) ≤ N :

1. The first way we can partition G, is a partition {S, S̄} that has a cut where one or
more edges with weight M are in the cut. Without loss of generality assume that
it is an edge a between two vertices of T . a is part of a cycle with length three in
the graph, where the other two edges of this cycle are two cross edges {ti1, ti2} ∈ Q.
Cutting through a cycle can only be achieved by cutting at least two edges. Therefore,
at least one of the two cross edges ti1 or ti2 with weight xi/2 must also be in the cut.
The cut value cut(S, S̄) is therefore at least M + xi/2. Since the smallest possible
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cut value is known, Proposition 4.1 tells us that {S, S̄} achieves its lowest normalized
cut value NCut(S, S̄) if the volumes differ the least in value and are thus equal:
vol(S, V ) = vol(S̄, V ). Therefore, {S, S̄} with vol(S, V ) = vol(S̄, V ) has the lowest
normalized cut value and both volumes have a value of exactly half the total volume
of the graph 2pM + 4D. The normalized cut value NCut(S, S̄) of {S, S̄} is at least:

NCut(S, S̄) ≥
(M + xi

2 ) · (4pM + 8D)

(2pM + 4D) · (2pM + 4D)
. (34)

Since M = 2D the following inequality holds:

NCut(S, S̄) ≥
(2D + xi

2 ) · (4pM + 8D)

(2pM + 4D) · (2pM + 4D)
>

2D(4pM + 8D)

(2pM + 4D) · (2pM + 4D)
= N. (35)

Therefore, {S, S̄} does not have NCut(S, S̄) ≤ N .

2. The second way we can partition G, is a partition {S, S̄} that has some subset of
vertices Pa ⊆ P in S, and all other vertices T , B, and P \ Pa in S̄. The cut value
cut(S, S̄) is:

cut(S, S̄) =
∑
vi∈Pa

4 · xi
2

=
∑
vi∈Pa

2xi. (36)

When we look at the volume vol(S, V ) we notice that there are no edges completely
inside S and vol(S, V ) is therefore equal to cut(S, S̄):

vol(S, V ) = cut(S, S̄) =
∑
vi∈Pa

2xi. (37)

The other volume vol(S̄, V ) is the total volume vol(V, V ) of G minus vol(S, V ) which
is:

vol(S̄, V ) = 4pM + 8D −
∑
vi∈Pa

2xi. (38)

The normalized cut value NCut(S, S̄) of {S, S̄} therefore is:
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NCut(S, S̄) =

(
∑

vi∈Pa

2xi) · (4pM + 8D)

(
∑

vi∈Pa

2xi) · (4pM + 8D −
∑

vi∈Pa

2xi)
> 1 >

2D(4pM + 8D)

(2pM + 4D) · (2pM + 4D)
= N.

(39)

Therefore, {S, S̄} does not have a normalized cut value ≤ N .

3. The third and last way we can partition G, is a partition {S, S̄} that has a cut from
left to right, cutting either the top two edges {ti1, ti2} ∈ Q of each cross or the bottom
two edges {bi1, bi2} ∈ R of each cross. Therefore, the set of vertices P is divided over
the two components S and S̄. Let Pa ⊆ P be the vertices that are in component S
and let Pb = P \ Pa be the vertices that are in component S̄. Notice that the cut
value cut(S, S̄) is

∑
vi∈P

2 · xi/2 = 2D, because for each cross we put either {ti1, ti2} or

{bi1, bi2} in the cut. The volume vol(S, V ) of S is:

vol(S, V ) = 2
∑
vi∈Pb

2 · xi
2

+ 2D + 2pM. (40)

Similarly the volume vol(S̄, V ) of S̄ is:

vol(S̄, V ) = 2
∑
vi∈Pa

2 · xi
2

+ 2D + 2pM. (41)

The normalized cut value NCut(S, S̄) of {S, S̄} therefore is:

2D(4pM + 8D)

(2
∑

vi∈Pb

2xi
2 + 2D + 2pM) · (2

∑
vi∈Pa

2xi
2 + 2D + 2pM)

. (42)

Since the cut value is known, Proposition 4.1 tells us that {S, S̄} achieves the lowest
normalized cut value when the volumes differ the least in value and are thus equal,
vol(S, V ) = vol(S̄, V ). vol(S, V ) = vol(S̄, V ) can only happen when the following
equality holds:

2
∑
vi∈Pb

2
xi
2

= 2
∑
vi∈Pa

2
xi
2

= 2D. (43)
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The normalized cut value NCut(S, S̄) of {S, S̄} is:

2D(4pM + 8D)

(2pM + 4D) · (2pM + 4D)
= N. (44)

In this partition vol(S, V ) and vol(S̄, V ) needed to be perfectly balanced. As we saw,
this is only possible if Equality 43 holds. We can rewrite Equality 43 to:

∑
vi∈Pb

xi =
∑
vi∈Pa

xi = D. (45)

We see that the only way for Equality 45 to hold, is if the Partition problem is a
YES-instance.

Since the Normalized Cut problem on claw-free graphs is in NP and has a partition of
claw-free graph G in Figure 4 with a normalized cut value ≤ N if and only if the Partition
problem is a YES-instance, it is NP-complete.

5.2 NP-complete on split graphs

Another important graph that is not present in the set of graphs H of which the diamond
graph in Figure 3 is H-free, is the C4-free graph. We can make a small adjustment to the
diamond graph to make it C4-free. To make it C4-free we add an edge e between vertices a
and b and the resulting graph can be found in Figure 5. This H-free graph is also a split
graph which is defined as the H-free graph for the set of graphs H = {2P2, C4, C5}.

Theorem 5.2. The Normalized Cut problem is NP-complete on split graphs.

Proof. The proof is similar to the proof of NP-completeness of the Normalized Cut prob-
lem for graphs with a vertex cover number equal to two presented by Vincken [25]. From
now on we refer to this proof as ”the proof by Vincken”. For the graph construction we first
create a diamond graph in the same way as in the proof by Vincken which we can see in
Figure 3. Let W be the total edge-weight of all edges in the diamond graph. Note that the
diamond graph is constructed from an instance of the Partition problem in the proof by
Vincken and therefore W/2 is the total sum of elements of the Partition problem. Now we
add an edge e with weight 1/W between vertices a and b to get a split graph which we can
see in Figure 5. Note that the graph construction is still a polynomial-time reduction from
the Partition problem when we add edge e. We will see in the analysis of the normalized
cut values of different partitions of G, that we have chosen the weight of e to be small
enough, such that e with weight 1/W does not change the normalized cut values of the
partitions significantly.
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Figure 5: Split graph

First note that the Normalized Cut problem on split graphs is in NP. We show that
the Partition problem is a YES-instance if and only if we can find a partition of the split
graph with a normalized cut value ≤ N . We define N as:

N =
(W2 + 1

W ) · (2W + 2
W )

(W + 1
W )2

(46)

If we have a YES-instance of the Partition problem, we create the same partition
{S, S̄} as in the proof by Vincken. Notice that now edge e is extra in the cut. The cut value
cut(S, S̄) is:

cut(S, S̄) =
W

2
+

1

W
. (47)

The volumes vol(S, V ) and vol(S̄, V ) also increase by 1/W . The volume vol(S, V ) of S
is:

vol(S, V ) = W +
1

W
. (48)

Similarly, the volume vol(S̄, V ) of S̄ is:

vol(S̄, V ) = W +
1

W
. (49)
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{S, S̄} therefore has a normalized cut value NCut(S, S̄) of:

NCut(S, S̄) =
(W2 + 1

W ) · (2W + 2
W )

(W + 1
W ) · (W + 1

W )
≤ N. (50)

We conclude that if we have a YES-instance of the Partition problem, then we have
a partition with normalized cut value ≤ N .

Now the other way around, if we have a partition {S, S̄} with a normalized cut value
≤ N then the Partition problem is a YES-instance. We distinguish two possible partitions
of the split graph. One where vertices a and b are in the same component, and one where
they are in different components. We investigate the two partitions to see if they can have
a normalized cut value NCut(S, S̄) ≤ N . We will show that if a and b are in the same
component, the normalized cut value of such a partition cannot be ≤ N . Furthermore, we
will show that if a and b are in different components, the normalized cut value of such a
partition can only be ≤ N for a specific partition that can be mapped to a YES-instance
of the Partition problem.

1. The first partition {S, S̄} of split graph G has both vertices a and b in one com-
ponent. W.l.o.g. assume that a and b are in component S̄. Let I ⊆ {1, . . . , n},
Ī = {1, . . . , n} \ I, S = {vi|i ∈ I} and S̄ = V \ S. We will show that {S, S̄} does not
have a normalized cut value ≤ N .

As we see in the proof by Vincken, the si and ti edges for vi ∈ S are in the cut.
Therefore, the cut value cut(S, S̄) is:

cut(S, S̄) =
∑
i∈I

(w(si) + w(ti)). (51)

The volume vol(S, V ) of S is equal to the cut value cut(S, S̄) and therefore is:

vol(S, V ) =
∑
i∈I

(w(si) + w(ti)). (52)

Note that e lies completely in component S̄ and therefore the edge-weight 1/W is
added twice to the volume vol(S̄, V ). Furthermore, the edge-weights of the si and ti
edges for vi ∈ S̄ are also added twice to the volume vol(S̄, V ). Lastly, we need to add
the cut value cut(S, S̄) to the volume vol(S̄, V ). The volume vol(S̄, V ) of S therefore
is:
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vol(S̄, V ) =
∑
i∈I

(w(si) + w(ti)) + 2
∑
i∈Ī

(w(si) + w(ti)) +
2

W
. (53)

The normalized cut value NCut(S, S̄) of {S, S̄} therefore is:

NCut(S, S̄) ≥
(
∑
i∈I

(w(si) + w(ti))) · (2W + 2
W )

(
∑
i∈I

(w(si) + w(ti))) · (
∑
i∈I

(w(si) + w(ti)) + 2
∑
i∈Ī

(w(si) + w(ti)) +
2
W )

=
(2W + 2

W )∑
i∈I

(w(si) + w(ti)) + 2
∑
i∈Ī

(w(si) + w(ti)) +
2
W

.

(54)

We have W =
∑
i∈I

(w(si) + w(ti)) +
∑
i∈Ī

(w(si) + w(ti)) and these terms are dependent

on each-other. If we increase
∑
i∈I

(w(si) +w(ti)), the denominator decreases since it is

one time
∑
i∈I

(w(si)+w(ti)) and two times
∑
i∈Ī

(w(si)+w(ti)). Therefore, if we increase∑
i∈I

(w(si) + w(ti)), we increase the normalized cut value NCut(S, S̄) of {S, S̄}. To

minimize NCut(S, S̄), we therefore minimize
∑
i∈I

(w(si) + w(ti)).

Let edges si and ti be the edges with the smallest weight apart from the weight of e.
To minimize

∑
i∈I

(w(si) + w(ti)), we only put vi in S and the rest of the vertices in S̄.

The way the split graph was constructed, means that the weights of si and ti are equal
to the smallest element of the Partition problem instance. Since the elements of a
Partition problem instance are natural numbers, the weights of si and ti are at least
1. We therefore assume that w(si) = w(ti) = 1, since this minimizes the first term of
the denominator and therefore minimizes the normalized cut value NCut(S, S̄). The
normalized cut value NCut(S, S̄) of {S, S̄} therefore is:

NCut(S, S̄) =
2W + 2

W

2W − 2 + 2
W

. (55)

We compare this Fraction 55 to N and see if it is ≤ N :

2W + 2
W

2W − 2 + 2
W

≤ N =
(W2 + 1

W ) · (2W + 2
W )

(W + 1
W )2

(56)
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We let WolframAlpha [1] solve Inequality 56 and see that it holds for W ≤ 0.56984.
An instance of the Partition problem must have at least two elements of a value
of at least 1. For both elements we would add two edges to the split graph with
value 1 and therefore the total weight W of G must be at least 4. Since we have that
Inequality 56 only holds for W ≤ 0.56984, {S, S̄} does not have NCut(S, S̄) ≤ N .

2. The second partition {S, S̄} of split graph G has vertices a and b in different compo-
nents. W.l.o.g. assume that a ∈ S and b ∈ S̄. We will show that only for a specific
partition we get a normalized cut value ≤ N . Furthermore, this specific partition can
be mapped to a YES-instance of the Partition problem.

We see in the proof by Vincken that the si and ti edges in the cut have a total edge-
weight of W/2. Now edge e is extra in the cut. Therefore, the cut value cut(S, S̄)
is:

cut(S, S̄) =
W

2
+

1

W
. (57)

The volume vol(S, V ) consists of the cut value cut(S, S̄) and two times the edge-
weights of the edges (a, vi) where vi ∈ S. The volume vol(S, V ) of S therefore is:

vol(S, V ) =
W

2
+

1

W
+ 2

∑
vi∈S

(w(si)). (58)

Similarly, the volume vol(S̄, V ) consists of the cut value cut(S, S̄) and two times the
edge-weights of the edges (b, vi) where vi ∈ S̄. The volume vol(S̄, V ) of S̄ therefore is:

vol(S̄, V ) =
W

2
+

1

W
+ 2

∑
vi∈S̄

(w(ti)). (59)

The normalized cut value NCut(S, S̄) of {S, S̄} therefore is:

NCut(S, S̄) =
(W2 + 1

W ) · (2W + 2
W )

(W2 + 1
W +

∑
vi∈S

2w(si)) · (W2 + 1
W +

∑
vi∈S̄

2w(ti))
. (60)

Since the cut value cut(S, S̄) is known, we use Proposition 4.1 to see that {S, S̄} has
the lowest normalized cut value if the volumes are equal, vol(S, V ) = vol(S̄, V ). To
achieve vol(S, V ) = vol(S̄, V ) we need the following equality to hold:
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∑
vi∈S

2w(si) =
∑
vi∈S̄

2w(ti) =
W

2
. (61)

The normalized cut value NCut(S, S̄) of {S, S̄} is:

NCut(S, S̄) =
(W2 + 1

W ) · (2W + 2
W )

(W2 + 1
W + W

2 ) · (W2 + 1
W + W

2 )

=
(W2 + 1

W ) · (2W + 2
W )

(W + 1
W )2

= N

(62)

Therefore, NCut(S, S̄) ≤ N . Furthermore, if Equality 61 does not hold, then the vol-
umes are not equal and according to Proposition 4.1 we will have a higher normalized
cut value. Since NCut(S, S̄) is actually equal to N , any increase in NCut(S, S̄) will
make sure that we do not have NCut(S, S̄) ≤ N . Therefore, if Equality 61 does not
hold we do not have NCut(S, S̄) ≤ N . We conclude that Equality 61 needs to hold
for {S, S̄} to have NCut(S, S̄) ≤ N and this is exactly the case when the Partition
problem is a YES-instance.

We conclude that the Partition problem is a YES-instance if and only if we can find a
partition with a normalized cut value ≤ N .

5.3 NP-complete on complete graphs

Another important graph that is not present in the set of graphs H of which the diamond
graph in Figure 3 isH-free, is the P3-free graph. P3-free graphs are also called cluster graphs.
A cluster graph is a graph that consists of a disjoint union of cliques. If a cluster graph
consists of one clique, it is called a complete graph. We will prove that the Normalized
Cut problem is NP-complete on complete graphs. We can adjust the diamond graph in
Figure 3 to become a complete graph by adding an edge between every pair of vertices that
do not have an edge between them in the diamond graph. In specific we call the added edge
between vertices a and b, e. The resulting graph can be found in Figure 6.

Theorem 5.3. The Normalized Cut problem is NP-complete on complete graphs.

Proof. The proof is similar to the proof of NP-completeness of the Normalized Cut
problem for graphs with a vertex cover number equal to two presented by Vincken [25].
From now on we refer to this proof as ”the proof by Vincken”. For the graph construction
we first create a diamond graph in the same way as in the proof by Vincken which we can
see in Figure 3. Let W be the total edge-weight of all edges in the diamond graph. Note
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Figure 6: Complete graph

that the diamond graph is constructed from an instance of the Partition problem in the
proof by Vincken and therefore W/2 is the total sum of elements of the Partition problem.
We are going to add an edge e between vertices a and b and we add an edge between every
pair of the p vertices V \ {a, b} to get a complete graph which we can see in Figure 6. The
total amount of edges we add is therefore 1+ (p(p− 1))/2. We give every edge that we add
a weight ϵ of:

ϵ =
1

(1 + (p(p− 1))/2) ·W 2 (63)

Therefore, if we sum all the edge-weights of the newly added edges we get a total edge-
weight of:

(1 + (p(p− 1))/2)) · 1

(1 + (p(p− 1))/2) ·W 2
=

1

W 2 (64)

Note that the graph construction is still a polynomial-time reduction from the Parti-
tion problem when we add the 1 + (p(p − 1))/2 edges. We will see in the analysis of the
normalized cut values of different partitions of G, that we have chosen the weight of the
newly added edges to be small enough, such that the newly added edges with weight ϵ do
not change the normalized cut values of the partitions significantly.

First note that the Normalized Cut problem on complete graphs is in NP. We show
that the Partition problem is a YES-instance if and only if we can find a partition of the
complete graph with a normalized cut value ≤ N . We define N as:
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N =
(W2 + 1

W 2 ) · (2W + 2
W 2 )

( 2
W 2 +W ) ·W

(65)

If we have a YES-instance of the Partition problem, we create the same partition
{S, S̄} as in the proof by Vincken. We will show that even in the case where the newly
added edges increase the normalized cut value NCut(S, S̄) as much as possible, we still have
NCut(S, S̄) ≤ N . We take the cut value as in the proof by Vincken and assume that the
total edge-weight 1

W 2 of the newly added edges is added to the cut value. The cut value
cut(S, S̄) is:

cut(S, S̄) =
W

2
+

1

W 2
. (66)

We also take the volumes as in the proof by Vincken. According to Proposition 4.1,
for a given cut value the normalized cut value is the lowest if the volumes differ the least
in value. Since the volumes were equal in the proof by Vinkcen, we add the extra volume
2

W 2 from the edge-weights of the newly added edges to one component S to increase the
difference between the components as much as possible. The volume vol(S, V ) of S is:

vol(S, V ) = W +
2

W 2
. (67)

The volume vol(S̄, V ) of S̄ still is:

vol(S̄, V ) = W. (68)

The normalized cut value NCut(S, S̄) of {S, S̄} therefore is:

NCut(S, S̄) ≤
(W2 + 1

W 2 ) · (2W + 2
W 2 )

(W + 2
W 2 ) ·W

≤ N. (69)

We conclude that if we have a YES-instance of the Partition problem, then we have
a partition with normalized cut value ≤ N .

Now the other way around, if we have a partition {S, S̄} with a normalized cut value
NCut(S, S̄) ≤ N then the Partition problem is a YES-instance. We distinguish two possi-
ble partitions of the complete graph. One where vertices a and b are in the same component,
and one where they are in different components. We investigate the two partitions to see if
they can have NCut(S, S̄) ≤ N . We will show that if a and b are in the same component,
the normalized cut value of such a partition cannot be ≤ N . Furthermore, we will show that
if a and b are in different components, the normalized cut value of such a partition can only
be ≤ N for a specific partition that can be mapped to a YES-instance of the Partition
problem.
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1. The first partition {S, S̄} of complete graph G has both vertices a and b in one com-
ponent. W.l.o.g. assume that a and b are in component S̄. Let I ⊆ {1, . . . , n},
Ī = {1, . . . , n} \ I, S = {vi|i ∈ I} and S̄ = V \ S. We will show that {S, S̄} does
not have a normalized cut value ≤ N , even with two assumptions that decrease the
normalized cut value of {S, S̄} as much as possible. The first assumption is that
the edge-weights of the newly added edges are not in the cut value cut(S, S̄). This
minimizes the normalized cut value because according to Proposition 4.2 among all
partitions for which the difference between the volumes is equal, the normalized cut
value is the lowest if the cut value is minimized. Since the assumption does not change
the values of the volumes, we minimize the normalized cut value of {S, S̄}. The second
assumption is that we add the extra volume of the edge-weights of the newly added
edges to the volume of the component, such that we minimize the difference between
the the two volumes vol(S, V ) and vol(S̄, V ). This minimizes the normalized cut value
because according to Proposition 4.1 among all partition for which the cut value is
equal, the normalized cut value is the lowest if the difference between the volumes
is the lowest. Since the assumption does not change the cut value, we minimize the
normalized cut value of {S, S̄}.

As we see in the proof by Vincken, the si and ti edges for vi ∈ S are in the cut.
We assume that there are no edge-weights of the newly added edges added to the
cut value, to minimize the normalized cut value of {S, S̄}. Therefore, the cut value
cut(S, S̄) is:

cut(S, S̄) =
∑
i∈I

(w(si) + w(ti)). (70)

We first take the volumes as they are in the proof by Vincken. Then we add the
extra volume 2

W 2 from the edge-weights of the newly added edges to the volume such
that the difference between the two volumes vol(S, V ) and vol(S̄, V ) is minimized,
to minimize the normalized cut value of {S, S̄}. In the proof by Vincken the volume
vol(S, V ) of S is equal to the cut value:

vol(S, V ) =
∑
i∈I

(w(si) + w(ti)). (71)

In the proof by Vincken the volume vol(S̄, V ) of S̄ is:

vol(S̄, V ) =
∑
i∈I

(w(si) + w(ti)) + 2
∑
i∈Ī

(w(si) + w(ti)). (72)
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The extra volume from the edge-weights of the newly added edges is 2
W 2 . We have:

2

W 2
< 2

∑
i∈Ī

(w(si) + w(ti)), (73)

and therefore we add all the extra volume 2
W 2 to vol(S, V ):

vol(S, V ) =
∑
i∈I

(w(si) + w(ti)) +
2

W 2
. (74)

The normalized cut value NCut(S, S̄) of {S, S̄} therefore is:

NCut(S, S̄) ≥
(
∑
i∈I

(w(si) + w(ti))) · (2W + 2
W 2 )

(
∑
i∈I

(w(si) + w(ti)) +
2

W 2 ) · (
∑
i∈I

(w(si) + w(ti)) + 2
∑
i∈Ī

(w(si) + w(ti)))
.

(75)

We have W =
∑
i∈I

(w(si) + w(ti)) +
∑
i∈Ī

(w(si) + w(ti)) and these terms are dependent

on each-other. If we increase
∑
i∈I

(w(si) + w(ti)), the second term of the denomina-

tor decreases since it is one time
∑
i∈I

(w(si) + w(ti)) and two times
∑
i∈Ī

(w(si) + w(ti)).

Therefore, if we increase
∑
i∈I

(w(si)+w(ti)), we see that the numerator increases more

in ratio than the denominator and NCut(S, S̄) increases. To minimize NCut(S, S̄),
we therefore minimize

∑
i∈I

(w(si) + w(ti)).

Let edges si and ti be the edges with the smallest weight apart from the weight of
e and the other newly added edges. To minimize

∑
i∈I

(w(si) + w(ti)), we only put vi

in S and the rest of the vertices in S̄. The way the complete graph was constructed,
means that the edge-weights of si and ti are equal to the smallest element of the
Partition problem instance. Since the elements of a Partition problem instance
are natural numbers, the edge-weights of si and ti are at least 1. We therefore assume
that w(si) = w(ti) = 1, since this minimizes the first term of the denominator en
therefore minimizes the normalized cut value NCut(S, S̄). The normalized cut value
NCut(S, S̄) of {S, S̄} therefore is:

NCut(S, S̄) ≥
2 · (2W + 2

W 2 )

(2 + 2
W 2 ) · (2W − 2)

(76)
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We compare Fraction 76 to N and see if it is ≤ N :

2 · (2W + 2
W 2 )

(2 + 2
W 2 ) · (2W − 2)

≤ N =
(W2 + 1

W 2 ) · (2W + 2
W 2 )

( 2
W 2 +W ) ·W

. (77)

We let WolframAlpha [1] solve Inequality 77 and see that it holds for W < 1. Note
that for W = 1 we divide by 0. Furthermore, we get negative volumes for W < 1.
Moreover, an instance of the Partition problem must have at least two elements of a
value of at least 1. For both elements we would add two edges to the complete graph
with value 1 and therefore the total weight W of G must be at least 4. Since we have
that Inequality 77 only holds for W < 1, {S, S̄} does not have NCut(S, S̄) ≤ N .

2. The second partition {S, S̄} of complete graph G has vertices a and b in different
components. W.l.o.g. assume that a ∈ S and b ∈ S̄. We will show that only for a
specific partition {S, S̄} we get a normalized cut value ≤ N . Furthermore, this specific
partition can be mapped to a YES-instance of the Partition problem.

We first look at the normalized cut value NCut(S, S̄) of partition {S, S̄} as in the
proof by Vincken:

NCut(S, S̄) =
W
2 · 2W

(W2 +
∑
vi∈S

2w(si)) · (W2 +
∑
vi∈S̄

2w(ti))
. (78)

Now we distinguish two cases. The first case is where we have the following equality:

∑
vi∈S

2w(si) =
∑
vi∈S̄

2w(ti)) =
W

2
. (79)

Note that in the first case, the partition {S, S̄} can be mapped to a YES-instance of
the Partition problem. The second case is where do not have Equality 79. Note
that in the second case, the partition {S, S̄} cannot be mapped to a YES-instance of
the Partition problem.

For the first case we will show that even when we make the assumption that the
edge-weights of the newly added edges increase the normalized cut value NCut(S, S̄)
of {S, S̄} as much as possible by being added to the cut value and by increasing the
difference between the volumes as much as possible, we still have NCut(S, S̄) ≤ N .
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The normalized cut value NCut(S, S̄) of {S, S̄} is:

NCut(S, S̄) ≤
(W2 + 1

W 2 ) · (2W + 2
W 2 )

(W2 + W
2 + 2

W 2 ) · (W2 + W
2 )

=
(W2 + 1

W 2 ) · (2W + 2
W 2 )

(W + 2
W 2 ) ·W

≤ N.

(80)

Because of Equality 79 this case can be mapped to a YES-instance of the Partition
problem.

Now we only need to show that when we do not have Equality 79, and thus we cannot
map the partition {S, S̄} to a YES-instance of the Partition problem, that we have
NCut(S, S̄) > N . Therefore, the second case is where we do not have Equality 79 and
have the following inequality:

∑
vi∈S

2w(si) ̸=
∑
vi∈S̄

2w(ti)) ̸=
W

2
. (81)

For the second case we will show that even when we make the assumption that the
edge-weights of the newly added edges decrease the normalized cut value NCut(S, S̄)
of {S, S̄} as much as possible by not being in the cut value and by decreasing the
difference between the volumes as much as possible, we still have NCut(S, S̄) > N .

Because of Inequality 81, we do not have equal volumes. We assume that the difference
between

∑
vi∈S

2w(si) and
∑
vi∈S̄

2w(ti)) is minimal, since then the volumes differ the least

and we have a lower normalized cut value NCut(S, S̄) of {S, S̄}. We have W =∑
i∈I

(w(si) + w(ti)) +
∑
i∈Ī

(w(si) + w(ti)) and these terms are dependent on each-other.

Therefore, to minimize the difference between the volumes, we assume that we have:

∑
i∈I

(w(si) + w(ti)) =
W

2
− 1,

∑
i∈Ī

(w(si) + w(ti)) =
W

2
+ 1. (82)

Since vol(S, V ) is now smaller than vol(S̄, V ), we add the extra volume of the edge-
weights of the newly added edges to vol(S, V ). The normalized cut value NCut(S, S̄)
of {S, S̄} is:
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NCut(S, S̄) ≥
W
2 · (2W + 2

W 2 )

(W2 + W
2 − 1 + 2

W 2 ) · (W2 + W
2 + 1)

=
W
2 · (2W + 2

W 2 )

(W − 1 + 2
W 2 ) · (W + 1)

.

(83)

We compare Fraction 83 to N and see if it is ≤ N :

W
2 · (2W + 2

W 2 )

(W − 1 + 2
W 2 ) · (W + 1)

≤ N. (84)

We let WolframAlpha [1] solve Inequality 84 and see that it holds for W ≤ 2.73205.
An instance of the Partition problem must have at least two elements of a value of
at least 1. For both elements we would add two edges to the complete graph with
value 1 and therefore the total weight W of G must be at least 4. Since we have that
Inequality 84 only holds for W < 1, {S, S̄} does not have NCut(S, S̄) ≤ N .

Therefore, if we have a partition with normalized cut value ≤ N , then we have a
YES-instance of the Partition problem.

We conclude that the Partition problem is a YES-instance if and only if we can find a
partition with a normalized cut value ≤ N .

6 Strong NP-completeness of the Normalized Cut problem
with unweighted edges

In this section, we show that the Normalized Cut problem with unweighted edges is
strongly NP-complete.

Theorem 6.1. The Normalized Cut problem is strongly NP-complete on general graphs
with unweighted edges.

Proof. First note that the Normalized Cut problem with unweighted edges is in NP. We
use a reduction from the strongly NP-complete Sparsest Cut problem with unweighted
edges [4] to prove that the Normalized Cut problem with unweighted edges is strongly
NP-complete.

For a graph G = (V,E) used in a Sparsest Cut problem instance, we construct a
graph G′ = (V ′, E′) which we will use for our Normalized Cut problem instance. We
create a clique Ci of size n3 with n = |V | for every vertex vi ∈ V . For every Ci we choose
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two special vertices ai and bi. Let A be the set of all special vertices ai and let B be the set
of all special vertices bi. Note that |A| = |B| = |V |. For every edge (vi, vj) ∈ E we create
an edge (ai, aj) and an edge (bi, bj), thereby creating two duplicates of G mapped on vertex
sets A and B. Let d(vi) be the degree of a vertex vi ∈ V . We choose p = n − d(vi) − 1
distinct non-special vertices of the clique Ci representing vi in G′ and add a pendant vertex
to all p vertices. Let W = n/2(n3(n3 − 1) + 2n− 2) be the total edge-weight of all edges in
G′. In Figure 7 we see an example graph G and in Figure 8 we see the graph G′ constructed
from G.

v1 v2 v3

v4

Figure 7: A graph G

a1

a2
a3

a4

b1 b2

b3

b4

c1 c2
c3

c4

Figure 8: Graph G′ constructed from G

Let W be the total number of edges in E′:
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W = |E′| = n ·
(
n3

2

)
+

∑
v∈V

n · d(v)− 1 +
∑
v∈V

d(v) = n ·
(
n3

2

)
+ n(n− 1). (85)

We define N ′ as:

N ′ = 2N · 2W

(n3(n3 − 1) + 2n− 2)2
. (86)

We assume 0 ≤ N ≤ 1, since a partition cannot have a density cut value < 0 and every
possible partition of any graph has a density cut value ≤ 1. We show that there exists
a partition of a graph G′ = (V ′, E′) with normalized cut value ≤ N ′ if and only if there
exists a partition of a graph G = (V,E) with density cut value ≤ N , where G′ is the graph
constructed from G = (V,E).

Assume there exists a partition {S, S̄} of G with density cut value DensCut(S, S̄) ≤ N .
We need to show that there exists a partition {S′, S̄′} of G′ with normalized cut value
NCut(S′, S̄′) ≤ N ′. For every vertex vi ∈ S we put all vertices in the clique Ci and the
pendant vertices connected to Ci in S′. In the same way, for every vertex vi ∈ S̄ we put all
vertices in the clique Ci and the pendant vertices connected to Ci in S̄′. Now we have our
partition {S′, S̄′} ofG′ and analyse what the normalized cut value NCut(S′, S̄′) of {S′, S̄′} is.

First, we look at what happens to the volume vol(S′, V ′) of the component S′ when it
comprises the vertices of a clique Ci and all the pendant vertices connected to Ci. All edges
of Ci and the edges connecting the pendant vertices are fully inside S′ and so we count them
twice. We count the edges connecting the special vertices ai and bi to other cliques once
since we also need to count these edges once for the other cliques they are connected to. The
number of edges connecting the vertices in Ci is n

3(n3 − 1)/2, so we add 2 · n3(n3 − 1)/2 =
n3(n3 − 1) to vol(S′, V ′). The way we chose the number of pendant vertices in the graph
construction makes the amount we add to the vol(S′, V ′) for the edges connecting the pen-
dant vertices 2(n−d(vi)−1). The number of edges connecting ai and bi to the other cliques
is 2d(vi). Therefore, if a clique Ci and all the pendant vertices connected to Ci is fully inside
S′ it adds a total of n3(n3−1)+2(n−d(vi)−1)+2d(vi) = n3(n3−1)+2n−2 to vol(S′, V ′).
Therefore, since there are |S| vertices in S, we have vol(S′, V ′) = |S| ·(n3(n3−1)/2+2n−2).
Similarly, we have that vol(S̄′, V ′) = |S̄| · (n3(n3 − 1) + 2n− 2).

Now we will look at the cut value cut(S′, S̄′) of {S′, S̄′}. For every edge (vi, vj) in the cut
of partition {S, S̄} of G we now have (ai, aj) and (bi, bj) in the cut of partition {S′, S̄′}. Be-
cause of the way we constructed G′ from G, we have w((ai, aj)) = w((bi, bj)) = w((vi, vj)).
Therefore, the cut value cut(S′, S̄′) of {S′, S̄′} is 2 · cut(S, S̄).

Now we can compute the normalized cut value NCut(S′, S̄′) of {S′, S̄′} as:
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NCut(S′, S̄′) =
2 cut(S, S̄) ·2W

(|S| · (n3(n3 − 1) + 2n− 2)) · (|S̄| · (n3(n3 − 1) + 2n− 2))

=
2 cut(S, S̄)

|S| · |S̄|
· 2W

(n3(n3 − 1) + 2n− 2)2

= 2DensCut(S, S̄) · 2W

(n3(n3 − 1) + 2n− 2)2
.

(87)

Since we have DensCut(S, S̄) ≤ N we have:

NCut(S′, S̄′) = 2DensCut(S, S̄) · 2W

(n3(n3 − 1) + 2n− 2)2

≤ 2N · 2W

(n3(n3 − 1) + 2n− 2)2

= N ′.

(88)

Therefore, we have a normalized cut value NCut(S′, S̄′) ≤ N ′.

Conversely, assume there exists a partition {S′, S̄′} of a graph G′ = (V ′, E′) with nor-
malized cut value NCut(S′, S̄′) ≤ N ′. We need to show that we have a partition {S, S̄}
of G = (V,E) with density cut value DensCut(S, S̄) ≤ N . We will find partition {S∗, S̄∗}
with minimum normalized cut value for which we have NCut(S∗, S̄∗) ≤ NCut(S′, S̄′) ≤ N ′.
According to Theorem 4.6 a partition with minimum normalized cut value has exactly two
connected components. There are three possible ways to partition G′ that result in a par-
tition that has exactly two connected components. The first way we can partition G′ is
by putting one pendant vertex in component S∗ and all other vertices in component S̄∗.
The second way we can partition G′ is by having a partition where for at least one clique
the vertices are divided over S∗ and S̄∗. The third and last way we can partition G′ is by
having a partition where only edges between vertices in A and edges between vertices in B
are in the cut. These three cases cover all partitions that result in exactly two connected
components. An example of the three ways we can partition the graph construction that
result in a partition with exactly two connected components can be found in Figure 9.

We now show that actually only the last case, where the partition only has edges between
vertices in A and edges between vertices in B in the cut, can result in a partition with
normalized cut value ≤ N ′.

1. The first case is where the partition consists of one component containing only one
pendant vertex and the other component contains the rest of the vertices. The nor-
malized cut value NCut(S∗, S̄∗) of such a partition {S∗, S̄∗} is:
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Figure 9: Graph construction G′ with three partitions

NCut(S∗, S̄∗) =
1 · 2W

1 · (2W − 1)
. (89)

Recall that N ≤ 1 and W = n/2(n3(n3− 1)+2n− 2). If we look at how N ′ is defined
we see that N ′ gets larger when N is larger. If we can show that NCut(S∗, S̄∗) > N ′

when N = 1, we know that {S∗, S̄∗} can never have a normalized cut value ≤ N ′.
Therefore, we compare N ′ and NCut(S∗, S̄∗) with N = 1 and have:

N ′ ≤ 4W

(n3(n3 − 1) + 2n− 2)2

<
2W

n(n3(n3 − 1) + 2n− 2)− 1

=
1 · 2W

1 · (2W − 1)

= NCut(S∗, S̄∗).

(90)

So we can conclude that a partition where we put one pendant vertex in one compo-
nent and the other vertices in the other components never results in a partition with
normalized cut value ≤ N ′.
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2. The second case is where the partition divides the vertices of at least one clique
over both components. Therefore, at least n3 − 1 edges are added to the cut and
the cut value cut(S∗, S̄∗) of such a partition {S∗, S̄∗} is at least n3 − 1. According
to Proposition 4.1 the lowest normalized cut value for a given cut value is when
the volumes are equal. If we assume the volumes can be equal, the lowest possible
normalized cut value NCut(S∗, S̄∗) of {S∗, S̄∗} is:

NCut(S∗, S̄∗) ≥ (n3 − 1) · 2W
W ·W

=
(n3 − 1) · (n(n3(n3 − 1) + 2n− 2))

(n(n3(n3 − 1) + 2n− 2))2/4

=
n3 − 1

(n(n3(n3 − 1) + 2n− 2))/4
.

(91)

As we already saw, if we can show that NCut(S∗, S̄∗) > N ′ when N = 1, we know
that {S∗, S̄∗} can never have a normalized cut value ≤ N ′. Therefore, we compare N ′

and NCut(S∗, S̄∗) with N = 1 and get:

N ′ ≤ 4W

(n3(n3 − 1) + 2n− 2)2

=
2n(n3(n3 − 1) + 2n− 2)

(n3(n3 − 1) + 2n− 2)2

=
2n

n3(n3 − 1) + 2n− 2

<
n3 − 1

(n(n3(n3 − 1) + 2n− 2))/4
≤ NCut(S∗, S̄∗).

(92)

So we can conclude that a partition that divides the vertices of at least one clique
over both components never results in a partition with normalized cut value ≤ N ′.

3. The third case is where the partition only has edges between vertices in A and edges
between vertices in B in the cut. In such a partition {S∗, S̄∗} all vertices of a specific
clique Ci and the pendant vertices connected to Ci are in one of the two components.
Since there are n cliques, assume there are 1 ≤ x ≤ n cliques in component S∗ and
n−x cliques in component S̄∗. The normalized cut value NCut(S∗, S̄∗) of {S∗, S̄∗} is:
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NCut(S∗, S̄∗) =
cut(S∗, S̄∗) · 2W

(x(n3(n3 − 1) + 2n− 2)) · ((n− x) · (n3(n3 − 1) + 2n− 2))

=
cut(S∗, S̄∗)

x(n− x)
· 2W

((n3(n3 − 1) + 2n− 2))2
.

(93)

We map {S∗, S̄∗} on G = (V,E), thereby creating a partition {S, S̄}, by putting a
vertex vi ∈ V in component S if all vertices of the clique Ci and the pendant vertices
connected to Ci are in S∗ and by putting a vertex vi ∈ V in component S̄ if all
vertices of the clique Ci and the pendant vertices connected to Ci are in S̄∗. We have
cut(S∗, S̄∗) = 2 cut(S, S̄), x = |S| and (n− x) = |S̄|. Therefore, we have:

NCut(S∗, S̄∗) =
cut(S∗, S̄∗)

x(n− x)
· 2W

((n3(n3 − 1) + 2n− 2))2

= 2
cut(S, S̄)

|S||S̄|
· 2W

((n3(n3 − 1) + 2n− 2))2

≤ N ′

= 2N · 2W

((n3(n3 − 1) + 2n− 2))2
.

(94)

From Equation 94 we get the inequality:

2
cut(S, S̄)

|S||S̄|
≤ 2N. (95)

Partition {S, S̄} has a density cut value DensCut(S, S̄) of:

DensCut(S, S̄) =
cut(S, S̄)

|S||S̄|
≤ N. (96)

So we can conclude that there exists a partition of G with density cut value ≤ N if
there exists a partition of G′ with normalized cut value ≤ N ′.

We showed that there exists a partition of a graph G′ with normalized cut value ≤ N ′

if and only if there exists a partition of a graph G with density cut value ≤ N , concluding
our proof.
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7 Polynomial-time algorithms for the Normalized Cut prob-
lem on H-free graph classes

In this section, we present two polynomial-time algorithms for the Normalized Cut prob-
lem. First, in Subsection 7.1, we present a linear time algorithm for the Normalized Cut
problem on cycle-free graphs i.e. forests. Then, in Subsection 7.2, we present a quadratic
time algorithm for the Normalized Cut problem on outerplanar graphs.

7.1 Linear time algorithm for forests

In this subsection, we present a linear time algorithm for the Normalized Cut problem
on forests.

Theorem 7.1. The Normalized Cut problem is solvable in linear time on forests.

Proof. We have an instance of the Normalized Cut problem of a forest G = (V,E) and a
real number N . First, we use the Breadth-first search algorithm to find out if G is connected.
If G is not connected and consists of multiple disjoint trees, then we find a partition {S, S̄}
with a minimum normalized cut value where we put all vertices of one tree in component S
and the rest of the vertices in the other component S̄. Since there are no edges between the
components, the cut value cut(S, S̄) is 0 which results in a normalized cut value NCut(S, S̄)
of 0. Recall that edge-weights are positive and therefore the normalized cut value of a par-
tition can never be smaller than 0. Therefore, {S, S̄} has a minimum normalized cut value
and we can check in constant time if 0 ≤ N . Since for forests |E| ∈ O(n) the Breadth-first
search algorithm takes linear time.

If G is connected, it is a single tree. Let W be the sum of the edge-weights of the edges in
E. According to Theorem 4.6 the partition with minimum normalized cut value has exactly
two connected components. Since G is a tree, there can only be one edge in the cut of a
partition with minimum normalized cut value. Consider for an edge e ∈ E with endpoints
v and u the two subtrees Gv = (Vv, Ev) and Gu = (Vu, Eu) we get by removing e from G.
If we know the total edge-weights w(Ev) and w(Eu), we can compute the normalized cut
value NCut(Vv, Vu) of partition {Vv, Vu} in constant time as:

NCut(Vv, Vu) =
w(e) · 2W

(2w(Ev) + w(e)) · (2w(Eu) + w(e))
. (97)

Therefore, we can compute for every edge e ∈ E the normalized cut value of the parti-
tion with only e in the cut and determine if there is a partition that has a normalized cut
value ≤ N in linear time. It rests us to show that we can compute w(Ev) and w(Eu) for
every edge e ∈ E in linear time.

We repeat a procedure where we consider a leaf vertex v and remove v from the tree
at the end of the procedure, creating a new tree. We repeat the procedure until the tree
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consists of only one vertex. Consider a leaf vertex v. Let C be the possibly empty set
of neighbors of v in the original graph G that are no longer in the current graph. Now
w(Ev) =

∑
c∈C

(w(Ec)+w((v, c))) where w((v, c)) is the weight of edge (v, c). Note that w(Ec)

is already computed since otherwise v is not a leaf. Furthermore, w(Eu) = W−w(e)−w(Ev).
Now we subtract e with its endpoint v from the graph. When there is only one vertex left,
we have computed the total edge-weights w(Ev) and w(Eu) for every edge e ∈ E in linear
time.

7.2 Quadratic time algorithm for outerplanar graphs

In this subsection, we present a quadratic time algorithm for theNormalized Cut problem
on outerplanar graphs. The algorithm is based on the algorithm for the Sparsest Cut
problem on outerplanar graphs presented in the paper by Bonsma et al. [4].

Theorem 7.2. The Normalized Cut problem is solvable in quadratic time on outerplanar
graphs.

Proof. An outerplanar graph consists of biconnected blocks, from now on called blocks,
which are either single edges or cycles with chords. In Figure 10 we see an example of an
outerplanar graph and its blocks. We can find the blocks of an outerplanar graph in linear
time using the algorithm presented in the paper by Tarjan [23]. We denote with V (B) the
set of vertices of a block B and with E(B) the set of edges of a block B. Vertices that are
part of multiple blocks are called cut vertices. According to Theorem 4.6 a partition with
minimum normalized cut value has exactly two connected components. Therefore, there is
a partition with minimum normalized cut value that only has edges of one block in the cut.

We have an instance of the Normalized Cut problem of an outerplanar graph G =
(V,E) and a real number N . We present an algorithm that can find the partition with
minimum normalized cut value of G in quadratic time. This algorithm requires two prepro-
cessing steps:

1. The first preprocessing step is creating an adjacency matrix for every block B so that
we can find in constant time if an edge e = (v, u) with v, u ∈ V (B) exists and what
the weight w(e) is. If the graph is one block, there are n(n − 1)/2 pairs of vertices
we need to consider. Otherwise, if the graph consists of multiple blocks, we do not
have to consider the pairs of vertices that are not in the same block. Furthermore,
note that we cannot have vi, vj ∈ V (Ba) and vi, vj ∈ V (Bb) for two cut vertices vi
and vj and two blocks Ba and Bb, and a vertex that is not a cut vertex is part of only
one block. Therefore, we never check a pair of vertices vi, vj ∈ V more than once.
Checking at most n(n− 1)/2 pairs of vertices takes O(n2) time. Note that a diagonal
entry of an adjacency matrix for a block B corresponds with the existence of an edge
(v, v) for a vertex v ∈ V (B). Since a vertex can be part of at most n blocks, we have
at most n entries (v, v) for a vertex v ∈ V . Since there are n vertices we have at
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most n2 entries of this type, which takes O(n2) time to create. Therefore, the first
preprocessing step takes O(n2) time.

2. The second preprocessing step computes for every block B and vertex v ∈ V (B) the
total edge-weight f(v,B) of the connected subgraph that contains v in the graph
G′ = G \E(B). We first set f(v,B) = 0 for every vertex v in a block B that is not a
cut vertex. Furthermore, to compute f(v,B) for every cut vertex v we first initialize
f ′(v) = 0. Now we repeat a procedure in which we consider a block B with one cut
vertex v and in which at the end of the procedure we contract B into v, creating a
new outerplanar graph in which v might not be a cut vertex anymore. Note that there
always exists a block B with just one cut vertex v. Let A be the possibly empty set
of vertices that were originally cut vertices in B and are now not anymore. For every
u ∈ A we set f(u,B) = f ′(u). Let W be the sum of edge-weights of all edges E of
the original graph G = (V,E). We compute f(v,B) as W − w(E(B)) −

∑
u∈A

f(u,B).

Furthermore, we set f ′(v) = f ′(v) + w(E(B)) +
∑
u∈A

f(u,B). Lastly, we contract B

into v. We repeat this procedure until there is just one block B left, for which we can
compute f(u,B) for every vertex u that was originally a cut vertex as f(u,B) = f ′(u).
The procedure takes O(l) time for a block with l edges, since |E| ∈ O(n) the second
preprocessing step takes O(n) time. In Figure 10 we see an outerplanar graph and its
blocks. As an example, for the highlighted block B, we have f(v1, B) = 12.

v1

v2

v3 v4

v5

v6

v7

v8
2

3 1
1

5

B

Figure 10: An outerplanar graph and its blocks

To find the partition with minimum normalized cut value we consider one block at a time
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and compute the partition with minimum normalized cut value that only has edges of the
current block in the cut and which has exactly two connected components. We then com-
pare the normalized cut value of this partition to the partition with minimum normalized
cut value among all partitions of the already considered blocks. If the minimum normalized
cut value of the partition of the current block is lower, we set this partition as the new
partition with minimum normalized cut value among all considered blocks. Once we have
considered all blocks we check if the minimum normalized cut value among all blocks is
≤ N in constant time. Therefore, we only have to show that we can find the partition with
minimum normalized cut value of a block with l edges in O(l2) time, thereby showing that
we can find the partition with minimum normalized cut value among all blocks in O(n2)
time since |E| ∈ O(n).

We have two different types of blocks, a single edge or a cycle with chords. For a block
B that is a single edge e = (v, u) we compute the normalized cut value NCut(S, S̄) of the
partition {S, S̄} defined by its cut which only contains e in constant time as:

NCut(S, S̄) =
w(e) · 2W

(2f(v,B) + w(e)) · (2f(u,B) + w(e))
. (98)

For a block B that is a cycle with chords, we call the k = |V (B)| vertices along the cycle
v1, . . . , vk. In Figure 10 we see an example of a block B and its vertices v1, . . . , v8 along
the cycle. Let Cx,y be the set of vertices {vx, . . . , vy} for some 1 ≤ x ≤ y ≤ k. For two
sets of vertices Q and R, let w(Q,R) be the sum of the edge-weights of the edges between
the sets of vertices Q and R. Now let pi,j = w({vi}, C1,j) where w({vi}, C1,j) is the sum of
the edge-weights of the edges between vi and the set of vertices C1,j . We have pi,j = pi,j−1

if edge (vi, vj) does not exist and pi,j = pi,j−1 + w((vi, vj)) otherwise. We can retrieve the
existence and weight of an edge in constant time from the adjacency matrix we created
in the first preprocessing step. Furthermore, pi,1 = 0 if edge (vi, v1) does not exist and
pi,1 = w((vi, v1)) otherwise.

If we would compute pi,j for every pair of vertices vi, vj ∈ V , it would take O(n2) time.
We only compute pi,j for a subset of the pairs of vertices vi, vj ∈ V and therefore computing
all pi,j for every block also takes O(n2) time.

Let partition {Sx,y, S̄x,y} be the partition that only contains edges between Cx,y and
V (B) \ Cx,y in their cut. Now let A be all partitions {Sx,y, S̄x,y} for any 1 ≤ x ≤ y ≤ k.
Note that these partitions are all partitions that have exactly two connected components
and only have edges of E(B) in their cut. According to Theorem 4.6 a partition with min-
imum normalized cut value has exactly two connected components. Therefore, if there is a
partition of G with minimum normalized cut value that only contains edges of E(B) in its
cut, it must be that this partition is in A.
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Now we analyze how much time it takes to compute the normalized cut values of all
partitions in A. We can think of the partitions in A as all partitions that have a unique pair
of edges of the cycle of edges around B in their cut. If we can compute the normalized cut
value of a partition in A in constant time, we can compute the normalized cut values of all
partitions in A in O(l2) time where l = |E(B)|. Therefore, we can compute the normalized
cut values of the set of partition A for every block B in O(n2) since |E| ∈ o(n).

We first consider the partitions {Sx,x, S̄x,x} defined by their cuts which only contains
edges between Cx,x and V (B) \Cx,x where 1 ≤ x ≤ k. Note that from the vertices V (B) of
a block B, a component Sx,x only contains vertex x ∈ V (B) and possibly vertices from V \
V (B). We can compute the normalized cut value NCut(Sx,x, S̄x,x) of partition {Sx,x, S̄x,x}
as:

NCut(Sx,x, S̄x,x) =
px,k · 2W

(2f(vx, B) + px,k) · (2W − (2f(vx, B) + px,k))
, (99)

where cut(Sx,x, S̄x,x) = px,k, vol(Sx,x, V ) = 2f(vx, B) + px,k and vol(S̄x,x, V ) = 2W −
(2f(vx, B) + px,k) for a partition {Sx,x, S̄x,x}. Note that we had computed all pi,j with
1 ≤ i ≤ k and 1 ≤ j ≤ k so we can retrieve pi,j in constant time. Furthermore, note
that in the second preprocessing step we had already computed f(v,B) for every vertex
v ∈ V and for every block B for which v ∈ V (B), so we can retrieve f(v,B) in constant
time. Therefore, we can compute the normalized cut value NCut(Sx,x, S̄x,x) of a partition
{Sx,x, S̄x,x} in constant time for 1 ≤ x ≤ k.

After we have computed the normalized cut values of all partitions {Sx,x, S̄x,x}, we
consider the partitions {Sx,y, S̄x,y} for x < y ≤ k one by one in increasing order for y.
Recall that a partition {Sx,y, S̄x,y} only contains edges between Cx,y and V (B) \Cx,y in its
cut. Below in Equation 100 we compute the cut value cut(Sx,y, S̄x,y) of partition {Sx,y, S̄x,y}
in constant time as follows. We first rewrite the sum of edge-weights w({vi}, Ca,b) of the
edges between a vertex vi and a vertex set Ca,b to the form w({vi}, C1,b)−w({vi}, C1,a−1).
Then for the sum of edge-weights w({vi}, C1,d) we can substitute the corresponding pi,d
value which we already computed beforehand in constant time. We compute the cut value
cut(Sx,y, S̄x,y) of {Sx,y, S̄x,y} as:

cut(Sx,y, S̄x,y) = cut(Sx,y−1, S̄x,y−1)− w({vy}, Cx,y−1) + w({vy}, C1,x−1) + w({vy}, Cy+1,k)

= cut(Sx,y−1, S̄x,y−1)− (w({vy}, C1,y−1)− w({vy}, C1,x−1)) + w({vy}, C1,x−1)

+ (w({vy}, C1,k)− w({vy}, C1,y))

= cut(Sx,y−1, S̄x,y−1)− py,y + 2py,x−1 + py,k − py,y−1.

(100)
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Therefore, if we consider the partitions {Sx,y, S̄x,y} with x < y ≤ k one by one in in-
creasing order for y, we can compute the cut value cut(Sx,y, S̄x,y) of a partition {Sx,y, S̄x,y}
in constant time.

Now we consider the volume vol(Sx,y, V ) of a partition {Sx,y, S̄x,y}. Below in Equation
101 we compute vol(Sx,y, V ) of partition {Sx,y, S̄x,y} in constant time as follows. We once
again first rewrite the sum of edge-weights w({vi}, Ca,b) of the edges between a vertex vi
and a vertex set Ca,b to the form w({vi}, C1,b) − w({vi}, C1,a−1). Then for the sum of
edge-weights w({vi}, C1,d) we can substitute the corresponding pi,d value which we already
computed beforehand in constant time. Note that in Equation 101 we use the cut values
cut(Sx,y, S̄x,y) and cut(Sx,y−1, S̄x,y−1), which we already computed in the previous step.
Furthermore, note that in Equation 101 we use f(v,B), which we computed in the second
preprocessing step. We compute the volume vol(Sx,y, V ) of Sx,y as:

vol(Sx,y, V ) = vol(Sx,y−1, V ) + 2w({vy}, Cx,y−1)− cut(Sx,y−1, S̄x,y−1) + cut(Sx,y, S̄x,y) + 2f(vy, B)

= vol(Sx,y−1, V ) + 2(w({vy}, C1,y−1)− w({vy}, C1,x−1))− cut(Sx,y−1, S̄x,y−1)

+ cut(Sx,y, S̄x,y) + 2f(vy, B)

= vol(Sx,y−1, V ) + 2py,y−1 − 2py,x−1 − cut(Sx,y−1, S̄x,y−1) + cut(Sx,y, S̄x,y) + 2f(vy, B).

(101)

Therefore, if we consider the partitions {Sx,y, S̄x,y} with x < y ≤ k one by one in increas-
ing order for y, we can compute the volume vol(Sx,y, V ) of a certain partition {Sx,y, S̄x,y}
in constant time.

Lastly, we can compute the volume vol(S̄x,y) of S̄x,y in constant time as:

vol(S̄x,y, V ) = 2W − vol(Sx,y, V ). (102)

We can compute the normalized cut value NCut(Sx,y, S̄x,y) of {Sx,y, S̄x,y} in constant
time as:

NCut(Sx,y, S̄x,y) =
cut(Sx,y, S̄x,y) · 2W

vol(Sx,y, V ) · vol(S̄x,y, V )
. (103)

Therefore, we can compute the normalized cut value of all partitions in A in O(l2)
time with l = |E(B)|. We then check which partition in A has a minimum normalized cut
value. Once we have achieved this for every block B of G we know which partition has a
minimum normalized cut value. Since we have |E| ∈ O(n) for an outerplanar graph, finding
the partition with minimum normalized cut value takes O(n2) time. We then check if the
partition with minimum normalized cut value is ≤ N . We conclude that the Normalized
Cut problem is solvable in quadratic time for outerplanar graphs.
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8 Polynomial-time algorithms for the Normalized Cut prob-
lem with unweighted edges on H-free graph classes

In this section, we present two polynomial-time algorithms for the Normalized Cut prob-
lem with unweighted edges. First, in Subsection 8.1, we present a linear time algorithm
for the Normalized Cut problem with unweighted edges on cluster graphs. Then, in
Subsection 8.2, we present a linear time algorithm for the Normalized Cut problem with
unweighted edges on cactus graphs. Note that all algorithms in Section 7 also work on
graphs with unweighted edges using the same amount of time.

8.1 Linear time algorithm for cluster graphs

In this subsection, we present a linear time algorithm for the Normalized Cut problem
with unweighted edges on cluster graphs. As we saw in the description of cluster graphs
in Section 5 they are defined by the disjoint union of cliques. We are going to prove that
the Normalized Cut problem is solvable in linear time on cluster graphs with unweighted
edges.

Theorem 8.1. The Normalized Cut problem is solvable in linear time on cluster graphs
with unweighted edges.

Let n = |V |. Before we can prove Theorem 8.1 we need the following lemma:

Lemma 8.2. All partitions of a complete graph with unweighted edges have a normalized
cut value of n/(n− 1).

Proof. In a complete graph G with n vertices, every vertex has degree n − 1. Assume we
have a partition {S, S̄} of G where |S| = x and |S̄| = n− x. We have cut(S, S̄) = x(n− x),
vol(S, V ) = x(n−1) and vol(S̄, V ) = (n−x) · (n−1). The normalized cut value NCut(S, S̄)
of {S, S̄} is:

NCut(S, S̄) =
x(n− x) · n(n− 1)

x(n− 1) · (n− x) · (n− 1)
=

n

n− 1
. (104)

Note that we need x ̸= 0, n ̸= 0, x ̸= n and n ̸= 1. However, for a partition of a
complete graph with at least two vertices this is always the case. Therefore, all partitions
of a complete graph with unweighted edges have a normalized cut value of n/(n− 1).

Now we will prove Theorem 8.1 using Lemma 8.2.

Proof. We have an instance of the Normalized Cut problem of a cluster graph with
unweighted edges G = (V,E) and a real number N . First, we want to find out if G is
connected using the following algorithm. We start by choosing a random vertex v. We
perform a breadth-first search from v. Let A be all vertices u for which the edge (v, u)
exists and v itself i.e. A = N(v) ∪ v. If |A| = |V | we have a connected graph which is
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a complete graph. Otherwise, if |A| < |V |, the graph is not connected and G consists of
multiple disjoint cliques. First, we look at the case where G consists of multiple disjoint
cliques. We find a partition {S, S̄} with minimum normalized cut value if we put all vertices
of A in component S and V \A in the other component S̄. Now there are no edges between
the components and thus the cut value is 0 and therefore the normalized cut value is also
0. The normalized cut value of a partition of a graph can never be below 0 because the
edge-weights are not allowed to be negative. Therefore, {S, S̄} has a minimum normalized
cut value and we can check in constant time if 0 ≤ N .

Now if the graph is connected, it is a complete graph. By Lemma 8.2 every partition of
a complete graph with unweighted edges has the same normalized cut value. Therefore, we
can find a partition with minimum normalized cut value in linear time by putting 1 < x < n
vertices in component S and the rest of the n−x vertices in component S̄. Since the Breadth-
first search algorithm took linear time we found the partition with minimum normalized
cut value in linear time. Now we only have to check if the normalized cut value of {S, S̄} is
≤ N .

Therefore, the Normalized Cut problem is solvable in linear time on cluster graphs
with unweighted edges.

8.2 Linear time algorithm for cactus graphs

In this subsection, we show a linear time algorithm for the Normalized Cut problem
on cactus graphs with unweighted edges. Note that in Subsection 7 we already showed a
quadratic time algorithm for outerplanar graphs. Since cactus graphs are outerplanar graphs
we could use the algorithm for outerplanar graphs to obtain a quadratic time algorithm for
cactus graphs. However, we now show that for cactus graphs with unweighted edges, we
can solve the Normalized Cut problem in linear time. The algorithm is based on the
algorithm for the Sparsest Cut problem on cactus graphs with unweighted edges presented
in the paper by Bonsma et al. [4].

Theorem 8.3. The Normalized Cut problem is solvable in linear time on cactus graphs
with unweighted edges.

Proof. A cactus graph consists of biconnected blocks, from now on called blocks, which
are either single edges or cycles. In Figure 11 we see an example of a cactus graph and
its blocks. We can find the blocks of a cactus graph in linear time using the algorithm
presented in the paper by Tarjan [23]. We denote with V (B) the set of vertices of a block
B and with E(B) the set of edges of a block B. Vertices that are part of multiple blocks
are called cut vertices. According to Theorem 4.6 a partition with minimum normalized cut
value has exactly two connected components. Therefore, there is a partition with minimum
normalized cut value that only has edges of one block in the cut.

We have an instance of the Normalized Cut problem of a cactus graph with un-
weighted edges G = (V,E) and a real number N . We present an algorithm that can find
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Figure 11: A cactus graph and its blocks

the partition with minimum normalized cut value of G in linear time. This algorithm re-
quires one preprocessing step.

We compute for every block B and every vertex v ∈ B the total number of edges f(v,B)
of the component that contains v in the graph G′ = G\E(B). We use the same method pre-
sented in the algorithm for solving the Normalized Cut problem on outerplanar graphs
in Subsection 7.2. Therefore, this preprocessing step takes O(n) time. In Figure 11 we
see a cactus graph and its blocks. As an example, for the highlighted block B, we have
f(v1, B) = 3.

We have two different types of blocks, a single edge or a cycle. For a block B that is a
single edge (v, u) we compute the normalized cut value NCut(S, S̄) of the partition {S, S̄}
defined by its cut which only contains (v, u) in constant time as:

NCut(S, S̄) =
2|E|

(2f(v,B) + 1) · (2f(u,B) + 1)
. (105)

For a block B that is a cycle, we call the k = |V (B)| vertices along the cycle v1, . . . , vk.
In Figure 11 we see an example of a block B and its vertices v1, . . . , v6 along the cycle.
According to Theorem 4.6 a partition with minimum normalized cut value has exactly two
connected components. Therefore, the cut value of a partition of a block that is a cycle is
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always two, otherwise, the partition does not have exactly two connected components. Let
Cx,y be the set of vertices {vx, . . . , vy} for some 1 ≤ x ≤ y ≤ k. Furthermore, let {Sx,y, S̄x,y}
be the partition defined by its cut which only contains edges between Cx,y and V (B)\Cx,y.

We want to find the partition with minimum normalized cut value among all partitions
that only have edges from B in their cut and have exactly two connected components. Recall
that the cut value cut(Sx,y, S̄x,y) is always 2. Proposition 4.1 tells us that we achieve the
lowest normalized cut value for a given cut value if the volumes differ the least in value.
Therefore, we first compute the normalized cut value of partition {S1,1, S̄1,1}. Then we
start a procedure where when vol(Sx,y, V ) ≤ |E| we add vertex vy+1 to Sx,y to increase
vol(Sx,y, V ) and otherwise we remove vertex vx from S to decrease vol(Sx,y, V ). Therefore,
we compute the normalized cut value of partition {Sx,y+1, S̄x,y+1} and otherwise we compute
the normalized cut value of partition {Sx+1,y, S̄x+1,y}. We stop when either x > y or y > k.
Among the partitions for which we have computed the normalized cut value, there must be
a partition with minimum normalized cut value since we consistently tried to minimize the
difference between the volumes vol(S, V ) and vol(S̄, V ). We can compute the normalized
cut value NCut(Sx,x, S̄x,x) of {Sx,x, S̄x,x} in constant time as:

NCut(S1,1, S̄1,1) =
2 · 2|E|

(2f(v1, B) + 2) · (2|E| − (2f(v1, B) + 2))
. (106)

We can compute the normalized cut value NCut(Sx+1,y, S̄x+1,y) of {Sx+1,y, S̄x+1,y} in
constant time using the known volumes vol(Sx,y, V ) and vol(S̄x,y, V ) as:

NCut(Sx+1,y, S̄x+1,y) =
2 · 2|E|

(vol(Sx,y, V )− f(x,B)− 2) · (2|E| − (vol(Sx,y, V )− f(x,B)− 2))
.

(107)

Here we removed f(x,B) from vol(Sx+1,y, V ) since vertex x is not in S anymore and
we removed 2 from vol(Sx+1,y, V ) for the edge between vertices x and x + 1 that is now
in the cut instead of completely inside S. We can compute the normalized cut value
NCut(Sx,y+1, S̄x,y+1) of {Sx,y+1, S̄x,y+1} in constant time using the known volumes vol(Sx,y, V )
and vol(S̄x,y, V ) as:

NCut(Sx,y+1, S̄x,y+1) =
2 · 2|E|

(vol(Sx,y, V ) + f(y + 1, B) + 2) · (2|E| − (vol(Sx,y, V ) + f(y + 1, B) + 2))
.

(108)

Here we added f(y+1, B) to vol(Sx,y+1, V ) since vertex y+1 is now in S and we added
2 to vol(S,y+1, V ) for the edge between vertices y and y + 1 that is now inside S instead of
in the cut.
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The procedure takes at most 2l steps where l = |E(B)| and therefore takes O(l) time.
Performing the procedure for every block that is a cycle takes O(n) time since |E| ∈ O(n).
Once we have computed the partition with minimum normalized cut value for every block,
we can check which partition among these partitions has the minimum normalized cut value
and if it is ≤ N . We conclude that the Normalized Cut problem is solvable in linear
time for cactus graphs.

9 Approximation algorithm for the Normalized Cut problem

In this section, we observe that there is an O(log(n))-approximation algorithm for the
Normalized Cut problem with n = |V |.

Theorem 9.1. The Normalized Cut problem has an O(log(n))-approximation algorithm.

Proof. As we saw in Section 3, we can reduce the Normalized Cut problem to the vertex-
weighted Sparest Cut problem. This reduction takes O(|V |+ |E|) time. After the reduc-
tion, we have an instance of the vertex-weighted Sparsest Cut problem and we can apply
the approximation algorithm from Leighton and Rao [16].

10 Conclusion

In this thesis, we showed that the Normalized Cut problem is NP-complete on a variety
of H-free graph classes. Specifically, we showed that the Normalized Cut problem is
NP-complete on claw-free, split, and complete graphs. Furthermore, we showed that the
Normalized Cut problem with unweighted edges is strongly NP-complete. We showed
an important property that the partition with minimum normalized cut value has two
connected components and used this property to construct polynomial-time algorithms on
certain H-free graph classes. We showed that we can solve the Normalized Cut problem
on forests in linear time and on outerplanar graphs in quadratic time. Furthermore, we
showed that we can solve the Normalized Cut problem with unweighted edges on cluster
graphs and cactus graphs in linear time. Lastly, we observed that there exists an O(log(n))-
approximation algorithm for another graph partitioning problem to which we can reduce
the Normalized Cut problem. Therefore, we have an O(log(n))-approximation algorithm
for the Normalized Cut problem..

Since we showed the property that the partition with minimum normalized cut value
has two connected components, it would be interesting to find out if we can generalize this
property such that we can show that the partition with minimum normalized k-cut value
has k connected components. Unfortunately, we cannot rewrite the normalized k-cut value
to a second form in the same way we did for the normalized cut value. Therefore, we need
to find another approach to try and generalize the property.

52



Another result of this thesis is that we showed that the Normalized Cut problem is
NP-complete on complete graphs and that we can solve the Normalized Cut problem
with unweighted edges on cluster graphs in linear time. Future work might direct their re-
search towards finding for which other H-free graph classes the Normalized Cut problem
and the Normalized Cut problem with unweighted edges differ in complexity.

In this thesis we used a reduction from the Sparsest Cut problem with unweighted
edges to show that the Normalized Cut problem with unweighted edges is strongly NP-
complete in general. Therefore, we cannot hope to obtain a fully polynomial-time approx-
imation scheme. However, it would be interesting to find out if the Normalized Cut
problem obtains a polynomial-time approximation scheme or not. Furthermore, in Section
3 we saw that the Sparsest Cut problem has an O(

√
log(n))-approximation algorithm

[2]. Since the Normalized Cut problem and the Sparsest Cut problem have a lot of
similarities, it would be interesting to try and adapt the O(

√
log(n))-approximation algo-

rithm of the Sparsest Cut problem and obtain an O(
√
log(n))-approximation algorithm

for the Normalized Cut problem.
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