
Detecting and Mitigating Goal
Misgeneralisation with Logical

Interpretability Tools

Coen Rouwmaat
6323162

Daily Supervisor: Jan Broersen
Second Supervisor: Natasha Alechina

Master Artificial Intelligence
Utrecht University
June 26th 2023

1

Abstract

This thesis expands on the problem of AI alignment, and the specific instances of mis-
alignment. Current and future problems are discussed to stress the increasing importance of
alignment, and both reward specification and goal misgeneralisation are discussed as difficulties
with aligning agent behavior with the intended objective of its designer.

Original research will be done by eliciting and studying properties of goal misgeneralisation in
a novel collection of toy environments. Furthermore, rule induction algorithms are implemented
as an interpretability tool in order to generate multiple different explanations for an agent’s
behaviour, which can aid in detecting goal misgeneralisation.

Contents

Introduction 3

1 The importance of AI Alignment 5
1.1 Examples of misaligned AI . 5
1.2 The possibility of Artificial General Intelligence . 7
1.3 Risks from AGI . 8

2 Types of RL Misalignment 11
2.1 Reward misspecification . 11
2.2 Goal misgeneralisation . 12

3 Properties of Goal Misgeneralisation in a Toy Environment 16
3.1 The gridworld environments . 16
3.2 Representation of the agent observation . 17
3.3 Agent architecture and training . 18
3.4 Optimality as a novel performance metric . 18
3.5 Target gridworld . 20
3.6 Property gridworld . 21
3.7 Chest gridworld . 22

4 Mitigating Goal Misgeneralisation with Interpretability Tools 25
4.1 Explainability and Interpretability . 25
4.2 Logical interpretability: rule induction algorithms . 25
4.3 Applying rule induction algorithms to the GridWorld environments 28

5 Discussion and Further Work 34
5.1 Features included in the induction algorithm . 34
5.2 Terminal goal states as objective . 34
5.3 Incomplete data from optimal behavior . 35
5.4 Distinguishing hypotheses . 35

Conclusion 36

Bibliography 37

2

Introduction

As deep learning methods are utilized to increasingly improve AI capabilities across a wide range
of tasks, the complexity of these systems’ behavior also increases. This can lead to such systems
exhibiting unexpected, and often undesired behavior, for which the underlying reasoning is hard to
extract.

This thesis studies the way that AI systems can become misaligned with our intentions, and in how
we can detect and mitigate subtle types of misalignment with the use of logical and interpretable
analytical tools.

The first chapter addresses the importance of alignment, both for current problems and possible
problems in the future, to make the case that misaligned AI is potentially one of the most pressing
problems in the field. The second chapter dissects misalignment in the context of reinforcement
learning (RL) into two different different possible types of misalignment: reward misspecification
and goal misgeneralisation. Causes and examples are discussed for both of these types.

The two chapters thereafter will present novel research on the problem of goal misgeneralisation.
Chapter 3 introduces a collection of toy environments in which several types of GMG are studied to
find out what factors or properties of the environments cause an agent to pursue a misgeneralised
goal instead of the intended goal.

Finally, chapter 4 employs the use of rule induction algorithms in order to try to detect the possibil-
ity of goal misgeneralisation. This is done by formulating propositonal hypothesis, built from chosen
features of the environment, which act as an interpretable explanation for the agent’s behavior.
These hypotheses are then compared to find out how misgeneralisationis possible in these scenarios,
and how this possiblity might be removed with additional training data. After this, limitations of
this approach are discussed.

3

Related work

Normative alignment

Chapter 2 discusses two different types of misalignment; however, both these types assume that the
designer knows its own objective, i.e, what they truly want themselves. However, this is a problem
in and of itself. [1] discusses the problems of formulating our own values, and how to implement
these in AI systems; [2] formulates several impossibility and uncertainty theorems to highlight the
problems of distilling our desires into simple rules.

Inverse reinforcement learning

Chapter 4 uses rule induction algorithms to try and generate the reward function from agent behav-
ior and environment. Similar work has been done with the field of inverse reinforcement learning,
where a similar approach is used not for evaluating but for training agents, by letting the agent ob-
serve human behavior so it can try and specify the intended objective itself [3]. THe main difference
between this approach and ours, is that roles between designer and agent are reversed; for inverse
reinforcement learning, the agent hypothesizes intended objective from observing human behavior;
for our interpretability puroses, we hypothesise the agent’s internal objective from observing its
behavior, in order to align it with our own intended objective.

Mechanistic Interpretability

The rule induction algorithms implemented in chapter 4 are used as logical interpretability tools;
while these algorithms are applied ad hoc in order to explain the agent’s behavior, other methods
study the agent’s architecture more directly. The field of mechanistic interpretability studies the
individual weights and connections of a trained neural network in order to look for interpretable
patterns and general properties of such networks [4]. While this work is more empirical and findings
are hard to generalise across different trained networks, a this method does yield concrete findings
for succesful analyses [5].

4

1 The importance of AI Alignment

In the last decade, we have seen an explosion in AI capabilities that only seems to be growing faster
as time progresses. Reinforcement learning agents have surpassed human performance in games
such as the ancient board game Go [6], the strategy-based Diplomacy [7], and a suite of Atari video
games [8]. More recently, large language models have shown to be adept at a wide range of tasks,
spanning - to varying degrees - reasoning, coding, planning and more [9].

This stark rise in capabilities has also resulted in increased worry about how these systems function
and how to approach development of such systems. In 2014, many AI scientists and other prominent
figures sign an open letter calling for research in robust and beneficial AI [10]. In 2023, another
open letter is published, this time calling for a moratorium on the training of large AI models [11].
A statement released in June of the same year, again signed by many prominent researchers and
leaders in the field, reads: ”Mitigating the risk of extinction from AI should be a global priority
alongside other societal-scale risks such as pandemics and nuclear war”[12].

All of these worries are centered around the idea that capabilities of AI systems are progressing at a
faster rate than our understanding of these systems. These worries boil down to the question; how
do we make sure that AI systems will adhere to our values and desires?

This is the question of value alignment, and it is not a new one. After seeing Arthur Samuel’s
checker-playing program beat its own creater in 1960, MIT professor Norbert Wiener warned that
”we had better be quite sure that the purpose put into the machine is the purpose which we really
desire” [13]. Alan Turing had already taken it a step further, remarking in 1951 on machine intelli-
gence: ”If a machine can think, it might think more intelligently than we do, and then where should
we be? Even if we could keep the machines in a subservient position, for instance by turning off the
power at strategic moments, we should, as a species, feel greatly humbled.... This new danger... is
certainly something which can give us anxiety” [14].

This danger stems from the fact that AI systems pursue their objectives in an effective way, but in
practice, these objectives are not always identical to the goals we as designers had in mind. Why it
is hard to fully specify our desires, and in what ways these specifications can be misinterpreted by
AI systems, are the central topics of the coming sections. The final goal, as Stuart Russel puts it, is
not simply to create intelligent machines, but to create benificial machines; that is, machines whose
actions can be expected to achieve our objectives 1 [15].

1.1 Examples of misaligned AI

We call an AI system misaligned if it is not aligned with its intended design. There are many ways
an AI system can be misaligned. Below, we discuss some past examples, categorised in two sections:
bias and transparancy.

1the ”objectives” mentioned here refers to our intended objectives, not the specified objectives on which we train
these machines.

5

1.1.1 Bias

While we might collectively decide on certain values to uphold, these values are not always reflected
in the data on which we train our algorithms. If we train an AI system on data that is either in-
complete or skewed in this way, it can result in machine bias: algorithms will make decisions based
on attributes we do not wish to be considered, such as race or gender. While these results are not
actually the fault of the agent or the training procedure - after all, it is the data that is biased - the
trained agent will continue to proliferate and amplify these biases.

One of the most prominent examples of this phenomenon is the COMPAS recidivism algorithm -
an algorithm used in the U.S. judiciary system to predict the likelihood of arrested individuals to
reoffend after their sentence. Even though this algorithm was widely used among the country and
strongly influenced sentencing, this algorithm has been claimed to be biased against blacks, consis-
tently overestimating reoffending rate of this group while underestimating the reoffending rate for
whites [16]. However, others have argued against this claim, proving that it is impossible to sat-
isfy several requirements such as accuracy and indiscriminacy simultaneously for populations with
differently-sized groups [17].

Incomplete training data with underrepresented groups can also lead to bias; facial recognition soft-
ware trained primarily on white faces will have a harder time correctly classifying black faces [18];
this can lead to highly inappropriate mistakes, such as Google classifying a black man as a gorilla;
a problem which, after eight years, still remains to be solved [19]. While this instance may not be
caused solely by underrepresentation in the training data, this specific instance is incredibly unde-
sirable for humans; in this case, it is a specific bias against specific types of misclassification that
the software lacks.

Even exhaustive datasets can be biased, if the bias is pervasive enough; word embeddings trained on
enormous corpuses will embed sexist notations, such that the female equivalent of ”computer pro-
grammer” is ”homemaker” [20]. Since the problem is not a lack of data, debiasing these models is
a very hard task; practicals aside, deciding which gender connotations to keep and which to discard
does not have a trivial solution.

1.1.2 Transparancy

Even if misalignment is not clearly visible, it can still occur in a more subtle way. Without knowing
exactly how an algorithm works, it might make decisions that are subtly biased against a group of
people. Since the rise of deep learning, AI systems have dominated other machine learning methods;
their functioning are much more efficient than their alternatives, but also very hard to comprehend.
These subsymbolic systems have been optimized for efficiency, but their decisions are not supported
by logical reasoning in a way such that humans could follow this agent’s decision making.

Even though the decision making process of these models are opaque (hence their nickname of ”black
boxes”), they are still incredibly accurate on the data they are trained on, and thus are widely de-
ployed. The result of this is that these inscrutable systems have in used in fields where interpretability
are vital, and often still made crucial mistakes; a neural net trained to predict outcomes for patients
with pneumonia ascribed low risk to patients with asthma [21]. This counterintuitive classification
was only accurate on the training data since asthma patients had historically immediately been ad-
mitted to intensive care, causing this subgroup to have a lower mortality than average. Allowing this

6

algorithm to send asthmatic patients home, as was the reccomendation for low-risk patients, would
have been a disastrous mistake; a mistake only fully realised when an explanation-based model later
trained on the same data generated an explicit rule for this case [17].

Enacted in 2016, the European General Data Protection Regulation (GDPR) formulates that in
case of algorithmic decision making, the subject has the right to an explanation of this decision.
Many have discussed to which extent this explanation is warranted [22], [23]; although the exact
interpretation remains undecided, it is clear that much still needs to be done in order to make these
black box systems sufficiently interpretable.

Given their performance, it seems infeasible to give up on deep learning methods altogether; addi-
tionally, it seems that these complicated models will continue to outperform simpler ones which are
generally more interpretable [24]. Instead, work is being done on making deep learning methods
more interpretable. Chapter 4 will discuss some of these methods, and use some of these tools to
study the deep learning agents trained in chapter 3.

1.2 The possibility of Artificial General Intelligence

Given the sharp increase of capabilities in state-of-the art models, it is not unthinkable that at one
point we will reach a level of machine intelligence which is, on many fronts, equal or superior to
human performance. This type of AI is called Artificial General Intelligence (AGI), and it is the holy
grail that AI researchers have been working towards from its inception. Although it once seemed
a far-off hypothetical, recent advancements support the idea that it might be feasible in near future 2.

Although progress seems to be steadily progressing, it is unclear when we could expect AGI to arrive,
if at all 3. Estimates on the progress of AI have been notoriously bad since its inception, starting
with the proposol for the Dartmouth conference of 1956, in which the prominent researchers of the
time were quite optimistic:

”We propose that a 2-month, 10-man study of artificial intelligence be carried out during the sum-
mer of 1956 at Dartmouth College [...]. An attempt will be made to find how to make machines
use language, form abstractions and concepts, solve kinds of problems now reserved for humans,
and improve themselves. We think that a significant advance can be made in one or more of these
problems if a carefully selected group of scientists work on it together for a summer.” [25]

On the other hand, the capabilities of AI systems have constantly been underestimated since the
deep learning era; right before Deepmind’s AlphaGo would beat the top human players at the game
of Go, many believed it would still take decades for a computer program to perform this feat. At
present, this underestimation still seems to be pervasive: in 2021, forecasters were asked to predict
the performance of state-of-the-art models one year from then: the forecasters structurally under-
estimated future performance, and average prediction for two of the four models was outside of the
90% confidence interval [26].

2In fact, the mission statement of AI research company OpenAI (which created ChatGPT and its successors) is to
make sure AGI benefits all of humanity.

3Although it seems strange that many researchers working on AI insist that AGI is impossible; Stuart Russel gives
the comparison of a bus driver barreling full speed towards a ravine, and assuring his passengers that the bus will run
out of fuel before reaching it [15].

7

Figure 1: Forecasts of two benchmark models after one year. Prediction distributions are in grey,
actual performance is marked with a red star; both models vastly outperformed predictions.

Given these past inaccuracies, additional studies have been conducted to try and better estimate
when AGI might arrive. Several expert surveys have been conducted in the last years; The predic-
tion for a 50% chance of AGI was roughly the same for all surveys, namely around 2060 [27], [28], [29].

Avoiding expert opinion altogether, another study attempts to predict when it might be both com-
putationally and fincancially feasible to train an AI which exhibits general intelligence. This method
makes a large number of assumptions, including how many training FLOPS (foating-point operations
per second) would be necessary to achieve human-level performance, how fast algorithmic efficiency
will increase, and how much cheaper computation will become in the coming years. The resulting
prediction can be seen below, and gives a suprisingly similar median prediction to the expert survey:
2054 [30].
Given the fickle history of AI performance forecasting, it is unclear how much credence we should
give these predictions. What can be said, however, is that currently, the best systems seem to give
an impression of what might soon be possible. Although the current best system, GPT-4, is far from
an AGI, it is able to show understanding or even proficiency of a wide range of capabilities, even
though it has never been trained on these capabilities specifically. These capabilities include image
generation, music composition, coding, mathematical reasoning, explaining jokes, using external
tools to solve problems, and theory of mind [31].

1.3 Risks from AGI

Knowing that there exists a non-trivial possibility that AGI might be developed during this century,
it seems worth it to look at the possible ramifications and dangers such an intelligence might pose.
As an agent’s capabilities advance, so does its ability to achieve a wider range of outcomes, and with
it the impact of its actions on the human population. We would hope that this impact is purely
positive, with advancements in science, automation and global decision making; however, we can

8

Figure 2: Probability that Transformative AI (synonymous to AGI) is affordable at a certain year;
the different colors represent different estimates for the amount of training FLOPS needed to achieve
humen-level intelligence.

not be guaranteed that this is the case.

One might reason that a sufficiently advanced intelligence will simply be able to infer what our
values and desires are, and can consequently find the actions that maximise these aspects. However,
there is no reason to assume that an AGI will automatically do this. More concretely, Bostrom’s
orthogonality thesis states that any degree of intelligence is compatible with pursuing any goal [32].
According to this thesis, it does not matter whether the agent has the goal of curing cancer or
creating paperclips; increasing its intelligence or capabilities will not make it obtain some ”higher”
goal, but only enable it to pursue its own goal more effectively.

It seems, then, that the only problem in creating reliable and trustworthy AI is to correctly specify
what goal we want our agent to pursue - a problem that is itself not an easy task, as will be dis-
cussed in chapter 2. However, this is not the only problem we face: Bostrom, in the same paper,
also formulates the instrumental convergence thesis, which states that a sufficiently intelligent agent
will realise that nearly any goal can be more succesfully pursued by also pursuing some instrumental
subgoals. These subgoals, such as self-preservation and resource aquisition, are behaviors we can
already recognise in current organisms and would help most agents in achieving a wide range of
main goals [32], [33].

Other instrumental subgoals are more novel and specific to AI systems, such as cognitive enhance-
ment, reward hacking (where an agent is able to locate and modify its own reward function in order

9

to get arbitrarily high reward), and deception; an agent recognising that it might be penalised for
incorrect behavior during training might display correct behavior only when supervised, and pursue
its actual desired goal only after deployment [34].

Some researchers have argued that if these tendencies are not explicitly mitigated, agents recklessly
pursuing these goals could have catastrophic consequences for the human population [35].

While these claims may at the moment seem far-fetched and speculative, these aspects of machine
intelligence have been seriously researched. Recently, mathematical theorems have been proved that
show that most reward systems induce ”power-seeking behavior” in agents 4, meaning that in unfa-
miliar environments they are much more likely to choose futures in which they have many options
available, in contrast to futures with only one option (which could be interpreted as ”shutting itself
down”, after which it could obtain no more rewards) [36], [37], [38]. At the moment of writing,
research is being undertaken to investigate whether current language models like GPT-4 have a
tendency to display power-seeking behavior 5.

In the end, the relevant question is not whether these risks are guaranteed, but if it they are possible.
In the 2022 expert survey mentioned in the previous section, participants were also asked what they
expect the long-run effect of advanced AI on humanity will be. Nearly half of respondents gave at
least a 10% chance of an extremely bad outcome [29]. While this is far from certainty, it should be
alarming enough to warrant further research into the topic.

4Power in this context is defined as ”the ability to achieve a wide range of goals” [36].
5While no publications exist on this topic yet, Deepmind researcher Victoria Krakovna intends to work on this

problem over the summer of 2023 with several scholars from the SERI MATS program: see https://www.serimats.

org/powerseeking.

10

https://www.serimats.org/powerseeking
https://www.serimats.org/powerseeking

2 Types of RL Misalignment

There are few concrete definitions of AI alignment; most definitions put emphasis on avoiding unde-
sired behavior. When there is a discrepancy between the intentions of the designer and the behavior
of the agent, this is called misalignment. Unlike alignment, for which sufficient or necessary re-
quirements are hard to define, misalignment can be categorised into different instances with specific
characteristics. This chapter looks at in what ways RL systems can be misaligned: the goal of this
chapter is to clarify at what point in the process of designing and training an AI system it can
become misaligned. It will discuss reward misspecification, a well-known type of misalignment, and
then discuss goal misgeneralisation, a more novel type of misalignment, and expand on what its
causes and characteristics are.

2.1 Reward misspecification

In order to train an agent, we need to give it some kind of feeback in order to nudge it in the right
direction; for RL, this is done through a reward function. This reward function aught to convey
correct behavior (in line with intended behavior), but in practice, it is hard to specify a foolproof
reward function. For complex environments, a goal is often specified in terms of some proxy or
metric. Goodhart’s Law: when a metric becomes a target, it ceases to be a good metric.

If this is not done well, this can lead to specification gaming: the agent satisfies the literal specifica-
tion of an objective without achieving the intended outcome. Examples of specification are plentiful;

� For a stacking task, the agent was trained to stack one block on the other; this was incentivised
by getting the bottom of one block above a certain threshold. Consequently, the agent learned
to flip the block over, such that its bottom was facing up above the threshold [39].

� An algorithm trained to survive as long as possible in a game of tetris learned to pause the
game to avoid losing indefinitely [40].

� An agent is trained to ride a vitrual bicycle; it is rewarded for moving towards a goal. However,
since it was not penalised to move away from the goal, it learned to ride in circles, continually
moving toward the goal and collecting rewards half of the time [41].

Why this behavior diverges from our intended behavior has several reasons. First, many objectives
are hard to define in concrete descriptions with specific rewards. Often, it is easier to choose a
measurable proxy which is correlated to the goal state, and incentivize the agent to maximize on
this proxy; however, Goodhart’s law is appliccable here, and as long as there is a scenario where this
proxy is not linked with the goal state, this proxy ceases to be a good measure of success.

Another reason misspecification can occur is the process of reward shaping [42]. Even if an objective
or goal state can be concretely specified, this may not be enough to nudge an agent towards the
right behavior; training an agent to ride a bicycle, as in the example above, is infeasable by only
rewarding it when it has succesfully stacked the two blocks reached the goal; for this, it would need
to try out random actions until it accidentally stumbled upon a sequence which brought it to the
goal, which is very unlikely. Instead, if the agent is fiven constant feedback of getting closer to the
goal, the agent will be able to learn correct behavior much faster. However, care should be taken

11

that the shaping rewards unambiguously point towards the final goal; otherwise, the agent can op-
timize on these shaping rewards without reaching the intended goal, as happened with the bicycle
and stacking task mentioned above.

These examples may seem like harmless, sometimes amusing examples of agents finding clever loop-
holes in games. Indeed, in the context of games, specification gaming may be a good thing; if the
only thing we care about is the score which the agent is maximizing on, any novel and unexpected
way the agent achieves this goal is allowed and encouraged.

However, in the real world, it matters a great deal how exactly an objective is achieved; for many
tasks, such as autonomous driving, what exactly constitutes good behavior is extremely difficult to
capture, but it is detrimental that the behavior we optimize for is actually what we want, and not
based on some metric that is only generally correlated with good behavior.

At its core, reward misspecification is about a discrepancy between the intended objective and the
objective as specified in the reward function. Because of this, unintended behavior is rewarded, and
thus learned by the agent. One would think that a correctly specified reward function will guarantee
that the agent will learn the correct behavior, but unfortunately another type of misalignment is
still possible.

2.2 Goal misgeneralisation

Designing a reward function that only rewards desired behavior is a difficult task in and of itself,
but unfortunately, succeeding in this task is not enough guarantee the agent will always produce
desired behavior.

Even if the agent exhibits desired behavior over all training data, this is not a guarantee that it will
always behave as intended; if the agent after training encounters a novel environment
This might not be the case with distributional shift [43]; if training data is a specific subset of all
possible observations, then the agent might behave in an unpredictable way when it encounters data
outside this subset; this is called out-of-distribution (OOD).

Often, when an agent is deployed in an OOD environment, it fails to generalise its learned behavior
to this new environment and fails to produce competent behavior; this is called capability misgener-
alisation, or robustness failure. This technically does not count as misalignment, since the agent’s
objective might still not differ from ours; however, it simply hasn’t learned how to achieve the ob-
jective in this environment.

However, another type of misgeneralisation is possible: since the agent only receives rewards over
training data, it needs to extrapolate these rewards to environments outside the training data. For
this, it needs to generalise what it believes correct behavior is; if this is done incorrectly, we speak
of goal misgeneralisation (GMG).

2.2.1 Causes of GMG

The main cause of GMG is that the agent does not have enough training data and correspond-
ing rewards to distinguish the intended objective from a number of other possible objectives. The

12

agent should optimize for the intended objective Gint, but instead misgeneralises and optimizes for
objective Gmis. Gint and Gmis induce the same behavior on the training data, such that an agent
optimizing for Gmis is maximally rewarded by the reward function. However, these two objectives
differ significantly for some relevant examples not in the training data. This means that during
deployment, the agent might encounter some OOD environment, and behave radically different than
the desired behavior. The training data is not representational of the intended deployment environ-
ment, and should ideally be expanded. Since it is often very difficult to predict every aspect of the
deployment environment, this can be hard to achieve; a method of extracting representation of the
objective from the trained agent is discussed in section 4.

2.2.2 Training architectures susceptible to GMG

Not every agent’s training architecture can be ”exploited” to induce goal misgeneralisation. In or-
der for this to occur, the agent needs to exhibit competent, but incorrect behaviour on inputs with
distributional shift from the training data. For this, the agent must have some non-trivial action
behaviour for states that it has never seen before; this is not possible with all system architectures.
For example, simple Q-learning assigns to every state it has visited during training the action which
overall has yielded the greatest return. For states that never appeared in the training data, their
Q-values for the possible actions will still be the values set initially, which are often the same for all
actions. Thus, the agent has no preference between actions and will always make either a random
choice, or pick the first action in the list.

If goal misgeneralisation is to occur, it requires an architecture that develops a competent policy
also for states that do not occur in the training data. This is the case when the Q-values are not
calculated seperately for each state, but instead a function approximator is used. For normal linear
function approximators, one would need to define the features that the approximator uses to train
(for example) the Q-values [44]. However, this would nullify the problem of goal misgeneralisation,
since we are doing the work of identifying relevant information for the agent.

In conclusion, goal misgeneralisation with Q-learning can occur when a function approximator is
used but no features have been specified; this is the case with a neural network function approxi-
mator. Instead of pre-specified features, its parameters are the weights of the neural network, so no
features have to be specified; behaviour is trained based solely on the observation input. This is the
case with deep Q-learning (DQN); in the section 3, we will elicit GMG from a DQN agent.

Note that Q-learning is not the only method that is susceptible to goal misgeneralisation; other
methods that use NN function approximators, such as proximal policy optimization (PPO) algo-
rithms [45], are also susceptible.

2.2.3 Types of GMG

Although the fundamental causes underlying GMG are the same in every case, it is possible to
classify different types of GMG, depending on what subset of the environment the agent is trained
on and what kind of distributional shift can occur.
There seem to be at least two types of GMG: one where it optimizes for a proxy variable (e.g. the
position or color of the objective), and one where it optimizes on a subgoal instead of the final,

13

intended goal.

Proxy GMG
Proxy GMG can occur when during training, the goal has a certain property, and the goal is the
only object in the environment with this property. Then, optimizing for this property is equivalent
to optimizing for the goal during training. If the agent is then deployed in an environment with
distributional shift where the target no longer has this property, or another object has this property,
the agent might abandon the intended goal in order to optimize for this alternative objective.

There are several kinds of proxies that can be generalised on, for all of which examples have been
found. If the goal is always in a certain position, the agent might simply learn to move to this
position, and will keep going to this position even if the goal is moved to a different location. In the
same way, it is possible for the agent to always move to a specific direction, if the agent expects to
reliably find the goal in that direction.

The goal itself can also have several properties, such as shape or color, each of which can be distin-
guished on. If one of these properties is given to another object, the agent might mistakenly believe
that this is the new objective, if it has misgeneralised the goal to depend on that property.

Figure 3: Two types of goal misgeneralisation in a maze environment: the agent (mouse) is rewarded
for reaching the goal (cheese), but fixed proxies of the goal during training can induce positional
GMG (left) and property GMG (right) [46].

14

Subgoal GMG
Another category is subgoal misgeneralisation: in some environments, a certain subgoal needs to
be achieved in order to achieve the final goal. This subgoal is relevant until a certain condition is
reached; after this, pursuing the subgoal is no longer necessary. Subgoal GMG occurs when the
agent still pursues the subgoal, even after the condition is reached.

An example of this is the monster gridworld [46]: In this simple environment, the agent learns to
earn reward by collecting apples while dodging monsters; it can also collect shields, which are not
worth points but protect it from monsters (see figure 4). So, the ideal strategy can be formulated
as ”collect apples and shields until enemies are defeated, then collect only apples”.
However, if the agent never observes states with no monsters, it will believe it is always useful to
collect shields, and generalise this to states where there are no monsters left. This leads to behavior
where the agent will continue collect shields in environments with no monsters, even though this is
worth no reward.

Figure 4: An example of subgoal misgeneralisation: the agent (white) needs to evade monsters (red)
and collect apples (green) and shields (purple); the agent continues to collect shields even if there
are no monsters left [47].

This type of behavior shares a lot of similarities with so-called instrumental goals [48]; these are
goals which are pursued on the merit that they are always beneficial to pursuing the final objective.
Note that in this scenario, these subgoals are only instrumental until a certain condition is reached,
after which they are no useful and the final goal should be pursues; however, if the agent has not
learned this from the training data, it will always try to pursue these subgoals, even if they are no
longer useful.

15

3 Properties of Goal Misgeneralisation in a Toy Environment

In this chapter, we construct a collection of three gridworld environments specifically designed to
elicit goal misgeneralisation (GMG). For each environment, we study how a specific type of GMG
can arise, and how likely this is to happen. In order to properly measure this, we introduce a metric
for goal-based performance called optimality, with which we can measure how likely an agent is to ad-
here to the intended goal or to a misgeneralised goal after testing on out-of-distribution (OOD) data.

3.1 The gridworld environments

In order to study GMG in its most basic form, the gridworld environments are designed to be as
simple as possible, such that the agent can be trained quickly. On the other hand, the environments
need to have enough diversity such that GMG can occur, and such that every training sample is
likely to be unique; otherwise, the agent will simply memorise states and will likely to exhibit capa-
bility failure under distributional shift.

Each gridworld environment has the same basic components:

1. an n× n grid through which the agent can deterministically navigate

2. the representation of the agent, visualised as a blue dot

3. the target for the agent to reach, visualised as a red square

4. several other colors.

Unless specifically given some function (as in the Chest gridworld environment), the colors apart
from red are not relevant to the training goal and are used to increase the complexity of the envi-
ronment, so as to ensure that the agent is trained and tested on unique configurations. In a 4 × 4
gridworld, there are only 16 positions for the target and thus 16 unique environments for the agent
to navigate through; However, with just four additional colors, the number of possible training
environments is 16 × 15 × 14 × 13 × 12 ≈ 525, 000; this more than enough, since training for all
GridWorlds is completed in 20,000 episodes or less.

Figure 5: An example state of a gridworld environment.

Each gridworld environment has its own reward function, and the agent is trained with this reward
function on a specific subset of the state space. After the agent has developed an optimal policy for

16

the training subset, the agent is tested on a wider subset of the state space, with a specific property
of the environment changed.

With this new environment, goal misgeneralisation is now purposefully made possible; more specifi-
cally, in the training environment there exist at least two descriptions of the objective, the intended
objective Gint as captured in the reward function, or another misgeneralised goeal Gmis. For the
training environment, these objectives require the same behavior to achive, whereas in the new test-
ing environment, these explanations actually require different behaviors, such that only one of the
possible objectives can be pursued this time.

In order to guarantee this, it is made sure that the agent cannot by chance complete one goal when
trying to achieve another; during initialisation of each environment, relevant objects are placed in
such a way that the agent will always need to take distinct paths to complete the different objectives.

3.2 Representation of the agent observation

The agent does not see the environment exactly as we do in figure 5; instead, the agent observes
the abstract representation of the environment, in terms of which objects are in which position.
Usually, this is done with a one-hot vector encoding; if each position in the gridworld contains some
object (or nothing), each of those objects is given a numerical value, which is used to create a bi-
nary vector. This binary vector has a group of entries for every position in the grid, equal to the
number of properties; an entry is 1 if the corresponding property is in that position, and 0 otherwise.

This encoding is useful, since the value of numerical representations can influence an agent’s output,
even if these values are not inherently linked to the objects they represent. One-hot encoding, on
the other hand, does not have any such ordering, and thus no erroneous ranking will be applied to
the data.

Figure 6: An illustration of how the agent observes the environment: for every position, each object
is noted as present (1) or absent (0).

17

One problem with the standard one-hot encoding for the gridworld environments is that every po-
sition can take only one value, corresponding to the object that is in that position. However, in the
gridworld environments it is possible that multiple objects are in the same position; the agents can
be in the same place as the target or any of the colors, and the same holds for the keys in the chest
gridworld. To remedy this, the one-hot encoding is adapted such that several objects can be in the
same position; with this encoding, a position containing both the agent and the target has encoding
[1, 1, 0, 0, 0, 0].

3.3 Agent architecture and training

For our agent, we use a feedforward neural network architecture, implemented in PyTorch [49]. This
neural network consists of an input layer, with size equal to the one-hot observation size 6; two
hidden layers, each of size 128; and an output layer, with size 4, since it is equal to the action space
of the agent (up, down, left and right).

The agent is trained using the DQN algorithm with experience replay and the Adam optimizer
[50]. The agent is penalised according to time; for every timestep the agent has not completed the
episode, it gets reward −1. For exploration, we use an epsilon-greedy policy, with epsilon determined
by the agent’s performance (see the next section). Training took between 1,500 and 20,000 episodes,
depending on the environment.

3.4 Optimality as a novel performance metric

Usually, average episode length is used as a measure to see how efficient the agent is in reaching
the goal. However, because of the simplicity of our environment, we can do better; because the
GridWorlds are deterministic, it is possible to calculate for any state in how many steps the agent
might reach its goal.

During training and after deployment, we can use this to measure the performance of our agent;
given an environment and a goal, we calculate the minimum number of steps k to reach the goal.
Then, we run the agent in the environment for precisely k steps, after which we check if the goal
has been satisfied. If it is, the agent has behaved optimally during this episode. Repeating this over
a large number of episodes, we then define the optimality metric as the ratio of episodes where the
agent behaved optimally.

The interesting property of optimality is that it is goal-dependent. This means that while evaluating
an agent, we can check optimality for two different goals; the intended goal as represented in the
reward function, and the misgeneralised goal we would like to measure. This property is useful
because OOD, misgeneralised behavior is no longer rewarded by our reward function, and thus this
cannot be used to measure the agent’s ability to reach this misgeneralised objective.

6this is equal to the number of gridworld positions, times the number of unique objects in the environment

18

3.4.1 Measuring GMG with optimality

With the design of the environments, it is ensured that during testing, optimality can only be
achieved for one of the two goals, but not both. Using this property, we can find out which of the
two goals the agent prefers; optimality rates can provide us with a measure of how likely an agent is
to pursue one goal over the other. To achieve this, we test the agent for a large number of episodes,
and record if the agent is optimal for the intended goal, the misgeneralised goal, or neither. Given
the reward-intended goal optimality rate optint and the misgeneralised goal optimality rate optmis,
we can define the misgeneralisation rate as optmis

optint+optmis
(where the rate is undefined if the optimality

for both goals is 0). As we will see, the misgeneralisation rate can vary significantly over different
environments and goals.

3.4.2 Optimality as an exploitation rate during training

For the simple GridWorld environments, the optimality metric also works surprisingly well for train-
ing purposes as a ratio for exploitation versus exploration. Usually, the exploration rate is defined
by some number ϵ, which decays gradually as a function of the total training steps. This ensures
that exploration is initially high and is slowly replaced by exploitation as the agent becomes more
competent; however, a downside of this is that it is unsure at initialisation how fast ϵ should decay,
since it is not yet known how many training steps the agent needs to become competent. This
can lead to unnecessarily long training times, as a conservative value for ϵ will cause an already
competent agent to make many random actions, while a low rate of ϵ keeps an untrained agent from
exploring, and thus from learning.

In the gridworld environments, optimality perfectly captures this level of ”competence” in an agent,
and can be used as an inverse for the exploration rate. Every so often we calculate the optimality
for an agent without exploration (which is very efficient, since we only give the agent the minimum
number of needed time steps every episode), and then we set ϵ = 1 − optimality (with both an
upper and lower bound for ϵ7): intuitively, ϵ is equal to the ratio of episodes where our agent did
not yet behave optimally. Implementing this metric yielded significantly faster training times, since
the agent’s exploitation rate is now directly linked to its performance; additionally, we could halt
training as soon as agent performance reached optimality 1.000. Note that this does not man that
the agent is guaranteed to be optimal in every environment, only that it behaved optimally for 1.000
successive testing episodes.

It should also be noted that this metric only works for exploration purposes since we can expect
the agent to already behave optimally sometimes after a bit of training, which enables the agent to
use more exploitation. This metric would not be as useful in environments where it takes a lot of
competence to behave optimally for the first time, or in non-deterministic environments.

7Specifically, ϵ has value 0.9 at the start of training, and always remains at 0.05 at the end of training.

19

3.5 Target gridworld

In the Target gridworld environment, the agent simply has to navigate to the target in order to
receive the reward. However, during training, the target is fixed in a certain place in the gridworld,
such that the target now has a positional proxy ; it is possible to formulate an equivalent goal which
states that the agent should move to that specific place, regardless of whether the target is there.
The reward intended goal and desired misgeneralised goal can be defined as follows:

Gint: move to the red target
Gmis: move to the position that contained the target during training

An even simpler variaton of this is when the target is put in the bottom right corner of the gridworld;
while it still has the same positional proxy, it now also has a directional proxy : this setup encourages
the agent to always move either to the right or down. Here, there is an additional misgeneralised goal:

Gmis: Always move either to the right or down; move down if in the rightmost column, move right
if in the bottom row.

Figure 7: The Target gridworld environment; the agent has to move to the red square, which is
always placed at a fixed position. In case of action GMG (left) the target is in the bottom right
corner; for position GMG (right) the target is placed in the middle of the grid.

While in this environment it is unclear form observing the agent whether it uses a positional or
directional proxy when the target is in the corner, since both are always correlated, we can infer this
fact from the training process; the agent trains about three times as quickly when the target is in a
corner than if the target is in the middle of the gridworld (500 episodes compared to 1500), and
thus uses a directional proxy instead of a positional one.

3.5.1 GMG results for TargetGridWorld

After training and testing, misgeneralisation rates for both these cases are 1.000; this means that,
tested on 1000 episodes, the agent always compentently pursues the misgeneralised goal and moves

20

to the position the target used to be during training. In fact, the agent barely has any capability
failure, and thus does not seem to be ”thrown off” at all by the fact that the red target is no longer
in the usual position.

From this, we can conclude that while something like position of a goal is not explicitly encoded in
the agent’s observation, it is a large deciding factor for shaping the agent’s behavior.

3.6 Property gridworld

In the PropertyGridWorld, the agent again has to reach a target; this time, the target is placed on
a random position in the grid during training. However, the target now also has several proxy prop-
erties: instead of the target being encoded as one object, the target is now encoded as five objects
within the agent representation; all of these are encoded as a seperate 1 at the target position and
0 elsewhere, such that the agent has several different objects it could train its behavior on. The
corresponding goals are

Gint: move to the target (represented as the red square)
Gmis: move to any other attribute the target has (represented by the dot and lines)

Figure 8: Moving the properties to another position one by one.

One interesting thing to note here is that there is not one obvious intended goal: based on just
observing the rewards, the specified reward function could reward the agent for reaching the red
square, or the horizontal line, or any other combination of properties. In this training environment,
the target does not have one defining property, but is rather a combination of all the attributes;
only in the testing environment do we separate these properties.

3.6.1 GMG results for PropertyGridWorld

After training the agent in the environment where all properties are at the target, we deploy the
agent in environments where one by one, the properties are moved to a secondary location. Mea-
suring optimalities for every such environment: we get the following results:

Note that in all cases, the target retains one property, namely the red square, such that in the final
environment, the target has one property and the other location has five.

From these results, it seems that the agent is not fixated on any one of the properties individually,
but rather the number of properties at some location. The more properties at a location, the more
likely the agent is to go there; as more properties move from one location to another, the agent

21

Figure 9: optint, optmis and no optimality rates for different number of proxy properties.

gradually changes its behavior to move to the secondary position.

3.7 Chest gridworld

The Chest gridworld is a gridworld where again, the agent must reach a red target, but must first
visit a yellow square. This can be interpreted as the target being a locked chest; first, the agent
must collect the yellow key, at which point the agent can move to the chest and get the reward.

Figure 10: The ChestGridWorld environment: the agent should first go to the yellow square (the
key), and then to the red target (the chest). After training, the agent is placed in an environment
with two keys; collecting either key is sufficient for achieving the objective.

After training, the agent is placed in a similar environment, which now contains not on, but two
keys. The question for this environment is whether the agent will simply pick up either of the keys

22

and go to the chest, or if it pick up both keys before moving to the chest. The corresponding goals
are as follows:

Gint: collect a key, and then move to the chest
Gmis: collect all keys; if none are left, move to the chest

Both of these goals are consistent with the rewards during training, since only one key was present
and so ”collect a key” and ”collect all keys” have the same meaning.

During the first iteration of this environment, a key would simply disappear when the agent had
reached it, implying that the agent had picked it up. However, this was problematic for the two-key
scenario; if the agent managed to pick up one of the keys, it would disappear, and the environment
would become identical to what the agent was trained on; an environment containing a chest and
one key, and so it would always collect the other key before moving to the chest.

In order to properly encode that the agent had ’picked up’ a key in the second iteration of the
environment, a key will simply keep the same position as the agent after the agent had reached this
key, implying that the agent has picked up the key. This removes the ambiguity after the agent has
reached one of the two keys, since the agent could learn to always move to the chest if the agent is
in the same position as a key (i.e., it has picked up a key).

For this environment, it was also a bit more difficult to define the minimum number of steps needed
to complete the 2-key environment. Since there are several paths to collect both keys and go to
the chest, the agent might move straight from one relevant object to another, and still not take the
shortest possible path. To remedy this, we define the number of steps for optimality as the longest
of the two routes which collect both keys.

23

3.7.1 GMG results for Chest gridworld

After training the agent in the one-key environment until optimality reached 1.000, the agent was
deployed in the two-key environment; optimality results are shown in the graph below.

Figure 11: Optimality scores for 10,000 episodes

It is clear that although there is a fair amount of capability misgeneralisation, the agent prefers
collecting both keys before moving to the target.

There are many possible explanations for why this behavior might be easier to learn, but at least it
seems that the representation of an unfetched key weighs havier than that of the obtained key, since
the agent chooses to go to the former key even if it can see it has the latter key.

24

4 Mitigating Goal Misgeneralisation with Interpretability Tools

The final chapter of this thesis will study the feasibility of using logical interpretability tools to detect
possible goal misgeneralisation. This will be done through the implementation of two knowledge-
based algorithms - the CN2 induction algorithm and the least-commitment search algorithm - in
order to generate possible propositional descriptions of the intended goal. First, some preliminary
work on interpretability is discussed, after which the two algorithms will be introduced, and finally
we will implement these algorithms to generate descriptions of the objective for our three gridworld
environments.

4.1 Explainability and Interpretability

While deep learning methods are very efficient and have been widely adopted over the past years,
their performance often comes at the cost of transparency [51]. These systems are able to learn
accurate classification or competent behavior over a wide range of applications, but are not able to
provide a human-comprehensible explanation for their actions. As these models are scaled up, they
are only expected to become more incomprehensible and opaque. Because of this, there is a growing
demand for methods that can help us understand why these models make certain decisions.

Two concepts often used for this purpose is explainable AI (XAI) and machine interpretability. Al-
though these concepts have been widely used, no formal definition for either concept exists [52]; while
some attempts have been made, these definitions lack the mathematical rigor to use as a clear metric.

More widely embraced descriptions do not define a strict measure on AI systems, but simply attempt
to capture the intention of what we would like these methods to achieve; one of the more popular
definitions describes interpretability as “the degree to which a human can understand the cause of
a decision” [53] 8.

There are several ways to make a black-box model more interpretable, such as making the model
itself more interpretable by studying it and figuring out how exactly it works [54]; this is the case
with the method of mechanistic interpretability mentioned in the introduction. Another method is
the post-hoc use of interpretable algorithms to generate explain behavior of the black-box model;
this is the approach we will take in the rest of the section.

4.2 Logical interpretability: rule induction algorithms

Symbolic algorithms can be used to explain the output of an opaque model by analysing this output
and capturing this behavior in interpretable explanations. One way this is done is by generating a
list of rules, which capture the bevavior of an agent to a degree of accuracy. One way to generate
such a set of rules is with rule induction [55]; this is the method of generating logical rules which
use the value of certain features to predict the value of an outcome variable.

This is relevant method in and of itself for classification tasks in the domain of supervised learning,
but we can also use it as an interpretability tool for RL envrionments: namely, to use features from
the environment to predict which action an agent will take.

8for the remainder of this section, we will simply use ”interpretability” to refer to this concept.

25

This method has been applied in order to synthesize a rule-based agent from observing an RL agent.
After training an RL agent in this environment, data of its performance was collected and used to
classify the agent’s behavior depending on its observation, resulting in an interpretable rule-based
agent which had a performance comparable to the original RL agent [56].

For our purposes, we do not want to generate interpretable explanations for the agent’s policy, but
instead generate descriptions of the intended objective as captured in the reward function: is it
possible to classify when the environment’s objective has been achieved, based on features from the
environment which the agent can observe? If this can be done, we can generate descriptions of the
objective which are consistent with the agent’s behavior; with this, we can see what objectives are
consistent with the agent’s observations and obtained rewards, which correspond to objectives that
the agent might generalise to.

4.2.1 Data collection for rule induction

Interpretable rules are generated using selectors, which are feature-value pairs. A dataset is gener-
ated by observing the agent interacting with the environment, and for each chosen feature, recording
the selectors of each state. Since for each state in the environment, it is easy to check if a selector
holds - that is, if the feature has the corresponding value in that state - induction rule algorithms
can generate logical sentences with these selectors, which are either true or false corresponding to
the outcome value this rule predicts.

4.2.2 CN2

The CN2 algorithm was first introduced in 1989 as an improved version of other rule induction
algorithms [57]; This algorithm takes as input a dataset of features and outcomes, and generates an
ordered ruleset which classifies new examples based on its feature values. Rules consist of conjunc-
tions of selectors, and can be formulated as
”IF feature1 = value1 AND feature2 = value2 AND ... THEN result = ...”

Candidate rules are found using beam search, and are rated according to a user-defined metric. For
noisy data, often entropy and significance are used as a search heuristic; when a best rule is found,
all examples covered by this rule are removed from the dataset and the process is repeated for the
remaining examples.

For our purposes, we will need a different metric, since our data contains no noise; because the
outcome we measure is whether the environment is completed, this result will always be accurate
and consistent. If we were to use a metric like entropy, all rules would have the same ranking of
zero entropy, and an arbitrary rule would be picked. Instead, we will use rule coverage; the more
examples a rule correctly classifies, the better it is rated. This results in the most general - though
still consistent - rules being picked, and avoids long lists of overly specific rules.

4.2.3 Version space learning: Least-commitment search

While it is interesting to see which objective the CN2 algorithm will predict, a downside is that it
only generates one possible ruleset that predicts whether the objective is achieved or not. However,

26

the problem we are faced with with GMG is that there are several objectives compatible with the
agent’s behavior on the training data. So, instead of generating just one explanation, ideally we
would like to generate all possible hypotheses for the objective 9. This approach is called version
space learning [58]; given some space of possible hypotheses and a dataset of observations, we would
like to iteratively refine this space by removing all hypotheses which are not consistent with the
observed data, until only the valid hypotheses remain.

However, iterating over all possible feature configurations to check if they are consistent with the
objective outcome is infeasible in practice. Even for the simple gridworlds, the number of features
can quickly grow very large; if we would like to use the position of 6 objects as features in a 4 × 4
gridworld (for example, agent, target and colors), the size of the hypothesis space is already around
24 million 10 selector combinations.

The least-commitment search algorithm employs an idea to significantly cut down on the number of
hypothesis that needs to be considered; the main idea behind the this algorithm is that there exists
a partial order on this hypothesis space, based on whether some hypothesis is strictly more specific
than another. For example, the hypothesis ”Agent position = (2,3) and Target position
= (0,2)” is more specific than ”Agent position = (2,3)”. If the latter is not always true for a
completed environment, then certainly the former is also not true and thus can also not be a valid
hypothesis. In fact, every hypothesis containing the selector ”Agent position = (2,3)” can be
discarded. On the other hand, if the former hypothesis also holds for non-complete states, this rule
is too general to be a consistent hypothesis, and every hypothesis more general than this -such as
the latter hypothesis - can also be discarded . Using this partial ordering, we can represent the set
of all hypothesis consistent with the episode data with the sets of most general and most specific
hypotheses still consistent with the data; these are called the ”G-set” and ”S-set” respectively. Any
hypotheses which fall between these borders is consistent with the data, everything outside of it is
inconsistent.

Figure 12: A visualisation of the G-set and S-set as hypothesis boundaries [58]. Nodes represent
hypotheses, edges represent the relationship of one hypothesis being more specific than the other.

9From here on, we will use ”hypothesis” to mean a rule-based description to predict a binary outcome; for the
rest of this thesis, the hypothesis will always be conjunctions of feature values, and the outcome will be whether the
objective is completed or not

10Each object has 16 positions, and each feature could be excluded from a hypothesis, taking no value, for a total
of 176 possibilities.

27

The least-search algorithm iterates over examples, and updates these boundary sets as necessary. If
a hypothesis in either set is consistent with the example, it can remain in the set. If it is inconsis-
tent, the example is either a false positive or false negative for the hypothesis. If the example is a
false positive, this means the hypothesis predicts the objective has been achieved in this example,
even though it hasn’t; in this case, the hypothesis is too general, and should be made more specific
by adding more selectors. If the example is a false negative (the hypothesis predicts the goal has
not been achieved, even though it has), the hypothesis should be made more general by dropping
selectors. In either of these cases, the corresponding set needs to be modified.

If an example is a false positive for a hypothesis in the G-set, the hypothesis is too general; it needs
to be made more specific in order to be consistent with the example, so it is replaced by all its
specialisations, generated by adding any possible selector to the hypothesis. If an example is a false
negative, the hypothesis is too specific; however, since it is in the G-set, it cannot be generalised
more without becoming inconsistent, and should thus be discarded from the set.

For hypotheses in the S-set, a false positive means the hypothesis is too general, and thus must be
discarded from the S-set; for a false negative, the hypothesis is too specific, and is replaced by all
its generalisations, which are generated by dropping any selector from the hypothesis.

After running over all examples, there are three possible outcomes; either the G-set and S-set are
empty, meaning there are no consistent hypotheses based on the given features; there are several
hypotheses left in the version space, meaning multiple hypotheses are consistent with the data; or -
in our case ideally - there is only one hypothesis left; this is the only hypothesis that is consistent
with the observed data. It should be noted that this is then the only consistent hypothesis based on
the features present in the data; if more features are considered, more consistent hypotheses might
be generated.

A general downside of this method is that the hypothesis space can easily collapse if there is noisy
data present, since relevant hypotheses can immediately be discarded because of an incorrectly-
labeled data point: However, even though the agent’s learned policy might be noisy at times if it
exhibits capability failure, the environment is always accurate in determining when the episode is
completed, so there is no noise present in data classifying an episode as completed or not.

4.3 Applying rule induction algorithms to the GridWorld environments

Having implemented these algorithms, we can apply them to our gridworld environments in order
to generate descriptions of the intended objective based on observation from the agent interacting
with the environment. First, we collect relevant data from each environment, which we feed into
both induction algorithms. The CN2 algorithm only returns one ruleset; we discuss why this rule
in particular is chosen by the algorithm, and how we can obtain alternative rulesets. The least-
commitment search algorithm returns a representation for all possible description hypotheses; we
discuss how this representation can be used to find novel environment states which invalidate some
of these hypotheses, and reduce the possibility of GMG.

28

4.3.1 Data collection from trained agents

For each gridworld, we select some relevant features of the gridworld from which we wish to gener-
ate hypotheses; which features specifically are chosen is mentioned below. Next, we run our trained
agent for 1000 episodes in each environment and collect data on these features, along with whether
the agent has completed the objective or not. This dataset is then used as the input for both rule
induction algorithms.

Target gridworld features
Agent position: the location of the agent, in (x,y) coordinates
Targe positiont: the location of the target
Target distance: The Manhattan distance from the agent to the target

Property gridworld features
Target distance: the same as in the Target gridworld
Property distance 1 through 5: The distance to each of the indiviual properties

Chest gridworld features
Chest distance: The distance from the agent to the chest
Key distance: The distance from the agent to the key

Note that for the property gridworld, we only include distance to the target and properties, and
no positions of objects; this is because, even for this very simple environment, including positions
caused the boundary S-set update to increase significantly in size, since very false positive replaces
a hypothesis with the n more general ones, where n is the number of features. For more on the
efficiency and algorithmic complexity of this algorithm, see the discussion.

4.3.2 Results of CN2

After collecting our data, we pass it as input to our implementation of the CN2 algorithm. The
resulting rulesets are as follows:

TargetGridWorld
IF Agent position IS (3, 3) THEN done IS True
DEFAULT: done IS False

This ruleset corresponds to the misgeneralised goal Gmis; it is only concerned with the position of
the agent, not with the position of the target. This gives valuable information about the possiblity
of misgeneralisation; while this does not guarantee that the agent will always try to optimize Gmis,
it does show the fact that this objective is consistent with the observed data, and thus that an agent
optimizing for this objective would be maximally rewarded on this subset of the training data.

29

The next question to consider is the following: why did the algorithm return this ruleset, and not
a ruleset corresponding with, for example the intended objective? It turns out the answer is quite
simple; since every misgeneralised objective is by definition indistinguishable from the intended goal
based on observed behavior on the training data, the CN2 algorithm does not rank the rulesets
corresponding to these objectives as higher or lower than the others. All of these rulesets have the
same ranking, so the best ruleset that the algorithm keeps track of is the first one that is generated;
this happens to be the rule containing the selector which appears first in the data, and this is a
completely arbitrary property.

If we restructure the dataset by switching two colomns, resulting in the Target distance feature to
appear first, CN2 returns the following ruleset:

IF Target distance IS 0 THEN done IS True
DEFAULT: done IS False

This is the intended objective. So, because these rules have identical coverage over the observed
data, both rules are ranked the same according to CN2, and which one gets picked comes down to
which attribute appears first in the dataset. For more on this, see the discussion.

Property gridworld
For the property gridworld, we get the following ruleset:

IF Target distance IS 0 THEN done IS True
DEFAULT: done IS False

This corresponds to the intended objective of the environment. However, just as with the target
gridworld, the reason that this ruleset is chosen again depends only on the structure of the dataset,
and not on some specific property of the target distance itself. If we repeat the process of swapping
two columns in the dataset such that the property1 distance is the first feature we record, we get
the following ruleset:

IF Property1 distance IS 0 THEN done IS True
DEFAULT: done IS False

So again, which rule CN2 returns is completely arbitrary and based on in what order the data are
collected.

Chest gridworld

For the final environment, running the algorithm on the collected data results in the following ruleset:

IF Chest Distance IS 0 THEN CLASS IS True
DEFAULT done IS False

This is an interesting result, since behavior based on this ruleset is not rewarded during training;
the agent needs to move to the key first, so simply moving to the chest will not give any reward.

30

However, CN2 still returned this as a possible objective, since the episode was completed every
single time the agent reached the chest. Because the agent has optimised its behavior and only
moves to the chest if it has gotten the key, the training data did not contain any examples where
the agent is at the chest without having the key. As this is not in the training data, it the induc-
tion algorithm cannot infer that this is insufficient to complete the environment, and thus returns
it as a valid possible objective - even if the agent has already learned that this is not a viable strategy.

We can easily remedy this by including some random agent behavior in the training data, such that
it contains examples of the agent being at the chest without a key. With these observations, the
algorithm returns the following ruleset:

IF Key Distance IS 0 AND Chest Distance IS 0 THEN done IS True
DEFAULT done IS False

This classification corresponds to a correct objective, in this case the intended objective. However,
with the current features, it is not possible to construct a ruleset for the environment with multiple
keys. Since the ”Key distance” feature corresponds to the distance to only one of the two keys, it
is not a sufficient feature to classify succes in this environment, because the environment can be
completed with the other keys as well. In order to generate suitable rules for this environment, we
need to introduce two new features: these are ”Any key” and ”All keys”, measuring if the agent has
obtained either of the keys and both of the keys respectively; with these features, we can construct
rulesets corresponding to Gint and Gmis respectively. With these features, we obtain a ruleset again
corresponding to Gint:

IF Any key IS True AND Chest Distance IS 0 THEN CLASS IS True
DEFAULT done IS False

It has become apparent that the choice of features play a deciding role in wether relevant rulesets
can be generated. Because of this, the validity of this method to detect GMG is questionable, since
alternative hypotheses for the objective can only be detected if corresponding features are measured,
which requires some prerequisite intuition of how an agent might misgeneralise; for more, see the
discussion.

4.3.3 Results of least-commitment search

For the least-commitment search algorithm, the structure of the data no longer matters, since the
algorithm generates all consistent hypotheses at once. With this, we can immediately see if GMG
is possible on the basis of the features we have measured.

Target gridworld
When running the algorithm on data gathered from the Target gridworld, we get the following re-
sults:
G-set hypotheses:
Agent position = (3, 3)
Target distance = 0
Target position = (3, 3) and Agent position = (3, 3)

31

Target position = (3, 3) and Target distance = 0
S-set hypotheses:
Agent position = (3, 3) and Target position = (3, 3) and Target distance = 0

From the G-set, we can immediately see that several hypotheses are consistent with the gathered
data, even though not all hypotheses are reflected by the reward function. In this case, it is clear
that several hypotheses need to be eliminated in order to remove the possibility of GMG; this would
mean that for two hypotheses, it should be investigated whether an episode is complete if one
is true and the other isn’t. For example, it can be investigated what happens if Agent position
= (3, 3) but Target distance ̸= 0 This can only be the case if the target is not at position (3,3) 11.

When we include training data where the target can be at any position, we get the following bound-
ary sets:

G-set hypotheses:
Target distance = 0
S-set hypotheses:
Target distance = 0

Since both sets contain the same single element, we can conclude that this is the only hypothesis
consistent with the training data. Thus, we can conclude that no misgeneralisation can occur on the
basis of these features. However, misgeneralisation may still occur on the basis of any other features
not considered in the collected data; just as with the CN2 algorithm, our choice of features largely
determines in which scope we are able to detect the possibility of GMG.

Property gridworld
For data from the Property gridworld, we get the following results:

G-set hypotheses:
Target distance = 0
Property1 distance = 0
Property2 distance = 0
Property3 distance = 0
Property4 distance = 0
Property5 distance = 0
S-set hypotheses:
Target distance = 0 and Property1 distance = 0 and Property2 distance = 0 and
Property3 distance = 0 and Property4 distance = 0 and Property5 distance = 0

Again, there are several hypotheses, all of which are consistent with the observed data. Note that
even though there are many possible hypotheses, none has the ability to accurately predict the
agent’s behavior, namely, that the agent’s tendency to go to a position is proportional to the num-
ber of properties in that position. However, the intended behavior can again be easiliy discovered if
training examples are supplied where the different properties are separated; this will eliminate every

11Note that in some cases, two hypotheses can actually be identical in meaning, and thus cannot be separated by
any example; for more on this, see the discussion in section 6.

32

hypothesis except for Target dist = 0.

Chest gridworld Finally, we use data from the 1-key chest gridworld with the ”Any key” and
”All key” features to get the following results:

G-set hypotheses:
Chest Distance = 0
Any key = True and Chest Distance = 0
All keys = True and Chest Distance = 0
S-set hypotheses:
Chest Distance = 0 and Any key = True and All keys = True

Again, the first G-set hypothesis is incorrect, but can be removed by supplementing the dataset with
non-optimal behavior. The other hypotheses are as expected, and correspond to Gint and Gmis.

If we run the algorithm on the 2-key environment, we get the following sets:

G-set hypotheses:
Chest Distance = 0 and Any key = True
S-set hypotheses:
Chest Distance = 0 and Any key = True

This representation of the hypothesis space only contains one hypothesis, namely the one correspond-
ing to the intended objective. This is because the agent did not have a perfect misgeneralisation
rate after training, such that it sometimes collected one key and sometimes both keys. Because of
this, it is able to receive rewards for a more diverse set of outcomes, and the algorithm can discard
the hypotheses where all keys are needed.

33

5 Discussion and Further Work

Given the results from section 3 and 4, there are several problematic aspects and open problems
remaining; the most important ones are discussed here.

5.1 Features included in the induction algorithm

A problem with using features gathered from episode observations to define objectiv hypotheses,
is that the induction algorithms can only formulate misgeneralised objectives on the basis of these
chosen featurs. This heavily limits to what extent misgeneralised objectives can be extracted; it
seems we need to predict what features the agent might misgeneralise on in order to generate these
hypotheses, which somewhat defeats the purpose of these algorithms.

A possible solution to this is to not specify any features; we can simply take the entries of the agent’s
binary observation vector as features.
However, this approach has three problems of its own. First of all, the agent’s observation entries
might not always correspond to concepts that humans can easily interpret. For image recognition, it
does not suffice to explain a labelling based on the color value of certain pixels; instead, higher-order
features need to be constructed in order to generate understable explanations.

That brings us to the second problem: not all properties on which an agent might misgeneralise
are directly encoded into the observation. For example, in the gridworlds we use distance from the
agent to an object as a property, but this is only indirectly represented in the agent’s observation;
there is no entry which corresponds to distance, but this property is dependent on other entries. So,
using only the agent’s observation entries would probably not result in valid hypotheses.

Lastly, it is simply infeasible to include that many features. Because the number of possible hy-
potheses with binary features is 3n, with n number of features (every feature is either true, false
or omitted from the hypothesis), the version space that the least-commitment algorithm needs to
search becomes enormous with a large number of features. Even if the algorithm need not consider
every hypothesis in this space, the relevant number of hypotheses still increases exponentially as the
number of features increases.

5.2 Terminal goal states as objective

The rule induction algorithms that were used made rules to predict certain outcomes; in our case,
the outcome was whether the environment has been completed or not. This method is clearly
potentially useful for environments where the objective is to reach some terminal goal state, since
reaching this goal state is strictly positive, while any other state can be classified as strictly negative.

However, not every environment can be formulated in this way; environments where the objective
is for the agent to avoid certain states, or simply survive in the environment for as long as possible,
do not have clearly defined goal states. As such, it is less feasible to classify any observation as
succesful or not, which hampers our ability to formulate hypotheses that describe success

Further research could be conducted on predicting reward, instead of having completed the en-
vironment; this would enable hypotheses generation on a wider range of environments without a

34

predefined goal state, but simply more and less preferred states. However, this limits which in-
duction algorithms can be used; while the CN2 algorithm can predict several outcome values, the
least-commitment search algorithm can only classify binary outcomes, and as such is not suitable
for this task.

5.3 Incomplete data from optimal behavior

If the agent behaves optimally towards some goal in its environment, this may actually result in
more hypotheses being generated from observation data than if observing a random agent; this is
because the optimal agent competently avoids certain states that are not rewarded, and so these
cannot be recorded in observation data as indeed having no reward. However, an upside of observing
agent behavior is that we will often be able to record success as well; only observing a random agent
in an environment will lead to very sparse data on what constitutes success, since the goal state will
almost never be reached.

An optimal dataset would contain a mixture of both optimal and random behavior, to reap from
both benefits. A possible way to implement this is to record data during the course of training,
instead of after completing training; this way, random behavior is recorded at first, and is gradually
supplemented by optimal behavior as the agent learns correct behavior.

5.4 Distinguishing hypotheses

An unresolved problem is that although our rule induction algorithms can generate multiple hy-
potheses, it is not immediately clear if these hypotheses could differ on OOD data, or if they are
objectively identical. For example, the least-commitment search algorithm applied to the chest grid-
world will generate the hypotheses All keys = True and Chest Distance = 0 and All keys
= True and Any key = True and Chest Distance = 0. While these hypotheses differ in
description, they are actually identical, since the agent having all keys logically implies that it has
some key 12.

Further research could be conducted on verifying whether for two hypotheses, there exists a state in
the environment which seperates these hypotheses, meaning that only one hypothesis is consistent
with this state. If such a state is found, the corresponding reward can be observed and one of
the hypotheses discarded. If no such state exists, the hypotheses are truly identical within the
environment.

12given, of course, that there is at least one key present in the environment.

35

Conclusion

This work has studied the properties of goal misgeneralisation by designing simple environments and
training agents in this environment which exhibit misgeneralised behavior. It is shown that very little
is needed for goal misgeneralisation to occur; as long as the training architecture uses function ap-
proximation, and there is ambiguity in the observed training data and corresponding rewards - that
is, if there are multiple objectives whose corresponding behavior are similar on the observed training
data, but differ outside this data - GMG can occur, even with minimal training time. Whether this
will occur, and to what extent, depends on how likely the agent is to optimize on the unintended goal.

For the target Gridworld, the corresponding agent robustly optimizes on positional and directional
proxies of the objective instead of attributes of the objective present in the agent’s observation,
showing that these proxies are strong possible indicators of possible GMG. Removing these proxies,
the strength of features present in the agen’s observation also influences behavior, as shown with the
property gridworld; which of two options the agent pursues is shown to correlate with how strongly
this option is encoded in the agent’s representation.

Rule induction algorithms were tested for their ability to predict whether it is possible for an agent
to optimize on an unintended objective, based on what is consistent with the agent’s behavior in
the training environment. While the implemented CN2 algorithm was able to generate a consistent
objective hypothesis, it was only able to generate a single hypothesis; which hypothesis was chosen
depended only on arbitrary properties of the structure of the collected data. The least-commitment
search algorithm was able to generate all feature-based hypotheses consistent with the observed data,
but the scope of these hypotheses is severely limited by which features are chosen with which to
generate the hypothesis space; because of this, misgeneralised behavior may not always be predicted
with these algorithms, as is shown with the chest gridworld.

With these results, the practical use of these rule induction algorithms is shown to be very limited,
mainly because of two reasons: considered features need to be specified beforehand, which limits
the scope of hypotheses that the algroithms can search through. Second, the runtime of these al-
gorithms vastly increases along with the number of features and corresponding selectors, rendering
it impractical to deploy the algorithms in more complex situations where the number of features to
consider can be vast.

Although these methods give clear representations of possible ways of GMG, the limitations of
these methods probably outweigh their practicality for everything past toy environments. While
these methods might still remain useful in toy environments to research possible novel ways GMG
can occur, they have little practical use for predicting and preventing GMG in complex, real-world
systems.

36

References

[1] I. Gabriel, “Artificial intelligence, values, and alignment,” Minds and machines, vol. 30, no. 3,
pp. 411–437, 2020.

[2] P. Eckersley, “Impossibility and uncertainty theorems in ai value alignment (or why your agi
should not have a utility function),” arXiv preprint arXiv:1901.00064, 2018.

[3] A. Y. Ng, S. Russell, et al., “Algorithms for inverse reinforcement learning.,” in Icml, vol. 1,
p. 2, 2000.

[4] A. Conmy, A. N. Mavor-Parker, A. Lynch, S. Heimersheim, and A. Garriga-Alonso, “Towards
automated circuit discovery for mechanistic interpretability,” arXiv preprint arXiv:2304.14997,
2023.

[5] N. Nanda, L. Chan, T. Liberum, J. Smith, and J. Steinhardt, “Progress measures for grokking
via mechanistic interpretability,” arXiv preprint arXiv:2301.05217, 2023.

[6] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the game of go with deep
neural networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[7] M. F. A. R. D. T. (FAIR)�, A. Bakhtin, N. Brown, E. Dinan, G. Farina, C. Flaherty, D. Fried,
A. Goff, J. Gray, H. Hu, et al., “Human-level play in the game of diplomacy by combining
language models with strategic reasoning,” Science, vol. 378, no. 6624, pp. 1067–1074, 2022.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,
“Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.

[9] OpenAI, “Gpt-4 technical report,” ArXiv, vol. abs/2303.08774, 2023.

[10] S. Russell, D. Dewey, and M. Tegmark, “Research priorities for robust and beneficial artificial
intelligence,” Ai Magazine, vol. 36, no. 4, pp. 105–114, 2015.

[11] “Pause giant ai experiments: An open letter,” May 2023.

[12] “Statement on ai risk,” May 2023.

[13] N. Wiener, “Some moral and technical consequences of automation: As machines learn they
may develop unforeseen strategies at rates that baffle their programmers.,” Science, vol. 131,
no. 3410, pp. 1355–1358, 1960.

[14] A. Turing, “Can digital computers think? typescript with annotations of a talk
broadcast on bbc third programme, 15 may,” tech. rep., AMT/B/5. In [39]. URL:
http://www.turingarchive.org/browse.php/B/5, 1951.

[15] S. Russell, “Human-compatible artificial intelligence,” Human-Like Machine Intelligence, pp. 3–
23, 2021.

[16] J. Dressel and H. Farid, “The accuracy, fairness, and limits of predicting recidivism,” Science
advances, vol. 4, no. 1, p. eaao5580, 2018.

[17] B. Christian, The alignment problem: Machine learning and human values. WW Norton &
Company, 2020.

37

[18] J. Buolamwini and T. Gebru, “Gender shades: Intersectional accuracy disparities in commercial
gender classification,” in Conference on fairness, accountability and transparency, pp. 77–91,
PMLR, 2018.

[19] N. Grant and K. Hill, “Google’s photo app still can’t find gorillas. and neither can apple’s.,”
May 2023.

[20] T. Bolukbasi, K.-W. Chang, J. Y. Zou, V. Saligrama, and A. T. Kalai, “Man is to computer
programmer as woman is to homemaker? debiasing word embeddings,” Advances in neural
information processing systems, vol. 29, 2016.

[21] G. F. Cooper, V. Abraham, C. F. Aliferis, J. M. Aronis, B. G. Buchanan, R. Caruana, M. J.
Fine, J. E. Janosky, G. Livingston, T. Mitchell, et al., “Predicting dire outcomes of patients with
community acquired pneumonia,” Journal of biomedical informatics, vol. 38, no. 5, pp. 347–366,
2005.

[22] S. Wachter, B. Mittelstadt, and L. Floridi, “Why a right to explanation of automated decision-
making does not exist in the general data protection regulation,” International Data Privacy
Law, vol. 7, no. 2, pp. 76–99, 2017.

[23] A. Selbst and J. Powles, ““meaningful information” and the right to explanation,” in conference
on fairness, accountability and transparency, pp. 48–48, PMLR, 2018.

[24] R. Sutton, “The bitter lesson,” URL http://www. incompleteideas. net/IncIdeas/BitterLesson.
html, 2019.

[25] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, “A proposal for the dartmouth
summer research project on artificial intelligence, august 31, 1955,” AI magazine, vol. 27, no. 4,
pp. 12–12, 2006.

[26] J. Steinhardt, “Ai forecasting: One year in,” LessWrong. Available online at:
https://www.lesswrong.com/posts/CJw2tNHaEimx6nwNy/ai-forecasting-one-year-in (accessed
June 31, 2023), 2022.

[27] V. C. Müller and N. Bostrom, “Future progress in artificial intelligence: A survey of expert
opinion,” Fundamental issues of artificial intelligence, pp. 555–572, 2016.

[28] K. Grace and J. Salvatier, “2016 expert survey on progress in ai,” AI Impacts. Available online
at: https://aiimpacts.org/2016-expert-survey-on-progress-in-ai/ (accessed December 7, 2022),
2016.

[29] Z. Stein-Perlman, B. Weinstein-Raun, and K. Grace, “2022 expert survey on progress in ai,”
AI Impacts. Available online at: https://aiimpacts. org/2022-expert-survey-on-progress-in-ai
(accessed December 7, 2022), 2022.

[30] A. Cotra, “Forecasting tai with biological anchors. 2020,” URL https://docs. google.
com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit.

[31] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee,
Y. Li, S. Lundberg, et al., “Sparks of artificial general intelligence: Early experiments with
gpt-4,” arXiv preprint arXiv:2303.12712, 2023.

38

[32] N. Bostrom, “The superintelligent will: Motivation and instrumental rationality in advanced
artificial agents,” Minds and Machines, vol. 22, no. 2, pp. 71–85, 2012.

[33] S. M. Omohundro, “The basic ai drives,” in AGI, vol. 171, pp. 483–492, 2008.

[34] R. Ngo, “The alignment problem from a deep learning perspective,” arXiv preprint
arXiv:2209.00626, 2022.

[35] J. Carlsmith, “Is power-seeking ai an existential risk?,” arXiv preprint arXiv:2206.13353, 2022.

[36] A. M. Turner, L. Smith, R. Shah, A. Critch, and P. Tadepalli, “Optimal policies tend to seek
power,” arXiv preprint arXiv:1912.01683, 2019.

[37] A. Turner and P. Tadepalli, “Parametrically retargetable decision-makers tend to seek power,”
Advances in Neural Information Processing Systems, vol. 35, pp. 31391–31401, 2022.

[38] V. Krakovna and J. Kramar, “Power-seeking can be probable and predictive for trained agents,”
arXiv preprint arXiv:2304.06528, 2023.

[39] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik, T. Lampe, Y. Tassa,
T. Erez, and M. Riedmiller, “Data-efficient deep reinforcement learning for dexterous manipu-
lation,” arXiv preprint arXiv:1704.03073, 2017.

[40] T. M. VII, “The first level of super mario bros. is easy with lexicographic,” 2013.

[41] J. Randløv and P. Alstrøm, “Learning to drive a bicycle using reinforcement learning and
shaping.,” in ICML, vol. 98, pp. 463–471, 1998.

[42] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward transformations: Theory
and application to reward shaping,” in Icml, vol. 99, pp. 278–287, Citeseer, 1999.

[43] S. Thulasidasan, S. Thapa, S. Dhaubhadel, G. Chennupati, T. Bhattacharya, and J. Bilmes,
“An effective baseline for robustness to distributional shift,” in 2021 20th IEEE International
Conference on Machine Learning and Applications (ICMLA), pp. 278–285, IEEE, 2021.

[44] F. S. Melo and M. I. Ribeiro, “Q-learning with linear function approximation,” in Learning
Theory: 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA; June
13-15, 2007. Proceedings 20, pp. 308–322, Springer, 2007.

[45] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[46] L. L. Di Langosco, J. Koch, L. D. Sharkey, J. Pfau, and D. Krueger, “Goal misgeneralization
in deep reinforcement learning,” in International Conference on Machine Learning, pp. 12004–
12019, PMLR, 2022.

[47] R. Shah, V. Varma, R. Kumar, M. Phuong, V. Krakovna, J. Uesato, and Z. Kenton, “Goal
misgeneralization: Why correct specifications aren’t enough for correct goals,” arXiv preprint
arXiv:2210.01790, 2022.

[48] T. Benson-Tilsen and N. Soares, “Formalizing convergent instrumental goals.,” in AAAI Work-
shop: AI, Ethics, and Society, 2016.

39

[49] A. Paszke, S. Gross, F. Massa, A. Lerer, and J. P. Bradbury, “An imperative style, high-
performance deep learning library,” Advances in Neural Information Processing Systems, vol. 32.

[50] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[51] E. Puiutta and E. M. Veith, “Explainable reinforcement learning: A survey,” in Machine Learn-
ing and Knowledge Extraction: 4th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 Inter-
national Cross-Domain Conference, CD-MAKE 2020, Dublin, Ireland, August 25–28, 2020,
Proceedings 4, pp. 77–95, Springer, 2020.

[52] A. Adadi and M. Berrada, “Peeking inside the black-box: a survey on explainable artificial
intelligence (xai),” IEEE access, vol. 6, pp. 52138–52160, 2018.

[53] T. Miller, “Explanation in artificial intelligence: Insights from the social sciences,” Artificial
intelligence, vol. 267, pp. 1–38, 2019.

[54] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable ai: A review of machine
learning interpretability methods,” Entropy, vol. 23, no. 1, p. 18, 2020.

[55] J. W. Grzymala-Busse, “Rule induction,” Data mining and knowledge discovery handbook,
pp. 277–294, 2005.

[56] Y. Coppens, D. Steckelmacher, C. M. Jonker, and A. Nowé, “Synthesising reinforcement learn-
ing policies through set-valued inductive rule learning,” in International Workshop on the Foun-
dations of Trustworthy AI Integrating Learning, Optimization and Reasoning, pp. 163–179,
Springer, 2021.

[57] P. Clark and T. Niblett, “The cn2 induction algorithm,” Machine learning, vol. 3, no. 4, pp. 261–
283, 1989.

[58] S. J. Russell and P. Norvig, Artificial intelligence a modern approach. Pearson Education, Inc.,
2010.

40

	Introduction
	The importance of AI Alignment
	Examples of misaligned AI
	The possibility of Artificial General Intelligence
	Risks from AGI

	Types of RL Misalignment
	Reward misspecification
	Goal misgeneralisation

	Properties of Goal Misgeneralisation in a Toy Environment
	The gridworld environments
	Representation of the agent observation
	Agent architecture and training
	Optimality as a novel performance metric
	Target gridworld
	Property gridworld
	Chest gridworld

	Mitigating Goal Misgeneralisation with Interpretability Tools
	Explainability and Interpretability
	Logical interpretability: rule induction algorithms
	Applying rule induction algorithms to the GridWorld environments

	Discussion and Further Work
	Features included in the induction algorithm
	Terminal goal states as objective
	Incomplete data from optimal behavior
	Distinguishing hypotheses

	Conclusion
	Bibliography

