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Abstract

Europe’s transition from fossil fuel energy to renewable energy sources re-
quires expensive changes to the continent’s electricity grid that should hold
up for decades. As renewable energy generation methods such as solar and
wind are heavily dependent on changes in the weather, there will be increased
variability in the power supply. To reduce this energy-meteorological vari-
ability, areas of Europe’s grid that have low renewable energy generation cor-
relation must be discovered. By using conversion models on climate model
output to get relevant energy variables, there is hourly data available for so-
lar and wind energy capacity factors for each grid cell in Europe. Due to the
sheer number of grid cells in the data (21,019), calculating correlation be-
tween all pairs of grid cells is not feasible without algorithm optimisation.
We introduce a novel metric called the "Correlation Halving Distance", which
gives the distance value that indicates at what distance the wind and/or
solar time series yield 0.5 correlation for any given grid cell. We also ex-
plore optimised approaches to calculate the metric efficiently. Here we show
that one algorithm based on Active Learning, called Uncertainty Sampling,
performed the best on synthetic data and was chosen to be tested on real-
world data. In validation, Uncertainty Sampling yields a correlation value
of [0.5±0.05] in 87 out of a 100 experiments with random starting grid cells.
Additionally, each run calculated only 62 correlations on average, greatly
saving on computation cost compared to the brute force approach. We found
that the correlation halving distance values varied greatly by geography.
Grid cells in land-locked and mountainous eastern Switzerland and west-
ern Austria show Correlation Halving Distance values of 105-110 km, while
grid cells in the North Sea area show values in the order of 435-440 km. The
metric could assist in future-proofing changes to Europe’s energy grid as it
transitions to renewable energy, given that many types of renewable energy
sources rely on specific weather conditions. Additionally, spatial interpola-
tion techniques could be utilised to estimate the Correlation Halving Dis-
tance for cells to further reduce the number of computations.
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1. Introduction

Europe is rapidly transitioning from fossil fuel to renewable energy sources to
mitigate environmental impacts, especially those caused by climate change [1].
This transition requires costly changes to the electricity grid of Europe that
should hold up for multiple decades [2]. The transition from non-renewable
energy sources to more renewable resources increases the weather dependence
and, therefore, the variability of electricity generation [3], [4].

To ensure a consistent and adequate power supply given the extreme vari-
ability of the weather [5], and to prevent issues such as blackouts, this weather-
dependent energy generation variability must be reduced [6]. To achieve this,
areas of the grid that have a relatively low correlation in their renewable re-
source must be identified, so that the power supply of these areas may be
connected to reduce power supply variability. However, given the high resolu-
tion of the underlying climate model data and the extent of the interconnected
energy grid across the whole continent of Europe, this can be extremely com-
putationally intensive to compute. Consequently, an alternative, more efficient
method should be used [7].

Grams, Beerli, Pfenninger, et al. [6] propose the understanding of weather
patterns across Europe to optimise deployment of wind and solar energy gener-
ation resources to reduce variability in power output. The weather patterns in
question are called weather regimes, which are spatial patterns of the weather
systems extending over about 1,000 km that last on average five days. If per-
sistent, some of these weather regimes can cause a loss of wind power across
neighbouring countries in Europe [8].

As wind and solar power output are heavily dependent on the state of
the atmosphere and, thus, weather regimes [3], [6], [9], it is critical to under-
stand inter-regime behaviour across European regions to select the best areas
to deploy wind capacity in order to reduce volatility in power generation. For
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example, deploying wind capacity in the Balkans instead of the North Sea re-
gion was found to dramatically reduce energy output variation, as the Balkans
regions have inter-regime behaviour different from the North Sea [6] . Un-
derstanding inter-regime behaviour to guide wind power deployment requires
understanding of wind patterns all over continental Europe. Weather regimes
provide some of the information needed, but they do not tell the whole story
as other factors are at play [8].

The weather-dependent variability of energy generation over Europe’s fu-
ture electricity grid needs to be reduced. Therefore, areas of Europe’s grid
that have low renewable energy generation correlation must be found. For this
purpose, a valuable dataset was utilised: using conversion models on climate
model output, researchers created a dataset containing wind and solar gener-
ation information in hourly data points over 30 years. The dataset contains a
grid of 21,019 grid cells over Europe, with each grid cell containing a time se-
ries with hourly data of wind and solar energy generation information [10]. To
determine areas of low correlation, the time series correlation between all pairs
of grid cells will need to be computed, which is a very expensive procedure
given the number of grid cells.

In their work on annual flood data of a thousand European rivers, Berghuijs,
Allen, Harrigan, et al. [11] defined a measure called the flood synchrony scale.
The flood synchrony scale is the distance over which rivers flood almost syn-
chronously half the time. Their findings show that the flood synchrony scale
extends beyond the size of an individual river’s drainage basin, and that years
with spatially extensive flooding are serially correlated. By analysing the flood
synchrony scale, they show that the typical approach of managing flood risk
at the level of individual river basins is inadequate, as the synchronous nature
of flooding of river basins necessitates accounting for flood risks beyond an in-
dividual basin’s borders. In addition, the relevance of specific flood generating
mechanisms can be linked to, and analysed by, the flood synchrony scale [12].

While the flood synchrony scale cannot be linked directly to the variability
of renewable energy sources, the measure it analyses is very similar in func-
tional form to one used to study the correlation between wind power generation
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Introduction

in Europe: Giebel [13] shows that by plotting cross-correlation in measured
wind farm generation over time against distance, an exponential decay curve
can be fit on the data. Additionally, Olauson and Bergkvist [14] calculated
and analysed correlations of country-wide wind power output time series and
found that correlations generally decrease exponentially with distance. For the
purposes of making smart changes to Europe’s energy grid during the transi-
tion to renewable energy resources, it would be helpful to have a measure akin
to the flood synchrony scale but one that takes renewable energy correlation
instead of flooding events into account. Instead of finding the distance over
which rivers flood synchronously 50% of the time, the problem becomes find-
ing the distance at which renewable energy output correlation drops to 0.5,
assuming that correlation generally decreases with distance.

In this study we define the Correlation Halving Distance (CHD) as the
distance at which the average energy output correlation is 0.5 around a given
location [15]. By using the Correlation Halving Distance metric within the
analysis of the flood synchrony scale, the spatial scale of synchronous variation
of renewable energy generation can be studied to gain better understanding of
energy-meteorological variability.

As spatial changes in the Correlation Halving Distance indicate where it
could be beneficial to deploy additional renewable energy resources to balance
the electricity grid, the CHD measure needs to be calculated for each location
within Europe. While the flood synchrony scale was defined using the daily
data of 600 locations, the data available for this study contains over 21,019
grid cells, each containing a time series with hourly data points. In addition,
this task is very computationally intensive for multiple reasons: the time com-
plexity is quadratic in the number of grid cells; grid cells covering all of Europe
are included; and correlation must be calculated between two long time series
for each pair of grid cells. Direct calculation of the metric is thus not feasible.

To reduce the number of computations required, we envisage the following
two-part strategy. Firstly, we suggest calculating CHD only for a sample of grid
cells and use spatial interpolation to obtain CHD values for the remaining grid
cells in the dataset. Secondly, to approximate the CHD for a given grid cell,
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one must postulate a suitable functional form for correlation against distance,
and use smart sampling techniques, including those from the field of Active
Learning, to estimate the CHD with a small number of samples. The goal of
this thesis is the second part of the strategy.

The rest of this thesis is structured as follows: Chapter 2 introduces the
concept of active learning and its relation to the current problem. Chapter 3
introduces the structure of real-world data used for the experiments. Chap-
ter 4 includes a description of the research methodology. Chapter 5 includes
the results of synthetic and real-world data experiments. Lastly, Chapter 6
contains a discussion on the study findings and areas for future work.
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2. Active Learning

In order to sample grid cells to calculate Correlation Halving Distance ef-
ficiently, it is essential to draw insights from the field of Active Learning,
a sub-field of machine learning that focuses on optimisation using advanced
sampling techniques. By incorporating these techniques into our approach, we
can enhance the efficiency and accuracy of the CHD values being computed.
This section aims to introduce the definition of active learning with some es-
tablished techniques in the field, as well as illustrate its relevance to the thesis
goal of approximating CHD values with a limited number of samples.

Active learning is an approach utilised in machine learning to reduce the
number of data points that require labelling, as data labelling is often required
for supervised learning techniques like classification and regression. This typ-
ically helps in situations where labelling an entire dataset may be very ex-
pensive, so one must ascertain the smallest subset of samples to label that
will yield the most accurate model [16]. In this study, the focus is on using
sampling to reduce the number of computations rather than sampling labelled
data for supervised learning but the approaches presented here can be adapted
to the current problem.

One sampling approach that Wu [16] mentions in their work is greedy
sampling, a strategy originally proposed by Yu and Kim [17]. This approach
involves selecting the next sample that is furthest from the previously selected
and labelled sample data point. Greedy sampling considers the diversity of
data points, which is a measure of how much of the input space the samples
cover.

Other sampling methods mentioned by Wu and Dongrui are Query-By
Committee (QBC) and Expected Model Change Maximization (EMCM). In
the context of regression and classification, QBC is a pool-based active learning
approach that creates a committee of learners from existing pools of labelled
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data [18] using bootstrapping, or by utilising different learning algorithms.
Then it selects unlabelled samples from the pool to label based on the train-
ing points the learner committee disagrees on the most. EMCM is an active
learning method that also makes use of bootstrapping [19]. It measures the
change between the current learning model and a model that is trained on
an expanded training set. Both QBC and EMCM focus on informativeness, a
measure of the richness of the information obtained from a selected sample.

Uncertainty sampling is a widely used general active learning approach for
assessing informativeness, where a learner selects the instance for which it has
the highest "uncertainty" in terms of labelling . The measure of uncertainty
can be defined in different ways, with entropy of a model’s posteriors over its
labels being a common example in the machine learning domain [20].

The concepts from the aforementioned sampling approaches will be adapted
to the current problem of sampling time series contained within grid cells. Both
greedy and uncertainty sampling approaches will be explored, but will be used
to reduce the number of computations by informative grid cell sampling. For
uncertainty sampling, a more suitable uncertainty metric will be proposed that
is inspired by Query-By-Committee’s learner "disagreement" aspect.
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3. Data

This chapter provides an overview of the real-world data available on wind
and solar energy, as well as discussing the size of the dataset as well as its
peculiarities and challenges.

There is spatio-temporal data available of the renewable energy generation
potential across the European region. This gridded data has a spatial resolu-
tion of approximately 25 to 35 km, with 30 years of hourly time steps per grid
cell. For this study, the attention is focused on only the data available for the
year of 2020.

The available data is a grid across Europe of time-series data containing the
parameters: longitude, latitude, and time, with dimensions 201× 445× 8784,
respectively. The combination of latitude and longitude indicate the centre of
a grid cell. The last dimension for time is the total number of hours in the
entire dataset, as the data available cover all hourly timesteps in 2020. Note
that all time values are in Coordinated Universal Time (UTC).

The latitude range is 30 to 80 ° North, while the longitude range is -31 to
80 ° East. The dataset contains latitude and longitude values with a resolution
of 0.25 degrees. For conciseness, coordinates of this nature will be referred to
using the tuple notation: for example, the point 30 ° N, 80 ° E will be written
as (30,80).

As each cell in the grid contains a time series and we are calculating time
series correlation, we can reduce the sampling problem to spatial sampling on
a 2D grid as the time dimension is relevant to the correlation calculation, but
not to the sampling of cells in the grid.

Each cell in the grid contains a time series where each hour has three values:
the off-shore wind turbine, on-shore wind turbine, and solar photo-voltaic panel
capacity factors. The capacity factor (CF) is the potential generation output
across a period of time (an hour) for a given grid cell. The ERA5 reanalysis
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dataset is used to derive the capacity factors [10]. The calculation of capacity
factor is explained in Section 3 of [21].

3.0.1 Onshore Wind Capacity Factor

The full dataset available for Onshore Wind Capacity Factor can be examined
visually for preliminary observations. Figure 3.1 shows the full extent of the
available dataset. The available area is highlighted on the map, while excluded
regions are shown in grey. There is no location in the available dataset where
wind CF is above 0.95. The main region of interest is outlined by the red
borders, as it holds implications for Europe’s electricity grid.

Europe is typically categorised by low mean wind CF in the south but con-
tains pockets of high mean values in the UK, the Netherlands, and Denmark.
This effect can be seen clearly in Figure 3.2, which zooms in at the region of
interest, where Utrecht, the city where this research was conducted, is marked
with a red cross. The trend towards relatively higher mean CF values in the
north appears to be broken by Norway, based on this figure.

As the data contains CF values for each hour, the onshore wind CF at
different times of the year can be examined. Figure 3.3 shows the onshore
wind CF for Europe for different times in 2020 for the 1st of March. It is clear
that even at different times on the same day, there is noticeable variation in
wind CF, let alone for the whole year. Additionally, there are pockets of high
CF surrounded by regions of low CF and vice versa; this is evident in Figure
3.3b showing high wind CF in parts of south Poland and western Ukraine sur-
rounded by low CF regions. Additionally, there is overall extremely low CF
around Greece and in North Italy. This noise at individual time points can be
obscured by the map showing the mean CF for the entire year. Additionally,
the figure also highlights seasonal variation. The 1st of August is in meteo-
rological summer, and it is clear that most of Europe has much lower wind
CF values overall compared to the 1st of March, the start of meteorological
Spring.

The time series for onshore wind CF for a particular location can be in-
spected more closely for peculiarities as well. In Figure 3.4, it appears that

11



Data

the onshore wind CF for Utrecht at coordinates (52,5) oscillate frequently be-
tween the maximum of 0.95 and the minimum of 0. The data appears very
noisy when inspected for the whole year as one time series graph. Figure 3.5
shows the variation over the hours across two days: the 1st of March, and the
1st of August, respectively. Note that the wind CF values also have different
ranges on either day; the 1st of March is the start of meteorological Spring,
and shows 0.95 CF most of the day. In contrast, the 1st of August falls in
meteorological summer, which is an overall less windy season. The peak CF
on this day does not surpass 0.40. With the wind CF time series of just one lo-
cation, there is a great amount of complexity present that shows high variation
at different time scales.
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Figure 3.1: Mean capacity factor over the year 2020 in the available data,
with red borders showing the region of interest for this study. The grey regions
are outside of the dataset. The maximum value is 0.95, while the minimum
value is 0.

3.0.2 Solar Capacity Factor

The latitude, longitude, and time dimensions are the same for solar CF as it
is derived from the same dataset. Figure 3.6 shows the mean solar CF over
the year 2020 over Europe. It is evident that the mean values for the region
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Figure 3.2: The region of interest with Utrecht marked in red, at coordinates
(52,5). The colours represent the mean onshore wind capacity factor for the
year of 2020, with the black lines representing national borders. It is evident
that southern Europe tends to have much smaller onshore wind CF values for
2020.

are quite low, with no grid cells showing a solar CF value above 0.4. Solar
CF values are more heavily affected the time of day as compared to wind; this
effect is quite evident in Figure 3.7.
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(a) 00:00 UTC on the 1st of March.
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(b) 14:00 UTC on the 1st of March.

Figure 3.3: Onshore wind capacity factor values for Europe at different times
on the 1st of March, 2020. Times are in Coordinated Universal Time (UTC).
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Figure 3.4: Onshore wind capacity factor over 2020 for Utrecht at (52,5).
Note that the last x-axis label is for January 2021, but the data stops just
short of that, at the 31st of December, 2020.
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(a) Wind capacity factor over 1st March.
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(b) Wind capacity factor over 1st August.

Figure 3.5: Onshore wind capacity factor of Utrecht at (52,5) shown over
the 1st of March and the 1st of August. Note that the capacity factor scale is
different for both as the maximum value in (b) is much smaller. All times are
in Coordinated Universal Time (UTC).
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Figure 3.6: Mean solar capacity factor for Europe over 2020, with Utrecht
marked with a cyan cross.
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(a) Solar capacity factor on 1st August at 12:00 UTC.
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(b) Solar capacity factor on 1st August at 20:00 UTC.

Figure 3.7: Mean Solar capacity factor values for Europe at two different
times on 1st August, 2020. Utrecht is marked with a green cross in Figure 3.7a
and a cyan cross in Figure 3.7b.
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4. Method

To determine which regions are highly correlated, this study focuses on cal-
culating the Correlation Halving Distance (CHD) metric efficiently. A higher
than average CHD for a given location or origin cell indicates that the sur-
rounding region is more strongly correlated in its potential wind or solar energy
generation. By calculating the correlation on the capacity factor, a unitless
number between 0 and 1 that represents the potential for renewable energy
output, the metric is independent of the allocation of the actual wind and
solar energy generators.

To estimate the CHD for any given grid cell taken as the origin cell, the
following steps need to be carried out: correlation must be calculated for the
time series at the origin with the time series contained in a subset of grid cells
in the data. This subset is determined using an iterative sampling algorithm.
The sample set of distance values and their corresponding correlation values
are then used to fit a function, so that the distance at which correlation is 0.5
can be determined. This procedure is repeated for all desired origin cells to
approximation the CHD for each grid cell.

In this chapter, the discussion of the method is organised as follows. Firstly,
we present the mathematical definition of CHD, including the functional form
that will be employed for the function fit. Subsequently, we discuss mathemat-
ical and technical considerations relevant to metric calculation and function
fitting. Following this, we shift our focus to the experimental method, where
we explore both synthetic and real-world data experiments, along with a dis-
cussion on generation of synthetic data. Lastly, the chapter concludes with an
overview of iterative distance sampling algorithms, a discussion on stopping
criteria for these algorithms, and required adaptations when applying them to
real-world two-dimensional data rather than one-dimensional synthetic data.
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Method

4.1 Definition of Correlation Halving Distance

As mentioned above, a function must be fitted to estimate the distance at which
the correlation is 0.5. The function that models how correlation changes with
distance can take a number of forms. [15] lists the very many formulations
put forward. One example of such a function is αe(−d/D) where d is distance
and α and D are adjustable parameters. This functional form was proposed
by Justus and Mikhail [22]. A more recent example from the paper is e(−αdβ)

proposed in 2014. The β exponent within the main exponent changes the
shape from a negative exponential to a different one entirely. However, the
majority of the functional forms presented are exponential decay functions of
distance (d) with two parameters (α, D).

In addition to the theoretical backing, there is also empirical evidence for
the exponential decay function form to be considered. In terms of real-world
evidence, the exponential decay form has been discovered by [13], who plotted
time series cross-correlation against distance for grid points found in various
northern European countries in Figure 3 of their paper.

When an exponential decay function is used, the α parameter would need
to be α ≈ 1, 359 before the parameter D can be interpreted as the distance
of 0.5 correlation. Therefore, it would be interesting to consider a function of
correlation against distance for this study of the form ρ = b−d/D, where ρ is
correlation between two grid cells, b is some exponent base, d is the distance
between the cells, and D is the Correlation Halving Distance.

Using the formulation above with base-2 means there is only one parameter
that needs to be tuned, as well as making it easy to determine a Correlation
halving Distance parameter estimate, D. Setting the base to a different num-
ber, like Euler’s number, e, would mean that the interpretation of the Cor-
relation Halving Distance parameter, D, is not straightforward, as it would
correspond to a correlation of a different percentage.

To visualise this, correlation ρ can be set to 0 to examine changes in the
formula for both base-2 and base-e. The base-2 formula exhibits the advantage
where given that distance d = D meaning that the distance from the origin
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4.2 Further Mathematical Considerations

grid cell is equal to the CHD, then the expression simplifies to 2−1 = 1
2 , clearly

indicating that correlation is 0.5 at the CHD value. Generally, using an expo-
nential function also provides a useful property in that setting distance as 0,
indicating correlation of the origin cell with itself, results in correlation 20 = 1.

In this study, we use the following function, where the correlation (ρ(d)) is
assumed to be approximated by the negative exponential. It takes the form:

ρ(d) = 2−d/D (4.1)

where d is distance to a grid cell, and D is Correlation Halving Distance.
Additionally, ρ is monotonically decreasing with respect to d. Note that as
distance from a grid cell to another grid cell does not contain information
about direction, it is assumed that the CHD value is same in all directions. An
example of a function of this form fitted on 100 points is shown in Figure 4.1,
showing a dashed line to estimate the CHD value, which is also the parameter
D within the equation itself.

A drawback of the exponential formula structure is that it will never yield a
correlation value that is negative for any distance, even if the actual correlation
between the origin grid cell and a cell at that distance actually yields a negative
correlation value. If a function is fit on mostly negative correlation values, this
can be a problem in terms of accuracy and suitability of function form for
function fitting.

Additionally, for the purposes of this experiment, the CHD value is ex-
pected to lie between 100 and 4000 km based on domain knowledge, so these
will be the bounds used for sampled distances.

4.2 Further Mathematical Considerations

To carry out the CHD computation, the calculation method of pairs of time
series as well as the details of the function fitting procedure must also be
determined. To carry out the correlation calculation for time series pairs,
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Method

Pearson’s R correlation will be used [23]. Let x and y represent two time series
for which we want to calculate the correlation. The mean values of x and y

are denoted as x̄ and ȳ, respectively. The variables xt and yt represent the
respective function values of x and y at a specific time index t. The time
index t ranges from 1 to T, representing the total length of the time series.
We assume that all time series are the same length. This is calculated using
the following formula:

r(x, y) =
∑T

t=1(xt − x̄)(yt − ȳ)√∑T
t=1(xt − x̄)2 ∑T

t=1(yt − ȳ)2
(4.2)

This formula is required for wind or solar time series correlation with time
series at various locations from the origin, and a function has to be fitted on
the correlation versus distance data. This function will be used to estimate
the distance value where correlation is 0.5, and this distance value will be the
CHD.

The actual method utilised for function fitting is the SciPy Python library’s
"curve_fit" function [24]. It takes the distance values and corresponding corre-
lation values as inputs, fits the function, and returns an estimate for the lone
parameter, D̂, the CHD estimate, as well as the estimate’s variance, σ̂2

D̂
. The

value for the D̂ estimate is obtained by minimising the sum of squared errors
function, S(D), which is given as follows:

S(D) =
N∑

n=1
(ρn − 2

−dn
D )2 (4.3)

The estimated variance of D̂ using a first-order approximation can be used
to derive the standard deviation of the estimate, σ̂D̂, by applying a square root
operation. The formula for σ̂D̂ is as follows:
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4.3 Experimental Method

σ̂D̂ =
√√√√∑N

n=1(ρn − ρ̂n)2/N − 1∑N
n=1(

ln(2)dnρ̂n

D̂2 )2
(4.4)

The standard deviation of the estimate will be of use as a stopping criterion
in the result validation phase.

To decide which subset of grid cells will be used for the correlation calcu-
lation with the origin cell, a sampling strategy must be utilised. To reduce
computational complexity without losing vital information, informative sam-
pling approaches need to be considered. Many possible sampling strategies
can be used, ranging from the most uninformed that take random samples,
to more adaptive ones that select the next sample based on what has already
been sampled. This study involves experimenting with multiple sampling ap-
proaches on both theoretical and real-world data. Experiments were carried
out on onshore wind CF and solar CF data separately, as both categories can
yield separate datasets of time series but with the same region of interest cov-
ered in the spatial domain. Off-shore wind CF is ignored as it is structurally
quite similar to onshore wind CF.

4.3 Experimental Method

Two sets of experiments are carried out. In the first set, multiple sampling
algorithms are tested on synthetic data that is generated using Equation 4.1
with noise added to the result. Optimal stopping criteria is also determined
so that the algorithm does not run for more iterations than are necessary.

The second set of experiments involve applying the best-performing algo-
rithm from the first set of experiments to real-world data. Additionally, the
results of this algorithm will be analysed using validation checks and examined
for improvements, as well as compared with the brute force CHD calculation
approach to determine efficiency.
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4.3.1 Synthetic Data Generation

Synthetic data is used to perform theoretical comparisons on the algorithms,
as the correlation values on the real data are not known in advance. The
synthetic correlation value for each distance is generated d using ρ = 2−d

D + ϵ,
where ϵ is a simulated noise value that is added to the correlation. The noise
is generated by taking a random sample from a normal distribution centred
around mean 0 and standard deviation 0.15. An example of the synthetic data
generated for the function fitting as well the actual curve fitted on this data is
shown in Figure 4.1. Note that for the purposes of the experiment on synthetic
data, correlation is allowed to go above 1 as the function fit is being tested
and the true meaning of the correlation metric should not affect the fit.

The value of 0.15 for standard deviation in correlation was selected as
values smaller than this adhere too closely to the negative exponential line,
and values bigger result in spread that is much higher and may cause the
negative exponential shape to be lost entirely due to high levels of noise.

Note that noise levels in correlation will vary throughout the real data,
but one value was selected for theoretical experiments to maintain a level of
consistency.

For each sampling algorithm in the theoretical experiments, a distance
value d is generated, and its correlation is calculated using ρ = 2−d

D , with the
true D set as 400 km. After the ρ value is calculated using the aforementioned
function, it has noise added to its value to attempt to mimic the real-world
noisiness in correlation values.

To generate noise values in the correlation for each kilometre of distance,
a hundred lists of normal distributions centred around mean 0 and standard
deviation 0.15 are created. Each list contains 3900 values, corresponding to
each kilometre in the range [100,4000]. When an algorithm selects a distance
value to sample, it is rounded to the nearest kilometre to retrieve a noise value
from the first list. If the same kilometre is selected a second time by the same
algorithm, the noise value from the second list is retrieved, and so on. If the
same kilometre value has been selected more than one hundred times, the list
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Figure 4.1: A hundred points of data generated using the function ρ = 2
−d
D

with noise added to the result. The red line shows the function fitted to the
data points, with the value for the estimate D̂ = 357, shown with the green
dashed line as the distance value where correlation is 0.5.

counter for that kilometre will cycle back and the first noise list will be used
again. A count check will be utilised in each synthetic algorithm test to make
sure the same distance value is not being over-sampled very frequently.

A PCG64 random number generator is used to generate the correlation
noise lists. The generation of the random noise lists is seeded based on the run
number of the algorithm. For example, on run number 5, the seed for the 1000
normal distribution lists will be 5. As each algorithm experiment is receiving
the same sequence of seeds, the sequence of noise values generated is kept as
consistent as possible.

4.3.2 Synthetic Data Experiments

To account for the potential variation induced by randomness in individual
algorithm runs, each algorithm is run with synthetic data one thousand times,
with one thousand iterations per run. This approach allows for a comprehen-
sive analysis of multiple aspects of the algorithm’s performance, providing a
more complete understanding of both average and outlier performance results.
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To visually inspect results of these runs across different algorithms, the
maximum, minimum, median, first quartile, third quartile, tenth percentile,
and ninetieth percentile of D̂ across all one thousand runs of each sampling
algorithm are plotted to allow for visual comparisons.

A further one thousand runs of each algorithm will be conducted with
the synthetic data to test stopping criteria to avoid running for one thousand
iterations. The algorithm showing the most favourable results in both of these
tests will be applied to the real world data for the next round of experiments.

4.3.3 Real Data Experiments

After the theoretical comparisons have been performed, the best-performing
algorithm with the preferred stopping criteria will be selected to test on the
real data.

In the dataset, each grid cell on the part of the Earth that is covered is
represented by its centre coordinates by latitude and longitude value. Various
(latitude,longitude) points on the dataset will be taken as the origin grid cells,
and the Correlation Halving Distance will be determined for each. Utrecht’s
CHD value will be investigated, as well as CHD for cities such as Zurich and
Madrid, to allow investigating the robustness of the algorithm in very different
geographies. The dataset may not contain the exact latitude and longitude of
each city’s center, so the nearest point that exists will be used as the repre-
sentative coordinate.

Utrecht will be the first origin cell to test. For Utrecht specifically, the
Correlation Halving Distance of two (latitude, longitude) origin pairs will be
investigated. This is to ensure that the Correlation Halving Distance of two
cells adjacent to each other should be very similar as well, which serves as
a validation check for the behaviour of the algorithm. Other cities will be
selected as origin cells, and the sampling algorithm will be run 10 times for
each origin, and Correlation Halving Distance as well as other metrics will be
recorded.

Additionally, the sampling approach will be run one hundred times with
random origin cells each run. The restriction on which coordinates to select as
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origin cell are that they must be far from the original bounds of the dataset,
focusing mainly on Europe. Figure 3.1 shows the restricted area surrounded
by the red bounding box where the random origin cells may be sampled from.
The restricted latitude bounds are 36.25 to 69.25 ° North, and the longitude
bounds are -6.75 to 32.5 ° East. The restricted range is to ensure that the
origin cells are not near the edges of the dataset, as if the sampling algorithm
attempts to sample a location out of range, this may lead to less predictable
results as the closest location that exists in the dataset will be sampled, which
may be at a distance quite far from the actual distance that it was supposed
to be sampled at.

In this round of experiments, the direction between grid cells must also be
taken into account, as the real-world data is now two-dimensional as opposed
to one-dimensional distances with the synthetic data. In the theoretical ex-
periment stage, one could generate synthetic values for correlation by feeding
a one-dimensional value for distance between grid cells, but this did not take
direction into account. In the real dataset, sampling a grid cell that is x km
away means considering an infinite number of directions, and not necessarily
only directions in a straight line, as the spatial grid of cells is affected by the
curvature of the Earth. This means that a method to choose direction must
also be established, and will be discussed following the overview of the iterative
sampling algorithms.

4.3.4 Data Type

The dataset contains a time series at each (latitude,longitude) location, and
each hourly data point in that series contains three values: solar capacity fac-
tor, wind onshore capacity factor, and wind offshore capacity factor. These
can be split into three different time series for each location, yielding three sep-
arate datasets. This study focuses mostly on using the wind onshore capacity
factor and solar capacity factor datasets.

In the event that one of the time series in the correlation calculation con-
tains the value "0" throughout, the correlation calculation will result in the
correlation value "NaN" or Not a Number, due to a divide by 0 error generated
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by NumPy in the correlation calculation. These values cannot be used to fit
the Correlation Halving Distance function. In that case, this location, along
with its corresponding distance and invalid correlation value, will be removed
from the dataset.

4.3.5 Solar Data Considerations

The time series for solar CF can cause issues with correlation calculations, as
the time series curve is rapidly oscillating towards and away from 0 due to
the CF being 0 between sunset and sunrise. This is expected to affect the
performance of the sampling algorithm. To apply some preprocessing to the
data to alleviate this problem, the maximum value of solar capacity factor for
each hour is used.

4.3.6 Randomness in Direction

Due to a random direction being taken for each sample distance, running the
algorithm with a different randomness seed will potentially generate a different
set of sampled locations each time, even if the distances sampled are the same.
For example, a point taken 50 km north may have a high correlation with the
origin cell, but a point taken 50 km south may have a low correlation with the
origin cell. The potential bias the variability in direction necessitates repeating
the sampling method a number of times, and taking the mean of the metrics to
investigate the "average" behaviour of the algorithm for a given origin cell. To
investigate this variability, for each city, the algorithm for determining CHD
will be run 10 different times.

4.3.7 Validation Method on Real Data

After the Correlation Halving Distance estimate D̂ km for a given centre cell
has been determined, 360 cells D̂ km from the centre are taken, in a circle
around the origin cell. The time series correlation between the origin cell and
each cell in the circle is calculated, and the mean value of these correlations
is taken. The mean correlation at the Correlation Halving Distance should be
0.5 for a successful approach. This is called the CHD check.

28



4.4 Overview of Sampling Algorithms

To further investigate potential "bounds" for the Correlation Halving Dis-
tance value, the standard deviation value of the D̂ estimate, σ̂D̂, will be utilised.
360 cells that are (D̂−2σ̂D̂) km from the origin cell will be taken for correlation
calculations with the origin cell, and the mean correlation value of these will
be calculated. This mean value should be greater than 0.5. This is known as
the small circle check.

Additionally, 360 cells (D̂ + 2σ̂D̂) km from the centre cell will also be taken
and the same procedure will be repeated. The mean correlation value for these
cells must be smaller than 0.5. This is known as the big circle check.

4.4 Overview of Sampling Algorithms

To sample grid cells for their respective CHD calculation, there are many
different possible sampling strategies. This section includes an overview of
the different sampling algorithms that were tested in this study, along with
pseudocode and supplementary explanations wherever required. Note that all
algorithms are iterative procedures that take four sample points per iteration.
As the first algorithm in the list, ABS, is designed around taking four samples,
the others were also adjusted for four to keep performance comparisons as fair
as possible.

4.4.1 Adjusted Binary Search (ABS)

To evaluate a more deterministic sampling approach, a novel sampling strategy
is utilised, called Adjusted Binary Search (ABS). The estimate for Correlation
Halving Distance (D̂) is assumed to be between 100 km and 4000 km, based
on findings in past research [13]. Each iteration of this algorithm will sample
two points closer to one of the bounds and one point closer to the other bound.
Deciding which bound generates two samples and which produces one is based
on the comparison of the latest D̂ value with the previous one.

If D̂i < D̂i−1 in the current iteration i, two points are sampled from dis-
tances between D̂i and the lower bound, 100 km, and one point is sampled
from between D̂i and the upper bound, 1000 km. If D̂i > D̂i−1, two points are
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sampled from distances between D̂i and the upper bound, 1000 km, and one
point is sampled from between D̂i and the lower bound, 100 km.

If one point is to be sampled between D̂i and either bound, the arithmetic
mean is calculated to generated a midpoint distance. If two points are to
be sampled, the first and third quartiles are taken. The pseudo-code of the
complete procedure is given in Algorithm 1.

In the second version of this algorithm, an additional sample point is incor-
porated: in every iteration, the midpoint between the current D̂i and previous
estimate of D̂i−1 is also included. Additionally, for each distance sampled, a
small noise value sampled from a normal distribution centred around mean 0
and standard deviation (1000− 100)/4, to provide some noise in the distance
sample. This is done as having a very deterministic algorithm introduces some
issues in the theoretical experiments, especially if the distances sampled are
in a very limited range. Due to the changes in code being very minor, the
pseudo-code for the second version is not provided.

The second version is used in the synthetic data experiments as it showed
better results in preliminary testing. It takes one extra point per iteration
compared to the first version, so there is an increased growth in sample size
per iteration.

4.4.2 Random sampling (R)

Each iteration, four distance value samples are randomly taken from the range
[100,4000] to fit the function each time. A uniform distribution is used to
generate the distance samples so that each possible distance value has an
equal chance of being generated. There is no adaptability in this algorithm
and previous sample points do not affect what is sampled in the next iteration.

4.4.3 Systematic Random (SR)

Each iteration, four samples are taken at regular intervals, with some noise
added as well. To achieve this, the "step size" is calculated using (4000 −
100)/4 = 975. Then 4 points are generated using the expression (100+ i∗step)

30



4.4 Overview of Sampling Algorithms

Algorithm 1 Adjusted Binary Search (Version 1)
Input: CurrentGridCell, MinDistance, MaxDistance

D̂, S ← empty ▷ Initialise D̂ and std. deviation arrays
l←MinDistance ▷ 100
u←MaxDistance ▷ 4000

5: ρl ← correlation(CurrentGridCell, l) ▷ Or sampled as 2−l/400 + noise
ρu ← correlation(CurrentGridCell, u) ▷ Or sampled as 2−u/400 + noise
X ← [u, l]
Y ← [ρl, ρu]
D̂, S← curve_fit(function = 2−d/D, data = (X, Y )) ▷ Fit function

10:
m1← 0.5 ∗ (l + D̂)
m2← 0.5 ∗ (D̂ + u)
ρm1 ← correlation(CurrentGridCell, m1)
ρm1 ← correlation(CurrentGridCell, m2)

15: [X, Y ].append([m1, ρm1])
[X, Y ].append([m1, ρm2])

for i← 1, 1000 do ▷ Run for max. 1000 iterations

20: if D̂i < D̂i−1 then ▷ if new D̂ estimate is smaller
q1← 0.25 ∗ (l + D̂i)
ρq1 ← correlation(CurrentGridCell, q1)
q3← 0.75 ∗ (u + D̂i)
ρq3 ← correlation(CurrentGridCell, q3)

25: m1← 0.5 ∗ (u + D̂i)
ρm1 ← correlation(CurrentGridCell, m1)

else
m1← 0.5 ∗ (l + D̂i)
ρm1 ← correlation(CurrentGridCell, m1)

30: q1← 0.25 ∗ (u + D̂i)
ρq1 ← correlation(CurrentGridCell, q1)
q3← 0.75 ∗ (l + D̂i)
ρq3 ← correlation(CurrentGridCell, q3)

end if
35:

[X, Y ].append([q1, ρq1]) ▷ Update arrays
[X, Y ].append([q3, ρq3])
[X, Y ].append([m1, ρm1])
D̂, S← curve_fit(function = 2−d/D, data = (X, Y )) ▷ Fit function

40: end for ▷ Algorithm ends
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where i = 0, 1, 2, 3 to obtain four different distance values. Additionally, each
point is given a random error drawn from a uniform distribution where the
range of values is equal to the step size. This ensures that unlike random
sampling, all 4 points each iteration do not cluster in one region every iteration.
It makes sure that generated points cover the whole range between 100 and
4000 km, inclusive.

4.4.4 Greedy (G)

Greedy sampling will take the midpoint of the largest distance between a pair
of points already in the sample set, breaking ties randomly if more than one
distance qualifies as the largest. For example, if we start by including the
bounds [100,4000] as the first two distances in the sample set, the next point
to sample will be 2050 km. Now with the list containing [100,2050,4000], there
are two pairs (100,2050) and (2050,4000) with the maximum distance between
them. One of these pairs will be selected randomly for the next sample, and
the other pair will be selected for the sample after that one. This procedure
repeats four times to obtain four points per iteration. It is prone to slowing
down especially as the number of maximal distances to check increases as more
and more samples are taken.

4.4.5 Uncertainty Sampling (U)

This method is an approach similar to query-by-committee, where the next
point to be sampled is the one the query of learners disagree the most on
[18]. In this case, the shape of the function to be fitted is already known to
be negative exponential of the form ρ = 2−d

D , and fitting it using curve_fit

gives a D̂ estimate and its standard deviation, σ̂D̂. These estimates can be
used to generate a confidence interval [a,b] for D̂. The values for the interval
bounds are given by [a = D̂ − sf × σ̂D̂, b = D̂ + sf × σ̂D̂], where sf is scale
factor. The committee of learners can be modelled by two functions given by
substituting the interval bounds in the correlation function, giving ρ = 2−d

a

and ρ = 2−d
b . The difference between these two equations is 2−d

b − 2−d
a , which

is a third function on its own. The "disagreement" between a committee can
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be represented by the maximum difference between the curves, given by the
derivative of the difference with respect to d, yielding the formula:

d = −
a× b× ln(a

b
)

(ln 2)× (b− a) (4.5)

As an example to visualise how this procedure works in generating a d

value to sample, we introduce the example of two curves, ρ = 2−d/a, where
a = 2, and ρ = 2−d/b, where b = 5. Plugging the a and b values into Equation
4.5, the result d = 4.404 is computed. Figure 4.2 shows the respective decay
curves of a and b as well as their difference curve. The gray dashed line is the
line where the x-value is 4.404, as computed earlier.
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Figure 4.2: Figure showing two exponential decay curves plotted in red and
blue, with their difference curve plotted in green. The gray dashed line is the
maximal difference between the red and blue curves, as well as the global max-
imum of the difference curve.

As described, Equation 4.5 yields the next distance value d to sample.
As four sample points are to be taken per iteration, the confidence interval
[a,b] can be varied by varying the value of the scale factor, sf , so four different
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distances can be computed per iteration. For this study, the scale factor values
are 1.5,2,2.5, and 3.

Note that the logarithm of a negative number is undefined, so in the case
that a is negative, a run-time error will be generated. This can occur if the σ̂

value is too large, for example. In preliminary testing when determining choice
of scale factor, this often occurred when the scale factor is 4 or above, and/or
the standard deviation value is significantly larger than the D̂ estimate. In this
case, to prevent an algorithm crash as well as take a sample point, a random
distance value is drawn from the range [100,4000] instead, and this value is
used as the next sample to be included. Preliminary testing showed the switch
to a random point did not occur very frequently in experimental runs.

Before the iterative part of the algorithm, the pseudo-code for this proce-
dure is shown as Algorithm 2. In lines 1 to 11, the lower bound, 100, and upper
bound, 4000, as well as their midpoint, 2050, are used as starting distance val-
ues for the sample set, with corresponding calculated correlations values. This
data is used to fit the function once before the iterative portion of the algo-
rithm begins, so that initial estimates for D̂ and σ̂ are available to calculate a

and b.

In line 16, the iterative procedure starts with the i loop: a scale factor is
initialised as 1.5, and will be incremented by 0.5 each iteration, so that b and
a can be calculated four times with four different scale factors, and yield four
distance samples.

Another inner j loop begins in line 19 to generate four points where the
scale factor increases by 0.5 each iteration. Lines 20 and 21 are where a and b

are initialised. Following these is a check on the sign of a: if a is negative, take
a random distance in the range [100,4000] instead as the next sample. The
random distance sampling procedure is also repeated to take more random
points in case a is negative on the first, second, or third point: it follows that
increasing the scale factor value will yield the following a in to be negative in
the following iteration of the j loop as well. For example, if the 1st a calculation
with scale factor 1.5 yields a negative a, it is assumed that a will be negative
even for bigger scale factor values, as the second term in D̂n−1− sf ∗Sn−1 will
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only get larger. In this case, all four distances will be random samples. In
contrast, if only the fourth distance to sample yields a negative a, only one
random sample is taken that iteration.

After the a sign check has been performed, the value for d is calculated
in line 30, using Equation 4.5, and its corresponding correlation is calculated.
The scale factor is incremented by 0.5 in line 33, and the next iteration of the
i loop follows.

Uncertainty Sampling with Systematic Random (USR)

This algorithm performs uncertainty sampling until 25 samples have been
taken. This switching criterion value was determined partially by prelimi-
nary experiments with U sampling, as it seemed that the values 562 to 597 km
are sampled over a hundred times over one thousand runs. This range is 35
km, but a smaller and neater value was chosen as the switching criteria.

Uncertainty Four Out Of Five (U5)

This algorithm switches from U sampling to SR every fifth iteration, therefore
still using the U strategy the majority of the time.

Uncertainty with Adjusted Binary Search (UA)

This uses a similar approach to USR, but instead of switching to SR at 25
samples, the algorithm switches to ABS instead.

4.4.6 Overview of Stopping Criteria

To avoid having to run the algorithms for a full one thousand iterations and
attempt to minimise total number of samples taken, some stopping criteria
have to be tested for each algorithm.

As an estimate of D̂ and the standard deviation of that estimate are avail-
able with the function fit each iteration, it is useful to consider both of these
parameters when designing stopping criteria to test.
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Algorithm 2 Uncertainty Sampling
Input: CurrentGridCell, MinDistance, MaxDistance

D̂, S ← empty ▷ Initialise D̂ and std. deviation arrays
l←MinDistance
u←MaxDistance

5: ρl ← correlation(CurrentGridCell, l) ▷ Or sampled as 2−l/400 + noise
ρu ← correlation(CurrentGridCell, u) ▷ Or sampled as 2−u/400 + noise
X ← [u, l]
Y ← [ρl, ρu]
q2← 0.5 ∗ (l + u)

10: ρm1 ← correlation(CurrentGridCell, q2)
[X, Y ].append([q2, ρq2])
D̂, S← curve_fit(function = 2−d/D, data = (X, Y ))

for i← 1, 1000 do
15:

▷ (This blank line is where switching criteria may be checked for USR,
UA, and U5 algorithms.)

sf ← 1.5 ▷ Set scale factor
for j ← 0, 4 do ▷ Calculate bounds with different s.f. per point

20: b← D̂i−1 + sf ∗ Si−1
a← D̂i−1 − sf ∗ Si−1

if a < 0 then ▷ if a is negative, take random point instead
for k ← 0, 4− j do ▷ Take as many random points as needed.

25: d← randGenerator.uniform(l, u)
ρd ← correlation(CurrentGridCell, d)
[X, Y ].append([d, ρd])

end for
break ▷ End j’s loop after 4 points are taken

30: end if

d← −(a ∗ b ∗ log(a/b))/(log(2) ∗ (b− a)) ▷ a is non-negative
ρd ← correlation(CurrentGridCell, d)
[X, Y ].append([d, ρd])

35: sf ← sf + 0.5 ▷ increment scale factor for next sampled point
end for
D̂, S← curve_fit(function = 2−d/D, data = (X, Y ))

end for
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A hundred iterations

As a starting point, one hundred iterations were used as the stopping criterion
for each algorithm. However, this means around four hundred samples will
be taken per algorithm, an already large amount. The criterion itself is also
rather arbitrary and not adaptive to the actual behaviour of any algorithm.

Standard Deviation, σ̂D̂

To use this as a stopping criterion, a threshold can be decided to stop the al-
gorithm iteration when the σ̂D̂ value generated from a function fit is below the
threshold. For this research, we have considered the standard deviation thresh-
olds 25 km, 17 km and 10 km, called "std25", "std17" and "std10", respectively.
All three will be tested separately as three different stopping criteria.

Difference in D̂

This is the absolute difference of the D̂ estimate from its previous iteration es-
timate. For the threshold, 3 km was decided. However, from some preliminary
algorithm runs, the value of D̂ is expected to vary erratically until enough
samples are taken. Therefore, the expression | D̂current − D̂previous |< 3 is
checked for at least three consecutive iterations before stopping the algorithm
run. Throughout this paper, it will be referred to as "absdiff" for conciseness.

Combination

For the final criterion, the algorithm checks if 10 iterations have passed. This
is to set a minimum threshold of at least 40 samples before the algorithm
stops, due to the assumption that the algorithm stopping when taking too
few samples may generate a very bad D̂ estimate. After this is checked, the
algorithm may stop if σ̂D̂ is less than 25 and the D̂ estimate difference is
smaller than 3 for at least three consective iterations. These combined criteria
will be referred to as "triple" for conciseness.
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4.4.7 Direction Considerations

For any of these algorithms applied on the real data, a method to choose direc-
tion as well as distance must be determined, as simply having a distance value
is not enough to sample a single grid cell on the real-world data. The GeoPy
Python library allows for geodesic distances between two (latitude,longitude)
coordinates on the Earth to be calculated [25]. For a given sampling algorithm,
a random angle is chosen each time a distance is sampled. If this results in
a (latitude,longitude) coordinate that already exists in the sample set, the
random angle is resampled and a new coordinate is found. If a coordinate is
found that does not exist in the dataset, the nearest point that does exist in
the dataset will be taken as the point to be sampled, with nearest being deter-
mined by XArray’s built-in library function that utilises Euclidean distance.

Additionally, if all possible coordinates at a given distance are already
included in the sample set, a counter will ensure that an infinite loop does not
result by regenerating angles when all 360 angles have been used up to include
corresponding locations in the dataset. If the same distance is attempted to
generate a location not already in the sample set more than 360 times, it is
assumed there are no more possible coordinates at that distance that are not
already sampled, so a random distance sample in the range (100,4000) is taken
in that case, and a random angle for that distance as well. After the actual
location has been sampled successfully, the distance d is updated by calculating
the distance between the actual location and the origin to ensure accuracy,
before d is added to the sample set for function fitting. The pseudocode for
this subroutine is shown in Algorithm 3.
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Algorithm 3 Subroutine to Determine Location
Input: distance_value, origin_cell_latitude, origin_cell_longitude, locs

d← distance_value
lat← origin_cell_latitude
lon← origin_cell_longitude
angle← random.uniform(0, 360) ▷ take random direction

5:
loc_d← getLoc(lat, lon, d, angle) ▷ get coordinates for location sample

counter ← 0
while loc_d is in locs do ▷ if location has already been sampled

10:
angle← random.uniform(0, 360)
loc_d← getLoc(lat, lon, d, angle) ▷ Re-sample with new angle
counter ← counter + 1

15: if counter > 360 then ▷ take random distance if stuck in while loop

d← random.uniform(LowerBound, UpperBound)
loc_d← getLoc(lat, lon, d, angle) ▷ Re-sample with new distance

20: end if
end while

distance_value← getDistance(loc_d,(lat,lon))
▷ Re-calculate the distance between origin and the actual location found

return
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5. Results

The following sections show results of the sampling algorithm comparison ex-
periments on synthetic data, followed by the results of the application of Un-
certainty sampling experiments on real-world data.

5.1 Synthetic Data Experimental Results

Here, we present the results of comparison of the sampling algorithms presented
in Section 4.4 applied to the synthetic data described in Section 4.3.1.

5.1.1 Comparison of CHD Estimate

After each algorithm was run 1000 times for 1000 iterations each run, the final
D̂ estimate for each run was recorded. Figure 5.1 shows various metrics regard-
ing how the D̂ estimate changes every iteration across 1000 runs of ABS and
U, including the median value as well as the maximum and minimum values.
For results regarding the other algorithms, those are available in Section A.2
of the appendix.

The median value for all algorithms appears to converge to the true value
fairly quickly, and the maximum and values are extremes as the 90th percentile
lines are much closer to the median. The same goes for the minimum being
extreme and the 10th percentile being closer to the median as well.

There are noticeable differences in the other metrics. U appears to have a
smaller range of values as shown by the min and max lines in Figure 5.1b. The
figure also shows that the maximum and minimum D̂ estimates of U converge
and stabilise faster.

Most algorithms completed execution in around the same time, but one
algorithm stood out in this regard. Greedy Sampling additionally takes con-
siderably more time to execute, as it took about 25 minutes to complete 1000
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iterations, and every other algorithm took around 10 minutes.

5.1.2 Standard Deviation Comparison

Each algorithm’s median standard deviation for its D̂ estimates, σ̂D̂, was
recorded after 1000 runs of each algorithm. Figure 5.3 shows the results,
excluding the U-based hybrid algorithms USR, U5 and UA. The baseline al-
gorithm for this comparison is taken as SR, and it is clear that both G and
R are doing worse in terms of the speed of σ̂D̂ decrease over time. For this
reason, R and G will no longer be considered for stopping criteria testing.

Figure 5.4 shows the median standard deviation over time for algorithms
that are better than baseline SR, with SR also included. All Uncertainty-based
algorithms are shown in purple with different line styles, and all perform better,
or just as good as, SR in terms of speed of median σ̂D̂ drop. Figure 5.5 provides
a closer look to how the Uncertainty-based algorithms start off with median
standard deviation dropping quite fast. The hybrid approaches USR and UA
start approaching their corresponding SR and ABS deviation lines over time.

5.1.3 Algorithm Accuracy Comparison

The performance of different algorithms in determining a D̂ estimate close to
the assumed true value of 400 km was also recorded for an accuracy compar-
ison. Figure 5.2 shows that U has the smallest maximum D̂ value over 1000
runs up to 600 iterations, but gets surpassed by ABS after that point. How-
ever, at 600 iterations, ABS has taken at least 2400 samples, which is already
a sample size far too high.

5.1.4 Comparison of Stopping Criteria

The main metrics used as stopping criteria were measures that required little
to no extra computations within the algorithm itself. These include the total
number of iterations, difference in D̂ estimate over iterations, and standard
deviation of the D̂ estimate, σ̂D̂.

For 100 iterations as stopping criterion for ABS and U, the difference from
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Figure 5.1: Results of the D̂ estimate from each algorithm over 1000 runs.
The black lines show the maximum and minimum values; the red line shows
the median value; and the dark blue dotted lines show the 90th and 10th per-
centiles. The light blue shaded region is the area between the first and third
quartiles.

42



5.1 Synthetic Data Experimental Results

0 200 400 600 800 1000
Iteration

400

420

440

460

480

500
D

 (k
m

)
ABS
SR
U
USR
U5
UA

Figure 5.2: Comparing the maximum D̂ value at every iteration of the 6 al-
gorithms, taken from 1000 runs of each. Even though maximum D̂ values in
early iterations can be very high, the y-axis upper limit of the graph is set at
500 km to ensure readability. The minimum value is set as the assumed true
value of D, 400 km.

the true value of D, 400, was plotted in histograms in Figure 5.8. Results for
the remaining algorithms can be found in Section A.2 in the appendix. The
difference appears to be normally distributed for each algorithm. U shows a
smaller spread in the difference compared to the other algorithms. However,
at the 100th iteration, each algorithm will have taken at least 400 samples,
which is a very large sample size.

The remaining stopping criteria were also tested, and the difference from
the assumed true value of 400 km along with sample size was recorded. The
figures in this section focus on ABS and U as the results for these two algo-
rithms are the most relevant. The remaining results for the other algorithms
can be found in the Appendix in Section A.2.

In terms of the D̂ difference from 400 km, the results are shown for ABS and
U in Figure 5.6. It is clear from all subfigures that absdiff produces a much
larger difference overall. The remaining stopping criteria are overlapping in
the figures and appear to be centred around 0, with std25 showing the largest
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Figure 5.3: Median σ̂D̂ for five of the sampling algorithms over 1000 runs of
1000 iterations. Greedy and Random have overlapping lines due to very close
median values of standard deviation decrease over 1000 iterations of 1000 runs
of each. The three dashed gray lines are at standard deviations 10, 17, and 25
km.

spread.

Additionally, it can be observed that std25 can sometimes lead to out-
liers where the difference from 400 is -300 km, meaning that this criterion for
stopping is causing the algorithm to stop too earlier and, therefore, produce
a less accurate result. To visualise this for U specifically, Figure 5.9 shows
the individual runs of the U algorithm with their difference values. It can be
observed that many of the algorithm runs stop at iteration 0, and produce a
D̂ value very far from 400. This difference is alleviated when the triple criteria
is utilised, as shown in Figure 5.10.

These results should be considered with the corresponding sample sizes at
stopping, shown in Figure 5.7. Here, it is clear that std10 takes a far greater
number of samples overall compared to the other stopping criteria, making it
a poor choice in terms of efficiency. The best option appears to be triple, due
to it taking smaller sample sizes overall as well as having a small spread in
difference from 400 km for all algorithms.
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Figure 5.4: Median σ̂D̂ change over the iterations in 1000 runs of each algo-
rithm, excluding R and G. The three dashed gray lines are at standard devia-
tions 10, 17, and 25.
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Figure 5.5: Zoomed in and focused on the first 20 iterations of median σ̂D̂,
with the same colouring scheme as in Figure 5.4. The three dashed grey lines
are at standard deviations 10, 17, and 25.
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Figure 5.6: Difference of D̂ from the assumed true value of 400 km, across
1000 runs of ABS and U algorithms with the relevant stopping criteria applied.
The count represents the number of runs where this difference occurs when the
algorithm run stops. Note that this is not the absolute value of the difference.
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Figure 5.7: Total sample size at the stopping iteration when the stopping
criteria is reached, across 1000 runs of the ABS and U algorithms. The count
represents the number of runs that ended with a given sample size.
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Figure 5.8: Histograms for the value of D̂-400 at the 100th iteration for 1000
runs of ABS and U, rounded to the nearest km. The count shows how many
times runs the difference appeared in when the algorithm was stopped at the
100th iteration.
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5.1.5 Best-performing Algorithm

We observe that U shows the fastest decrease in terms of standard deviation
in 1000 runs for 1000 iterations, as well as the smallest maximum value of D̂

for 600 iterations. Before this algorithm is applied on the dataset of renewable
energy potential presented in Chapter 3, the relevant stopping criteria must
be tested for suitability.

As mentioned before, the "triple" stopping criteria shows the most favourable
results and is a good contender for use with U sampling on the real data. How-
ever, there is an accuracy concern regarding the use of std25 with this stopping
criteria. As seen from the stopping criteria result figures, using std25 as a stop-
ping criterion sometimes produces a D̂ estimate that is very different from the
assumed true value of 400 km. On the other hand, using a stricter stopping
criterion of std10 results in a much larger sample size being required to stop.
To strike a finer balance between this trade-off, the stopping criteria of std17,
or stopping after the standard deviation drops below 17 iterations, is selected
to be used in the triple criteria on the real data, instead of std25 as was tested
on synthetic data. The other two criteria present in triple of having at least
ten iterations and checking the difference in D̂ between iterations remain the
same.

5.2 Real Data Results

Uncertainty Sampling was applied to the real data as it showed the best overall
performance and results in the synthetic data experiments. Both wind onshore
CF and solar CF time series datasets were investigated separately.

5.2.1 Solar Capacity Factor Results

Unfortunately, the algorithm did not converge when tested on solar CF, even
after preprocessing was applied to only take the maximum solar CF values
for each location. As solar CF is heavily affected by time of day, there is a
lot more variability in the data as opposed to wind CF values, which are not
necessarily heavily affected as much by sunrise or sunset.

49



Results

0 5 10 15 20
Stopping Iteration

300

200

100

0
D

40
0 

(k
m

)

Figure 5.9: The difference of the D̂ estimate from the true value in U sam-
pling plotted against the stopping iteration for stopping criterion std25.
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Figure 5.10: The difference of the D̂ estimate from the true value in U sam-
pling plotted against the stopping iteration for the triple stopping criterion.
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5.2.2 Wind Onshore Capacity Factor Results

For the city of Utrecht in the Netherlands, the Correlation Halving Distance
of two locations was investigated: (52,5) and (52,5.25). Close locations to
Zurich, Madrid and Kiev were chosen from the dataset as origin cells as well.
The results are shown in Table 5.1 and Table 5.2. Both locations close to (or
in) Utrecht show similar results in every metric shown.

For some cities, the mean correlation at the mean CHD value is more than
10% away from 0.5, as shown for both points close to Utrecht. The three other
cities show the converse, however. Passing the small and big circle check is
also not consistent throughout, but it is clear that the mean correlation at
the big circle distance is smaller than the mean correlation at the small circle
distance, which indicates that correlation does generally decrease with distance
even when it may be different for individual locations in different directions.

Coordinates
(latitude,
longitude)

Nearest
City

Mean
CHD
(km)

σ of
CHD

Mean
Total

Sample
Size

(52,5) Utrecht 448 8.338 112
(52,5.25) Utrecht 442 7.003 114
(47.5,8.5) Zurich 172 28.000 63

(40.5,-3.75) Madrid 306 6.479 61
(50.5,30.5) Kiev 427 12.956 65

Table 5.1: Correlation Halving Distance results after 10 runs on each origin
cell. The standard deviations of the 10 CHD values for each city are shown in
the fourth column.

Coordinates
(latitude,
longitude)

Mean ρ
at CHD

Mean ρ
(small circle

check)

Mean ρ (big
circle check)

(52,5) 0.550 0.572 0.523
(52,5.25) 0.552 0.575 0.552
(47.5,8.5) 0.447 0.480 0.420

(40.5,-3.75) 0.489 0.508 0.472
(50.5,30.5) 0.537 0.562 0.518

Table 5.2: Correlation Halving Distance results after 10 runs on each origin
cell.

The results for 100 runs with random centres in the restricted dataset
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bounds are as follows: the mean correlation at CHD is 0.494; the small circle
check yields a mean correlation of 0.515; and the big circle check yields a
mean correlation of 0.474. While the mean results show that the small circle
correlation is greater than 0.5 and vice versa for the big circle, this check
indicates that the algorithm has a bias where it over or underestimates the
Correlation Halving Distance, and, on average, over 100 runs, the bias cancels
itself out.

For a more visual inspection of the results of 100 runs, the 100 different
origins with their corresponding correlation halving distance values are plot-
ted in Figure 5.11 with colouring determined by mean onshore wind CF over
2020. In the landlocked regions of eastern Switzerland and western Austria,
the CHD values are relatively low, at around 105 km and 110 km, respectively.
However, at more northern regions bordering the North Sea, such as the grid
cell in Northern France, the CHD value is 437 km instead. The Northern loca-
tions overall show a trend of higher CHD values compared to the south of the
continent. This may be due to stronger wind currents in the North Sea region
compared to the Mediterranean sea. However, there are outliers even within
these trends. A point off the coast of Norway has a CHD value of 176 km,
which is quite small compared to its surrounding CHD values. Similarly, the
point in North Portugal also has a relatively high CHD value of 312 km when
compared to South France and the other sampled cells in Southern Europe.
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Figure 5.11: A hundred locations with their corresponding CHD values plotted. Each value is rounded to the nearest kilometre. The
background shows the mean onshore wind capacity factor over 2020.53
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Additionally, 87 out 100 runs resulted in a correlation value that is in the
range [0.5 ± 0.05]. This means that the majority of the time, the algorithm
has about a 10% error in producing an accurate Correlation Halving Distance
value.

In terms of efficiency, each run of the 100 took 62 samples on average,
meaning that 62 time series correlations were calculated on an average run.
The brute force approach relied doing correlation between every pair of grid
cells to determine the CHD for a single origin cell. Given that there are 21,019
grid cells in total, taking only 62 correlations greatly saves on computation
cost.
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6. Conclusion

6.1 Summary

This study examined various spatial sampling algorithms to efficiently calculate
Correlation Halving Distance (CHD), a distance value, where the correlation
between the time series at the CHD and the time series at the origin cell is 0.5.
Experiments were first conducted on synthetic data, and the best-performing
algorithm, Uncertainty sampling, was applied to real data. This algorithm
showed good performance on average with onshore wind CF in terms of accu-
racy and efficiency. More specifically, the correlation at the CHD was within
10% of 0.5 for most random runs of Uncertainty Sampling. On average, 62
samples were taken for 100 random runs of Uncertainty Sampling, representing
a significant improvement in the number of correlations calculated, consider-
ing the original dataset contains 21,019 time series. However, validation checks
using the standard deviation of the estimate did not yield optimal results.

Two validation checks were performed to validate the obtained CHD values
for wind onshore CF. The "small circle check" required the mean correlation
over ten algorithm runs at a distance of CHD minus 2 standard deviations to be
greater than 0.5, while the ’big circle check’ required that the mean correlation
over ten algorithm runs at a distance of CHD plus 2 standard deviations be
smaller than 0.5. These two checks did not consistently hold up for all grid
cells whose CHD was being calculated, indicating that the CHD value may be
over or underestimated for certain locations.

Additionally, the algorithm did not produce results for D̂ using the so-
lar CF dataset. This happened despite data pre-processing measures applied
to account for possible complications resulting from how heavily solar CF is
affected by time of day.

55



Conclusion

6.2 Discussion

It is not fully clear whether the sampling algorithm itself needs refinement,
or if the data needs to be further pre-processed to reduce the level of noise.
There is likely to be a trade-off where sampling algorithms that produce more
accurate CHD values may consume more resources. Additionally, a location at
the Correlation Halving Distance for an origin cell may produce a correlation
value that is very different from another location at the same distance but in
a different direction, due to geographical variation in a circle around the same
distance. It is not fully clear how to accommodate this fact, and the definition
of Correlation Halving Distance may need to be modified to account for this
variation. Further investigation is also required as to why the solar dataset
requires a modified approach.

In terms of understanding weather regimes to aid Europe’s power supply
transition to renewables, it is helpful to review Figure 5.11 as it shows many
CHD values throughout the continent with mean onshore wind CF in the
background. It appears that, generally, CHD values for onshore wind CF are
higher at higher latitudes, with proximity to the North Sea also contributing to
a boost in the value. However, more information may be needed to determine
more complete trends as well as peculiarities, given that these locations are all
random, and more than 100 of them may be required. Overall, it is difficult to
state anything determinate about CHD and weather regimes given the limited
scope of this research. However, the findings do provide a good foundation
for future studies to build upon by using the sampling techniques here and
perform more comprehensive analyses on weather regimes.

6.3 Future Work

The Correlation Halving Distance value by itself may need to be further refined,
as the distance at which correlation is 0.5 is an arbitrary value used in this
study. It may be the case that discovering a value for distance from the origin
where correlation is 0.3 or 0.7 could also be valuable depending on the specific
use case. To this end, it would also be helpful to investigate whether the base
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exponent should be Euler’s number e or a different base, so that the functional
form can be fine-tuned to yield the most useful results. Additionally, as CHD
is a novel measure, research could be conducted on better function forms to fit
that may not be negative exponential in the input of distance. Additionally,
the range of the current functional form is strictly positive, meaning that
negative correlation values will adversely affect the accuracy of the resulting
Correlation Halving Distance estimate.

With respect to Uncertainty Sampling, it is important to note that taking
four sample points per iteration even on the real data was done to maintain
the algorithm form that was used in the theoretical experiments, as all other
algorithms were also taking four samples at a time. An avenue to explore would
be to take one sample at at time for each function fit, and observe how that
affects performance. The choice of scale factors was also non-trivial; choosing
one scale factor value at each iteration as opposed to four different ones may
noticeably affect the algorithm’s performance, and it is not apparent which
scale factor value should be chosen.

As it can still be very computationally intensive to compute CHD for each
coordinate in the dataset of Europe, a spatial interpolation approach must
be discovered that may estimate the CHD value for a given cell based on the
calculated CHD value for a neighbouring cell. A successful interpolation ap-
proach will further reduce the computational resources required to understand
how the CHD values vary for all of Europe.

The Correlation Halving Distance measure, as well as the algorithms pro-
posed in this study, may be applied to different spatio-temporal datasets as
well. The flood synchrony scale [11] is a similar measure using a similar data
structure: essentially, a two-dimensional array where each element is a time
series, and the elements cannot be modified or moved around in the array.
There are possibly other domains where such approaches would be useful and
should be explored for similar analyses.
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A. Appendix A

The technical specifications and environment for the experiments in this study
are outlined in the following section. Additionally, the appendix includes di-
agrams for algorithm comparison results for algorithms that were not Uncer-
tainty (U) or Adjusted Binary Search (ABS).

A.1 Setup and Environment
The environment used to test is a Jupyter Notebook with a conda Python
3.8.8 interpreter. Separate Jupyter notebooks were created to test individual
algorithms as well as visualisations. These are also stored on a github reposi-
tory for version control. The computer used for testing is a Macbook Pro 2020
with an M1 chip and 8GB of RAM.

Various Python libraries are utilised to provide relevant functionality. NumPy
[26] is used for multiple functions such as providing a PCG64 generator for ran-
dom value generation, and calculating metrics such as arithmetic mean and
standard deviation of a list or array. SciPy [24] is used to fit the negative ex-
ponential curve function in Equation 4.1 onto the given data, and yield a CHD
estimate along with the standard deviation in the estimate. GeoPy [25] is used
to calculate the geodesic distance between two coordinates on the Earth’s sur-
face, where geodesic assumes the Earth is of an ellipsoid shape. Additionally,
GeoPy allows for determining a coordinate that is a given input distance away
from an input coordinate, as long as the angle is specified. Cartopy [27] and
MatPlotLib [28] are used to plot various graphs and map projections.

The dataset is available in netCHDF format files, a format commonly used
for array-oriented scientific data [29]. To open and manipulate these for use
in Python, the XArray [30] library is used. Additionally, XArray provides a
convenient function that "snaps" to the nearest coordinate that actually exists
in the dataset. For example, if a location at coordinate (35.01,55.01) must
be sampled, XArray allows for the closest coordinate in terms of Euclidean
distance to be selected, which is (35,55).

A.2 Algorithm Comparisons
The appendix includes additional figures showcasing experimental results for
various algorithms that were not included in the main section. While the re-
sults for ABS and U were covered in the main text, the results and comparisons
for all other algorithms are presented below.
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Figure A.1: Histograms for the value of D̂-400 at the 100th iteration for 1000
runs of SR and USR, rounded to the nearest km. The count shows how many
times runs the difference appeared in when the algorithm was stopped at the
100th iteration.
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Figure A.2: Histograms for the value of D̂-400 at the 100th iteration for 1000
runs of UA and U5, rounded to the nearest km. The count shows how many
times runs the difference appeared in when the algorithm was stopped at the
100th iteration.
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Figure A.3: Results of the D̂ estimate from the G and R algorithms over
1000 runs. The black lines show the maximum and minimum values; the red
line shows the median value; and the dark blue dotted lines show the 90th and
10th percentiles. The light blue shaded region is the area between the first and
third quartiles.
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Figure A.4: Results of the D̂ estimate for the SR and U5 algorithms over
1000 runs. The black lines show the maximum and minimum values; the red
line shows the median value; and the dark blue dotted lines show the 90th and
10th percentiles. The light blue shaded region is the area between the first and
third quartiles.
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Figure A.5: Results of the D̂ estimate for USR and UA algorithms over 1000
runs. The black lines show the maximum and minimum values; the red line
shows the median value; and the dark blue dotted lines show the 90th and
10th percentiles. The light blue shaded region is the area between the first and
third quartiles.
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Figure A.6: Difference of D̂ from the assumed true value of 400 km, across
1000 runs of the SR and USR algorithms with the relevant stopping criteria
applied. The count represents the number of runs where this difference occurs
when the algorithm run stops. Note that this is not the absolute value of the
difference.
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Figure A.7: Difference of D̂ from the assumed true value of 400 km, across
1000 runs of U5 and UA with the relevant stopping criteria applied. The count
represents the number of runs where this difference occurs when the algorithm
run stops. Note that this is not the absolute value of the difference.

68



A.2 Algorithm Comparisons

0 200 400 600 800
Total Sample Size

0

50

100

150

Co
un

t
absdiff
std25
std17
std10
triple

(a) SR

0 200 400 600 800
Total Sample Size

0

25

50

75

100

125

150

Co
un

t

absdiff
std25
std17
std10
triple

(b) USR

Figure A.8: Total sample size at the stopping iteration when the stopping
criteria is reached, across 1000 runs of SR and USR algorithms. The count
represents the number of runs that ended with a given sample size.
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Figure A.9: Total sample size at the stopping iteration when the stopping
criteria is reached, across 1000 runs of U5 and UA algorithms. The count rep-
resents the number of runs that ended with a given sample size.
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