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Abstract—Heart failure, a condition impacting more than 
23 million individuals globally, is anticipated to see an 
increase in its incidence. Among the various types of heart 
failure, Congestive Heart Failure (CHF) stands out with its 
hallmark of inadequate blood pumping leading to fluid 
accumulation in diverse body regions. Monitoring patients 
afflicted by CHF holds the key to better healthcare 
outcomes, which include timely medication delivery and 
reducing rehospitalization. This literature review discusses 
the feasibility of employing seismocardiography (SCG). 
SCG is a non-invasive method that relies on accelerometers 
to record the chest vibrations caused by cardiac activities. 
SCG's correlation with intracardiac filling pressures has the 
potential to monitor both healthy individuals and patients 
with heart failure, thereby reducing readmission. In 
addition, the integration of SCG with other wearable sensor 
technologies and machine learning applications can further 
improve diagnostic accuracy and personalized predictive 
models for HF progression. 

 
Index Terms—seismocardiography, SCG, congestive 

heart failure, right heart catheterization, mechanical 
vibrations, filling pressure. 

 

I. INTRODUCTION 

EART failure (HF) impacts more than 23 million people 

globally, and according to some figures, it may reach over 

37 million [1].  Heart failure indicates a gradual weakening of 

the heart muscle's ability to contract or the presence of 

mechanical issues that restrict its ability to fill with blood (Fig. 

1). By definition, congestive heart failure (CHF) is not a type of 

heart failure, but rather a condition characterized by 

hyperdynamic circulation where the cardiac output is raised 

above normal levels. However, CHF is a long - term condition 

in which the heart struggles to adequately pump blood to meet 

the needs of the body. The heart is still beating, but it struggles 

to pump out the right amount of blood, which causes blood to 

build up in other regions of the body [2]. 

The pressure inside the heart during the filling phase of the 

cardiac cycle, known as diastole, is referred to as filling 

pressures. The rise in intracardiac filling pressures offers a 

timely indication regarding the advent of congestion in HF [3]. 

Increased intracardiac filling pressures and cardiopulmonary 

volume excess are symptoms of hemodynamic congestion [4]. 

Optimal administration of heart failure medication necessitates 

vigilantly monitoring the patient's state of congestion, 

achievable, for instance, through the measurement of filling 

pressure. Daily weight measurements are not sensitive enough 

to detect small volume changes, which limits their ability to 

forecast impending hospitalization in the majority of patients 

[5]. 

 

  
Fig. 1. Normal Heart vs Congestive Heart. Adapted from [6]. 

HF requires regular patient monitoring. This cannot be 

achieved exclusively through office visits. Reducing 

readmissions has become a vital quality metric, given its 

potential to enhance HF care and reduce costs. Implantable, 

wireless monitoring systems like CardioMEMS exemplify this 

advancement, as they include a pressure sensor implanted in the 

pulmonary artery (PA). Healthcare professionals receive PA 

pressure (PAP) readings daily and adjust treatment based on 

detecting hemodynamic congestion, ensuring PAP remains 

within an optimal volemic range (PA mean pressure within 10-

25 mmHg). This proactive, hemodynamically-guided approach 

has proven to reduce HF-related readmissions by 37% [3]. 

Additionally, wearable activity devices can be used to track HF 

rhythm irregularities and functional status. There is, however, 

little proof that these devices improve HF clinical outcomes [1].  

Patients with HF can live better lives and catch conditions 

getting worse earlier with continuous monitoring at home. 

However, a comprehensive evaluation necessitates insights into 

both the electrophysiological and mechanical health of the 

heart. Current Holter-based electrocardiogram (ECG) 

measurement devices are unable to deliver the latter [7]. 

With the emergence of miniaturized, cost-effective sensors, 

and digital health technologies, a multitude of wearable 
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monitoring systems have been explored for tracking 

cardiovascular well-being, both in healthy individuals and 

patients with HF. Seismocardiography, a non-invasive method 

for measuring congestive heart failure, shows great promise [3]. 

This technology, introduced in the early 1990s [8], uses 

accelerometers, which are embedded within a wearable patch 

affixed to the sternum, to measure cardiac-induced vibrations 

on the chest. The measurement describes the mechanical 

activity of the heart. Previous studies have demonstrated the 

feasibility of monitoring hemodynamic parameters such as 

stroke volume or filling pressure via seismocardiography within 

a hospital environment [3], [9]. Consequently, this technology 

also has the potential for home-based monitoring of congestive 

heart failure. 

 

This paper is structured to give answers to the following 

questions:  

1. What are the physiological mechanisms underlying 

congestive heart failure? 

2. What is the physiology of the seismocardiography 

signal?  

3. Is it feasible to monitor heart failure progression with 

seismocardiography based on current literature? 

 

The Introduction covers the first question, while the second 

section (Physiology of the Seismocardiography Signal) 

addresses question number two. The third question finds its 

answer in the Discussion section, and the Conclusion 

summarizes the main findings. 

 

II. PHYSIOLOGY OF THE SEISMOCARDIOGRAPHY SIGNAL 

This document is divided into multiple sections. Section A 

presents the criteria used to select the key references. Section B 

presents measurement techniques used in the past. Section C 

discusses the physiological sources. Section D explains the 

SCG waveform in comparison with the ECG waveform. 

Section E provides an overview of the timing information 

extracted from the SCG signal, as previously documented in the 

literature. Lastly, Sections F and G describe the current open 

issues and recent advances related to SCG signals.  

  

A. Selection Criteria 

Google Scholar was employed to identify relevant literature, 

prioritizing the top 100 most cited papers. For analysing the 

physiology of the SCG signal, the keyword 

"seismocardiography" yielded approximately 2900 search 

outcomes. Abiding by the criterion of being among the highly 

cited papers, three primary reviews ([10],[11],[12]) were 

identified to give a description of the SCG signal and the 

feasibility of heart failure monitoring, with the latest paper 

([12]) published in 2021. 

For exploring open issues and recent advances, the same 

keyword was used, taking into consideration the top 100 most 

referenced articles. Given that the most recent review was 

conducted in 2021, the search was restricted to papers published 

between 2021 and the present. Approximately 1050 results 

were obtained. The exclusion criteria included papers with 

citations lower than 5. Publications that specifically discussed 

congenital heart failure, filling pressures, and a better 

understanding of seismocardiography signals were taken into 

consideration. 

 

B. Measurement techniques 

This section provides a short overview of the most common 

techniques used to measure the mechanical vibrations induced 

by the heart onto the chest wall. 

In the past, a number of innovative techniques were put out to 

capture the heart's low-frequency vibrations. Among these 

techniques, Apexcardiography (ACG), Ballistocardiography 

(BCG), and Seismocardiography (SCG) have garnered 

considerable attention as valuable tools for discerning 

cardiovascular diseases. Initially, SCG relied on acceleration 

measurements, while ACG and BCG were based on 

displacement measurements. ACG and SCG recorded chest 

wall vibrations, whereas BCG captured whole-body vibrations 

stemming from center-of-mass displacements. To measure 

ACG, a transducer is positioned above the patient's chest wall 

[13]. ACG is primarily utilized for clinical diagnosis and 

evaluation, while SCG has the added benefit of being widely 

recognized as the state-of-the-art method for long-term, 

continuous monitoring of cardiac mechanical function in 

wearable applications [14].  

In recent times, two alternative techniques have emerged: 

Gyrocardiography (GCG) and Kinocardiography (KCG). GCG 

has an added gyroscope soldered in the wearable patch 

positioned on the sternum. This introduces three extra degrees 

of freedom to measure the heart's angular vibrations alongside 

SCG [15]. On the contrary, KCG leverages BCG and SCG 

signals to concentrate on comprehending the body's motion 

resulting from the heart's contraction and blood flow [16]. 

 

C. Physiological sources 

Seismocardiography (SCG) signals are believed to originate 

from various cardiac mechanical processes, including muscle 

contraction, valve motion, blood flow turbulence, and 

momentum shifts.. Differences in these mechanical processes, 

provide insights about both cardiovascular physiological and 

pathological conditions. The SCG signal can be recorded by 

placing a low-noise accelerometer on the chest [10]. The 

information obtained from the signal can be recorded in parallel 

with other procedures: detection of heart electrical activity 

(ECG), other imaging techniques (echocardiography, cardiac 

magnetic resonance imaging), catheterization. 

The seismocardiography signal's mechanical vibration nature 

causes it to frequently be compared to or used in conjunction 

with ballistocardiography in literature, which is also a 

mechanical vibration. As a result, two classifications can be 

distinguished: 

1. Ballistocardiography (BCG), which involves the 

measurement of the forces generated by the entire 

body during a cardiac ejection. The circulation of 

blood along the vascular tree induces alterations in the 

body's center of mass during each heartbeat. 

Subsequently, recoil forces prompt micromovements 
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in the body, ensuring the preservation of overall 

momentum. These motions are captured by the BCG, 

and they can be expressed as signals of displacement, 

velocity, or acceleration. It is intended to include 

changes in all three axes (degrees-of-freedom) [10].  

2. SCG, which refers to the local chest surface recording 

of cardiac vibrations [11]. 

 

 However, the signals are not the same. BCG measures the 

mechanical vibrations caused by the heart and the cardiac 

reaction forces acting on the entire body. SCG investigates 

mechanical vibrations caused by the heart. SCG and BCG are 

the sole two techniques encompassing both aspects: the 

myocardial vibrations originating from cardiac muscle 

contraction and the vibrations arising from arterial circulation 

due to blood flow [12]. 

 When assessing BCG using a scale or force plate, it's 

essential to recognize that the units for SCG and BCG differ. 

SCG records chest wall accelerations and is expressed in mg 

units. In contrast, BCG depicts the displacements of the 

subject's center of mass on the weighing scale, which are 

subsequently converted to force units using the spring constant 

for the scale platform. As a result, the BCG is presented in units 

of Newtons. The mass being accelerated in SCG is different 

from the mass accelerated in BCG. Due to this distinction, there 

is currently no clear method for directly converting BCG to 

acceleration units or SCG to force units. Further research is 

needed to elucidate this conversion process [10]. 

 

D. SCG waveform 

Although the precise link between SCG waves and cardiac 

activity is not fully understood, numerous studies have explored 

this relationship. For instance, researchers have noted that SCG 

exhibits a low-frequency wave during atrial systole, a high-

amplitude wave during ventricular systole, an extra wave 

during early ventricular filling, and several relatively high-

frequency waves coinciding with the first and second heart 

sounds, which correspond to the opening and closing of the 

mitral valve [11]. Additionally, it was shown that SCG is 

helpful in measuring cardiac intervals like the left ventricular 

ejection time (LVET) and electromechanical systolic pre-

ejection period (PEP) [17]. 

Delineating the SCG waveform involves identifying specific 

reference points (fiducial points) and estimating time intervals 

between these points, which hold clinical significance for 

interpreting cardiovascular system abnormalities.  

Current research focuses on identifying these reference points 

within an SCG signal and correlating them with the ECG to 

discern physiological events taking place during a cardiac cycle 

[18].  

 

Fig.  2 illustrates the simultaneous recordings of ECG and 

SCG waveforms. The heart consists of two distinct 

compartments separated by a septum, each comprising an 

atrium and ventricle. These chambers are further divided by 

atrio-ventricular and semi-lunar valves. An SCG signal can 

facilitate the identification of different phases of the cardiac 

cycle. These phases include: mitral valve opening/closure 

(MO/MC), aortic valve opening/closure (AO/AC), isovolumic 

contraction/relaxation time (IVCT/IVRT), rapid filling (RF) of 

blood through the ventricles, rapid ejection (RE) of blood from 

the ventricles, and isovolumic movement (IM) [19]. 

 

Accurate assessment of the SCG signal's fiducial points, such 

as the IM, AO, and AC, is one crucial criterion for its usage in 

a clinical environment [20].  

In the study conducted by Rai et al. in 2021, a review of 

experiments aimed to determine the most easily detectable 

fiducial points using SCG. Based on precision and sensitivity, 

the effectiveness of different proposed techniques was 

evaluated. Some fiducial points were identified with the aid of 

ECG as a reference, while others were detected without ECG 

reference. The results indicated that the most noticeable peak in 

the SCG signal, namely the AO peak, was the most easily 

detectable. Interestingly, a specific experiment yielded the most 

favorable outcomes for AO detection. This success can be 

attributed to the combined analysis of the SCG signal with the 

GCG signal, which captures both angular cardiac vibrations and 

Fig.  2. The figure displays simultaneous ECG (a) and SCG (b) waveforms, accompanied by the proposed annotations from [19]. The annotations 
include AS (Atrial systole), MO/MC (Mitral valve opening/closure), IM (Isovolumic moment), AO/AC (Atrial valve opening/closure), IC (Isotonic 
contraction), RE (Rapid ejection), RF (Rapid filling), PEP (Pre-ejection period), LVET (Left ventricular ejection time), IVCT/IVRT (Isovolumetric 
contraction/relaxation time). Additionally, the RR (Respiratory rate interval) is also depicted. Adapted from [20] 
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regular vibrations, ultimately enhancing the accuracy of 

detection [12], [15]. The annotations presented in Fig.  2. 

represent one of the initial sets of annotations, which have been 

experimentally compared to the echocardiogram signal and are 

associated with well-known physiological events. Annotation 

plays a crucial role in improving the comprehension of the 

signal by labeling specific points, known as feature points, 

within the acquired signal. In SCG, both fiducial and feature 

points are employed for annotation, but they differ in their 

definition and purpose. Fiducial points are utilized to determine 

the timing of cardiac events, while feature points are utilized to 

extract information about the heart's mechanical activity. 

Depending on the annotation technique used, a varying number 

of feature points can be identified. 

In the study conducted by Rai et al. in 2021, the annotation 

processes for the SCG signal were categorized into four groups: 

temporal envelope-based with ECG, temporal envelope-based 

without ECG, machine learning-based, and visual inspection 

and comparison-based.. This classification was based on 

experiments carried out on patients where both SCG and ECG 

signals were simultaneously recorded. In certain cases, ECG 

recordings and ultrasound images were also obtained. It is 

important to note that each annotation process comes with its 

own limitations. For instance, the Envelope-based with ECG 

method may not be effective for all patient groups [12]. 

E. Extracted parameters 

 Seismocardiography presents the opportunity for continuous 

monitoring of cardiac activities, both in clinical settings and at 

home. SCG enables the observation of the duration the heart 

dedicates to specific cardiac activities and stages, providing 

valuable insights into its functioning. These time measurements 

are commonly known as cardiac time intervals (CTI). SCG 

finds application in monitoring cardiac health and identifying 

various cardiac conditions by extracting different parameters 

linked to physiological events. 

Both the systolic and diastolic stages of the cardiac cycle are 

determined by CTIs. A comparison of the different extracted 

intervals is presented in Table 1. For detailed information on 

the extracted parameters and the methodologies used for 

extraction, check reference [12]. 

 

F. Open Issues 

Among the three reviews conducted on SCG signals, certain 

unresolved matters persist in this field, while others have been 

tackled to improve the understanding and practicality of SCG 

signals. In  

Table 2, the primary open issues are listed in the first column, 

and the table is updated to include the latest research outcomes 

included in the review paper from 2021. The second column 

presents the research articles that discuss the corresponding 

open issues. Open issues that have recently appeared (since 

2021) and were not included in the last review paper are 

highlighted in blue. Only the open issues with blue-colored 

references are described in this context, as the others have 

already been discussed in previous reviews. 

Initial endeavors to utilize SCG for cardiac diagnosis 

encountered obstacles such as bulky instrumentation size and 

uncertainty regarding signal characteristics and variations 

among different subjects. However, recent progress in sensor 

technologies and signal processing techniques has spurred 

numerous new studies, providing improved understanding of 

these challenges. Considering the substantial impact of 

cardiovascular disease on morbidity and mortality rates, along 

with the significant costs of healthcare, there has been growing 

impetus for further research to reevaluate the feasibility and 

utility of SCG in diagnosing and monitoring cardiac function 

[11]. Enhanced comprehension of these challenges holds the 

potential to boost the quality of signal processing techniques, 

diminish SCG signal variability and noise, and ultimately result 

in a more precise delineation of SCG features for diagnostic and 

monitoring purposes. 

 

 
Table 2. Open Issues and current References. 

In [29], a robust framework for estimating cardiac time 

intervals using SCG signals in the presence of vehicle 

Open Issues References 

Effects of respiration [18],[19] [23],[24],[25] 

Subject motion, and postural position  

[7],[10],[26]  

[7],[26],[27], 

[28],[29] 

SCG variability: gender, age, health 

conditions. 

[16],[30] 

SCG variability: cardiac contractility, heart 

rhythm 

More research 

is needed 

Adherence of the sensor to the signal 

waveform or quality 

[31] 

Digestive state and mood of the patients  

[11] 

More research 

is needed 

Facilitate clinical practice [11] 

Reference values for different groups of 

people including a variety of body kinds, 

sizes and ages [10] 

More research 

is needed 

Table 1. Cardiac time intervals and parameters extracted for cardiac 
health monitoring. Adapted from [12].  
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vibrations is proposed. The method effectively removes 

external vibrations by decomposing the corrupted signal and 

utilizing heartbeat features to separate vehicle noise from the 

SCG signal. In order to validate the proposed methodology, 

generated simulated SCG data that had been corrupted by 

vehicle-related factors was obtained. This data was added to 

clean SCG. The study showcased a significant reduction in 

Root Mean Square Error (RMSE) of AC detection after 

applying the denoising method and achieved high accuracy in 

AO detection. The proposed model for mitigating vehicle 

vibration interference in SCG timing features could have 

crucial implications for the implementation of wearable 

cardiovascular monitoring systems in out-of-hospital settings. 

By improving the reliability of these features in noisier 

environments, the coverage and applicability of algorithms 

using SCG timing features can be extended beyond controlled 

clinical environments. 

In reference [16],  a groundbreaking technique known as 

kinocardiography (KCG) was introduced. This innovative 

method involves the fusion of both SCG and BCG signals to 

record and analyze myocardial functions. By combining these 

two signals, the KCG approach utilizes 12 degrees-of-freedom 

to precisely capture the intricate body motion arising from 

myocardial contractions and blood flow within the cardiac 

chambers. The KCG parameters derived from the combined 

BCG/SCG signals demonstrated high repeatability, and the 

gender of the volunteers did not influence the final results. 

 

G. Recent Advances 

Remarkable strides have been achieved in the realm of 

continuous and non-invasive monitoring of cardiovascular 

function, thanks to recent breakthroughs in the study of SCG 

signals. 

In [32], a novel measurement technique named 

Forcecardiography (FCG) has emerged. This cutting-edge 

approach leverages a piezoelectric sensor to accurately measure 

the local forces exerted on the chest wall due to the heart's 

mechanical activity. Interestingly, FCG's heart sounds 

component showed the highest similarity to SCG signals, and 

FCG provided accurate timings for the aortic valve opening 

(AO) marker and pre-ejection periods (PEP) estimates. In a 

separate study [33],  the primary emphasis was placed on 

extracting valuable information concerning ventricular 

emptying and filling events from the SCG signal. This paper 

compared two techniques for monitoring cardiac mechanical 

activity: SCG and FCG. The study concluded that the proposed 

approach, which incorporated double integration of SCG , 

yielded a novel displacement signal. Notably, this newly 

derived signal exhibited a low-frequency component 

remarkably similar to that of FCG. 

Presti et al. 2021 [34], presents a soft wearable system (SWS) 

based on fiber optic technology for multi-point heart rate 

monitoring, demonstrating its feasibility on healthy volunteers. 

This SWS design allows simultaneous recording of SCG 

signals from various measuring sites and adheres well to the 

body. 

In another recent research study [3], machine learning 

algorithms were harnessed to estimate changes in pulmonary 

artery mean pressure (PAM) and pulmonary capillary wedge 

pressure (PCWP) during right heart catheterization (RHC). This 

estimation was achieved through a thorough analysis of 

wearable SCG signals. The results suggest the potential use of 

wearable SCG signals as an alternative to CardioMEMS for 

longitudinal monitoring of intracardiac filling pressures in 

remote HF management, with the potential to reduce 

rehospitalization. However, further validation and clinical 

studies are required. 

A recent investigation [35] focuses on the respiratory 

implications of SCG, proposing a U-Net-based cascaded 

framework to estimate respiratory rates (RR, see Fig.  2) from 

ECG and SCG signals. The framework introduced in this study 

enhances the pervasive and accurate measurement of RR by 

utilizing convenient and comfortable ECG and SCG 

measurement systems. Furthermore, another research paper 

[36] highlights the versatile utility of SCG data for monitoring 

both respiratory and cardiac rates. The suggested method is 

tested on 20 healthy persons before and after exercise while 

they are able to sit properly in a chair for monitoring. The 

accuracy found is comparable to earlier studies. 

 In [37], a multimodal wearable biosensor is introduced, 

capable of measuring both SCG and ECG signals to estimate 

stroke volume (SV) in patients with congenital heart disease 

(CHD) through machine learning. The non-invasive nature of 

the biosensor offers a convenient and patient-friendly approach 

to cardiac function evaluation. With the capability of remote 

monitoring, patients with CHD could benefit from continuous 

and real-time cardiac assessments, contributing to more 

personalized and proactive healthcare interventions. However, 

the paper emphasizes the importance of conducting further 

longitudinal studies with larger populations to validate the 

accuracy and generalizability of the proposed model. 

III. DISCUSSION 

Worldwide, HF has a huge impact. The hallmark of CHF is 

the heart's ineffective pumping, which results in blood 

accumulation in the body. Monitoring HF patients is crucial to 

reducing readmissions and improving care with quick 

medication. For non-invasive HF monitoring at home, SCG, 

utilizing wearable patches with accelerometers, shows promise. 

The SCG signal can be easily detected by placing a low-noise 

accelerometer on the chest, giving vital information on 

cardiovascular health. This non-invasive method provides an 

invaluable way to assess the function of the heart. SCG signal 

analysis entails comparing the signal to reference 

echocardiogram images or ECG waveforms. Researchers and 

medical practitioners can evaluate the heart's function and 

obtain a deeper understanding of cardiac dynamics thanks to 

this comparative technique.  

SCG offers the capability to extract cardiac timings and 

metrics associated with various physiological processes. The 

performance of the heart at various stages of the cardiac cycle 

is shown by these extracted metrics, which provide important 

information about the heart's function. There are numerous 

methods for annotating SCG signals, each having its own 

drawbacks and uses. 

Recent developments in continuous and non-invasive 

cardiovascular monitoring focus on: forcecardiography, 
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investigating SCG signals from multiple body sites, using 

machine learning to track intracardiac filling pressures, creating 

a U-net based framework to calculate respiratory rate, and 

introducing a multimodal wearable biosensor to calculate stroke 

volume in patients with congenital heart disease using machine 

learning. 

 

A.   Advantages of SCG for CHF Monitoring 

1. Non-Invasiveness: Noninvasively obtaining cardiac 

information using SCG is advantageous. Healthcare 

professionals can obtain valuable cardiac data by 

placing a low-noise accelerometer on the patient's 

chest, avoiding more invasive procedures such as 

catheterisation. SCG improves on the traditional 

technique by providing more accurate readings. 

2. Continuous monitoring: SCG provides the ability to 

continuously monitor heart mechanical function. 

Unlike conventional methods, SCG enables 

continuous observation of the heart's activity across 

time. With this benefit, early deterioration of cardiac 

health can be diagnosed in advance for timely 

medication. 

3. SCG waveform analysis: SCG waveform analysis 

offers crucial information about how the heart works. 

Healthcare personnel can better comprehend the 

mechanical activity and coordination of the heart 

during various periods of the cardiac cycle by 

carefully analysing the unique features and intervals 

(cardiac time intervals) included in the SCG signal. 

Assessing heart performance and spotting any 

anomalies or abnormalities is made much easier with 

the use of this information. 

4. Complementary to other methods: SCG serves as a 

complementary diagnostic method alongside other 

established cardiac evaluation techniques. When 

combined with traditional methods like ECG, 

serologic testing, echocardiography, and cardiac MRI, 

SCG can offer a more comprehensive and 

multidimensional assessment of cardiac health. The 

integration of SCG data with data from other 

diagnostic modalities enhances the accuracy and 

completeness of the diagnostic process, providing a 

more holistic understanding of a patient's cardiac 

status. 

5. Home-Based Monitoring: HF patients can 

comfortably monitor their heart function from the 

comfort of their homes by using small and portable 

SCG sensors. The use of home-based monitoring 

devices lessens the frequency of hospital visits and 

enables patients to easily include cardiac evaluation 

into daily routines. A sense of empowerment is also 

fostered in HF patients by home-based SCG 

monitoring as they actively take part in their own 

healthcare. It makes it possible for patients to keep in 

touch with their medical staff and get timely input and 

support, resulting in more proactive and patient-

centered care. 

 

B.   Limitations, challenges and future research 

1. SCG origins: There is still more to be done, despite the 

fact that various research attempted to identify the 

physiological source or sources of the SCG signals. 

Intrathoracic pressure and breathing are two extra-

cardiac elements that may have an impact on SCG 

signals. So taking these factors into account may 

further clarify the sources of SCG. 

2. Interpretation Complexity: Although SCG holds 

promise in delineating particular phases of the cardiac 

cycle, the precise correlation between SCG waves and 

cardiac activity remains not entirely comprehended. 

This level of intricacy could potentially impede the 

widespread adoption of SCG for HF monitoring until 

further research unravels the underlying connections. 

3. Lack of Standardization: Currently, there is no 

standardized method for annotating SCG signals and 

defining specific reference points. This lack of 

standardization makes it challenging to compare 

results from different studies and hampers the 

widespread clinical use of SCG. 

4. Open issues such as signal characteristics, 

variabilities, including sensor placement, health 

conditions and noise reduction in SCG signals require 

further research and resolution. 

5. Despite recent advances, additional research and 

longitudinal studies are essential to validate the 

efficacy and generalizability of the proposed models 

and techniques. 

6. The majority of current data collecting methods rely 

on irritable contact sensors that are connected to the 

skin. So effective contactless SCG detection methods 

would be required. 

 

C.   New Insights 

1. Combined Use with Gyrocardiography: Recent 

research suggests that combining SCG with 

gyrocardiography (GCG), which measures the angular 

vibrations of the heart, can improve the detection 

accuracy of certain fiducial points in SCG. This 

highlights the potential of integrating multiple 

wearable sensor technologies to enhance SCG's 

capabilities. 

2. Novel Annotation Techniques: Researchers are 

exploring new approaches for annotating SCG signals. 

These include using machine learning algorithms to 

identify specific cardiac events and developing 

standardized annotation protocols to ensure 

consistency across studies. 

 

D.   Hypotheses 

1. With the emergence of various measurement 

techniques, much of the research is currently 

concentrated on comparing these different techniques. 

In light of this, I propose the development of a single 

wearable patch capable of acquiring multiple signals, 

such as SCG, ECG, GCG, and FCG. Such an efficient 
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at-home data acquisition system would enable regular 

monitoring, leading to improved accuracy in HF 

diagnosis. Moreover, it would offer researchers the 

opportunity to delve deeper into the morphology of the 

heart signal, fostering further advancements in the 

field.  

2. Mitigating Vehicle Vibration Interference in SCG for 

wearable cardiovascular monitoring. One of the open 

issues in the field of SCG is the interference caused by 

external vibrations in wearable cardiovascular 

monitoring systems. Unwanted vibrations can 

contaminate the SCG signal, leading to inaccurate 

timing features and reduced signal quality. However, a 

recent study proposes a robust framework for 

mitigating vehicle vibration interference in SCG 

signals. By introducing this technique into a wearable 

patch, noise caused by subject motion/postural 

position may be considerably reduced and the 

reliability of SCG timing features in wearable 

cardiovascular monitoring systems can be improved, 

enabling more accurate diagnosis and monitoring of 

cardiac function in real-world, out-of-hospital 

environments. 

3. Machine Learning Applications for Congestive Heart 

Failure: The utilization of machine learning algorithms 

to analyse extensive datasets comprising SCG, ECG, 

and other relevant sources holds immense potential in 

creating precise and personalized predictive models 

for CHF progression. These advanced models have the 

capability to revolutionize treatment optimization and 

risk stratification strategies. Furthermore, machine 

learning algorithms can aid in risk stratification, 

categorizing patients based on their likelihood of 

experiencing specific cardiac events. 

4. Integrating SCG with Telemedicine: Combining SCG 

with telemedicine platforms can enable remote 

monitoring of heart failure patients, providing timely 

interventions and reducing hospital readmissions. 

Exploring the effectiveness of this integrated approach 

could improve patient outcomes and healthcare 

efficiency. 

5. Incorporating SCG into Heart Failure Rehabilitation: 

Assessing the role of SCG in heart failure 

rehabilitation programs could help in designing 

personalized exercise regimens and monitoring 

patients' response to rehabilitation efforts. 

 

E.   SCG related to filling pressure 

Inan et al. 2018 proposes a non-invasive method for 

assessing cardiovascular hemodynamic changes at home. The 

method involves measuring the SCG waveform before and after 

a controlled exercise called the 6-minute walk test (6MWT).  

The SCG signal comprises time-domain waves, as depicted in 

Fig.  2, which correspond to events like the opening and closing 

of the aortic valve and the rapid ejection of blood into the aorta. 

In healthy individuals, exercise induces significant alterations 

in the waveform's shape and timings. For instance, the IVCT 

shortens as a result of elevated sympathetic tone, which 

compresses the SCG waves over time and increases the high-

frequency components. The main hypothesis of the research 

was that decompensated patients with HF would exhibit 

significantly fewer changes in the SCG signal during the 

6MWT compared to compensated patients. Decompensated 

patients are less apt to raise their cardiac performance in 

response to exercise because they have less cardiovascular 

reserve. Alterations in intracardiac filling pressures are 

intricately linked to variations in stroke volume, presenting an 

indirect means of assessing both intracardiac filling pressures 

and cardiac contractility [9]. 

If the previous study focused on healthy individuals, recent 

advances have extended the application to HF patients using 

machine learning algorithms to estimate alterations in PAM and 

PCWP during RHC through the analysis of wearable SCG 

signals. Various SCG signal segments were analysed to 

understand important segments providing relevant information 

about changes in PAM and PCWP. Specifically, changes in 

SCG during the early systole (isovolumetric contraction period, 

IVC) were most relevant for PAM, while changes during the 

late diastole (AS) phase were most relevant for PCWP. Another 

recent study demonstrated the feasibility of estimating stroke 

volume in patients with CHD [12]. 

 

Monitoring congestive heart failure (CHF) using SCG is 

highly feasible and promising. Abovementioned studies have 

successfully tested SCG on both healthy individuals and HF 

patients, providing valuable insights into cardiac dynamics. The 

identification of key components such as isovolumetric 

contraction time (IVC period) and the opening of the aortic 

valve through strengthens the credibility of SCG as a reliable 

tool for CHF assessment. Additionally, in recent developments, 

respiration rate (RR) was also estimated from the SCG signal, 

announcing additional characteristics to take into account for an 

improved understanding of the SCG signal. 

Overall, the research into SCG and its relation to filling 

pressures provides promising evidence for its use in monitoring 

heart failure patients and potentially reducing readmissions. By 

accurately measuring filling pressures through SCG, healthcare 

professionals can adjust treatment in a timely manner, leading 

to better management of heart failure and improved patient 

care. 

 

IV. CONCLUSION 

In conclusion, monitoring congestive heart failure (CHF) 

using SCG holds great promise as a non-invasive and 

continuous method for assessing cardiac mechanical function. 

It complements other diagnostic methods and enables the 

extraction of valuable cardiac time intervals and parameters 

associated with physiological events. Recent advancements in 

SCG and related technologies, such as gyrocardiography and 

machine learning, enhance its capabilities and potential for 

remote monitoring, leading to reduced rehospitalization of HF-

related patients. 

However, challenges remain, including the need for further 

research on SCG genesis, interpretation complexity, lack of 

standardization, and signal characteristics variabilities. 
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Addressing these issues will be crucial to expanding the 

widespread clinical use of SCG for CHF monitoring. 

Additionally, the integration of SCG with other wearable sensor 

technologies and machine learning applications can further 

improve diagnostic accuracy and personalized predictive 

models for congestive heart failure progression. 

Finally, the research findings regarding SCG and its relation 

to filling pressures support its feasibility and potential in 

monitoring CHF patients, reducing readmissions, and 

improving overall patient care and management.  
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