
 Master’s Thesis Daan Pisa – master Innovation Sciences 

 

 

 

Examining the Diffusion of Insulation  

among Dutch Households 
 

 

A Quantitative Study on Diffusion Curves, Foregone Benefits                  

and Adoption Influences 

 

 

 

 

 

 

 

 

 

 

By Daan Pisa  

Student number: 6517897 

Student email: d.pisa@students.uu.nl 

 

 

A master’s thesis 

Submitted to the Copernicus Institute of Sustainable Development  

Utrecht University 

In partial fulfilment of the requirements for a master’s degree in Science and Innovation  

June 2023 

 

 

Supervised by Prof. dr. Koen Frenken 

Combined with an internship at TNO under the supervision of dr. Peter Mulder 

Second assessment by dr. Robert Harmsen 

 

 

  



1 
 

Abstract 

Insulation is an energy-efficiency measure creating benefits for both households and society. 

Despite these benefits, a large proportion of Dutch dwellings is still, relatively, poorly insulated. 

This study therefore quantitatively examined the diffusion of insulation measures among Dutch 

households through three analyses, based on systematically conducted surveys on the 

energetic quality of the Dutch housing stock. 

 

A diffusion curve analysis demonstrated that the average degree of insulation has generally 

been increasing over the years. Yet, the rate by which these measures are diffusing has been 

decreasing. Substantial differences in the insulation degrees of Dutch dwellings have also 

been found. This gap appeared between dwellings built prior to 1981 and hereafter. Similarly, 

apartments and social rental dwellings were found to have lower insulation degrees than other 

dwelling and tenure types. 

 

A foregone benefits analysis demonstrated that additional insulation could annually have 

saved households 336 to 542 m3 of natural gas on average, and 2.37 billion to 3.82 billion m3 

in total. It was found that the average and total savings were substantially lower for dwellings 

built after 1995 due insulation legislation and that lower insulation degrees do not necessarily 

translate into higher foregone benefits. Average savings were the highest for semi-

detached/end-terraced and detached dwellings. The highest total savings could have been 

achieved by insulating all dwelling types built between 1960-1980. These findings indicate that 

the private benefits are not perfectly aligned with the societal benefits. Rental dwellings were 

found to have lower average and total savings than owner-occupied dwellings.  

 

An adoption analysis showed that households living in dwellings built after 1995 are 

substantially less likely to adopt an insulation measure at all. Paradoxically, it was found that 

the same households living in the dwellings built after 1995 have a higher likelihood of having 

more different insulation measures adopted. Households living in rental housing were found 

considerably less likely than homeowners to adopt any insulation measure. Similarly, 

households part of homeowner associations were found to be less likely to adopt more 

insulation measures. These findings appear to indicate the presence of a principal-agent 

problem. Household members’ income, capital, age, education level and likelihood to move 

did not significantly affect the adoption of insulation, suggesting that socio-demographic 

factors appear to play a less significant role in the uptake of insulation measures than housing 

factors seem to do. The findings of this study were used to formulate recommendations for 

research and policy.  
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1. Introduction 

Despite current efforts, changes in contemporary energy systems are needed to mitigate 

climate change. During the past decade, global energy demand and greenhouse gas (GHG) 

emissions rose across all major sectors and they are expected to keep rising without the 

strengthening of current policies, as indicated in the 2022 assessment report of the 

Intergovernmental Panel on Climate Change (IPCC, 2022). The building sector is one of the 

major sectors contributing to these trends. In 2019, buildings accounted for 21% of the global 

GHG emissions and of the sector’s total energy demand, 70% was consumed by residential 

buildings (IPCC, 2022). Therefore, residential buildings and households have a significant 

energy-saving potential and could substantially contribute to achieving sustainable energy 

targets, as well as other Sustainable Development Goals, by changing the way they consume 

energy (IPCC, 2022).  

 

In the Netherlands, the usage of natural gas accounted for 70% of households’ energy 

consumption in 2021 and entailed roughly 25% of the total Dutch natural gas consumption 

(CBS, 2023a, 2022a). Reducing the consumption of natural gas is therefore essential for 

reducing the energy consumption and carbon footprint of Dutch households. Energy-efficiency 

(EE) measures and technologies play a key role in this, as these use less energy while 

performing the same function as alternatives. Insulation in particular is an EE measure that is 

found to significantly reduce households’ gas and energy consumption, resulting in both 

societal and private benefits (Adan & Fuerst, 2016; Mot et al., 2023). A societal benefit, 

besides CO2
 reduction to mitigate climate change, is reduced gas imports which lowers 

societal costs and stimulates energy independence (Mot et al., 2023; Rijksoverheid, n.d.). The 

benefits of insulation measures and subsequent reduced gas consumption from a private, i.e. 

household, perspective include lower energy bills, increased financial resilience and positive 

health and living effects (Mot et al., 2023). A study recently concluded that for 62% of the 

Dutch households additional insulation measures would generate financial benefits (Mot et al., 

2023). 

 

Despite these societal and private benefits, a large proportion of Dutch dwellings is still 

relatively poorly insulated. In 2020, 56% of the Dutch dwellings for instance had an energy 

label ‘C’ or lower and nearly a quarter of the dwellings in the Dutch private rental sector still 

contained inefficient single glazed windows (Woononderzoek Nederland, 2021; Woonbond, 

2022).1 To reach the governmental goal of having zero dwellings with low energy labels by 

2030, a fifth of the Dutch housing stock needs to have additional insulation measures installed 

during the coming years (Natuur & Milieu, 2022). A particularly interesting question, both from 

an academic and a policy perspective, therefore holds why households may not adopt 

additional insulation measures even if the return of investment seems to be positive, as 

economic theory would predict. Although economists have been theorising on decision-

making processes and explanations for the apparent gap between predicted and observed 

adoption rates of EE technologies (e.g., Jaffe & Stavins, 1994a, 1994b; De Groot et al., 2004; 

 
1 In the Netherlands, energy labels of residential buildings are based on an 11-point scale, ranging from 
G to A++++ (Rijksdienst voor Ondernemend Nederland [RVO], 2023a). 
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Gerarden et al., 2017), there is little empirical evidence on the size of this Energy Efficiency 

Gap (EEG) and the effect of these explanations.2 

 

The aim of this study is therefore to quantitatively examine the diffusion of insulation measures 

among Dutch households. This study starts with descriptively examining how insulation 

measures have been diffusing among Dutch households over time. This has currently not 

been thoroughly examined and such an analysis would provide more context on the diffusion 

of insulation measures and the decarbonisation efforts of Dutch households. Secondly, this 

study estimates the foregone benefits that these households could have achieved if insulation 

measures had diffused to a greater extent. While the insulation benefits for households have 

been priorly analysed (e.g., Menkveld et al., 2020; Faaij et al., 2022; Mol et al., 2023), these 

have not been aggregated or related to the diffusion process of insulation measures. Lastly, 

this study assesses what household factors are affecting the adoption of additional insulation 

measures. As of yet, factors influencing the observed adoption of insulation measures have 

solely been studied for Dutch homeowners (Ebrahimigharehbaghi et al., 2019, 2020, 2022). 

However, as more than a third of the contemporary Dutch housing stock consists of rental 

housing (CBS, 2022b), a substantial share of the Dutch households has been excluded in 

these studies. Besides including these households, this study is also the first to examine the 

adoption of insulation measures through the theoretical perspective of the EEG.  

 

In examining the diffusion of insulation measures, this study connects and tests concepts from 

multiple disciplinary diffusion perspectives. The adoption of insulation, and of EE technologies 

in general, has insufficiently been examined from an interdisciplinary perspective. Yet by 

taking such an interdisciplinary perspective, it is argued that the diffusion of innovations can 

be better understood (Nelson et al., 2004). This study therefore integrates economic EEG 

concepts with adoption theories and empirical evidence from sociology and sustainability 

studies. Furthermore, this study takes socioeconomic gaps and the notion of energy poverty 

into account (Straver et al., 2020), which have received increased political attention over the 

past years. Characterised by high energy costs, a low income and a poorly-insulated home, 

research showed that of the six million Dutch households analysed, 550,000 households 

experienced energy poverty in 2019 (Mulder et al., 2021). Since these households are facing 

relatively higher fixed expenses and subsequently could be financially unable to adopt 

beneficial EE technologies, socioeconomic gaps might be widening. Although the widening of 

socioeconomic gaps is a common consequence of innovations, it is not unavoidable (Rogers, 

2003). This study could thus not only assist with stimulating the decarbonisation of residential 

buildings, but also with ensuring an inclusive energy transition. 

 

The structure of this study is as follows. In Section 2, disciplinary diffusion perspectives are 

first discussed, after which diffusion curves, the Energy Efficiency Gap (EEG), adoption 

influences and hypotheses are elaborated on. In Section 3, the methodologies of the three 

conducted analyses - on diffusion curves, foregone benefits and adoption influences - are 

discussed. The results of these three analyses can respectively be found in Section 4, 5 and 

6, and are interpreted in Section 7. Finally, in Section 8, the findings of this study are 

summarised and related to several research and policy recommendations.  

 
2 The EEG should not be confused with the Energy Performance Gap (EPG), which entails the 
discrepancy between the energy consumption estimated before the construction or renovation of a 
building and the energy consumption observed hereafter.  
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2. Theory 

The process of individuals adopting new technologies is commonly referred to as the diffusion 

of innovations (Hall, 2005).3 Research on diffusion finds its roots in sociology (Tarde, 1903) 

and anthropology (Wissler, 1914, 1915), and has been taken up since by the fields of 

economics (e.g., Griliches, 1957; Mansfield, 1961) and marketing (e.g., Arndt, 1967; Bass, 

1969). Contemporary perspectives on diffusion predominantly originate from three of these 

disciplines, namely economics, sociology and marketing (Hall, 2005; Tidd, 2010; Kiesling, 

2012). In this section, these disciplinary diffusion perspectives are first summarised after which 

the need for an interdisciplinary perspective is argued for (Section 2.1). Hereafter, models 

concerning the diffusion over time, i.e. diffusion curves, are discussed (Section 2.2). This is 

followed by an elaboration on the various explanations for the Energy Efficiency Gap; reasons 

why EE technologies are not being adopted as expected, despite their seemingly positive net 

benefit (Section 2.3). Finally, these theoretical insights are related to adoption influences and 

empirical research, from which several hypotheses are derived (Section 2.4). 

2.1 Diffusion in disciplinary research 

Economics 

Diffusion in economics can widely be interpreted as “the process by which the market for a 

new technology changes over time and from which ownership or usage patterns result.” 

(Stoneman & Battisti, 2010, p. 2). Economic scholars have created various econometric 

models on the diffusion of innovations, aiming to explain past behaviour of individuals, with a 

particular emphasis on firms (Tidd, 2010; Stoneman & Battisti, 2010). Underlying is the 

assumption that diffusion is the cumulative aggregation of rational calculations by individuals 

(Hall, 2005). Subsequently, in their decision-making processes individuals are assumed to 

assess whether the benefits of adopting outweigh the costs. This assumption and decision-

making process is commonly examined through the net present value (NPV) criterion (Jaffe & 

Stavins, 1994a; De Groot et al., 2004). By applying the NPV it can be computed whether 

future, i.e. discounted, cash flows are covering for initial investment costs. Utilising the NPV 

approach is justified if certain conditions are fulfilled. Individual adopters should for instance 

make rational, profit-maximising decisions and should have complete information and 

sufficient financial means at their disposal (De Groot et al., 2004). However, as the adoption-

decision process often occurs within an environment characterised by uncertainty and limited 

information (Hall, 2005), the robustness and applicability of such adoption models is often 

questioned.4 

 

 

 

 

 

 

 

 

 
3 ‘Individuals’ here refers to the individual decision-making units and could thus imply consumers, 
households, communities, businesses, organisations etc. 
4 This is further addressed in Section 2.3.  
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Sociology  

In his seminal book, first published in 1962, Rogers outlined an influential sociological and 

organisational perspective on diffusion (Rogers, 2003). Here, Rogers describes diffusion as 

“the process in which an innovation is communicated through certain channels over time 

among the members of a social system.” (Rogers, 2003, p. 5). Diffusion is thus essentially 

perceived as a type of communication that spreads novel information. The relative speed by 

which an innovation diffuses is referred to as the rate of adoption and is commonly measured 

in the number of adopters over a specific time period. Rogers (2003) elaborated that five 

variables determine the rate an innovation is adopted: the perceived attributes of innovations, 

the type of innovation-decision, the type of the communication channels, the nature of the 

social system and the extent of change agents’ promotion efforts (Figure 1). As a particular 

innovation is not adopted simultaneously by all individuals, Rogers (2003) aggregated 

adopters based on their innovativeness, i.e. the relative time of their adoption. From this, five 

ideal types of adopters are constructed: innovators, early adopters, early majority, late majority 

and laggards. Based on their socioeconomic status, personality values and communication 

behaviour, Rogers (2003) derived several generalisations on these adopters categories. Since 

diffusion is regarded as a process of communication, the effects of (interpersonal) networks 

on diffusion have also been a key interest for sociologists. 

 

Figure 1 

Variables determining the rate of adoption 

  
Note. Reprinted from Rogers’ Diffusion of Innovations (2003, p. 222) 
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Marketing 

In the field of marketing, diffusion research has primarily been focused on designing 

mathematical instruments to examine and predict buyer behaviour (Tidd, 2010). Studies for 

instance include how individuals react to technological innovation (e.g., Moore & Benbasat, 

1991) and how their behaviour changes after adoption (e.g., Kim, 2009). User demographics 

and adopters’ social and psychological factors have therefore gained an increasing interest in 

marketing studies (Tidd, 2010; MacVaugh & Schiavone, 2010). The most influential diffusion 

model within this field was presented by Bass (1969). This model emphasises the influence of 

communication on two types of adopters; innovators and imitators. Whereas innovators are 

solely influenced by mass-media communication (external influence), imitators are influenced 

word-of-mouth only (internal influence) and experience an increasing pressure if the number 

of previous adopters rises (Bass, 1969). The Bass model is specifically designed for one-time 

adoptions and has therefore been widely applied to the diffusion of consumer durables (Tidd, 

2010). Limitations of the model have frequently been addressed; e.g., it does not consider the 

relationship with other innovations nor product and market characteristics (Mahajan et al., 

1990; Kiesling, 2012). An abundance of refinements and extensions have therefore been 

tested, which concluded that the Bass model constitutes an empirical generalisation (Mahajan 

et al., 1990, 1995). 

  

Interdisciplinary diffusion perspective 

As diffusion research is vast and originates from multiple disciplines, it is not surprising that 

their literature and contributions can be perceived as rather fragmented. Nevertheless, 

differences in the disciplinary nature of diffusion studies have frequently been addressed by 

scholars. Whereas in economics the role of economic factors and the behavioural basis of 

diffusion models are emphasised, marketing literature rather focuses on forecasting 

performance (Zettelmeyer & Stoneman, 1993). Moreover, economic and marketing studies 

typically focus on the diffusion of technology, while sociologists describe diffusion as the 

communication of novel ideas, which can also include new practices or habits (Tidd, 2010; 

Rogers, 2003). As economists also tend to emphasise the decision-making of micro-economic 

units, they fall short in sufficiently including social factors and externalities which are favoured 

by sociologists (Hall, 2005; Tidd, 2010).  

 

Despite these differences, disciplinary diffusion perspectives are often complementary to each 

other. The marketing model of Bass (1969) for example builds on Rogers’ (2003) sociological 

perspective and is highly influential within the field of economics (Tidd, 2010). In other diffusion 

models, aspects from both marketing and economic diffusion literature have been combined 

(e.g., Karshenas & Stoneman, 1992). Nelson and colleagues (2004) demonstrated that “many 

innovations do not fit perfectly into the idealized class presumed by a particular disciplinary 

theory.” By taking an interdisciplinary perspective and incorporating elements of multiple 

theories instead, the diffusion of innovations can be better understood (Nelson et al., 2004). 

To examine the diffusion of insulation measures, this study therefore incorporates such an 

interdisciplinary perspective by connecting and examining concepts from multiple diffusion 

perspectives.  
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2.2 The diffusion curve 

Diffusion literature comprises various underlying research subjects and models. One particular 

focus area concerns the diffusion of innovations over time, also referred to as the rate of 

adoption. Although the rate of adoption is innovation- and context-dependent, it is considered 

a stylised fact that the cumulative number of adopters of any innovation follows a logistic S-

shaped curve when plotted versus time (Figure 2). Or expressed differently, the number of 

new adopters of an innovation is argued to be normally distributed over time (Figure 3). 

Whereas the rate of adoption is slow at first, it will eventually accelerate and become self-

sustaining, after which it slows down again as the adopter population has been saturated 

(Rogers, 2003; Hall, 2005; Tidd, 2010).  

 

Two leading mechanisms could explain the empirical generalisation of the S-shaped diffusion 

curve; adopter heterogeneity and adopter learning (Geroski, 2000; Hall, 2005). The 

heterogeneity mechanism, also referred to as the probit model, assumes that adoption 

benefits, goals and abilities differ among individuals. Arguing that the adoption benefits are 

normally or uniformly distributed over these individuals and that the threshold of adopting 

decreases over time (e.g., due to decreasing prices), an S-shaped diffusion curve will follow 

(Geroski, 2000; Hall, 2005). Adopter learning, commonly known as the epidemic model, has 

been the more dominant mechanism portraying the diffusion of innovations. Within this model, 

the rate of adoption is affected by previous adopters informing potential adopters about the 

innovation. As information is increasingly being spread, the number of adopters will grow until 

no potential adopters are remaining to be informed. This epidemic mechanism results in an S-

shaped diffusion curve and has served as the foundation in many diffusion perspectives (e.g., 

Rogers, 2003; Bass, 1969).  

 

Although the (epidemic) S-shaped diffusion curve is widely accepted and applied within 

diffusion research, limitations of this diffusion model have been addressed as well. Geroski 

(2000) for instance claims that the S-curve paradigm is limiting and disregarding alternative 

diffusion models, such as information cascades and network externalities. Moreover, rather 

than understanding how diffusion unfolds over time, it should instead be emphasised how the 

process of diffusion starts (Geroski, 2000). Geroski (2000) also notes that S-curves are rarely 

symmetrical, arguing that the final phases of diffusion often occur more slowly than modelled 

in the symmetrical S-curves. Epidemic models tend to overemphasise the differences in 

adopter characteristics too, while understating macroeconomic and supply-side factors (Tidd, 

2010). Epidemic models are therefore considered to be the most suitable for innovations of 

which the total potential market is known, i.e. derivatives of existing products. Contrarily, if 

diffusion is instead regarded as a process of persuasion rather than the spread of information, 

Geroski (2000) argues that decisions of individual adopters are inadequately considered within 

epidemic models and should in fact be emphasised more.  
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Additionally, it is noted that S-curves are only used to describe cases of successful 

innovations, i.e. innovations that have been adopted by nearly all potential adopters (Rogers, 

2003). Besides the implication that S-curves are primarily suitable for ex-post analysis, it is 

claimed that S-curves are compromised by a sample selection bias, specifically a survivorship 

bias (Geroski, 2000). As most innovations are not widely adopted, Gersoki (2000) argues that 

any comprehensive diffusion model should take unsuccessful diffusions into account as well. 

Cases of non-adoption can be equally, or perhaps even more relevant to analyse, especially 

if the observed diffusion process deviates from predictions. 

 

Figure 2 

The cumulative number of adopters over time 

 

 
 

 

Figure 3 

The distribution of the number of new adopters 

 
 

Note. Reprinted from Rogers’ Diffusion of Innovations (2003, p. 281). 
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2.3 The Energy Efficiency Gap 

The individuals who need the benefits of an innovation the most, frequently turn out to be the 

last to actually adopt it (Rogers, 2003). For the adoption of EE technologies, this paradoxical 

relationship is commonly referred to as the Energy Efficiency Gap (EEG), or the energy 

efficiency paradox. The EEG refers to the phenomenon where EE innovations are not being 

adopted despite their seemingly positive net benefit - including financial gains and a reduced 

energy consumption - resulting in a gap between the predicted and observed adoption rates 

(Jaffe & Stavins, 1994b). Whereas the gap in predicted and observed adoption rates has been 

addressed in earlier studies (e.g., Shama, 1983), the term was first introduced by Hirst and 

Brown in 1990. Since, the EEG has been subject to numerous studies and various 

explanations for its paradoxical existence. While Hirst and Brown (1990) for instance identified 

structural and market barriers, Jaffe and Stavins (1994b) elaborated on market and non-

market failures that cause the EEG. Based on more recent studies, factors that could explain 

the EEG can be categorised as market failures, behavioural failures and modelling failures 

(Gillingham et al., 2009; Linares & Labandeira, 2010; Gillingham & Palmer, 2014; Ramos et 

al., 2015; Gerarden et al., 2017; Solà et al., 2021). By combining insights from existing 

literature reviews on EEG explanations, these types of failures are elaborated on and 

summarised in Table 1. It should be noted that, while each of these failures and underlying 

explanations could theoretically explain the existence of the EEG, limited empirical evidence 

exists that substantiates the effect these potential explanations have (Gerarden et al., 2017). 

 

Market failures 

Various market failures could explain the existence of the EEG, such as for instance imperfect 

and asymmetric information. Whereas, imperfect information entails a lack of the information 

required to make an informed decision, asymmetric information refers to an information 

difference between economic parties. As a result, the perceived value of EE technologies 

could differ from the market value, making investing in these technologies more uncertain 

(Gillingham & Palmer, 2014; Solà et al., 2021). Similarly, additional costs might be required to 

engage in an economic transaction (transaction costs), which could inhibit EE adoption 

(Ramos et al., 2015). Principal-agent, or split incentives, problems could serve as an 

explanation of the EEG too. Such issues arise when the deciding party does not bear the costs 

or benefits of the decision. Whereas in the residential rental sector a landlord could invest in 

EE technologies, its tenant would be the one enjoying lower energy consumption and costs 

(Ramos et al., 2015). Such split incentives could subsequently inhibit adoption. Capital 

constraints form another market failure explanation. Potential adopters might lack financial 

means, which would also reduce their valuation of future benefits, resulting in them being less 

inclined to invest (Train, 1985). Another market failure explanation relates to energy pricing 

and regulations. If energy prices do not include externalities or if regulations cause energy 

prices to fall below marginal costs, investment incentives and profitability are low (Linares & 

Labandeira, 2010; Gillingham & Palmer, 2014). Learning spillovers construct the final market 

failure explanation being discussed. As prior adopters are experiencing the benefits of an 

innovation and might share this information with others, there can be an incentive to postpone 

adoption to learn from others and reduce uncertainty (Gerarden et al., 2017; Gillingham & 

Palmer, 2014).  
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Behavioural failures 

Besides market failure explanations, behavioural failures could also contribute to 

understanding the EEG. In line with Ramos and colleagues (2015), this study considers the 

term ‘behavioural failures’ to reflect the situations where individual decision-makers do not 

correspond to the rational choice theory. Since behavioural economics has been showing that 

individuals are not always acting fully rational, its theories and concepts could explain the lack 

of adoption of EE technologies as well. The concept of bounded rationality suggests that 

individuals’ rationality in decision-making processes is limited due to for instance cognitive or 

time constraints. Individuals are therefore likely to act as satisficers, choosing satisfying 

outcomes over optimal ones (Simon, 1955). Heuristic rules and biases present in these 

suboptimal decisions-making processes, e.g. placing more value on the initial investment 

costs of EE technologies, can then also induce inefficient adoption behaviour (Linares & 

Labandeira, 2010; Gillingham & Palmer, 2014; Ramos et al., 2015; Gerarden et al., 2017; Solà 

et al., 2021). Similarly, systematic biased beliefs could result in less than optimal adoption 

decisions (Gerarden et al., 2017; Stadelmann, 2017; Gillingham & Palmer, 2014). Other 

behavioural failures affecting such adoption decisions include inattention to energy costs and 

myopia (Gerarden et al., 2017; Gillingham & Palmer, 2014). Myopia, in this context, is referring 

to the condition of potential adopters not perceiving future savings as a benefit (Gerarden et 

al., 2017; Solà et al., 2021). Finally, the potential outcome of a decision made under 

uncertainty is usually evaluated by an individual’s reference point, as depicted in the prospect 

theory (Kahneman & Tversky, 1979). Such reference-dependent preferences and related loss 

aversion, i.e. the tendency of weighing losses more heavily than equivalent gains, could too 

explain the existence of the EEG (Gerarden et al., 2017; Gillingham & Palmer, 2014).  

 

Modelling failures 

At last, measurement and modelling failures could serve as an ‘explanation’ for the EEG 

(Gerarden et al., 2017; Gillingham & Palmer, 2014). Incorrect assumptions underlying the 

modelling of the estimated state of diffusion could result in it deviating from the actual observed 

state. Several scholars have elaborated on this topic, arguing that the EEG is commonly 

overstated in size or is even non-existent (e.g., Metcalf & Hassett, 1999; Smith & Moore, 2010; 

Allcott & Greenstone, 2012, Stadelmann, 2017). Certain costs might for instance be present 

in the adoption decision-process of individuals, yet could be unobserved or understated by 

diffusion modellers (Gerarden et al., 2017; Gillingham & Palmer, 2014). Examples of such 

hidden costs include search, implementation or opportunity costs. An important opportunity 

cost entails the decrease in product quality (Gerarden et al., 2017; Gillingham & Palmer, 2014; 

Linares & Labandeira, 2010). Modellers could also insufficiently be including the heterogeneity 

of consumers. Benefits and costs of adoption might differ among individuals and these 

individuals could for instance be heterogeneous in their preferences or usage profiles. 

Consequently, if modellers fail to include this heterogeneity, the size of the EEG could be 

misstated (Gerarden et al., 2017; Gillingham & Palmer, 2014). In addition, modellers should 

account for the option value of waiting, i.e. the benefit of delaying adoption even if its net 

benefit is already positive. Due to the irreversibility of investments, flexibility in the time of 

adoption and uncertainty regarding energy prices and product performance, individuals might 

want to postpone their adoption. Similar to heterogeneity, if modellers fail to include the option 

value, a bias in the estimation of the EEG could occur (Gerarden et al., 2017; Gillingham & 

Palmer, 2014). At last, modellers could systematically overestimate energy savings or the 

implicit discount rates of individuals, and understate a rebound effect, resulting in upward 
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biases in the EEG estimation (Gerarden et al., 2017; Stadelmann, 2017; Gillingham & Palmer, 

2014).  

 

Table 1 

Overview of failures and factors that could explain the Energy Efficiency Gap 

 

Type of failures Underlying factor Literature 

Market failures Imperfect and asymmetric information Gillingham et al. (2009) 

Linares & Labandeira (2010) 

Gillingham & Palmer (2014) 

Ramos et al. (2015) 

Gerarden et al. (2017) 

Solà et al. (2021)  

Transaction costs Gillingham et al. (2009) 

Linares & Labandeira (2010) 

Ramos et al. (2015) 

Solà et al. (2021).  

Principal-agent problems Gillingham et al. (2009) 

Linares & Labandeira (2010) 

Gillingham & Palmer (2014) 

Ramos et al. (2015) 

Gerarden et al. (2017) 

Solà et al. (2021)  

Capital constraints Gillingham et al. (2009) 

Linares & Labandeira (2010) 

Gillingham & Palmer (2014) 

Ramos et al. (2015) 

Gerarden et al. (2017) 

Solà et al. (2021) 

Inefficient energy prices and regulation Gillingham et al. (2009) 

Linares & Labandeira (2010) 

Gillingham & Palmer (2014) 

Ramos et al. (2015) 

Gerarden et al. (2017) 

Solà et al. (2021) 

Learning spillovers Gillingham et al. (2009) 

Linares & Labandeira (2010) 

Gillingham & Palmer (2014) 

 

Behavioural failures Bounded rationality Gillingham et al. (2009) 

Linares & Labandeira (2010) 

Gillingham & Palmer (2014) 

Ramos et al. (2015) 

Gerarden et al. (2017) 

Solà et al. (2021) 

Heuristics and biases Gillingham et al. (2009) 

Linares & Labandeira (2010) 

Gillingham & Palmer (2014) 

Ramos et al. (2015) 
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Type of failures Underlying factor Literature 

Gerarden et al. (2017) 

Solà et al. (2021) 

Systematic biased beliefs Gillingham et al. (2009) 

Gillingham & Palmer (2014) 

Gerarden et al. (2017) 

Inattention to energy prices Gillingham & Palmer (2014) 

Ramos et al. (2015) 

Gerarden et al. (2017) 

Solà et al. (2021) 

Myopia Gerarden et al. (2017) 

Solà et al. (2021) 

Reference-dependent preferences Gillingham et al. (2009) 

Gillingham & Palmer (2014) 

Ramos et al. (2015) 

Gerarden et al. (2017) 

Solà et al. (2021) 

Modelling failures Hidden costs Gillingham et al. (2009) 

Linares & Labandeira (2010) 

Gillingham & Palmer (2014) 

Ramos et al. (2015) 

Gerarden et al. (2017) 

Solà et al. (2021) 

Consumer heterogeneity Gillingham et al. (2009) 

Linares & Labandeira (2010) 

Gillingham & Palmer (2014) 

Ramos et al. (2015) 

Gerarden et al. (2017) 

Option value Gillingham et al. (2009) 

Gillingham & Palmer (2014) 

Gerarden et al. (2017) 

Systematic overestimations Gillingham et al. (2009) 

Gillingham & Palmer (2014) 

Gerarden et al. (2017) 
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2.4 Adoption influences and hypotheses 

In addition to factors that explain inconsistent adoption rates, generic drivers and barriers 

affecting the adoption of EE technologies have received great attention from academics as 

well. In their literature review on the adoption of energy-efficient renovations (EER), Du and 

colleagues (2022) found that the lowering of energy bills and the increasing household comfort 

are among the most frequently mentioned drivers in academic studies. Du et al. (2022) 

distinguished four types of EER adoption barriers: limited financial or informational access, 

attitudinal and behavioural barriers, physical dwelling restrictions and institutional barriers.5 

Subsequently, Du and colleagues identified and elaborated on four related adoption influences 

that are present within the decision-making process of EER: socio-demographics, housing 

factors, social influences and environmental attitudes (Du et al., 2022). Based on the available 

data (see Section 3), the third analysis in this study particularly focuses on socio-

demographics and housing factors in the adoption of insulation. By relating these influences 

to the EEG explanations and adoption concepts, hypotheses can be formulated to assess to 

what extent they influence the diffusion process of insulation measures. 

 

Household income is a socio-demographic factor often included in quantitative adoption 

studies. For EE measures, several studies showed that households with a higher income are 

more likely to invest in such measures (e.g., Dolšak et al., 2020; Barbose et al., 2020; Schleich, 

2019; Trotta, 2018; Vasseur & Kemp, 2015; Achtnicht & Madlener, 2014; Nair et al., 2010). 

However, there are also studies that did not find this significant relationship between 

household income and EE adoption (e.g., Pettifor et al., 2015; Pelenur and Cruickshank, 2014, 

2012). Interestingly, Gamtessa (2013) and Hamilton et al. (2016) found that high-income 

households were in fact less likely to adopt EE measures. Due to these contradictory results 

and theories on the EEG and diffusion barriers suggesting financial constraints to inhibit 

adoption, it is deemed relevant to analyse the effect of income on insulation adoption. 

Moreover, while Rogers (2003) did not formulate an income-based generalisation specifically, 

he argued that a higher socioeconomic status is a key characteristic of earlier adopters. These 

insights lead to the first two hypotheses, which could relate to the capital constraints 

explanation of the EEG: 

 

Hypothesis 1: The higher the household income, the more likely a household adopts insulation 

measures.  

 

Hypothesis 2: The higher the household capital, the more likely a household adopts insulation 

measures.  

 

 

 

 

 

 

 

 
5 Note the similarities of these barriers and the market and behavioural EEG explanations discussed 
in Section 2.3. 
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In addition to socioeconomic status, Rogers (2003) did explicitly argue that earlier adopters 

generally enjoy more years of formal education than later adopters. Applied to EE measures, 

studies have both supported (Ebrahimigharehbaghi et al., 2020) and rejected (Pettifor et al., 

2015; Pelenur & Cruickshank, 2014) this relationship between education and adoption. From 

the perspective of the EEG explanations, it can be argued that higher educated households 

deal with less imperfect information, experience less bounded rationality and act economically 

more rational than lower educated households. This study will therefore test:  

 

Hypothesis 3: The higher the household education, the more likely a household adopts 

insulation measures.  

 

Age is another socio-demographic factor frequently analysed in adoption studies. Rogers 

(2003) argued that there is generally no age difference between earlier and later adopters, 

which was supported by some studies on EE technologies as well (e.g, Pelenur & 

Cruickshank, 2014; Pettifor et al., 2015). Yet several studies found a significant positive 

relationship of age on adoption; older households were more likely to adopt EE measures 

(e.g., Ebrahimigharehbaghi et al., 2019; Schleich 2019; Trotta, 2018). However, it has also 

been found that there is a negative relation between age and adoption; older households could 

be less aware of EE technologies and might be facing more uncertainty (imperfect information) 

on the profitability of long-term EE investments (Schleich, 2019; Carlsson-Kanyama et al., 

2005). Based on these contractionary insights, it can be argued that the relation between age 

and EE adoption is non-linear. Therefore the following hypotheses are therefore derived: 

 

Hypothesis 4a: Household members younger than 45 are more likely to adopt insulation 

measures than household members aged between 45-54.6 

 

Hypothesis 4b: Household members older than 54 are less likely to adopt insulation measures 

than household members aged between 45-54. 

 

Home-ownership, or owner-occupancy, is another relevant socio-demographic to consider in 

the analysis. As discussed in EEG literature, landlord-tenant problems are a typical example 

of the principal-agent problem and could inhibit the adoption of EE technologies (Ramos et 

al., 2015). Similarly, Rogers (2003) indicates that the type of innovation-decision affects the 

rate of adoption. Adoption can for instance be prohibited by a higher authority (the landlord), 

despite it being desired by the associated user (the tenant). It can be argued that households 

living in dwellings they mortgage or own themselves, compared to those renting such 

properties, are not restrained by a landlord-tenant problem and are thus more likely to adopt 

EE measures. Several studies have indicated that such innovations are indeed less likely 

adopted in rental properties (e.g., Schleich et al., 2019; Trotta, 2018; Hamilton et al., 2016). 

Therefore, the next hypothesis is formulated as follows: 

 

Hypothesis 5: Insulation measures are more likely to get adopted in owner-occupied housing 

than in rental properties. 

 

 
6 Household members with an age between 45-54 have been selected as the reference group, as this 
group belongs to the middle age category included in the secondary datasets (Section 3.2). 



16 
 

Related to the prior hypothesis and elaboration are homeowner associations (HOAs). These 

are private associations that govern the interest of homeowners who are often living in 

buildings with multiple owner-occupancies. Due to the buildings being shared, EE renovations 

have to be initiated and approved by the homeowner association. Whereas typical 

homeowners and tenants are respectively facing an optional and authority innovation decision, 

HOAs have to make a collective innovation decision (Rogers, 2003). Similar to the landlord-

tenant problem where costs and benefits are unevenly split among the parties, homeowners 

part of a HOA might benefit unevenly from EE renovations as well. The combination of such 

a collective adoption decision with potential split incentives can result in adoption being 

delayed or rejected (Rogers, 2003). While Tiellemans and colleagues (2021) showed that 

Dutch HOA members are generally willing to make concessions regarding sustainable energy 

measures, they also found that their willingness decreases when opinions on important 

outcomes vary substantially. Research conducted by the Dutch advocate for homeowners and 

HOAs has found that such collective decision-making processes strand the adoption of EE 

measures for about a third of the studied HOAs (Vereniging Eigen Huis, 2022). Based on 

these insights and a lack of further research on EE adoption among HOAs, the following 

hypothesis is derived:  

 

Hypothesis 6: Households part of a homeowner association are less likely to adopt insulation 

measures.  

 

At last, two adoption influences will be included as control variables in the third analysis. 

Studies have shown that the age of the building is significantly related to EE adoption; 

households living in older buildings are more likely to adopt than households living in newer 

ones (Dolšak et al., 2020; Ebrahimigharehbaghi et al., 2019; Schleich, 2019; Hamilton et al., 

2016; Pettifor et al., 2015). This study will therefore include the construction year of dwellings 

as a control variable.7 Similarly, households that are more likely to move are found to be less 

likely to adopt and invest in long-term EE measures, making it a control variable relevant to 

include as well (Ebrahimigharehbaghi et al., 2020; Schleich et al., 2019).  

 

 

 

 

 

 

 

 

  

 
7 Initially, dwelling type was also included as control variable, as households living in flats or terraced 

houses were found to be less likely to adopt energy-efficient measures compared to (semi-)detached 
houses (Trotta, 2018; Gamtessa, 2013; Schleich, 2019; Ebrahimigharehbaghi et al., 2020). This control 
variable has however been excluded due to a high correlation with the homeowner association variable.  
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3. Methodology 

3.1 Data collection 

To examine the diffusion of insulation, a quantitative research design is applied and elaborated 

on in this section. There has been made use of secondary data from two nation-wide surveys: 

the Qualitative Housing Registration (KWR) and the Netherlands’ Housing Survey (WoON). 

Commissioned by the former Dutch Ministry of Housing, Spatial Planning and the Environment 

(VROM), KWR was conducted four times between 1983 and 2001 with the aim to provide 

insights into the quality of the Dutch housing stock (DISCO, n.d.). The KWR surveys consisted 

of a representative sample of at least 15,000 households. Since 2006, KWR has been 

succeeded by WoON; the present day nation-wide survey on the housing and living situations 

of Dutch households. WoON is conducted every three years by Statistics Netherlands (CBS) 

and the Dutch Ministry of the Interior and Kingdom Relations (BZK) (CBS, n.d.-a). Every six 

years, an extensive energy module is included in WoON, providing insights in the energetic 

quality of Dutch dwellings and the energy consumption and behaviour of households. The 

WoON energy modules are based on a representative sample consisting of approximately 

4500 households. Authorised access to these survey data has been granted through the 

Netherlands Organisation for Applied Scientific Research (TNO). The KWR or WoON data 

served as input for three related analyses (see Appendix A), which are elaborated on in the 

next subsection.  

3.2 Data analysis 

Analysis 1 - Deriving diffusion curves 

The first type of analysis was descriptive in nature. Insulation diffusion curves have been 

derived and examined, to provide more context on the diffusion of insulation measures over 

time and the decarbonisation efforts of households in the Netherlands. Per survey year and 

building component - roof, floor, windows and facade - the average degree of insulation has 

been computed (Equation 1), indicating the extent insulation has diffused among the Dutch 

households and dwellings. As the KWR and WoON surveys assigned weighting factors to the 

participating respondents, indicating the number of similar households/dwellings present in 

the Netherlands, the computed average insulation degree is generalisable for the Dutch 

housing stock. Additionally, the average insulation degree over the years has been subdivided 

into construction year classes, dwelling types and tenure types. 

 

 

𝑥  =
∑ 𝑥𝑖 ⋅ 𝑤𝑖

𝑛
𝑖 =1  

∑ 𝑤𝑖
𝑛
𝑖 =1  

   (1) 

 

where 

    𝑥 =  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 

    𝑛 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑠/𝑑𝑤𝑒𝑙𝑙𝑖𝑛𝑔𝑠  

    𝑥 =  𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

    𝑤 =  𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑/𝑑𝑤𝑒𝑙𝑙𝑖𝑛𝑔 
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To compute the average insulation degrees, data from the KWR and WoON surveys (see 

Appendix A) have been merged into a single dataset using SPSS and Excel. Variables 

representing the insulation degrees, dwelling types and tenure types have been re-

operationalised as the operationalisation of these variables differed between and within the 

KWR and WoON surveys (see Appendix B for a detailed overview of the operationalisation 

applied in Analysis 1). Most notable changes were made to the insulation degrees of 

households. In the surveys from 1995 and onwards, the insulation degree of building surfaces 

have been expressed on a scale from 0 to 100%, i.e. representing the percentage of the 

respective building component that has been insulated. In KWR 1989, however, the insulation 

degree was measured on an ordinal level (not insulated; less than half insulated; more than 

half insulated; fully insulated) for roofs, floors and facades, while the insulation degree for 

windows was not captured within a single variable. For the roof, floor and facade of each 

household a numerical insulation degree has therefore been derived based on several 

sensitivity analyses (see Appendix C). This allowed for the KWR 1989 survey to still be partially 

included in this analysis.8 

 

Moving on, it should be noted that a substantial share of households within the surveys did 

not have an insulation degree assigned. As it was unclear whether this data was simply 

missing or whether assigning an insulation degree was not possible (e.g., for apartments 

which have no roof or floor to be insulated), these households were assigned a calculated 

insulation degree. While this has been calculated using several methods (see Appendix C), it 

is decided to substitute the missing insulation degrees values within each survey with the 

weighted average insulation degrees calculated for the other dwellings of the same 

construction year class. 

Analysis 2 - Estimating foregone benefits 

To provide further context on the diffusion of insulation measures, the second analysis entailed 

an estimation of foregone benefits; natural gas (cost) savings that could have been achieved 

if additional insulation measures were adopted. This analysis built on a preceding study 

conducted by TNO, in which costs and benefits of insulation measures were estimated for 

various dwelling categories using the data from the WoON 2018 energy module (Menkveld et 

al., 2020). Supplementing Menkveld and colleagues (2020), Analysis 2 explicitly focused on 

the annual natural gas (cost) savings and also subdivided these into the construction year 

classes, dwelling types and tenure types used in Analysis 1. 

 

The described foregone benefits have been estimated as follows. Menkveld et al. (2020) 

distinguished between three insulation levels and corresponding insulation measures: level 2, 

3 and 4.9 Insulation levels 2 and 3 reflect the lower and upper limit of supplementary 

conventional insulation measures, which can respectively be implemented by households 

themselves and professionals (Menkveld et al., 2020; Cornelisse et al., 2021).10 Level 4 entails 

extensive insulation measures, which are assumed to be sufficient for future low-carbon 

 
8 This study also used a corrected version of the WoON 2012 dataset, in which the former Energy 

Research Centre of the Netherlands (ECN), now part of TNO, re-estimated the insulation degrees.  
9 Level 0 and 1 respectively describe the insulation level at the time of construction and at the present 
situation (Cornelisse et al., 2021).  
10 For more detailed renovation measures and corresponding Rc-values, refer to Cornellise et al. 
(2021). 
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standards (Cornelisse et al., 2021). For the households and dwellings of the WoON 2018 

energy module, Menkveld et al. (2020) and engineering firm DGMR computed the potential 

energy savings, in m3 natural gas, if these insulation levels were to be achieved.11 In the 

present analysis, these individual foregone benefits have been aggregated and also 

subdivided into construction year classes, dwelling types and tenure types, similar to Analysis 

1. Here, only the natural gas savings associated with insulation levels 2 and 3 have been 

considered, as the level 4 insulation measures are deemed as rather extensive for reaching 

the contemporary minimum insulation standard (Menkveld et al., 2020; RVO, 2023b).12 The 

costs that households would subsequently save due to a lower energy consumption have been 

derived based on the average natural gas price in 2018, i.e. €0.682 per m3 natural gas (CBS, 

2023b).  

Analysis 3 - Testing adoption influences 

In the final analysis, the hypotheses derived in Section 2.4 were tested by determining the 

effect of household factors on the adoption of insulation. Analysing such adoption influences 

contributes to interpreting the development of the insulation diffusion curves (Analysis 1) and 

to understanding why benefits of insulation adoption (Analysis 2) have not been realised. 

Adoption influences were tested based on the WoON 2012 and WoON 2018 surveys. 

Including two surveys conducted in different years increases the reliability of the results. This 

analyse made use of WoON 2012 and WoON 2018 specifically, as it has only been tested 

whether households have adopted insulation measures in the past since the WoON 2012 

survey.  

 

The effect of household factors have been investigated in RStudio using count regressions. 

Count regressions are used to estimate the number of times a particular event is expected to 

occur; the dependent variable consists of non-negative integer numbers. In this study, the 

adoption of a distinct insulation measure is considered as the occurred event. Whereas the 

WoON surveys distinguished between the adoption of roof, floor, window and facade 

insulation, this study conceptualises the adoption of these insulation measures with a single 

count variable. The four insulation measures and their adoption are thus assumed to be 

homogenous to one another. For the independent variables, this study occasionally used an 

altered operationalisation, as variables have been measured differently in the WoON 2012 

and WoON 2018 surveys (see Appendix B).  

 

Regarding the type of count regression, this study used zero-inflated negative binomial (ZINB) 

models. In the context of this study, ZINB models are argued to be more suitable than the 

standard count (Poisson) regressions for two reasons. First, a negative binomial (negbin) 

model is able to account for overdispersion, i.e. a substantial difference between the mean 

and variance of the dependent variable. Since overdispersion was observed in the data, using 

 
11 The change in natural gas consumption is based on households’ actual natural gas consumption in 

2017 (Menkveld et al., 2020; Janssen-Jansen, 2019). Only the dwellings heated with natural gas have 
thus been included; dwellings heated by district heating or an all-electric heat pump were excluded 
(Menkveld et al., 2020).  
12 Each insulation level is associated with a default set of insulation measures. As the energetic baseline 

of dwellings differs, these default sets of insulation measures and subsequent energy savings might not 
be the most efficient for achieving the overarching minimum insulation standard (Menkveld et al., 2020; 
Cornelisse et al., 2019). 
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a negbin model was deemed more appropriate. Second, the frequency of the insulation 

measures adopted appeared to be inflated with zeroes, while it should be normally distributed 

for standard count models. Zero-inflated models can be used to account for an excess amount 

of zeros, as they distinguish between ‘structural’ zeros and ‘random’ zeros and assume that 

these zeros are generated by distinct processes (Blasco-Moreno et al., 2019). It is likely that 

the datasets used in this study also contained these two types of zeros. Naturally, some 

households already live in a sufficiently insulated dwelling and therefore do not adopt further 

insulation measures. For these households, the number of insulation measures recently 

adopted will structurally be zero. For households living in insufficiently insulated dwellings, the 

number of adopted insulation measures can be zero or higher. While the WoON data does 

not allow distinguishing between these types of households (a limitation which is discussed in 

Section 3.3), this distinction is still partially considered when using a zero-inflated model. Using 

ZINB models, this study has thus analysed the effect of household factors on the probability 

of households adopting an insulation measure at all (logistic model), as well as on the number 

of insulation measures adopted (negbin model).  

 

To examine the effect of household factors on insulation adoption, three ZINB models have 

been estimated; a 2012 household model, a 2012 homeowner model and a 2018 homeowner 

model. Since the WoON 2018 survey examined insulation adoption solely among owner-

occupied households, the tenure type hypothesis could not be tested using this survey. To still 

compare the results of WoON 2018 with WoON 2012, while additionally also examining the 

effect of tenure type on adoption, a regression with the tenure type variable (household model) 

and a regression without the tenure type variable ( homeowner model) has been run for the 

WoON 2012 dataset. The operationalisation of the variables and the descriptive statistics of 

these three models are summarised in Table 2 and 3.  

 

Table 2 

Operationalisation and descriptive statistics of the continuous variables 

 

Model                     Continuous variables Mean SD Min. Q1 Med. Q3 Max. 

2012  
household 
model 

Income (1,000 euros)  37.16 21.28 -94.00 22.75   33.23   47,54  289.24   

Capital (10,000 euros) 13.87 24.11 -104.66 0.24 4.60 20.36 315.06 

2012 
homeowner 
model 

Income (1,000 euros) 45.41 21.97 -94.00 31.48 41.80 54.85 289.24 

Capital (10,000 euros) 21.43 28.17 -104.66 4.26 15.81 29.24 315.06 

2018 
homeowner 
model 

Income (1,000 euros) 52.56 34.08 -4.14 35.89 47.42 62.67 1,274.5 

Capital (10,000 euros) 27.55 41.44 -86.51 6.17 18.11 35.19 565.40 
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Table 3 

Operationalisaiton and the descriptive statistics of the categorical variables 

 

  Model 

Categorical variables Categories 2012 household 
frequency (%) 

2012 homeowner 
frequency (%) 

2018 homeowner 
frequency (%) 

Number of insulation 
measures adopted 

0 3,793 (79.9) 1,973 (70.7) 1,911 (67.3) 

1 589 (12.4) 498 (17.8) 546 (19.2) 

2 233 (4.9) 205 (7.4) 212 (7.5) 

3 96 (2.0) 85 (3.1) 114 (4.0) 

4 38 (0.8) 30 (1.1) 58 (2.0) 

Education Lower 1,535 (32.3) 601 (21.5) 528 (18.6) 

Intermediate 1,524 (32.1) 928 (33.3) 778( 27.4) 

Higher 1,690 (35.6) 1,262 (45.2) 1,535 (54.0) 

Age 17-24 105 (2.2) 27 (1.0) 18 (0.6) 

25-34 511 (10.8) 318 (11.4) 259 (9.1) 

35-44 792 (16.7) 549 (19.7) 361 (12.7) 

45-54 899 (18.9) 580 (20.8) 480 (16.9) 

55-64 1,151 (24.2) 703 (25.2) 730 (25.7) 

65-74 810 (17.1) 432 (15.5) 756 (26.6) 

≥75 481 (10.1) 182 (6.5) 237 (8.3) 

Tenure type Owner-occupied 2,791 (58.8) n/a n/a 

Private rental 363 (7.6) n/a n/a 

Social housing 1,595 (33.6) n/a n/a 
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Homeowner 
association 

Yes 438 (9.2) 433 (15.5) 454 (16.0) 

No 4,311 (90.8) 2,358 (84.5) 2,387 (84.0) 

Construction year ≤1930 667 (14.0) 426 (15.3) 399 (14.0) 

1931-1959 803 (16.9) 472 (16.9) 379 (13.3) 

1960-1980 1,430 (30.1) 710 (25.4) 850 (29.9) 

1981-1995 1,120 (23.6) 660 (23.7) 631 (22.2) 

>1995 729 (15.4) 523 (18.7) 582 (20.5) 

Likely to move Yes 1,119 (23.6) 557 (20.0) 820 (28.9) 

No 3,630 (76.4) 2,234 (80.0) 2,021 (71.1) 

Number of observations 4,749 2,791 2,841 

 

3.3 Strengths and limitations 

At last, the strengths and limitations of this study and their implications in terms of its reliability 

and validity are discussed. This study is made possible due to the availability of secondary 

data commissioned and collected by Dutch governmental institutions, which is considered to 

be of high quality. The surveys consisted of rigorous sampling procedures and weighting 

factors and as a result, this allows for robust and highly generalisable analyses (CBS, n.d.-a; 

Bryman, 2016). As the surveys are still based on sampling, their data should however be 

regarded as estimations.13 Nevertheless, by incorporating data that has been collected over 

multiple years, i.e. data triangulation, these results can be compared and are considered of 

having a higher generalisability too. The validity of this research is furthermore stimulated by 

theory triangulation, as insights of multiple theoretical perspectives and empirical studies have 

been integrated.  

 

Simultaneously, the usage of secondary data also comprises several limitations of this study. 

The hypotheses that can be tested in this study are dependent on the availability and 

operationalisation of pre-existing data. Consequently, the variables that have been tested 

were not designed for this study specifically, which might affect the validity of its findings. An 

implication for the diffusion curve analysis is that the degree of insulation only refers to the 

surface quantity of insulation, while it does not reflect the thickness of the insulation nor its 

material type, both determining the insulation quality. Including these insights could have 

facilitated a more thorough examination of the diffusion of insulation. However, in the absence 

 
13 CBS applied a confidence interval of 95% (CBS, n.d.-a). 
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of this information, it is argued that the present insulation degree is still a suitable indicator. 

Additionally, there are also some measurement inconsistencies and unclarities present in the 

initial computation of dwellings’ insulation degrees, as discussed in Section 3.2.  

 

Another consequence for the analysis on adoption influences is that behavioural and social 

factors and EEG explanations could not (directly) be tested in this study.14 Similarly, the 

variable ‘tenure type’ could only be included in a WoON 2012 model, since insulation adoption 

was only measured among homeowners in WoON 2018. Furthermore, data prior to the time 

of insulation adoption has not been collected and was thus not available. It should therefore 

be noted that values of some independent variables (e.g., income or age) might have changed 

between the time of adoption and the time the WoON surveys collected the data. This general 

issue also concerns the dependent variable; there is no information on the insulation degree 

of dwellings prior to adoption. As a result, households that could not adopt additional 

insulation, since they are already living in fully insulated dwellings, are also included in the 

analysis on adoption influences. Ideally, the analysis should exclude this cohort and focus only 

on households with lower insulation degrees. To still consider this distinction, ZINB 

regressions are argued to act as an suitable alternative and have therefore been applied 

instead. The final drawback of the absence of longitudinal data is that it refrained this study 

from conducting longitudinal analyses and drawing causal conclusions on the effect of 

household factors on insulation adoption. Instead, this study provides insights on the 

correlation effect and likelihood of household factors on insulation adoption.  

 

Finally, the estimation of the annual foregone benefits has been based on the energy 

consumption and energetic quality of representative dwellings included in WoON 2018 and on 

the average natural gas price of 2018. Since these values (might) have changed since, the 

computed annual foregone benefits can be less generalisable for future years and should be 

regarded as an estimation. To still stimulate the robustness of these findings, they have been 

evaluated with alternative estimations (see Section 7). It should also be acknowledged that 

only the natural gas (cost) savings of households are considered as foregone benefits in this 

analysis. While in practice other private and societal benefits would result from insulation 

adoption, these have not been included. Similarly, foregone benefits should be regarded as 

‘gross’ foregone benefits, as the additional costs resulting from insulation adoption have not 

been taken into account either. While considering these costs and benefits is essential for a 

thorough (economic) examination of households decision-making processes, for instance 

through the NPV criterion, this was beyond the scope of this study.  

 

 

 

  

 
14 This is further addressed in Section 7.  



24 
 

4. Insulation diffusion curves 

Table 4 and Figure 4 show the diffusion of the four insulation measures among Dutch 

households over the years. This diffusion analysis demonstrates that the average degree of 

insulation has been increasing for all four insulation measures. Between 1989 and 1995, a 

decrease in the insulation degree of roofs and facades is however visible. This seems 

inconsistent in contrast to the general trend and can potentially be the result of the 

measurement inconsistency described in Section 3.2. Despite this inconsistency the 

developments in the degree of insulations are still described from the period between 1989 

and 2018. 

 

Households’ windows and roofs have been enjoying the highest average degree of insulation. 

The average insulation degree of roofs has been increasing from 49.1% in 1989 to 82.0% in 

2018. While the average insulation degree of windows could not be estimated for 1989, its 

insulation degree rose from 56.2% in 1995 to 85.3% in 2018. This results in windows having 

the highest average insulation degree in 2018, as well as in all prior years. The average 

insulation degree of windows shows to have decreased by 0.4 percentage point in the period 

between 2012 and 2018, which could be the result of inconsistencies within the data or 

definition that has been applied for the insulation degree. The average degree of facade 

insulation has been rising from 43.6% to 72.9% and is characterised by the steepest increase 

in insulation degree of all insulation measures (15.2 percentage point between 2006-2012). 

Whereas the average insulation degree of floors has been the lowest of all insulation 

measures, it has experienced the largest total increase (39 percentage points) from 21.2% 

towards 60.2% between 1989 and 2018.  

 

While the average insulation degree has been increasing for all four measures, it is noticed 

that the rate by which these measures are diffusing has been decreasing. The diffusion curves 

of floor, window and facade insulation have developed less steeply since 2012 and for roof 

insulation since 2006. To examine the diffusion of insulation more thoroughly, the average 

insulation degrees have been examined per construction year class, dwelling type and tenure 

type. The results of these analyses are elaborated on in the next subsections.  
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Figure 4 

Average insulation degree per insulation measure over time 

 

 
 

Table 4 

Average insulation degree per insulation measure over time 

 

Average insulation degree Roof Floor Window Facade 

1989 49.1% 21.2% n/a 43.6% 

1995 49.3% 22.6% 56.2% 42.4% 

2000 61.1% 33.5% 66.3% 50.2% 

2006 73.6% 38.6% 76.7% 55.4% 

2012 76.9% 53.6% 85.7% 70.6% 

2018 82.0% 60.2% 85.3% 72.9% 

 

  



26 
 

4.1 Diffusion per construction year class 

Expressing the insulation degree in construction year classes shows that dwellings built after 

1980 have had the highest average insulation degree for all insulation measures (see Tables 

and Figures 5 to 8). Especially for the roof, floor and facade insulation degree, there appears 

to be a substantial gap between dwellings built prior to 1981 and dwellings built after. For the 

dwellings built after, differences are negligible in the average insulation degree of their roofs 

and facades. The average facade insulation degree of these two dwellings classes (built 

between 1981-1995 and after 1995) has been approximately 100%. Their average roof 

insulation degree has been varying between ±93% and ±97%, with a minor yet noticeable 

decrease in the period between 2006-2012. While dwellings built between 1981-1995 saw 

their average floor insulation degree increase from 73.5% to 93.0%, dwellings built after 1995 

experienced a decrease of ± six percentage points. Similarly, the average insulation degree 

of windows increased for the former class (80.5% to 90.2%) and decreased for the latter (±99% 

to 90.5%). 

 

For the three classes of dwellings built before 1981, average insulation degrees have generally 

been increasing over the years, with an apparent exemption between 1989-1995 for dwellings 

constructed between 1960-1980. Still, these dwellings have a higher average insulation 

degree for all insulation measures compared to dwellings built before 1960. Here, insulation 

degrees particularly differ for roof and facade insulation. For roof insulation, the average 

insulation degree of dwellings constructed between 1960-1980 increased from 51.9% in 1989 

to 79.6% in 2018. The two classes of dwellings built before 1960 saw an increase from ±26% 

to ±66%. The facade insulation degree of these two dwelling classes increased from ±17% to 

±40%, compared to an increase from 46.9% to 67.2% for dwellings built between 1960-1980. 

Up until 2006, the average floor insulation degree differed not substantially between the 

dwellings built before 1981. After 2006, this insulation degree increased especially for the 

1960-1980 dwellings. For windows insulation, the three building classes increased with a 

similar trend. 
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Figure 5 

Average roof insulation degree per construction year class over time 

 

 
 

Table 5 

Average roof insulation degree per construction year class over time 

 

Roof insulation ≤1930 1931-1959 1960-1980 1981-1995 >1995 

1989 27.7% 26.1% 51.9% 93.7% n/a 

1995 29.5% 25.2% 41.4% 96.2% n/a 

2000 38.9% 35.6% 58.1% 96.9% 95.1% 

2006 60.8% 49.6% 68.7% 97.7% 96.1% 

2012 62.2% 55.7% 73.0% 95.9% 93.3% 

2018 65.3% 66.1% 79.6% 96.6% 93.2% 
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Figure 6 

Average floor insulation degree per construction year class over time 

 

 
 

Table 6 

Average floor insulation degree per construction year class over time 

 

Floor insulation ≤1930 1931-1959 1960-1980 1981-1995 >1995 

1989 6.8% 3.7% 15.4% 73.5% n/a 

1995 7.5% 4.3% 4.2% 76.1% n/a 

2000 12.1% 8.4% 14.4% 90.3% 95.4% 

2006 13.9% 9.6% 14.1% 88.3% 96.1% 

2012 27.0% 19.4% 37.7% 92.8% 92.3% 

2018 33.5% 32.7% 43.5% 93.0% 89.6% 
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Figure 7 

Average window insulation degree per construction year class over time 

 

 
 

Table 7 

Average window insulation degree per construction year class over time 

 

Window insulation ≤1930 1931-1959 1960-1980 1981-1995 >1995 

1989 n/a n/a n/a n/a n/a 

1995 35.8% 46.7% 54.5% 80.5% n/a 

2000 47.6% 56.7% 63.3% 85.6% 98.9% 

2006 60.3% 67.7% 74.6% 87.6% 99.3% 

2012 71.1% 78.4% 84.0% 91.9% 99.8% 

2018 75.3% 79.6% 85.7% 90.2% 90.5% 
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Figure 8 

Average facade insulation degree per construction year class over time 

 

 
 

Table 8 

Average facade insulation degree per construction year class over time 

 

Facade insulation ≤1930 1931-1959 1960-1980 1981-1995 >1995 

1989 16.4% 18.2% 46.9% 96.6% n/a 

1995 19.2% 19.3% 28.2% 99.8% n/a 

2000 21.2% 19.8% 42.2% 100% 100% 

2006 22.1% 21.2% 44.5% 100% 100% 

2012 34.7% 37.1% 67.8% 100% 100% 

2018 420.% 36.9% 67.2% 99.9% 99.9% 
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4.2 Diffusion per dwelling type 

As illustrated in Tables and Figures 9 to 12, insulation measures have been diffusing rather 

comparably among the first three types of dwellings: detached, semi-detached/end-terraced 

and mid-terraced dwellings. In contrast, the average insulation degrees of the fourth dwelling 

type, apartments, have been lower than the other dwelling types. For roof insulation, the 

insulation degree of apartments for instance increased from 41.8% to 71.8% between 1989-

2018, compared to an increase from ±52% to ±87% for the other dwelling types.  

 

Similarly, the average floor and facade insulation degrees have generally been lower for 

apartments. Apartments’ average floor and facade insulation degree respectively increased 

from 17.1% to 51.7% and 36.1% to 63.2%, both with a steep increase between 2006-2012. 

Detached dwellings, in contrast, have been enjoying the highest average floor insulation 

degree, which increased from 24.2% to 68.6%. Interestingly, the average floor insulation 

degree of apartments was similar to those of semi-detached/end-terraced and mid-terraced 

dwellings in 1995, while the average degree of facade insulation of apartments (40.0%) was 

even higher than that of detached dwellings (38.9%). In the years after, however, these 

insulation degrees increased less rapidly for apartments than for the dwelling types they 

equalled in 1995.  

 

At last, the window insulation degree of apartments has been the most similar to the other 

dwelling types. In 1995 and 2000, apartments, semi-detached/end-terraced and mid-terraced 

dwellings had average window insulation degrees of ±55% and ±65.5%. From 2006, the 

average window insulation degree of the latter two dwelling types developed more towards 

that of detached dwellings, which started at 61.7% in 1995 and increased to 85.5% in 2018. 

Apartments’ had a slightly lower, yet still resembling average insulation degree of 83.4%. 

Compared to the other insulation measures, apartments have had the highest average 

insulation degree for windows.  
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Figure 9 

Average roof insulation degree per dwelling type over time 

 

 
 

Table 9 

Average roof insulation degree per dwelling type over time 

 

Roof insulation Detached Semi-detached  
/ end-terraced 

Mid-terraced Apartment 

1989 51.0% 51.8% 53.2% 41.8% 

1995 54.4% 49.0% 54.3% 41.9% 

2000 65.3% 62.9% 64.3% 54.6% 

2006 77.3% 81.1% 76.7% 61.3% 

2012 80.0% 80.0% 80.8% 69.6% 

2018 89.0% 87.8% 85.5% 71.8% 
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Figure 10 

Average floor insulation degree per dwelling type over time 

 

 
 

Table 10 

Average floor insulation degree per dwelling type over time 

 

Floor insulation Detached Semi-detached 
/ end-terraced 

Mid-terraced Apartment 

1989 24.2% 22.0% 23.5% 17.1% 

1995 27.7% 22.6% 22.1% 20.5% 

2000 39.4% 34.3% 32.4% 30.7% 

2006 43.2% 42.9% 39.3% 31.4% 

2012 58.9% 58.2% 53.1% 47.9% 

2018 68.6% 65.7% 61.2% 51.7% 
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Figure 11 

Average window insulation degree per dwelling type over time 

 

 
 

Table 11 

Average window insulation degree per dwelling type over time 

 

Window insulation Detached Semi-detached 
/ end-terraced 

Mid-terraced Apartment 

1989 n/a n/a n/a n/a 

1995 61.7% 54.9% 55.0% 55.8% 

2000 70.5% 66.1% 65.0% 65.4% 

2006 78.6% 78.0% 76.9% 74.4% 

2012 87.0% 87.1% 87.0% 82.8% 

2018 85.5% 86.3% 86.7% 83.4% 
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Figure 12 

Average facade insulation degree per dwelling type over time 

 

 
 

Table 12 

Average facade insulation degree per dwelling type over time 

 

Facade insulation Detached Semi-detached  
/ end-terraced 

Mid-terraced Apartment 

1989 41.3% 48.6% 48.1% 36.1% 

1995 38.9% 44.9% 44.2% 40.0% 

2000 53.6% 53.6% 53.4% 42.4% 

2006 57.1% 62.4% 58.2% 44.9% 

2012 71.7% 72.5% 73.6% 65.8% 

2018 80.3% 81.2% 73.0% 63.2% 
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4.3 Diffusion per tenure type  

At last, the diffusion of insulation has been expressed among the different types of housing 

tenure (see Tables and Figures 13 to 16). The average insulation degree for all four insulation 

measures over time has been the lowest for households living in social housing. For roof and 

floor insulation, owner-occupied households have been enjoying the highest average degree 

of insulation. Between 1989-2018, their roof insulation increased from 54.9% to 87.4%, while 

floor insulation saw an even larger increase from 24.2% to 65.4%. The average insulation 

degrees for roofs and floors of private rental housing have been remaining in between those 

of owner-occupied and social housing. For window insulation the average insulation degree 

of private rental housing has however been similar to that of owner-occupied housing. 

Between 1995-2018, these followed a similar trend, increasing from ±59% to ±87%. 

Interestingly, facade insulation of private rental housing has been rather constant between 

1989-2006 (±53%), and higher than that of owner-occupied households between 1989-2000.  
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Figure 13 

Average roof insulation degree per tenure type over time 

 

 
 

Table 13 

Average roof insulation degree per tenure type over time 

 

Roof insulation Owner-occupied Private rental Social housing 

1989 54.9% 49.1% 31.1% 

1995 54.8% 47.8% 34.2% 

2000 68.3% 57.0% 42.0% 

2006 80.6% 66.3% 59.8% 

2012 82.4% 68.8% 69.1% 

2018 87.4% 75.7% 70.4% 
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Figure 14 

Average floor insulation degree per tenure type over time 

 

 
 

Table 14 

Average floor insulation degree per tenure type over time 

 

Floor insulation Owner-occupied Private rental Social housing 

1989 24.2% 21.3% 12.1% 

1995 25.4% 22.1% 14.3% 

2000 38.3% 30.9% 20.3% 

2006 45.3% 31.2% 27.0% 

2012 57.7% 48.4% 44.3% 

2018 65.4% 54.3% 49.3% 

  



39 
 

Figure 15 

Average window insulation degree per tenure type over time 

 

 
 

Table 15 

Average window insulation degree per tenure type over time 

 

Window insulation Owner-occupied Private rental Social housing 

1989 n/a n/a n/a 

1995 58.2% 60.2% 38.4% 

2000 69.6% 67.3% 48.2% 

2006 80.8% 75.2% 61.0% 

2012 88.5% 84.8% 71.1% 

2018 86.5% 87.3% 75.7% 
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Figure 16 

Average facade insulation degree per tenure type over time 

 

 
 

Table 16 

Average facade insulation degree per tenure type over time 

 

Facade insulation Owner-occupied Private rental Social housing 

1989 42.9% 53.4% 23.8% 

1995 39.3% 52.6% 26.1% 

2000 52.2% 54.3% 29.0% 

2006 59.7% 53.7% 38.0% 

2012 72.3% 72.3% 53.8% 

2018 76.3% 74.5% 53.1% 
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5. Foregone insulation benefits 

In the foregone benefits analysis, the annual natural gas (cost) savings that Dutch households 

could have achieved, if additional and conventional insulation measures were adopted, have 

been examined. The estimated average savings are shown in Table 17 and Table 18, whereas 

an overview of total savings and the energy costs savings can be found in Appendix D. This 

analysis found that the average household could have saved 336 to 542 m3 natural gas if the 

additional insulation measures were implemented. With the annual average natural gas price 

of €0.68 euros/m3, the average household would have saved €229 to €337 on energy costs. 

Considering the entire Dutch housing stock, households could have saved 2.37 billion to 3.82 

billion m3 of natural gas in total. In energy costs, households' total savings would then have 

been between €1.61 billion and €2.62 billion euros.  

 

Expressed in construction year classes (Table 17 and Table 18), dwellings built between 1960-

1980 showed to have the highest energy saving potential. The average dwelling built within 

this period could have saved 466-766 m3 natural gas. In sum, the potential savings of these 

dwellings would account for ±45% of the total potential savings, i.e. 1.06 billion to 1.74 billion 

m3 of natural gas. Natural gas savings of dwellings constructed between 1931-1959 and 1980-

1995 would each account for 17-20% of the total potential savings, with average household 

savings respectively ranging from 421-625 and 285-522 m3 of natural gas. Estimated savings 

for dwellings built before 1930 account for ±13% of the total potential savings, with average 

household savings between 318-484 m3 natural gas. Dwellings built after 1995 have the lowest 

potential natural gas savings, 104-137 m3 on average, which accounts for just ±5% of the total 

potential energy savings.  

 

When examining the natural gas savings per dwelling type (Table 19), detached dwellings are 

found to have the highest average saving potential, ranging from 501-854 m3 of natural gas. 

Estimated natural gas savings were 399-656 m3 on average for semi-detached/end-terraced 

dwellings and 325-536 m3 for mid-terraced dwellings. Apartments had the lowest saving 

potential on average, with 222-317 m3 of natural gas savings. Similarly, the total estimated 

natural gas savings of apartments are found to be the lowest of all dwelling types, which would 

have been ±20% of the total potential savings. While detached dwellings were found to have 

the highest average savings, in sum they account for ±22% of the total potential natural gas 

savings. Instead, mid-terraced and semi-detached/end-terraced dwellings would have 

enjoyed the largest total savings, respectively accounting for ±27% and ±30% of the total 

potential natural gas savings.  

 

In Figure 17 and Figure 18, the average and total natural gas savings have respectively been 

ranked for each combination of construction year class and dwelling type, based on the 

savings associated with level 3 insulation measures. These figures show that all dwelling types 

built after 1995 have both the lowest average and lowest total natural gas saving potential 

compared to other dwelling categories. While the average natural gas savings of priorly built 

apartments are also found to be lower than the average savings of other dwellings, in total 

these apartments do not necessarily have lower natural gas savings. Similarly, whereas 

detached dwellings built in or before 1995 were found to have the highest average savings, in 

total the highest natural gas savings could have been achieved by insulating dwelling types 

constructed between 1960-1980 instead.  
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Lastly, regarding tenure type (Table 17 and Table 18), owner-occupied dwellings were found 

to have the highest natural gas saving potential. On average, natural gas savings for 

homeowners were estimated at 373-616 m3. The natural gas savings of all owner-occupied 

dwellings would account for ±67% of the total potential energy savings. Estimated savings for 

private rental dwellings accounted for ±12% of the total potential savings, with average natural 

gas savings ranging between 305-450 m3. The natural gas savings of social rental dwellings, 

269-424 m3 on average, accounted for ±11% of the total potential savings.  
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Table 17 

Heat map of average foregone natural gas savings - level 2 insulation 

 

Average natural gas savings (m3) Owner-occupied Private rental Social housing Total average 

≤1930 355 294 203 318 

Detached 485 451 134 479 

Semi-detached/end-terraced 340 562 483 363 

Mid-terraced 305 377 194 297 

Apartment 255 233 153 221 

1931-1959 448 393 381 421 

Detached 591 267 n/a  545 

Semi-detached/end-terraced 516 571 515 517 

Mid-terraced 362 454 355 364 

Apartment 278 398 334 336 

1960-1980 534 437 356 466 

Detached 787 575 435 771 

Semi-detached/end-terraced 546 677 427 519 

Mid-terraced 442 489 421 439 

Apartment 339 348 278 308 

1981-1995 341 298 172 285 

Detached 466 625  n/a 468 

Semi-detached/end-terraced 369 262 240 345 

Mid-terraced 278 324 220 271 

Apartment 197 280 143 178 

>1995 121 64 70 104 

Detached 162 0  n/a 161 

Semi-detached/end-terraced 119 141 141 122 

Mid-terraced 102 75 75 96 

Apartment 101 57 56 73 

Total average 373 305 269 336 
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Table 18 

Heat map of average foregone natural gas savings - level 3 insulation 

 

Average natural gas savings (m3) Owner-occupied Private rental Social housing Total average 

≤1930 562 404 287 484 

Detached 815 657 305 790 

Semi-detached/end-terraced 536 703 625 552 

Mid-terraced 470 568 292 455 

Apartment 356 307 218 301 

1931-1959 689 551 534 625 

Detached 972 497 n/a  904 

Semi-detached/end-terraced 778 943 742 774 

Mid-terraced 563 631 517 549 

Apartment 361 519 444 442 

1960-1980 893 670 574 766 

Detached 1341 1148 845 1327 

Semi-detached/end-terraced 912 1047 720 866 

Mid-terraced 739 755 719 734 

Apartment 526 492 407 453 

1981-1995 630 501 323 522 

Detached 856 982  n/a 858 

Semi-detached/end-terraced 679 499 458 637 

Mid-terraced 529 617 414 515 

Apartment 340 413 266 307 

>1995 166 72 80 137 

Detached 255 86 n/a  254 

Semi-detached/end-terraced 170 175 190 172 

Mid-terraced 132 108 99 125 

Apartment 100 57 56 73 

Total average 616 450 424 542 
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Table 19 

Average foregone natural gas savings per dwelling type 

 

Average natural gas savings (m3) Insulation level 2 Insulation level 3 

Detached 501 854 

Semi-detached/end-terraced 399 656 

Mid-terraced 325 536 

Apartment 222 317 

Total average 336 542 
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Figure 17 

Average foregone natural gas savings per construction year class and dwelling type 
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Figure 18 

Total foregone natural gas savings per construction year class and dwelling type 
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6. Influences on insulation adoption 

In the third analysis, insulation adoption influences and hypotheses have been tested using 

three ZINB regressions. These three models are discussed in Sections 6.1 to 6.3, after which 

they are compared and linked to the adoption hypotheses in Section 6.4. 

6.1 Adoption influences among Dutch households in 2012 

Starting with the logistic part of the 2012 household model (Table 20), the analysis shows that 

tenure type and construction year significantly affect the odds of Dutch households not 

adopting any insulation measures. Households living in owner-occupied dwellings, i.e. 

homeowners, are found to have significantly lower odds of having zero insulation measures 

adopted in their dwelling than households living in social housing (p<<0.001). Similarly, 

households living in dwellings built in or before 1995 have significantly lower odds of adopting 

zero insulation measures than the households living in the dwellings built hereafter 

(p<<0.001).  

 

Moving on to the negbin part of the model (Table 20), three variables demonstrate significant 

effects on the number of insulation measures adopted: age, homeowner association and 

construction year. Household members aged between 25-44 have significantly higher odds of 

adopting more insulation measures than those aged between 45-54 (p<0.05). No significant 

effects are found for the other age groups. HOAs are found to have a significantly negative 

effect on the number of insulation measures adopted as well. Households part of HOAs have 

significantly lower odds of adopting a larger number of insulation measures than households 

not part of such associations (p<<0.001). Additionally, households living in dwellings built 

before 1931, between 1931-1959 and between 1960-1995 show to have significantly lower 

odds of having a greater number of insulation measures adopted than households living in 

younger dwellings (p<0.05, p<0.01 and p<<0.001, respectively).  
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Table 20 

Zero-inflated negative binomial model on insulation adoption among households (2012) 

 

Logistic part of the model  

Variables Est. S.E. Sig. Odds ratio 

Income (1,000 euros) -0.004 0.008 0.611 0.996 

Capital (10,000 euros) 0.003 0.005 0.516 1.003 

Education (ref = Lower) 
    Intermediate 
    Higher 

 
-0.063 
-0.214 

 
0.230 
0.231 

 
0.786 
0.354 

 
0.939 
0.807 

Age (ref = 45-54) 
    17-24 
    25-34 
    35-44 
    55-64 
    65-74 
    ≥75 

 
-0.639 
-0.015 
-0.121 
-0.164 
-0.259 
0.312 

 
0.499 
0.295 
0.258 
0.271 
0.302 
0.428 

 
0.201 
0.960 
0.639 
0.546 
0.390 
0.466 

 
0.528 
0.985 
0.886 
0.849 
0.772 
1.367 

Tenure type (ref = social housing) 
   Owner-occupied 
   Private rental 

 
-2.537 
-0.020 

 
0.261 
0.328 

 
<< 0.001*** 
0.952 

 
0.079 
0.980 

Homeowner association (ref = no) 0.534 0.392 0.173 1.707 

Construction year (ref = >1995) 
   ≤ 1930 
   1931-1959 
   1960-1980 
   1981-1995 

 
-3.279 
-3.614 
-3.598 
-2.738 

 
0.272 
0.321 
0.275 
0.454 

 
<< 0.001*** 
<< 0.001*** 
<< 0.001*** 
<< 0.001*** 

 
0.038 
0.027 
0.027 
0.065 

Likely to move (ref = no) 0.072 0.195 0.710 1.075 

Negative binomial part of the model 

Variables Est. S.E. Sig. Odds ratio 

Income (1,000 euros) 0.003 0.003 0.314 1.003 

Capital (10,000 euros) -0.002 0.002 0.447 0.998 

Education (ref = Lower) 
    Intermediate 
    Higher 

 
-0.008 
0.005 

 
0.117 
0.114 

 
0.949 
0.967 

 
0.993 
1.005 

Age (ref = 45-54) 
    17-24 
    25-34 
    35-44 
    55-64 
    65-74 
    ≥75 

 
0.246 
0.357 
0.250 
-0.027 
0.004 
-0.403 

 
0.289 
0.146 
0.122 
0.129 
0.143 
0.252 

 
0.395 
0.014* 
0.041* 
0.831 
0.977 
0.111 

 
1.279 
1.429 
1.284 
0.973 
1.004 
0.912 

Tenure type (ref = social housing) 
   Owner-occupied 
   Private rental 

 
-0.034 
-0.056 

 
0.148 
0.284 

 
0.819 
0.845 

 
0.967 
0.946 
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Homeowner association (ref = no) -0.676 0.200 << 0.001*** 0.509 

Construction year (ref = >1995) 
   ≤ 1930 
   1931-1959 
   1960-1980 
   1981-1995 

 
-0.445 
-0.534 
-0.673 
-1.307 

 
0.176 
0.186 
0.172 
0.268 

 
0.011* 
0.004** 
<< 0.001*** 
<< 0.001*** 

 
0.641 
0.586 
0.510 
0.271 

Likely to move (ref = no) -0.092 0.098 0.350 0.912 

Number of observations 
Degrees of freedom 
Log likelihood 
AIC 

4,749 
39 

-2870.6 
5819.2 

Note. *** p<0.001, ** p<0.01, * p<0.05. 

6.2 Adoption influences among Dutch homeowners in 2012 

In the logistic part of the 2012 homeowners model (Table 21) it appears that the construction 

year of a dwelling is the only variable that significantly affects the odds of homeowners not 

adopting any insulation measure. Compared to homeowners living in dwellings built after 

1995, homeowners living in priorly built dwellings have significantly lower odds of adopting 

zero insulation measures (p<<0.001).  

 

Regarding the negbin part of the model (Table 21), several variables are found to significantly 

affect the number of insulation measures that homeowners adopt: age, homeowner 

association and construction year. Homeowners aged between 25-34 and 35-44 turn out to 

have significantly higher odds of adopting a larger number of insulation measures than 

homeowners 45-54 years old (p<0.05). Homeowners being 75 or older are found to have 

significantly lower odds to adopt a higher number of insulation measures (p<0.05). No 

significant effect was found for the age groups 17-24, 55-64 and 64-74. Secondly, when 

homeowners are part of HOAs, they appear to have significantly lower odds of adopting more 

insulation measures (p<<0.001). Lastly, homeowners living in dwellings built prior to 1960 and 

between 1960-1995 are demonstrated to have significantly lower odds of adopting a higher 

number of insulation measures than the homeowners living in dwellings built hereafter (p<0.05 

and p<<0.001, respectively).  
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Table 21 

Zero-inflated negative binomial model on insulation adoption among homeowners (2012) 

 

Logistic part of the model 

Variables Est. S.E. Sig. Odds ratio 

Income (1,000 euros) 3.7*10-4 0.005 0.941 1.000 

Capital (10,000 euros) 0.004 0.004 0.344 1.004 

Education (ref = Lower) 
    Intermediate 
    Higher 

 
0.209 
-0.067 

 
0.394 
0.376 

 
0.595 
0.858 

 
1.233 
0.935 

Age (ref = 45-54) 
    17-24 
    25-34 
    35-44 
    55-64 
    65-74 
    ≥75 

 
-0.979 
-0.159 
0.058 
-0.130 
-0.077 
0.082 

 
1.161 
0.372 
0.309 
0.356 
0.412 
0.707 

 
0.399 
0.668 
0.852 
0.716 
0.852 
0.908 

 
0.376 
0.853 
1.060 
0.879 
0.926 
1.085 

Homeowner association (ref = no) 0.513 0.458 0.263 1.670 

Construction year (ref = >1995) 
   ≤ 1930 
   1931-1959 
   1960-1980 
   1981-1995 

 
-3.526 
-3.616 
-3.782 
-2.218 

 
0.358 
0.381 
0.365 
0.328 

 
<< 0.001*** 
<< 0.001*** 
<< 0.001*** 
<< 0.001*** 

 
0.029 
0.027 
0.023 
0.109 

Likely to move (ref = no) -0.184 0.306 0.547 0.832 

Negative binomial part of the model 

Variables Est. S.E. Sig. Odds ratio 

Income (1,000 euros) 0.003 0.002 0.095 1.003 

Capital (10,000 euros) -0.001 0.002 0.646 0.999 

Education (ref = Lower) 
    Intermediate 
    Higher 

 
0.089 
0.078 

 
0.149 
0.140 

 
0.550 
0.580 

 
1.093 
1.081 

Age (ref = 45-54) 
    17-24 
    25-34 
    35-44 
    55-64 
    65-74 
    ≥75 

 
0.429 
0.321 
0.282 
-0.080 
0.018 
-0.666 

 
0.315 
0.148 
0.128 
0.141 
0.160 
0.290 

 
0.173 
0.030* 
0.028* 
0.572 
0.910 
0.022* 

 
1.536 
1.378 
1.326 
0.923 
1.018 
0.514 

Homeowner association (ref = no) -0.728 0.206 << 0.001*** 0.482 

Construction year (ref = >1995) 
   ≤ 1930 
   1931-1959 
   1960-1980 
   1981-1995 

 
-0.456 
-0.463 
-0.662 
-1.022 

 
0.192 
0.198 
0.185 
0.1232 

 
0.018* 
0.020* 
<< 0.001*** 
<< 0.001*** 

 
0.634 
0.630 
0.516 
0.360 
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Likely to move (ref = no) -0.132 0.112 0.239 0.876 

Number of observations 
Degrees of freedom 
Log likelihood 
AIC 

2,791 
35 

-2250.0 
4569.9 

Note. *** p<0.001, ** p<0.01, * p<0.05. 

6.3 Adoption influences among Dutch homeowners in 2018 

From the logistic part of the model 2018 homeowners model (Table 22), two variables are 

found to significantly affect the odds of homeowners not adopting any insulation measures: 

age and construction year. Compared to household members aged between 45-54, the model 

demonstrates that household members between 25-34, 35-44 and 55-64 years old have 

significantly lower odds of adopting zero insulation measures (p<0.01, p<0.05 and p<0.05, 

respectively). No significant effect is found for household members younger than 25 or older 

than 64. Regarding dwellings’ construction year, the model shows that households living in all 

classes of dwellings constructed before 1996 have lower odds of adopting zero insulation 

measures than households living in younger dwellings (p<<0.001).  

 

For the model’s negbin part, numerous variables indicate a significant effect on the number of 

insulation measures adopted: income, education, age, homeowner association and 

construction year. While the effect of income on the number of insulation measures adopted 

appears to be significant (p<0.05), it comes with a marginally small effect size, i.e. the odds 

ratio approximates 1. Regarding education, the model demonstrates that households with 

intermediate education have significantly higher odds of adopting a greater number of 

insulation measures than lower educated households (p<0.05). For higher educated 

households, no significant effect is found. Compared to household members aged between 

45-55, household members between 55-64 and 75 or older turn out to have significantly lower 

odds of adopting more insulation measures (p<0.05 and p<0.01, respectively). No significant 

effect is found for the other age groups. Additionally, households part of a HOA have 

significantly lower odds of adopting a greater number of insulation measures (p<<0.001). 

Lastly, households living in dwellings built between 1960-1980 and 1981-1995 have 

significantly lower odds of adopting more insulation measures than households living in the 

younger dwellings (p<0.05 and p<<0.001, respectively).  
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Table 22 

Zero-inflated negative binomial model on insulation adoption among homeowners (2018) 

 

Logistic part of the model 

Variables Est. S.E. Sig. Odds ratio 

Income (1,000 euros) -0.001 0.002 0.676 0.999 

Capital (10,000 euros) 0.002 0.002 0.243 1.002 

Education (ref = Lower) 
    Intermediate 
    Higher 

 
0.507 
0.574 

 
0.362 
0.349 

 
0.161 
0.010 

 
1.661 
1.776 

Age (ref = 45-54) 
    17-24 
    25-34 
    35-44 
    55-64 
    65-74 
    ≥75 

 
-1.061 
-1.065 
-0.775 
-0.659 
-0.259 
-0.654 

 
0.982 
0.385 
0.340 
0.331 
0.312 
0.774 

 
0.280 
0.006** 
0.023* 
0.047* 
0.407 
0.398 

 
0.346 
0.345 
0.460 
0.518 
0.772 
0.520 

Homeowner association (ref = no) 0.231 0.361 0.523 1.259 

Construction year (ref = >1995) 
   ≤ 1930 
   1931-1959 
   1960-1980 
   1981-1995 

 
-2.690 
-4.117 
-3.886 
-2.311 

 
0.289 
0.672 
0.469 
0.357 

 
<< 0.001*** 
<< 0.001*** 
<< 0.001*** 
<< 0.001*** 

 
0.068 
0.016 
0.021 
0.099 

Likely to move (ref = no) 0.165 0.233 0.480 1.179 

Negative binomial part of the model 

Variables Est. S.E. Sig. Odds ratio 

Income (1,000 euros) 0.003 0.001 0.029* 1.003 

Capital (10,000 euros) 0.001 0.001 0.395 1.001 

Education (ref = Lower) 
    Intermediate 
    Higher 

 
0.240 
0.173 

 
0.115 
0.108 

 
0.037* 
0.108 

 
1.271 
1.189 

Age (ref = 45-54) 
    17-24 
    25-34 
    35-44 
    55-64 
    65-74 
    ≥75 

 
0.288 
0.142 
0.081 
-0.244 
-0.059 
-0.557 

 
0.383 
0.135 
0.122 
0.123 
0.125 
0.211 

 
0.452 
0.293 
0.511 
0.048* 
0.641 
0.008** 

 
1.334 
1.152 
1.084 
0.784 
0.943 
0.573 

Homeowner association (ref = no) -0.599 0.147 << 0.001*** 0.549 

Construction year (ref = >1995) 
   ≤ 1930 
   1931-1959 
   1960-1980 
   1981-1995 

 
-0.137 
-0.275 
-0.387 
-0.907 

 
0.182 
0.182 
0.175 
0.223 

 
0.451 
0.130 
0.027* 
<< 0.001*** 

 
0.872 
0.759 
0.679 
0.404 
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Likely to move (ref = no) -0.087 0.082 0.288 0.916 

Number of observations 
Degrees of freedom 
Log likelihood 
AIC 

2,841 
35 

-2540.8 
5151.7 

Note. *** p<0.001, ** p<0.01, * p<0.05. 

6.4 Hypotheses 

To compare the results of the three ZINB models and link these to the adoption hypotheses, 

the odds ratios and significance of their variables are summarised in Table 23 and elaborated 

on below.  

 

Starting with the control variables, the three models show that construction year is a significant 

variable in both the logistic and negbin parts of the models. In the three logistic parts, all 

construction year classes significantly affect the odds of Dutch households not adopting any 

insulation measures. Households living in dwellings built in or before 1995 have significantly 

lower odds of adopting zero insulation measures, which would imply that they have higher 

odds of adoption. Interestingly, when looking at the negbin parts of the models, these 

households simultaneously have significantly lower odds of adopting a larger number of 

insulation measures than households living in dwellings built after 1995. This applies to 

dwellings from all construction year classes in the two 2012 models and to the dwellings built 

between 1960-1995 for the 2018 model. Moving on the second control variable, ‘likely to move’ 

does not appear to significantly affect the adoption of insulation in any computed model.  

 

To test the first two hypotheses, stating ‘the higher the household income, the more likely a 

household adopts insulation measures (H1)’ and ‘the higher the household capital, the more 

likely a household adopts insulation measures (H2)’, households’ disposable income and 

financial capital have been included in the models. Except for the 2018 negbin part, household 

income does not appear to have a significant effect on the adoption of insulation measures. 

While the effect of income is significant in the 2018 model, its effect size is marginal (odds 

ratio ≈ 1). Based on these largely insignificant results, the first hypothesis can thus be rejected. 

Similarly, the three models indicate that household capital does not significantly affect the 

adoption of insulation either. The second hypothesis is therefore also rejected.  

 

The third hypothesis related to household education, stating that ‘the higher the household 

education, the more likely a household adopts insulation measures (H3)’. In neither of the 

logistic parts of the model do intermediate and higher education levels appear to significantly 

affect insulation adoption, compared to that of lower educated households. The same 

generally applies to the models’ negbin parts . Here, a significant effect is only found for the 

intermediate education level in the 2018 homeowner model. However, since the effect of 

higher educated homeowners is not significant (nor larger) in the 2018 negbin part and 

education level is not found to be significant in any other part or model, the third hypothesis is 

rejected.  
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The fourth hypothesis has been divided into two sub-hypotheses: ‘household members 

younger than 45 are more likely to adopt insulation measures than household members aged 

between 45-54 (H4a)’ and ‘household members older than 54 are less likely to adopt insulation 

measures than household members aged between 45-54 (H4b)’. The three computed models 

show mixed results when estimating the effect of age on insulation adoption. In the logistic 

parts of the two 2012 models, age does not demonstrate significant effects. Yet in the logistic 

part of 2018, several age groups do. Household members aged between 25-34, 35-44 and 

55-64 are found to have lower odds of adopting zero insulation measures than those aged 

between 45-54. Moving to the negbin parts, a significant positive effect on the number of 

insulation measures adopted is found for the age groups 25-34 and 35-44 in the 2012 models. 

For the 2012 and 2018 homeowner model, household members aged 75 or older were found 

to have significant lower odds of adopting a larger number of insulation measures. This also 

applied for homeowners aged between 55-64, in 2018 specifically. Hence, since no consistent 

evidence regarding the effect of age on insulation adoption was found, both sub-hypothesis 

H4a and H4b are rejected. 

 

The fifth hypothesis, ‘insulation measures are more likely to get adopted in owner-occupied 

housing than in rental properties (H5)’, could solely be tested for the 2012 household model. 

From its logistic part, it can be concluded that owner-occupied households have significant 

and substantial lower odds of adopting zero insulation measures than households living in 

social housing and private rental housing. Conversely, owner-occupied households thus have 

higher odds of adopting an insulation measure than tenants. Yet, when assessing the model’s 

negbin part, no significant differences between the effect of tenure types on the number of 

adopted insulation measures can be noticed. The fifth hypothesis can therefore partially be 

confirmed; owner-occupied households are more likely to adopt an insulation measure at all, 

yet do not significantly differ from rental households in the number of insulation measures 

adopted. 

 

The sixth and final hypothesis stated that ‘households part of a homeowner association are 

less likely to adopt insulation measures (H6)’. In the logistic parts of the three models, HOAs 

do not demonstrate to significantly affect the adoption of insulation. In the negbin parts, 

however, households part of HOAs have significantly lower odds of adopting a larger number 

of insulation measures. This results in the last hypothesis to be partially confirmed; HOAs do 

not seem to significantly correlate with households not adopting any insulation, yet households 

part of such associations do appear to be less likely to adopt a larger number of insulation 

measures.  
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Table 23 

Zero-inflated negative binomial model on insulation adoption among homeowners (2018) 

 

Logistic part of the models 

Variables Odds ratio 2012 
household 

Odds ratio 2012 
homeowner 

Odds ratio 2018 
homeowner 

Income (1,000 euros) 0.996 1.000 0.999 

Capital (10,000 euros) 1.003 1.004 1.002 

Education (ref = Lower) 
    Intermediate 
    Higher 

 
0.939 
0.807 

 
1.233 
0.935 

 
1.661 
1.776 

Age (ref = 45-54) 
    17-24 
    25-34 
    35-44 
    55-64 
    65-74 
    ≥75 

 
0.528 
0.985 
0.886 
0.849 
0.772 
1.367 

 
0.376 
0.853 
1.060 
0.879 
0.926 
1.085 

 
0.346 
0.345** 
0.460* 
0.518* 
0.772 
0.520 

Tenure type (ref = social housing) 
   Owner-occupied 
   Private rental 

 
0.079*** 
0.980 

 
n/a 
n/a 

 
n/a 
n/a 

Homeowner association (ref = no) 1.707 1.670 1.259 

Construction year (ref = >1995) 
   ≤ 1930 
   1931-1959 
   1960-1980 
   1981-1995 

 
0.038*** 
0.027*** 
0.027*** 
0.065*** 

 
0.029*** 
0.027*** 
0.023*** 
0.109*** 

 
0.068*** 
0.016*** 
0.021*** 
0.099*** 

Likely to move (ref = no) 1.075 0.832 1.179 

Negative binomial part of the models 

Variables Odds ratio 2012 
household 

Odds ratio 2012 
homeowner 

Odds ratio 2018 
homeowner 

Income (1,000 euros) 1.003 1.003 1.003* 

Capital (10,000 euros) 0.998 0.999 1.001 

Education (ref = Lower) 
    Intermediate 
    Higher 

 
0.993 
1.005 

 
1.093 
1.081 

 
1.271* 
1.189 

Age (ref = 45-54) 
    17-24 
    25-34 
    35-44 
    55-64 
    65-74 
    ≥75 

 
1.279 
1.429* 
1.284* 
0.973 
1.004 
0.912 

 
1.536 
1.378* 
1.326* 
0.923 
1.018 
0.514* 

 
1.334 
1.152 
1.084 
0.784* 
0.943 
0.573* 

Tenure type (ref = social housing) 
   Owner-occupied 

 
0.967 

 
n/a 

 
n/a 
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   Private rental 0.946 n/a n/a 

Homeowner association (ref = no) 0.509*** 0.482*** 0.549*** 

Construction year (ref = >1995) 
   ≤ 1930 
   1931-1959 
   1960-1980 
   1981-1995 

 
0.641* 
0.586** 
0.510*** 
0.271*** 

 
0.634* 
0.630* 
0.516*** 
0.360*** 

 
0.872 
0.759 
0.679* 
0.404*** 

Likely to move (ref = no) 0.912 0.876 0.916 

Number of observations 4,749 2,791 2,841 

Note. *** p<0.001, ** p<0.01, * p<0.05. 
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7. Discussion 

7.1 Diffusion curves and insulation gaps 

The analyses on insulation diffusion curves, foregone benefits and adoption influences 

contributed to a better understanding on the diffusion of insulation measures among Dutch 

households. The diffusion curve analysis demonstrated that the average degree of insulation 

has generally been increasing over the years. Yet, it also indicated that the rate by which these 

measures are diffusing has been decreasing more prematurely as diffusion theories would 

predict. This an interesting finding, suggesting that a significant part of Dutch households 

persistently renounces insulation and hence, does not enjoy subsequent benefits. While 

diffusion curves could only be examined up until 2018, analysing the diffusion of insulation 

measures for more recent years would be valuable for assessing whether this declining growth 

is still present.  

 

Additionally, the diffusion curve analysis indicated the presence of substantial differences in 

the insulation degrees of Dutch dwellings. Such an ‘insulation gap’ for instance appeared 

between dwellings built prior to 1981 and dwellings built hereafter. While initial differences 

could be explained by the first municipal insulation requirements for new-build dwellings during 

the second half of the 1970’s (Cornelisse et al., 2021), an insulation gap has remained over 

the years after. Similarly, apartments and social rental dwellings are found to have lower 

average insulation degrees than other types of dwellings and tenure. In contrast to the 

influential diffusion perspectives (e.g., Rogers, 2003), these insights show that diffusion curves 

are not solely suitable for analysing successful innovations ex-post. Since epidemic diffusion 

models are argued to be most suitable for examining innovations of which the total potential 

market is known (Tidd, 2010), which is argued to often be the case for EE measures, the 

diffusion of such innovations can also be examined ex-durante. By analysing the ongoing 

diffusion of EE measures, the diffusion process can be better understood and subsequently 

influenced. This shows that understanding how diffusion unfolds over time is still valuable and 

could also contribute to overcoming the survivorship bias present in contemporary diffusion 

models, as criticised by Geroski (2000).  

7.2 Evaluation of foregone benefits 

In the foregone benefits analysis, it was subsequently examined what natural gas (cost) 

savings could have been achieved if insulation measures had diffused to a greater extent than 

indicated in the diffusion curve analysis. It was found that households could annually save 

between 336 and 542 m3 of natural gas on average, resulting in 2.37 billion to 3.82 billion m3 

total annual natural gas savings considering seven million households. To stimulate the 

robustness of these findings, they have been evaluated with alternative estimations. A rough 

estimation by TNO showed that 5.5 billion m3 natural gas could be saved annually if all Dutch 

dwellings were insulated to energy label ‘B’ (Faaij et al., 2022). In a more extensive analysis 

conducted by TNO and the Netherlands Bureau for Economic Policy Analysis, Mot et al. 

(2023) found that 1.7 billion m3 of natural gas would be saved annually when the analysed 5.4 

million Dutch dwellings were renovated according to a defined minimum insulation standard. 

Taking into account the differences in the scope of these studies and the targeted insulation 
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levels, the findings of the foregone benefits analysis of this study are concluded to be within 

the margins of prior estimations.  

 

The foregone benefits analysis has further shown that the average and total natural gas 

savings are substantially lower for dwellings built after 1995 than those of older dwellings. This 

finding can be explained by differences in the energetic quality of Dutch dwellings, as the first 

national insulation legislation was introduced in the beginning of the 1990’s (Cornelisse et al., 

2021). Therefore, the energetic quality of the dwellings built after 1995 is generally higher than 

that of older dwellings, as also demonstrated in the diffusion curve analysis, which would 

subsequently lower the benefit of additional insulation. Interestingly, while similar insulation 

degrees for dwellings constructed between 1981-1995 were found in the diffusion curve 

analysis, the estimated foregone benefits associated with these dwellings were substantially 

higher than those of dwellings built after 1995. This disparity can be explained by the limitation 

of using the WoON insulation degrees. These do not consider the insulation thickness nor 

materials, which is expected to differ substantially between dwellings built after 1995 and the 

dwellings built before. Similarly, while the diffusion curve analysis indicated an insulation gap 

for apartments and social rental dwellings as well, these dwellings were found to have the 

lowest average foregone benefits of all other dwelling and tenure types. These insights show 

that lower insulation degrees, as considered in the first analysis, do not necessarily translate 

into higher foregone benefits.  

 

The average natural gas savings have been ranked for each combination of construction year 

class and dwelling type. Aside from the dwellings built after 1995, this ranking showed that the 

average foregone benefits were mainly dependent on the type of dwelling. Generally, average 

foregone benefits were relatively low for apartments and increased for mid-terraced dwellings. 

Semi-detached/end-terraced dwellings and detached dwellings were found to have the 

highest average foregone benefits. This finding makes sense, as these dwelling types 

generally have a higher energy consumption due to being larger in size and having more 

surface through which heat is lost to the environment. Despite this, the highest total natural 

gas savings could have been achieved by insulating all dwelling types built between 1960-

1980. ±45% of the total potential natural gas savings could have been saved by insulating 

these dwellings, while insulating the detached dwellings with the highest average foregone 

benefits would have saved ±22%. Although average foregone benefits are lower, dwellings 

built between 1960-1980 represent a larger share of the Dutch housing stock. This finding 

indicates that the private benefits of adopting additional insulation are not perfectly aligned 

with the societal benefits and thus creates a trade-off. Prioritising the insulation of individual 

dwellings that would benefit the most from additional insulation would not lead to achieving 

the highest societal benefits, and vice versa. Lastly, private and social rental dwellings were 

found to have lower average and total natural gas than owner-occupied dwellings. This can 

be explained by rental dwellings often being apartments or mid-terraced dwellings and owner-

occupancy being the most common tenure type in the Netherlands (CBS, 2022b).  
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7.3 Adoption influences and EEG explanations 

Finally, adoption influences were analysed to further understand the diffusion of insulation in 

relation to EEG explanations. The adoption analysis showed that an insulation measure is 

substantially more likely to be adopted in dwellings built up until 1995, than in the dwellings 

built hereafter. This can be explained by the lower foregone benefits for households living in 

these dwellings, as substantiated in the previous subsection. Paradoxically, it was found that 

dwellings built after 1995 have a higher likelihood of having more different kinds of insulation 

measures adopted. This remarkable disparity remains unexplained in this study and requires 

further research. Another interesting finding is that the second control variable, i.e. 

households’ likelihood to move, turns out to be insignificant which contradicts previous studies. 

Explanations for this might be that Dutch households are emphasising the short-term benefits 

of additional insulation or that households planning to move, specifically homeowners, are 

retrofitting their dwellings to increase their value.  

 

The adoption analysis further substantiated that households living in social and private rental 

housing are considerably less likely than homeowners to adopt any insulation measure. On a 

similar note, households part of HOAs seem to have lower odds of adopting a larger number 

of insulation measures. These findings appear to indicate a principal-agent problem. Here, 

tenants and households part of HOAs can benefit from adopting additional insulation 

measures, yet cannot make these adoption decisions (fully) by themselves. As the incentives 

of the deciding party, i.e. landlords or HOAs, may be different from those of tenants and 

individual homeowners, this can lead to less insulation measures being adopted.  

 

In addition to testing the principal-agent problem explanation for the EEG, this study 

empirically examined other potential explanations as well. Based on the households’ 

disposable income and financial capital, the capital constraints explanation has been tested. 

In the analysis, neither income or capital were identified to significantly affect insulation 

adoption. This is an interesting finding, as it is not in accordance with adoption literature and 

the debate on EE measures widening socioeconomic gaps. Although no significant relations 

were found, it should be noted that this study does not rule out the possibility of capital 

constraints being present. It is for instance unclear whether households’ insulation adoption 

was not restrained by capital constraints at all, or whether it was already stimulated by 

supportive financial policies. Moreover, while capital constraints are not indicated in the WoON 

2012 and WoON 2018 datasets, they could have been present during more recent years, 

which were characterised by higher inflation and energy prices. For providing these 

contemporary insights, it would therefore be interesting to reconduct this research with data 

from WoON 2024.  

 

By assessing the effect of household members’ age and education level on insulation 

adoption, the presence of several other EEG explanations, e.g. imperfect information and 

bounded rationality, was indirectly explored. For the level of education, this study found no 

significant effect. While some age groups did demonstrate a significant effect on adoption, 

these results were rather inconsistent between and within the models. Age is therefore not 

regarded as a significant predictor. Yet, similar to the capital constraints explanation, this study 

does not disprove the related EEG explanations. As this research made use of secondary 

data, it was not possible to include variables that could test these explanations more 

thoroughly. While the relevancy of including age and education level has been substantiated 
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by adoption literature and empirical findings, the validity of this study could be improved by 

including more specific variables.  

 

Due to the research design of this study, numerous relevant EEG explanations and adoption 

influences could not be tested for. Social influences are an example of this. In sociological 

diffusion perspectives, social networks and influences are regarded as the foundation for the 

spread of new information (Rogers, 2003). Peer effects are a specific type of social influence 

and refer to the situation where the behaviour of an individual is affected by other members 

within a peer group (Wolske et al., 2020). Since learning spillovers and peer effects go hand 

in hand, and EEG literature suggesting that the waiting for such spillovers to occur can slow 

down adoption rates, it would be interesting to examine the influence of peer effects on 

insulation adoption. As of yet, peer effects have received little attention in relation to the 

adoption of EE measures and thus provide an interesting area for further research (Wolske et 

al., 2020). Similarly, this study was not able to thoroughly test the various behavioural or 

attitudinal factors and EEG explanations. Yet, these are particularly worth investigating, as it 

is argued that such factors are able to better predict households' energy-related adoption 

decisions than mere demographic variables (Kastner & Stern, 2015). To support future 

research on the adoption of EE measures, it would therefore be fruitful for the succeeding 

WoON surveys, and surveys alike, to measure attitudinal and social household factors more 

extensively.  

 

Finally, due to this study’s research design, the influences of macroeconomic factors on 

insulation adoption, e.g. energy prices and insulation costs, could not be tested for. Changes 

in these factors are however relevant to consider, as these would directly affect the costs and 

benefits that individuals, one way or another, evaluate in their EE decision-making processes. 

Such factors can for instance be included in further NPV models or in regression analyses 

explaining insulation adoption rates over time. However, since decision-making processes 

remain not fully understood, the presence of behavioural and modelling EEG failures should 

still be considered when conducting such analyses.   
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8. Conclusion and recommendations 

Insulation is an energy-efficiency measure that significantly reduces households’ gas and 

energy consumption, resulting in benefits for both society and individual households. Despite 

these benefits for households, a large proportion of Dutch dwellings is still, relatively, poorly 

insulated. The diffusion of insulation has not been thoroughly examined and there is little 

empirical evidence on the size and explanations for the discrepancy between predicted and 

observed adoption rates of insulation measures and other energy-efficiency technologies, i.e. 

the Energy Efficiency Gap. This study therefore quantitatively examined the diffusion of 

insulation measures among Dutch households through three analyses. 

 

In the first analysis, diffusion curves were derived to provide more context on the diffusion of 

insulation measures and the decarbonisation efforts of households in the Netherlands. Based 

on systematically conducted nation-wide surveys on the energetic quality of the Dutch housing 

stock (KWR and WoON), the development of the roof, floor, window and facade insulation 

degree of households was examined. This analysis showed that from 1989 to 2018, the 

average degree of insulation has been increasing for these insulation measures. However, it 

was also found that the diffusion rate of these measures has been decreasing prematurely, 

suggesting that a significant part of Dutch households persistently renounces insulation and 

hence, does not enjoy subsequent benefits. By subdividing the insulation degrees into 

construction year classes, dwelling types and tenure types, this study further investigated the 

insulation diffusion patterns. This indicated the presence of insulation gaps; substantial 

differences in the insulation degrees of Dutch dwellings. Such an insulation gap for instance 

appeared between dwellings built prior to 1981 and dwellings built hereafter. Similarly, the 

average insulation degrees have been lower for households living in apartments and in social 

housing, compared to other dwelling and tenure types. These insights furthermore show that 

diffusion curves are not solely suitable for analysing successful innovations ex-post, but can 

contribute to a better understanding of ongoing diffusion processes. 

 

In the second analysis, building on the diffusion curve analysis and Menkveld et al. (2020), it 

was subsequently examined what foregone benefits could have been achieved if insulation 

measures had diffused to a greater extent. Annually, households could have annually saved 

336 to 542 m3 of natural gas on average, and 2.37 billion to 3.82 billion m3 in total, which is in 

line with alternative estimations. These foregone benefits have also been subdivided into 

construction year classes, dwelling types and tenure types. It was found that average and total 

natural gas savings are substantially lower for dwellings built after 1995 than of older 

dwellings, which can be explained by a, legislated, higher energetic quality for dwellings built 

since the 1990’s. This showed that lower insulation degrees do not necessarily translate into 

higher foregone benefits, as dwellings built between 1981-1995 had relatively high insulation 

degrees and high foregone benefits. Average foregone benefits were found to be mainly 

dependent on the type of dwelling. Generally, average foregone benefits were relatively low 

for apartments and increased for mid-terraced dwellings. Semi-detached/end-terraced 

dwellings and detached dwellings were found to have the highest average foregone benefits. 

Despite this, the highest total natural gas savings could have been achieved by insulating all 

dwelling types built between 1960-1980, as they represent a larger share of the Dutch housing 

stock. This finding indicates that the private benefits of adopting additional insulation are not 

perfectly aligned with the societal benefits and thus creates a trade-off. Lastly, private and 



63 
 

social rental dwellings were found to have lower average and total natural gas savings than 

owner-occupied dwellings. This can be explained by rental dwellings often being apartments 

or mid-terraced dwellings and owner-occupancy being the most common tenure type in the 

Netherlands.  

 

In the third analysis, based on the WoON 2012 and WoON 2018, adoption influences were 

analysed at the level of households through zero-inflated negative binomial regressions. This 

analysis showed that households living in dwellings built after 1995 are substantially less likely 

to adopt an insulation measure at all, which can be explained by the identified lower foregone 

benefits for households living in these dwellings. Paradoxically, it was found that the same 

households living in the dwellings built after 1995 have a higher likelihood of having more 

different kinds of insulation measures adopted. This remarkable disparity remains unexplained 

in this study and requires further research. The adoption analysis did further substantiate that 

households living in rental housing are considerably less likely than homeowners to adopt any 

insulation measure. Moreover, households part of homeowner associations were found to be 

less likely to adopt a larger number of insulation measures. These findings appear to indicate 

a principal-agent problem, which could serve as an explanation for the EEG. Other variables 

that were included in the adoption influences analysis - household members’ income, capital, 

age, education level and likelihood to move - were not found to significantly affect the adoption 

of insulation. This suggests that socio-demographic factors appear to play a less significant 

role in the uptake of insulation measures than housing factors seem to do. Related to energy 

poverty, it thus appeared that households living in such poverty have financially not been more 

constrained in the adoption of insulation measures than other households. Nevertheless, since 

recent years were characterised by higher inflation and energy prices, affecting energy 

poverty, further research is needed to examine the relationship between energy poverty and 

insulation adoption. 

 

The results of the adoption influences analysis have been shown to be quite robust for different 

model specifications. However, it should be noted that some household factors related to EEG 

explanations could not be included in this study, in particular, the attitude, perceptions and 

social network ties of households. It is recommendable to include such variables in future 

(WoON) surveys, so the adoption of insulation measures as well as other energy-efficiency 

measures can be analysed in fuller detail. By analysing this, it can be examined whether 

housing factors and principal-agent problems still appear to hinder the adoption of insulation 

measures, or whether other factors significantly influence their adoption as well. Similarly, the 

influences of macroeconomic factors on insulation adoption, e.g. energy prices and insulation 

costs, could not be tested for. Such factors can be included in further NPV models or in 

regression analyses explaining insulation adoption rates over time. It should here be noted 

that, since decision-making processes remain not fully understood, the presence of 

behavioural and modelling limitations need to be considered when conducting such analyses.  

 

Finally, several policy recommendations can be drawn based on the results of this study. By 

deriving diffusion curves, this study found that insulation diffusion rates have been declining 

rather prematurely. Policy makers are therefore recommended to use these insights for the 

evaluation of past and contemporary policies, to assess how the diffusion of insulation can be 

accelerated instead. Since households part of rental housing or homeowner associations 

appeared to be less likely to adopt additional insulation measures, it should particularly be 

investigated how policy measures can encourage landlords and homeowners associations to 
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adopt additional insulation measures. Similarly, differing private and societal benefits of 

insulation can also lead to split incentives and should therefore be taken into account when 

stimulating insulation adoption among Dutch households and the transition towards a 

decarbonised residential sector. 
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Appendices 

Appendix A - Secondary survey data 

Table A.1 provides an overview of the KWR and WoON surveys that were used in this study. 

When variables or data on the survey respondents were missing, these respondents were 

excluded from the respective analysis. Despite having contacted the Dutch Ministry of the 

Interior and Kingdom Relations, the first KWR survey (1983) could unfortunately not be 

accessed for Analysis 1.  

 

Table A.1 

Overview of the surveys used in this study 

 

Survey No. of respondents Type of analysis No. of respondents used 

KWR 1989 26,631 1. Diffusion curves 26,631 

KWR 1995 15,022 1. Diffusion curves 15,022 

KWR 2000 15,002 1. Diffusion curves 15,002 

WoON 2006 energy module 4,724 1. Diffusion curves 4,724 

WoON 2012 market module 69,339 1. Diffusion curves 
3. Adoption influences 

4,790 
4,749 / 2,791 

WoON 2012 energy module 4,792 1. Diffusion curves 
3. Adoption influences 

4,790 
4,749 / 2,791 

WoON 2018 market module 67,523 1. Diffusion curves  
3. Adoption influences 

4,506 
2,841 

WoON 2018 energy module 4,506 1. Diffusion curves  
2. Foregone benefits 

3. Adoption influences 

4,506 
4,273 
2,841 
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Appendix B - Operationalisation diffusion curve analysis 

 

1. Insulation degree 

In the KWR and WoON surveys from 1995 and onwards, the insulation degree of building 

surfaces (roof, floor, windows, facade) have been expressed on a scale from 0 to 100%,  

representing the percentage of the respective building surface that has been insulated. This 

scale has been retained in Analysis 1. An overview of the survey-specific insulation degree 

variables can be found in Table B-1. 

 

Insulation degrees KWR 1989 

In KWR 1989, the insulation degree was measured on an ordinal level (not insulated; less than 

half insulated; more than half insulated; fully insulated) for roofs, floors and facades, while the 

insulation degree for windows was not captured within a single variable. To still include the 

year 1989 in the diffusion curve analysis, three (sensitivity) computations have been 

performed, in which roof, floor and facade insulation degrees have been derived on a scale 

from 0 to 100% for dwellings from the KWR 1989 survey. Table B-2 provides an overview of 

the three methods applied to re-operationalise the ordinal insulation degrees of KWR 1989.  

 

For the first method, the ordinal values ‘less than half insulated’ and ‘more than half insulated’ 

were replaced by 25% and 75%, respectively. In the second method, these ordinal values 

were respectively replaced by 33.3% and 66.7%. For the third method, these ordinal values 

have been substituted by the average insulation degrees of dwellings in the same insulation 

and construction year class from the KWR 1995 survey. Concretely, for each insulation type 

(roof, floor and facade) and construction year class (≤1930; 1931-1959; 1960-1980; 1981-

1995), the weighted average insulation degree has been computed for two dwelling cohorts 

of KWR 1995; dwellings with insulation degrees from 1% to 49% and those with insulation 

degrees from 50% to 99%. These weighted averages can subsequently be substituted with 

the respective ordinal insulation degree of KWR 1989 dwellings.  

 

When using the third method, it should be noted that dwellings’ average insulation degrees 

have likely been higher in 1995 than in 1989. Nevertheless, the third method was still deemed 

as more robust than simply substituting the ordinal values with fixed percentages, without 

considering differences in construction years, and thus the energetic state of the dwellings. It 

has therefore been decided to apply the third method.  

 

Missing insulation degrees 

It should also be noted that a substantial share of households within the KWR and WoON 

surveys did not have an insulation degree assigned, particularly for roofs and floors. As it was 

unclear whether this data was simply missing or whether assigning an insulation degree was 

not possible (e.g., for apartments which have no roof or floor to be insulated), average 

insulation degrees have been computed through four methods.  

 

For Method 1 and Method 4, missing insulation degrees were respectively substituted with 0% 

and 100%. This way, a lower limit and upper limit of average insulation degrees was estimated. 

For Method 2, missing insulation degrees within each survey were substituted with the 

weighted average insulation degree calculated for the other dwellings of the same construction 

year class. After substitution, weighted averages were recalculated accordingly. Lastly, in 
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Method 3, dwellings with missing insulation degrees were excluded from the analysis. An 

overview of the average insulation degrees computed through the four methods can be found 

in Table B-3.  

 

The average roof and floor insulation degrees are found to be a few percentage points lower 

when estimated through Method 2 than when computed via Method 3. Since these differences 

are minimal and no dwellings are excluded using Method 2, the average insulation degrees 

computed through this method have been regarded as leading in this study. This way, results 

could be generalised to the entire Dutch housing stock.  

 

2. Weighting factor 

In the KWR and WoON survey, weighting factors were assigned to the participating 

respondents. Each weighting factor indicated the number of similar households/dwellings 

present in the Netherlands. The sum of the weighting factors thus approximated the total 

number of households and dwellings in the Netherlands. As a result, the findings of Analysis 

1 are highly generalisable. For an overview of the survey-specific weighting factor variables, 

see Table B-1. 

 

3. Construction year class 

Five construction year classes have been used to examine the diffusion of insulation measures 

among Dutch dwellings over time: ≤1930; 1931-1959; 1960-1980; 1981-1995; >1995. These 

construction year classes are in accordance with the operationalisation used in prior WoON 

studies and analyses (e.g., WoON 2006;  Rovers & Tigchelaar, 2022). An overview of the 

survey-specific construction year variables can be found in Table B-1. 

  

4. Dwelling type 

In the diffusion curve analysis, four types of dwellings have been distinguished as well. These 

are: detached dwellings, semi-detached / end-terraced dwellings, mid-terraced dwellings and 

apartments. As the operationalisation of dwelling types differed among the KWR and WoON 

surveys, these variables have been re-operationalised (see Table B-4.  

 

5. Tenure type 

Lastly, the three common Dutch tenure types have been used in the diffusion curve analysis: 

owner-occupied housing, private rental housing and social housing. As the operationalisation 

of tenure types differed among the KWR and WoON surveys, these variables have been re-

operationalised (see Table B-5).  
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Table B-1 

Analysis 1 variables with the same operationalisation as KWR and WoON 

 

Diffusion curve analysis variables KWR 1989 KWR 1995 WoON 2000 WoON 2006 WoON 2012 WoON 2018 

Insulation degree roof isodak isobdkx isobdkx isobdkx isodak* isobdkx 

Insulation degree floor isobg isobbgx isobbgx isobbgx isovloe* isozvx 

Insulation degree windows n/a isoglx isoglx isoglx isoglas* isoglx 

Insulation degree facade isogev ibggplx ibggplx isobggx isogev* isobggx 

Construction year bjaar bjaarw bjaarx bouwjaar BOUWJAAR bouwjaar 

Weighting factor household weegfac wg95n_2x weeg00_3 weeg06tv weegfactor* ew_huis 

Note. * Variable derived and corrected by the former Energy Research Centre of the Netherlands (now part of TNO).  

 

 

Table B-2 

Re-operationalisation methods for the KWR 1989 insulation degrees 

 

Ordinal insulation degree  
operationalisation KWR 1989 

Method 1 Method 2 Method 3 

1. Not insulated 0% 0% 0% 

2. Less than half insulated 25% 33.3% Construction year average 

3. More than half insulated  75% 66.7% Construction year average 

4. Fully insulated 100% 100% 100% 
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Table B-3 

Methods for computing average insulation degrees with missing values 

 

Average insulation degrees Method 1: 
Missing = 0% 

Method 2: 
Missing =  

constr. year average 

Method 3: 
Missing = excluded 

Method 4: 
Missing = 100% 

 
 
   Roof 
     

    1989 
    1995 
    2000 
    2006 
    2012 
    2018 

40.4 
41.2 
51.2 
62.2 
63.6 
67.9 

49.1 
49.3 
61.1 
73.6 
76.9 
82.0 

51.9 
51.3 
63.5 
76.4 
80.2 
85.6 

62.5 
60.9 
70.6 
80.8 
84.3 
88.6 

 
 
   Floor 
     

    1989 
    1995 
    2000 
    2006 
    2012 
    2018 

17.0 
19.6 
27.8 
31.7 
43.7 
49.0 

21.2 
22.6 
33.5 
38.6 
53.6 
60.2 

23.0 
23.8 
34.7 
43.4 
55.8 
62.7 

42.9 
37.3 
47.7 
58.7 
65.4 
70.9 

 
 
   Window 
     

    1989 
    1995 
    2000 
    2006 
    2012 
    2018 

n/a 
56.0 
66.2 
76.8 
85.6 
85.2 

n/a 
56.2 
66.3 
76.7 
85.7 
85.3 

n/a 
56.2 
66.3 
76.7 
85.7 
85.3 

n/a 
56.3 
66.3 
76.7 
85.7 
85.3 

 
 
   Facade 
     

    1989 
    1995 
    2000 
    2006 
    2012 
    2018 

43.1 
42.4 
50.2 
55.4 
70.6 
72.9 

43.6 
42.4 
50.2 
55.4 
70.6 
72.9 

43.6 
42.4 
50.2 
55.4 
70.6 
72.9 

44.2 
42.5 
50.2 
55.4 
70.6 
72.9 
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Table B-4 

Re-operationalisation of the dwelling type variable 

 

Dwelling type 
variable 

KWR 1989 KWR 1995 WoON 2000 WoON 2006 WoON 2012 WoON 2018 

1. Detached esit =  
1. Vrijstaand 

typwon = 
1. Vrijstaand 

typwon = 
1. Vrijstaand 

vorm_eg = 
1. Vrijstaand 

vorm_eg5 =  
1. Vrijstaande 
woning 

vorm_eg5 =  
1. Vrijstaande woning 

2. Semi-detached 
/ end-terraced  

esit =  
2. Twee onder een kap; 
3. Hoek-/eindwoning 

typwon = 
2. Hoek / twee 

typwon = 
2. Hoe/twee 

vorm_eg = 
2. Twee onder een kap; 
3. Hoekwoning 

vorm_eg5 =  
2. 2 onder 1 kap;  
4. Rijwoning hoek; 
5. Rijwoning eind 

vorm_eg5 =  
2. 2 onder 1 kap; 
3. Rijwoning hoek 

3. Mid-terraced  esit =  
4. Tussenwoning 

typwon = 
3. Tussen 

typwon = 
3. Tussen 

vorm_eg = 
4; Tussenwoning 

vorm_eg5 =  
3. Rijwoning tussen 

vorm_eg5 =  
4. Rijwoning tussen 

4. Apartment btwem = 
2. Meergezinswoning 

typwon = 
4. Meergezins 

typwon = 
4. Meergez 

vorm = 
2. Meergezinswoning 

vormwo =  
2. Meergezins 

vormwo = 
2. Meergezins 
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Table B-5 

Re-operationalisation of the tenure type variable 

 

Tenure type 
variable 

KWR 1989 KWR 1995 WoON 2000 WoON 2006 WoON 2012 WoON 2018 

1. Owner-occupied bhv = 
3. Eigen woningbezit; 
4. Aangekocht bezit 

bhvcw1 = 
1. Koop 

bhvcw1 = 
1. Koop 

huko3 = 
1. Koopwoning 

HUKO3WO = 
1. Koop 

eighuura = 
1. Eigenaar 

2. Social housing bhv = 
1. Sociale huur 

bhvcw1 = 
2. Soc huur 

bhvcw1 = 
2. Soc. huur 

huko3 = 
2. Sociale huur 

HUKO3WO = 
2. Sociale huur 

wieverh = 
1. Woningcorporatie 
 

3. Private rental bhv = 
2. Particuliere huur 

bhvcw1 = 
3. Part huur 

bhvcw1 = 
3. Part. huur 

huko3 = 
3. Particuliere huur 

HUKO3WO = 
3. Particuliere huur 

wieverh = 
2. Gemeente, provincie, waterschap, 
het Rijk; 
3. Pensioenfonds, verzekerings- 
maatschappij, belegger; 
4. Particulier persoon; 
5. Familie; 
6. Zorginstelling 
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Appendix C - Operationalisation adoption influences analysis 

 

For the variables ‘construction year class’ and ‘tenure type’, the same (re-)operationalisation 

used for Analysis 1, as elaborated in Appendix B, has been applied in the analysis on adoption 

influences. The (re-)operationalisation of the additional variables included in Analysis 3 are 

elaborated on below.  

 

Number of insulation measures adopted 

The dependent variable, number of insulation measures adopted, has been derived from the 

WoON 2012 and WoON 2018 data. As the WoON surveys distinguished between multiple 

subtypes of insulation measures that could have been adopted during the preceding five 

years, these variables have first been re-operationalised into the four insulation measures 

emphasised in Analysis 1 (see Table C-1). Subsequently, a new count variable has been 

derived, indicating how many of the four distinct insulation measures have been adopted 

during the preceding five years. 

 

Disposable household income & household capital 

Disposable household income and household capital have both been included on a ratio scale 

in WoON 2012 and WoON 2018. In Analysis 3, the same operationalisation has been applied 

for these variables. For an overview of the survey-specific disposable household income and 

household capital variables, see Table C-2. 

 

Education level  

The level of education of the survey respondents has been expressed in different ordinal 

scales in WoON 2012 and WoON 2018. For Analysis 3, the same operationalisation as in 

WoON 2018 was applied. The concerning education variables of WoON 2012 have been re-

operationalised, according to the Dutch Standard Education Index on which the education 

variables of WoON 2018 were already based (CBS, 2021). Table C-3 provides an overview of 

the re-operationalisation applied for Analysis 3. 

 

Age 

In WoON 2012 and WoON 2018, the age of the survey respondents has been divided into 

seven categories: 17-24; 25-34; 35-44; 45-54; 55-64; 65-74; ≥75. In Analysis 3, the same 

operationalisation was applied for this variable. For an overview of the survey-specific age 

variables, see Table C-2. 

 

Homeowner association 

Whether a household was part of a HOA was captured within a binary variable in WoON 2012 

and WoON 2018. In Analysis 3, the same operationalisation was applied for this variable. For 

an overview of the survey-specific HOA variables, see Table C-2. 

 

Likely to move 

In WoON 2012 and WoON 2018, households’ likelihood of moving was captured within an 

ordinal variable. For Analysis 3, these variables have been re-operationalised into a more 

suitable binary variable (see Table C-4). 



81 
 

Table C-1 

Re-operationalisation of the adopted insulation measures variables 

 

Insulation measures adopted WoON 2012 WoON 2018 

1. Roof insulation measures = 1, IF 
    (otherwise = 0) 

BESMAA05 (binnenisolatie dak) = 1. Ja; 
BESMAA06 (buitenisolatie dak) = 1. Ja 

typeisolat* =  
3. Binnenisolatie dak; 
4. Buitenisolatie dak 

2. Floor insulation measures = 1, IF 
    (otherwise = 0) 

BESMAA07 (isolatie zoldervloer) = 1. Ja; 
BESMAA8A (isolatie begane grond vloer) = 1. Ja; 
BESMAA8B (isolatie andere vloer(en)) = 1. Ja 

typeisolat* =  
5. Isolatie zoldervloer; 
6. Isolatie begane grond vloer; 
7. Isolatie andere vloer(en) 

3. Window insulation measures = 1, IF 
    (otherwise = 0) 

BESMAA01 (Dubbelglas HR++) = 1. Ja; 
BESMAA02 (Dubbelglas geen HR++) = 1. Ja; 
BESMAA27 (Dubbelglas type onbekend) = 1. Ja 

enerzmaat** = 
1. Dubbelglas 
 

4. Facade insulation measures = 1, IF 
    (otherwise = 0) 

BESMAA04 (gevelisolatie) = 1. Ja typeisolat* =  
1. Spouwermuurisolatie; 
2. Gevelisolatie 

Note. * Value ranging from 1 to 9 (i.e. typeisolat1, typeisolat2, …). ** Value ranging from 1 to 7 (i.e. enerzmaat1, enerzmaat2, …). 

 

Table C-2 

Analysis 3 variables with the same operationalisation as WoON 

 

Adoption influences analysis variables WoON 2012 WoON 2018 

Disposable household income bestinkh_r bestinkh_r 

Household capital vermhh_r vermogh_r 

Age i_lfthkw7_r i_lfthkw7_r 

Homeowner association ActVVE vveactief 
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Table C-3 

Re-operationalisation of education level 

 

Education level household member WoON 2012 WoON 2018 

1. Lower education vltoplop =  
1. Lager onderwijs;  
2. LBO; 
3. MAVO, MULO, VMBO 

vltoplop3 =  
1. Laag 

2. Intermediate education vltoplop =  
4. HAVO, VWO, MBO 

vltoplop3 =  
2. Middelbaar 

3. Higher education vltoplop =  
5. HBO, Universiteit 

vltoplop3 =  
3. Hoog 

 

 

 

Table C-4 

Re-operationalisation of households’ likelihood of moving  

 

Likely to move WoON 2012 WoON 2018 

0. No (unlikely to move) verh =  
4. Niet verhuisgeneigd 

verh =  
4. Niet verhuisgeneigd 

1. Yes (likely to move) verh =   
1. Verhuisgeneigd; 
2. Huisv gevonden; 
3. Gedwongen verhuizing 

verh =   
1. Verhuisgeneigd; 
2. Huisv gevonden; 
3. Gedwongen 
verhuizing 
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Appendix D - Results foregone benefits analysis 

 

Table D-1 

Foregone benefits without level 2 insulation measures 

 

 Average natural 

gas savings 

(m3/year) 

Average natural 

gas cost savings 

(€/year) 

Total natural 

gas savings 

(m3/year) 

Total natural gas 

cost savings 

(€/year) 

No. of households 

included from WoON 

2018 energy module 

Represented 

no. of Dutch 

households 

≤1930 318 216.89 312,963,140 213,440,861.35 588 984,114 

Semi-detached/end-terraced 363 247.56 69,617,830 47,479,360.14 125 191,788 

    Owner-occupied 340 231.59 56,303,546 38,399,018.17 107 165,809 

    Private rental 562 383.10 5,497,323 3,749,174.18 7 9,786 

    Social housing 483 329.23 7,816,962 5,331,167.79 11 16,193 

Apartment 221 150.65 78,342,767 53,429,766.79 203 354,663 

    Owner-occupied 255 173.91 27,268,455 18,597,086.62 90 106,937 

    Private rental 233 158.65 38,411,133 26,196,392.57 71 165,116 

    Social housing 153 104.54 12,663,178 8,636,287.60 42 82,610 
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 Average natural 

gas savings 

(m3/year) 

Average natural 

gas cost savings 

(€/year) 

Total natural 

gas savings 

(m3/year) 

Total natural gas 

cost savings 

(€/year) 

No. of households 

included from WoON 

2018 energy module 

Represented 

no. of Dutch 

households 

Mid-terraced 297 202.36 72,498,907 49,444,254.69 141 244,343 

    Owner-occupied 305 207.76 50,633,870 34,532,299.06 98 166,214 

    Private rental 377 256.98 13,858,271 9,451,340.74 12 36,779 

    Social housing 194 132.06 8,006,767 5,460,614.89 31 41,351 

Detached 479 326.34 92,503,636 63,087,479.73 119 193,319 

    Owner-occupied 485 330.49 79,872,057 54,472,742.60 106 164,826 

    Private rental 451 307.84 12,534,703 8,548,667.26 12 27,770 

    Social housing 134 91.39 96,877 66,069.86 1 723 

1931-1959 421 286.88 452,055,789 308,302,048.00 599 1,074,676 

Semi-detached/end-terraced 517 352.89 135,091,645 92,132,501.59 159 261,084 

    Owner-occupied 516 351.72 94,921,115 64,736,200.67 113 184,055 
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 Average natural 

gas savings 

(m3/year) 

Average natural 

gas cost savings 

(€/year) 

Total natural 

gas savings 

(m3/year) 

Total natural gas 

cost savings 

(€/year) 

No. of households 

included from WoON 

2018 energy module 

Represented 

no. of Dutch 

households 

    Private rental 571 389.42 5,047,045 3,442,084.39 4 8,839 

    Social housing 515 351.29 35,123,485 23,954,216.53 42 68,189 

Apartment 336 229.49 115,725,395 78,924,719.41 188 343,914 

    Owner-occupied 278 189.29 28,661,944 19,547,445.94 77 103,267 

    Private rental 398 271.58 41,330,192 28,187,190.91 45 103,791 

    Social housing 334 227.90 45,733,259 31,190,082.56 66 136,856 

Mid-terraced 364 248.20 110,086,251 75,078,823.07 164 302,492 

    Owner-occupied 362 247.03 64,975,020 44,312,963.87 100 179,383 

    Private rental 454 309.42 6,268,564 4,275,160.45 5 13,817 

    Social housing 355 242.38 38,842,667 26,490,698.74 59 109,292 

Detached 545 371.83 91,152,498 62,166,003.94 88 167,187 

Owner-occupied 591 403.23 84,805,222 57,837,161.70 85 143,433 
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 Average natural 

gas savings 

(m3/year) 

Average natural 

gas cost savings 

(€/year) 

Total natural 

gas savings 

(m3/year) 

Total natural gas 

cost savings 

(€/year) 

No. of households 

included from WoON 

2018 energy module 

Represented 

no. of Dutch 

households 

Private rental 267 182.23 6,347,276 4,328,842.24 3 23,754 

1960-1980 466 317.91 1,057,036,208 720,898,694.11 1,386 2,267,653 

Semi-detached/end-terraced 519 354.27 337,565,877 230,219,928.17 407 649,851 

    Owner-occupied 546 372.27 240,923,659 164,309,935.64 295 441,371 

    Private rental 677 461.70 20,785,449 14,175,676.27 15 30,703 

    Social housing 427 291.01 75,856,769 51,734,316.25 97 177,777 

Apartment 308 209.83 191,387,270 130,526,118.31 355 622,059 

    Owner-occupied 339 231.19 46,812,230 31,925,940.91 79 138,092 

    Private rental 348 237.29 50,292,095 34,299,208.93 72 144,543 

    Social housing 278 189.44 94,282,945 64,300,968.47 204 339,424 

Mid-terraced 439 299.64 317,613,501 216,612,407.95 434 722,914 

    Owner-occupied 442 301.49 203,608,739 138,861,159.91 287 460,581 
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 Average natural 

gas savings 

(m3/year) 

Average natural 

gas cost savings 

(€/year) 

Total natural 

gas savings 

(m3/year) 

Total natural gas 

cost savings 

(€/year) 

No. of households 

included from WoON 

2018 energy module 

Represented 

no. of Dutch 

households 

    Private rental 489 333.54 25,312,423 17,263,072.70 21 51,757 

    Social housing 421 287.25 88,692,339 60,488,175.34 126 210,576 

Detached 771 526.12 210,469,560 143,540,239.68 190 272,829 

    Owner-occupied 787 537.03 198,687,486 135,504,865.71 181 252,321 

    Private rental 575 392.00 11,765,798 8,024,274.00 8 20,470 

    Social housing 435 296.67 16,276 11,099.97 1 37 

1981-1995 285 194.24 415,995,286 283,708,785.26 942 1,460,634 

Semi-detached/end-terraced 345 235.06 145,022,466 98,905,321.56 275 420,766 

    Owner-occupied 369 251.83 124,530,093 84,929,523.32 228 337,253 

    Private rental 262 178.61 5,060,549 3,451,294.31 11 19,323 

    Social housing 240 163.96 15,431,824 10,524,503.93 36 64,191 

Apartment 178 121.35 83,071,644 56,654,861.07 292 466,860 
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 Average natural 

gas savings 

(m3/year) 

Average natural 

gas cost savings 

(€/year) 

Total natural 

gas savings 

(m3/year) 

Total natural gas 

cost savings 

(€/year) 

No. of households 

included from WoON 

2018 energy module 

Represented 

no. of Dutch 

households 

    Owner-occupied 197 134.44 17,999,640 12,275,754.54 86 91,311 

    Private rental 280 190.96 23,236,529 15,847,312.96 36 82,986 

    Social housing 143 97.52 41,835,474 28,531,793.57 170 292,563 

Mid-terraced 271 184.69 110,330,509 75,245,407.07 244 407,411 

    Owner-occupied 278 189.27 73,275,482 49,973,878.97 161 264,034 

    Private rental 324 220.98 17,262,493 11,773,020.18 28 53,275 

    Social housing 220 149.82 19,792,534 13,498,507.92 55 90,101 

Detached 468 319.47 77,570,668 52,903,195.57 131 165,597 

    Owner-occupied 466 317.82 75,997,451 51,830,261.61 129 163,080 

    Private rental 625 426.23 1,573,217 1,072,933.96 2 2,517 

>1995 104 70.88 131,118,504 89,422,819.80 758 1,261,625 

Semi-detached/end-terraced 122 83.29 35,063,542 23,913,335.63 160 287,114 
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 Average natural 

gas savings 

(m3/year) 

Average natural 

gas cost savings 

(€/year) 

Total natural 

gas savings 

(m3/year) 

Total natural gas 

cost savings 

(€/year) 

No. of households 

included from WoON 

2018 energy module 

Represented 

no. of Dutch 

households 

    Owner-occupied 119 81.23 29,538,276 20,145,104.13 140 248,002 

    Private rental 141 96.30 1,599,275 1,090,705.52 5 11,326 

    Social housing 141 96.36 3,925,991 2,677,525.98 15 27,786 

Apartment 73 49.71 34,788,566 23,725,801.89 308 477,308 

    Owner-occupied 101 68.60 17,794,599 12,135,916.39 123 176,903 

    Private rental 57 38.65 7,837,036 5,344,858.44 60 138,304 

    Social housing 56 38.53 9,156,931 6,245,027.05 125 162,101 

Mid-terraced 96 65.30 27,582,016 18,810,934.64 151 288,066 

    Owner-occupied 102 69.63 22,449,894 15,310,828.02 116 219,875 

    Private rental 75 51.14 1,898,820 1,294,995.46 13 25,324 

    Social housing 75 51.44 3,233,301 2,205,111.15 22 42,867 

Detached 161 109.85 33,684,381 22,972,747.64 139 209,137 
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 Average natural 

gas savings 

(m3/year) 

Average natural 

gas cost savings 

(€/year) 

Total natural 

gas savings 

(m3/year) 

Total natural gas 

cost savings 

(€/year) 

No. of households 

included from WoON 

2018 energy module 

Represented 

no. of Dutch 

households 

    Owner-occupied 162 110.28 33,684,381 22,972,747.64 138 208,319 

    Private rental 0 0.00 0 0.00 1 818 

Total 336 229.23 2,369,168,927 1,615,773,208.52 4,273 7,048,702 
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Table D-2 

Foregone benefits without level 3 insulation measures 

 

 Average natural 

gas savings 

(m3/year) 

Average natural 

gas cost savings 

(€/year) 

Total natural 

gas savings 

(m3/year) 

Total natural gas 

cost savings 

(€/year) 

No. of households 

included from WoON 

2018 energy module 

Represented 

no. of Dutch 

households 

≤1930 484 330.28 476,591,646 325,035,502.24 588 984,114 

Semi-detached/end-terraced 552 376.53 105,885,197 72,213,704.39 125 191,788 

    Owner-occupied 536 365.61 88,886,752 60,620,764.87 107 165,809 

    Private rental 703 479.24 6,876,883 4,690,034.40 7 9,786 

    Social housing 625 426.30 10,121,562 6,902,905.12 11 16,193 

Apartment 301 205.32 106,774,071 72,819,916.73 203 354,663 

    Owner-occupied 356 242.86 38,080,995 25,971,238.72 90 106,937 

    Private rental 307 209.27 50,664,556 34,553,227.34 71 165,116 

    Social housing 218 148.84 18,028,520 12,295,450.67 42 82,610 

Mid-terraced 455 310.19 111,132,839 75,792,596.41 141 244,343 
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 Average natural 

gas savings 

(m3/year) 

Average natural 

gas cost savings 

(€/year) 

Total natural 

gas savings 

(m3/year) 

Total natural gas 

cost savings 

(€/year) 

No. of households 

included from WoON 

2018 energy module 

Represented 

no. of Dutch 

households 

    Owner-occupied 470 320.86 78,197,308 53,330,563.75 98 166,214 

    Private rental 568 387.11 20,875,918 14,237,375.95 12 36,779 

    Social housing 292 198.90 12,059,614 8,224,656.71 31 41,351 

Detached 790 539.05 152,799,538 104,209,284.71 119 193,319 

    Owner-occupied 815 555.87 134,341,645 91,621,001.60 106 164,826 

    Private rental 657 447.89 18,237,390 12,437,900.21 12 27,770 

    Social housing 305 208.01 220,503 150,382.90 1 723 

1931-1959 625 425.98 671,252,736 457,794,365.92 599 1,074,676 

Semi-detached/end-terraced 774 527.87 202,077,716 137,817,002.03 159 261,084 

    Owner-occupied 778 530.50 143,169,381 97,641,517.98 113 184,055 

    Private rental 943 643.14 8,335,315 5,684,684.69 4 8,839 

    Social housing 742 505.81 50,573,020 34,490,799.36 42 68,189 
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 Average natural 

gas savings 

(m3/year) 

Average natural 

gas cost savings 

(€/year) 

Total natural 

gas savings 

(m3/year) 

Total natural gas 

cost savings 

(€/year) 

No. of households 

included from WoON 

2018 energy module 

Represented 

no. of Dutch 

households 

Apartment 442 301.22 151,896,246 103,593,239.66 188 343,914 

    Owner-occupied 361 245.93 37,238,577 25,396,709.76 77 103,267 

    Private rental 519 354.08 53,885,903 36,750,185.57 45 103,791 

    Social housing 444 302.85 60,771,766 41,446,344.33 66 136,856 

Mid-terraced 549 374.51 166,107,810 113,285,526.08 164 302,492 

    Owner-occupied 563 383.65 100,908,577 68,819,649.40 100 179,383 

    Private rental 631 430.38 8,719,138 5,946,451.99 5 13,817 

    Social housing 517 352.44 56,480,095 38,519,424.69 59 109,292 

Detached 904 616.66 151,170,965 103,098,598.14 88 167,187 

Owner-occupied 972 662.64 139,361,868 95,044,793.86 85 143,433 

Private rental 497 339.04 11,809,097 8,053,804.28 3 23,754 

1960-1980 766 522.46 1,737,195,109 1,184,767,064.53 1,386 2,267,653 
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 Average natural 

gas savings 

(m3/year) 

Average natural 

gas cost savings 

(€/year) 

Total natural 

gas savings 

(m3/year) 

Total natural gas 

cost savings 

(€/year) 

No. of households 

included from WoON 

2018 energy module 

Represented 

no. of Dutch 

households 

Semi-detached/end-terraced 866 590.36 562,531,854 383,646,724.56 407 649,851 

    Owner-occupied 912 621.79 402,403,531 274,439,207.83 295 441,371 

    Private rental 1047 713.86 32,137,431 21,917,727.75 15 30,703 

    Social housing 720 491.01 127,990,893 87,289,788.98 97 177,777 

Apartment 453 309.02 281,862,451 192,230,191.69 355 622,059 

    Owner-occupied 526 358.58 72,605,950 49,517,257.77 79 138,092 

    Private rental 492 335.34 71,072,291 48,471,302.45 72 144,543 

    Social housing 407 277.65 138,184,210 94,241,631.48 204 339,424 

Mid-terraced 734 500.83 530,877,208 362,058,255.99 434 722,914 

    Owner-occupied 739 504.11 340,447,404 232,185,129.67 287 460,581 

    Private rental 755 514.85 39,072,192 26,647,234.76 21 51,757 

    Social housing 719 490.21 151,357,612 103,225,891.57 126 210,576 
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Detached 1327 904.71 361,923,596 246,831,892.29 190 272,829 

    Owner-occupied 1341 914.64 338,392,068 230,783,390.49 181 252,321 

    Private rental 1148 782.94 23,499,912 16,026,939.79 8 20,470 

    Social housing 845 576.29 31,616 21,562.00 1 37 

1981-1995 522 356.27 763,021,940 520,380,962.87 942 1,460,634 

Semi-detached/end-terraced 637 434.39 268,000,870 182,776,593.39 275 420,766 

    Owner-occupied 679 462.98 228,945,818 156,141,047.85 228 337,253 

    Private rental 499 340.20 9,638,670 6,573,573.03 11 19,323 

    Social housing 458 312.54 29,416,382 20,061,972.52 36 64,191 

Apartment 307 209.08 143,121,462 97,608,837.35 292 466,860 

    Owner-occupied 340 232.10 31,075,247 21,193,318.38 86 91,311 
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    Private rental 413 281.50 34,252,730 23,360,361.88 36 82,986 

    Social housing 266 181.35 77,793,485 53,055,157.09 170 292,563 

Mid-terraced 515 351.19 209,793,588 143,079,226.95 244 407,411 

    Owner-occupied 529 360.61 139,610,803 95,214,567.70 161 264,034 

    Private rental 617 421.02 32,888,712 22,430,101.54 28 53,275 

    Social housing 414 282.29 37,294,073 25,434,557.71 55 90,101 

Detached 858 585.25 142,106,019 96,916,305.19 131 165,597 

    Owner-occupied 856 583.94 139,632,860 95,229,610.62 129 163,080 

    Private rental 982 670.04 2,473,159 1,686,694.57 2 2,517 

>1995 137 93.61 173,177,386 118,106,977.34 758 1,261,625 

Semi-detached/end-terraced 172 117.28 49,372,811 33,672,256.95 160 287,114 

    Owner-occupied 170 115.83 42,120,663 28,726,292.08 140 248,002 
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    Private rental 175 119.24 1,980,192 1,350,490.97 5 11,326 

    Social housing 190 129.40 5,271,956 3,595,473.90 15 27,786 

Apartment 73 49.60 34,716,418 23,676,597.21 308 477,308 

    Owner-occupied 100 68.42 17,746,990 12,103,446.96 123 176,903 

    Private rental 57 38.90 7,889,561 5,380,680.91 60 138,304 

    Social housing 56 38.20 9,079,867 6,192,469.34 125 162,101 

Mid-terraced 125 85.16 35,971,706 24,532,703.52 151 288,066 

    Owner-occupied 132 89.87 28,972,568 19,759,291.64 116 219,875 

    Private rental 108 73.74 2,738,008 1,867,321.76 13 25,324 

    Social housing 99 67.79 4,261,129 2,906,090.12 22 42,867 

Detached 254 173.21 53,116,451 36,225,419.66 139 209,137 

    Owner-occupied 255 173.66 53,046,118 36,177,452.40 138 208,319 
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    Private rental 86 58.65 70,333 47,967.26 1 818 

Total 542 369,73 3,821,238,817 2,606,084,872.90 4,273 7,048,702 

 


