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Abstract

In their recent paper, Liu et al. (2021) developed a new geometric multigrid solver that achieves
better convergence than existing multigrid methods, and is orders of magnitude faster than
conventional solvers. This was achieved by using a novel way to calculate the prolongation operator
for scalar fields. In this work, we introduce similar multigrid solvers for directional fields, where
we will use hierarchical simplification on directional fields to convergence to solutions quickly and
accurately. Our main contributions are three new structure preserving prolongation operators that
can transfer signals between the fine and the coarse multigrid levels for directional fields in discrete
exterior algebra, face-based fields, and power fields. The prolongation operators can be defined
as an interpolation from the fine to the coarse version of a collapsed 1-ring. We tested each of
these operators with three different multigrid solvers on a most harmonic field problem for twelve
different meshes with sizes ranging from 13K to 270K faces. Although the precomputation time
for our operators is long, our prolongation operators in combination with our multigrid solvers are
poised to outperform linear least squares by a significant margin when solving for larger meshes.



Chapter 1

Introduction

Directional fields are at the foundation of many problems on discrete surface meshes, such as
directional flow, tangential flow, and mesh deformation. These problems require a solver that is
both robust and structure preserving. In many cases however, these problems also need to be
solved in real-time, which demands a solver that is quick as well.
For directional field problems on structured domains, it is common to use multigrid (MG) solvers.
These solvers are accurate and are much faster than conventional least squares techniques. MG can
precompute the system matrix using only the structure of the geometry. As a result, changes in the
linear system do not require re-factorization and the same system matrix can be reused until the
end of the application. This is ideal for dynamic real-time applications such as simulations. These
solvers can also be combined with Discrete Exterior Calculus (DEC), which guarantees the solver
to be structure preserving by having a well defined notion of linear operators such as divergence
and curl. Unfortunately, MG solvers start to struggle when applied to unstructured domains such
as arbitrary surface meshes.
As a result, traditional applications that need to solve directional field problems on unstructured
surface meshes have been using direct solvers that use Cholesky decomposition for the full resolution
of the mesh. Cholesky decomposition is very robust and works for any kind of system, but it scales
poorly with the size of the mesh. Additionally, the decomposition often needs to be recalculated
from scratch when the linear system changes. This forms a major bottleneck for dynamic real-time
applications.
Recently however, a Galerkin geometric multigrid (GGMG) solver has been developed. This solver
is capable of matching multigrid-like speeds on manifold surface meshes, while reaching better
convergence than conventional solvers. This was achieved using a V-cycle technique in combination
with a novel way of calculating the prolongation operator, using only the intrinsic geometry of
the mesh. One shortcoming however, is that the prolongation operator was only defined for scalar
fields, and not for directional fields.
In this thesis, we introduce three new, structure preserving prolongation operators for directional
fields. We introduce a novel method for calculating the prolongation operator for DEC based
directional fields, and we show that this method can easily be modified to create similar directional
field prolongation operators for face-based fields and power fields. We show that these operators
allow for large linear systems to be solved on manifold triangular surface meshes, at a significantly
faster pace than conventional techniques. We also show that the accuracy of our technique is
generally adequate, and can easily be tuned to the needs of the user at the cost of solve speed. This
can be a worthwhile trade-off for many dynamic real-time applications, where solving directional
field problems has always been a major bottleneck.
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Chapter 2

Related work

Directional field problems are commonplace in geometry processing applications. Examples include
tangential flow, mesh deformation, and mesh generation. There has therefore been a lot of research
in this field in recent years. Relevant aspects of this research in tangent directional fields specifically
has been covered by de Goes et al. (2016a). A more general review of relevant research in directional
fields has been conducted by Vaxman et al. (2016).

2.1 Linear Least Squares

The standard method for solving linear problems is through the linear least squares (LLS) method.
LLS is popular because it is both stable and accurate. However, it will generally result in huge
sparse systems when applied to directional field problems. Solving such a system scales poorly with
the size of the domain (O(n2)), which is often much too slow for real-time applications. Additionally,
common physical applications such as solving the heat equation on a domain with a limited set
of boundary conditions converge needlessly slowly. This is due to the local nature of LLS, where
on each iteration a (temporary) solution on a given point in the domain only affects the points
directly surrounding it.
A popular acceleration method for LLS solvers is Cholesky decomposition [Higham (1990)]. Cholesky
decomposition can significantly reduce the size of the system matrix, speeding up the process
of solving the system through LLS. As long as the system matrix doesn’t change, the same
decomposition can be used repeatedly, resulting in massive speedups. However, the decomposition
itself is very slow (O(n3)). So when the system matrix does change, and the decomposition needs
to be recalculated often, Cholesky decomposition can be slower than regular LLS. Techniques
such as re-factorizations [Herholz and Sorkine-Hornung (2020)] and low-rank updates [Cheshmi
et al. (2020)] can be utilized to update the Cholesky decomposition, rather than reconstructing it
entirely. However, total reconstruction is the only option in many scenarios. Therefore, solving
linear problems in general real-time and dynamic applications, such as simulations, requires a
fundamentally different approach.

2.2 Multigrid

Mutligrid methods [Brandt (1977)] is another popular technique for solving directional field problems.
MG has been applied to solve optical flow fields by Enkelmann (1988) and it has been applied to
solve Maxwell’s equations by Hiptmair (1999). In a MG approach, the domain of the problem is
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CHAPTER 2. RELATED WORK iii

divided up into a number of structured grids, which range from coarse to fine. Movement between
these grids can be facilitated by prolongation operators. The system matrix can then be constructed
in an iterative manner, using only the internal geometry. Unlike Cholesky decomposition, the MG
system matrix can be reused even when the external system changes. As a result, the MG technique
is capable of solving complex systems in O(n), which makes it ideal for high resolution domains.
In some cases, MG can be used for unstructured domains as well. This was demonstrated for
3D finite element problems in solid mechanics by Adams (2002) and for 3D Euler equations on
tetrahedral meshes by Mavriplis and Jameson (1987). It is also possible to apply MG to surface
meshes, as demonstrated by Mavriplis (1995). These techniques use some form of interpolation to
move between the coarse input mesh and the fine interpolated mesh. Unfortunately, these methods
do not allow for movement from a fine input mesh to a decimated coarse mesh. This is mainly
because edges are removed, rotated, and translated whenever a surface mesh is coarsened, making
it very difficult to find appropriate prolongation operators between decimation steps.

2.3 Grid Subdivision and Prolongation

Another notable technique with a similar limitation is Subdivision Exterior Calculus (SEC) [de Goes
et al. (2016b)]. This technique was developed to refine polygonal meshes without having to
recalculate differential problems on the refined mesh. Instead, it uses subdivision techniques in
combination with Whitney basis functions [Whitney (1957)] to prolong Discrete Exterior Calculus
(DEC) [Crane et al. (2013)] fields from the coarse polygonal mesh to the fine subdivision surface.
Alternatively, Subdivision Directional Fields (SDF) [Custers and Vaxman (2020)], combines Finite
Element Methods (FEM) [Brenner and Scott (1994)] with ideas from DEC to provide a structure
preserving subdivision procedure for face-based fields on surface meshes. These techniques use the
assumption that the domain already has coarse degrees of freedom to construct the subdivision
operators. However, this is a very limiting assumption since in many scenarios, the coarse degrees
of freedom are not known.
This limitation was circumvented by the Galerkin Geometric Multigrid (GGMG) solver that was
recently introduced by Liu et al. (2021). Similar to conventional MG techniques, this solver only
requires the internal geometry to construct the system matrix, which means that the matrix can
often be reused for the entire length of the application. Additionally, this solver introduces a novel
way to calculate the prolongation operator for scalar fields, which permits the prolongation operator
to be applied to unstructured curved surface meshes. This makes the GGMG solver much more
versatile than most other MG methods. Moreover, this prolongation operator allows this solver to
achieve better convergence than existing MG solvers.



Chapter 3

Theory

3.1 Discrete Exterior Calculus

DEC provides a simple and efficient mathematical framework for mesh processing procedures [Crane
et al. (2013)]. In DEC, a surface mesh is treated as a chain complex where every k-simplex is
assigned a unique k-form, forming a dual cochain complex. Consequently, the function field defined
by these k-forms is only derived from the connections in the topology, and is therefore independent
of any coordinate system. In addition, k-forms are anti-symmetric, meaning that if a k-simplex
changes direction, the associated k-form changes sign.
In a practical sense, 0-forms are functions defined on the vertices of the mesh, 1-forms are functions
defined on the edges of the mesh, and 2-forms are functions defined on the faces of the mesh. Every
k-form has an associated k-field. As such, 0-fields are scalar fields defined on the vertices of the
mesh, 1-fields are vector fields defined on the edges of the mesh, and 2-fields are volumetric fields
defined on the faces of the mesh. DEC defines two operators that allows one to transform k-forms
to k-fields and k-fields to k-forms. These are the sharp and flat operators respectively, formally
known as the musicals isomorphisms. In a practical sense, these operators don’t do much. In a
mathematical sense however, they are similar to the transpose operator in linear algebra, when
transforming from a column vector to a row vector. It’s a formality that allows us to distinguish
between forms and fields.
DEC also allows for movement from k-forms to k + 1-forms with the differential operator dk. In a
general sense, dk integrates a given k-form over a discrete surface mesh, resulting in a k + 1-form.
In this thesis, we will only be using the d0 and d1 operators. These carry functions on vertices to
functions on edges and functions on edges to functions on faces respectively. More precisely, if each
edge gets a unique direction assigned, then d0 computes the difference between the values of the
end vertex and the start vertex, and d1 adds the values of the boundary edges on a face according
to their direction. Mathematically, d0 is a E × V matrix such that

d0 =



1 0 0 . . . −1 0 0
0 1 0 . . . 0 0 −1
−1 0 0 . . . 0 1 0

...
. . .

...
0 0 −1 . . . 1 0 0
0 0 0 . . . −1 1 0
0 0 0 . . . 1 0 −1


.
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Note that all rows add up to one, since every edge has exactly one start vertex and one end vertex.
The d1 operator is similarly a F × E matrix such that

d1 =



1 0 0 1 . . . −1 0 0 0
0 1 0 −1 . . . 0 0 0 −1
−1 0 1 0 . . . 0 1 0 0

...
. . .

...
0 0 −1 0 . . . 1 0 −1 0
0 −1 0 0 . . . 0 −1 1 0
0 0 0 0 . . . 0 0 0 −1


.

Here, all columns contain exactly two ones, since every edge is contained in exactly two faces. And
every row contains exactly three ones, since every face contains exactly three edges.
Movement from k + 1-forms to k-forms is also possible through the boundary operator ∂k, which
is equal to the transpose of the differential operator dk such that ∂k = dTk . As such, the 0-form
boundary operator takes edges to vertices and the 1-form boundary operator takes faces to edges.
For simplicity, we will simply refer to the boundary operator simply as dTk in this thesis.
These definitions for the differential and the boundary operator are desirable because they provide
the exact continuous integral. This can be proven using Stokes’ theorem, which states that the
integral over a domain is exactly equal to the signed sum on the boundary. Another notable
consequence of these definitions is that d · d = 0. This is another consequence of using Stokes’
theorem, since the boundary of the boundary is always an empty set.
A consequence of this is that DEC inherently defines a de Rham complex on the surface mesh,
which comes with many useful characteristics. Most notable among these is the notion that any
exact form is automatically a closed form as well. Here, an exact form is a differential form that
is the exterior derivative of some other differential form, and a closed form is a differential form
whose exterior derivative is zero. On the other hand, closed forms are not necessarily exact forms
as well. This depends on the topology of the mesh. For a prolongation operator to be structure
preserving, exactness and closedness must be preserved after applying it to a differential form.

3.1.1 Primal Forms, Dual Forms, and the Hodge Star

In DEC, every (primal) k-form has a uniquely defined dual k-form. The primal 0-form has a dual
0-form that is the Voronoi areas of each vertex. The primal 1-form has a dual 1-form that is the
90 deg rotated edges. And the primal 2-form has a dual 2-form that is a point in the circumcenter
of the face.
DEC allows movement between the primal and dual forms with the Hodge star operator, which is
commonly denoted as ⋆k. For 0-forms, the Hodge star is a diagonal matrix with the Voronoi areas
of the mesh. For 1-forms, it is a diagonal matrix with ratio of dual-to-primal edge lengths. And for
2-forms—which are integrated in the primal setting—the hodge star contains inverse triangle areas.
The relationship between primal 0-forms, 1-forms, and 2-forms with their respective dual forms is
illustrated in Figure 3.1.
Because of the Hodge star operator is a de facto inverse of its respective k-form, it is often convenient
to use it as a mass matrix. In other words, the ⋆0 operator is a good mass matrix for 0-forms
because it perfectly divides the total area of the mesh among the vertices of the mesh, according to
the Voronoi areas of the vertices. The ⋆1 operator is a good mass matrix for 1-forms because it
encodes a de facto normalization procedure for every edge in the mesh. And finally the ⋆2 operator
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is a good mass matrix for 2-forms because it connects every face with the inverse of its area, which
encodes another de facto normalization procedure.

3.1.2 Hodge Decomposition

Every (primal) 1-form v on a closed mesh can be uniquely decomposed into an exact part, a coexact
part, and a harmonic part:

∃f ∈ V , g ∈ T , h ∈ H, s.t. v = d0f + ⋆−1
1 dT1 ⋆2 g + h.

Here, d0f encodes the exact component, ⋆−1
1 dT1 ⋆2 g encodes the coexact component, and h encoded

the harmonic component. The exact component is what encodes the divergence of the field. This
is as one can see:

dT0 ⋆1 v = dT0 ⋆1 d0f + 0 + 0.

The operator L0 = dT0 ⋆1 d0 is the 0-form Laplacian. Equivalently,

d1v = d1 ⋆
−1
1 dT1 ⋆2 g

Where L2 = d1 ⋆
−1
1 dT1 ⋆2 is the colaplacian (or the 2-form laplacian) that connects between the

coexact component g and the curl of the field d1v.

Figure 3.1: The primal and dual chain complexes. Original image from Desbrun et al. (2008).

3.2 Whitney Forms

One limitation of DEC is that a directional field is only defined on the edges of a given surface
mesh. However, it is often necessary to have a continuous definition of the directional field over the
entirety of the surface. On a triangular mesh, this can be achieved using Whitney forms. In short,
Whitney forms are a barycentric interpolation of the three directional vectors on the triangle edges
over the triangle surface. Keep in mind that we only define a 1-form over the surface mesh, and
not a vector field. We must formally apply the flat operator to transform the 1-form into a vector
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field before the barycentric interpolation can take place.
The appeal of using Whitney forms over other interpolation methods, is that the integral of the
Whitney form over the boundary of the domain gives the original directional field back. This is
essential when moving from 1-form to interpolated directional field to another 1-form.

3.3 Face-Based Fields and Power Fields

As an alternative to DEC based directional fields, one can also express directional fields as face-based
fields and as power fields. Face-based fields [de Goes et al. (2016a)] are directional fields where
every face on a mesh is assigned a 2D vector, which is tangent to the face and parameterized in the
local basis. These vectors can be projected onto each triangle’s half edges using projection operator

Pt =

et,12
et,23
et,31

 .

This operator creates a de facto 1-form, on half edges instead of regular edges. An example of
projection operator P can be found in Figure 3.2. A halfedge-based field can be transformed
back into a face-based field using either the pseudo-inverse of the projection operator or Whitney
interpolation.
Power fields [Knöppel et al. (2013)] are essentially very similar to face-based fields. Only power
fields are expressed in a complex number c raised to a power N per face instead of a vector. The
complex number cN can be transformed into a set of vectors by interpreting all N N th roots of cN

as vector v = (Re(c), Im(c))T . Similar to face-based fields, power fields can be projected onto half
edges using projection operator

PN
t =

(et,12)
N

(et,23)
N

(et,31)
N

 .

Power field halfedge-forms can be transformed back into power fields using the pseudo-inverse of
the projection operator.

Figure 3.2: Projection from face-based field to halfedge-form. Edit of an original image from
Custers and Vaxman (2020).
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3.4 Multigrid

Classical uniform discretization procedures often produce surface meshes that are too fine in smooth
areas of the geometry. This can cause unnecessary slowdowns when solving linear problems on
such a mesh. Multigrid methods aim to solve this problem by introducing a sequence of grids with
increasing resolution. We distinguish between algebraic multigrid (AMG) and geometric multigrid
(GMG). In AMG, the grid levels are constructed independently of the geometry. In GMG however,
each course level l + 1 is constructed using the geometry of the finer level l. We shall be using
mesh decimation steps to construct our grid levels, and as such we shall be using GMG. We will
use GMG and MG interchangeably throughout this thesis.
In MG, linear problems can be solved by restricting the low frequency error on the coarser grids,
and prolonging the high frequency error back to the finer grids. This process only has to be repeated
until the remaining error is below some predetermined threshold. As a result, smooth areas of the
mesh are solved very quickly, while detailed areas of the mesh get the time they need to converge
properly.
The order in which restrictions, prolongations, Gauss-Seidel iterations, and LLS solves are performed
strongly depends on the implementation of the solver. In fact, there exist many different kinds of
multigrid solvers.

3.4.1 V-cycles

One popular multigrid solver is the V-cycle solver, which runs V-cycles until a predetermined level
of convergence is reached. Such a V-cycle functions as follows. First, for a linear problem Ax = b,
the finest grid solution x0 is guessed to be equal to zero. Then this solution x0 can be relaxed
using a single iteration of the Gauss-Seidel method, after which a residual can be calculated as
r0 = b0 − A0x0. This residual can subsequently be restricted by interpolating the system to the
finer grid using b1 = r0, x1 = 0, and A1 = P T

1 A0P1, where P1 is a prolongation operator calculated
beforehand. Once on the coarser grid, the same steps can be repeated again, until the coarsest
grid level H is reached. This coarsest grid level can be solved exactly with LLS. With a solution
for xH , a solution for xH−1 can be obtained as xH−1 = xH−1,old + P T

HxH . This solution for xH−1

can be relaxed one more time before returning the result to the finer grid. This process must be
repeated until the finest grid is reached again. An illustration of the V-cycle algorithm can be
found in Figure 3.3.
If the desired error is obtained, the process is finished. Otherwise more V-cycle can be run with
the previous result as the initial guess for the finest grid. Using this method, a discrete system of n
equations (n points on the finest grid) can be solved, to the desired accuracy, in O(n) operations.
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Figure 3.3: Basic illustration of the V-cycle algorithm. Original image from Moulton et al. (2008).

3.4.2 Nested Iterations

Another popular multigrid solver is the Nested Iterations solver. This solver is considered much
simpler than V-cycles, but in many situations this solve is enough. Unlike V-cycles, the nested
iterations solver starts at the coarsest level. Here, it solves the coarse system directly using LLS.
Next, nested iterations iteratively prolongs the coarse solution to the next level, after which it will
run a number of Gauss-Seidel iterations. The number of Gauss-Seidel iterations per level can be
either a constant, or can be dynamically decided by running Gauss-Seidel iterations until the error
stops decreasing. When the solver reaches the final level, it will run one final set of Gauss-Seidel
iterations, after which it is finished.

3.4.3 Coarse Prolongation

The coarse prolongation solver strongly resembles the nested iterations solver, but without the
Gauss-Seidel iterations. In other words, it solves the system on the coarsest level using LLS, and it
prolongs this solution to the finest level directly.

3.5 Scalar Field Prolongation Operator

The most challenging part of applying MG is finding an appropriate prolongation operator Pl for
each MG level l. For a long time this has formed a major road block for applying MG to problems
on smooth surface meshes. Recently however, Liu et al. (2021) discovered a technique for finding
such a prolongation operator for scalar fields (or 1-forms). To distinguish this prolongation operator
from the DEC directional field (or 1-form), the face-based field, and the power field operators that
we will introduce later on, we will refer to this operator as the P l

0 operator.
The P l

0 operator on a manifold surface mesh can be obtained as follows. If each level l + 1 is
obtained by collapsing a single edge on level l, then operator P l

0 that takes signals from level l to
level l + 1 must be a unit matrix for all vertices on the mesh, except in the (edge) 1-ring of the
collapsed edge. This is a result of the fact that all vertices outside of the 1-ring of the collapsed
edge remain completely unchanged. An illustration of such a 1-ring can be found in Figure 3.4.
Within this 1-ring, each l+1 vertex can be expressed in the barycentric coordinates of the l vertices.
Because the mesh may be curved, this is not necessarily trivial however. Liu et al. developed
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a joint flattening technique that works well for this application. This joint flattening technique
projects the 1-ring before and after collapse on top of one another on a 2D plane. This is done
by minimizing the joint distortion energy of both the 1-rings before and after collapse, while also
ensuring the vertices on the outer rings overlap exactly.
With the barycentric coordinates, a matrix can be defined of size VlxVl+1, where Vl is the number
of l vertices and Vl+1 is the number of l + 1 vertices. Since most rows contain exactly a single unit
and the remaining rows are expressed in barycentric coordinates, all rows sum up to exactly 1. As
a result, the volume of the mesh is preserved by the P l

0 operator.
The total prolongation operator, that takes signals from the finest to the most course level, can be
defined as P0 = P 0

0 · P 1
0 · P 2

0 · · · · · PH
0 .

Figure 3.4: 1-ring edge collapse
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Directional-Field Prolongation Operators

In this chapter, we discuss how our three prolongation operators can be constructed. Note that we
exclusively talk about the local versions of our prolongation operators. The construction of the
global versions is discussed in chapter 5.

4.1 1-ring and Overlay

After every simplification step l, a coarse and fine planar 1-ring of the collapsed edge can be
retrieved. These 1-rings can be considered small planar submeshes MC ⊂ Ml+1, and MF ⊂ Ml

respectively. Note that we will not index the simplification level from this point on for simplicity.
From the 1-rings, an overlay submesh can be created such that Ω = MF

⋃
MC . An illustration

of such an overlay mesh can be found in Figure 4.1. We will be using all three submeshes in the
construction of our prolongation operators.

Figure 4.1: Coarse to fine 1-ring overlay. Coarse edges are marked in gray. Fine (sub-)edges and
boundary edges are marked in dark blue. Original image from Liu et al. (2021).

4.2 DEC Prolongation

Our DEC 1-form prolongation operator takes coarse edges to fine edges as S1 : EC → EP . Here, we
give a more detailed discussion on our implementation.

xi
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For a segment eij of a fine edge ep which is overlaid on a coarse triangle t123, we interpolate the
vector field Vi and Vj using Whitney forms, and then integrate over eij to get:

zij =
Vi + Vj

2
· eij.

Note the directionality. There is a simple way to compute this without explicitly going through the
vector Whitney forms. We note that:

Vi =z12 (B1(i)∇B2 −B2(i)∇B1)+

z23 (B2(i)∇B3 −B3(i)∇B2)+

z31 (B3(i)∇B1 −B1(i)∇B3) .

and similarly for Vj. We further note that ∇Bk · eij = Bk(j)−Bk(i), k = 0, 1, 2 simply by Stokes’
theorem. We then get that

Vi + Vj

2
· eij =

1

2
z12 ((B1(i) +B1(j))(B2(j)−B2(i))− (B2(i) +B2(j))(B1(j)−B1(i))) + z23 . . .

= z12 (B1(i)B2(j)−B2(i)B1(j)) + z23 . . .

For all segments eij of a fine edge ep, with relative orientation determined by a sign sij to that fine
edge, we set:

zp =
∑
ij∈p

sijzij.

In essence, our implementation of the S1 prolongation operator interpolates coarse edges to fine
sub-edges, and sums fine sub-edges to fine edges. This implementation has some appealing
properties.

• If the coarse 1-form is exact, the prolonged fine 1-form is also exact.

• The curl of the prolonged fine 1-form is equal to the curl of the coarse 1-form.

• Consequently, the prolonged closed 1-forms are also closed. Thus, harmonic 1-forms will be
prolonged to a combination of harmonic 1-forms and some exact “noise” of high-frequency.

• Additionally, if the coarse 1-form is exact, every zij = fj − fi for a scalar PL function f
defined on the entirety of Ω. Consequently, when adding up all segments, it is easy to see
that zp is the differential of a function on the fine mesh where the vertex values are sampled
from the PL function in a pointwise manner. That means our S1 commutes with S0:

d0S0 = S1d0.

4.3 Face-Based Prolongation

We next show the implementation of our face-based prolongation operator Sχ, which takes coarse
face-based fields to fine face-based fields. First, we consider the projection operator P , which takes
face-based field into halfedge forms, as discussed in section 3.3. Next, consider its pseudo-inverse P †,
which does the inverse. In case

∑
ht ̸= 0 however, it basically filters out the average before finding
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the face-based field. For a given face-based vector vt, we have
∑

ht = 0 by design. Therefore, Pt is
of rank 2 (since

∑
et = 0).

After obtaining the halfedge form ht from the coarse face-based field using Pt, we transform
ht to the plane just by copying. In fact, we only use that for subdivision (we never construct an
explicit vector per-face in 2D). This means we can just do S1 in the plane, where instead of the
1-forms in a triangle we use the local halfedge form. Explicitly, we first sample the partial 1-forms
on the fine edges using the direct form-to-form sampling formula, except we use the halfedge form
in that coarse triangle. We then trivially make a fine halfedge-form from the fine 1-form by splitting
the form into two: for a fine edge e, the fine 1-form ze becomes he on the left of the edge, and −he

on the right. Next, we transfer the forms to the 3D fine mesh F by copying. For boundary edges,
we only use the internal halfedge.
Lastly, we must project the fine halfedge-form back to zero sum. For this purpose we need to
differentiate between two cases:

• The fine face is internal (there are exactly two like this in every local 1-ring). In this case, we
simply use the filtering matrix

QI = P · P † =

 2
3

−1
3

−1
3

−1
3

2
3

−1
3

−1
3

−1
3

2
3

 ,

which effectively just filters out the average of the halfedge form.

• The fine face has a boundary edge. For the sake of example, we determine it as the 3rd edge.
Then, the projection has to preserve the tangent value on that edge, and we get the matrix:

QB = P · P † =

 1
2

−1
2

−1
2

−1
2

1
2

−1
2

0 0 1


This effectively filters out the average, but only from the two internal edges of the boundary
triangle.

We call the valid (zero-sum) halfedge-form subdivision operator Sh. SX is then designed as the
composition of coarse vector to halfedge P , halfedge to halfedge refinement (generalization of S1),
and fine halfedge to zero sum. Next, Sh ·Q can be chained together for many simplification steps
until a major multigrid level is reached. When this happens, we proceed to transform the zero-sum
halfedge form back to vector field. Specifically, we have that:

SX = (PL)† · SL
h ·QL . . . S0

h ·Q0 · P 0.

That means that in general, we do not extract the actual face-based fields before reaching the final
fine mesh, and we never need them for any intermediate level 0 < l < L.

This definition of Sχ also has some useful properties:

• For exact fields, halfedge forms are equal on both sides of every edge-flap, which means the
halfedge form is essentially equal to a 1-form. As a result, there is an equivalence of Sh with
S1 for exact fields.
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• Consequently, an exact commutation between Sχ and S0 exists where:

G · S0 = SX ·G,

where G is the DEC gradient operator.

4.4 Power Field Prolongation

For our power field prolongation operator SP , which takes coarse N power fields to fine N power
fields, we simply generalize SX to work with complex numbers. In fact, SP is very similar to Sχ

with two major differences:

1. Instead of using the Whitney-form formula for getting the value on a fine sub-edge, which
might break on a power field, we simply unproject the coarse halfedges and project again.
This means within coarse triangle t, on fine sub-edge ij, our prolongation formula is:

zNij = eNij · (PN
t )†hN

t ,

where eij is the complex conjugate of the complex edge eij . For a N = 1 vector field, it merely
reproduces the more sophisticated Whitney-base formula, but for power fields.

2. Instead of adding up the sub-edge contribution zNij to the big fine edge ep, we do the
unprojection directly on the sub-edges, and we project again using the regular projection
operator. Consequently, our Q is now:

QN =

(e12)
N

(e23)
N

(e31)
N

 ·

eNij
. . .
. . .

†

Note that Q is of dimensions 3×#fineSubEdges, and transforms the set of sub-edge forms
zij into the proper h on the fine triangle.

Note that everything is still linear, the power is on the fixed edge vectors, and not our variables.
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Precomputation

Our prolongation operators are uniquely defined by the mesh they are created on. Therefore, our
prolongation operators only need to be created once per mesh. This precomputation process is built
up of several smaller algorithms chained together. Here, we will analyze these smaller algorithms
and we will give a detailed discussion on how our total precomputation process works.

5.1 Qslim

When creating our prolongation operators, we coarsen the mesh one edge collapse at the time. This
allows us to create a set of 1-ring pairs that can be used to generate our local prolongation operators
as discussed in chapter 4. When collapsing edges however, it is essential that the (re)sampling
error is kept at a minimum. This can be done by decimating the mesh using the Qslim algorithm
[Micheal Garland (1997)].
In short, the Qslim algorithm assigns a quadric matrix Qv to every vertex in the mesh. This
matrix essentially captures the shape of the surrounding faces. Next, all valid vertex pairs must be
selected. Although in principle, even unconnected vertices that are geometrically close together can
be considered a pair, we only select pairs that are directly connected through an edge.
After the pairs are created, each pair must be assigned a collapsed vertex position v̄. In the original
Qslim algorithm, the position of this vertex is calculated using the inverse of the combined quadric.
However, this resulted in a poor quality Sχ operator for us. We have therefore decided to use
midpoint positions instead, such that v̄ = (v1 + v2)/2. With the collapsed vertex positions, the
error of the collapse can be calculated as e = v̄T (Qv1 +Qv2)v̄. The list of pairs can consequently be
sorted from lowest to highest error, such that pairs with a low collapse error are collapsed first.
After a collapse has occurred, vertex v1 is moved to the position of v̄, and vertex v2 is removed
from the mesh. All references to v2 are updated to v1.
One shortcoming of the default Qslim algorithm is that it doesn’t prevent two neighbouring pairs
from being collapsed in a short time span. When this happens, the two collapsed 1-rings overlap,
which reduces the sparsity of the prolongation operators. We have made a modification that can
help prevent this. After every collapse, we iterate over every pair with v1 or v2 in it, and we add a
virtual cost costmax to it. This ensures that surrounding pairs are placed at the end of the queue,
reducing the number of overlapping 1-rings.

xv
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5.2 Overlay

After a pair is selected and the pre- and post-collapse 1-rings are created, an overlay can be
constructed that bridges the gap between the two 1-rings. This overlay is a mesh that consist
of what are essentially the building blocks of the two 1-rings. These are vertices, sub-edges, and
sub-faces. Every sub-edge is mapped to a pre-collapse edge and either a post-collapse edge or a
post-collapse face. Every sub-face is mapped to exactly one pre-collapse face and one post-collapse
face. These maps are essential for transforming values from coarse 1-ring (half)edges to fine 1-ring
(half)edges.
The algorithm we used to create the overlay converts all vertex coordinates from floating point
numbers to rationals first. This ensures there are no floating point errors. It then places all outer
vertices exactly on top of each other. From there, it finds all edge intersections. These can be used
to create all the sub-edges and sub-faces, after which the maps are constructed.

5.3 Local to Global Operators

As detailed in chapter 4, all our prolongation operators are created on the local 1-ring. However, in
order to use these operators on the full mesh, a the local prolongation operators must be transformed
into global prolongation operators. This process is relatively straight-forward. First, a map is
created that transforms the indices of all local 1-ring (half)edges to the indices of global (half)edges.
Then, a global Nl+1 ×Nl sparse matrix is created, where N is the number of (half)edges in the
mesh at level l. Using the map, the local 1-ring prolongation operator can then be placed directly
inside of the global operator. Since all other (half)edges in the mesh remain untouched, identities
should be placed on the remaining diagonal of the global operator. Keep in mind that potentially
three edges are missing in the coarse mesh, so this introduces up to three ’jumps’ in the fine edge
to coarse edge pairs. The same is true for the fine face to coarse face pairs when working with
halfedges.

5.4 The Total Process

In short, the precomputation process starts off by finding and ranking all collapsible vertex pairs
from lowest to highest error. It then iteratively collapses a single pair and saves the coarse and
fine 1-rings, along with their local-to-global index maps, in a queue. Note that these 1-rings are
projected onto 2D using the same joint flattening technique discussed in the paper by Liu et al.
(2021). Later, this queue is read in parallel. An overlay is created for every 1-ring pair, and the local
prolongation operators are created. Next, the local-to-global index maps are used to transform the
local prolongation operators into global prolongation operators. These are then stored in another
list. Lastly, all prolongation operators per multigrid level are multiplied together to create a single
Sl→l+1 operator. The set of all prolongation operators (one for each multigrid level), is then stored
on disk for later use. In our implementation, every multigrid level takes a fine mesh to a coarse
mesh that has exactly a forth of the faces of the fine mesh. We create up to four multigrid levels
total, where the coarsest level never has fewer than 1000 faces.



Chapter 6

Model Problems

In this thesis, we present one model problem to measure the performance of our prolongation
operators with. For the sake of simplicity, this model problem will be the most harmonic field
problem for DEC, face-based fields, and power fields. Because the most harmonic field problem is
essentially the same system for all three frameworks, we only describe the system in full detail for
DEC. For face-based fields and power fields, we only discuss the modifications needed to fit the
system to these frameworks.

6.1 DEC Most Harmonic Field

Given a fine mesh M0, we first produce all discrete levels L, and the consequent SL
1 operator for

prolonging between the levels. We give a subset of edges eb ⊂ E0 some prescribed values. We want
to solve the harmonic interpolation problem (with soft constraints):

h = argminλD

(
|d1h|2 +

∣∣dT0 ⋆1 h
∣∣2)+ λA|hb − eb|2.

Here, |x|2 = xTMx, where M is the appropriate mass matrix ⋆k. The energy |d1h|2 +
∣∣dT0 ⋆ h

∣∣2 is
the Dirichlet energy. As a quadratic form it can be written as:

|d1h|2 +
∣∣dT0 ⋆1 h

∣∣2 = hT (d1 ⋆2 d
T
1 + ⋆1d

T
0 ⋆−1

0 dT0 ⋆1)h = hTL1h

L1 is the 1-form Laplacian (or Hodge Laplacian). Remember ⋆2 is already inverse triangle areas,
and serves as the mass for integrated (primal) 2-forms. For the alignment part, we can write it
succinctly as:

|hb − eb|2 = |Ibh− eb|2 = hT ITb ⋆1 Ibh− hT ⋆1 I
T
b eb.

where Ib : b× E0 is a matrix that just ’chooses’ the values of b (it has 1 on the bi column in each
row, and 0 everywhere else).
On a given level L, the energy can be written as:

hL = argminλD

(∣∣d1SL
1 h

∣∣2 + ∣∣dT0 ⋆ SL
1 h

∣∣2)+ λA|(SL
1 h)b − eb|2.

This is basically the same energy, except everything would be conjugated by SL
1 , and so with

reduced degrees of freedom. Concretely, the system is now:

hL = argmin(λD(h
L)T (SL

1 )
TL1S

L
1 h

L + λA

(
(hL)T (SL

1 )
T ITb IbS

L
1 h

L − (hL)T (SL
1 )

T ITb eb
)

xvii
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This can be abstracted to the following:

h = argmin |Ah− b|2 .

Which culminates in the linear system:

ATMAh = ATMb

where

A =

 d1
(d0)

T ⋆1
Ib

 , b =

 0
0
eb

 , M = blkdiag(λD⋆2, λD⋆
−1
0 , λA⋆1).

This is the DEC most harmonic field system.

6.2 Face-Based Most Harmonic Field

It is not an entirely trivial task to generate a harmonic field for face-based fields. The common way
is to find the null space of the operator

H =

(
DV

CE

)
,

where DV is the face-based divergence operator and CE is the face-based curl operator [de Goes
et al. (2016a)]. Alternatively, and more robustly, one can take out the 2g lowest eigenvectors of
the square matrix HTMHH, with mass matrix: MH = diag(M−1

V ,M−1
E ). Here, MV is the diagonal

mixed elements vertex mass matrix

MV (v, v) =
1

3

∑
t∈N(v)

A(t),

where N(v) is all faces adjacent to v (the 1-ring), and A(t) is the area of face t. And ME is the
diagonal mixed elements edge mass matrix

ME(e, e) =
1

3
(A(t1) + A(t2)) .

To solve the harmonic interpolation problem then, we solve for:

v = argminλH(v
THTMHHv) + λA|vb − ub|2

where b are the prescribed faces, and ub are the prescribed vectors. From here, the same steps can
be taken as in the DEC case to arrive at the most harmonic system matrix. Only using mixed
elements operators instead of DEC operators. As such the face-based most harmonic field system
is:

ATMAh = ATMb

where

A =

DV

CE

Ib

 , b =

 0
0
ub

 ,M = blkdiag(λHMV , λHME, λAMF ).
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6.3 Power Field Most Harmonic Field

For a power field X, the most harmonic field problem can be constructed as

X = argmin
∑
e∈f,g

3|e|2

A(f) + A(g)

∣∣Xf (ef )
N −Xg(eg)

N
∣∣2 = W |DNX|2,

where e is the normalized edge vector, A(t) is the area of triangle t, W is the power field mass matrix,
and DN is the power field divergence operator. Then, the power field Laplacian LN

p = (DN)†WD.
The smoothest field problem then reduces to:

X = argmin λS(X
†LN

p X) + λA|Xb − Yb|2,

where b is the set of prescribed faces, and Yb is the prescribed power vector in them. To get the
actual raw field, one can take all N th roots of X.
This translates into a most harmonic field system AX = b, where

A =

(
λSL

N
p

λAIb

)
, b =

(
0
Yb

)
.

Note that we exclusively use power fields with N = 2 in this thesis.

6.4 The Error Measure

In this thesis, we use two error measures. The normalized L2 error is defined as

er =
√

∥ETME∥/∥xT
gtMxgt∥, E = x− xgt,

where M is the mass matrix of the system, and xgt is the ground-truth solution for x as obtained
from LLS. we will commonly refer to this measure simply as the error.
The second error measure we use is the normalized L2 energy. This measure is defined as

en =
√

∥RTMR∥/∥bTMb∥, R = Ax− b.

We will commonly refer to this measure simply as the energy.

6.5 Solvers

For our most harmonic field systems, we use three multigrid solvers and one baseline LLS solver.
More precisely, we use a coarse prolongation solver, a nested iterations solver, and a V-cycles solver,
and we use a linear least squares solver in combination with Cholesky decomposition. Here, we
briefly discuss these solvers.

6.5.1 Coarse Prolongation

The simplest solver is coarse prolongation, where we directly solve the system on the coarsest level
using a LLS solver, and then prolong this solution directly to the finest level. This solver is likely
to be very inaccurate, especially for large systems with large prolongation operators. But it will
also be very fast, which may be a worth-while trade-off.
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6.5.2 Nested Iterations

The second method is nested iterations. This is similar to coarse prolongation, where we first solve
our system in the coarsest level using a LLS solver. Where this method differs is in the prolongation.
Here, we only prolong one level at a time, and we apply a number of Gauss-Seidel iterations after
every prolongation. The number of Gauss-Seidel iterations depends on the mesh and the operator.
We keep running Gauss-Seidel until the normalized L2 error improvement per iterations drops
below 0.1%. Because this cut-off point can be determined before running the solver, and because
this cut-off point can also be a constant, we’re not counting the calculation of this cut-off point in
the prepare time or the solve time of nested iterations.
This solver will always be slower than the coarse prolongation solver, but it is also likely to be
much more accurate. The Gauss-Seidel iterations are likely to strongly reduce the error introduces
by the prolongation operators at every prolongation step.

6.5.3 V-cycles

The V-cycles method simply runs V-cycles until a certain error or time threshold is reached. It
is not trivial to determine such a threshold since both low error and low time are desirable. We
therefore graph the normalized L2 error of V-cycles against solve time. This allows us to compare
V-cycles with the other solvers both in terms of error and solve time. The number of Gauss-Seidel
iterations per multigrid level can strongly affect the convergence rate and solve time of the solver.
We therefore determine the optimal number of V-cycle iterations per level per system in section
7.2.1.
With the optimal number of Gauss-Seidel iterations per level, V-cycles can rival nested iterations
in both error and solve time.

6.5.4 Direct Fine Solve

Finally, we have a method that solves the model problems directly on the fine mesh. For this
purpose, we use Cholesky decomposition to factorize the system, and we use regular and a LLS to
solve the system. There are several different kinds of Cholesky decomposition. In this thesis, we
use LDL decomposition. This algorithm is generally considered to be one of the fastest Cholesky
decomposition methods. However, it still scales as O(n3) where n is the size of the system. This
means that the solve time of the Cholesky solver will rapidly grow with the size of the mesh. From
this point, we commonly refer to the direct fine solver as the Cholesky solver.
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Results

In this chapter we demonstrate our three directional field prolongation operators on the meshes
shown in Table 7.1. We show the prepare time, solve time, and the convergence of our operators
when solving our most harmonic field problems with our three multigrid solvers: coarse prolongation,
nested iterations, and V-cycles. All three are compared against the Cholesky solver. We also show
the optimal settings for both V-cycles and nested iterations. Then we show the precomputation
time necessary to generate our prolongation operators. Keep in mind that precomputation time
is different from prepare time. In short, precomputation time is the time necessary to create
our prolongation operators, whereas prepare time is the time necessary to prepare the solvers
with a system matrix. After this, we take a more in-depth look at the relationship between the
characteristics of the input mesh and quality of our prolongation operators. Lastly we present a
brief comparison of our prolongation operators and the scalar field prolongation operator introduced
by Liu et al.

7.1 Computation Time and Convergence

To show the quality of our prolongation operators, we solve our most harmonic system problem
for all three operators using our Cholesky solver (CS), coarse prolongation solver (CP), nested
iterations solver (NI), and V-cycle solver (VC). We consider the solution provided by the Cholesky
solver to be the ground truth, and we compare the solutions provided by our other solvers against
this.
The convergence of coarse prolongation and nested iterations for S1, Sχ, and SP can be found
in Tables 7.8, 7.9, and 7.10 respectively. The computation times of the Cholesky solver, coarse
prolongation, and nested iterations for S1, Sχ, and SP can be found in Tables 7.11, 7.12, and 7.13.
All computation time results are averages of ten measurements. We have also split the computation
time into a prepare part and a solve part to provide more insight. In the prepare part, the solvers
are prepared with the system matrix. So, the Cholesky solver performs the factorization of the
system matrix and the multigrid solvers coarsen the system matrix such that all multigrid levels
have an appropriately coarsened system. The multigrid solvers also factorize the coarsest system
matrix to facilitate the coarse direct solve.
The convergence of the V-cycle solver for S1, Sχ, and SP can be found in Figures 7.1, 7.2, and 7.3
respectively. Keep in mind that full convergence is often not necessary when using V-cycles. The
appropriate cut-off point is determined by the needs of the particular application it is used on.
Moreover, we have gathered indicative images of the solutions provided by our Cholesky solver and

xxi
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Deformed Bunny Armadillo Santa Ramses

278710 faces 174568 faces 151558 faces 100000 faces
Chair Owl Old Face Ball

99968 faces 74538 faces 55448 faces 31438 faces
Bunny Big Bunny Small Lucy Lucy Remeshed

111364 faces 13584 faces 100000 faces 109592 faces

Table 7.1: Images, names, and sizes of all meshes used in this section.
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Cholesky Solver Coarse Prolongation Nested Iterations 1 V-cycle

error = n.a. error = 0.415 error = 0.197 error = 0.156

Table 7.2: Whitney interpolated solutions for the DEC most harmonic field problem on the armadillo
mesh.

Cholesky Solver Coarse Prolongation Nested Iterations 1 V-cycle

error = n.a. error = 0.766 error = 0.560 error = 0.51

Table 7.3: Whitney interpolated solutions for the DEC most harmonic field problem on the owl
mesh.

our multigrid solvers. Solutions for the DEC most harmonic field problem on the armadillo mesh
and the owl mesh can be found in Figures 7.2 and 7.3. Solutions for the face-based most harmonic
field problem on the deformed bunny mesh and the ball mesh can be found in Figures 7.4 and 7.5.
And finally the solutions for the power field most harmonic field problem on the Ramses mesh and
the small bunny mesh can be found in Figures 7.6 and 7.7. All solutions for the V-cycle solver were
made with a single V-cycle. This makes the solve time comparable to that of the Cholesky solver
and the coarse prolongation solver.
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Cholesky Solver Coarse Prolongation Nested Iterations 1 V-cycle.

error = n.a. error = 0.502 error = 0.0483 error = 0.236

Table 7.4: Solutions for the face-based most harmonic field problem on the deformed bunny mesh.

Cholesky Solver Coarse Prolongation Nested Iterations 1 V-cycle

error = n.a. error = 0.430 error = 0.0455 error = 0.154

Table 7.5: Solutions for the face-based most harmonic field problem on the ball mesh.

Cholesky Solver Coarse Prolongation Nested Iterations 1 V-cycle

error = n.a. error = 0.633 error = 0.0760 error = 0.198

Table 7.6: Solutions for the N = 2 power field most harmonic field problem on the Ramses mesh.

Cholesky Solver Coarse Prolongation Nested Iterations 1 V-cycle

error = n.a. error = 0.376 error = 0.0594 error = 0.0935

Table 7.7: Solutions for the N = 2 power field most harmonic field problem on the small bunny
mesh.
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Mesh CP Energy CP Error NI Energy NI Error
Bunny Deformed 1.03 0.502 0.0178 0.276

Armadillo 1.02 0.415 0.0202 0.197
Santa 1.04 0.866 0.0438 0.783
Ramses 1.02 0.922 0.0460 0.809
Chair 1.02 0.849 0.0426 0.647
Owl 1.01 0.766 0.0315 0.560

Old Face 1.00 0.469 0.0169 0.218
Ball 0.917 0.485 0.0945 0.0693

Bunny Big 1.01 0.4743 0.0198 0.253
Bunny Small 0.941 0.500 0.0188 0.249

Lucy 1.02 0.956 0.0466 0.881
Lucy Remeshed 1.03 0.909 0.0398 0.826

Table 7.8: Coarse prolongation and nested iterations convergence of normalized L2 energy and
normalized L2 error measures for the DEC most harmonic field problem.

Mesh CP Energy CP Error NI Energy NI Error
Bunny Deformed 0.972 0.502 0.00350 0.0483

Armadillo 0.958 0.675 0.00399 0.0494
Santa 0.960 0.637 0.00455 0.0454
Ramses 0.981 0.738 0.00489 0.0575
Chair 0.935 0.484 0.00627 0.0450
Owl 0.939 0.518 0.00489 0.0452

Old Face failed failed failed failed
Ball 0.905 0.430 0.00537 0.0455

Bunny Big failed failed failed failed
Bunny Small 0.909 0.446 0.00368 0.0433

Lucy 0.990 0.808 0.0109 0.101
Lucy Remeshed 0.903 0.431 0.00531 0.0386

Table 7.9: Coarse prolongation and nested iterations convergence of normalized L2 energy and
normalized L2 error measures for the face-based most harmonic field problem. Our multigrid solvers
can fail to solve face-based most harmonic field problems on certain meshes.
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Mesh CP Energy CP Error NI Energy NI Error
Bunny Deformed 1.02 0.619 0.00648 0.0622

Armadillo 1.01 0.610 0.00563 0.0662
Santa 1.02 0.542 0.00776 0.0619
Ramses 0.998 0.633 0.00694 0.0760
Chair 0.993 0.498 0.00723 0.0656
Owl 1.01 0.419 0.00762 0.0496

Old Face 1.02 0.545 0.00617 0.0658
Ball 1.01 0.418 0.00669 0.0756

Bunny Big 1.02 0.583 0.00636 0.0607
Bunny Small 1.00 0.376 0.00586 0.0594

Lucy 0.998 0.525 0.00827 0.0682
Lucy Remeshed 1.01 0.686 0.00624 0.0663

Table 7.10: Coarse prolongation and nested iterations convergence of normalized L2 energy and
normalized L2 error measures for the power field most harmonic field problem.

Mesh CD Prepare CD Solve CP/NI Prepare CP Solve NI Solve
Bunny Deformed 12002ms 90ms 6106ms 24ms 1765mss

Armadillo 2269ms 42ms 3837ms 13ms 1114ms
Santa 1488ms 36ms 2557ms 10ms 953ms
Ramses 1186ms 24ms 2411ms 8ms 839ms
Chair 1611ms 25ms 2049ms 7ms 641ms
Owl 1167ms 20ms 1496ms 7ms 530ms

Old Face 854ms 15ms 941ms 5ms 336ms
Ball 560ms 9ms 938ms 4ms 201ms

Bunny Big 2412ms 30ms 2591ms 9ms 734ms
Bunny Small 59ms 2ms 255ms 2ms 68ms

Lucy 853ms 22ms 1924ms 8ms 739ms
Lucy Remeshed 1230ms 27ms 2192ms 8ms 714ms

Table 7.11: Prepare time and solve time for the DEC most harmonic field problem for our Cholesky
solver, coarse prolongation solver, and nested iterations solver.
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Mesh CD Prepare CD Solve CP/NI Prepare CP Solve NI Solve
Bunny Deformed 80006ms 288ms 11465ms 36ms 2759ms

Armadillo 15858ms 130ms 6722ms 20ms 1748ms
Santa 11136ms 106ms 5079ms 17ms 1518ms
Ramses 8617ms 71ms 4236ms 13ms 1497ms
Chair 10995ms 73ms 3659ms 12ms 1078ms
Owl 9289ms 59ms 2897ms 10ms 726ms

Old Face failed failed failed failed failed
Ball 4462ms 28ms 2088ms 6ms 341ms

Bunny Big failed failed failed failed failed
Bunny Small 384ms 7ms 493ms 3ms 114ms

Lucy 6255ms 65ms 3488ms 11ms 1597ms
Lucy Remeshed 8679ms 76ms 3895ms 12ms 1080ms

Table 7.12: Prepare time and solve time for the face-based most harmonic field problem for our
Cholesky solver, coarse prolongation solver, and nested iterations solver. Our multigrid solvers can
fail to solve face-based most harmonic field problems on certain meshes.

Mesh CD Prepare CD Solve CP/NI Prepare CP Solve NI Solve
Bunny Deformed 8420ms 77ms 7868ms 32ms 1773ms

Armadillo 1722ms 37ms 4871ms 19ms 1244ms
Santa 1124ms 30ms 2771ms 13ms 899ms
Ramses 773ms 20ms 3333ms 13ms 688ms
Chair 950ms 20ms 2100ms 10ms 601ms
Owl 780ms 16ms 1766ms 8ms 457ms

Old Face 632ms 12ms 1283ms 6ms 325ms
Ball 430ms 7ms 1207ms 5ms 178ms

Bunny Big 1708 26ms 4300ms 19ms 845ms
Bunny Small 46ms 2ms 345ms 2ms 68ms

Lucy 560ms 18ms 2394ms 10ms 688ms
Lucy Remeshed 784ms 21ms 2632ms 11ms 770ms

Table 7.13: Prepare time and solve time for the power field most harmonic field problem for our
Cholesky solver, coarse prolongation solver, and nested iterations solver.
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Figure 7.1: Convergence of the V-cycle solver for the DEC most harmonic field problem on the
Lucy mesh, the remeshed Lucy mesh, the chair mesh, and the big bunny mesh.

Figure 7.2: Convergence of the V-cycle solver for the face-based most harmonic field problem on
the deformed bunny mesh, the armadillo mesh, the santa mesh, and the Ramses mesh.



CHAPTER 7. RESULTS xxix

Figure 7.3: Convergence of the V-cycle solver for the power field most harmonic field problem on
the owl mesh, the old face mesh, the ball mesh, and the small bunny mesh.

7.1.1 Prepare Time

The prepare time consists of the time necessary to prepare the solver with a system matrix. Recall
that this is the time needed to factorize the system matrix for the Cholesky solver, and the time
needed to coarsen the system matrix to all multigrid levels for the multigrid solvers. This also
includes the time needed to factorize the coarsest system matrix for the multigrid solvers.
When looking at Tables 7.11, 7.12, and 7.13, it can be observed that our multigrid solvers are
capable of taking up to 85.7% less prepare time than the Cholesky solver. This a very significant
improvement. However, in many cases multigrid is not able to reach this level of improvement.
Moreover, in some scenarios multigrid performs significantly worse than Cholesky in terms of
prepare time. From Figures 7.4, 7.5, and 7.6, it becomes clear that the performance difference
between multigrid and Cholesky is strongly related to the size of the mesh. Plainly, the prepare time
of the Cholesky solver scales as O(n3) with the size of the system, whereas the prepare time of the
multigrid solvers scale as O(n) with the size of the system. For large enough systems, multigrid will
outperform Cholesky by an increasingly large margin. For smaller systems however, the Cholesky
seems to easily outperform multigrid. This seems to be especially true for the DEC and power field
most harmonic field systems.
Since our most harmonic systems are defined in sparse matrix form, the sparsity of the systems
has a massive impact on the effective size of the system. In fact, the DEC most harmonic system
matrix for the deformed bunny mesh has a size of 418065× 418065 and a sparsity ratio of 0.0026%.
It is therefore reasonable to expect that other, more dense systems will require more computation
time when solving with the Cholesky solver. The face-based most harmonic field system has a size
of 557420× 557420 and a sparsity ratio of 0.0047%, and the power field most harmonic field system
has a size of 557420× 557420 and a sparsity ratio of 0.0014%. When compared to Figures 7.4, 7.5,
and 7.6, there is a strong correlation between effective system size and prepare time, for all solvers.
So it is not unreasonable to note that working with most harmonic field problems was not the best
choice for showing off our prolongation operators in conjunction with multigrid, as most harmonic
field systems are very sparse. Testing out our techniques on denser systems will therefore be subject
to future work.
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Aside from system sparsity, it can also be noted that our multigrid prepare time is higher than it
has to be because of the density of our prolongation operators. Since the prepare time of multigrid
consist of coarsening the system matrix, the prepare time scales with the sparsity of our prolongation
operators. We suspect that in the process of multiplying thousands of prolongation steps together,
the final sparse prolongation operator gets filled with almost-zero entries. These do not have a
significant impact on the quality of the prolongation operator, but they do significantly slow down
multiplications with the operator. It is therefore a reasonable optimization to prune the final
prolongation operators. Exactly where the cut-off point should be, what the effect on the quality of
the operators will be, and what the effective performance gains will be are all subject to future work.

It should be noted however, that prepare time may not always be relevant. If the same system
needs to be solved a large number of times, it can be worthwhile to have a higher prepare time if
the solve time is lower. This can be true for simulations, where the same system on the same mesh
needs to be solved every frame. Preparing the solver once, before the simulation starts, can take a
long amount of time without negatively affecting the effective performance of the application.
Of course, other applications exist where the system changes constantly. Here, the prepare time
can be more important than the solve time, since it tends to be larger.

Figure 7.4: Cholesky and multigrid prepare time for the DEC most harmonic field problem.
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Figure 7.5: Cholesky and multigrid prepare time for the face-based most harmonic field problem.

Figure 7.6: Cholesky and multigrid prepare time for the power field most harmonic field problem.

7.1.2 Solve Time

When looking at Tables 7.11, 7.12, and 7.13, it can be observed that our coarse prolongation
operator is able to consistently outperform the Cholesky solver in terms of solve time. We can see
a decrease in solve time of up to 87.5%. However, it can also be noted that our nested iterations
solver is consistently slower than the Cholesky solver. We can see an increase in solve time of up to
131%.
From Figures 7.7, 7.8, and 7.9, it becomes clear that the reason for the high solve time of nested
iterations is likely similar to that for the high prepare time. In short, Cholesky scales worse with
the size of the system than nested iterations does, but the systems used are so sparse that nested
iterations never gets the opportunity to outperform Cholesky. This is on top of the suspected high
density of our prolongation operators, which also negatively affects the computation time of the
coarse Gauss-Seidel iterations in the nested iterations solver.
Coarse prolongation performs much better than nested iterations and even Cholesky in terms of
solve time. But from Tables 7.8, 7.9, and 7.10, it should be noted that coarse prolongation comes
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with a much higher normalized L2 error and normalized L2 energy than nested iterations. This can
be acceptable for some applications, but this is a trade-off.

The solve time of the V-cycle solver can be found in Figures 7.1, 7.2, and 7.3. Here, it can be
noted that for the same normalized L2 error, V-cycles perform similarly to nested iterations in terms
of solve time. The advantage of V-cycles is that one can reach errors orders of magnitude lower
than with nested iterations if one is willing to let the solver run for longer. If one is content with
relatively higher errors however, neither nested iterations nor V-cycles appears to be consistently
the fastest. A more in-depth study into the performance of V-cycles and nested iterations will be
left as future work.

Figure 7.7: Cholesky, coarse prolongation, and nested iterations prepare time for the DEC most
harmonic field problem.

Figure 7.8: Cholesky, coarse prolongation, and nested iterations prepare time for the face-based
most harmonic field problem.
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Figure 7.9: Cholesky, coarse prolongation, and nested iterations prepare time for the power field
most harmonic field problem.

7.1.3 Convergence

From Tables 7.8, 7.9, and 7.10, it can be noted that nested iterations consistently outperforms
coarse prolongation in terms of both energy and error convergence. As discussed in the previous
section, this does come at the cost of solve time. As opposed to solve time, however, Figures
7.10 and 7.11 show that there is no correlation between convergence and the size of the mesh.
This means that for a well behaved mesh, the convergence reached with a multigrid solver can be
reasonably predicted beforehand. For example, the average normalized L2 energy of the DEC most
harmonic field problem with the nested iterations solver is 0.0365, with a standard deviation of
0.0219.
When comparing V-cycle convergence from Figures 7.1, 7.2, and 7.3 to Tables 7.8, 7.9, and 7.10,
it can clearly be observed that the V-cycle solver is capable of reaching much better convergence
than coarse prolongation and nested iterations. As stated before however, this does come at the
cost of solve time.
Our multigrid solvers can also be compared more practically through Tables 7.2, 7.3, 7.4, 7.5,
7.6 and 7.7. Here, it can be observed that for some meshed, coarse prolongation may provide a
solution good enough for certain applications. Think of situations where only the general direction
of the vector field matters. It can also be noted that nested iterations and a single V-cycle often
provide solutions that look very similarly to each other. The extra time spent on nested iterations
may therefore not always be worth it. Lastly, both nested iterations and V-cycles often produce
solutions that look very similar to the solution provided by the Cholesky solver.
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Figure 7.10: Normalized L2 energy convergence as a function of mesh size for the DEC most
harmonic field problem.

Figure 7.11: Normalized L2 error convergence as a function of mesh size for the DEC most harmonic
field problem.

7.2 Solver settings

7.2.1 V-cycles

In Table 7.14, one can find the number of V-cycle iterations and the amount of time necessary to
reach convergence for the DEC most harmonic field problem for the Deformed Bunny mesh. Here,
we consider convergence reached when the normalized L2 error falls below 0.001. We used the
deformed bunny mesh here because it is the largest we have, and so finding the optimal balance
between convergence rate and solve time is most important here. From this, we can see that using
6 Gauss-Seidel iterations per V-cycle level is optimal in terms of computation time.
Similar results for the face-based most harmonic field problem and the power field most harmonic
field problem can be found in Tables 7.15 and 7.16 respectively. From these it can be determined
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Gauss-Seidel Steps Convergence Steps Time per Iteration Convergence Time
1 148 137ms 20276ms
2 75 211ms 15825ms
3 50 285ms 14250ms
4 38 359ms 13642ms
5 31 433ms 13423ms
6 26 507ms 13182ms
7 23 580ms 13340ms
8 21 649ms 13629ms

Table 7.14: Convergence steps and time necessary to reach convergence as a function of Gauss-Seidel
steps per V-cycle level for the DEC model problem on the Deformed Bunny mesh. Convergence is
considered reached when the normalized L2 error drops below 0.001.

Gauss-Seidel Steps Convergence Steps Time per Iteration Convergence Time
1 21 233ms 4893ms
2 12 375ms 4500ms
3 9 515ms 4635ms
4 8 634ms 5072ms
5 7 764ms 5348ms
6 6 881ms 5286ms
7 6 1024ms 6144ms
8 6 1130ms 6780ms

Table 7.15: Convergence steps and time necessary to reach convergence as a function of Gauss-
Seidel steps per V-cycle level for the face-based field model problem on the Deformed Bunny mesh.
Convergence is considered reached when the normalized L2 error drops below 0.001.

that using 2 Gauss-Seidel iterations per V-cycle level is optimal for both face-based fields and power
fields. We have used these settings for all measurements done with V-cycles in this thesis.

7.2.2 Nested Iterations

The nested iterations solver can start from different multigrid levels. For example, it can start
from multigrid level 2, and solve back to level L from there. If the lowest multigrid levels are too
coarse, it can be advantageous to start the solver from a higher level. In some cases, the extra
Gauss-Seidel steps are more expensive than a finer Cholesky solve. We therefore tested the optimal
nested iterations starting level for this theses by measuring the prepare time and solve time for
three different starting points. The results can be found in Table 7.17. Note that we once again
chose to measure on the deformed bunny mesh, since optimal performance is most important for
the largest systems. And since we fixed L = 3, we were only able to test starting levels 0, 1, and 2.
From Table 7.17, it can be noted that prepare time increases greatly when starting from higher
multigrid levels. It can also be noted that the solve time decreases slightly when starting from
higher levels. The optimal starting level therefore depends on the use case. If a singular system
needs to be solved several times, it can be optimal to start from level 1 or 2 in terms of total time
spent. If a system only needs to be solved once however, it is optimal to start from level 0. We
therefore start from level 0 for all measurements involving nested iteration throughout this thesis.
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Gauss-Seidel Steps Convergence Steps Time per Iteration Convergence Time
1 16 168ms 2688ms
2 9 259ms 2331ms
3 7 349ms 2443ms
4 6 438ms 2628ms
5 5 528ms 2640ms
6 5 613ms 3065ms
7 5 691ms 3455ms
8 5 785ms 3925ms

Table 7.16: Convergence steps and time necessary to reach convergence as a function of Gauss-
Seidel steps per V-cycle level for the power field model problem on the Deformed Bunny mesh.
Convergence is considered reached when the normalized L2 error drops below 0.001.

Starting Level Error Prepare Time Solve Time
0 0.0633 8209ms 1741ms
1 0.0633 10131ms 1579ms
2 0.0633 34252ms 1200ms

Table 7.17: The effect of the starting level of nested iterations on the normalized L2 error, prepare
time, and solve time. Measurements were made with the most harmonic model problem for power
fields on the Deformed Bunny mesh.

7.3 Precomputation time

In Table 7.18, one can find the precomputation time necessary to generate our prolongation
operators S1, Sχ, and SP . Note that all three are generated in this time, so this number can be
reduced if only one or two of these operators are required. Also note that these operators only need
to be calculated once per mesh. Once generated, the operators can be stored and reused whenever
necessary.
Despite this, Figure 7.12 shows that the precomputation time scales quadratically with the size
of the mesh. As a result, calculating the prolongation operators for exceptionally large meshes
(> 1, 000, 000 faces) can take an unreasonable amount of time. For example, generating the
prolongation operators for the deformed bunny mesh took over 2.5 hours.
In principle, our algorithm scales linearly with the size of the mesh. However, it is likely the process
of multiplying the sublevels of the operators together into a multigrid level that scale quadratically,
as the operators become increasingly more dense over time. We believe that this problem can be
mostly resolved by building the sublevels of our prolongation operators such that multiple sublevels
can be prolonged at once. This can significantly reduce the number of matrix multiplications,
therefore reducing the effect of the quadratic scaling. Implementing this improvement and testing
it will be subject to future work.

7.4 Input mesh quality

Aside from the size of the mesh, solve time may also depend on the quality of the mesh. We have
therefore solved the same system with our V-cycle solver on both the large bunny and the small
bunny mesh. See Table 7.19 for the difference in resolution between these meshes. The results
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Figure 7.12: Precomputation time of S1, Sχ, and SP as a function of the size of the mesh.

Mesh Faces Time
Bunny Deformed 278710 9473576ms

Armadillo 174568 3717574ms
Santa 151558 2474853ms
Ramses 100000 1133211ms
Chair 99968 895905ms
Owl 74538 649464ms

Old Face 55448 343663ms
Ball 31438 101058ms

Bunny Big 111364 1500470ms
Bunny Small 13584 24528ms

Lucy 100000 1168947ms
Lucy Remeshed 109592 1405326ms

Table 7.18: Precomputation time of our prolongation operators for all meshes.
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can be found in Figures 7.13 and 7.14. In terms of time, the small bunny mesh fully convergences
approximately 800ms, whereas the large bunny mesh takes more than 8000ms. This is to be
expected since the large bunny mesh has a much larger system matrix. In terms of iterations
however, the small bunny mesh also converges faster. This time by 10 iterations or 14%. This
can be attributed to the lower resolution of the small bunny mesh. Since this mesh has a lower
resolution, the resolution of the coarsened mesh is much closer to that of the original. This means
the prolongation operator can more accurately transform between the coarse and the fine mesh. As
a result, convergence is reached 14% faster.
This does not mean that smaller meshes are optimal, however. Since smaller meshes can be solved
relatively quickly by a Cholesky solver, it is not necessarily worth while to use our multigrid method
here. However, it would be interesting to see by how much the quality of our prolongation operators
deteriorates as the mesh resolution gets finer. This is subject to future work.

The effect of sampling resolution can be described more clearly by comparing two meshes
of approximately equal size, with a different sampling method. In Table 7.20, the original and
remeshed Lucy meshes are compared side-by-side. The original Lucy mesh has many thin and long
faces that accurately describe the horizontal curvature in the dress. In the remeshed version of Lucy
however, the shape has been sampled more evenly, and the faces more closely resemble equilateral
triangles. When comparing the convergence of these meshes in terms of time and iterations in
Figures 7.15 and 7.16, it can be concluded that the remeshed version of Lucy converges much
quicker than the original. The remeshed version of Lucy reaches a normalized L2 error of below 0.01
in approximately 15 seconds, while the original version of Lucy takes more than double this time.
The coarse prolongation and nested iterations solvers also frequently reach a lower normalized L2
error and normalized L2 energy for the remeshed Lucy mesh than for the original Lucy mesh. In
terms of solve time, nested iterations also generally performs better for the remeshed Lucy than for
the original. The coarse prolongation solver however, does not solve significantly faster for either of
the two meshes, and the Cholesky solver appears to solve faster for the original Lucy mesh.
When looking at the prepare time, the original Lucy is always faster than the remeshed version.
The same goes for the precomputation time. This would suggest that the prolongation operators
for the original Lucy mesh are more sparse than those for the remeshed Lucy mesh.

Figure 7.13: Convergence of the V-cycle solver as a function of time of the DEC most harmonic
field problem on the large and small bunny meshes.
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a b

Table 7.19: Difference in resolution between the big (a) and small (b) bunny meshes.

a b

Table 7.20: Difference in sampling between the original (a) and remeshed (b) Lucy meshes.
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Figure 7.14: Convergence of the V-cycle solver as a function of iterations of the DEC most harmonic
field problem on the large and small bunny meshes.

Figure 7.15: Convergence of the V-cycle solver as a function of time of the face-based most harmonic
field problem on the normal and remeshed Lucy meshes.

7.5 Scalar Field Prolongation

The scalar field prolongation operator introduced by Liu et al. (2021) can solve a smoothing
application (similar to our most harmonic field problem) on a mesh with over 400K vertices in less
than 0.3 seconds using V-cycles. Our best comparison would be the face-based most harmonic field
problem solved for the deformed bunny mesh in Figure 7.2. Even with a high error threshold like
0.01, our Sχ operator with the V-cycle solver takes approximately 4 seconds to converge.
In terms of precomputation time, Liu et al. were able to create their S0 prolongation operator
for a mesh with over 600K vertices in only 50 seconds. Although it is true that this is orders of
magnitude faster than our method, the scalar field prolongation operator does not require a 1-ring
overlay to compute. In fact, it only requires a few barycentric coordinates per 1-ring. This saves a
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Figure 7.16: Convergence of the V-cycle solver as a function of iterations of the face-based most
harmonic field problem on the normal and remeshed Lucy meshes.

lot of time, since the computation of the overlay mesh takes a lot of time. It might be possible to
use a less robust edge-face intersection algorithm for the construction of our prolongation operators,
but this is subject to future work. Regardless, our precomputation algorithm scales quadratically,
while theirs scales linearly. This would be a another great point of improvement.
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Discussion

8.1 Conclusion

In this thesis, we have introduced three new, structure preserving prolongations operators for
solving directional field problems. One for DEC vector fields, one for face-based fields, and
one for power fields. Using these operators, multigrid solvers like coarse prolongation, nested
iterations, and V-cycles are able to reach a sufficient degree of convergence in linear time. So
although precomputation times are large, and although linear least squares combined with Cholesky
decomposition consistently outperforms multigrid for smaller meshes and sparser systems, multigrid
combined with our prolongation operators is poised to outperform linear least squares by a significant
margin when solving for larger meshes.

8.2 Future Work

In this thesis, we have introduced three new prolongations operators for solving directional field
problems. As these operators are state of the art, there is much that can still be improved upon.
Most important of which is the density of the prolongation operators. As mentioned before, we
suspect that our prolongation operators are much denser than they need to be. As a consequence,
our multigrid solvers are also much slower than necessary. It is therefore of importance that the
extent of this problem is researched, and a solution is found. Simply pruning the operators is a
possibility we have thought of, but it is as of yet unclear to us where the pruning threshold should
be, how this affects the quality of the operators, and how this affects the solve time of multigrid.
Secondly, our Sχ operator occasionally introduces zeroes on the diagonal of the coarse system
matrix. This causes the Cholesky solver to fail on these operators. As a result, multigrid is not
able to solve face-based field problems on some meshes. We are not sure why Sχ fails for some
meshes. Perhaps this operator is particularly sensitive to poorly decimated meshes, since Sχ failed
more often when using the default Qslim method. Another possibility is that we might have made
a mistake in our edge collapse code. This should be investigated.
Another important factor is our precomputation time. We believe this can be vastly reduced. As
of now, our precomputation time scales quadratically with the size of the mesh. However, the
precomputation time of the scalar field prolongation operator introduced by Liu et al. (2021) scales
linearly with the size of the mesh. We believe linear scaling should be possible for our operators
as well. Currently, we calculate the global prolongation operators of every edge collapse, and we
multiply all of these operators together. This introduces quadratic scaling to the precomputation

xlii
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algorithm, since the multiplied matrices get denser at every step. By combining several independent
local prolongation operators together directly into a single global prolongation operator, many
multiplications can be prevented.
Furthermore, we believe the construction time for the local prolongation operators can be vastly
reduced by changing our overlay algorithm. Currently, we use a robust overlay algorithm that
employs rational numbers to create exact overlay-to-coarse and overlay-to-fine maps. For our
purposes however, this may be more complex than necessary. We expect our local prolongation
operators can be constructed by much simpler floating point fine-edge-to-coarse-face maps.
In this thesis, we have exclusively worked with closed meshes. In principle however, our prolongation
operators should be able to work with boundary meshes as well. Whether this is true, and how
boundary meshes affect the quality of our operators would be very useful to inspect.
Lastly, we have also exclusively used power fields with the power N = 2. SP has to be built
separately for every power. So it would be useful to find out how the power of SP affects the quality
of the operator, and how the power of the field affects the multigrid convergence and solve time. It
would be interesting to know whether our method works better for lower power fields or for higher
power fields.
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