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Abstract

Entity resolution is a critical task in enhancing data quality and en-
suring the reliability of data analytics, as it involves identifying distinct
records in a dataset that correspond to the same real-world entity. Despite
the development of numerous systems to address this challenge, entity res-
olution remains a complex problem. In this paper we survey and evaluate
different approaches for grouping records into real-world entities. Further-
more, we introduce the Predictive Cluster Algorithm Selection (PCAS)
method, which selects different clustering approaches for subsets of the
data and combines them to produce a unified clustering result. Addition-
ally, we conduct experiments using weighted and unweighted ensemble
clustering as alternative approach for integrating diverse clusterings. Our
findings indicate that multiple existing clustering algorithms are effictive
for the task of entity resolution. Furthermore, we show the potential of
PCAS to outperform other approaches and demonstrate the strength of
ensemble clustering.
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1 Introduction

Big data is a concept that has become indispensable in the current day and
age. This is in part due to the high velocity with which data is created and
stored [1]. Furthermore, it has become easier to gather data using the internet
as it is ever growing with information and thus a rich source of (un)structured
data. However, a problem described long before the inception of the internet
has become more prevalent with this growth. This is the problem of Entity
Resolution (ER), which is the task of finding records in one or more data sets
that describe the same real-world entity. Performing entity resolution is for
example useful in cases where biased data has to be detected and prevented
when performing analysis on the data [2], but also in cases where data from
different sources need to be linked on a common field, which is often done with
biomedical data to conduct epidemiological studies [3].

Therefore entity resolution is also known as data matching, record linkage,
duplicate detection, deduplication and more names in this general direction.
Nonetheless, there are subtle differences that can be found. The name record
linkage is often associated with the problem of combining two databases or
data sets, where a record from one database can either be linked to the other
if a match is found indicating they refer to the same entity, or not linked and
thus it is an entity not found in both databases. This assumes that there are
no duplicate entities in both individual databases, often referred to as clean
data sources. Therefore, data sources that do contain duplicates are dirty data
sources, with the major difference being that linking two clean sources guaran-
tees that at most there are two records per entity, and the maximum amount of
entities being the sum of both record counts. Whereas with a dirty source (or
multiple dirty sources combined) the maximum amount of entities is the same,
but the amount of records per entity is unknown. In this paper the problem
will be referred to as Entity Resolution or ER, where the main focus is on dirty
data sources.

1.1 Research questions

The growing amount of stored data also requires better methods for entity
resolution to keep the data clean. For example, online retailers that expand their
product catalog regularly do not want to manually go through their catalog each
time they add new products, to prevent having duplicate items in their catalog1.
To prevent duplicates in data sets or group the duplicates present in a data set,
a multitude of entity resolution systems [4, 5, 6, 7] are created. A common
approach uses multiple steps to find the duplicates, with the final step being
one that groups the duplicates together, also referred to as clustering. As there
are many steps to such a system, with even more different methods to perform
each step, it is difficult to know what system to use and which methods to apply.

1https://www.nchannel.com/blog/challenges-ecommerce-catalog-management/
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Therefore in this work, we aim to explore and evaluate different methods for
the clustering step of duplicate items in a data set. We formalize this aim as
follows:

RQ1: How do different clustering algorithms perform on the task of entity
resolution and which algorithm is an overall good choice for the task of clustering
in an entity resolution system?

As other papers on entity resolution [8, 9, 10] focus on similar types of clus-
tering algorithms, we make use of multiple different existing algorithms with
different types of clusterings to solve entity resolution problems. By also using
data sets proposed in different works[11]2 we can evaulate the performance of
different algorithms compared to those in other works. Furthermore, this paper
looks to well known algorithms lesser used in the context of entity resolution, to
get an idea of their performance compared to other algorithms in this context.
To do so, an entity resolution system is set up which performs the task of entity
resolution using multiple different steps. Such a system is also called an entity
resolution pipeline.

The second aim of this paper regards using the different types of algorithms
together to come to a new combined clustering:

RQ2: Is it possible to leverage the strengths and different types of clusterings
to predict which clustering algorithm to use on a component, based on features
of that component?

Other works that aim to improve the results of the clustering, propose dif-
ferent and new clustering algorithms [12, 13, 10] that aim to algorithmically
increase the accuracy of the resulting clusters. The work by Muhammad and
Van Laerhoven [14]3 introduces a classifier that predicts which algorithm to use.
However, that is in the context of community detection with a limited amount of
algorithms to choose from. Therefore, in this paper we will increase the amount
of algorithms used for the classifier, as well as applying the classification to the
entity resolution problem.

Furthermore, combining results from different clustering algorithms is studied
in the field of ensemble clustering [15]. As this paper is researching leveraging
strengths of different clusterings, the aim is to find how ensemble clustering
performs in the context of entity resolution. Furthermore, the possibility of as-
signing weights to the clustering result of well performing clustering algorithms
is explored to further increase the performance of the final clustering. This is
summarized in the following research question:

2https://people.cs.umass.edu/~mccallum/data.html
3https://github.com/SyedAgha/Divide-and-Conquer/blob/master/DCS_code_and_

paper/DCS.pdf
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RQ3: How well does ensemble clustering perform in the context of entity reso-
lution and can the performance of ensemble clustering be improved by assigning
weights to individual clustering algorithm results?

Chen et al. [16] explore the use of ER ensemble, where they combine the
results from different entity resolution systems to get to a new result. This
means that the final result is solely based on the results of entire systems,
meaning that there can be many different preceding steps to get to the final
result. Therefore in this paper, we want to focus on ensemble clustering in
the final step, to get an understanding how and if the clustering result can be
improved with the input that is given to the clustering step.

1.2 Contributions

The main contributions of this paper are:
An exploration and evaluation of clustering algorithms in the context of

entity resolution. By using algorithms that are already used in entity resolution,
but also taking clustering algorithms from different research area’s, we provide
an overview of cluster performance of a wide range of different types of clustering
algorithms.

Furthermore we propose PCAS: Predictive Cluster Algorithm Selection, which
is a classifier that predicts which clustering algorithm to use on different parts
of the data set, based on different properties of the data set parts. By doing
so, it allows the exploration of different types of clusterings within a single data
set, possibly improving on the usage of a single clustering algorithm per data
set.

Lastly, we look into ensemble clustering for entity resolution and experiment
with a simple method to create a weighted version of the ensemble clustering.

In short, our results show that there are different algorithms that are capable
of obtaining a good result on known entity resolution tasks. Moreover, it shows
which algorithms are not well suited for the given data sets, which might also
provide an insight as to what type of algorithm to use for each task.

The PCAS method shows the potential that it is possible to measure per-
formance gains in terms of accuracy compared to the individual algorithms.
However, PCAS is sensitive to the performance of the algorithms available for
its selection and thus also sensitive to the parameters used for each parame-
terized algorithm. This results in a theoretical lower/upper limit for the final
clustering on the complete data set: as PCAS does not alter any of the cluster-
ings, it is only as good as the best available clustering per part of the data set if it
perfectly predicts which algorithm to use per part of the data set. Furthermore,
the selection of features used for the predictive model in PCAS are found to be
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important. Without features that distinguish clearly between different parts of
the input graph, it is hard for the model to learn which algorithm performs well
on which part.

Weighted ensemble clustering shows potential for entity resolution by obtain-
ing results very close to that of the best performing algorithm. However, it lacks
consistency in terms of its results, being outscored by the unweighted ensemble
clustering on multiple occasions.

The rest of this paper is structured as follows: Section 2 discusses the back-
ground and related work on entity resolution, with an emphasis on clustering.
Accordingly, section 3 explains PCAS and (un)weighted ensemble clustering.
Moreover, section 4 demonstrates the experimental setup with the results pre-
sented in section 4.4. Finally, in section, 5 one can find the conclusion and a
discussion on future work.
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2 Background and Related work

First, this section will discuss background knowledge in relation to entity res-
olution, including for instance detailed information about different clustering
algorithms that will be used in our proposed methods. In addition to this, a
discussion on various concepts used for network analysis is provided in relation
to clustering algorithms. This section forms the basis of knowledge used to
create our entity resolution system. Next, the related work section will contain
relevant works in multiple related research areas, as well as other works that
evaluate comparable entity resolution problems or use a similar methodology as
our proposed methods.

2.1 Background

2.1.1 Blocking

The first step in an entity resolution pipeline is often the blocking step. This
is necessary as the naive approach of comparing all records to each other scales
quadratic to the size of the input. Blocking is the process of grouping the
records together based on a key (called a blocking key[17]) to reduce the number
of pairwise comparisons by only doing pairwise comparisons within a block.
Therefore, these blocks that are made need to adhere to two important criteria
as defined by Christen [18]: firstly, all matching descriptions are placed in at
least one common block. The second criteria is that it has to minimize the
number of comparisons. Blocking should find a good trade-off between the two
criteria: placing all records in one block would adhere to the first criteria, but
not to the second. Reversely, placing every record within its own block would
greatly reduce the amount of comparisons done (by not doing any at all), but
would completely fail to adhere to the first criteria. The importance of good
blocking is in the fact that it is at the very start of the pipeline. If the blocking
step puts two matching records in different blocks, the pair will probably not
be considered in any of the future steps in the pipeline, thus missing out on a
match.

One of the approaches for blocking is that of token blocking by Papadakis et
al.[19]. They propose a method in which a record is broken down into tokens,
often times the individual words present in a record. Then a block is made for
each token in the entire collection and the records that contain the token are
added to the block. Thus every record is added to multiple blocks, which is
good for the first criteria mentioned before by Christen [18], as every record
will be in one or more blocks with matching descriptions. However, as each
record is put in multiple blocks, it increases the amount of comparisons done
which contradicts the second criteria. Even more problems arise as different
records that have more than one matching token are compared multiple times,
but in different blocks. Therefore, the approach also tackles this problem by
propagating the comparisons already done. This means that if a comparison is
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already done in a block, another block that contains the same two records to be
compared, reuses the result from the earlier block.

Token blocking is an overarching approach, where the concept of token block-
ing is used in different ways to improve or adjust the results of it. Attribute
Clustering Blocking [20] is one of those approaches that has token blocking at
its core. This approach firstly clusters the records based on attributes that have
similar values into non-overlapping clusters, which they call attribute clusters.
Subsequently, the token blocking technique is used on these clusters. It cre-
ates more blocks, but with less records in them, which the authors claim is on
average smaller and therefore reduces the amount of comparisons done.

Derived from token blocking is the work of Papadakis et al. [21]. Their work
is inspired by token blocking in combination with their observation of many
URI’s (Unified Resource Identifier) for web data. These URI’s often have high
schema heterogeneity which is why they proposed Prefix-Infix(-Suffix) Blocking.
By creating blocks based on the prefix, infix and suffix of the URI’s, they found
that due to the schema heterogeneity, this blocking technique created blocks that
performed well on the two mentioned criteria by Christen [18]. Even though
this technique works well for URI’s, it is less performant for other types of data.

Nonetheless, this technique is applicable on less structured data too, in the
form of Q-grams Blocking [18]. Q-grams converts the token blocking keys in
sub-sequences of q characters. Then for every unique sub-sequence a block is
made in which all records are placed that contain that sub-sequence, which is
similar to regular token blocking with the added benefit that records do not
have to contain the exact same strings to be put in the same block, as long as
a sequence of q characters are the same.

There are many more blocking techniques [17, 18, 20, 22] which all have
their use cases based on the desired metrics that they want to achieve.

At this point in the pipeline, there are blocks consisting of records that are
more likely to match with other records within their block than with records
from different blocks. Whether or not the pairs in a block match is investigated
more in depth in the next step of the pipeline.

2.1.2 Pairwise comparison and similarity calculation

The earlier works by Newcombe et al. and Fellegi and Sunter [4, 5] did not use
a full entity resolution pipeline yet. They did already use blocking as their first
step, as Fellegi and Sunter [5, p. 1196] mention that a full pairwise comparison
would outstrip the economic capacity of even the largest and fastest comput-
ers (at the time). However, the result of this step was for them final: either
two records were in the match-class or they are in the non match-class. They
used the Naive Bayes approach for this, by calculating the likelihood that a
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comparison vector is part of either classes. To know the distribution of both
classes, they needed a prelabeled training set of recorded pairs. Then when a
new comparison vector was presented, the model trained using the training set
would determine in which class the vector belongs.

More approaches would also determine whether or not a pair is a match in this
step. The rule-based approach proposed by Wang and Madnick [7] would have
the rules serve as a kind of ”key” for a record. A rule would then state something
about the value of an attribute and assign a key based on that attribute. For
example the rule ”If age > 18 Then title = adult, Else title = child” would
group entities using this as key. Then using more keys would further shrink the
group till a group would only have those entities that would be a match.

This idea is further expanded by Hernández and Stolfo [23] where the rules
would be a bit more complex. Moreover, they use terms like ”reasonably close”
or ”differ slightly” in the context of comparing two fields. That allowed for rules
that state: ”If name from record A and the name from B differ slightly, and the
address from both records match exactly, they are the same person”. However,
as the rules became more complex, so did the amount of manual labour involved
in creating the rules.

Furthermore, by introducing the terms for similar fields, the authors also
touch on the subject of string similarity or distance-based techniques. Rule-
based techniques are a case of distance-based techniques, where the rules deter-
mine the distance to be either 0 or 1. For distance-based techniques this value
can often be anything in between 0 and 1, indicating how similar two records
are. Many different approaches are taken to determine this similarity value for
two strings. One well known is the Levenshtein distance [24], which calculates
an edit distance needed to transform one string into the other, using insertion,
deletion or replacement of characters. Another metric often used is the Jaro-
Winkler distance [25], which differs from the Levenshtein distance due to the
Jaro-Winkler distance being a measure of the characters that two strings have
in common.

More field matching techniques are discussed in the survey by Elmagarmid et
al. [26]. The final result of this step can be represented as a graph, where the
records are the nodes of the graph, and the edges between the nodes indicate
that they had their similarity score calculated, with an edge weight equal to the
similarity score. This graph, often called the similarity graph, can then be used
for clustering, to find the nodes that are actually the same entity. Often times,
edges from this graph are cut based on a threshold set for the similarity score.
This threshold can be used to decide that a pair of nodes is the same entity or
not, based on the existence of an edge.
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2.1.3 Clustering

When considering an entity resolution pipeline with clustering as final step, it
is important to know what kind of clustering needs to be done. This is due
to the fact that there exists a wealth of algorithms all with different aspects
and attributes. In the context of entity resolution, it is important to look at
clustering algorithms that for example do not require any prior knowledge, also
known as unconstrained algorithms. These algorithms do not have to have the
amount of clusters to be found as an input, or other domain specific parameters.

Furthermore, the field of community detection algorithms contains multiple
algorithms that do not require the amount of clusters as input, which creates
a clustering based on the network of communities [27]. For this paper, we will
use the term graph instead of network and clusters instead of communities, as
these terms are interchangeable when it comes to the concept that they describe.
The use of community detection algorithms in the context of entity resolution
is not new, as McConville et al. [28] use an ensemble of community detection
algorithms for deduplication of vertices.

For our approach, we cluster on the input graph given by the step described
in section 2.1.2. The blocking step and the application of a score threshold
after the similarity calculation may result in the graph being split into multiple
smaller subgraphs. To detect these subgraphs, an algorithm called Connected
Components (also known as Transitive Closure or Partitioning) [29] can be
used. Connected Components works by initially making each node V its own
cluster. Next a scan is done over the edges in the similarity graph, merging the
clusters of two nodes if they have an edge between them in the similarity graph.
Intuitively, this results in large clusters containing lots of nodes, improving the
recall but lowering the precision. In early work of entity resolution, this was
the most common approach for creating clusters, as it can be done efficiently
in a single pass over the nodes in the graph G. Furthermore, it provides a
feasible result, albeit on the less accurate side. Another observation about
Connected Components is the fact that the weight of the edges is not taken into
account, only whether an edge exists or not. It is still often used as a baseline
to test entity resolution results against, but more often it is used as the basis for
other algorithms. Connected Components is performed first to then perform a
different clustering algorithm on the given component, or it is used with a small
alteration to the cluster generation.

12



As we specifically want different clusterings to use for PCAS, we use commu-
nity detection and clustering algorithms based on the different approaches that
they take to cluster the nodes in a graph. We roughly group the approaches in
the following categories; Hierarchical clustering methods, Modularity optimiza-
tion clustering methods, Random walk-based clustering methods, Structural
similarity-based clustering methods.

Hierarchical clustering methods

Hierarchical clustering (abbriviated to HCL) is an old clustering algorithm, with
the method proposed by Sibson [30], forming the basis for many other hierar-
chical clustering algorithms. This group of algorithms can be split in to ag-
glomerative and divisive clustering algorithms. For agglomerative algorithms,
the general idea is to make each node its own cluster. Then based on some
distance function, it decides whether two nodes are part of the same cluster.
For example, well known is the minimum distance also called minimum or sin-
gle linkage distance function. The algorithm takes a node and calculates the
distance to all other nodes, pairing the selected node with another node that
has the minimum distance to it. This continues for all clusters, where clusters
with multiple nodes use the minimum distance to any of its nodes as distance
measure. The result is a hierarchy of clusters, where the smallest clusters at
the bottom are the closest together, while the root cluster contains all nodes in
it. The same process can be done in reverse for divisive clustering, starting in
a large group and splitting into two clusters that are the furthest apart. The
algorithm itself has not changed much, but the distance function used has. In
the analysis by Jarman [31] for example, they compare four different types of
linkage methods: the earlier mentioned single linkage, complete linkage, average
linkage and centroid linkage. Each name already already indicates to a certain
extend how the linking works, which mainly takes either different nodes within
the clusters (for single, complete and centroid) or the average of all nodes within
the clusters.

One of the main issues with HCL is the fact that for the linkage methods it
is required to calculate this distance between all nodes. Therefore, without the
usage of an earlier step like blocking, it would not be feasible to perform HCL on
large data sets. But even with blocking this problem could occur when a block
is too large. Hierarchical clustering is however still often used and improved to
be able to work for larger scale entity resolution [12, 32].

Affinity propagation has not often been associated with entity resolution,
but has been used more in different tasks related to entity resolution [33, 34,
35]. It was originally proposed by Frey and Dueck [36] as another unsupervised
clustering algorithm that did not need to know the amount of clusters that it
has to create. Instead, it works by sending messages between nodes, informing
those nodes about the relative ’attractiveness’, which in the context of entity
resolution has to do with the similarity score. Then each receiving node responds
to the sending nodes with its willingness to be associated to the sender, based
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on the received scores. This prompts those first sending nodes to update their
relative scores after which an iteration is complete and a new one can start. Once
a consensus is reached after multiple iterations, the actual clustering is made
based on the nodes that each node associates to. If multiple nodes associate
with the same node, they are placed within the same cluster. By using this
iterative approach of clustering nodes together at different stages, we assign it
to the hierarchical group.

The OPTICS (Ordering Points To Identify the Clustering Structure) algo-
rithm is an algorithm proposed by Ankerst et al. [37]. It is a density-based
clustering method that is suited for discovering clusters with varying densities
and shapes, where the density is defined as the distance between nodes, hence
the grouping with other hierarchical approaches. The intuition behind OPTICS
is to model the density of data points in a way that enables the detection of
clusters without prior knowledge of the number of clusters.

To achieve this, it uses two main steps in the algorithm. Firstly, it creates a
reachability plot by computing the reachability distance between points in the
dataset. This reachability is the minimum distance required for a point to be
directly density-reachable from another point. The distance is based on two
configurable parameters, the neighborhood radius and the minimum number of
points required to form a dense region. Points are then ordered based on their
distance, resulting in an ordering that reflects the underlying cluster structure.
The second step is to extract the clusters from the reachability plot, by identi-
fying valleys, which represent transitions between dense regions. OPTICS can
be an effective clustering algorithm in the context of entity resolution due to
the ability of finding clusters of varying densities and shapes, as the similarity
graph could contain clusters of many different types.

The DCS (Divide and Conquer Strategy) by Muhammad and Van Laerhoven
[14] is an algorithm that aims to divide the input graph into smaller subgraphs
and cluster by selecting a leader based on features of the subgraph. Then the
clusters around the leaders are expanded using a scoring function, iteratively
adding or removing nodes. Lastly, the clusters obtained on each subgraph are
merged to get an overview of the clusters in the input graph. They argue that
’it is a widely accepted observation that complex systems exhibit hierarchical
organizations, in which each module represents a bigger picture and it further
contains a set of nested communities’ [14, p. 2]. This is why being able to
properly detect the subgraphs and perform clustering on those subgraphs, give
a good indication of the total final clustering.

Modularity optimization methods

The Louvain algorithm [38] is a popular and efficient community detection algo-
rithm that seeks to optimize the modularity. Modularity is a measure proposed
by Newman and Girvan [39] that quantifies the quality of a network partition.
This is defined as the difference between the observed fraction of edges within
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communities, and the expected fraction of edges when edges were to be placed
randomly while preserving the degree of each node. The Louvain algorithm op-
erates through a hierarchical agglomerative approach that consists of two main
phases which are repeated until the modularity converges. The first phase is the
local optimization phase, where each node in a community is greedily moved to
the neighboring community that yields the highest gain in modularity. In the
second phase, the communities are aggregated where each community is col-
lapsed into a single node, forming a new graph. The Louvain algorithm is found
more often in the context of entity resolution [40, 12, 28] due to how popular it
is in the community detection research area. Furthermore, the algorithm is fast
and scalable to large graphs, but might be prone to getting trapped in a local
optima due to its local optimization phase.

The algorithm proposed by Sobolevsky et al. [41] also makes use of optimizing
the modularity measure for higher quality community detection. Sobolevsky et
al. start by selecting an initial partition made of a single community. After
that, the following two steps are repeated as long as any gains in terms of the
modularity are observed. The first step is to find for each source community
(the communities at the start of this step) the best possible redistribution for
every source node (the nodes in the community at the start of this step) into
destination communities, which is calculated using the modularity. These des-
tination communities can either be an existing community or a complete new
one. Then in the second step, the best merger/split/recombination of commu-
nities is performed again based on the modularity. Due to using a combination
of different steps to get to its final clustering, the algorithm is called Combo.
The characteristics of the algorithm align with the goals of entity resolution,
by optimizing the modularity it seeks to identify groups of entities that are
densely connected within the cluster while being sparsely connected outside the
cluster. Compared to the Louvain algorithm, Combo differs in its approach to
optimize the modularity by not aggregating the communities after each itera-
tion. Furthermore, due to this difference in optimizing the modularity, Combo
is less likely to get stuck in a local optimum. This however comes at the expense
of using an iterative optimization approach which leads to high computational
complexity when using larger graphs.

Clauset et al. [42] proposed a fast and efficient hierarchical agglomerative
clustering algorithm for detecting community structure in large networks, and
could thus be described as either a hierarchical algorithm but also as a mod-
ularity optimization algorithm. The Greedy modularity algorithm is, similar
to the approaches by Blondel et al. [38] and Sobolevsky et al. [41], based on
the concept of modularity optimization. The key intuition behind the algo-
rithm is that it seeks to merge pairs of communities that result in the largest
increase in modularity, and this process is repeated until no further improve-
ment is possible. The main difference is found in the way the modularity is
optimized. Blondel et al. use a local optimization by only looking at neighbor-
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ing communities per node, followed by community aggregation for optimizing
the modularity. The method by Sobolevsky et al. uses a combination of merge,
split and recombination of communities to maximize the modularity, whereas
Clauset et al. adopt a greedy search approach to iteratively merge pairs of
communities in a hierarchical manner. As Greedy modularity shares the same
modularity based objective as the other modularity optimization methods, its
results are also aimed at identifying the densely connected clusters. Although
the aim and intuition of the algorithms are the same, the multiple different
modularity optimization approaches may result in different types of clusterings.

Random walk-based methods

The theorem for Markov Clustering (abbrivated to MCL) by Van Dongen [43]
is based on random walks on a graph. When random walking on a graph and
keeping track of the nodes visited, the intuition is that the random walk will
visit clusters (and especially cluster centers) a lot more than nodes that are
further away or less connected nodes. Simulating the random walk by actually
performing the random walk on the graph would be too expensive. Instead, Van
Dongen [43] managed to simulate it by performing simple algebraic operations
on the matrix of edges. Firstly a normal matrix product or otherwise called
expansion is applied to the matrix. This step models how the walk would
spread around the graph. Then an inflation step is applied that calculates the
Hadamard power, which models how the flow gets stronger in densely connected
parts and weaker in sparser parts. The algorithm performs these steps a number
of iterations to converge to a clustering. In the framework by Hassanzadeh et
al. [9] a number of algorithms are evaluated to perform entity resolution and
see how every algorithm performs. Their evaluation and final conclusion shows
that MCL is highly scalable, has a good ability to find a correct clustering and
is capable of dealing with different types of data sets [9, p. 1292].

Walktrap is introduced by Pons and Latapy [44] as a community detection
algorithm based on the principle of random walks in a network. The idea is that
a random walk in a network tends to remain within the densely connected com-
munities. By performing this random walk, the algorithm computes a distance
metric between nodes that reflects the likelihood of a walk transitioning between
them. This distance metric is then used to hierarchically cluster nodes using
a different hierarchical clustering algorithm. The intuition of using a random
walk has been proposed before, for example the Markov clustering method [43]
as explained in the previous paragraph. However, Pons and Latapy [44] perform
random walks of a set length and hierarchically cluster the result, whereas Van
Dongen [43] simulates the random walks using iterative matrix operations and
pruning of the result to get to a clustering. Because the Walktrap algorithm
uses a set length for the random walk, it is also sensitive to this parameter in
terms of the accuracy of the detected clusters. Furthermore, using a hierarchical
clustering algorithm to obtain the clustering can be a potential bottleneck for
large networks, although it also provides granularity in the results.
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The Diffusion Entropy Reducer (DER) proposed by Kozdoba and Mannor
[45] is also a community detection algorithm based on random walks. They
observe that nodes belonging to the same community exhibit similar connectiv-
ity patterns, and thus their probability measures, derived from random walks,
can be viewed as points in a measure space. By embedding these points into a
lower-dimensional Euclidean space, the algorithm captures the underlying com-
munity structure by clustering nodes with similar embeddings. This is also
the difference with Walktrap, as that computes a distance metric based on the
proximity found by the random walks after which the nodes are hierachically
clusterd based on the computed distances. In contrast, DER embeds the points
in a measure space and applies the k-means clustering algorithm. To the best
of our knowledge, there is limited related work on the direct application of the
DER algorithm in the context of entity resolution. However, given its ability to
capture the connectivity patterns in networks through random walk-based em-
beddings, it has the potential to perform well when applied to entity resolution
tasks where the relationships between entities can be represented as complex
networks.

Structural similarity-based methods

SCAN is a Structural Clustering Algorithm for Networks, prosposed by Xu et al.
[46] that focuses on identifying communities based on the structural similarity
rather than the density of the network. They argue that nodes within the
same community exhibit similar structural patterns. Xu et al. define structural
similarity between two nodes based on the concept of neighborhood overlap.
The neighborhood overlap between two nodes measures the similarity of their
local neighborhoods. Specifically, the structural similarity is defined as the
ratio of the number of common neighbors they share to the number of nodes in
their combined neighborhood. That is also what differentiates SCAN from other
algorithms, as it does not have a random walk or a modularity based approach to
finding the clusters, unlike the previously mentioned algorithms in this section.
The full algorithm works by calculating the structural similarity between all
nodes and its neighbors. Next, using a predefined threshold ϵ, neighborhoods
are created where all nodes have a structural similarity higher than ϵ. Finally, a
density-based clustering algorithm is used on all the neighborhoods to identify
the clusters, which requires another parameter that sets the minimum amount
of required nodes to form a cluster. Using this distinct approach might result
in different clusterings compared to other algorithms, as there might be entity
resolution tasks where the structure of the graph plays an important role in
finding the correct clustering. However, the performance of SCAN may be
sensitive to the choice of ϵ and the minimum number of nodes required for a
cluster.

Li et al. [47] proposed Identifying Protein Complex Algorithm (IPCA) in the
context of finding protein complexes in protein-protein interaction networks.
The key idea is to identify clusters based on maintaining the diameter of a
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cluster, which is the maximum shortest distance between all pairs of vertices.
This is done by firstly weighing the edges based on the shared neighbors of
nodes. Then dense subgraphs are identified (called cores by Li et al.) based
on iterative selection of edges with the highest weight, and merging adjacent
cores. Lastly, the cores are expanded by adding the remaining nodes that have a
strong connection to a core. The resulting clustering emphasizes the importance
of strong connections in dense connected parts of a subgraph. Therefore, in the
context of entity resolution, it could help in finding tightly knit clusters when a
large connected component is presented. One of the drawbacks, however, is the
fact that IPCA creates overlapping clusters, which goes against the intuition
that a cluster in entity resolution stands for a single entity.

There are many more clustering algorithms already used in the context of
entity resolution [17, 9] and even more algorithms on clustering in general.
Nonetheless, for the purpose of this research, the algorithms discussed in section
2.1.3 are evaluated to compare known entity resolution clustering algorithms to
other clustering and community detection algorithms.

Ensemble clustering

Ensemble clustering is a technique used to enhance the robustness and quality of
clustering results by integrating multiple clustering outcomes without accessing
the features or algorithms. Ensemble clustering can improve clustering quality,
achieve robustness, novelty, stability, and support distributed computing and
scalability. The approach has two stages; Diversity, where base clusterings are
generated, and a Consensus function, which combines the base clusterings to
obtain the final solution. The quality and diversity of base clusterings signifi-
cantly impact the performance of the clustering ensemble. However, achieving
the right balance of diversity and quality requires post-analysis. The combina-
tion of multiple clusterings using a consensus function is a challenging task, as
there is no predefined labeling, and the labelings in base clusterings are virtual
or not real. The survey by Golalipour et al. [48] provides a comprehensive
overview of many different ensemble clustering techniques.

2.1.4 Features

The paper by Muhammad and Van Laerhoven [14] mentions the use of properties
that are used to describe network topology. As networks are represented as
graphs, we consider the same features used. For this section, we assume an
undirected, weighted graph G(V,E) where V are the vertices or otherwise called
nodes, and E are the edges. An edge e = (u, v) consists of two nodes such
that u, v ∈ V . Furthermore, weights are defined as a function W (e) where
e ∈ E. The degree of a node v is defined as the amount of other nodes that it
is connected to. Another important definition, is that of triangles in a graph.
Whenever three nodes are connected by edges, for example nodes u, v, w by
edges (u, v), (u,w), (v, w), it is called a triangle. Triangles are found on a per
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node basis, which means that node u finds the triangle of nodes u, v, w, but also
node v finds the triangle v, w, u. Therefore, when counting the triangles over
the entire graph on a per node basis, each triangle is counted 3 seperate times.

The average clustering coefficient for weighted graphs is a property of a graph
that describes the extent to which nodes in a graph tend to cluster together.
It is defined as the geometric average of the subgraph edge weights [49] and
calculated per node using equation 1

cu =
1

deg(u)(deg(u)− 1)

∑
vw

(ŵuvŵuwŵvw)
1/3 (1)

where edge weights ŵuv are normalized by the maximum weight in the net-
work using ŵuv/max(w), and edges (u, v), (u,w), (v, w) form a triangle in the
graph. Furthermore, deg(u) is the degree for node u.

Transitivity is a measure similar in intuition to the clustering coefficient,
describing the tendency of nodes to cluster together. It is based on the relative
number of triangles in the graph, compared to the total number of possible
triangles in a graph. The transitivity T is calculated using equation 2.

T =
3 ∗#triangles

#possible triangles
(2)

where #triangles is the number of triangles found in the graph and #possi-
ble triangle the amount of possible triangles. The factor of three accounts for
the fact that each triangle contributes to three different possible triangles [50].

Density d measures how densely connected a graph is based on the amount of
edges compared to the amount of possible edges. The amount of possible edges
is defined as the amount of edges the graph would have had if every node had
an edge to every other node. For undirected graphs, this is calculated using
equation 3.

d =
2m

n(n− 1)
(3)

where n is the number of nodes and m is the number of edges in G.

The diameter and radius are properties of a graph that describe the spread
of a graph. With the diameter being the ”longest shortest path” within the
graph. This means that for every node u the shortest path is found to every
other node. Next, the largest value in these shortest paths, is the maximum
distance from node u to any other node, with the diameter being the longest
maximum distance for the whole graph. Similarly, the radius is the lowest value
out of all the maximum distances for the nodes in the graph. The node(s) that
have this lowest value, are often nodes found at the centre of the graph
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To find the nodes at the centre of a graph, the harmonic centrality by Boldi
and Vigna [51] can be used. They make use of the distances calculated for the
shortest paths, which can be seen in equation 4.

C(u) =
∑
v ̸=u

1

d(v, u)
(4)

where d(v, u) is the shortest-path distance between nodes v and u. As this
is calculated on a per node basis, the average of all the harmonic centralities
can be used as a feature for a graph.

2.1.5 Machine learning models

This work and previous works on entity resolution often make use of one or
more machine learning models. Machine learning (ML) is a subset of artificial
intelligence (AI) that involves the development of algorithms and computational
models that enable computers to learn and adapt from experience, without being
explicitly programmed [52]. The primary aim of ML is to allow computers
to generalize from limited data, recognize patterns, and make predictions or
decisions autonomously [53]. Linear regression, logistic regression, and active
learning are essential machine learning techniques used for various predictive
modeling tasks. In this section, we will briefly describe each method and their
applications.

Linear regression is a supervised learning algorithm used for predicting a con-
tinuous target variable based on one or more input features [54]. It models the
relationship between the input features and the target variable using a linear
function. The algorithm’s primary goal is to minimize the sum of squared differ-
ences between the predicted values and the actual values, also known as the least
squares criterion [55]. Linear regression is widely used in various fields, includ-
ing economics, finance, and social sciences, for forecasting and understanding
relationships between variables.

Logistic regression is a supervised learning algorithm but is often used for bi-
nary classification tasks, where the goal is to predict one of two possible classes
for a given input [54]. Instead of modeling a linear relationship between input
features and the target variable, logistic regression models the probability of
an input belonging to a particular class using the logistic function [56]. Lo-
gistic regression can be extended to perform multi-class classification, which is
called multinomial logistic regression. Similar to logistic regression, multinomial
logistic regression models the probability of an input belonging to each class.
However, instead of using the logistic function, it employs the softmax function
to estimate class probabilities [57].

Active learning is a semi-supervised learning paradigm that aims to reduce
the amount of labeled data required for training machine learning models [58].
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In active learning, the algorithm actively selects the most informative samples
from a pool of unlabeled data and queries the oracle (e.g., a human expert) for
their labels. This process is iteratively performed, allowing the model to learn
from the most informative samples and thereby improving its performance with
fewer labeled examples [59].

2.2 Related work

Entity Resolution is not to be confused with Entity Recognition or Entity Dis-
ambiguation. Entity recognition mainly focuses on identifying named entities
in text [60], whereas entity resolution is more focused on identifying multiple
mentions of entities as the same entity. Moreover, the goal of both research
fields are different: entity recognition identifies types of entities for the use case
of categorizing text or for extracting content automatically whereas entity res-
olution looks for a result set of matched entities from a large set of (possible)
duplicate entities. Then there is the domain of entity disambiguation (or entity
linking) which aims to link an unique identity to an entity in text mentions.
This makes use of a knowledge base containing the unique identities that the
entities should be linked to. This is particularly useful for cases where the same
word can have different identities. An example is the word Apple. This could be
the fruit, the company or less likely but still possible, part of the nickname for
New York: The Big Apple. Again, the difference is in the goal of the research
field and is therefore not to be confused with entity resolution.

Entity resolution solutions have different approaches to reach their end goal,
mainly based on the different types of problems tackled. Earlier works from
Newcombe et al. [4] and Fellegi and Sunter [5] were performed on record link-
age. They modeled the problem of record linkage as a statistical problem where
a comparison vector (comparison between two records) is the input of a deci-
sion rule, that either assigns the vector to the ”match” class or ”no match”
class based on the probability of assigning the vector to either of the classes.
Modelling the problem in this manner created the basis for the Probabilistic
matching models.

Some other techniques proposed use the generation of multiple partially iden-
tifying keys for a record, to then be able to match other records based on similar
keys [6]. Others use rule-based approaches where rules have to be defined by
experts that can tell instances apart based on those rules [7]. However, this
required many rules to get to a concise entity resolution result. Therefore,
Sarawagi and Bhamidipaty [61] designed a learning-based deduplication system
that uses a method of interactively discovering challenging training pairs using
active learning. These training pairs could then be used to train a classification
model that classifies record pairs as duplicates or not.

In the end, all techniques boil down to the same template of steps that
have to be taken towards the end goal, often referred to as an entity resolution
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pipeline. In the first place it is decided which records in the data source are
candidates that might be matched against each other, also known as blocking.
Then these candidate pairs are evaluated using some measure to understand how
related they are. After that, a decision has to be made whether these candidate
pairs are actual matches or not. However, more steps can be added to improve
for example the efficiency or accuracy. All of the steps can be executed in
different ways resulting in distinct outcomes.

Entity resolution has evolved a lot over the years, as each step was researched
more in depth. Recently, an extensive overview was provided by Chrisophides
et al. [17] where many different methods for each step are briefly touched
upon with their respective pros, cons and use cases. However, the evaluation of
methods in entity resolution, and more specifically the clustering part, is rare
to find. Hassanzadeh et al. [9] compare many different clustering methods, two
of which are Connected components as baseline, as well as Markov clustering,
on different data sets and different alterations of those data sets. They use
well known clustering evaluation measures to compare the result of their entity
resolution. Furthermore, to test an entity resolution solution it is necessary to
know the perfect existing clusters as otherwise there is no ground truth to test
the provided solution against. For smaller data sets it is possible to label the
ground truth clusters manually. Nonetheless, this becomes undoable for larger
data sets.

Christen [62] thus presented a data set generator that uses a duplicate-free
data set as input, inserting erroneous duplicate records to create a data set with
known groundtruths. Furthermore, it allows for creation of data sets with con-
figurable amounts and types of errors, but also for the amount of duplicates per
record. That is why often papers use the same set of available data sets that are
already labeled, either through manual labeling or automatic duplicate creation.
Therefore, not just an evaluation of multiple clustering methods was done by
Hassanzadeh et al. [9], but also a framework was setup where they publicized
the data sets that they used4 as the benchmark for entity resolution systems.
This is necessary as Köpcke et al. [63] noticed that there were some data sets
that are often used in entity resolution, yet they are not always consistent when
it comes to the size, possibly due to using a duplicate generator with differ-
ent settings. Having a framework for entity resolution evaluation could help
in more consistent evaluation of entity resolution across different researches. In
their paper they propose an evaluation framework that consists of four data sets
that are prelabeled5. This is however for the task of Entity matching, where
two data sets are matched against eachother, thus only containing clusters of
at maximum two records. Therefore, Saeedi et al. [11] do the same but for
multi-source entity resolution. This means that there is still a known number of

4http://dblab.cs.toronto.edu/project/stringer/clustering/
5https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_

datasets_for_entity_resolution
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sources used, but this information can be discarded by an algorithm making it a
dirty entity resolution problem. The data sets created by the authors are made
by taking a real world duplicate free data set and using the DAPO data gener-
ator [64] that creates duplicates with subtle errors. By sharing the data sets5

it has become the more consistently used benchmark for entity resolution, as
the data sets are available on a website6 where people can ’compete’ for better
entity resolution results using three of these data sets.

However, as noted by Menestrina et al. [8], oftentimes entity resolution evalu-
ation measures are chosen ad-hoc and are even conflicting with each other. For
this reason, the authors research the existing measures and propose their own
new measure which is specifically aimed at entity resolution, which they call the
generalized merge distance. This measure is an indication of how many splits
and merges of clusters are necessary to transform the entity resolution solution
to the actual ground truth solution. Other measures that they evaluate are
mainly based around the F1 score consisting of precision and recall. However,
calculating this precision and recall for clusters can be done in different ways.
Menestrina et al. [8] evaluate different F1 score measures; one that is based
around pairwise precision and recall, another F1 score that is based on exact
cluster precision and recall and finally an F1 score based on cluster similarity
precision and recall.

Lastly, they also evaluate a measure that indicates the information lost and
gained when the result is compared to the ground truth. They conclude that
there are considerable differences between the measures, and that their own
proposed method correlates the most to the pairwise F1 score and the infor-
mation lost and gained measure. However, that does not mean that only these
measures should be used, as each measure is based on a characteristic of the re-
sulting clusters. Therefore each measure is still useful depending on the desired
metric that needs to be evaluated and advocates for careful selection of which
evaluation metrics are used.

Saeedi et al. [11] evaluate some of the same algorithms as in the framework by
Hassanzadeh et al. [9]. The difference is that this time parallel implementations
are used to measure the scalability in terms of the size of the data set, but also in
terms of how parallelizable the algorithms are. They do not explicitly mention
using the measure as described by Menestrina et al. [8] but do explain that the
metrics that they use are based on the pairwise precision, recall and F1 score.
This information is thus crucial when it comes to interpreting these scores.

The paper by Draisbach et al. [10] proposes new algorithms for clustering
in the context of entity resolution. The data sets used to test the proposed
clustering algorithms are those from earlier works [9, 11], thus indicating more
standardization for better comparisons. But also the fact that they selected

6https://paperswithcode.com/task/entity-resolution
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metrics from Menestrina et al. [8], creating a thorough evaluation of their own
algorithms in comparison to other popular clustering algorithms.

The work by Muhammad and Van Laerhoven [14] proposes a novel community
detection algorithm, but also experiment with algorithm selection in the context
of finding community structures. They note: ’it is neither clear how to choose
among existing approaches nor is it clear when a particular algorithm performs
better than others’[14, p. 9]. The selection of algorithms is not done per data set,
instead they split their graph in subgraphs (which they call modules), to then
select an algorithm per module. They studied various properties of the modules
that are used to describe the network topology, and selected two features that
described the topology the best. Next, they train a Random Forests Classifier
on self generated benchmark data, where the features are used as the actual
data and the algorithm that clusters the data the best as label.

Another way to incorporate multiple results into a final result is by using an
ensemble of clusterings [65, 15]. This is often done by using a corrospondence
matrix [66] between the cluster labels produced by different clusterings. Chen
et al. [16] use the notion of ensemble clustering by combining results from differ-
ent entity resolution systems. Furthermore, they incorporate context features
derived from each entity resolution system. This is done due to the fact that
they want their entity resolution ensemble solution to have no prior knowledge
of the different systems presented to the ensemble. Using the features from the
context, they present a method to weigh each solution before the final ensemble.

In summary, the related works discussed in this section provide valuable in-
sights into entity resolution and the various methods that have been proposed
to address it. While these works have made significant advancements in the
field, they either constrain the types of clustering algorithms used to algorithms
known in entity resolution, or propose new ones for specific problems within
entity resolution. In this paper we aim to broaden the horizon in terms of the
clustering algorithms used for entity resolution, by implementing and evaluating
clustering algorithms not often found in the context of entity resolution. Fur-
thermore, by performing a similar approach to selecting algorithms as Muham-
mad and Van Laorhoven, we aim to increase the accuracy of the entity resolution
system. Finally, the paper by Chen et al. propose an ensemble system consist-
ing of multiple entity resolution systems, would require access to multiple entity
resolution systems. By performing ensemble clustering using multiple clustering
algorithms, we simplify this approach by condensing it to the clustering step.
In the following sections, we will delve into the details of our proposed methods,
present and discuss the experimental results.
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3 Methods

This section starts with an overview of the entity resolution system created
for evaluating the different clustering algorithms mentioned in section (2.1).
Furthermore, a description is provided on how we perform our PCAS method
using the proposed entity resolution system. Lastly an insight is given in how
(weighted) ensemble clustering is implemented and simultaneously performed
for a combined evaluation of all algorithms, PCAS and ensemble clustering.

3.1 Entity resolution system overview

For the entity resolution system, this paper makes use of the Deduplipy python
package7, which is an implementation of an entity resolution pipeline. This
package is chosen as it incorporates the basic steps of a pipeline, consisting of
blocking, similarity scoring and clustering. Furthermore, it is highly customiz-
able making it possible to implement more clustering algorithms, as well as
implementing PCAS and (weighted) ensemble clustering. Not just the steps
are customizable, but also the usage of different functionality within the steps.
Builtin are multiple blocking key possibilities, different string similarity func-
tions and the use of an active learning model to predict whether two records are
a match based on the calculated similarity. Apart from the mentioned builtin
functions, it is also possible to incorporate custom blocking keys or similarity
functions, making it possible to recreate entity resolution pipelines from different
works.

The final entity resolution system used in this research makes use of all the
previously mentioned steps, as well as adding steps into it for PCAS (section
3.2) and ensemble clustering (section 3.3). This starts with training the active
learning model that is later used for calculating a probability that two string
are a match. The active learning step in Deduplipy works as follows: It first
samples pairs from the given data set. Then it calculates the similarity for the
sampled pairs, using the given similarity functions. After that, it begins the
active learning process by giving itself a couple of synthetic perfect matches.
Doing so, allows the model to learn how cases look where the similarity score
is very high. Next the model prompts the user with pairs, asking whether the
pair is a match or not. The purpose of this is for the model to learn what the
similarity might look like for pairs that are and are not a match.

After the active learning model is trained, the blocking step is applied to
the data set. The rules used for blocking can be given by the user. If not,
Deduplipy has builtin functionality to select the best blocking rules from all of
the rules implemented in Deduplipy. To find blocking rules, Deduplipy defines
the best rules by using the sampled pairs from the active learning set, and uses
the model from active learning to predict which pairs are a match or not. Then

7https://www.deduplipy.com/
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it looks for the rules that groups the records such that the matching records are
in the same block. Next, the given or found blocking rules are applied to the
data set. This splits the data set into multiple smaller blocks, to decrease the
amount of pairwise comparisons necessary in the next step. In the next step,
for each block the pairwise similarities for all possible pairs inside each block
are calculated, and the active learning model is used to give a probability that
each pair is a match. The result of this step can then be filtered by applying a
user defined score threshold, which we call Sct, that removes all pairs that have
a score below Sct.

With the match probabilities calculated within each block, it is possible to
create a graph out of it, using the individual records in the blocks as nodes
and the calculated probabilities as weighted edges. The graph created is not a
multitude of graphs, but a single graph containing all the nodes in the data set.
This is done due to the fact that a node might fall into multiple blocks. The total
graph is used as the input graph for the clustering step. At this point we perform
the Connected Component algorithm on the graph to obtain all the components
present in the input graph. Before we use the individual clustering algorithms
on each component, we collect the features of each connected component, in
preparation for PCAS.

Then all the clustering algorithms are deployed on each connected compo-
nent. In our case, this consists of the following algorithms: Hierarchical clus-
tering, Markov clustering, OPTICS, IPCA, DCS, Combo, Louvain, Walktrap,
Greedy modularity, DER, SCAN and affinity propagation, as well as keeping
the component as its own clustering result. Figure 1 shows a schematic overview
of the entity resolution system.

Figure 1: Overview of the entity resolution system. The uninterrupted lines
show the flow of the input data, the dotted lines are other calculations used in
the system.
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The implementations for IPCA, DCS, Combo, Louvain, Walktrap, Greedy
modularity, DER and SCAN are provided by Rossetti et al. [67]8. The hierar-
chical clustering algorithm is provided by the Scipy python package [68]9. The
python implementation for Markov clustering is taken from Github10. Lastly,
OPTICS and affinity propagation are used from the sklearn package [69]11. To-
gether with the clustering step, the ensemble step is also executed, which we
explain more about in section 3.3. After this, we perform our PCAS step as
described in section 3.2.

3.2 PCAS: Predictive Cluster Algorithm Selection

There is not a ”one size fits all” solution to entity resolution or clustering in
general. The choice of algorithms used is always highly dependent on the type of
data or the desired type of clustering. Therefore, the idea behind PCAS is that
by incorporating multiple different algorithms, we remove the need to choose
a single algorithm beforehand. Furthermore, by using different algorithms on
various parts of the input graph, we investigate whether the resulting clustering
accuracy improves by using PCAS. As we do not know which algorithm per-
forms best with which graph features, we train a classifier on the features of
components.

The following features are collected and used: average clustering coeffi-
cient, transitivity, diameter, radius, nodecount, edgecount, min-max-average
edgeweight, density, min-max-average degree, triangles, average centrality. These
features are explained in more detail in section 2.1 and are mostly obtained by
network analysis or general graph features.

By picking the best performing clustering algorithm for each connected com-
ponent, we can assign a label to that component’s features. The notion of ’best
performing’ algorithm is used in the sense of its F1 score. Whenever the highest
F1 score is equal for multiple algorithms, we look at Generalized Merge Distance
as alternative. If the same still applies, we cascade through the metrics until
a winner is found. The order in which the metrics are compared, is of great
importance, as it decides the winner and thus the label for the training data.

With the features as input data, and the best clustering algorithm per con-
nected component as label for the features, we can train our classifier model.
This is a logistic regression classifier as that is a relatively easy to interpret
model with fast training time. Using the obtained classifier we can predict
which algorithm to use when a new component is presented.

8https://cdlib.readthedocs.io/en/latest/overview.html
9https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.

fcluster.html#scipy.cluster.hierarchy.fcluster
10https://github.com/guyallard/markov_clustering
11https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster
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3.3 Ensemble clustering

Another method to use the result of multiple clustering algorithms is that of
ensemble clustering. This method often tries to find a consensus between mul-
tiple clustering algorithms whether two nodes should be in the same cluster.
For this paper, we use the Graph-based consensus clustering by Yu et al. [70].
The proposed method by Yu et al. creates a so called co-association matrix,
CO. This matrix is created by creating a similarity matrix for all nodes v in
the graph (which in our case is a component). Then each entry in the similarity
matrix vi, vj represents the edge between node i and node j. Next each clus-
tering algorithm adds a ’vote’ to the similarity matrix if they have edge vi, vj
in one of their clusters. Finally the matrix is divided by the amount of cluster-
ing algorithms that are used in the ensemble, to create a normalized similarity
matrix. Yu et al. formalize this matrix as follows:

CO(vi, vj) =
1

M

M∑
g=1

Sg(vi, vj) (5)

where M is the amount of algorithms and Sg is the similarity matrix by
algorithm g. As the resulting matrix is a similarity matrix, we can interpret
this as a graph of its own. To get the final clustering, we follow the approach by
Yu et al. that removes edges below a given threshold. This threshold is called
the normalized cut and is applied to the graph obtained from the similarity
matrix. In our implementation, we choose different values for the normalized
cut to get an idea of the range of solutions possible using ensemble clustering.

Weighted ensemble clustering

The ensemble clustering described in the previous paragraph gives all the differ-
ent clustering algorithms that participate in the ensemble an equal vote when
creating the similarity matrix. However, certain algorithms might perform bet-
ter for different tasks, which is why we also implement a weighted version of
ensemble clustering. In a weighted ensemble clustering, we assign a weight per
clustering algorithm that determines how much the clustering result of that al-
gorithm influences the ensemble clustering. The weights can be determined in
many different ways [48], however, we chose to experiment with using a linear
regression as explained in section 2.1, to learn the weights. For training the lin-
ear regression, we loop over the components in the total input graph and look
at the different clustering results obtained from the different algorithms. Then
we look at all the possible edges in a component and per edge assign a 1 to that
algorithm for that edge if the algorithm has that edge in its clusters, and a 0 if
the algorithm does not have the edge in its clusters. The groundtruth is used
as the actual label of the edge. This is shown in table 1.

When training, we balance the input such that 50% of the training data has
groundtruth label 1 and the other 50% label 0. By doing this we prevent a
skewed result towards clustering algorithms that put all the nodes into a single
cluster or towards clustering algorithms that may separate the nodes into many
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Edge HCL MCL IPCA label

a→b 1 1 1 0
b→c 1 1 0 1
c→a 1 0 1 1
c→d 0 0 1 0

Table 1: Example of data used as training for the Weighted ensemble clustering
linear regression model

smaller clusters. Furthermore, a total of 200 edges are chosen to train on from
the training set, as 100 edges per class are assumed to be a sufficient amount for
learning. Once the weights are learned using the linear regression, the ensemble
clustering uses the same proposed method by Yu et al. The difference is in the
creation of the normalized similarity matrix:

CO(vi, vj) = (

M∑
g=1

Wg ∗ Sg(vi, vj))/

M∑
g=1

Wg (6)

where Wg is the weight for algorithm g, but also the term 1
M has been

replaced by a final division of
∑M

g=1 Wg. This is due to the fact that we normalize
the matrix to a value between 0 and 1, with the maximum value that could
possibly be in the matrix being the sum of all weights.
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4 Experiments

This section describes the experimental setup used for the evaluation of multiple
clustering algorithms, as well as the proposed PCAS and ensemble clustering
methods. We perform an entire run of our entity resolution system on each
data set, as explained in section 3.1. In total we perform three experiments,
one for each data set. Furthermore, it should be noted that each experiment on
each data set is done using seven runs, each time with a different random state
parameter. This is done due to the fact that certain algorithms make use of
random choices, as well as the machine learning models which also use a random
state. By setting the random state, we ensure reproducibility, as well as getting
an average result for the algorithms and models. The results are discussed per
data set in section 4.4 and are reported as the average value of the seven runs.

4.1 Data sets

For our experiments, we have chosen to use the CORA citation data set, as
well as the Geographical settlements and Musicbrainz data sets, which all have
groundtruth labels for comparison of the final result. These data sets are all used
more often in the context of entity resolution, where Geographical settlements
and Musicbrainz [11] are shared to be used as benchmark for entity resolution
systems.

The CORA data set is found regularly in the context of entity resolution [71,
72, 10], but not always in the same configuration. CORA consists of records on
research papers in the computer science domain, which contain information like
the authors, title, publisher, date and more. For our experiments we use the
CORA version as used by Bilenko et al, Dong et al. and Draisbach et al., which
has 1879 records that correspond to 182 different real world entities. Further-
more, we only use the columns containing the authors, title and groundtruth
label. The authors column has the authors names with the main differences for
duplicates being in the format in which the author names are written. Some
records have the full name, others have only the first letter of the first name.
More differences are found such as the use of an ampersand instead of the word
”and”. Additionally, the title column contains less differences per entity, with
words missing or added to the title.

The Geographical settlements and Musicbrainz data sets are two of the pro-
posed benchmark data sets by Saeedi et al. and are both also found in more
entity resolution literature [11, 13, 73, 74, 75]. Geographical settlements com-
prises real geographic data on settlements from four knowledge bases. It contains
3054 records representing 820 real world entities and includes the groundtruth,
which was obtained through manual labeling. Each record contains at least a
name for the geographical settlement, but depending on the source knowledge
base, it may contain extra information like the latitude, longitude and the type
of settlement. For our experiments, we only use the name to match the records
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on and the groundtruth label to compare our result to. As it is a data set made
from four knowledge bases, the amount of records per cluster can be four at
maximum. However, as we consider only dirty entity resolution without any
prior knowledge on the amount of sources in the data set, we do not make use
of this information.

The Musicbrainz data set is a larger data set containing 20.000 records of
songs, with 10.000 entities. These 10.000 entities are from an original clean
data set of songs data, which includes the title, length, artist, album, year and
language of the song. A generator is used on the clean entities to generate the
duplicates in the data set, but also the errors that are found in the duplicates,
which can be spelling errors or empty fields. The use of a generator means that
the groundtruth is automatically created, but also the amount of duplicates per
record or the severeness of the errors can be used as input. For the Musicbrainz
data set, the maximum amount of duplicates per record was set to 5 by Saeedi
et al. [11] and the generated duplicates were made with a high degree of errors.
However, for our experiment we do not take the maximum amount of duplicates
per records into account. Furthermore, we only use the title, artist and album
to match on, with the groundtruth label as comparison for our obtained results.

All the clustering algorithms and the unweighted ensemble clusterings are
performed on each of the data sets (named the full data sets for clarity purposes).
However, each full data set is also per run split on the connected components in
a 20% test and 80% training set. This is done to allow a part of the connected
components to be used with their features as training for the PCAS method.
If we were to split on the full data set, it would also alter the shape of each
component, and add randomness to the types of shapes in the components.
Simultaneously, the training set is also used for the weighted ensemble clustering
method to obtain its edges from to learn its weights. The test split is then used
to cluster the clustering algorithms on, but also the PCAS method and the
weighted versions of the ensemble clustering.

For the model trained by PCAS, we test the models predictions on the test
data. As each prediction represents a clustering by an algorithm, we gather
the clustering from the predicted label for each connected component in the
test data, as well as collecting all the clusterings by the individual clustering
algorithms. Simultaneously with collecting the clusterings per component, we
also gather the groundtruth on a per component basis. This is done to get a gold
standard clustering as proposed by Menestrina et al. [8]. By doing so we get a
better idea on how well the clustering algorithms and PCAS manage to cluster
on the given component, instead of punishing the algorithms for not putting
nodes together that are not in the same component. Then we can evaluate the
total clustering result of PCAS and compare that to the resulting clustering of
the individual algorithms on the test data. Furthermore, we also evaluate the
predictive capability of the model to predict the correct label for a component.
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This is done by calculating an accuracy score that represents how much labels
are correctly predicted as a percentage to the total amount of predictions.

For every full data set and their test split, the mixed best theoretical limit
is also included as a benchmark. This is the clustering obtained if for every
component, the best clustering is chosen.

4.2 Parameters

For each experiment, we have to determine multiple parameters that we use in
the entity resolution pipeline. Some parameters are different per data set used
whereas others remain constant throughout all tests. Therefore, we give an
overview of the consistent parameters as well as a per data set overview of the
used parameters. The parameters for each individual clustering algorithm are
kept consistent between different data sets. This is done so that each algorithm
should create the same types of clusterings regardless of the data set used, and
to prevent the tuning of many parameters for multiple algorithms. Moreover,
without the tuning of parameters for the algorithms, we use the standard values
given by either the authors of the algorithm, or the given implementation. Fur-
thermore, the same values for the normalized cut are chosen for the weighted
ensemble clustering and unweighted ensemble clustering, to get a comparison
between the two. To get a good understanding of how well different values
of the normalized cut perform, a multitude of values is used each run on the
same ensemble before the final ensemble clustering. These values are shown in
table 2. For hierarchical clustering, we chose to use a higher cluster threshold
than the standard 0.5. This is due to the fact that we desire clusterings with a
higher precision, which is achieved by hierarchical clustering by increasing the
cluster threshold, at the cost of recall. For OPTICS we had to decrease the
minimum amount of samples from 5 to 2. As our components are oftentimes of
sizes smaller than 5, we want OPTICS to be able to create smaller clusters. By
setting this value to 2, we allowed OPTICS to also decide on a clustering for
components of size 3 and larger.

Parameter Value(s)
Normalized cut (0.5, 0.6, 0.7)
Hierarchical clustering - cluster threshold 0.7
Optics - min samples 2

Table 2: Consistent parameters used for all data sets

The biggest difference between the data sets are the blocking rules used and
the Sct. The blocking rules are chosen based on the blocking rules used in
other entity resolution systems that are tested on this same data set, unless
the blocking rules presented by Deduplipy are superior in terms of the resulting
clustering. Furthermore, multiple values for the score threshold are used, with
the range decided by going above and below the best threshold found in papers
using the same data set. The values for the score thresholds Sct and the blocking

32



rules used for CORA, Geographic settlements and Musicbrainz can be found in
table 3.

Data set Parameter Value(s)

CORA
Sct (0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75)
Blocking rules Authors - first two letters, Title - first two letters
Similarity functions Authors, title - adjusted ratio & adjusted token sort ratio

Geographical settlements
Sct (0.7, 0.75, 0.8, 0.85, 0.9, 0.95)
Blocking rules Name - first letter
Similarity functions Name - adjusted ratio & adjusted token sort ratio

Musicbrainz
Sct (0.3, 0.35, 0.4, 0.45, 0.5, 0.55)
Blocking rules Album - first letter
Similarity functions title, artist, album - adjusted ratio & adjusted token sort ratio

Table 3: Parameters used per data set

An active learning model is trained per data set and reused for each run on
that data set. This ensures consistency in the match probabilities between runs
whenever the same record pairs are presented to it. Moreover, for each data
set the same similarity functions are used. This is done to demonstrate the
difference in data sets and the types of strings in those data sets. Furthermore,
by not using similarity functions specifically tailored to the data set, we maintain
a general entity resolution system that mostly relies on the clustering to obtain
a good result.
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4.3 Evaluation measures

We perform an evaluation of all algorithms on the full data set, as well as an
evaluation of all algorithms plus the PCAS result on the test data set. This is
done using the measures proposed by Menestrina et al. [8], where they use the
pairwise precision, recall, F1 and their proposed GMD method. The pairwise
evaluation measures work by looking at the pairs present in the groundtruth
clustering and those present in the resulting clustering. For the precision, Men-
estrina et al. provide equation 7. This precision can be seen as the ratio of the
amount of correct pairs found in the resulting clustering to the amount of pairs
found in total in the resulting clustering. The recall as described in equation 8
can be seen as the ratio of the amount of correct pairs in the resulting clustering
to the amount of pairs in the groundtruth clustering.

PairPrecision(R,S) =
|Pairs(R) ∩ Pairs(S)|

|Pairs(R)|
(7)

PairRecall(R,S) =
|Pairs(R) ∩ Pairs(S)|

|Pairs(S)|
(8)

where Pairs(R) and Pairs(S) are the pairs present in the resulting clus-
tering and the groundtruth clustering respectively. The pairwise F1 score is
calculated in equation 9 using equations 7 & 8.

pF1(R,S) =
2 ∗ PairPrecision(R,S) ∗ PairRecall(R,S)

PairPrecision(R,S) + PairRecall(R,S)
(9)

Furthermore, the Variation of Information (or VoI) method by Meilă [76]
is used. This is a measure similar to the GMD, where the measure looks at
the difference of information lost and gained when changing one clustering to
another. VoI uses the concept of entropy and mutual information, where entropy
is the measure of uncertainty or randomness in a clustering. Mutual information
measures the shared information between two clusterings.

The implementation of these measures is found in the python package entity-
resolution-evaluation12.

Furthermore, for the PCAS method, it is necessary to pick one or more
evaluation measures. Therefore, the F1 score is the first metric as it is a balanced
view of the precision and recall. Secondly, the GMD is used due to its close
correlation to the F1 score, but also due to intuition behind it where a lower
GMD also means that the clustering is closer to the ground truth. As a third
option, the variation of information is used. Lastly, the precision is used before
the recall is used, due to the desire to get more precise clusterings. If after
going through all the metrics, there are still multiple clustering algorithms in
contention (which is possible if two or more clustering algorithms come to the
exact same clustering), a random algorithm out of the remaining algorithms is
chosen.

12https://pypi.org/project/entity-resolution-evaluation/
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4.4 Results

The experiments are performed using the methods from section 3 and the setup
described in section 4.1 to section 4.3. We evaluate the implemented existing al-
gorithms on the full data set with the different unweighted ensemble clusterings.
Furthermore, we compare the existing algorithms to the (un)weighted ensemble
clusterings and PCAS on the test split of the data set. The results are given
on a per algorithm selection of the score threshold Sct, based on the best F1
score of that algorithm. For each table in the results, the highest values for the
F1, precision and recall column are highlighted in grey. For the GMD and VoI
the lowest values are highlighted in grey. A brief evaluation on the results of
the full data set and the test split are also given, explaining possible reasons
for the given outcomes. Appendix A contains the full resulting data per score
threshold on all data sets, as well as plots of the data for visual comparison.

4.4.1 The CORA data set

Table 4 shows the results of all algorithms on the full CORA data set for their
best score threshold Sct. The different ensemble clusterings are also present
with an indication of the normalized cut value in the name.

algorithm best threshold f1 precision recall GMD VoI
mixed best 0.500 0.894 0.863 0.927 74.857 0.320
Connected components 0.750 0.890 0.862 0.920 94.000 0.365
Hierarchical clustering 0.750 0.890 0.862 0.920 94.000 0.365
Markov clustering 0.650 0.886 0.861 0.912 86.000 0.355
OPTICS 0.650 0.324 0.939 0.195 510.000 1.776
IPCA 0.550 0.875 0.858 0.892 93.000 0.389
DCS 0.600 0.880 0.856 0.905 87.000 0.397
Combo 0.600 0.598 0.833 0.466 113.000 0.776
Louvain 0.500 0.622 0.840 0.494 112.000 0.739
Walktrap 0.550 0.850 0.855 0.845 88.000 0.428
Greedy modularity 0.700 0.627 0.880 0.487 128.000 0.788
DER 0.500 0.805 0.842 0.771 205.857 0.775
SCAN 0.500 0.882 0.842 0.926 79.000 0.355
Affinity propagation 0.600 0.308 0.855 0.188 365.000 1.536
ensemble no weight 0.5 0.550 0.893 0.862 0.926 80.000 0.332
ensemble no weight 0.6 0.500 0.893 0.863 0.925 80.286 0.334
ensemble no weight 0.7 0.650 0.838 0.854 0.823 116.143 0.530

Table 4: Results of the clustering algorithms with their best score threshold on
the full CORA data set. VoI is the variation of information.

Here it is shown that there is a merit to using the ensemble clusterings, as
the unweighted ensemble clusterings with a normalized cut value of 0.5 and 0.6
outperform every other individual algorithm in terms of its F1 score. Their
F1 score is also only 0.1% off of the mixed best F1 score. However, the gap
to the next highest performing algorithms after the unweighted ensemble clus-
terings, Connected Components and Hierarchical clustering, is only 0.3%, with
Markov clustering, DCS and SCAN trailing the top performers by 0.7% to 1.3%.
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OPTICS has a clear lead in terms of the precision, but at the cost of recall. Fur-
thermore, OPTICS also has a high GMD, indicating that it has created many
small clusters with only certain matches in it. Interestingly, SCAN has the
highest recall and lowest GMD of all the algorithms. The low GMD shows that
SCAN has a clustering that requires the least amount of changes to get to the
groundtruth clustering.

Table 5 shows the result of the algorithms on the test split of the CORA
data set for their best score threshold. The values are generally higher on the
test split compared to the evaluation on the full data set, due to the fact that
the smaller amount of data to cluster on means that there are less possibilities
for errors. This time, Connected components and Hierarchical clustering both
have the best F1, recall, GMD and VoI. Moreover, their results are identical to
that of the mixed best, with only slightly worse GMD and VoI metrics. Due to
the identical results of Connected components and Hierarchical clustering, it is
clear that their clusters were the exact same. As Connected components is just
the component as a result, it shows that Hierarchical clustering did not actually
perform any clustering as well, and kept the component as final cluster. Only
OPTICS has a higher precision than any of the other algorithms, similar to the
full data set evaluation. Furthermore, OPTICS has a low recall with a very high
GMD, indicating that it created similar clusters as mentioned earlier.

algorithm best threshold f1 precision recall GMD VoI
test split mixed best 0.800 0.940 0.894 1.000 3.000 0.115
test split connected components 0.800 0.940 0.894 1.000 3.429 0.118
test split hierarchical clustering 0.800 0.940 0.894 1.000 3.429 0.118
test split markov clustering 0.550 0.934 0.885 0.996 4.714 0.158
test split optics 0.500 0.515 0.965 0.402 126.286 1.500
test split ipca 0.500 0.924 0.881 0.979 4.714 0.152
test split dcs 0.600 0.932 0.890 0.986 5.857 0.182
test split combo 0.700 0.686 0.876 0.571 12.857 0.533
test split louvain 0.700 0.687 0.874 0.573 12.857 0.531
test split walktrap 0.500 0.900 0.879 0.942 3.714 0.168
test split greedy modularity 0.700 0.690 0.877 0.577 12.429 0.516
test split der 0.650 0.738 0.856 0.697 30.000 0.637
test split scan 0.500 0.933 0.882 0.997 3.571 0.129
test split affinity propagation 0.500 0.469 0.881 0.336 51.429 1.125
test split ensemble no weight 0.5 0.600 0.936 0.892 0.994 4.857 0.156
test split ensemble weighted 0.5 0.750 0.919 0.881 0.967 6.714 0.183
test split ensemble no weight 0.6 0.550 0.931 0.891 0.983 5.429 0.162
test split ensemble weighted 0.6 0.750 0.919 0.881 0.967 7.143 0.188
test split ensemble no weight 0.7 0.500 0.836 0.877 0.816 7.857 0.316
test split ensemble weighted 0.7 0.750 0.919 0.881 0.967 7.429 0.191
test split PCAS 0.800 0.935 0.894 0.991 4.571 0.141

Table 5: Results of the clustering algorithms with their best score threshold on
the test split of the CORA data set. VoI is the variation of information.

The unweighted ensemble outperforms the weighted ensemble in terms of F1
on two out of the three different normalized cut values. However, the weighted
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ensemble is more stable with regards to the normalized cut values. But out
of the algorithms in our own methods, PCAS is the best performer, being only
0.5% behind the best performing algorithms in terms of F1 score. PCAS’s GMD
and VoI is also among the lowest of all algorithms, indicating that the clustering
obtained by PCAS performs decent on the test set. However, when looking at
all score thresholds and a selection of well performing algorithms, as seen in
figure 2, we see that PCAS is often outperformed by other algorithms.

Figure 2: Selection of algorithms on the CORA data set test split for comparison
of PCAS

The good performance of PCAS in the end can be denoted to the fact that
PCAS noticed the good performance of Connected components and Hierarchi-
cal clustering, and has almost exclusively chosen a clustering by one of these
algorithms. This effect can be seen in table 6, as the accuracy of the model is
double for score threshold 0.8 compared to the other score thresholds. How-
ever, it should be noted that the accuracy score for the model is low, at points
lower than randomly guessing the correct label. As the CORA data set only
contains around 120 connected components, depending on the score threshold
used, there are not many samples available for each different algorithm. This
hurts the training of the model, which is clearly shown in table 6.

In conclusion, the results show that there are multiple algorithms capable
of performing close to the theoretical mixed best clustering, with the ensem-
ble clustering taking the lead in terms of its F1 score. However, this indicates
that more performance might be obtained by either tuning the individual algo-
rithms to get more diverse clusterings, or by adding different algorithms. The
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Score threshold 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Accuracy score 0.071 0.063 0.08 0.074 0.063 0.066 0.153

Table 6: The PCAS predictive model average accuracy score per threshold on
the CORA dataset.

test split tells a similar story, with PCAS showing that it can perform close
to existing individual clustering algorithms, although outperforming clustering
algorithms was the main goal. The ensembles perform well on the test split,
but are bested by multiple different individual clustering algorithms. Further-
more, the weighted ensemble version shows robustness towards the normalized
cut value, which could mean that different values should be used to notice the
whether the normalized cut values have an impact on the weighted ensemble
clustering.
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4.4.2 The Geographical settlements data set

Table 7 shows the results of all algorithms on the Geographical settlements
data set. The unweighted ensemble clustering with a normalized cut value of
0.6 obtained the highest F1 score with 0.661. This score is with 4% difference to
the mixed best F1 score relatively close. However, it should be noted that the
GMD increases for the unweighted ensembles when the normalized cut value
increases, which is a clear sign that the removal of certain nodes by cutting
on the normalized cut value, generates more and smaller clusters, thus needing
more merges/splits to get the groundtruth clustering. It should be noted that
Markov clustering, DCS, Combo, Louvain, Walktrap and Greedy modularity,
together with the other ensemble clustering algorithms are all within 2% of the
aforementioned ensemble score. Hierarchical clustering has the highest preci-
sion, but lacks in its recall which reduced the F1 score to be one of the lowest.
The highest recall is obtained by DCS with 0.584, which means that in the
process of blocking, a lot of potential matches were already removed. Therefore
using more than one blocking key might help in a scenario like this, as that
creates more potential matches at the cost of computational complexity. This
can be attributed to the fact that in our experiment on this data set, we did
not make use of a similarity function based on the physical distance between
settlements.

algorithm best threshold f1 precision recall GMD VoI
mixed best 0.300 0.703 0.916 0.571 714.143 0.522
Connected components 0.400 0.571 0.668 0.499 920.000 0.694
Hierarchical clustering 0.600 0.418 0.899 0.273 1340.000 0.902
Markov clustering 0.300 0.644 0.834 0.525 861.000 0.624
OPTICS 0.300 0.621 0.832 0.495 1009.000 0.692
IPCA 0.300 0.535 0.860 0.388 1098.000 0.772
DCS 0.300 0.641 0.710 0.584 811.000 0.621
Combo 0.300 0.655 0.835 0.539 844.000 0.613
Louvain 0.300 0.654 0.839 0.536 847.000 0.614
Walktrap 0.300 0.646 0.773 0.555 851.000 0.628
Greedy modularity 0.300 0.654 0.840 0.535 849.000 0.616
DER 0.300 0.327 0.478 0.249 1499.714 1.060
SCAN 0.300 0.615 0.667 0.570 865.000 0.662
Affinity propagation 0.300 0.398 0.589 0.301 1438.429 0.986
ensemble no weight 0.5 0.300 0.652 0.763 0.569 824.000 0.614
ensemble no weight 0.6 0.300 0.661 0.816 0.555 835.000 0.609
ensemble no weight 0.7 0.300 0.649 0.877 0.515 877.571 0.625

Table 7: Results of the clustering algorithms with their best score threshold on
the full Geographical settlements data set. VoI is the variation of information.

The different papers by Saeedi et al. [11, 73, 13] in which they also experi-
ment on this data set, all calculate the distance between two settlements based
on the latitude and longitude (if given). This gives more information than just
the name label that we use in our experiment. As the name labels are often very
short names, a small difference in the string could already result in a large dif-
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ference in the similarity score which in turn results in the similarity score falling
below the score threshold. An example is the geographical settlement Petra.
Petra is found three times in the data set. Twice using the string Petra, once
with the string Petra (Jordan). The component containing all three of these
occurrences is split on the fact that Petra and Petra (Jordan) are not deemed
similar, which in turn results in a missed match. By using the geographical
distance, more matches can be found based on the closeness of the location.

algorithm best threshold f1 precision recall GMD VoI
test split mixed best 0.850 0.999 0.998 1.000 0.143 0.000
test split connected components 0.850 0.990 0.981 1.000 2.286 0.005
test split hierarchical clustering 0.850 0.990 0.981 1.000 2.286 0.005
test split markov clustering 0.850 0.990 0.981 1.000 2.286 0.005
test split optics 0.850 0.990 0.981 1.000 2.286 0.005
test split ipca 0.850 0.983 0.980 0.986 3.143 0.008
test split dcs 0.850 0.990 0.981 1.000 2.286 0.005
test split combo 0.850 0.990 0.981 1.000 2.286 0.005
test split louvain 0.850 0.990 0.981 1.000 2.286 0.005
test split walktrap 0.850 0.990 0.981 1.000 2.286 0.005
test split greedy modularity 0.850 0.990 0.981 1.000 2.286 0.005
test split der 0.350 0.471 0.659 0.381 170.143 0.538
test split scan 0.850 0.990 0.981 1.000 2.286 0.005
test split affinity propagation 0.400 0.561 0.793 0.440 153.714 0.454
test split ensemble no weight 0.5 0.850 0.990 0.981 1.000 2.286 0.005
test split ensemble weighted 0.5 0.550 0.953 0.956 0.952 12.500 0.042
test split ensemble no weight 0.6 0.850 0.990 0.981 1.000 2.286 0.005
test split ensemble weighted 0.6 0.550 0.952 0.956 0.950 13.000 0.044
test split ensemble no weight 0.7 0.850 0.990 0.981 1.000 2.286 0.005
test split ensemble weighted 0.7 0.600 0.927 0.945 0.912 19.143 0.059
test split PCAS 0.900 0.901 0.946 0.862 17.571 0.041

Table 8: Results of the clustering algorithms with their best score threshold on
the test split of the Geographical settlements data set. VoI is the variation of
information.

The results on the test split are shown in table 8. The scores on the test split
are much higher, due to the fact that only connected components are used with
the groundtruth being taken per connected component. As the input graph cre-
ated on the geographical data set contains many smaller connected components,
there are less cluster decisions to take by the algorithms. Therefore, a lot of the
algorithms obtain the same clustering, which is not clustering on the component
at all. Despite this observation, neither the weighted ensemble clusterings nor
PCAS managed to get to the same results as many other algorithms. This could
be due to both models not being able to learn properly with this many similar
clustering results, and being punished when any other algorithm than the top
performing algorithms are chosen.

Table 9 shows the accuracies of the predictive model, which shows a similar
result as that for the CORA data set. For many score thresholds, the accuracy
is similar or worse to randomly choosing a label, with an exception being a score
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Score threshold 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Accuracy score 0.070 0.075 0.081 0.075 0.067 0.074 0.085 0.072 0.084 0.063 0.068 0.026 0.101 0.065

Table 9: The PCAS predictive model average accuracy score per threshold on
the Geographical settlements data set.

threshold of 0.9. This is also the score threshold where PCAS obtains its best
average result, by better selection of the correct clustering label.

All in all, the results on the full data set as well as the test split of the data
set tell us that the biggest improvement is found either by using different clus-
tering algorithms or by changing one of the steps in the entity resolution system
before the clustering part. However, the ensemble clustering again outperforms
the individual clustering algorithms on the full data set, coming closest to the
potential mixed best clustering.
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4.4.3 The Musicbrainz data set

Table 10 shows the results obtained by all clustering algorithms on the full
Musicbrainz data set. The highest F1 score is obtained by the unweighted
ensemble clustering with a normalized cut value of 0.7. This F1 score is 2.4%
lower than the highest obtainable F1 score denoted by the mixed best clustering.
Furthermore, the closest individual clustering algorithms (Greedy modularity,
Markov clustering, Combo and Louvain) were outperformed by between 0.7%
and 0.9%. However, Markov clustering had the lowest GMD, even lower than
that of the best unweighted ensemble clustering. And not just the F1 score
of the unweighted ensemble clustering was the highest, also the precision of
the unweighted ensemble clustering outperformed the other algorithms, this
time differing 4.5% compared to the mixed best clustering. The recall of all
the algorithms is not very high, again showing possible signs that the blocking
performed was too restrictive, putting actual matches in different connected
components.

algorithm best threshold f1 precision recall GMD VoI
mixed best 0.300 0.693 0.957 0.543 3596.143 0.350
Connected components 0.550 0.629 0.862 0.496 4152.000 0.407
Hierarchical clustering 0.550 0.571 0.860 0.428 4774.000 0.460
Markov clustering 0.350 0.661 0.871 0.533 3886.000 0.383
OPTICS 0.350 0.655 0.895 0.516 4089.000 0.396
IPCA 0.300 0.629 0.905 0.482 4198.000 0.411
DCS 0.400 0.651 0.841 0.531 3932.000 0.391
Combo 0.350 0.661 0.875 0.532 3933.000 0.385
Louvain 0.350 0.660 0.869 0.532 3939.000 0.386
Walktrap 0.350 0.658 0.859 0.534 3929.000 0.387
Greedy modularity 0.350 0.662 0.875 0.532 3924.000 0.385
DER 0.500 0.249 0.760 0.149 7408.857 0.691
SCAN 0.500 0.644 0.884 0.507 4068.000 0.397
Affinity propagation 0.450 0.276 0.758 0.169 7562.286 0.693
ensemble no weight 0.5 0.350 0.652 0.828 0.538 3915.571 0.390
ensemble no weight 0.6 0.400 0.660 0.878 0.528 3902.857 0.384
ensemble no weight 0.7 0.350 0.669 0.912 0.528 3917.714 0.380

Table 10: Results of the clustering algorithms with their best score threshold
on the full Musicbrainz data set. VoI is the variation of information.

The test split results are presented in table 11. Similar to the results on the
full data set, the highest F1 score is obtained by the unweighted ensemble clus-
tering with a normalized cut value of 0.7. However, Combo and Louvain obtain
the exact same F1 score of 0.966. In terms of precision, the ensemble clustering
has highest value, closely followed by the other two top performing algorithms.
Interestingly, the GMD and the VoI of Markov clustering are the best out of
all the algorithms. Although Markov clustering does not have the highest F1
score, having the lowest GMD does indicate that it came to a clustering that is
on average the closest to the groundtruth clustering.

The unweighted ensemble clusterings with different normalized cut values
all outperform the weighted ensemble clustering in terms of their F1 score.
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algorithm best threshold f1 precision recall GMD VoI
test split mixed best 0.550 0.984 0.971 0.998 17.714 0.010
test split connected components 0.550 0.938 0.885 1.000 39.143 0.027
test split hierarchical clustering 0.550 0.872 0.885 0.861 163.286 0.080
test split markov clustering 0.550 0.962 0.930 0.996 37.857 0.022
test split optics 0.550 0.945 0.945 0.946 75.143 0.038
test split ipca 0.350 0.907 0.933 0.882 133.857 0.069
test split dcs 0.550 0.956 0.919 0.997 41.000 0.025
test split combo 0.550 0.966 0.953 0.980 45.571 0.023
test split louvain 0.550 0.966 0.953 0.980 46.143 0.024
test split walktrap 0.550 0.965 0.944 0.987 43.429 0.023
test split greedy modularity 0.550 0.964 0.948 0.980 46.857 0.024
test split der 0.500 0.431 0.831 0.291 720.143 0.325
test split scan 0.550 0.958 0.925 0.994 42.000 0.024
test split affinity propagation 0.500 0.469 0.856 0.324 745.429 0.323
test split ensemble no weight 0.5 0.550 0.959 0.924 0.998 38.143 0.023
test split ensemble weighted 0.5 0.550 0.852 0.915 0.851 178.571 0.081
test split ensemble no weight 0.6 0.550 0.964 0.936 0.993 39.286 0.022
test split ensemble weighted 0.6 0.550 0.848 0.915 0.846 181.571 0.082
test split ensemble no weight 0.7 0.550 0.966 0.955 0.977 47.429 0.024
test split ensemble weighted 0.7 0.550 0.847 0.917 0.841 184.143 0.083
test split predicted PCAS 0.350 0.891 0.919 0.865 221.143 0.097

Table 11: Results of the clustering algorithms with their best score threshold on
the test split of the Musicbrainz data set. VoI is the variation of information.

Furthermore, the weighted ensemble clusterings all have a relatively high GMD
compared to the individual clustering algorithms, only having a better GMD
than the bottom two algorithms. The GMD by PCAS is even worse, which
can be explained by the fact that the model accuracy is again similar or worse
than randomly predicting the labels, as seen in table 12. This results in PCAS
also picking clusterings obtained by the bottom performers of the individual
clustering algorithms. Table 12 shows that PCAS has the highest accuracy
score at score threshold 0.35, which is also the score threshold for which PCAS
obtains its highest F1 score, as per table 11.

Score threshold 0.30 0.35 0.40 0.45 0.50 0.55
Accuracy score 0.076 0.088 0.084 0.079 0.061 0.069

Table 12: The PCAS predictive model average accuracy score per threshold on
the Musicbrainz dataset.

In summary, the unweighted ensemble clustering has one off the best per-
forming clustering result on multiple metrics. Furthermore, PCAS showed that
without proper predictions, its result will fall below most individual algorithms.
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5 Conclusion & future work

In this paper we have presented a comparative evaluation of multiple clustering
algorithms not frequently used for entity resolution, as well as known clustering
algorithms in the context of entity resolution, using a full entity resolution
pipeline. The evaluation was done over multiple different data sets containing
the groundtruth label and are therefore used as benchmark for entity resolution
systems. For the evaluation we have looked at multiple metrics often used
in clustering and entity resolution, creating a comparitive overview of many
different algorithms. In our experiments, we have not been able to appoint
a single ’goto’ algorithm that would always perform the best. However, in
our evaluation there are multiple top performing algorithms, with the likes of
Markov clustering, SCAN, DCS and Greedy modularity providing satisfactory
results.

Furthermore, we have introduced and implemented a predictive model (PCAS)
in section 3.2 that predicts which clustering algorithm to use based on features
of a given component. This model is trained and evaluated for every data set,
as well as compared to the other used clustering algorithms. We have demon-
strated that PCAS does not perform up to the standard of other algorithms yet,
but does show its potential on different occasions.

Lastly we have implemented and evaluated a weighted and unweighted version
of ensemble clustering in section 3.3. Similar to PCAS, it makes use of other
clustering algorithms to get to a final clustering. The results show that the im-
plementation of unweighted ensemble clustering based on the implementation by
Yu et al. [70] provides satisfactory results on occasion, outperforming individual
clustering algorithms on every data set. Although our proposed implementation
of a weighted ensemble clustering did perform close to the unweighted version,
it rarely outperformed the unweighted ensembles or most individual clustering
algorithms.

Limitations

This paper has potential limitations. By not including the exact setup for the
entity resolution system, the given results can not be compared one on one
to the results from previous studies on the same data sets [10, 11]. However,
as this study has included algorithms that are also used in previous studies,
the comparison could be made with the performance relative to that of the
overlapping algorithm(s).

Furthermore, this study did not perform any tuning of the parameters of the
individual algorithms. This may have resulted in worse performance compared
to the potential performance of each individual algorithm. But not only the
per algorithm parameters were not tuned, those of the predictive PCAS model
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and the linear regression used to learn the weights for weighted ensemble clus-
tering were also not tuned. This could have increased the performance of the
models resulting in better final clusterings. Using more edges as training for
the weighted ensemble linear regression model could have lead to better tuned
weights, which in turn could result in better clusterings.

Moreover, a selection of well performing algorithms on the data sets could
have been used to explore the impact on PCAS and the ensemble clustering.

Finally, only a single type of ensemble clustering was used, namely that of Yu
et al. However, many more ensemble clustering methods exist, which could have
been used as a more comparative measure of the ensemble clustering quality.

Future work

For future work, the potential performance of PCAS could be increased to ob-
tain better predictions (and thus better clusterings). This could for example be
done through adding more descriptive features when training the model. Find-
ing more descriptive features could emphasise the difference in clusterings made
by different clustering algorithms, allowing the model to better learn what type
of component each clustering algorithm would perform well on. Furthermore,
filtering the used algorithms by best performing algorithms to choose from could
increase the performance of PCAS. As in that case it would disable the possi-
bility for the model to predict a bad performing clustering algorithm as the
label for a component. This could lead to an interesting evaluation of which
algorithms to allow as input and how many algorithms to pick.

Moreover, in a future research with a better performing PCAS model, it
could be used to predict the weights for the weighted ensemble clustering. That
would fit into the same intuition where on a per component basis the best
performing algorithm would get a higher weight and thus be more important in
the consensus of the ensemble.
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A Appendix - Full results

A.1 CORA

Algorithm 0.50 0.55 0.60 0.65 0.70 0.75 0.80
mixed best 0.894 0.894 0.893 0.893 0.893 0.891 0.874
connected components 0.838 0.856 0.856 0.859 0.881 0.890 0.874
hierarchical clustering 0.814 0.849 0.845 0.849 0.879 0.890 0.874
markov clustering 0.882 0.882 0.882 0.886 0.876 0.863 0.837
optics 0.199 0.218 0.294 0.324 0.274 0.200 0.201
cdlib ipca 0.872 0.875 0.867 0.860 0.823 0.778 0.692
cdlib dcs 0.874 0.879 0.880 0.837 0.839 0.843 0.732
cdlib combo 0.571 0.566 0.598 0.566 0.594 0.501 0.538
louvain 0.622 0.517 0.596 0.582 0.598 0.495 0.510
walktrap 0.849 0.850 0.850 0.845 0.769 0.711 0.666
greedy modularity 0.559 0.566 0.568 0.566 0.627 0.617 0.572
cdlib der 0.805 0.702 0.691 0.730 0.723 0.645 0.682
cdlib scan 0.882 0.873 0.872 0.874 0.869 0.843 0.780
affinity propagation 0.295 0.284 0.308 0.296 0.283 0.224 0.245
ensemble no weight 0.5 0.887 0.893 0.889 0.879 0.866 0.867 0.846
ensemble no weight 0.6 0.893 0.890 0.888 0.866 0.864 0.842 0.805
ensemble no weight 0.7 0.791 0.793 0.758 0.838 0.787 0.610 0.648

Table 13: Results of the F1 metric of the clustering algorithms for each threshold
on the full data of the CORA data set.

Figure 3: All algorithms on the CORA data set.
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Algorithm 0.50 0.55 0.60 0.65 0.70 0.75 0.80
mixed best 0.863 0.863 0.863 0.863 0.865 0.863 0.859
connected components 0.761 0.791 0.791 0.798 0.842 0.862 0.859
hierarchical clustering 0.769 0.806 0.788 0.794 0.842 0.862 0.859
markov clustering 0.842 0.842 0.842 0.861 0.859 0.856 0.860
optics 0.956 0.942 0.820 0.939 0.964 0.937 0.950
cdlib ipca 0.841 0.858 0.858 0.859 0.859 0.867 0.895
cdlib dcs 0.858 0.851 0.856 0.834 0.863 0.886 0.840
cdlib combo 0.825 0.827 0.833 0.845 0.854 0.867 0.866
louvain 0.840 0.875 0.833 0.849 0.845 0.873 0.882
walktrap 0.842 0.855 0.854 0.854 0.872 0.913 0.911
greedy modularity 0.820 0.828 0.867 0.836 0.880 0.862 0.876
cdlib der 0.842 0.818 0.815 0.828 0.881 0.869 0.870
cdlib scan 0.842 0.841 0.840 0.859 0.860 0.861 0.867
affinity propagation 0.888 0.854 0.855 0.856 0.912 0.914 0.907
ensemble no weight 0.5 0.851 0.862 0.861 0.859 0.856 0.858 0.857
ensemble no weight 0.6 0.863 0.861 0.861 0.856 0.857 0.854 0.857
ensemble no weight 0.7 0.880 0.882 0.835 0.854 0.847 0.861 0.886

Table 14: Results of the precision metric of the clustering algorithms for each
threshold on the full data of the CORA data set.

Figure 4: All algorithms on the CORA data set.
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Algorithm 0.50 0.55 0.60 0.65 0.70 0.75 0.80
mixed best 0.927 0.926 0.926 0.925 0.922 0.920 0.890
connected components 0.931 0.931 0.931 0.930 0.923 0.920 0.890
hierarchical clustering 0.863 0.897 0.911 0.912 0.919 0.920 0.890
markov clustering 0.927 0.927 0.927 0.912 0.894 0.870 0.816
optics 0.111 0.123 0.179 0.195 0.160 0.112 0.113
cdlib ipca 0.905 0.892 0.876 0.861 0.791 0.705 0.564
cdlib dcs 0.891 0.909 0.905 0.841 0.815 0.804 0.648
cdlib combo 0.437 0.431 0.466 0.425 0.455 0.352 0.390
louvain 0.494 0.367 0.464 0.443 0.463 0.346 0.358
walktrap 0.857 0.845 0.846 0.837 0.687 0.582 0.524
greedy modularity 0.424 0.430 0.422 0.427 0.487 0.481 0.425
cdlib der 0.771 0.615 0.600 0.652 0.614 0.514 0.563
cdlib scan 0.926 0.908 0.905 0.890 0.878 0.825 0.708
affinity propagation 0.177 0.170 0.188 0.179 0.168 0.128 0.142
ensemble no weight 0.5 0.926 0.926 0.919 0.900 0.876 0.876 0.835
ensemble no weight 0.6 0.925 0.920 0.918 0.876 0.871 0.830 0.759
ensemble no weight 0.7 0.719 0.721 0.694 0.823 0.736 0.474 0.510

Table 15: Results of the recall metric of the clustering algorithms for each
threshold on the full data of the CORA data set.

Figure 5: All algorithms on the CORA data set.
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Algorithm 0.50 0.55 0.60 0.65 0.70 0.75 0.80
mixed best 74.857 76.857 78.143 82.000 87.286 90.143 117.857
connected components 79.000 79.000 79.000 84.000 91.000 94.000 121.000
hierarchical clustering 110.000 102.000 90.000 88.000 92.000 94.000 121.000
markov clustering 79.000 80.000 80.000 86.000 93.000 101.000 142.000
optics 806.000 703.000 567.000 510.000 399.000 426.000 419.000
cdlib ipca 89.000 93.000 106.000 118.000 130.000 156.000 185.000
cdlib dcs 81.000 82.000 87.000 93.000 107.000 111.000 148.000
cdlib combo 112.000 112.000 113.000 118.000 130.000 151.000 183.000
louvain 112.000 115.000 113.000 118.000 130.000 153.000 187.000
walktrap 83.000 88.000 97.000 101.000 127.000 153.000 210.000
greedy modularity 115.000 113.000 113.000 119.000 128.000 146.000 177.000
cdlib der 205.857 205.429 205.429 212.714 223.429 230.286 270.286
cdlib scan 79.000 86.000 90.000 93.000 104.000 125.000 165.000
affinity propagation 370.429 388.571 365.000 397.000 439.571 508.286 547.286
ensemble no weight 0.5 79.571 80.000 81.000 88.000 93.714 101.143 140.857
ensemble no weight 0.6 80.286 82.286 83.000 92.429 101.571 111.000 154.000
ensemble no weight 0.7 105.000 109.143 114.429 116.143 136.286 183.429 208.286

Table 16: Results of the GMD metric of the clustering algorithms for each
threshold on the full data of the CORA data set.

Figure 6: All algorithms on the CORA data set.
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Algorithm 0.50 0.55 0.60 0.65 0.70 0.75 0.80
mixed best 0.320 0.323 0.326 0.333 0.345 0.355 0.440
connected components 0.413 0.388 0.388 0.395 0.381 0.365 0.445
hierarchical clustering 0.504 0.433 0.420 0.413 0.384 0.365 0.445
markov clustering 0.356 0.358 0.358 0.355 0.381 0.432 0.571
optics 2.233 2.098 1.870 1.776 1.681 1.857 1.852
cdlib ipca 0.395 0.389 0.434 0.472 0.550 0.702 0.898
cdlib dcs 0.390 0.374 0.397 0.466 0.482 0.488 0.700
cdlib combo 0.780 0.788 0.776 0.801 0.817 0.979 1.014
louvain 0.739 0.852 0.779 0.800 0.810 0.987 1.062
walktrap 0.422 0.428 0.463 0.488 0.636 0.809 0.986
greedy modularity 0.806 0.799 0.803 0.805 0.788 0.854 0.970
cdlib der 0.775 0.822 0.819 0.805 0.855 0.942 0.985
cdlib scan 0.355 0.383 0.395 0.381 0.418 0.526 0.713
affinity propagation 1.560 1.603 1.536 1.593 1.684 1.873 1.883
ensemble no weight 0.5 0.347 0.332 0.349 0.380 0.390 0.440 0.561
ensemble no weight 0.6 0.334 0.343 0.357 0.417 0.414 0.508 0.674
ensemble no weight 0.7 0.575 0.582 0.616 0.530 0.643 0.942 1.019

Table 17: Results of the VoI metric of the clustering algorithms for each thresh-
old on the full data of the CORA data set.

Figure 7: All algorithms on the CORA data set.
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CORA - Test split

Algorithm 0.50 0.55 0.60 0.65 0.70 0.75 0.80
test split mixed best 0.933 0.938 0.938 0.913 0.930 0.934 0.940
test split connected components 0.915 0.916 0.916 0.889 0.901 0.932 0.940
test split hierarchical clustering 0.869 0.904 0.910 0.883 0.900 0.932 0.940
test split markov clustering 0.933 0.934 0.934 0.906 0.923 0.905 0.891
test split optics 0.515 0.379 0.445 0.328 0.390 0.323 0.413
test split ipca 0.924 0.911 0.901 0.870 0.836 0.776 0.741
test split dcs 0.927 0.931 0.932 0.851 0.852 0.883 0.838
test split combo 0.658 0.647 0.666 0.622 0.686 0.584 0.639
test split louvain 0.674 0.614 0.664 0.633 0.687 0.578 0.618
test split walktrap 0.900 0.878 0.877 0.851 0.796 0.751 0.709
test split greedy modularity 0.643 0.649 0.649 0.622 0.690 0.645 0.646
test split der 0.692 0.699 0.708 0.738 0.691 0.640 0.677
test split scan 0.933 0.921 0.920 0.896 0.902 0.887 0.837
test split affinity propagation 0.469 0.410 0.429 0.356 0.420 0.321 0.415
test split ensemble no weight 0.5 0.933 0.932 0.936 0.888 0.913 0.886 0.876
test split ensemble weighted 0.5 0.779 0.615 0.810 0.873 0.887 0.919 0.862
test split ensemble no weight 0.6 0.927 0.931 0.929 0.875 0.909 0.864 0.801
test split ensemble weighted 0.6 0.779 0.547 0.810 0.873 0.887 0.919 0.792
test split ensemble no weight 0.7 0.836 0.802 0.789 0.828 0.767 0.641 0.669
test split ensemble weighted 0.7 0.779 0.496 0.810 0.873 0.887 0.919 0.745
test split predicted clustering 0.834 0.877 0.910 0.842 0.895 0.880 0.935

Table 18: Results of the F1 metric of the clustering algorithms for each threshold
on the test split of the CORA data set.

Figure 8: All algorithms on the CORA data set test split.
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Algorithm 0.50 0.55 0.60 0.65 0.70 0.75 0.80
test split mixed best 0.884 0.893 0.893 0.856 0.872 0.884 0.894
test split connected components 0.854 0.859 0.859 0.822 0.827 0.882 0.894
test split hierarchical clustering 0.851 0.864 0.858 0.821 0.827 0.882 0.894
test split markov clustering 0.882 0.885 0.885 0.856 0.867 0.878 0.892
test split optics 0.965 0.943 0.895 0.902 0.954 0.924 0.938
test split ipca 0.881 0.888 0.888 0.858 0.869 0.875 0.893
test split dcs 0.885 0.888 0.890 0.845 0.869 0.887 0.891
test split combo 0.876 0.873 0.874 0.855 0.876 0.886 0.895
test split louvain 0.876 0.895 0.874 0.854 0.874 0.890 0.896
test split walktrap 0.879 0.880 0.882 0.853 0.873 0.883 0.898
test split greedy modularity 0.874 0.873 0.895 0.852 0.877 0.888 0.896
test split der 0.878 0.881 0.885 0.856 0.866 0.882 0.896
test split scan 0.882 0.883 0.882 0.855 0.867 0.881 0.891
test split affinity propagation 0.881 0.878 0.874 0.860 0.872 0.899 0.910
test split ensemble no weight 0.5 0.882 0.891 0.892 0.855 0.866 0.881 0.899
test split ensemble weighted 0.5 0.881 0.898 0.850 0.844 0.829 0.881 0.895
test split ensemble no weight 0.6 0.881 0.891 0.891 0.853 0.873 0.881 0.898
test split ensemble weighted 0.6 0.881 0.904 0.850 0.844 0.829 0.881 0.894
test split ensemble no weight 0.7 0.877 0.875 0.868 0.851 0.876 0.888 0.896
test split ensemble weighted 0.7 0.881 0.901 0.849 0.844 0.829 0.881 0.891
test split predicted clustering 0.883 0.856 0.863 0.820 0.826 0.877 0.894

Table 19: Results of the precision metric of the clustering algorithms for each
threshold on the test split of the CORA data set.

Figure 9: All algorithms on the CORA data set test split.
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Algorithm 0.50 0.55 0.60 0.65 0.70 0.75 0.80
test split mixed best 0.997 0.996 0.996 0.994 1.000 1.000 1.000
test split connected components 1.000 1.000 1.000 1.000 1.000 1.000 1.000
test split hierarchical clustering 0.907 0.967 0.987 0.989 0.998 1.000 1.000
test split markov clustering 0.997 0.996 0.996 0.982 0.992 0.946 0.903
test split optics 0.402 0.291 0.330 0.202 0.255 0.208 0.288
test split ipca 0.979 0.943 0.925 0.908 0.816 0.717 0.643
test split dcs 0.976 0.984 0.986 0.886 0.849 0.883 0.815
test split combo 0.541 0.537 0.556 0.505 0.571 0.441 0.501
test split louvain 0.558 0.492 0.553 0.516 0.573 0.435 0.476
test split walktrap 0.942 0.884 0.882 0.883 0.750 0.671 0.597
test split greedy modularity 0.523 0.539 0.529 0.508 0.577 0.511 0.508
test split der 0.603 0.612 0.627 0.697 0.578 0.506 0.548
test split scan 0.997 0.969 0.967 0.962 0.945 0.900 0.795
test split affinity propagation 0.336 0.292 0.309 0.233 0.297 0.203 0.290
test split ensemble no weight 0.5 0.997 0.986 0.994 0.949 0.972 0.917 0.871
test split ensemble weighted 0.5 0.762 0.491 0.843 0.939 0.966 0.967 0.854
test split ensemble no weight 0.6 0.986 0.983 0.979 0.924 0.953 0.873 0.749
test split ensemble weighted 0.6 0.762 0.422 0.843 0.939 0.966 0.967 0.739
test split ensemble no weight 0.7 0.816 0.750 0.742 0.843 0.698 0.506 0.542
test split ensemble weighted 0.7 0.762 0.381 0.843 0.939 0.966 0.967 0.680
test split predicted clustering 0.841 0.925 0.980 0.914 0.988 0.899 0.991

Table 20: Results of the recall metric of the clustering algorithms for each
threshold on the test split of the CORA data set.

Figure 10: All algorithms on the CORA data set test split.
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Algorithm 0.50 0.55 0.60 0.65 0.70 0.75 0.80
test split mixed best 3.000 3.571 3.714 3.571 3.714 2.714 3.000
test split connected components 3.429 4.429 4.429 4.143 4.571 3.429 3.429
test split hierarchical clustering 10.429 9.143 6.429 4.857 4.857 3.429 3.429
test split markov clustering 3.429 4.714 4.714 4.571 4.857 4.857 6.571
test split optics 126.286 163.429 128.143 102.714 62.571 52.286 55.429
test split ipca 4.714 7.571 10.286 12.000 12.714 14.000 14.714
test split dcs 3.714 5.143 5.857 5.857 8.714 5.857 7.571
test split combo 11.143 12.000 12.143 11.714 12.857 13.000 15.571
test split louvain 11.143 13.000 12.143 11.714 12.857 13.429 16.429
test split walktrap 3.714 6.857 8.714 7.857 11.429 12.143 20.143
test split greedy modularity 11.429 12.000 12.000 11.857 12.429 12.143 14.714
test split der 29.429 30.286 29.714 30.000 31.571 31.143 33.714
test split scan 3.571 6.000 6.857 6.286 6.714 8.429 10.857
test split affinity propagation 51.429 67.857 63.857 70.143 74.857 82.143 83.714
test split ensemble no weight 0.5 3.429 5.000 4.857 5.143 5.571 4.714 7.571
test split ensemble weighted 0.5 15.714 60.571 26.429 7.857 8.571 6.714 21.286
test split ensemble no weight 0.6 3.857 5.429 5.571 6.286 8.000 6.286 10.143
test split ensemble weighted 0.6 15.714 90.714 26.429 7.857 8.571 7.143 25.000
test split ensemble no weight 0.7 7.857 11.286 12.143 12.143 14.714 18.000 19.571
test split ensemble weighted 0.7 15.714 108.714 26.714 7.857 8.571 7.429 28.143
test split predicted clustering 14.000 7.429 8.714 10.143 5.286 8.571 4.571

Table 21: Results of the GMD metric of the clustering algorithms for each
threshold on the test split of the CORA data set.

Figure 11: All algorithms on the CORA data set test split.
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Algorithm 0.50 0.55 0.60 0.65 0.70 0.75 0.80
test split mixed best 0.124 0.138 0.140 0.165 0.136 0.126 0.115
test split connected components 0.158 0.187 0.187 0.219 0.173 0.136 0.118
test split hierarchical clustering 0.285 0.238 0.214 0.234 0.176 0.136 0.118
test split markov clustering 0.128 0.158 0.158 0.183 0.158 0.196 0.227
test split optics 1.500 1.822 1.607 1.665 1.249 1.379 1.254
test split ipca 0.152 0.216 0.250 0.300 0.345 0.453 0.520
test split dcs 0.148 0.170 0.182 0.275 0.288 0.230 0.307
test split combo 0.572 0.598 0.585 0.628 0.533 0.671 0.621
test split louvain 0.551 0.660 0.588 0.623 0.531 0.685 0.661
test split walktrap 0.168 0.263 0.285 0.299 0.397 0.498 0.592
test split greedy modularity 0.588 0.597 0.602 0.626 0.516 0.574 0.603
test split der 0.674 0.659 0.644 0.637 0.687 0.732 0.693
test split scan 0.129 0.192 0.202 0.214 0.202 0.257 0.349
test split affinity propagation 1.125 1.353 1.307 1.429 1.293 1.524 1.376
test split ensemble no weight 0.5 0.128 0.156 0.156 0.213 0.186 0.213 0.242
test split ensemble weighted 0.5 0.423 0.929 0.442 0.256 0.231 0.183 0.346
test split ensemble no weight 0.6 0.143 0.162 0.172 0.250 0.221 0.253 0.361
test split ensemble weighted 0.6 0.423 1.184 0.442 0.256 0.231 0.188 0.469
test split ensemble no weight 0.7 0.316 0.410 0.446 0.375 0.443 0.669 0.636
test split ensemble weighted 0.7 0.423 1.373 0.444 0.256 0.231 0.191 0.564
test split predicted clustering 0.355 0.273 0.246 0.339 0.200 0.259 0.141

Table 22: Results of the VoI metric of the clustering algorithms for each thresh-
old on the test split of the CORA data set.

Figure 12: All algorithms on the CORA data set test split.
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A.2 Geographical Settlements

Algorithm 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
mixed best 0.703 0.657 0.642 0.586 0.557 0.541 0.479 0.422 0.397 0.334 0.279 0.247 0.207 0.171
connected components 0.531 0.545 0.571 0.545 0.537 0.530 0.475 0.419 0.395 0.333 0.278 0.246 0.207 0.171
hierarchical clustering 0.364 0.372 0.382 0.389 0.392 0.409 0.418 0.409 0.395 0.333 0.278 0.246 0.207 0.171
markov clustering 0.644 0.608 0.601 0.554 0.539 0.524 0.469 0.418 0.391 0.333 0.278 0.246 0.207 0.171
optics 0.621 0.601 0.593 0.538 0.527 0.511 0.461 0.414 0.389 0.332 0.278 0.246 0.207 0.171
cdlib ipca 0.535 0.531 0.530 0.521 0.511 0.489 0.429 0.390 0.372 0.317 0.272 0.244 0.201 0.171
cdlib dcs 0.641 0.620 0.611 0.566 0.544 0.530 0.473 0.419 0.395 0.333 0.278 0.246 0.207 0.171
cdlib combo 0.655 0.618 0.603 0.544 0.520 0.513 0.457 0.407 0.389 0.334 0.278 0.246 0.207 0.171
louvain 0.654 0.614 0.602 0.543 0.520 0.513 0.457 0.407 0.389 0.334 0.278 0.246 0.207 0.171
walktrap 0.646 0.619 0.611 0.555 0.540 0.521 0.468 0.418 0.391 0.332 0.278 0.246 0.207 0.171
greedy modularity 0.654 0.615 0.602 0.543 0.520 0.513 0.457 0.407 0.389 0.334 0.278 0.246 0.207 0.171
cdlib der 0.327 0.295 0.274 0.240 0.199 0.191 0.148 0.103 0.088 0.058 0.032 0.017 0.007 0.001
cdlib scan 0.615 0.599 0.602 0.568 0.543 0.531 0.475 0.419 0.395 0.333 0.278 0.246 0.207 0.171
affinity propagation 0.398 0.356 0.345 0.290 0.259 0.246 0.190 0.141 0.126 0.082 0.044 0.022 0.008 0.000
ensemble no weight 0.5 0.652 0.619 0.607 0.561 0.539 0.525 0.471 0.418 0.392 0.333 0.278 0.246 0.207 0.171
ensemble no weight 0.6 0.661 0.626 0.615 0.558 0.539 0.523 0.469 0.418 0.391 0.333 0.278 0.246 0.207 0.171
ensemble no weight 0.7 0.649 0.610 0.595 0.537 0.517 0.510 0.457 0.407 0.388 0.333 0.278 0.246 0.207 0.171

Table 23: Results of the F1 metric of the clustering algorithms for each threshold
on the full data of the Geographical settlements data set.

Figure 13: All algorithms on the Geographical settlements data set.
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Algorithm 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
mixed best 0.916 0.921 0.924 0.939 0.947 0.955 0.951 0.969 0.984 0.981 0.983 0.983 0.978 0.974
connected components 0.482 0.564 0.668 0.734 0.820 0.879 0.900 0.941 0.959 0.954 0.961 0.958 0.950 0.941
hierarchical clustering 0.605 0.624 0.682 0.750 0.798 0.867 0.899 0.940 0.959 0.954 0.961 0.958 0.950 0.941
markov clustering 0.834 0.840 0.865 0.879 0.899 0.920 0.939 0.958 0.958 0.954 0.961 0.958 0.950 0.941
optics 0.832 0.866 0.863 0.884 0.922 0.930 0.925 0.954 0.963 0.958 0.961 0.958 0.950 0.941
cdlib ipca 0.860 0.891 0.915 0.931 0.945 0.954 0.954 0.956 0.956 0.958 0.960 0.958 0.948 0.941
cdlib dcs 0.710 0.776 0.804 0.828 0.869 0.897 0.910 0.941 0.959 0.954 0.961 0.958 0.950 0.941
cdlib combo 0.835 0.858 0.887 0.896 0.914 0.945 0.947 0.956 0.966 0.963 0.961 0.958 0.950 0.941
louvain 0.839 0.857 0.889 0.897 0.914 0.945 0.947 0.956 0.966 0.963 0.961 0.958 0.950 0.941
walktrap 0.773 0.821 0.858 0.881 0.913 0.922 0.942 0.958 0.958 0.959 0.961 0.958 0.950 0.941
greedy modularity 0.840 0.859 0.890 0.897 0.914 0.945 0.947 0.956 0.966 0.963 0.961 0.958 0.950 0.941
cdlib der 0.478 0.546 0.626 0.706 0.765 0.850 0.868 0.917 0.920 0.898 0.912 0.884 0.748 0.339
cdlib scan 0.667 0.721 0.785 0.843 0.882 0.914 0.906 0.941 0.959 0.954 0.961 0.958 0.950 0.941
affinity propagation 0.589 0.641 0.758 0.770 0.824 0.865 0.874 0.909 0.944 0.938 0.984 1.000 1.000 0.000
ensemble no weight 0.5 0.763 0.792 0.812 0.856 0.875 0.913 0.936 0.954 0.958 0.954 0.961 0.958 0.950 0.941
ensemble no weight 0.6 0.816 0.839 0.864 0.880 0.902 0.925 0.942 0.958 0.958 0.954 0.961 0.958 0.950 0.941
ensemble no weight 0.7 0.877 0.893 0.905 0.906 0.921 0.947 0.947 0.956 0.958 0.963 0.961 0.958 0.950 0.941

Table 24: Results of the precision metric of the clustering algorithms for each
threshold on the full data of the Geographical settlements data set.

Figure 14: All algorithms on the Geographical settlements data set.
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Algorithm 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
mixed best 0.571 0.511 0.492 0.426 0.395 0.378 0.320 0.270 0.249 0.202 0.162 0.141 0.116 0.094
connected components 0.592 0.527 0.499 0.434 0.399 0.380 0.322 0.270 0.249 0.202 0.162 0.141 0.116 0.094
hierarchical clustering 0.260 0.265 0.265 0.262 0.260 0.268 0.273 0.261 0.249 0.202 0.162 0.141 0.116 0.094
markov clustering 0.525 0.477 0.460 0.405 0.385 0.366 0.312 0.267 0.245 0.202 0.162 0.141 0.116 0.094
optics 0.495 0.461 0.452 0.387 0.369 0.353 0.307 0.264 0.244 0.201 0.162 0.141 0.116 0.094
cdlib ipca 0.388 0.378 0.373 0.361 0.350 0.328 0.277 0.245 0.231 0.190 0.158 0.140 0.112 0.094
cdlib dcs 0.584 0.516 0.492 0.430 0.396 0.376 0.320 0.270 0.249 0.202 0.162 0.141 0.116 0.094
cdlib combo 0.539 0.482 0.457 0.390 0.364 0.352 0.302 0.258 0.244 0.202 0.162 0.141 0.116 0.094
louvain 0.536 0.479 0.454 0.389 0.364 0.352 0.302 0.258 0.244 0.202 0.162 0.141 0.116 0.094
walktrap 0.555 0.497 0.474 0.405 0.384 0.363 0.312 0.267 0.245 0.201 0.162 0.141 0.116 0.094
greedy modularity 0.535 0.479 0.455 0.389 0.364 0.352 0.302 0.258 0.244 0.202 0.162 0.141 0.116 0.094
cdlib der 0.249 0.203 0.176 0.144 0.114 0.107 0.081 0.055 0.046 0.030 0.016 0.009 0.004 0.001
cdlib scan 0.570 0.512 0.488 0.428 0.392 0.374 0.322 0.270 0.249 0.202 0.162 0.141 0.116 0.094
affinity propagation 0.301 0.246 0.224 0.179 0.154 0.144 0.107 0.077 0.067 0.043 0.022 0.011 0.004 0.000
ensemble no weight 0.5 0.569 0.508 0.485 0.417 0.389 0.369 0.315 0.268 0.246 0.202 0.162 0.141 0.116 0.094
ensemble no weight 0.6 0.555 0.499 0.477 0.409 0.385 0.364 0.312 0.267 0.245 0.202 0.162 0.141 0.116 0.094
ensemble no weight 0.7 0.515 0.463 0.443 0.382 0.359 0.349 0.301 0.258 0.243 0.201 0.162 0.141 0.116 0.094

Table 25: Results of the recall metric of the clustering algorithms for each
threshold on the full data of the Geographical settlements data set.

Figure 15: All algorithms on the Geographical settlements data set.

Algorithm 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
mixed best 714.143 828.000 853.143 993.714 1043.143 1074.667 1203.714 1310.714 1361.143 1490.833 1598.000 1657.000 1744.286 1828.286
connected components 827.000 914.000 920.000 1043.000 1075.000 1102.000 1221.000 1325.000 1373.000 1502.000 1610.000 1670.000 1757.000 1840.000
hierarchical clustering 1421.000 1396.000 1391.000 1390.000 1374.000 1353.000 1340.000 1353.000 1373.000 1502.000 1610.000 1670.000 1757.000 1840.000
markov clustering 861.000 946.000 956.000 1071.000 1084.000 1113.000 1230.000 1325.000 1377.000 1502.000 1610.000 1670.000 1757.000 1840.000
optics 1009.000 1042.000 1012.000 1138.000 1143.000 1157.000 1250.000 1340.000 1383.000 1505.000 1610.000 1670.000 1757.000 1840.000
cdlib ipca 1098.000 1106.000 1091.000 1122.000 1124.000 1170.000 1286.000 1360.000 1403.000 1522.000 1619.000 1673.000 1765.000 1840.000
cdlib dcs 811.000 920.000 928.000 1046.000 1079.000 1111.000 1225.000 1325.000 1373.000 1502.000 1610.000 1670.000 1757.000 1840.000
cdlib combo 844.000 934.000 946.000 1085.000 1107.000 1128.000 1242.000 1335.000 1378.000 1501.000 1610.000 1670.000 1757.000 1840.000
louvain 847.000 941.000 950.000 1083.000 1107.000 1128.000 1242.000 1335.000 1378.000 1501.000 1610.000 1670.000 1757.000 1840.000
walktrap 851.000 939.000 938.000 1068.000 1088.000 1123.000 1233.000 1325.000 1377.000 1505.000 1610.000 1670.000 1757.000 1840.000
greedy modularity 849.000 939.000 950.000 1083.000 1107.000 1128.000 1242.000 1335.000 1378.000 1501.000 1610.000 1670.000 1757.000 1840.000
cdlib der 1499.714 1603.429 1644.714 1735.143 1807.857 1827.167 1926.714 2016.857 2046.000 2115.667 2169.714 2201.000 2223.571 2236.571
cdlib scan 865.000 942.000 947.000 1053.000 1090.000 1116.000 1221.000 1325.000 1373.000 1502.000 1610.000 1670.000 1757.000 1840.000
affinity propagation 1438.429 1565.000 1588.429 1702.571 1764.714 1778.333 1889.000 1982.571 2006.571 2088.000 2153.714 2193.571 2219.143 2234.000
ensemble no weight 0.5 824.000 920.286 928.714 1054.714 1083.714 1112.000 1227.714 1325.429 1375.857 1502.000 1610.000 1670.000 1757.000 1840.000
ensemble no weight 0.6 835.000 926.714 933.286 1063.000 1087.571 1117.333 1230.143 1325.000 1377.000 1502.000 1610.000 1670.000 1757.000 1840.000
ensemble no weight 0.7 877.571 964.000 974.714 1106.429 1119.857 1138.000 1243.429 1335.000 1379.571 1502.167 1610.000 1670.000 1757.000 1840.000

Table 26: Results of the GMD metric of the clustering algorithms for each
threshold on the full data of the Geographical settlements data set.
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Figure 16: All algorithms on the Geographical settlements data set.

Algorithm 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
mixed best 0.522 0.592 0.610 0.691 0.724 0.743 0.821 0.884 0.911 0.982 1.041 1.073 1.117 1.157
connected components 0.706 0.716 0.694 0.751 0.759 0.768 0.835 0.893 0.918 0.989 1.047 1.080 1.123 1.163
hierarchical clustering 0.990 0.967 0.955 0.947 0.934 0.914 0.902 0.907 0.918 0.989 1.047 1.080 1.123 1.163
markov clustering 0.624 0.676 0.681 0.746 0.756 0.771 0.838 0.892 0.922 0.989 1.047 1.080 1.123 1.163
optics 0.692 0.711 0.704 0.778 0.780 0.792 0.850 0.900 0.924 0.991 1.047 1.080 1.123 1.163
cdlib ipca 0.772 0.772 0.763 0.775 0.779 0.805 0.875 0.917 0.940 1.003 1.053 1.082 1.128 1.163
cdlib dcs 0.621 0.671 0.673 0.737 0.755 0.770 0.837 0.893 0.918 0.989 1.047 1.080 1.123 1.163
cdlib combo 0.613 0.665 0.675 0.756 0.774 0.780 0.847 0.901 0.922 0.988 1.047 1.080 1.123 1.163
louvain 0.614 0.670 0.677 0.755 0.774 0.780 0.847 0.901 0.922 0.988 1.047 1.080 1.123 1.163
walktrap 0.628 0.672 0.671 0.745 0.755 0.776 0.839 0.892 0.922 0.990 1.047 1.080 1.123 1.163
greedy modularity 0.616 0.669 0.676 0.755 0.774 0.780 0.847 0.901 0.922 0.988 1.047 1.080 1.123 1.163
cdlib der 1.060 1.084 1.092 1.123 1.156 1.158 1.202 1.242 1.256 1.287 1.312 1.326 1.336 1.342
cdlib scan 0.662 0.692 0.685 0.736 0.758 0.769 0.834 0.893 0.918 0.989 1.047 1.080 1.123 1.163
affinity propagation 0.986 1.036 1.033 1.088 1.113 1.119 1.173 1.217 1.229 1.269 1.301 1.321 1.334 1.341
ensemble no weight 0.5 0.614 0.667 0.673 0.739 0.758 0.771 0.836 0.893 0.921 0.989 1.047 1.080 1.123 1.163
ensemble no weight 0.6 0.609 0.660 0.666 0.741 0.757 0.773 0.838 0.892 0.922 0.989 1.047 1.080 1.123 1.163
ensemble no weight 0.7 0.625 0.676 0.686 0.764 0.779 0.784 0.847 0.901 0.924 0.989 1.047 1.080 1.123 1.163

Table 27: Results of the VoI metric of the clustering algorithms for each thresh-
old on the full data of the Geographical settlements data set.
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Figure 17: All algorithms on the Geographical settlements data set.
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Geographical settlements - Test split

Algorithm 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
test split mixed best 0.933 0.955 0.952 0.962 0.965 0.981 0.970 0.992 0.992 0.995 0.986 0.999 0.980 0.989
test split connected components 0.670 0.777 0.833 0.841 0.891 0.952 0.941 0.978 0.983 0.979 0.977 0.990 0.965 0.965
test split hierarchical clustering 0.518 0.594 0.618 0.664 0.715 0.785 0.870 0.965 0.983 0.979 0.977 0.990 0.965 0.965
test split markov clustering 0.858 0.883 0.896 0.900 0.923 0.956 0.951 0.982 0.976 0.979 0.977 0.990 0.965 0.965
test split optics 0.826 0.876 0.885 0.877 0.915 0.944 0.935 0.973 0.976 0.979 0.977 0.990 0.965 0.965
test split ipca 0.737 0.808 0.815 0.877 0.911 0.916 0.905 0.937 0.951 0.955 0.967 0.983 0.947 0.965
test split dcs 0.825 0.871 0.899 0.899 0.916 0.955 0.942 0.978 0.983 0.979 0.977 0.990 0.965 0.965
test split combo 0.868 0.898 0.902 0.893 0.906 0.944 0.942 0.963 0.974 0.986 0.977 0.990 0.965 0.965
test split louvain 0.869 0.889 0.903 0.892 0.906 0.944 0.942 0.963 0.974 0.986 0.977 0.990 0.965 0.965
test split walktrap 0.842 0.892 0.907 0.898 0.931 0.957 0.952 0.982 0.976 0.980 0.977 0.990 0.965 0.965
test split greedy modularity 0.869 0.892 0.903 0.892 0.906 0.944 0.942 0.963 0.974 0.986 0.977 0.990 0.965 0.965
test split der 0.460 0.471 0.459 0.444 0.403 0.438 0.395 0.328 0.300 0.275 0.168 0.097 0.058 0.030
test split scan 0.794 0.836 0.883 0.904 0.922 0.960 0.944 0.978 0.983 0.979 0.977 0.990 0.965 0.965
test split affinity propagation 0.555 0.548 0.561 0.529 0.525 0.548 0.494 0.443 0.416 0.367 0.209 0.129 0.056 0.000
test split ensemble no weight 0.5 0.851 0.884 0.885 0.898 0.916 0.957 0.954 0.979 0.976 0.979 0.977 0.990 0.965 0.965
test split ensemble weighted 0.5 0.821 0.888 0.874 0.863 0.898 0.953 0.944 0.455 0.490 0.368 0.168 0.097 0.442 0.030
test split ensemble no weight 0.6 0.867 0.901 0.914 0.903 0.920 0.957 0.952 0.982 0.976 0.979 0.977 0.990 0.965 0.965
test split ensemble weighted 0.6 0.847 0.885 0.878 0.893 0.901 0.952 0.938 0.455 0.490 0.368 0.168 0.097 0.429 0.030
test split ensemble no weight 0.7 0.871 0.891 0.899 0.887 0.902 0.942 0.942 0.963 0.974 0.985 0.977 0.990 0.965 0.965
test split ensemble weighted 0.7 0.861 0.889 0.889 0.906 0.898 0.909 0.927 0.455 0.489 0.368 0.166 0.097 0.429 0.030
test split predicted clustering 0.812 0.844 0.849 0.865 0.832 0.843 0.847 0.847 0.825 0.836 0.852 0.468 0.901 0.701

Table 28: Results of the F1 metric of the clustering algorithms for each threshold
on the test split of the Geographical settlements data set.

Figure 18: All algorithms on the Geographical settlements data set test split.
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Algorithm 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
test split mixed best 0.901 0.934 0.918 0.944 0.940 0.968 0.948 0.984 0.986 0.991 0.973 0.998 0.960 0.978
test split connected components 0.512 0.648 0.724 0.734 0.809 0.910 0.889 0.957 0.967 0.959 0.956 0.981 0.933 0.933
test split hierarchical clustering 0.655 0.736 0.749 0.754 0.799 0.905 0.891 0.958 0.967 0.959 0.956 0.981 0.933 0.933
test split markov clustering 0.835 0.854 0.869 0.881 0.881 0.948 0.932 0.973 0.967 0.959 0.956 0.981 0.933 0.933
test split optics 0.831 0.865 0.847 0.879 0.905 0.943 0.918 0.967 0.967 0.965 0.956 0.981 0.933 0.933
test split ipca 0.863 0.902 0.899 0.944 0.936 0.968 0.948 0.972 0.965 0.966 0.955 0.980 0.931 0.933
test split dcs 0.712 0.785 0.826 0.823 0.850 0.924 0.896 0.957 0.967 0.959 0.956 0.981 0.933 0.933
test split combo 0.831 0.880 0.885 0.902 0.901 0.962 0.940 0.972 0.967 0.973 0.956 0.981 0.933 0.933
test split louvain 0.839 0.873 0.887 0.901 0.901 0.962 0.940 0.972 0.967 0.973 0.956 0.981 0.933 0.933
test split walktrap 0.774 0.843 0.863 0.876 0.897 0.953 0.936 0.973 0.967 0.967 0.956 0.981 0.933 0.933
test split greedy modularity 0.840 0.876 0.888 0.901 0.901 0.962 0.940 0.972 0.967 0.973 0.956 0.981 0.933 0.933
test split der 0.518 0.659 0.718 0.709 0.742 0.904 0.855 0.929 0.939 0.919 0.878 0.976 0.676 0.536
test split scan 0.679 0.737 0.810 0.840 0.870 0.933 0.895 0.957 0.967 0.959 0.956 0.981 0.933 0.933
test split affinity propagation 0.614 0.676 0.793 0.763 0.798 0.913 0.878 0.949 0.953 0.959 0.960 1.000 1.000 0.000
test split ensemble no weight 0.5 0.774 0.816 0.812 0.853 0.857 0.947 0.931 0.967 0.967 0.959 0.956 0.981 0.933 0.933
test split ensemble weighted 0.5 0.715 0.872 0.802 0.765 0.840 0.956 0.932 0.947 0.951 0.915 0.886 0.976 0.867 0.536
test split ensemble no weight 0.6 0.814 0.860 0.870 0.880 0.876 0.951 0.934 0.973 0.967 0.959 0.956 0.981 0.933 0.933
test split ensemble weighted 0.6 0.770 0.883 0.815 0.815 0.846 0.956 0.934 0.947 0.951 0.915 0.886 0.976 0.843 0.536
test split ensemble no weight 0.7 0.877 0.900 0.900 0.912 0.907 0.963 0.940 0.972 0.967 0.973 0.956 0.981 0.933 0.933
test split ensemble weighted 0.7 0.818 0.895 0.849 0.842 0.847 0.957 0.945 0.947 0.951 0.915 0.885 0.976 0.843 0.536
test split predicted clustering 0.810 0.848 0.863 0.894 0.878 0.946 0.916 0.970 0.963 0.969 0.979 0.986 0.946 0.843

Table 29: Results of the precision metric of the clustering algorithms for each
threshold on the test split of the Geographical settlements data set.

Figure 19: All algorithms on the Geographical settlements data set test split.
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Algorithm 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
test split mixed best 0.967 0.978 0.989 0.982 0.991 0.994 0.993 1.000 0.998 0.999 1.000 1.000 1.000 1.000
test split connected components 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
test split hierarchical clustering 0.435 0.508 0.534 0.601 0.656 0.695 0.851 0.973 1.000 1.000 1.000 1.000 1.000 1.000
test split markov clustering 0.885 0.918 0.926 0.921 0.969 0.964 0.971 0.990 0.987 1.000 1.000 1.000 1.000 1.000
test split optics 0.824 0.887 0.928 0.875 0.925 0.947 0.953 0.980 0.987 0.993 1.000 1.000 1.000 1.000
test split ipca 0.646 0.732 0.747 0.820 0.887 0.869 0.867 0.907 0.938 0.944 0.980 0.986 0.964 1.000
test split dcs 0.984 0.981 0.989 0.993 0.993 0.989 0.995 1.000 1.000 1.000 1.000 1.000 1.000 1.000
test split combo 0.910 0.917 0.922 0.886 0.912 0.928 0.944 0.955 0.982 1.000 1.000 1.000 1.000 1.000
test split louvain 0.904 0.908 0.921 0.883 0.912 0.928 0.944 0.955 0.982 1.000 1.000 1.000 1.000 1.000
test split walktrap 0.928 0.948 0.959 0.921 0.967 0.960 0.968 0.990 0.987 0.993 1.000 1.000 1.000 1.000
test split greedy modularity 0.902 0.910 0.921 0.883 0.912 0.928 0.944 0.955 0.982 1.000 1.000 1.000 1.000 1.000
test split der 0.426 0.381 0.347 0.331 0.281 0.289 0.258 0.199 0.179 0.162 0.093 0.051 0.031 0.015
test split scan 0.963 0.976 0.975 0.981 0.982 0.989 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
test split affinity propagation 0.516 0.469 0.440 0.410 0.393 0.396 0.345 0.291 0.270 0.230 0.118 0.070 0.029 0.000
test split ensemble no weight 0.5 0.950 0.968 0.979 0.950 0.985 0.968 0.977 0.993 0.987 1.000 1.000 1.000 1.000 1.000
test split ensemble weighted 0.5 0.969 0.906 0.970 0.997 0.968 0.952 0.958 0.331 0.365 0.277 0.093 0.051 0.434 0.015
test split ensemble no weight 0.6 0.929 0.948 0.965 0.928 0.970 0.962 0.971 0.990 0.987 1.000 1.000 1.000 1.000 1.000
test split ensemble weighted 0.6 0.948 0.889 0.960 0.989 0.965 0.950 0.944 0.331 0.365 0.277 0.093 0.051 0.427 0.015
test split ensemble no weight 0.7 0.866 0.882 0.899 0.864 0.899 0.922 0.944 0.955 0.982 0.997 1.000 1.000 1.000 1.000
test split ensemble weighted 0.7 0.911 0.885 0.938 0.983 0.958 0.878 0.912 0.331 0.364 0.277 0.092 0.051 0.427 0.015
test split predicted clustering 0.824 0.847 0.839 0.840 0.793 0.764 0.789 0.752 0.731 0.746 0.781 0.307 0.862 0.711

Table 30: Results of the recall metric of the clustering algorithms for each
threshold on the test split of the Geographical settlements data set.

Figure 20: All algorithms on the Geographical settlements data set test split.
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Algorithm 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
test split mixed best 18.429 12.000 9.143 7.429 6.000 3.667 4.143 1.429 2.143 1.167 1.714 0.143 1.857 1.000
test split connected components 39.714 30.143 23.286 19.000 14.000 7.833 9.143 4.286 3.571 3.000 3.857 2.286 4.429 4.000
test split hierarchical clustering 163.286 127.286 114.286 90.143 72.000 60.833 31.286 8.714 3.571 3.000 3.857 2.286 4.429 4.000
test split markov clustering 47.571 33.714 30.000 25.857 15.571 10.167 10.571 4.000 4.286 3.000 3.857 2.286 4.429 4.000
test split optics 79.286 53.429 38.000 41.143 29.143 15.167 16.000 7.571 4.286 4.000 3.857 2.286 4.429 4.000
test split ipca 100.143 65.143 60.429 35.286 21.429 21.833 21.714 11.143 9.000 7.333 5.286 3.143 6.286 4.000
test split dcs 36.857 31.143 24.000 19.286 15.000 9.833 9.714 4.286 3.571 3.000 3.857 2.286 4.429 4.000
test split combo 44.286 33.143 28.143 27.714 20.429 13.333 12.714 6.143 4.571 2.667 3.857 2.286 4.429 4.000
test split louvain 45.000 35.000 28.286 27.429 20.429 13.333 12.714 6.143 4.571 2.667 3.857 2.286 4.429 4.000
test split walktrap 46.429 34.286 26.143 25.571 16.143 11.167 11.429 4.000 4.286 4.000 3.857 2.286 4.429 4.000
test split greedy modularity 45.429 34.429 28.286 27.429 20.429 13.333 12.714 6.143 4.571 2.667 3.857 2.286 4.429 4.000
test split der 176.714 170.143 164.571 159.857 163.714 153.500 148.714 145.000 139.714 126.333 116.857 110.000 98.286 82.000
test split scan 45.429 35.714 28.714 22.714 17.571 10.000 8.857 4.286 3.571 3.000 3.857 2.286 4.429 4.000
test split affinity propagation 163.429 162.714 153.714 154.714 150.714 141.500 139.571 135.857 130.429 120.833 114.857 109.143 96.857 82.286
test split ensemble no weight 0.5 40.714 30.143 23.857 22.429 15.143 10.000 10.286 4.143 4.286 3.000 3.857 2.286 4.429 4.000
test split ensemble weighted 0.5 39.000 33.714 25.429 19.143 17.286 12.500 13.429 123.143 113.714 111.167 117.143 110.143 58.286 82.000
test split ensemble no weight 0.6 44.286 31.571 24.857 24.429 16.571 10.333 10.571 4.000 4.286 3.000 3.857 2.286 4.429 4.000
test split ensemble weighted 0.6 39.714 35.429 25.857 19.714 17.571 13.000 14.714 123.143 113.714 111.167 117.143 110.143 59.000 82.000
test split ensemble no weight 0.7 51.571 39.571 32.857 33.000 23.571 15.333 12.857 6.143 4.571 3.000 3.857 2.286 4.429 4.000
test split ensemble weighted 0.7 43.429 35.429 28.571 21.000 18.571 30.333 19.143 123.143 114.000 111.167 117.286 110.143 59.000 82.000
test split predicted clustering 74.714 63.143 58.429 45.286 55.857 50.333 38.571 32.857 37.857 31.500 24.286 81.571 17.571 26.429

Table 31: Results of the GMD metric of the clustering algorithms for each
threshold on the test split of the Geographical settlements data set.

Figure 21: All algorithms on the Geographical settlements data set test split.

70



Algorithm 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
test split mixed best 0.074 0.046 0.040 0.030 0.025 0.014 0.017 0.005 0.006 0.003 0.006 0.000 0.006 0.003
test split connected components 0.256 0.167 0.118 0.100 0.068 0.032 0.036 0.014 0.011 0.010 0.011 0.005 0.012 0.011
test split hierarchical clustering 0.542 0.419 0.373 0.296 0.234 0.189 0.099 0.026 0.011 0.010 0.011 0.005 0.012 0.011
test split markov clustering 0.174 0.126 0.109 0.095 0.061 0.037 0.037 0.013 0.014 0.010 0.011 0.005 0.012 0.011
test split optics 0.247 0.164 0.127 0.131 0.088 0.051 0.051 0.021 0.014 0.012 0.011 0.005 0.012 0.011
test split ipca 0.332 0.220 0.203 0.120 0.077 0.075 0.072 0.039 0.030 0.024 0.015 0.008 0.018 0.011
test split dcs 0.169 0.130 0.096 0.082 0.062 0.036 0.037 0.014 0.011 0.010 0.011 0.005 0.012 0.011
test split combo 0.165 0.119 0.104 0.101 0.079 0.048 0.044 0.022 0.015 0.008 0.011 0.005 0.012 0.011
test split louvain 0.165 0.127 0.104 0.102 0.079 0.048 0.044 0.022 0.015 0.008 0.011 0.005 0.012 0.011
test split walktrap 0.182 0.124 0.097 0.095 0.059 0.039 0.038 0.013 0.014 0.012 0.011 0.005 0.012 0.011
test split greedy modularity 0.167 0.125 0.103 0.102 0.079 0.048 0.044 0.022 0.015 0.008 0.011 0.005 0.012 0.011
test split der 0.608 0.538 0.509 0.474 0.465 0.430 0.397 0.370 0.352 0.311 0.276 0.255 0.225 0.186
test split scan 0.206 0.151 0.112 0.085 0.065 0.034 0.035 0.014 0.011 0.010 0.011 0.005 0.012 0.011
test split affinity propagation 0.534 0.495 0.454 0.440 0.413 0.383 0.363 0.338 0.322 0.292 0.269 0.252 0.221 0.187
test split ensemble no weight 0.5 0.166 0.120 0.101 0.088 0.063 0.036 0.035 0.014 0.014 0.010 0.011 0.005 0.012 0.011
test split ensemble weighted 0.5 0.177 0.124 0.109 0.093 0.072 0.042 0.044 0.312 0.282 0.273 0.276 0.255 0.135 0.186
test split ensemble no weight 0.6 0.165 0.114 0.091 0.091 0.065 0.037 0.036 0.013 0.014 0.010 0.011 0.005 0.012 0.011
test split ensemble weighted 0.6 0.165 0.128 0.108 0.084 0.072 0.044 0.048 0.312 0.282 0.273 0.276 0.255 0.136 0.186
test split ensemble no weight 0.7 0.176 0.133 0.113 0.112 0.085 0.053 0.044 0.022 0.015 0.009 0.011 0.005 0.012 0.011
test split ensemble weighted 0.7 0.166 0.127 0.111 0.081 0.074 0.087 0.059 0.312 0.282 0.273 0.277 0.255 0.136 0.186
test split predicted clustering 0.245 0.197 0.180 0.142 0.165 0.151 0.120 0.101 0.108 0.087 0.063 0.189 0.041 0.061

Table 32: Results of the VoI metric of the clustering algorithms for each thresh-
old on the test split of the Geographical settlements data set.

Figure 22: All algorithms on the Geographical settlements data set test split.
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A.3 Musicbrainz

Algorithm 0.3 0.35 0.4 0.45 0.5 0.55
mixed best 0.693 0.688 0.682 0.673 0.665 0.654
connected components 0.504 0.580 0.592 0.617 0.627 0.629
hierarchical clustering 0.514 0.526 0.525 0.532 0.546 0.571
markov clustering 0.657 0.661 0.660 0.656 0.652 0.642
optics 0.653 0.655 0.653 0.644 0.635 0.621
cdlib ipca 0.629 0.629 0.621 0.610 0.595 0.579
cdlib dcs 0.590 0.627 0.651 0.644 0.644 0.638
cdlib combo 0.651 0.661 0.658 0.656 0.650 0.641
louvain 0.651 0.660 0.659 0.656 0.650 0.641
walktrap 0.638 0.658 0.653 0.652 0.649 0.641
greedy modularity 0.652 0.662 0.659 0.655 0.651 0.641
cdlib der 0.232 0.247 0.244 0.248 0.249 0.244
cdlib scan 0.607 0.629 0.634 0.643 0.644 0.640
affinity propagation 0.267 0.275 0.273 0.276 0.274 0.265
ensemble no weight 0.5 0.607 0.652 0.651 0.652 0.646 0.640
ensemble no weight 0.6 0.647 0.656 0.660 0.654 0.648 0.641
ensemble no weight 0.7 0.666 0.669 0.664 0.655 0.651 0.640

Table 33: Results of the F1 metric of the clustering algorithms for each threshold
on the full data of the Musicbrainz data set.

Figure 23: All algorithms on the Musicbrainz data set.
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Algorithm 0.3 0.35 0.4 0.45 0.5 0.55
mixed best 0.957 0.958 0.960 0.963 0.961 0.964
connected components 0.466 0.626 0.666 0.758 0.814 0.862
hierarchical clustering 0.828 0.858 0.819 0.805 0.819 0.860
markov clustering 0.845 0.871 0.881 0.895 0.911 0.919
optics 0.878 0.895 0.912 0.921 0.933 0.936
cdlib ipca 0.905 0.931 0.943 0.949 0.953 0.959
cdlib dcs 0.645 0.750 0.841 0.847 0.877 0.901
cdlib combo 0.819 0.875 0.889 0.917 0.928 0.945
louvain 0.821 0.869 0.893 0.918 0.928 0.945
walktrap 0.776 0.859 0.861 0.891 0.920 0.932
greedy modularity 0.824 0.875 0.893 0.913 0.931 0.943
cdlib der 0.364 0.522 0.554 0.676 0.760 0.822
cdlib scan 0.687 0.762 0.792 0.852 0.884 0.911
affinity propagation 0.450 0.574 0.629 0.758 0.813 0.852
ensemble no weight 0.5 0.685 0.828 0.842 0.877 0.887 0.909
ensemble no weight 0.6 0.798 0.844 0.878 0.891 0.905 0.922
ensemble no weight 0.7 0.878 0.912 0.918 0.919 0.941 0.949

Table 34: Results of the precision metric of the clustering algorithms for each
threshold on the full data of the Musicbrainz data set.

Figure 24: All algorithms on the Musicbrainz data set.
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Algorithm 0.3 0.35 0.4 0.45 0.5 0.55
mixed best 0.543 0.537 0.529 0.518 0.508 0.495
connected components 0.547 0.540 0.532 0.520 0.510 0.496
hierarchical clustering 0.373 0.379 0.386 0.397 0.409 0.428
markov clustering 0.538 0.533 0.528 0.518 0.507 0.493
optics 0.520 0.516 0.509 0.495 0.482 0.464
cdlib ipca 0.482 0.475 0.463 0.450 0.432 0.415
cdlib dcs 0.544 0.538 0.531 0.519 0.508 0.494
cdlib combo 0.540 0.532 0.522 0.511 0.500 0.485
louvain 0.540 0.532 0.522 0.510 0.500 0.485
walktrap 0.542 0.534 0.526 0.515 0.502 0.489
greedy modularity 0.540 0.532 0.522 0.510 0.501 0.485
cdlib der 0.170 0.162 0.157 0.152 0.149 0.144
cdlib scan 0.543 0.536 0.529 0.516 0.507 0.493
affinity propagation 0.190 0.181 0.174 0.169 0.164 0.157
ensemble no weight 0.5 0.545 0.538 0.531 0.518 0.508 0.494
ensemble no weight 0.6 0.544 0.536 0.528 0.516 0.505 0.492
ensemble no weight 0.7 0.536 0.528 0.520 0.508 0.498 0.483

Table 35: Results of the recall metric of the clustering algorithms for each
threshold on the full data of the Musicbrainz data set.

Figure 25: All algorithms on the Musicbrainz data set.
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Algorithm 0.3 0.35 0.4 0.45 0.5 0.55
mixed best 3596.143 3656.143 3720.286 3816.857 3918.429 4032.714
connected components 4017.000 3949.000 3926.000 3993.000 4053.000 4152.000
hierarchical clustering 5165.000 5096.000 5036.000 4978.000 4898.000 4774.000
markov clustering 3885.000 3886.000 3888.000 3963.000 4042.000 4145.000
optics 4142.000 4089.000 4077.000 4164.000 4237.000 4369.000
cdlib ipca 4198.000 4203.000 4247.000 4347.000 4489.000 4625.000
cdlib dcs 4031.000 3957.000 3932.000 4004.000 4065.000 4165.000
cdlib combo 3964.000 3933.000 3932.000 4008.000 4080.000 4195.000
louvain 3963.000 3939.000 3942.000 4015.000 4081.000 4196.000
walktrap 3968.000 3929.000 3916.000 3997.000 4076.000 4180.000
greedy modularity 3954.000 3924.000 3930.000 4010.000 4069.000 4190.000
cdlib der 7398.143 7369.714 7363.571 7397.571 7408.857 7467.571
cdlib scan 4013.000 3966.143 3943.000 4015.000 4068.000 4161.000
affinity propagation 7564.286 7545.714 7543.000 7562.286 7564.714 7609.000
ensemble no weight 0.5 3954.571 3915.571 3906.143 3977.000 4050.143 4148.286
ensemble no weight 0.6 3937.429 3914.571 3902.857 3976.286 4058.143 4158.286
ensemble no weight 0.7 3916.714 3917.714 3927.429 4015.429 4086.429 4199.000

Table 36: Results of the GMD metric of the clustering algorithms for each
threshold on the full data of the Musicbrainz data set.

Figure 26: All algorithms on the Musicbrainz data set.
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Algorithm 0.3 0.35 0.4 0.45 0.5 0.55
mixed best 0.350 0.355 0.360 0.368 0.377 0.387
connected components 0.437 0.410 0.402 0.402 0.402 0.407
hierarchical clustering 0.502 0.494 0.488 0.484 0.475 0.460
markov clustering 0.385 0.383 0.382 0.388 0.392 0.401
optics 0.402 0.396 0.395 0.402 0.408 0.420
cdlib ipca 0.411 0.409 0.413 0.422 0.435 0.447
cdlib dcs 0.416 0.401 0.391 0.397 0.399 0.405
cdlib combo 0.394 0.385 0.385 0.389 0.394 0.403
louvain 0.394 0.386 0.385 0.390 0.394 0.403
walktrap 0.399 0.387 0.386 0.391 0.395 0.402
greedy modularity 0.392 0.385 0.384 0.390 0.393 0.402
cdlib der 0.716 0.700 0.696 0.694 0.691 0.693
cdlib scan 0.413 0.399 0.394 0.396 0.397 0.403
affinity propagation 0.709 0.698 0.695 0.693 0.691 0.693
ensemble no weight 0.5 0.404 0.390 0.388 0.391 0.396 0.402
ensemble no weight 0.6 0.394 0.388 0.384 0.389 0.395 0.402
ensemble no weight 0.7 0.383 0.380 0.381 0.389 0.393 0.403

Table 37: Results of the VoI metric of the clustering algorithms for each thresh-
old on the full data of the Musicbrainz data set.

Figure 27: All algorithms on the Musicbrainz data set.
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Musicbrainz - Test split

Algorithm 0.3 0.35 0.4 0.45 0.5 0.55
test split mixed best 0.977 0.980 0.975 0.978 0.979 0.984
test split connected components 0.816 0.860 0.758 0.886 0.925 0.938
test split hierarchical clustering 0.747 0.793 0.747 0.798 0.835 0.872
test split markov clustering 0.936 0.937 0.928 0.944 0.953 0.962
test split optics 0.911 0.931 0.934 0.940 0.938 0.945
test split ipca 0.901 0.907 0.905 0.905 0.896 0.903
test split dcs 0.894 0.899 0.904 0.922 0.941 0.956
test split combo 0.933 0.940 0.921 0.948 0.957 0.966
test split louvain 0.933 0.938 0.922 0.948 0.956 0.966
test split walktrap 0.921 0.936 0.905 0.941 0.953 0.965
test split greedy modularity 0.933 0.940 0.922 0.947 0.957 0.964
test split der 0.412 0.408 0.368 0.411 0.431 0.423
test split scan 0.888 0.904 0.849 0.924 0.946 0.958
test split affinity propagation 0.453 0.454 0.416 0.460 0.469 0.465
test split ensemble no weight 0.5 0.916 0.928 0.896 0.938 0.946 0.959
test split ensemble weighted 0.5 0.755 0.795 0.622 0.623 0.523 0.852
test split ensemble no weight 0.6 0.925 0.933 0.919 0.944 0.953 0.964
test split ensemble weighted 0.6 0.742 0.807 0.592 0.598 0.500 0.848
test split ensemble no weight 0.7 0.944 0.948 0.942 0.948 0.957 0.966
test split ensemble weighted 0.7 0.741 0.805 0.580 0.602 0.498 0.847
test split predicted clustering 0.860 0.891 0.851 0.880 0.850 0.825

Table 38: Results of the F1 metric of the clustering algorithms for each threshold
on the test split of the Musicbrainz data set.

Figure 28: All algorithms on the Musicbrainz data set test split.
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Algorithm 0.3 0.35 0.4 0.45 0.5 0.55
test split mixed best 0.959 0.964 0.958 0.961 0.962 0.971
test split connected components 0.697 0.774 0.640 0.804 0.862 0.885
test split hierarchical clustering 0.838 0.904 0.781 0.842 0.875 0.885
test split markov clustering 0.893 0.891 0.871 0.899 0.915 0.930
test split optics 0.872 0.905 0.915 0.925 0.933 0.945
test split ipca 0.923 0.933 0.942 0.950 0.953 0.967
test split dcs 0.812 0.826 0.829 0.858 0.892 0.919
test split combo 0.885 0.900 0.871 0.919 0.937 0.953
test split louvain 0.885 0.897 0.874 0.919 0.936 0.953
test split walktrap 0.861 0.889 0.837 0.898 0.925 0.944
test split greedy modularity 0.886 0.899 0.873 0.917 0.937 0.948
test split der 0.645 0.726 0.562 0.752 0.831 0.853
test split scan 0.804 0.837 0.753 0.866 0.903 0.925
test split affinity propagation 0.692 0.747 0.622 0.796 0.856 0.878
test split ensemble no weight 0.5 0.848 0.871 0.817 0.887 0.902 0.924
test split ensemble weighted 0.5 0.755 0.824 0.713 0.742 0.791 0.915
test split ensemble no weight 0.6 0.866 0.881 0.858 0.900 0.920 0.936
test split ensemble weighted 0.6 0.778 0.867 0.730 0.727 0.793 0.915
test split ensemble no weight 0.7 0.910 0.918 0.912 0.922 0.942 0.955
test split ensemble weighted 0.7 0.807 0.879 0.744 0.745 0.798 0.917
test split predicted clustering 0.899 0.919 0.865 0.935 0.922 0.939

Table 39: Results of the precision metric of the clustering algorithms for each
threshold on the test split of the Musicbrainz data set.

Figure 29: All algorithms on the Musicbrainz data set test split.
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Algorithm 0.3 0.35 0.4 0.45 0.5 0.55
test split mixed best 0.996 0.996 0.993 0.996 0.996 0.998
hline test split connected components 1.000 1.000 1.000 1.000 1.000 1.000
test split hierarchical clustering 0.677 0.707 0.730 0.767 0.800 0.861
test split markov clustering 0.984 0.988 0.994 0.995 0.995 0.996
test split optics 0.954 0.960 0.954 0.956 0.943 0.946
test split ipca 0.881 0.882 0.871 0.865 0.846 0.847
test split dcs 0.995 0.998 0.995 0.998 0.997 0.997
test split combo 0.986 0.984 0.982 0.979 0.978 0.980
test split louvain 0.987 0.985 0.980 0.979 0.978 0.980
test split walktrap 0.990 0.989 0.990 0.990 0.983 0.987
test split greedy modularity 0.987 0.986 0.981 0.980 0.979 0.980
test split der 0.309 0.295 0.299 0.288 0.291 0.282
test split scan 0.995 0.996 0.993 0.993 0.995 0.994
test split affinity propagation 0.342 0.336 0.333 0.326 0.324 0.317
test split ensemble no weight 0.5 0.996 0.996 0.997 0.996 0.995 0.998
test split ensemble weighted 0.5 0.776 0.808 0.612 0.590 0.448 0.851
test split ensemble no weight 0.6 0.994 0.993 0.993 0.993 0.990 0.993
test split ensemble weighted 0.6 0.726 0.768 0.533 0.557 0.429 0.846
test split ensemble no weight 0.7 0.981 0.980 0.975 0.977 0.973 0.977
test split ensemble weighted 0.7 0.702 0.748 0.511 0.553 0.427 0.841
test split predicted clustering 0.825 0.865 0.853 0.831 0.789 0.737

Table 40: Results of the recall metric of the clustering algorithms for each
threshold on the test split of the Musicbrainz data set.

Figure 30: All algorithms on the Musicbrainz data set test split.
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Algorithm 0.3 0.35 0.4 0.45 0.5 0.55
test split mixed best 28.714 25.571 35.571 25.714 23.714 17.714
test split connected components 108.857 82.857 75.429 58.000 48.714 39.143
test split hierarchical clustering 355.714 309.000 295.429 256.000 220.571 163.286
test split markov clustering 81.714 72.571 63.429 54.143 47.571 37.857
test split optics 138.143 110.714 104.857 90.857 87.571 75.143
test split ipca 148.000 133.857 138.714 130.429 139.429 125.714
test split dcs 109.571 83.000 78.429 60.286 51.143 41.000
test split combo 96.429 81.429 75.857 65.143 56.143 45.571
test split louvain 97.286 81.143 78.000 65.857 56.714 46.143
test split walktrap 97.000 79.571 73.000 59.714 54.143 43.429
test split greedy modularity 97.286 79.857 76.857 64.571 55.143 46.857
test split der 779.286 765.000 765.571 742.143 720.143 701.857
test split scan 103.143 81.571 80.000 62.857 51.143 42.000
test split affinity propagation 814.857 796.429 800.429 770.571 745.429 722.714
test split ensemble no weight 0.5 95.143 75.286 70.571 56.857 49.429 38.143
test split ensemble weighted 0.5 300.143 238.429 469.286 488.286 613.143 178.571
test split ensemble no weight 0.6 92.429 75.429 69.429 55.857 50.286 39.286
test split ensemble weighted 0.6 332.143 268.714 575.000 513.857 628.571 181.571
test split ensemble no weight 0.7 89.857 80.286 74.000 65.286 59.143 47.429
test split ensemble weighted 0.7 348.429 287.857 594.714 518.286 630.571 184.143
test split predicted clustering 265.857 221.143 235.143 234.429 274.571 284.571

Table 41: Results of the GMD metric of the clustering algorithms for each
threshold on the test split of the Musicbrainz data set.

Figure 31: All algorithms on the Musicbrainz data set test split.
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Algorithm 0.3 0.35 0.4 0.45 0.5 0.55
test split mixed best 0.016 0.014 0.018 0.014 0.013 0.010
test split connected components 0.083 0.059 0.069 0.044 0.035 0.027
test split hierarchical clustering 0.174 0.148 0.148 0.127 0.109 0.080
test split markov clustering 0.045 0.041 0.039 0.033 0.028 0.022
test split optics 0.070 0.055 0.052 0.045 0.045 0.038
test split ipca 0.075 0.069 0.070 0.067 0.072 0.065
test split dcs 0.067 0.053 0.052 0.040 0.033 0.025
test split combo 0.051 0.043 0.045 0.035 0.030 0.023
test split louvain 0.051 0.043 0.045 0.035 0.030 0.024
test split walktrap 0.055 0.044 0.047 0.035 0.030 0.023
test split greedy modularity 0.051 0.042 0.045 0.035 0.029 0.024
test split der 0.365 0.353 0.362 0.338 0.325 0.314
test split scan 0.065 0.050 0.058 0.040 0.031 0.024
test split affinity propagation 0.363 0.351 0.357 0.335 0.323 0.311
test split ensemble no weight 0.5 0.056 0.044 0.049 0.035 0.030 0.023
test split ensemble weighted 0.5 0.154 0.123 0.217 0.219 0.271 0.081
test split ensemble no weight 0.6 0.052 0.043 0.044 0.033 0.029 0.022
test split ensemble weighted 0.6 0.167 0.132 0.255 0.231 0.278 0.082
test split ensemble no weight 0.7 0.045 0.040 0.039 0.035 0.030 0.024
test split ensemble weighted 0.7 0.173 0.139 0.263 0.232 0.278 0.083
test split predicted clustering 0.120 0.097 0.107 0.101 0.120 0.127

Table 42: Results of the VoI metric of the clustering algorithms for each thresh-
old on the test split of the Musicbrainz data set.

Figure 32: All algorithms on the Musicbrainz data set test split.
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Response	Summary:

Section	1.	Research	projects	involving	human	participants
	
P1.	Does	your	project	involve	human	participants?	This	includes	for	example	use	of	observation,	(online)
surveys,	interviews,	tests,	focus	groups,	and	workshops	where	human	participants	provide	information	or
data	to	inform	the	research.	If	you	are	only	using	existing	data	sets	or	publicly	available	data	(e.g.	from
Twitter,	Reddit)	without	directly	recruiting	participants,	please	answer	no.	

No

	
Section	2.	Data	protection,	handling,	and	storage
The	General	Data	Protection	Regulation	imposes	several	obligations	for	the	use	of	personal	data	(defined	as	any
information	relating	to	an	identified	or	identifiable	living	person)	or	including	the	use	of	personal	data	in	research.

	
D1.	Are	you	gathering	or	using	personal	data	(defined	as	any	information	relating	to	an	identified	or
identifiable	living	person	)?

Yes

	

High-risk	data

	
DR1.	Will	you	process	personal	data	that	would	jeopardize	the	physical	health	or	safety	of	individuals	in	the
event	of	a	personal	data	breach?

No

	
DR2.	Will	you	combine,	compare,	or	match	personal	data	obtained	from	multiple	sources,	in	a	way	that
exceeds	the	reasonable	expectations	of	the	people	whose	data	it	is?

No

	
DR3.	Will	you	use	any	personal	data	of	children	or	vulnerable	individuals	for	marketing,	profiling,
automated	decision-making,	or	to	offer	online	services	to	them?

No

	
DR4.	Will	you	profile	individuals	on	a	large	scale?

No

	
DR5.	Will	you	systematically	monitor	individuals	in	a	publicly	accessible	area	on	a	large	scale	(or	use	the
data	of	such	monitoring)?

No

	
DR6.	Will	you	use	special	category	personal	data,	criminal	offense	personal	data,	or	other	sensitive
personal	data	on	a	large	scale?

No

	
DR7.	Will	you	determine	an	individual’s	access	to	a	product,	service,	opportunity,	or	benefit	based	on	an
automated	decision	or	special	category	personal	data?

No

	



DR8.	Will	you	systematically	and	extensively	monitor	or	profile	individuals,	with	significant	effects	on	them?
No

	
DR9.	Will	you	use	innovative	technology	to	process	sensitive	personal	data?

No

	

Data	minimization

	
DM1.	Will	you	collect	only	personal	data	that	is	strictly	necessary	for	the	research?

Yes

	
DM4.	Will	you	anonymize	the	data	wherever	possible?

Yes

	
DM5.	Will	you	pseudonymize	the	data	if	you	are	not	able	to	anonymize	it,	replacing	personal	details	with	an
identifier,	and	keeping	the	key	separate	from	the	data	set?

Not	applicable

	

Using	collaborators	or	contractors	that	process	personal	data	securely

	
DC1.	Will	any	organization	external	to	Utrecht	University	be	involved	in	processing	personal	data	(e.g.	for
transcription,	data	analysis,	data	storage)?

Yes

	
DC2.	Will	this	involve	data	that	is	not	anonymized?

No

	

International	personal	data	transfers

	
DI1.	Will	any	personal	data	be	transferred	to	another	country	(including	to	research	collaborators	in	a	joint
project)?

No

	

Fair	use	of	personal	data	to	recruit	participants

	
DF1.	Is	personal	data	used	to	recruit	participants?

No

	

Participants'	data	rights	and	privacy	information

	
DP1.	Will	participants	be	provided	with	privacy	information?	(Recommended	is	to	use	as	part	of	the
information	sheet:	For	details	of	our	legal	basis	for	using	personal	data	and	the	rights	you	have	over	your
data	please	see	the	University’s	privacy	information	at	www.uu.nl/en/organisation/privacy.)

Yes

	



DP2.	Will	participants	be	aware	of	what	their	data	is	being	used	for?
Yes

	
DP3.	Can	participants	request	that	their	personal	data	be	deleted?

Yes

	
DP4.	Can	participants	request	that	their	personal	data	be	rectified	(in	case	it	is	incorrect)?

Yes

	
DP5.	Can	participants	request	access	to	their	personal	data?

Yes

	
DP6.	Can	participants	request	that	personal	data	processing	is	restricted?

Yes

	
DP7.	Will	participants	be	subjected	to	automated	decision-making	based	on	their	personal	data	with	an
impact	on	them	beyond	the	research	study	to	which	they	consented?

No

	
DP8.	Will	participants	be	aware	of	how	long	their	data	is	being	kept	for,	who	it	is	being	shared	with,	and
any	safeguards	that	apply	in	case	of	international	sharing?

Yes

	
DP9.	If	data	is	provided	by	a	third	party,	are	people	whose	data	is	in	the	data	set	provided	with	(1)	the
privacy	information	and	(2)	what	categories	of	data	you	will	use?

Yes

	

Using	data	that	you	have	not	gathered	directly	from	participants

	
DE1.	Will	you	use	any	personal	data	that	you	have	not	gathered	directly	from	participants	(such	as	data
from	an	existing	data	set,	data	gathered	for	you	by	a	third	party,	data	scraped	from	the	internet)?	

Yes

	
DE2.	Will	you	use	an	existing	dataset	in	your	research?

Yes

	
DE3.	Do	you	have	permission	to	do	so	from	the	owners	of	the	data	set?

Yes

	
DE4.	Have	the	people	whose	data	is	in	the	data	set	consented	to	their	data	being	used	by	other
researchers	and/or	for	purposes	other	than	that	for	which	that	data	set	was	gathered?

Yes

	
DE5.	Are	there	any	contractual	conditions	attached	to	working	with	or	storing	the	data	from	DE2?

No

	
DE6.	Does	your	project	require	access	to	personal	data	about	participants	from	other	parties	(e.g.,
teachers,	employers),	databanks,	or	files?

No

	



DE9.	Does	the	project	involve	collecting	personal	data	from	websites	or	social	media	(e.g.,	Facebook,
Twitter,	Reddit)?

No

	

Secure	data	storage

	
DS1.	Will	any	data	be	stored	(temporarily	or	permanently)	anywhere	other	than	on	password-protected
University	authorized	computers	or	servers?

No

	
DS4.	Excluding	(1)	any	international	data	transfers	mentioned	above	and	(2)	any	sharing	of	data	with
collaborators	and	contractors,	will	any	personal	data	be	stored,	collected,	or	accessed	from	outside	the
EU?

No

	

Section	3.	Research	that	may	cause	harm
Research	may	cause	harm	to	participants,	researchers,	the	university,	or	society.	This	includes	when	technology	has	dual-
use,	and	you	investigate	an	innocent	use,	but	your	results	could	be	used	by	others	in	a	harmful	way.	If	you	are	unsure
regarding	possible	harm	to	the	university	or	society,	please	discuss	your	concerns	with	the	Research	Support	Office.	

	
H1.	Does	your	project	give	rise	to	a	realistic	risk	to	the	national	security	of	any	country?

No

	
H2.	Does	your	project	give	rise	to	a	realistic	risk	of	aiding	human	rights	abuses	in	any	country?

No
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