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Abstract

A usual assumption in score-based methods for deriving graphical
models from data is score equivalence. In brief terms, score equiv-
alence requires that scores are the same between Markov equivalent
graphs, that is, structures that encode the same conditional indepen-
dencies. In the causal discovery task, however, this assumption is in-
accurate: since Markov equivalent graphs can differ on arcs sets, their
causal meaning is different. In this thesis, we propose what we call the
Granger scoring function (GSF): a scoring function designed to learn
causal summary graphs from time series data. More specifically, this
function combines significance values from lag-specific Granger causal-
ity tests on time series data to infer a score on candidate graphs. In
line with standard constraint-based methods, this score is interpreted
as the amount of evidence in favor of graphs and is applied, subse-
quently, to select a graph or set of graphs that maximises the amount
of evidence. In order to evaluate if the GSF reliably retrieves causal
structure, we perform two experiments: first, an experiment to evalu-
ate how well the GSF recovers the true graph from equivalent graphs
and, second, an experiment to assess how well the GSF’s performance
fares in settings where the true graph is not necessarily accessible.
From the experiments, it is concluded that the GSF significantly im-
proves on random chance as well as on PCMCI+, a similar structure
discovery method. Furthermore, it is shown that the GSF’s perfor-
mance is maximised in the case of non-linear dependencies and higher
proportion of lagged causes.

Keywords— time series causal discovery, Granger causality, score non-equivalence,
scoring functions, score-based methods
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1 Introduction

Causal discovery is the problem of learning causal relations from non-experimental,
observational data. In the automated causal discovery task, this problem is inter-
preted as the task of learning a graphical model describing causal relationships be-
tween observed variables [21, 57, 30]. In the literature, two prominent procedures
for extracting causal structure from data are constraint-based and score-based
methods [30, 3, 57]. Constraint-based methods first exploit conditional indepen-
dence constraints to derive an undirected graph and afterwards apply orientation
rules to return an equivalence class of graphs [3, p. 780]. In constrast, score-based
methods apply a scoring function on a set of candidate graphs and return the
graphs that optimise the selected scoring function [3, p. 794].

A standard assumption on scoring functions is score equivalence: graphs that
encode the same set of conditional independencies are assigned the same score
[38, 9, 47]. In the causal setting, however, this assumption is inaccurate: graphs
within an equivalence class can differ on arcs sets, effectively encoding different
causal structures [39, p. 372]. In this thesis, we propose what we call the Granger
scoring function (GSF): a causal scoring function that rejects score equivalence. In
particular, the GSF combines p-values from lag-specific Granger causality tests on
time series data to retrieve the strength of the evidence in favor candidate graphs,
which is subsequently used to select an optimal candidate from the candidate
space. Stated in explicit terms, the research question of this thesis is as follows:

Can the GSF reliably determine causal structure from otherwise

Markov equivalent graphs?
(RQ)

In evaluating the GSF, we perform two experiments. In the first experiment, we
assume access to the true MEC to evaluate how well the scoring function recovers
the true graph from equivalent graphs. The second experiment assumes access to
an estimate of the MEC and aims to assess the scoring function’s performance
under a more realistic setting. In both experiments, a wide range of randomised
causal model parametrisations are evaluated to ensure representative performance.
In addition, performance scores are compared with those of Runge et al. [70]
to benchmark performance. Since the subquestions of (RQ) depend on further
details of a time series causal models, we postpone them until §8.2.

At this point, it is relevant to mention a number of invoked assumptions to
make the scope of this work explicit. A first assumption is that causal struc-
ture comes in the form of a directed acyclic graph (DAG): cycles, edges and bi-
directional arcs are excluded. Secondly, we assume the causal Markov condition
and faithfulness to ensure identifiability of the MEC from the joint distribution.
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In addition, the availability of a MEC further necessitates restriction to an acyclic
segment of a subclass of summary graphs, as further outlined in §7.3.3. A fourth
assumption is causally sufficiency, which states that all causal variables are in-
cluded, allowing us to use the DAG representation. Last but not least, causal
stationarity is assumed, which assumes that whenever a causal relation occurs at
a given time point, that causal relation occurs at all time points. This assumptions
allows the use of correlation tests to decide conditional independence. In future
work, a subset of these assumptions may be weakened.

In broad lines, the thesis is structured as follows. First, §2-§5 discuss the pre-
liminaries required for motivating and outlining the GSF in §6 and §7, respectively.
In turn, §8 and §9 are dedicated to the evaluation of the GSF. In conclusion, §10
discusses the results, the limitations of this work as well as possibilities for future
work. Appendix A includes a notation table for reference; Appendix B sets out
the procedures relevant to our method; additional proofs are stated in Appendices
D-E; results are included in Appendices F-G.

2 Principles of Causal Discovery

2.1 An Overview of Causal Discovery

Causal discovery is, as Pearl describes it, “an induction game that scientists play
against Nature”: scientists conduct experiments, collect data and apply inductive
inference to infer the causal structure underlying the data-generating process [61,
p. 43]. In some cases, collecting experimental data can be unethical, expensive or
simply technically impossible [68, 57, 41, 58]. Cast in general terms, automated
causal discovery is the inference task of automatically detecting causal structure
from observational data, without performing experiments. Causal structure, in
turn, is encoded as a causally interpreted graphical model consisting of vertices that
represent variables in the data and connections representing causal relationships
between those variables [21, 57, 30, 34]. Next to providing a graphical depiction of
causal relations, functional mechanisms can be estimated using the causal graph,
which allow for the identification and estimation of causal effects without the need
for performing experiments [61, 90].

Unfortunately, causal discovery is a highly non-trivial inference task and is,
in fact, known to be NP-hard in the general case. A first problem concerns a
combinatorial explosion in the search space as the number of variables increases
[48]. A second issue is the fact that the observational distribution does not disclose
causal relationships. On the one hand, correlations in the data are prone to be
spurious due to, for instance, latent common causes [3, 20]. On the other hand,
correlation cannot justify causation as correlations are symmetric relations whilst
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causation is an asymmetric relation [80, 20]. In order to make causal structure
identifiable from the observational distribution, further assumptions are required,
as further discussed in Section 2.6.

2.2 Relevance for Artificial Intelligence

In this section, we briefly discuss the relevance of automated causal discovery to
the field of artificial intelligence. A first point relates to a central aspiration of
artificial intelligence: the automation of tasks believed to be specific to human
intelligence at human-level performance [72]. The discovery of causal relations
falls under this scope: identifying causal relations is, as Pearl for instance puts
it, a “hallmark of human cognition” [63]. A second point of relevance concerns
the intuitive and interpretable nature of causal graphs as qualitative descriptions
of systems. Performing inference tasks with the aid of causal graphs, it may be
argued, is preferable to performing inference in more opaque models [90, p. 101].

Causal discovery is, furthermore, relevant for addressing a multitude of prob-
lems within the paradigm of predictive artificial intelligence. A first notable prob-
lem relates to the desideratum of robustness to dataset shift. Since learning from
spurious correlations reduces robustness, using causal structure as constraints on
the learning process of machine learning algorithms can reduce overfitting and
increase generalisation of models. A second problem concerns the lack of inter-
pretability. Integrating causal structure into the learning process makes it clearer
which aspects the learning algorithm used in constructing the model [18, 48, 7,
92, 73, 56]. An alternative approach is to learn causal models from input-output
pairs of an opaque model, which can subsequently be used to generate contrastive
explanations or counterfactual explanations for the model’s predictions [84, 54].

2.3 Causal Structure

Within the causal discovery task, the standard interpretation of causal structure is
a graph over variables. From an intuitive point of view, this graph represents the
causal dependencies of the generative process underlying the observational data. A
graphG = (V,E) is a tuple consisting of vertices V and a set of edges E ⊆ V×V . In
what follows, an edge Vi − Vj is called undirected if (Vi, Vj) ∈ E and (Vj , Vi) ∈ E.
A directed edge Vi → Vj is called an arc and corresponds to (Vi, Vj) ∈ E and
(Vj , Vi) ̸∈ E. Given these notions, an undirected graph G = (V,E) is a graph
consisting exclusively of undirected edges; a directed graph G = (V,A) consists
exclusively of arcs. In addition, the adjacencies of a vertex Vi in a graphG = (V,E)
is defined as the set of vertices adj(Vi) = {Vj : (Vj , Vi) ∈ E or (Vi, Vj) ∈ E}
connected with Vi. In turn, a path π = V1...Vn is a sequence of distinct vertices
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of length 2 ≤ n such that each vertex Vi is adjacent to Vi+1 for 1 ≤ i < n.
A directed path, in turn, is a sequence of arcs pointing in the same direction:
π = V1...Vn such that Vi → Vi+1 for 1 ≤ i < n [87, p. 2]. A causal structure is
simply a directed graph over a set of variables representing functional relationships
between variables:

Definition 2.3.1 (Causal Structure) A causal structure over a set of variables
X = {X1, ..., Xn} is a directed graph G = (V,A) such that V represents X and
each arc (Vi, Vj) ∈ A represents that Vj is a direct function of Vi.

Within a causal structure G = (V,A), a variable Vi is called a direct cause of a
variable Vj if the arc Vi → Vj is included in G. In similar fashion, Vi is an indirect
cause of Vj just in case there exists a directed path Vi...Vj in G [61, p. 44].

In this work, we assume directed acyclic graphs (DAGs) as the model class for
causal structure. In formal terms, this assumption corresponds to the acyclicity
condition on causal structure:

Definition 2.3.2 (Acyclicity) A directed graph G = (V,A) is called acyclic if
there exists no Vi ∈ V for which there exists a directed path π = Vi...Vi.

The acyclicity assumption is unwarranted in cases of feedback loops: self-directed
causal influence of variables. Standardly, feedback loops are modelled in either of
two ways: (i) with a cyclic graphical model or (ii) as an acyclic causal structure
over time steps. As further explained in §4.4 and §7.3, our attention is restricted to
a subgraph of a subclass of causal summary graphs guaranteed to be acyclic. If one
were to adapt the search space to include cyclic models, the acyclicity assumption
may be relaxed [21, p. 84].

2.4 Constraint-Based and Score-Based Methods

In the literature, the standard classes of causal discovery methods are constraint-
based and score-based methods [30, 3, 57]. Constraint-based methods exploit con-
straints to derive causal structure in two steps, usually called the skeleton phase
and the orientation phase. In the skeleton phase, conditional independence con-
straints are applied to derive an undirected graph over variables [50, p. 444]. In the
orientation phase, a set of orientation rules is applied to transform edges into arcs
as far as warranted [57, p. 7]. Since it is generally not possible to orient all edges,
identification of a unique causal graph is not guaranteed. Instead, constraint-
based methods generally return a partial causal structure encoding an equivalence
class of graphs [30, 21, 80]. Score-based methods, in turn, consist of a scoring
function and a search space of graphs interpreted as Bayesian Networks (BNs).
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The first component of score-based methods is the scoring function: a function
that measures fit on the data as well as complexity of candidate networks. The
second component is the search procedure: an algorithmic method that efficiently
traverses the selected search space. Given these two components, the aim of score-
based methods is to extract from the search space a network or set of networks
that optimise the scoring function [3, p. 794].

At this moment, it is relevant to describe relative advantages and disadvan-
tages of both method classes. In general, constraint-based methods tend to be
more efficient than score-based methods as long as the number of conditional in-
dependence tests is restricted. Contrastingly, score-based methods are less prone
to error propagation, due to localised computation of scores discussed in §7.2.1.
A further notable advantage of score-based methods is their ability to impose a
total order on the set of candidate graphs, allowing for more fine-grained assess-
ment and comparison of candidates [57, p. 7]. A last advantage is that, in the
general case, score-based methods can determine can determine causal direction
in the bivariate case whilst constraint-based methods cannot do so as conditional
independence testing requires variable triples [30, p. 5].

At the same time, score-based methods are computationally expensive if the
full set of candidate graphs is large. Moreover, the computational tasks of finding
or approximating a globally optimal network are each known to be NP-hard. In
order to resolve the computational problem, two tactics are commonplace: (i) a
restriction of the space of candidate networks to a small and suitable subclass
or (ii) an efficient search procedure that restricts the candidates to be evaluated.
Since the latter method typically amounts to greedy heuristic search, a problem
of local optima is involved. On the other hand, it should be clear that restriction
to “a suitable subclass” can similarly involve local optima in cases where the
globally optimal graph is excluded due to an inappropriate choice of the subclass [3,
57]. Next to constraint-based and score-based methods, hybrid methods effectively
combine elements from both methods with the aim of countering their relative
disadvantages and delivering a more robust and more reliable causal discovery
procedure [50, p. 444].

2.5 A Graphical Criterion for Conditional Independence

In order to discuss the standard identifiability assumptions in causal discovery,
we should first review the graphical notion of d-separation. Pearl [62] proposed d-
separation as an efficient method for deriving the set of conditional independencies
that a DAG imposes on the observational distribution. Formally, d-separation is
defined as follows:
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Definition 2.5.1 (d-separation on paths) Let G = (V,A) be a DAG and con-
sider Vi ∈ V , Vj ∈ V and Z ⊆ V . Then, a path π = Vi...Vj is d-separated by Z iff
either of the following conditions holds:

(i) π contains a chain Vi → X → Vj or fork Vi ← X → Vj such that X ∈ Z;

(ii) π contains a collider Vi → X ← Vj such that σ∗(X) ∩ Z = ∅.

Otherwise, π is called d-connected.

Definition 2.5.2 (d-separation on sets) A set X is d-separated from a set Y
by a set Z iff for all variables Vi ∈ X and Vj ∈ Y and paths π = Vi...Vj, π is
d-separated by Z. Otherwise, X and Y are d-connected.

It may be helpful to spell out the intuitions behind d-separation in terms of con-
ditioning on variables. Condition (i) states, firstly, that information about an
intermediary cause between indirect causes removes dependence and, secondly,
that information on a common cause removes dependence between direct effects.
Condition (ii), on the other hand, states that if two variables share a common
effect, then information about that effect or one of its effects can show dependence
between the initial two variables [61, pp. 16–17].

2.6 Identifiability Assumptions for Causal Discovery

A causal structure is called identifiable just in case it can be uniquely determined
from the observational distribution [66, p. 44]. In the general case, however, the
observational distribution does not disclose causal structure. Under a number of as-
sumptions, however, causal structure becomes identifiable. Although different sets
of assumptions suffice for identifiability, we adhere to the following assumptions:
the causal Markov condition, faithfulness and causal sufficiency. Conceptually,
the first two assumptions jointly entail that d-separations in the causal structure
correspond to conditional independencies in the distribution. On the other hand,
causal sufficiency asserts that all causal variables are modelled in the graph [71, 3,
39, 57, 80, 40, 21].

Definition 2.6.1 (Causal Markov Condition) A causal DAG G = (V,A) and
distribution Pr satisfy the causal Markov condition if for any X,Y, Z ⊆ V , if X
and Y are d-separated by Z in G, then X and Y are independent given Z in Pr.

Definition 2.6.1 imposes that d-separations are present in the graph only if there
are corresponding conditional independencies in the observational distribution.
Contrapositively stated, conditional dependencies are present in the distribution
only if there are no corresponding d-separation statements.
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Definition 2.6.2 (Faithfulness) A causal DAG G = (V,A) and distribution Pr
satisfy the faithfulness condition if for any X,Y, Z ⊆ V , if X and Y are indepen-
dent given Z in Pr, then X and Y are d-separated by Z in G.

Definition 2.6.2 states the reverse of Definition 2.6.1: conditional independencies
in the distribution are present only if there are corresponding d-separations in
the graph or, contrapositively, the absence of d-separations implies corresponding
conditional dependencies in the graph.

On accepting both the causal Markov and faithfulness conditions, it is clear
that a one-to-one correspondence follows between d-separation properties in the
graph and conditional independencies in the observational distribution. Combined
with acyclicity, these assumptions make the Markov equivalence class identifiable
from the observational distribution [39, 40]. Note that this set of assumptions has
been contested. The causal Markov condition is, for example, violated in indeter-
ministic contexts where d-separated variables show conditional dependence due to
randomly coordinated variation [36, 8]. Faithfulness, in turn, fails if d-connected
variables are rendered conditionally independent due to cancelling effects on mu-
tual causal influence [20, p. 7]. In this work, we assume these two conditions to
facilitate identification of the Markov equivalence class from the observational dis-
tribution. If the search space is shifted, these assumptions can be weakened [66,
p. 197].

A further assumption is causal sufficiency, which assumes that all causal vari-
ables are observed:

Definition 2.6.3 (Causal Sufficiency) A set of variables V is called causally
sufficient if every variable Z that is a common cause of variables X ∈ V and
Y ∈ V is a member of V .

A problem with the causal sufficiency assumption is that it can occur that not
all causal variables are measured. If a variable is excluded from the model, spu-
rious correlations can emerge between its effects. Given a latent variable U and
a causal structure consisting of its effect variables X and Y , excluding U results
in a dependence between X and Y that cannot be traced back to U within the
model [3, 20, 68, 57]. A usual model choice is to represent latent variables in a
mixed acyclic graph (MAG), which models the presence of a latent variable with a
bi-directed arc between its effects [27, pp. 94–96]. Although causal sufficiency is a
theoretically unsatisfactory assumption, we restrict our focus to DAGs and leave
an expansion to MAGs for future work.
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3 Causal Modelling

3.1 Causal Models

Within Pearl’s causal modelling framework, causal relationships are modelled in
terms of a structural causal model (SCM) over variables. In basic terms, a causal
model consists of a qualitative and a quantitative part: a graph defining causal
relations between variables and, in addition, a set of structural equations defining
causal influence between variables. As Pearl puts it, the causal structure is “a
blueprint for forming a ‘causal model’ – a precise specification of how each variable
is influenced by its parents in the DAG”. In colloquial terms, causal relations in
the graph translate to causal influence in structural equations [61, pp. 44–45]. In
formal terms, a SCM consists of a DAG and a set of functions that define the
value of variables in terms of other variables joined with mutually independent
noise terms:

Definition 3.1.1 (Structural Causal Model) A structural causal model (SCM)
is a tuple M = (G,Θ) such that G is a causal structure and Θ = (U, V, F ) a set
of parameters compatible with G consisting of

(i) U is a set of exogenous variables distributed according to Pr(ui) for each
Ui ∈ U with Ui ⊥⊥ Uj for Ui ̸= Uj

(ii) V is a set of endogenous variables

(iii) F is a set of structural equations fi that defines vi = fi(pai, ui) for each
Vi ∈ V where PAi are the parents of Vi in G

Here, exogenous variables are the noise terms that represent influences external to
the model. One the other hand, endogenous variables represent observed causes
and effects that are internal to the model. Condition (iii) shows that every endoge-
nous variable is defined in terms of some exogenous variable as well as a possibly
empty subset PAi ⊆ V . An important remark is that a complete valuation of
the exogenous variables is sufficient to infer all values of the endogenous variables:
if the value ui of each exogenous variable Ui ∈ U is observed, then recursive ap-
plication of the structural equations F provides the value vj of each endogenous
variable Vj ∈ V [60, 63].

3.2 Markov Equivalence Class

A central notion for causal discovery is that of a Markov equivalence class (MEC).
Verma and Pearl [83] defined a MEC as a set of DAGs that (i) share the same
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undirected graph or “skeleton” and (ii) encode the same conditional independence
statements. Intuitively, Markov equivalence tracks if graphs encode the same de-
pendency structure in the undirected graph as well as if the same conditional
independencies are encoded in their directed graph. The first condition can be
easily verified by considering whether graphs G = (V,A) induces the same undi-
rected graph, which can be retrieved by defining G′ = (V ′, E) where V ′ = V and
E = {(Vi, Vj) : (Vi, Vj) ∈ E or (Vj , Vi) ∈ E}. On the other hand, the second
condition is more involved: it demands an effective method to decide for arbitrary
graphs which conditional independence statements are imposed [61, p. 16]. As
discussed in §2, Verma and Pearl proposed d-separation as an effective criterion
for determining the conditional independence statements imposed by arbitrary
graphs. As it turns out, two graphs share the same set of d-separation just in case
their v-structures are the same: triples Vi → Vj ← Vk where Vi and Vk are non-
adjacent, so-called unshielded triples. Hence, Markov equivalence between graphs
is fully definable in terms of sameness of skeleton and v-structures:

Theorem 3.1 (Markov Equivalence) Two DAGs G, G′ are called Markov equiv-
alent iff (i) their skeletons are the same and (ii) their set of v-structures is the
same.

A MEC of a graph is, in turn, simply the set of graphs containing that graph
and closed under the Markov equivalence relation. In formal terms, the MEC GG
of G is the set GG = [G]∼ = {G′ ∈ G : G′ ∼ G} where G is the entire space
of directed graphs and ∼ is the Markov equivalence relation. A more convenient
representation of GG is a completed partially directed graph (CPDAG). A CPDAG
CG representing a MEC G is, simply, the union graph over all members of G =
{G1 = (V 1, A1), ..., Gm = (V m, Am)} defined as CG = (V,E) with vertices V =⋃m

i=1 V
i = V i and the union of all arcs E =

⋃m
i=1A

i of the members in G. Hence,
an arc is included in CG just in case that arc is included in all members of G; an
edge is added whenever members disagree about arc direction [61, pp. 18–19].

As noted before, assuming the causal Markov condition and faithfulness ensures
that the MEC over a set of variables is identifiable from the joint distribution over
that set of variables. Formally, this involves that the distribution Pr suffices for
assessing if G ∈ G for an arbitrary graph G and arbitrary MEC G induced by
the set of conditional independencies from Pr. Briefly, this is established by the
following two claims: (i) G ∈ G if G and Pr satisfy the Markov and faithfulness
condition and (ii) G ̸∈ G if there exists no parameter set Θ = (U, V, F ) over G
that induces Pr. The reader is referred to Peters, Janzing, and Schölkopf [66] for
further details as well as the formal proof [66, pp. 44, 135–136].
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3.3 The Bayesian Network Interpretation of Causal Models

As intended in Definition 3.1.1, compatibility of a causal structure G = (V,A) and
set of parameters Θ = (U, V, F ) demands that the causal structure G and the
causal influence defined in Θ do not conflict: a causal arc (Vi, Vj) is included in
the graph just in case Vi occurs as a causal variable in the structural equation
fj of Vj . Definition 2.3.1 implicitly defines this requirement by stating that in
a causal structure G = (V,A), each (Vi, Vj) ∈ A represents a direct functional
relation between Vi and Vj . This functional relation is, in turn, given by fj from
the set of structural equations F in the parameter set Θ.

An alternative formulation of the compatibility requirement relevant to score-
based methods is the Bayesian network (BN) interpretation of causal graphs.
Within this formulation, the important part is that the graph decomposition cor-
responds to independence properties in the distribution:

Definition 3.3.1 (Compatibility) Given a DAG G = (V,A) and sets of vari-
ables X,Y, Z, if Pr is a distribution compatible with G, then d-separation of X and
Y given Z implies X ⊥⊥ Y |Z with respect to Pr.

Clearly, this is the causal Markov condition defined before. In brief terms, the
underlying thought is that G’s decomposition allows estimation of a BN M =
(G,Θ′) with joint probability distribution PrΘ

′
(v1, ..., vn) =

∏n
i=1 Pr

Θ′
(vi|pai) that

approximates Pr(v1, ..., vn). In intuitive terms, the graph is, in principle, capable
of generating data from Pr given the appropriate set of parameters. Although
the BN representation preserves the structure of the graph, it clearly does not
preserve causal information: causal dependencies between Xi and {PAi, Ui} are
maintained, but the functional dependency defined by fi is ignored [61, pp. 44–45].

4 Time Series Causal Discovery

4.1 Time Series Analysis

Time series analysis is a field of data analysis that analyses variables with a time
sequential ordering. In this way, it differs from usual cross-sectional, which ignores
temporal distinctions and treats variables as if belonging to the same temporal
state. The aims of time series analysis are as follows:

[T]o understand or model the stochastic mechanism that gives rise to
an observed series and to predict or forecast the future values of a
series based on the history of that series and, possibly, other related
series or factors [17, p. 1].
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Major disciplines concerns with time series analysis are climate science, economics,
epidemiology, neuroscience and physics [10, 76].

Standard causal discovery estimates causal structure from cross-sectional data.
In contrast, time series causal discovery estimates causal structure from time series
data [3]. This branch of causal discovery has enjoyed increasing interest due to
rapid growth of available time series data [55]. In addition, time series causal
discovery seems a more suitable approach than standard causal discovery in the
case of variables with an inherent time-ordering, such as carbon dioxide emissions,
energy use and economic production [90, p. 124]. In such cases, time-ordering can
provide valuable information and, moreover, can be important to reflect in the
inferred causal structure.

4.2 Time Series Notation

In the standard cross-sectional setting, data of a population is defined as a set of
random variables X = {X1, ..., Xd} for some fixed dimensionality d ∈ N. Contrast-
ingly, time series data is defined by a set of time series T = {X1, ...,Xd} where
each Xi encodes a set of time-ordered states of a random variable throughout time.
A time series, then, is interpreted as a collection of time-indexed instances of some
random variable: Xi = {X1

i , ..., X
T
i } where T ∈ N is the final time point. Hence,

Xt
i represents the state of Xi at time t.
In what follows, it is assumed that each time-indexed random variable Xt

i has
multiple possible value realisations. The realisation of a time series Xi, in turn,
is a complete valuation x1i , ..., x

T
i for all time-indexed variables Xt

i for 1 ≤ t ≤ T .
In practical settings, it is usual that we are given a single rather than multiple
value realisations [68, p. 3]. For ease of notation, Xt−k:t

i represents the states
of the time series Xi from time t − k up and until time t defined by the set
{Xs

i ∈ Xi : k ≤ s ≤ t}. Similarly, X:t
i defines the states of Xi from the initial time

up and until time t given by {Xs
i ∈ Xi : s ≤ t}. With a slight abuse of notation,

Tt−k:t selects the set
⋃d

i=1X
t−k:t
i consisting of all time-indexed variables up and

until time t from the time series elements Xi and T:t is defined analogously.

4.3 Causal Models for Time Series

Since time series data differs from cross-sectional data in relevant respects, we
should be explicit and adapt the SCM representation in the case of time series
data. Instead of defining a SCM directly on time series, the key is to, instead, use
the full set of time-indexed variable defined as the union

⋃d
i=1Xi of time series

included in T = {X1, ...,Xd} [66, p. 199]. In explicit terms:
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Definition 4.3.1 (Dynamic Structural Causal Model) A dynamic structural
causal model (DSCM) is a tuple M = (G,Θ) where G is a causal structure and
Θ = (U, V, F ) is a set of parameters compatible with G such that

(i) U is a set of exogenous variables distributed according to Pr(ui) for each
Ui ∈ U with Ui ⊥⊥ Uj for Ui ̸= Uj

(ii) V =
⋃d

i=1Xi is a set of time-indexed endogenous variables from a time
series set T = {X1, ...,Xd}

(iii) F is a set of structural equations f t
i for 1 ≤ i ≤ d, 1 ≤ t ≤ T that defines

vti = f t
i (pa

t−τ
i , ..., pat−1

i , uti) for each V t
i ∈ V where PAt−τ

i , ..., PAt
i are the

parents of V t
i in G starting from a fixed time lag 0 ≤ τ

Although clauses (ii) and (iii) in Definition 4.3.1 differ from those stipulated in
Definition 3.1.1, these specifications can be verified to formally satisfy clauses (ii)
and (iii) in Definition 3.1.1 by treating each time-indexed variable as a random
variable.

4.4 Causal Structures for Time Series

In the setting of time series data, three standard graphs for encoding causal struc-
ture are the full time causal graph, the window causal graph and the summary
causal graph. Although we adopt the summary causal graph as model class, a
short discussion of the full time causal graph and the window causal graph is use-
ful for situating our choice. For reference, examples for all graphs are shown in
Figures 1-3. First of all, the full time causal graph defines causal relations over
the full set of time-indexed variables:

Definition 4.4.1 (Full Causal Time Graph) A full time causal graph on a pa-
rameter set Θ = (U, V, F ) over a time series T is a directed graph G = (V,A) such
that V =

⋃d
i=1Xi and (V t−τ

i , V t
j ) ∈ A iff V t−τ

i occurs in the structural equation f t
j

of V t
j with 0 < τ for i = j and 0 ≤ τ for i ̸= j.

Although the full time representation is a fine-grained representation, it involves
three problems. First of all, a small increase in the number of time series or the
number of time indices results in a growth in the graph that quickly results in
an “unwieldy and difficult to interpret” representation [24, 2]. Secondly, inferring
the full time causal graph from real-world data is usually impossible as there is
typically only a single observation xti available for each time-indexed variable Xt

i

[3]. Thirdly, the model selection process becomes hampered due to combinatorial
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explosion: the number of possible graphs on a set of vertices rapidly grows as the
number of vertices increases [19, 22]. An alternative representation is the window
causal graph, which restricts the set of vertices up to a maximal lag τmax that
represents the largest time gap between causes and effects in the DSCM:

Definition 4.4.2 (Window Causal Graph) A window causal graph on a pa-
rameter set Θ = (U, V, F ) over a time series T is a directed graph G = (V,A) such
that V =

⋃d
i=1X

t−τmax:t
i for time t and maximal lag τmax and (V t−τ

i , V t
j ) ∈ A iff

V t−τ
i occurs in the structural equation f t

j of V t
j with 0 < τ ≤ τmax for i = j and

0 ≤ τ ≤ τmax for i ̸= j.

In essence, the window graph aims to contract the full time representation into a
more manageable representation. Under the causal stationarity assumption dis-
cussed in §4.5, the window graph fully captures the causal structure of the full
time graph [2, pp. 1–2]. In the worst case, however, the largest time gap τmax

spans the entire length of the time series, which simply results in the full time rep-
resentation. A summary causal graph resolves this problem by forcing a condensed
representation. Instead of modelling the time-indexed variables, this representa-
tion effectively models the time series themselves with arcs corresponding to causal
influence at some point in time:

Definition 4.4.3 (Summary Causal Graph) A summary causal graph on a
parameter set Θ = (U, V, F ) over a time series T is a directed graph G = (V,A)
such that V = T and (Vi, Vj) ∈ A iff there exists a time t and lag τ such that V t−τ

i

occurs in the structural equation f t
j of V t

j with 0 < τ for i = j and 0 ≤ τ for i ̸= j.

Note, first, that this condensed representation comes at the expense of tempo-
ral information: the existence of an arc entails nothing about the time at which
causal influence occurred nor about the frequency of causal influence. As a second
point, the window graph is ensured to be acyclic whenever the full time graph is
acyclic, since the former is simply an induced subgraph of the latter. Contrast-
ingly, summary graphs are not ensured to be acyclic [2, 66]. A first way in which
cyclicity can occur is due to autogenerative dependence of variables throughout
time Xt−τ → Xt, so-called “self-loops”. A second way in which cycles can occur
is in the form of a feedback loop between distinct time series or, more precisely,
a directed cycle between distinct time series. A simple example is a time window
causal graph with causes Xt−1 → Y t and Y t−1 → Xt, which results in a summary
causal graph with causes X→ Y and Y → X.

Since the assumed search space in this work is a MEC, we restrict attention to
summary graphs in which all cycles are due to self-loops. This subclass of summary
graphs, effectively, consist of two subgraphs: (i) a cyclic segment of self-loops and
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(ii) an acyclic segment of causal relations between distinct variables. Since the
second subgraph is a DAG, a MEC becomes definable. Further details about this
model choice are included in §7.3.3. In future work, a less restrictive search space
can be adopted; the point of this work is to evaluate if the scoring function reliably
determines true causal structures from Markov equivalent structures.

Xt−2

Y t−2

Zt−2

Xt−1

Y t−1

Zt−1

Xt

Y t

Zt

Figure 1: Full Time Causal Graph

Xt−1

Y t−1

Zt−1

Xt

Y t

Zt

Figure 2: Window Causal Graph

X

Y

Z

Figure 3: Summary Causal Graph
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4.5 Further Assumptions for Time Series Causal Discovery

In addition to the identifiability assumptions outlined in Section §2.6, we here out-
line a number of modelling choices and assumptions relevant to the G-causality
framework. An important modelling choice concerns the dependency type of vari-
ables in structural equations. This concerns, for example, linear versus non-linear
transformations [68, p. 8]. An important assumption is the causal stationarity
assumption: causal relations “remain constant in direction throughout time” or,
identically, that causal mechanisms are invariant with respect to changes in time.
In addition, assuming causal stationarity avoids requiring multiple realisations of
time series and allows for regression-based conditional independence tests, as out-
lined in §5.4. Within the context of DSCMs, causal stationarity involves that
structural equations f t

j are the same for each time t [68, 71, 2, 3, 11].
In what follows, we will not adopt the assumption of non-instantaneous effects:

that causal relations occur only across time and, consequently, not within the
span of a single time point. Although this violates Granger’s time precedence
principle, the non-instantaneous effects assumption has a practical limitation: data
recordings may be too coarse-grained to ensure that causal influence only occurs
across time points. A first reason is subsampling : if the sampling rate is slower
than the causal process generating the data, then causal influence can occur within
the span of a single time point. Secondly, the practice of temporal aggregation is
an entrenched size reduction method. This, however, is prone to merge causal and
effect variables, even if the non-aggregated data succeeded in a full separation of
causes and effects. If one wants to ensure time precedence, then the granularity
of the time series data has to fit the causal domain of interest, i.e., the data
recordings must ensure that relevant causal influence only occurs across and not
within timepoints [3, 30, 66, 68].

5 Granger Causality

5.1 The Concept of Granger Causality

In these sections, we discuss the concept and definitions of Granger causality as
well as associated assumptions for the causal discovery task and further relevant
details. Granger causality, G-causality for short, is a well-established method for
detecting causal relations from time series data [2, 31, 67]. Simultaneously, it must
be emphasised that G-causes do not, in general, represent true causal mechanisms.
Rather, G-causes are understood in terms of forecasting ability : a variableG-causes
another variable just in case it contains unique information that aids in prediction
[31, p. 430]. Since this clearly does not track causal mechanisms, the existence of
a G-cause is neither necessary nor sufficient for the existence of a true underlying
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causal mechanism: G-causes are best understood as potential causes [67, 52, 61, 23,
85]. Still, G-causality is preferable over standard forecasting due to two principles:
(i) temporal precedence, which demands that causes precede their effects in time
and (ii) uniqueness, which requires that causal time series include information
about caused time series unavailable in the absence of those causal series [33, 23].

At this point, a number of advantages and disadvantages of G-causality are
worth noting. An important advantage is that G-causality is a model-free ap-
proach: it does not assume a causal model and can, thus, be directly applied to
data [22, 23, 28]. A disadvantage of using such a model-free approach is that
in the absence of sufficient background knowledge, the quality of G-causal con-
clusions becomes subject to statistical conditions such as appropriate sampling,
non-instantaneous causation and stationarity [52, pp. 87, 98]. Another important
advantage is the theoretical appeal of G-causality. First of all, the principle of
uniqueness coincides with the notion that a cause’s change in the effect are due to
properties of that cause alone. Secondly, temporal precedence respects the notion
that the arrow of causation is asymmetric, which has been met with increased
application in recent years [3, 35, 61, 86]. As a caveat, a temporal ordering over
variables remains insufficient for strict derivation of a true causal ordering: spuri-
ous correlations are known to occur across time [51, 86].

5.2 Formal Definitions of Granger Causality

Broadly viewed, two interpretations of G-causes are current in the literature. Ac-
cording to the lag-general interpretation that Granger [31] originally proposed,
G-causal relations are defined on time series, encoding the presence of causal in-
fluence at an unspecified point in time. The lag-specific interpretation exemplified
in work from Assaad, Devijver, and Gaussier [3] and Runge [68], on the other hand,
defines G-causal relations on time-indexed variables instead. In this framework,
the time at which G-causal influence occurs is specified. At the same time, spec-
ifying the time of causal interaction demands availability of multiple realisations
of time series or assuming causal stationarity, as further discussed in §4.5 [68].

Under Granger’s interpretation, G-causality is defined as conditional depen-
dence of a causal and a caused time series conditional on the full domain of time
series in the universe excluding the causal series. From a theoretical point of view,
this is to ensure that the information uniquely derives from the purported G-cause.
Formally:

Definition 5.2.1 (General Granger Causality) Let Ω be the set of all time
series in the universe. If X, Y ∈ Ω, then X does not Granger cause Y if Y t ⊥⊥
X:t−1|Ω:t−1 \X:t−1 for all t ∈ N. Otherwise, X is said to Granger cause Y.
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In natural terms, X→G Y just in case there exists a point in time where the value
of Y is conditionally dependent on the past values of X given the past information
of all other time series. A clear advantage of G-causality is that it tackles the
problem of correlational symmetricity discussed in §2.1: X →G Y and Y →G X
encode distinct dependencies. Now, it should be clear that Definition 5.2.1 is
unrealistic: real-world data at most provides access to a minute subset of T ⊂ Ω.
Given this consideration, Granger [31] adapted G-causality as follows:

Definition 5.2.2 (Granger Causality) Let T = {X1, ...,Xd} be a finite time
series. If X,Y ∈ T, then X does not Granger cause Y if Y t ⊥⊥ X:t−1|T:t−1 \X:t−1

for all t ∈ N. Otherwise, X is said to Granger cause Y.

In the practical case, the domain of time indices will span a finite interval T =
{1, ..., T} for some fixed T ∈ N [31, 33, 22, 23]. As previously mentioned, the lag-
general interpretation involves a loss of information: a G-cause X→G Y holds just
in case the following conditional dependence statement holds for some 1 < t ≤ T :

Y t ̸⊥⊥ {X1, ..., Xt−1}|T:t−1 \ {X1, ..., Xt−1} (1)

From X →G Y alone, however, it is left implicit which subset of {X1, ..., Xt−1}
renders conditional dependence. Since such fine-grained information is important
when evaluating the time-relative impact, a sensible choice is to evaluate the spe-
cific time lags 0 ≤ τ at which Xt−τ generates dependence. Runge [68] defines
lag-specific G-causes as follows: instead of evaluating conditional dependence of
an entire history of X:t−1 with Y t, independence is evaluated between a time-
indexed instances Xt−τ and Y t. In turn, lag-specific Granger causality correspond
to the following conditional dependence:

Y t ̸⊥⊥ Xt−τ |T:t−1 \ {Xt−τ} (2)

Since the conditional dependence imposed in (2) concerns the relation Xt−τ →G

Y t, only Xt−τ is removed from the conditional set. In what follows, a G-causal
link is called instantaneous if τ = 0 and lagged for 0 < τ [68, 71, 69, 66].

5.3 Vector Autoregression Models

A common mathematical model for capturing relationships between time series
variables as well as for generating time series realisations is the Vector Autore-
gression (VAR) model [67, 68, 55, 57]. In addition, such models are used for
establishing G-causes by evaluating if including past values of the purported G-
cause results in a significant change in prediction of a variable of interest [26, 52,
67, 68, 55, 57, 65, 81, 31, 32, 1, 55]. In §8, VAR models are used to define the
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structural equations of DSCMs. Before defining VAR models, it is convenient
to first consider the functional form of linear structural equations within Pearl’s
framework. Given a set of random variables X = {X1, ..., Xd} and a set of linear
equations {f1, ..., fd}, the value of each Xi is defined as a weighted sum of the
other variables plus additive noise:

Xi = fi(X) =

n∑
k=1,k ̸=i

βi,kXk + ϵi, (3)

where each coefficient βi,k weights the influence of Xk on Xi and ϵi is an additive
noise term on Xi, playing the role of an exogenous variable [39, 66].

A VAR model over a time series is, in turn, a linear model defined by a set
of linear equations f t

i that each define the value of Xt
i in terms of past values of

itself and other variables. More formally, a VAR model over a causally stationary
time series T = {X1, ...,Xd} each of length T consists of d linear equations fi for
1 ≤ i ≤ d that each define the value of variable Xt

i in terms of past values for
variables included in T:t−1. A τ ’th order VAR model, denoted, denoted VAR(τ),
has a maximal lag τ that defines the time window of the model. Effectively, this
restricts the past information to Tt−τ :t−1 [81, 49]. A single equation on Xt

i is then
given as follows:

Xt
i = fi(T

t−τ :t−1) =
d∑

k=1

τ∑
γ=1

βt−γ
i,k Xt−γ

k + ϵi, (4)

where βt−γ
i,k weights the influence of Xt−γ

k at time t − γ and the noise term ϵi
is defined in the same way for every time t. Since a time series can be ordered
index-wise, we can switch to a more convenient time series vector representation
T = (X1, ...,Xd) and define the values of the full time series vector T at time t as
follows:

Tt =
τ∑

γ=1

ΦγTt−γ + ϵ⃗, (5)

where Φγ is a n×n coefficient matrix at time lag γ such that each Φγ
i,k weights the

influence of Xt−γ
k on Xt

i and ϵ⃗ is a vector of noise terms (ϵ1, ..., ϵd)
⊤ coupled with

each Xi for 1 ≤ i ≤ d [68, p. 2]. Although VAR coefficients and past values are
combined in a linear way, one can generalise these models to a non-linear additive
noise model :
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Tt = g

 τ∑
γ=1

ΦγTt−γ

+ ϵ⃗, (6)

where g : R → R is a non-linear transformation applied on the linear sum from
before [41, 58]

5.4 Regression-Based Conditional Independence Tests

The formal exposition in §5.2 defined G-causes in terms of conditional independen-
cies. Unfortunately, practical evaluation of conditional independencies is subject
to a number of limitations. First of all, it is unlikely that exact conditional inde-
pendence can be found under finite sampling conditions [66]. Secondly, conditional
independence testing is subject to the curse of dimensionality : as the size of the
conditional set Z grows, the amount of data for evaluating the null hypothesis
quickly increases whilst the amount of available data becomes increasingly sparse
[92]. In addition, the time series case involves the problem that standard condi-
tional independence tests require multiple realisations of time series [68, p. 3]

Instead, the aim is to establish conditional independence by evaluating a null
hypothesis H0 : X ⊥⊥ Y |Z against an alternative hypothesis H1 : X ̸⊥⊥ Y |Z
given observed samples {xi, yi, zi}ni=1. In model-free approaches, conditional in-
dependence is evaluated directly without assuming functional dependencies be-
tween variables. Contrastingly, regression-based methods impose dependencies
X = fX(Z) + ϵX and Y = fY (Z) + ϵY . Zhang et al. [92] has shown that for
identifiable additive noise models Y = f(X) + ϵ, independence between residuals
r̂X = X − f̂X(Z) and r̂Y = Y − f̂Y (Z) is a sufficient condition for X ⊥⊥ Y |Z [92,
pp. 1250–1251]. In evaluating X ⊥⊥ Y |Z, regression-based methods evaluate the
independence of residuals from regressing X on Z and regressing Y on Z. Here,
the dependencies X = fX(Z) + ϵX and Y = fY (Z) + ϵY assume that X and Y
are centered and that ϵX and ϵY are independent and identically distributed. In
the first step, models f̂X and f̂Y are estimated using a sample {xi, yi, zi}ni=1. In
the next step, the residuals r̂X = X − f̂X(Z) and r̂Y = Y − f̂Y (Z) are computed.
In the final step, independence between the residuals r̂X and r̂Y is evaluated with
a statistical test. Partial correlation tests assume that fX and fY are linear and,
furthermore, evaluate independence of residuals with a regular t-test. In the case
of non-parametric regression such as Gaussian Process regression, independence
of residuals is evaluated with a non-parametric test such as a distance correla-
tion test. Under the assumption of causal stationarity, Xt−τ →G Y t is evaluated
using the sample {xi−τ , yi, t:i−1 \ xi−τ}Ti=τ+1, thus avoiding the need for multiple
realisations [68, 92, 41, 94, 46].
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6 Background

6.1 Related Work

In this section, we discuss work relevant to this thesis and embed our own con-
tribution within the current literature. In §6.1.1-§6.1.3, we survey a number of
relevant constraint-based, score-based and hybrid methods. In turn, §6.2 discusses
the proposed scoring function, primarily building on work from Runge et al. [70].
In the same section, we further motivate the use of MECs as search spaces.

6.1.1 Constraint-Based Methods

A central constraint-based method in the literature is Spirtes, Glymour, and
Scheines [79]’s PC algorithm. Under the assumptions of acyclicity, faithfulness
and sufficiency, PC infers a CPDAG from the observational distribution in three
consecutive steps: (i) derivation of the skeleton, (ii) determination of v-structures
and (iii) orientation of remaining edges using a set of orientation rules. Step (i)
effectively starts with the complete undirected graph G = (V,E) and performs a
level-wise search to remove edges. In algorithmic terms, PC starts with k = 0 and
tests for each adjacent pair (Vi, Vj) and conditioning set Z ⊆ A(Vi) \ {Vj} of size
k the conditional independence Vi ⊥⊥ Vj |Z using a conditional independence tester
I : X ×X ×℘(X )→ [0, 1] and significance level αPC ∈ [0, 1]. Given H0 : Vi ⊥⊥ Vj |Z
as null hypothesis and H1 : Vi ̸⊥⊥ Vj |Z as alternative hypothesis, the edge Vi − Vj

is removed if I(Vi, Vj , Z) ̸< αPC and Z is stored in the separation set of Vi and Vj ;
otherwise Vi − Vj is kept in the graph. After each iteration, the update k ← k+ 1
is performed until no conditioning set Z of size k can be found. Step (ii) generates
v-structures Vi → Vj ← Vk whenever pairs (Vi, X) and (X,Vj) are adjacent (Vi, Vj)
is not adjacent and X is not included in the separation set of (Vi, Vj). In step (iii),
a set of orientation rules that exploit acyclicity and v-structure constraints are
applied to orient remaining edges as far as warranted [78, 30, 39, 79].

Unfortunately, the PC algorithm gives poor performance on deriving time se-
ries graphs for the following reason: samples for performing regression-based con-
ditional independence tests on lag-specific links Xt−τ

i → Xt
i are often shared with

those for Xt−τ ′

i → Xt
i for τ ′ ̸= τ . Due to this interdependence of conditional

independence tests, false positive and false negative rates increase [68, pp. 12–14].
Runge et al. developed the PCMCI algorithm, which assumes the causal Markov
condition, faithfulness and causal sufficiency to infer a time series graph whilst
counteracting false positives and false negatives via additional conditioning sets.
PCMCI is equivalent to PC on steps (ii) and (iii), but step (i) is different. Instead
of performing a level-wise search, PCMCI estimates a conditioning set P̂(Xt

j) for
every Xt

j via ranking of test statistic values. Here, the point is to mitigate the lack
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of detection power that occurs when the conditioning set grows whilst provably
maintaining the removal of incorrect links. In addition, an estimate P̂(Xt−τ

i ) of the
parents of Xt−τ

i is added to control for false positives due to autocorrelation of the
causal variable. Jointly, these constitute the momentary conditional independence
(MCI) test for edge removal:

Xt−τ
i ⊥⊥ Xt

j |P̂(Xt
j) \ {Xt−τ

i }, P̂(Xt−τ
i ) (7)

Next to the usual hyperparameter αPC, PCMCI and further variants depend on
τmax. Effectively, τmax defines the maximal time delay for evaluating lag-specific
conditional independence. Since a higher choice of τmax harms performance but
not estimation quality, Runge et al. advises to choose a large value in the absence
of further background knowledge about the relevant causal system [68, 70].

PCMCI was developed for time series graphs without instantaneous effects.
Runge [69] developed an extension called the PCMCI+ algorithm to account
for lagged and instantaneous effects. First, PCMCI+ estimates adjacency sets
B̂(Xt−τ

i ) and B̂(Xt
j) to account for autocorrelation effects. In the next step, the

time series graph G is initialised with all instantaneous adjacencies plus the lagged
adjacencies from B̂(Xt

j). In turn, PCMCI+ tests all adjacent pairs (Xt−τ
i , Xt

j) and
iterates through instantaneous conditioning sets Z ⊆ adj(Xt

j) and performs the
following MCI test to decide edge removal:

Xt−τ
i ⊥⊥ Xt

j |Z, B̂(Xt
j) \ {Xt−τ

i }, B̂(Xt−τ
i ) (8)

Note that the adjacency sets are lagged parent sets for 0 < τ as before. In the
case of τ = 0, on the other hand, these sets consists of instantaneous adjacencies
[69].

Assaad, Devijver, and Gaussier [2] developed a method for discovering an ex-
tended causal summary graph: a graph consisting of a past slice of time series
X:t−1

i as well as a present slice consisting of present variables Xt
i . Causal relations

are defined between past and present slices as well as within the present slice. A
past-to-present link in the graph corresponds to the existence of some causal links
Xt−τ → Xt

j for 0 < τ ; a present-to-presence link encodes the existence of a causal
link at τ = 0. The extended summary graph, Assaad, Devijver, and Gaussier [2]
argue, is preferable to regular summary graphs: these graph clearly distinguish
past from present causation and uphold acyclicity. Using greedy causation en-
tropy to decide conditional independence of past-to-present variables and mutual
information of present-to-present variables, Assaad, Devijver, and Gaussier [2] in-
fer a graph using the order-independent PC-stable algorithm as well as the FCI
algorithm [2].1

1 Note: “order-independence” involves that the algorithm’s output does not depend on
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6.1.2 Score-Based Methods

Meek [53] and Chickering [14] developed Greedy Equivalence Search (GES), a
central score-based method in the literature. Starting from an empty graph and
with the Bayesian Information Criterion as scoring function, GES consists of (i)
an arc insertion phase and (ii) an arc removal phase. In step (i), arcs insertions
are iteratively performed on the graph until a local maximum is reached. In step
(ii), GES iteratively deletes arcs from the graph until a local maximum is reached.
After reaching termination, the equivalence class is given as output [14, 53, 66].

Pamfil et al. [59] proposed a score-based method called DYNOTEARS for
learning a window graph over time-indexed variables that represents both contem-
poraneous and lagged relationships. Effectively, the window graph is represented
as a contemporaneous and a lagged adjacency matrix and learned by minimising
a least squares loss objective subject to ℓ1-penalisation as well as an acyclicity
constraint [59]. A noted problem of method such as DYNOTEARS is their orien-
tation towards finding parsimonious graphs that best explain the data, which is
an unsuitable learning task from a causal point of view [2, 44].

6.1.3 Hybrid Methods

A relevant hybrid method for learning non-causal Bayesian Networks is the Max-
Min Hill-Climbing (MMHC) algorithm, developed by Tsamardinos, Brown, and
Aliferis [82]. Combining techniques from local learning, constraint-based and score-
based methods, the MMHC algorithm consists of (i) a skeleton phase and (ii) a
greedy phase. Phase (i) learns a skeleton graph using a local discovery algorithm
called the Max-Min Parents and Children algorithm. In phase (ii), greedy hill-
climbing search is applied to the empty graph with arcs additions, deletions and
reversals subject to edge constraints that derive from the skeleton found in phase
(i) [82, p. 33].

6.2 Main Contribution

6.2.1 Granger Scoring Function

The contribution of this work is what we call the Granger scoring function (GSF).
From an intuitive point of view, the GSF constructs scores reflecting the amount of
evidence in favor of candidate graphs. In the general lag-specific case, this scoring
function establishes score non-equivalence in two consecutive steps: (i) extraction
of a p-value pτij for every lag-specific link Xt−τ

i →G Xt
j and (ii) construction of a

the order in which the variables are given as input, which fails for the regular PC algorithm
[50].
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score pG on a candidate graph G as a function of pτij for all present arcs X
t−τ
i →G

Xt
j in G. Since our model class is the summary graph, the exposition in what

follows replaces step (ii) by, first, combining pτij for all τ into a p-value pij for the
lag-general arc Xi →G Xj and, second, fusion all pij into a final score pG.

While the extraction of p-values uses Runge [69] PCMCI+’s MCI test, the con-
secutive process departs from PCMCI+: instead of removing edges Xt−τ

i −GXt
j on

the basis of a significance threshold αPC, p-values are used as scores on Xt−τ
i →G

Xt
j and, subsequently, combined using a p-value combining method. This, we ar-

gue, has three advantages over PCMCI+. First of all, the resulting causal structure
does not depend on a general hyperparameter αPC whilst PCMCI+ does. Secondly,
the method avoids the multiple testing problem internal to PCMCI+: in this case,
the problem that the error rate of both acceptation and rejection of hypotheses
grows as the number of evaluated edges grows [47]. Last of all, our method exploits
the information from inferred p-values up and until the final inference step whilst
PCMCI+ does not, which incurs a potentially detrimental information loss in the
inference process.

6.2.2 Comments on Search Space

Given that the focus in this work lies on the scoring function’s capacity for dis-
tinguishing otherwise statistically indistinguishable Markov equivalent graphs, we
assume the Markov equivalence class of the true graph as the search space. Given
a CPDAG representation of a MEC, an efficient algorithm for generating all DAGs
within the MEC is given in Wienöbst et al. [87]. A first problem of assuming the
MEC of the true graph as search space is that the MEC is, in general, not given.
Furthermore, the MEC is in the worst case superexponentially large: given a set
of m vertices V = {V1, ..., Vm}, the complete graph over G = (V,A) over V has a
MEC GG is of size m! [29, p. 172]. In the realistic setting, the MEC is unavailable
and an estimate ĜG has to be estimated from data. An alternative approach would
be to estimate the CPDAG, generate a DAG belonging to the represented MEC
and perform a greedy search under equivalent constraints similar to GES. Since
our focus here is on scoring functions, however, we leave such endeavours to future
work. In any case, it should be emphasised that the search space is not essential
to our main contribution, namely, the GSF.
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7 Scoring Functions

7.1 Overview

In this chapter, we discuss the literature on scoring functions and introduce the
Granger scoring function on the basis of considerations in the literature. In §7.2.1,
the form of general scoring functions is discussed, together with two usual con-
straints on such functions: score decomposability and score equivalence. Given
this overview, §7.2.2 outlines what is required in the special case of causal scoring
functions. Given that Granger causality is bivariate, we assume that the causal
scoring function’s overall score is a function of bivariate scores on individual arcs.
In turn, §7.2.3 we switch from the graph-theoretic representation to a matrix rep-
resentation to make subsequent mathematical notation more convenient. At the
heart of the chapter, §7.3 develops the GSF, which effectively combines p-values
from lag-specific Granger causality tests to retrieve a final score on candidate
graphs. In turn, §7.3.2 discusses some relevant properties of the GSF, §7.3.3 out-
lines the search space and §7.3.4 describes the scoring procedures involved.

7.2 Scoring Functions

7.2.1 General Scoring Functions

The central task of score-based methods can be framed as follows: given a set of
candidate graphs and an appropriate scoring function, infer a graph or a set of
graphs that optimise the value of that function. Given a set of candidate graphs
G and a scoring function ϕ : D × G → R from data domains and directed acyclic
graphs to real-valued scores, the score-based task is formalised as follows:

Ĝ = argmaxG∈G ϕ(D, G) (9)

An important advantage of score-based methods over constraint-based methods
is the ability to induce an order on the set of candidate graphs, thus allowing
a qualitative comparison of graphs. More specifically, this is because ϕ assigns
real-valued scores: since each G ∈ G is assigned a real-valued number, ϕ induces
a non-strict total order ⪯ over G where G ⪯ G′ for G,G′ ∈ G if and only if
ϕ(D, G) ≤ ϕ(D, G′) for a fixed domain D. Given ⪯, it can be decided for arbitrary
G,G′ ∈ G (i) if G is better than G′ and (ii) what the relative improvement of G
over G′ amounts to.

Since the qualitative order on G is defined in terms of ϕ, a central task of score-
based methods consists in defining an appropriate scoring function. A minimal
requirement in the literature is that the scoring function is a function of the graph’s
fit on the data and the graph’s complexity [3, 9]. The graph’s fit on the data, in
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turn, is computed using the graph’s Bayesian network (BN) interpretation [3].
Usually, a parametric model is estimated, resulting in a BN M = (G,Θ). Since
M defines a joint probability distribution PrΘ(v1, ..., vn) =

∏n
i=1 Pr

Θ(vi|pai) over
the variables V = {V1, ..., Vn}, a fit or likelihood score L(D,M) can be defined,
which captures how well the model explains the observational data. In addition, a
complexity score dim(G) can be defined overM, where dim(G) is proportionate
to the number of parameters in Θ [66, pp. 148–149]. Given a function f that
determines the trade-off between the model’s fit and complexity, the general form
of scoring functions is captured in the following scheme:

ϕ(D, G) = f(L(D,M), dim(G)), (10)

As an example, a classical pair of scoring functions are Akaike’s Information Cri-
terion (AIC) and the Bayesian Information Criterion (BIC), respectively defined
as follows with N as the number of evaluated datapoints:

ϕAIC(D, G) = L(D,M)− dim(G) (11)

ϕBIC(D, G) = L(D,M)− log(N)

2
dim(G) (12)

Two common restrictions on scoring functions are score decomposability and score
equivalence. First of all, score decomposability requires that the score over the
whole graph is decomposable as a sum of independent local scores defined over
single variables joined with their parents [9, 43, 38]. Formally:

ϕ(D, G) =
∑
Vi∈V

g(D, Vi ∪ PAi), (13)

where g defines the local scores. Decomposability is desirable for at least two
reasons. First of all, local scores allow for subdivision of the task of computing
the graph’s total score into locally and efficiently computable subtasks. Secondly,
locally computed scores can be stored for reuse, increasing the efficiency of greedy
heuristics such as hill climbing search [16, pp. 50–52].

The second restriction on scoring functions is score equivalence: graphs that
belong to the same equivalence class are assigned the same score. More formally,
score equivalence of a scoring function ϕ demands that for all MECs G and graphs
G,G′ ∈ G, ϕ(D, G) = ϕ(D, G′) [38, 13, 9, 47]. Score equivalence stems from
the independence interpretation of graphical structure. Under this interpretation,
a graphical structure over variables is equated with the set of independencies it
imposes on probability distributions over those variables. Since structures within
the same equivalence class impose the same independence constraints, it naturally
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follows that scores should be the same for graphs within the same equivalence class
[14, p. 448]. In the terminology of Spirtes, Glymour, and Scheines [79], Markov
equivalent structures are statistically indistinguishable: each graph satisfies the
same relevant statistical properties and cannot be distinguished on the basis of
those properties [79, p. 59].

7.2.2 Causal Scoring Functions

Under the independence interpretation, imposing score equivalence is a natural
choice: structures within the same equivalence class are equivalent up to inde-
pendencies. In the causal setting, however, score equivalence is a misguided as-
sumption: since arcs are given a causal interpretation, structures within the same
equivalence class are, in general, causally non-equivalent [14, p. 448]. Consider the
following causal structures:

X Y Z

X Y Z

X Y Z

It is clear that their causal meaning is different: X → Y and X ← Y , for exam-
ple, describe different causal relations. Although the structures are statistically
indistinguishable, their different causal interpretations makes them causally dis-
tinguishable.

Given these considerations, a causal scoring function should drop the score
equivalence assumption: it should, in principle, be possible that structures within
the same equivalence class are assigned different scores. A further desideratum of
a causal scoring function is, naturally, that differences in scores reflect differences
in causal information in the graphs scores. Although it is quite trivial to construct
a scoring function that satisfies the first desideratum, the second desideratum is
clearly non-trivial: the very premise of the causal discovery task is, after all, that
the true causal structure is unavailable and must be inferred from non-causal,
statistical properties of the observational distribution [61, p. 43].

At the same time, the unavailability of the true causal structure is consistent
with the assumption that some causal information is available. Suppose, for the
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moment, that we are given a non-symmetric bivariate measure κ : D ×A → [0, 1]
that scores how well a given arc captures directional causal information, derived
from statistical properties of the observational distribution. Given the relevant
bivariate scores from κ, a causal score κ(D, G) can be defined on each candidate
G ∈ G. Given a function g that determines the trade-off between fit, complexity
and causal score, the scheme for a causal scoring function is then given as follows:

ϕ(D, G) = g(L(D,M), dim(G),κ(D, G)) (14)

Although the model selection problem could be reduced to comparing graphs on
the scores from κ, integrating the scores from κ into the scoring function ϕ is
beneficial for the following reason: it allows for weighting the contribution of the
causal information, which is not possible if attention is restricted to that causal
information.

7.2.3 Matrix Representations

In this section, we switch from a graph-theoretic to a matrix representation of
causal structure and specify causal scoring matrices whilst remaining agnostic
with respect to the causal measure κ : D×A → [0, 1]. In order to switch from the
graph-theoretic to the matrix representation, it must be observed that any DAG
G = (V,A) stands in a one-to-one correspondence with some square matrix MG

in which each element mG
ij is defined as follows:

mG
ij =

{
1 if (Vi, Vj) ∈ A

0 otherwise
(15)

Since MG defines which vertices are adjacent in G, MG is called the adjacency
matrix of G. Observe, now, that the matrix representation involves no loss of
structural information over the graph-theoretic representation: every adjacency
matrix MG of a digraph G is a d×d matrix that can be translated back into G by
defining G = (V,A) with V = {V1, ..., Vd} and (Vi, Vj) ∈ A if and only if mG

ij = 1
[77, p. 6].

Under the matrix representation, assigning causal scores to present arcs effec-
tively reduces to an element-wise matrix multiplication of the adjacency matrix
with a causal scoring matrix. Given a non-symmetric function κ : D ×A → [0, 1],
we first construct a non-symmetric d × d causal score matrix M∗ in which each
element is defined as m∗

ij = κ(D, (Vi, Vj)). Since the adjacency matrix of a graph

G = (V,A) is a matrix MG where mG
ij = 1 just in case (Vi, Vj) ∈ A, taking the

element-wise matrix product (MG ◦M∗)ij = mG
ij ·m∗

ij for i = 1, ..., d, j = 1, ..., d
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defines a matrix M∗
G in which each non-zero element defines how well the arc

corresponding to that element captures causal information.

7.3 Granger Scoring Function

7.3.1 Proposal

In this section, we motivate the use of p-values from lag-specific Granger causality
tests as bivariate scores and, moreover, outline how these scores are combined
into final scores on candidate graphs. First, we discuss the computation of the
relevant p-values. Suppose that we want to evaluate the null hypothesis Xt−τ ⊥⊥
Y t|T:t\{Xt−τ} for a given arc Xt−τ →G Y t. In that case, a necessary requirement
is access to a conditional independence tester I : X ×X ×℘(X )→ [0, 1] that takes
in a sample of observations {xi−τ , yi, t:i−1 \xi−τ}Ti=τ+1 and returns a p-value pτ for
the null hypothesis H0 : X

t−τ ⊥⊥ Y t|T:t \ {Xt−τ}. Here, we assume that the tester
returns a two-tailed p-value p = 2 ·min{Pr(T ≥ T̂ |H0),Pr(T ≤ T̂ |H0)} for a fixed
test statistic T̂ . From an intuitive point of view, pτ is interpreted as the likelihood
of observing a result at least as extreme as the observed result, given that the arc
is absent. An alternative interpretation of pτ is as the amount of evidence in favor
of the null hypothesis. It is worth emphasising that, as Hubbard and Lindsay
[42] discuss, p-values are not a strict measure of evidence in this sense. This
interpretation is, instead, a pragmatic interpretation that follows the treatment of
p-values in constraint-based methods as further explained in Appendix C. Given
this interpretation of p-values, we can define a measure κGC : D ×A → [0, 1] that
encodes the amount of evidence that disfavors the hypothesis that a lag-specific
arc is absent:

κGC(D, (Xt−τ , Y t)) = 1− pτ (16)

where it is assumed that κGC has the required access to the samples from D
as well as I. This score, then, is interpreted as a causal score on Xt−τ → Y t.
Corresponding to this notion, arcs with high scores correspond to arcs with strong
evidence whilst arcs with weak evidence get low scores.

Given a p-value pτ for the null hypothesis Hτ
0 : Xt−τ ⊥⊥ Y t|T:t \ {Xt−τ} for a

number of considered time lags τmax as well as a method h for combining p-values,
it is moreover possible to define a causal measure κ′GC : D × A × N → [0, 1] on
lag-general arcs X→G Y, effectively tracking the amount of evidence disfavoring
the null hypothesis H0 : X ⊥⊥ Y|T \X:

κ′GC(D, (X,Y), τmax) = 1− h(p0, ..., pτmax) (17)
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where it is again assumed that κ′GC has access to the samples from D as well as the
independence tester I. Note, here, that the null hypothesisH0 := H0

0 ∧ ... ∧ Hτmax
0

indicates the absence of causal interaction at any point in time whilst H1 :=
¬(H0

0 ∧ ... ∧ Hτmax
0 ) encodes the presence of causal interaction at some point in

time. Hence, the relevant score is defined as 1 − h(p0, ..., pτmax), which as before
encodes the amount of evidence in favor of the input arc.

Using the matrix representation, we can construct a d×d causal scoring matrix
M∗ over a time series T = {X1, ...,Xd} in which each element m∗

ij is defined as

a causal score m∗
ij = κ′GC(D, (Xi,Xj), τmax). Let MG be the adjacency matrix

of a candidate graph G. Under the suggested interpretation, the score entry m∗
ij

encodes an evidential weight on the arc Xi →G Xj . As a consequence, the product
mG

ij · m∗
ij for mG

ij = 1 defines an evidential weight for the arc Xi →G Xj in the
candidate G whilst zero entries correspond to absent arcs. Hence, the causal score
matrix M∗

G on G defined as the element-wise product (MG ◦M∗)ij includes the
evidential weight on every present arc in the candidate graph and has zero entries
elsewhere.

A last step has to be taken to retrieve κ(D, G) from M∗
G: the scores from the

matrix must be combined into a real-valued score. A first option is to define the
final score as the Frobenius product of MG and M∗, which is effectively a simple
sum over individual arc scores:

κ(D, G) = ⟨MG,M∗⟩F =
d∑
i,j

mG
ij ·m∗

ij (18)

Although a simple method, two disadvantages are worth mentioning. A first disad-
vantage of the Frobenius score is that it sums over probabilities, which effectively
assumes that the probabilities in question are mutually exclusive events. A sec-
ond disadvantage is that it is difficult to interpret the resulting score: for d arcs,
κ(D, G) can fall anywhere in the interval [0, d]. A method that avoids both prob-
lems is to use a p-value combiner h to construct a p-value, indicating the amount
of the evidence in favor of the conjunction of present arcs:

κ(D, G) = h({mG
ij ·m∗

ij : m
G
ij = 1}) (19)

Recall that each individual product mG
ij ·m∗

ij for mG
ij = 1 defines the amount of

evidence in favor of the arc Xi →G Xj . Combining the scores for all present arcs
into an overall p-value, then, corresponds to a score on the the amount of evidence
in favor of the full graph. The resulting score, then, is interpreted as the amount
of evidence favoring the graph as a whole.

Since we assumed that κ is the function that establishes score non-equivalence,
it is safe to assume that L(D,M) and dim(G) in the expression ϕ(D, G) =
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g(L(D,M), dim(G),κ(D, G)) are equivalent across all members of an arbitrary
MEC G. Consequently, differences between G,G′ ∈ G results from differences in
the terms κ(D, G) and κ(D, G′). Since higher scores scores for κ are assumed to
reflect a better grasp of causal information, the objective posed in (14) reduces to
the following objective in the setting, where the set of candidates G is a MEC:

Ĝ = argmaxG∈G ϕ(D, G) = argmaxG∈G κ(D, G) (20)

Within the context of MECs, the Granger scoring function is therefore defined as
follows:

ϕGSF(D, G) = κ(D, G) (21)

Although it is possible to formulate a generalised version following the scheme
of (14), our attention in this work is restricted to the case of equivalent graphs,
making such a formulation unnecessary.

7.3.2 Properties of the GSF

At this point, it is useful to discuss whether the GSF meets the restrictions of
standard scoring functions. Concerning score decomposability, it is clear that each
score is computed locally: each score

∑d
i=1m

G
ik · m∗

ik for column k is computed
independently from

∑n
i=1m

G
ik′ ·m∗

ik′ for k′ ̸= k and each k’th column represents
all parents of the k’th variable. Hence, our method has the usual advantages that
score decomposability entails: computation of scores is subdivided into manageable
subcomputations and scores can be stored for later reuse. Simultaneously, the
final score derived from h is not, in the general case, a decomposable sum. Since
computations are nevertheless subdivided and stored, this alone does not obstruct
the use of greedy heuristics, which is the usual motivation for score decomposability
as discussed in §7.2.1.

In order to see that causal scores from κ are non-equivalent, it suffices to
observe that κI is a non-symmetric causality measure: generally, κI((Vi, Vj)) ̸=
κI((Vj , Vi)) for arbitrary vertices Vi and Vj since κI(Xi,Xj ,T\ Xi, τmax) evaluates
Xt−τ

i ̸→G Xt
j for different values of τ whilst κI(Xj ,Xi,T \ Xj , τmax) evaluates

Xt−τ
j ̸→G Xt

i for different values of τ . In the general case, the underlying data
samples for evaluation will be distinct: for τ = 1, for example, the first statement
is evaluated on the pairs (X1

i , X
2
j ), ..., (X

T−1
i , XT

j ) whilst the second statement is

evaluated with (X1
j , X

2
i ), ..., (X

T−1
j , XT

i ). From this, it follows that whenever A ̸=
A′ for two graphs G = (V,A) and G′ = (V ′, A′) in the same Markov equivalence
class G, it can occur that κ(D, G) ̸= κ(D, G′).
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7.3.3 Search Space

A last step before outlining the experimental setup is defining the search space to
which the scoring function κ is applied. Since MECs are defined over DAGs and
since summary causal graphs can be cyclic, we restrict our attention to acyclic
subgraphs of a specific class of summary graphs: namely, graphs where all cycles
are self-loops. Consider a summary graph G = (V,A) over a time series set T =
{X1, ...,Xd} such that a cycle occurs if and only if that cycle is a self-loop from
a variable to itself or, equivalently, if that cycle is of length one. In that case, we
can define G as the union graph G = G− ∪ G+ of two graphs G− and G+ defined
as follows: G− = (V −, A−) with V − = V and A− = {(V −

i , V −
i ) : V −

i ∈ V −} and
G+ = (V +, A+) with V + = V and A+ = A \A−. By construction, it follows that
G+ is guaranteed to be acyclic: all cycles in G are self-loops and, thus, moved to
G−. Intuitively, this subgraph encodes causal interaction between distinct time
series under an acyclicity constraint Since G+ is a DAG, a Markov equivalence
class GG+ becomes definable. Given GG+ , we can construct a d× d scoring matrix
M∗ as defined in §7.3.1. In order to reduce computation, we can set m∗

ij = 0 for
arcs (Vi, Vj) not included in CGG+ as these are, by construction, not present in
any candidate graph and therefore redundant. Given the matrix M∗, the scoring
function is applied to the adjacency matrix M ′ of each candidate G′ ∈ GG+ to
derive a causal score on G′. After scoring each G′, the highest scoring graph is
selected as the optimal candidate.

7.3.4 Scoring Procedure

At this point, it is helpful to outline the full scoring procedure in precise algorithmic
terms. Algorithm 5 describes the process of generating a data sample D from an
input DSCMM, as required as input for constructing a score matrix. Given the
data sample, Algorithm 7 constructs a matrix of causal scores. Algorithm 8, in
turn, takes the resulting score matrix as input and returns a score on each member
in the input Markov equivalence class using a p-value combiner h. In the last step,
the vector of scores is used to select an optimal candidate G∗ ∈ G in Algorithm 6,
whilst accounting for the possibility of score ties.2

2 Note: as long as score ties are not guaranteed between all members G,G′ ∈ G for all
equivalence classes G, the rejection of the score equivalence assumption is consistent with
occurrence of score ties.
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Algorithm 1 Data Generation Phase

function generate data(M, t)
U, V, F ←M
n← |V |
D ← [t, n]

for i in 1, ..., t do
for j in 1, ..., n do
D[i, j]← fj(D1:i−1)

end for
end for

return D
end function

Algorithm 2 Graph Retrieval Phase

function get best candidate(G, scores)
m← |G|
G← argmaxi∈{1,...,m} scores[i]

if |G| = 1 then
G∗ ← G

else if 1 < |G| then
G∗ ← G[k] for random index 1 ≤ k ≤ |G|

end if

return G∗

end function
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Algorithm 3 Score Matrix Phase

function get scoring matrix(D,G, κI , τmax)
d← |VG|
M∗ ← [d, d]

for i ∈ {1, ..., d} do
for j ∈ {1, ..., d} do

Xi ← D[:, i]
Xj ← D[:, j]
M∗[i, j]← κI(Xi,Xj,D \ {Xi}, τmax)

end for
end for

return M∗

end function

Algorithm 4 Scoring Phase

function score equivalence class(G,M∗, h)
m← |G|
scores← [m]

for k ∈ {1, ...,m} do
M ←MG[k]

scores[k]← h(M,M∗)
end for

return scores
end function

8 Experimental Setup

8.1 Desiderata for Evaluating Causal Methods on Synthetic Data

Before outlining the experimental setup, we consider a number of desiderata in-
volved in evaluating causal methods on synthetic data. Firstly, the causal discovery
task requires that the structural equations of the employed data-generating models
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allow for identifiability : otherwise, the causal discovery task becomes infeasible [66,
pp. 50, 138]. Shimizu [74] and Hoyer et al. [41] discuss positive theoretical identi-
fiability results for linear additive models with non-Gaussian noise and non-linear
additive models, respectively. In addition, Runge et al. [70] enumerates a number
of specific linear and non-linear dependencies for the time series causal discovery
task. A second desideratum is model realism: properties of synthetic data should
be close to real-world data. Salient properties are non-linearity, autocorrelation
and noise. Relatedly, model diversity is desirable: the method ought to be evalu-
ated on a large number of distinct causal models to reduce biased conclusion and
augment external validity of the results. In this context, relevant properties are the
number of variables in the model, the density of causal structure, the dependency
type of structural equations as well as the value of coefficients defining those equa-
tions. A third and similarly related desideratum is model dimensionality : in all
likelihood, larger dimensions affect the method’s performance. A last desideratum
concerns sample size: if the available time series data is sparse, for example, we
expect that a method’s performance to decrease [68, pp. 13–14].

8.2 Experimental Setup

The aim of the experiments is to evaluate how well the GSF retrieves causal struc-
tures close to the true causal structure, measured using a set of metrics specified
in §8.6. Given the similarities with PCMCI+ noted in §6.2, a comparison with
PCMCI+’s performance scores provides a meaningful point of reference. Com-
bining this observation with the modelling desiderata from §8.1, the following
subquestions are central to answering our research question:

(SQ.1) How does the Granger scoring function perform compared
with PCMCI+?

(SQ.2) How does dependency type affect performance?

(SQ.3) How does model dimensionality affect performance scores?

(SQ.4) How does sample size affect performance scores?

(SQ.5) How does lagged versus instantaneous link proportion affect
performance scores?

In order to evaluate the subquestions, two experiments are performed.3 In the
first experiment, we evaluate how well the GSF recovers the true graph from

3 Note: the code for the experiments was written in Python and can be accessed at
https://github.com/ThierryOrth/Granger-Scoring-Function/.
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equivalent graphs. Hence, we assume access to the true MEC that the underlying
causal model induces. Given the aim of this experiment, singleton equivalence
classes are excluded. In the second experiment, we assess the GSF’s performance
under realistic conditions: instead of assuming access to the true MEC, we assume
access to an estimate of the MEC, which is obtained using PCMCI+. Since this
experiment concerns the GSF’s performance and not the ability to distinguish
between equivalent graphs, singleton equivalence classes are not excluded. Since
an estimate of the MEC does not guarantee access to the true graph, we show
the scores of the optimal graph, which is the graph within the estimated MEC
with the highest relative accuracy score, as defined in §8.6. The procedure for
generating causal models is the same for both experiments. On each dimensionality
parameter d, we run 100 iterations. Within the span of an iteration, we randomly
generate a d-dimensional parameter configuration, from which a linear and non-
linear causal model is constructed, as further detailed in Section §8.4. From each
model, we draw observational data samples of five different sizes. On each of the
five drawn samples, PCMCI+ and the GSF are each applied to infer an optimal
causal structure, which is subsequently evaluated using the structure evaluation
metrics, as outlined in §8.6.

8.3 Synthetic Data

A causally stationary DCSM is, at its core, defined as a set of time series T =
{X1, ...,Xd} and structural equations {fX1 , ..., fXd

} defining the value of those
time series on each time instant. In generating observational data for a time series
Xj = (X1

j , ..., X
T
j ), we assume the following additive noise model (ANM) employed

by Runge et al. [70]:

Xt
j = fXj (T

:t−1) = βjX
t−1
j + g

 d∑
i=1,j ̸=i

βiX
t−τi
i

+ ϵtj , (22)

where g is some linear or non-linear function and ϵtj ∼ N (0, 1) is assumed to
be standard Gaussian noise. ANMs are special instances of structural equations
as described in §4.3, with the constraint of weight parametrisation and additive
noise. A relevant point is that ANMs allow for identifiability of causal direction
underlying the data-generating process, making them suitable for generating data
for the causal discovery task [66, 41].

In addition to identifiability of causal structure, the other desiderata outlined in
8.1 are met as follows. First, model realism is satisfied using both linearities and
non-linearities in the place of g, by inducing autocorrelation via the constraint
βi ̸= 0 whenever i = j in (22) and through the use of noise terms. Secondly,

39



model diversity is accomplished by considering different model dimensionalities,
randomising included causal links, varying the density of both lagged and instan-
taneous links and through arbitrary selection of coefficients and time lags. Last
of all, we evaluate the effect of sample size by evaluating the method on different
sample sizes.

8.4 Hyperparameters

In generating causal models, we largely follow the experimental setup from Runge
et al. [70]. Observe that a DSCM is defined in terms of a dimensionality, causal
links between variables, coefficients and time lags. Let {d1, ..., dn} be a set of di-
mensionalities with d1 = 2, {τ1, ..., τm} a set of time lag parameters and {β1, ..., βk}
a set of coefficients. Given a fixed di, a di-dimensional DSCM is generated as fol-
lows. First, the upper bound on the number of lagged causes as well as that on
instantaneous causes is defined as the parameter L = di if 2 < di and L = 1 for
di = 2, in line with Runge et al. [70]. Given L, a random number of instantaneous
causes as well as a random number of lagged causes are selected, both from the set
{0, ..., L}. In turn, all causes are coupled with random coefficients βj plus, in the
cases of lagged causes, with random time lags τk. Given the resulting parameter
configuration, a linear model is a model in which the function g from (22) is the
identity function whilst a non-linear model uses a non-linear function in the place
of g. Given a causal model and a sample size n, an observational data sample of
size n are generated using (22).

In the experiment, we consider dimensionality parameters from the set {2, ..., 25}.
In turn, links are generated according to the parameter L as defined before, with
the exception that we always assume autogenerative dependencies. Hence, the
number of links for a fixed d has a lower bound of d and an upper bound of
(2 · L) + d. Coefficients β determining causal influence are drawn from the inter-
val [−0.9, 0.9] with stepsize 0.2 and excluding 0; time lags determining the time of
causal influence are drawn from the set {1, 2}. The dependency g in (22) is defined
as g(x) = x in the linear case and g(x) = (1 + 5xe−x2/20)x in the non-linear case.
Last but not least, we use the set {20, 40, 60, 80, 100} as sample size parameters
for generating observational data samples.

Since non-stationarity prevents identifiability, attention is restricted to time
stationary models [75, pp. 312–313]. In addition, models violating the restrictions
in §7.3.3 are excluded from the experiments. Last but not least, PCMCI+ has
two further hyperparameters that are part of the experimental setup. First, the
threshold value αPC used in the edge removal step. Here, we use Runge et al.’s
model selection procedure for optimising the value of αPC, as further described in
Runge et al. [70, p. 13]. Secondly, the parameter τmax that decides that maximal
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time lag at which to evaluate causal relationships. In line with the experimental
setup of Runge, we assume τmax = 5 throughout the experiments [69].

8.5 Computing and Combining p-values

In addition to the hyperparameters outlined in Section 8.4, a conditional indepen-
dence tester I and method h for combining p-values are to be defined. In choosing
I, we follow Runge et al. [70] in performing a t-test on the partial correlation
coefficient in the linear case and a Gaussian Process regression combined with
a distance correlation test (GPDC) in the non-linear case. Both fall under the
regression-based approach of conditional independence testing and are described
by Runge [68] and Runge et al. [70].

From a conceptual point of view, a p-value combiner is interpreted as a likelihood-
ratio test of the null hypothesis against variations of the alternative hypothesis:
it compares the evidence for the null hypothesis with that for the alternative
hypothesis. Given a vector of p-values p⃗ = (p1, ..., pk) and a vector of weights
w⃗ = (w1, ..., wk) defining the contribution for each pi, a first candidate for a p-
value combiner h : V × V → [0, 1] is Fisher’s method:

hF (p⃗, w⃗) = −2
k∑

i=1

wi log(pi) (23)

A second method is Stouffer’s method, which transforms each p-value using the
inverse of the standard normal cumulative distribution function:

hS(p⃗, w⃗) =
k∑

i=1

wiΦ
−1(pi) (24)

A problem with both Fisher’s and Stouffer’s method is, however, that each pi
is assumed to be independent [37, 88]. A method that drops the independence
assumption on p-values is Wilson’s harmonic mean p-value:

hH(p⃗, w⃗) =

∑k
i=1wi∑k

i=1wi/pi
(25)

A number of relevant properties of hH are (i) robustness to positive dependency
between p-values, (ii) insensitivity to the number of tests k, (iii) robustness to
the distribution of the weights w⃗ and (iv) high influence by small p-values. Con-
cerning point (iii), weights are informed by prior knowledge about the relative
importance of each pi, for example, due to differences in sample size [88]. Since
such prior knowledge is not available in our experiments, we assume a uniform
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weight distribution wi = 1 for all 1 ≤ i ≤ k. Intuitively, point (iv) says that in
assessing the evidence for a conjunctive hypothesis, low amounts of evidence on
any of the conjunct hypothesis has a bigger effect than high amounts of evidence.
In this sense, hH is conservative with respect to the conjunctive null hypothesis.
In our case, this involves that time-lagged arcs Xt−τ

i →G Xt
j with low evidence

exert bigger influence on reducing the evidence for summary arcs Xi →G Xj and
that, similarly, that summary arcs Xi →G Xj with low amounts of evidence play
a bigger role in reducing the amount of evidence for the full summary graph.

8.6 Evaluation Metrics

In the literature, two classes of evaluation metrics for causal structure learning
are distinguished: (1) graph distance-based measures and (2) classification-based
measures. In the experiments, we will use measures from both classes. A first
distance-based measure is Structural Hamming Distance (SHD), which is defined
as the minimal number of arc insertions, removals or reversals required for turning
an estimated graph Ĝ into the ground-truth graph G. In formal terms, SHD is a
function SHD : G × G → N defined as follows:

|{(Vi, Vj) : (Vi, Vj) ∈ EG ∆ EG′ or (Vi, Vj) ∈ EG′ ∆ EG}|, (26)

where A ∆ B := (A \B) ∪ (B \ A) denotes the symmetric difference of A and B.
A second distance measure is the Frobenius norm, defined as the square root of
the sum of squared values of a matrix:

||A||F =
√
trace (ATA) =

√√√√ n∑
i=1

m∑
j=1

|aij |2 (27)

Hence, ||M δ||F is interpreted as the square root of the sum of squared differences

between MG and M Ĝ. In our case, the relevant Frobenius norm is ||M δ||F with

M δ = MG −M Ĝ: the difference matrix of the adjacency matrices of G and Ĝ.
Classification measures perform graph evaluation as in a categorical classifica-

tion problem: entries mG
ij are interpreted as classes c ∈ {0, 1} that encode absent

and present arcs [12, 64]. In what follows, we restrict our attention to accuracy
scores.4 The standard definition of accuracy is as follows:

|m∗
ij = mij |

|m∗
ij = mij |+ |m∗

ij ̸= mij |
, (28)

4 Note: as my supervisor pointed out, precision and recall are uninformative measures
in this case, as these are identical in the setting of a Markov equivalence class; the proof
is included in Appendix D.
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where m∗
ij are entries in the adjacency matrix of the estimated graph G∗ and mij

are entries in the adjacency matrix of the true graph G. An additional measure
of interest in our case is accuracy relativised to the points of estimation, which we
refer to as relative accuracy (RA):

|{m∗
ij = mij : cij = cji = 1}|

|{m∗
ij = mij : cij = cji = 1}|+ |{m∗

ij ̸= mij : cij = cji = 1}|
(29)

where cij are entries in the CPDAG, which are effectively the points of estimation
in the MEC setting. The reason for adopting this measure is as follows. Since the
MEC already fixes a number of arcs, standard accuracy scores or absolute accuracy
(AA) does not allow us to distinguish between the MEC’s arcs and the GSF’s
performance on unresolved edges. Hence, we in addition adopt RA to specifically
evaluate the GSF’s contribution to the final scores.

Last but not least, we use two statistical tests for comparing performance
across dependencies as well as across methods. The first test is the two-sample
Kolmogorov-Smirnov (KS) test. In brief terms, the two-sample KS test computes
as test statistic the greatest absolute distance between two empirical distribution
functions F1,n and F2,m:

Dn,m = supx|F1,n(x)− F2,m(x)| (30)

In turn, Dn,m is used to derive the likelihood of observing these samples given that
their underlying probability distribution is the same [5, 15]. Secondly, the Spear-
man rank-order correlation coefficient computes dependence between variables us-
ing value-ranked lists of the variables. Given ranked variables, the pointwise dif-
ference for every i’th entry contributes to the Spearman correlation coefficient rs
as follows:

rs = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
(31)

As usual, the coefficient’s range is the interval [−1, 1] [15, 91]. In further sections,
we assume for both statistical significance tests a significance level of α = 0.05.

9 Results

9.1 Experiment I

In this section, we included the part of the results most pertinent to the analysis;
the entirety of results are included in Appendix F. The reader is referred to Sub-
appendix F.1 for the relevant plots, whilst descriptive statistics are to be found
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in Subappendix F.2. A description of the included plots and tables are in order.
Figure 14 shows the performance scores of the GSF and PCMCI+ in the linear
and the non-linear setting against the number of variables in the model, with per-
formance scores averaged over all iterations and over all sample size parameters.
Figure 15, in turn, plots a number of relevant CPDAG properties against dimen-
sionality: the number of DAGs in a MEC defined as m = |G|, the number of edges
k in the corresponding CPDAG CG as well as the fraction of edges p in CG , which
is computed as the number of edges divided by the number of edges and arcs.

Figure 16 depicts the performance scores against model dimensionality, av-
eraged over all iterations and with each row corresponding to a fixed sample size
parameter. Figure 17 and 18 show the relationship between performance scores and
the proportion of instantaneous causes and lagged causes, respectively. Note that
although the trends of these proportions are simply mirroring trends, we neverthe-
less included both plots for ease of reference. In the plots, every row corresponds
to a specific structure discovery method. Proportion values were rounded to the
closest number divisible by 0.025; metric scores for identical rounded proportion
values were averaged. The number of evaluated models per datapoint are indi-
cated with a color gradient that darkens the color for larger numbers. The darkest
datapoint at p = 0.0 and p = 1.0 for the instantaneous and lagged link plots re-
spectively corresponds to a total number of 358 evaluated models; the count of the
rest of the datapoints are averaged at µ = 102 with standard deviation σ = 42.

Table 1 records values of the Spearman correlation coefficient between CPDAG
properties and performance metrics. In turn, Table 2 and 3 contain the sample-
specific and average mean and standard deviation of line heights, respectively;
the average mean and standard deviation of the distances across methods as well
as Kolmogorov-Smirnov test results are included in Table 4. Table 5 records the
correlation between sample size and performance scores; Table 6 and 7 describe
the correlation between performance scores and the proportion of instantaneous
and lagged causes, respectively.

9.1.1 Method Comparison

Figure 4 shows that the GSF improves on PCMCI+ on all metrics. Table 3 and
4 confirm the GSF’s improvement over PCMCI+: the mean performance of the
GSF consistently improves over that of PCMCI+. In the case of SHD and FN, a
significant difference in performance is witnessed between the GSF and PCMCI+

across dependencies. A similar observation holds for both proportion scores, with
an interesting case of convergence of the GSF on AA around d = 15. More salient is
the GSF’s performance on RA, i.e., the proportion of correctly oriented arcs in the
CPDAG. It is clear that the GSF’s performance exceeds that of PCMCI+, which
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Figure 4: Plots of dimensionality values d against Structural Hamming Distance (SHD), Frobenius norm
(FN), absolute accuracy (AA) and relative accuracy (RA) scores.

Figure 5: Plots of dimensionality values d against the number of DAGs in the MEC (m), the number of
edges (k) and the proportion of edges over edges and arcs (p).

can be confirmed in the line distance statistics recorded in Table 4. Simultaneously,
Table 3 shows a higher amount of variation for the GSF. Still, Figure 4 indicates
that, on average, the additional variation does not result in a performance lower
than PCMCI+ for any value of d. From Table 4, it can be witnessed that the
KS test scores are significant between the two methods across both dependencies,
suggesting that their respective scores are not drawn from the same distribution.

9.1.2 Model Dimensionality

Figure 4 shows that dimensionality increases coincide with increases in SHD and
FN for both discovery methods and dependencies. The magnitude of increase,
however, is much higher for PCMCI+ than for the GSF on both dependencies.
Table 1 verifies this results numerically: the positive correlation with d is much
higher for PCMCI+. An interesting observation is that SHD and FN scores corre-
late more with the equivalence class size m than with d in the case of the GSF.

From Figure 4, it can in addition be seen that AA increases with model di-
mensionality whilst highly erratic behavior is witnessed for RA. Interestingly, the
GSF shows converging behavior for AA around d = 20. Table 1 indicates a no-
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table difference across the discovery methods: whilst PCMCI+’s AA scores mostly
correlate with d and m, those of the GSF mostly correlate with d, k and p. In the
case of RA, correlations with d vanish across both discovery methods, although a
small correlation with m is seen for the linear case of the GSF and the non-linear
case for both the GSF as well as PCMCI+.

9.1.3 Dependency Type

Figure 4 shows stark differences in performance across dependencies for PCMCI+,
but minimal differences in the case of the GSF. This observation is supported by
Table 4, which shows that, indeed, the mean line distance between the linear and
non-linear case tends to be much bigger for PCMCI+, with the exception of RA
scores. Furthermore, Table 4 shows that the KS test returns a significant value
for PCMCI+ on all metrics, whilst none of the values for the GSF are significant.
This suggests that the samples for PCMCI+ are drawn from the same distribution,
whilst the opposite is the case for the GSF.

Figure 6: Plots of dimensionality values d against relative accuracy (RA) scores, with columns corre-
sponding to specific sample size parameters.

9.1.4 Sample Size

Figure 6 indicates that SHD and FN scores generally decrease for the GSF. On
the other hand, no clear trend is discernible for PCMCI+. Table 2 confirms this
observation: SHD and FN scores always decrease for the GSF, but not unilater-
ally so for PCMCI+. Table 5 shows that, in addition, a weak negative correlation
occurs for the GSF whilst the correlation for PCMCI+ is almost zero. A second
relevant observation is that for both discovery methods, AA and RA scores gen-
erally increase as sample size increases. This fact can be independently verified in
Table 2. Table 5 indicates a weak positive correlation for the GSF with AA and
RA; a stronger correlation is seen for PCMCI+ in the case of RA, yet a vanishing
correlation is observed for AA scores.
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Figure 7: Plots of instantaneous link proportion values against relative accuracy (RA) scores, with
columns corresponding to causal discovery methods.

Figure 8: Plots of lagged link proportion values against relative accuracy (RA) scores, with columns
corresponding to causal discovery methods.

9.1.5 Instantaneous and Lagged Causes

Figure 7 and 8 indicate a weak positive correlation with SHD and FN in the
instantaneous case and a weak negative correlation for AA and RA. Since any
increase in the proportion of instantaneous causes involve a commensurate decrease
in the proportion of lagged causes, this trend is reversed in the lagged case: a weak
negative correlation occurs for SHD and FN whilst a weak positive correlation
holds for AA and RA. Table 6 and 7 can be consulted to independently verify
these observations. A salient finding in Figure 8 is that a proportion of lagged
causes close to one gives notably high RA scores. In the linear case, RA scores are
seen to center around the interval [0.70, 0.75]. In the non-linear case, RA scores
cluster around the interval [0.70, 0.80].

9.2 Experiment II

The results of the second experiment are included in Appendix G. Plots and de-
scriptive statistics are analogous to those from the first experiment, with the ex-
ception that we included the performance scores of the optimal graph from the
MEC in Figure 9 and 11 as well as Table 10 and 11 as a meaningful point of
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reference. The optimal graph, to repeat, is the graph within the estimated MEC
with the highest RA score. In this experiment, the number of evaluated models
at the darkest point at p = 0.0 and p = 1.0 for the instantaneous and lagged link
plots equals 354; the count of the other datapoints are averaged at µ = 102 with
standard deviation σ = 43.

Figure 9: Plots of dimensionality values d against Structural Hamming Distance (SHD), Frobenius norm
(FN), absolute accuracy (AA) and relative accuracy (RA) scores.

Figure 10: Plots of dimensionality values d against the number of DAGs in the MEC (m), the number
of edges (k) and the proportion of edges over edges and arcs (p).

9.2.1 Method Comparison

Figure 9 shows that the GSF outperforms PCMCI+. Table 10 and 11 confirm
this result: the scores of the GSF consistently improve on those of PCMCI+. In
particular, the GSF is significantly closer to optimal performance than PCMCI+.
In the case of SHD and FN, the distance between the GSF’s scores and the optimal
score is notably smaller than those of PCMCI+, especially in the non-linear case.
For AA, a similar observation holds. In the case of the RA scores, however, the
GSF’s performance falls short of optimal performance. Simultaneously, it is clear
that the GSF significantly improves on both PCMCI+ as well as random chance.
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As in the previous experiment, the amount of variation for both discovery methods
is relatively high. Table 11 shows that across both dependencies and all metrics,
the null is rejected for the point-wise method comparison, suggesting that the
scores are not drawn from the same distribution. Interestingly, the point-wise
comparisons with the optimal scores show that the null is rejected everywhere
except for the GSF in the non-linear case for SHD, FN and AA, suggesting that
the scores for the GSF in these cases are drawn from the same distribution as the
optimal scores.

9.2.2 Model Dimensionality

Figure 9 indicates that all scores increase with model dimensionality. In the case of
SHD and FN, all discovery methods show a highest positive correlation with d, as
well as a strong correlation with m and k and a weak correlation with p. For AA, a
strong correlation again occurs for d, as well as a weak to modest correlation with
m, k and p in the case of the GSF; a small positive correlation for p is witnessed
for PCMCI+ across dependencies, as well as a weak to modest correlation with
m and k in the linear case. Concerning RA scores, diverging trends are observed.
In the case of the GSF, a weak correlation is witnessed for d, p and m, whilst
a strong negative correlation with m occurs in the non-linear case, as well as a
weak to modest correlation with d, k and p. PCMCI+, on the other hand, shows
an extremely strong negative correlation with d and a moderately strong negative
correlation with k in the linear case as well as a weaker negative correlation for m
and p. In the non-linear case, however, the negative correlation with d significantly
shrinks, whilst the negative correlation with k and especially that with m grows.

9.2.3 Dependency Type

Figure 9 shows significant differences in performance across dependencies for PCMCI+

but minimal differences in the case of the GSF. This observation is supported by
Table 11, which shows that, indeed, the mean line distance between the linear
and non-linear case tends to be much bigger for PCMCI+. In the point-wise de-
pendency comparison of both discovery methods, Table 11 shows that the null
hypothesis should be rejected for all metrics.

9.2.4 Sample Size

Figure 11 suggests that both SHD and FN scores decrease for the GSF whilst no
clear trend is witnessed for PCMCI+. Table 12 indicates a unilateral performance
improvement for the GSF. With minor exceptions, a general improvement of AA
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Figure 11: Plots of dimensionality values d against relative accuracy (RA) scores, with columns corre-
sponding to specific sample size parameters.

and RA scores can be witnessed for both discovery methods. Interestingly, Table
12 reports the presence of a weak correlation for the GSF and almost no correlation
for PCMCI+ across all scores except RA. In the case of RA, the correlation seems
to vanish for the non-linear case in particular, whilst the correlation for the linear
case seems almost identical for both discovery methods.

Figure 12: Plots of instantaneous link proportion values against relative accuracy (RA) scores, with
columns corresponding to causal discovery methods.

Figure 13: Plots of lagged link proportion values against relative accuracy (RA) scores, with columns
corresponding to causal discovery methods.
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9.2.5 Instantaneous and Lagged Causes

Figure 12 and 13 indicate a similar pattern as in the first experiment: an increase
in the proportion of instantaneous causes impairs scores, whilst an increase in the
proportion of lagged causes improves scores. Table 13 and 14 confirm this obser-
vation. A striking result is that in the linear case of PCMCI+, the correlation
between the proportion of instantaneous causes and RA scores is positive. Al-
though more instantaneous causes seem to be beneficial in this specific case, it
is clear that this does not help the AA scores, where the correlation is negative.
Hence, the initial observation is sound. We observe that, as before, a high pro-
portion of lagged causes for the GSF results in high RA scores, especially in the
non-linear case. As before, scores in the linear case fall in the interval [0.7, 0.75]
whilst scores in the non-linear case cluster around [0.75, 0.8].

10 Discussion

10.1 Analysis

10.1.1 Method Comparison

The results of the first experiment indicate that the GSF significantly improves on
PCMCI+ on the task of deciding the correct orientation of edges in the CPDAG.
In particular, we can corroborate this observation on the basis of the significantly
higher performance of the GSF on RA scores, which directly document the pro-
portion of correctly oriented arcs in the CPDAG. A notable observation is the con-
verging trend for the GSF’s AA scores, which seems wholly absent for PCMCI+

within the range of tested dimensionality parameters. An interesting result from
the second experiment is that in the absence of the true Markov equivalence class,
the GSF’s performance on RA scores stays similar to in the first experiment, indi-
cating that the GSF’s performance on RA scores can be extended to the practical
case where edges in the estimated MEC may not correspond to those in the true
MEC. Furthermore, it was seen that the GSF performs quite well for higher sample
sizes, larger proportions of lagged causes and non-linear dependencies. Simulta-
neously, performance was shown to fall short of optimal performance on average,
suggesting that the PCMCI+’s CPDAG output may be preferable depending on
the size of the model, sample size, time granularity and expected dependency.

10.1.2 Dependency Type

Both experiments show that the GSF’s performance between the linear and non-
linear case are, in general, negligible. An interesting exception concerns the RA
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scores. In the first experiment, a small difference in performance was witnessed,
but the KS test suggested that the distributions underlying the linear and non-
linear scores were the same. In the second experiment, on the other hand, the KS
test warranted rejection of the null hypothesis, in line with the observed differences
across dependencies as observed in Figure 9. A plausible explanation for this
difference relates to the number of evaluated edges, which is bigger in absolute
and relative terms as seen in Figure 5 and 10. Plausibly, the increase in edges
makes the difference in identifiability more salient across the linear and non-linear
case. This is not surprising given the additive Gaussian noise in the ANM: it is
more difficult to fit a line in the linear regression step of the partial correlation test.
Since the GPDC test is capable of fitting a broader range of functions than the
partial correlation test, it may be that higher identifiability in the non-linear case
is partially or wholly due to the GPDC test rather than the underlying non-linear
dependency. In any case, the non-parametric nature of GPDC may be preferred in
that it is capable of capturing a broader range of functions than partial correlation
tests, thus increasing identifiability of causal dependencies.

10.1.3 Model Dimensionality

In both experiments, it was seen that increases in model dimensionality correspond
to worse performance on SHD and FN metrics whilst augmenting performance on
AA and RA scores. On observing the correlation values, it must be concluded that
model dimensionality on its own cannot fully explain the metric scores. In the first
experiment, SHD and FN scores were seen to correlate significantly more with m
than with d. Plausibly, this is because a larger candidate space includes more
graphs more distant from the true graph on SHD and FN scores, which results
in an increasing likelihood of making more errors on SHD and FN scores. Whilst
AA scores show a high correlation with d, k and p, no strong correlation is found
between RA scores and any of the CPDAG properties. In the second experiment,
it was observed that all CPDAG properties and specifically d and k correlate well
with SHD, FN and AA. The shrinkage of the correlation with m can be explained
as follows: since the true graph is not necessarily available, increases in m do
not necessarily correspond to more errors on SHD and FN scores. Although an
increase has occurred in the correlation of the CPDAG properties with RP scores,
the correlation coefficients are still marginal. Hence, RA scores cannot be explained
in terms of just CPDAG properties. Rather, it is plausible that RA scores depend
on a bigger set of factors, which may include the number of lagged causes, sample
size as well as further factors.
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10.1.4 Sample Size

Both experiments show that, in general, a higher sample size is conducive to per-
formance on all metrics. To be precise, a negative correlation is witnessed for SHD
and FN scores whilst a positive correlation is seen for both AA and RA scores.
For the GSF, correlations stay almost constant across experiment. The second
experiment shows higher absolute mean scores for SHD, FN and AA scores as
witnessed when comparing Table 3 and Table 10. Two observations are in order.
First, the mean line scores end at a similar endpoint for t = 100, indicating that
the GSF’s performance on high sample sizes is robust on distinguishing between
equivalent graphs between the two experiments. Secondly, a difference in trends
is witnessed across experiments. Whilst line distances proportionately grow with
sample size in the first experiment, this is not the case in the second experiment.
The highest values in the non-linear case, for example, are attained at t = 20
and t = 80. The counterintuitive conclusion seems to be that higher sample size
does not increase identifiability. Since this may change for higher sample sizes, we
refrain from drawing the general conclusion here.

10.1.5 Link Proportion

Across the experiments, we witnessed the following trend: a higher proportion of
instantaneous causes harms the GSF’s performance on all metrics. In addition,
the correlations between link proportion and metrics performance were generally
similar between the first and second experiment. A clear point of difference con-
cerns the performance in the linear case, which is seen to decrease in the second
experiment. Since the performance in the non-linear case does not decrease, we
suggest that this, again, results from a performance differences across dependencies
as described in §10.1.2.

A salient result from Figure 18 and 23 concerns the beneficial effect of lagged
link proportion: if the proportion of lagged links is near one, then RA scores get
a score around the [0.70, 0.75] in the linear case and [0.70, 0.80] in the non-linear
case. Hence, it is beneficial to ensure higher granularity of time series data, as
discussed in §4.5. Plausibly, lower identifiability for more instantaneous causes can
be explained in terms of a problem of symmetry. Since evaluating Xt−τ →G Y t

and Y t−τ →G Xt for instantaneous causes is measured at τ = 0, their samples
are the same and so their final p-value becomes the same. For lagged causes, p-
values will in general be asymmetric, as discussed in §7.3.2. As a consequence,
it becomes more difficult to infer causal direction as the number of instantaneous
causes increases, analogous to the problem of correlational symmetry discussed in
§2.
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10.2 Limitations

10.2.1 Model Class

A first issue relating to the model class is the focus on summary causal graphs.
Although temporal information is used at inference time, the final graph rep-
resentation wholly ignores this information: arcs encode the presence of causal
interaction yet the time of interaction is not disclosed. As a consequence, sum-
mary graphs become difficult to interpret in scenarios in which time of causal
interaction is relevant. A second limitation of the model class concerns the abil-
ity to indicate latent confounders. In particular, the DAG representation has no
resources for expressing the presence of a cause external to the variables internal
to the model: all connections between variables, after all, represent direct causal
relationships. In the literature, the usual model class for latent confounders is a
mixed acyclic graph, which models latent causes using bi-directed arcs between
effects [27, pp. 94–96].

10.2.2 Search Space

A limitation concerning the search space is the use of a Markov equivalence class
as candidate class. First of all, it is not clear if the MEC is the optimal candidate
class choice for the GSF. In practice, the equivalence class has to be inferred using
a prior procedure, meaning that the GSF’s performance will depend on the prior
procedure’s degree of success in estimating the equivalence class of the true graph.
In addition, scoring the full equivalence class is computationally inefficient. In
the worst case, the equivalence class is superexponentially large in the number
of variables: given a DAG over n vertices with the complete undirected graph as
skeleton, for example, the resulting equivalence class has a total of n! members
[29].

A last problem of using an equivalence class is that our attention was re-
stricted to a special subclass of summary graphs: those in which all cycles are
due to autogenerative dependencies. Since evaluating causal interaction in our
setting amounts to evaluating one-directional causal influence, it is unlikely that
performance will significantly change for summary graphs with cycles. Still, this
conclusion cannot be drawn at this point and, moreover, scoring cyclic summary
graphs naturally requires a different search procedure than a simple exhaustive
search within the equivalence class.
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10.2.3 Scoring Procedure

A notable challenge of the proposed scoring function is that the choice of an ad-
equate scoring function is shifted to the choice of an adequate p-value combiner.
In the literature, a number of different methods are available [89, 4, 6, 88, 45].
Although Wilson [88]’s method has the advantage of accounting for dependence
as well as prior information, it is not unique in these properties [93]. In order to
optimise the GSF’s performance, it is instructive to evaluate performance under
different combination methods. In addition, such an evaluation is bound to provide
better insight into the overall effectiveness of the GSF. An additional limitation
relates to the computational costs of constructing the causal score matrix. If we
are given a maximal time lag τmax and a CPDAG with n edges, then the total
number of conditional independence tests equals τmax ·(2 ·n). If the conditional in-
dependence tester itself is already computationally expensive, such as with GPDC,
this is clearly undesirable [70, p. 13].

10.3 Future Work

A number of research directions naturally follow from the limitations noted in Sec-
tion 10.2. A first line of research is to generalise the GSF to graph representations
such as extended summary or window graphs. An interesting direction would be
to follow Pamfil et al. [59]’s division of the discovery process into a lagged and
instantaneous step. In the former step, time-ordering constraints can be applied
whilst the latter step could use an equivalence search. As an advantage, it is easy
to infer summary graphs from these graphs if so desired [2]. An additional line
of research is to use MAGs as model class, so as to account for latent causes. In
both lines of research, an advantage of the GSF is the following: since the GSF
just evaluates bivariate causal connections, the scoring function is model agnostic
and allows for different graph representations.

A third extension of the current research is to use an efficient search procedure
to query the Markov equivalence class, instead of generating the full equivalence
class. A promising procedure would be an equivalence search in the spirit of Meek
[53] and Heckerman, Meek, and Cooper [38]. In addition, the construction of the
causal score matrix could be integrated into the scoring procedure. In this way,
scores can be computed and stored for arcs present in the candidates, which may
reduce the total number of required computations. A last line of research is to
perform an empirical evaluation on different p-value combiners to assess relative
differences in their effect on the GSF’s performance.
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11 Conclusion

In this thesis, we proposed a causally informed scoring function that we called the
Granger scoring function. In this way, we sought to meet two important desiderata
of causal scoring function: first, that it breaks the score equivalence assumption
and, second, that it is causally informed. The resulting scoring function combines
significance values from lag-specific Granger causality to construct a score on can-
didate graphs, which is interpreted as the amount of evidence in favor of those
graphs. The experiments were constructed to evaluate if the GSF meets the two
desiderata, that is, whether it reliably recovers causal structure from otherwise
Markov equivalent graphs. First of all, we performed an experiment to evaluate
how well the GSF recovers the true graph from equivalent graphs, given that the
true graph is accessible within the candidate space. Secondly, an experiment was
performed to evaluate how well the GSF’s performance fares in settings where an
estimation of the MEC is given, which effectively involves that the true graph is
not necessarily accessible within the candidate space.

The experiments indicated a relatively high performance on all metrics. In
the first experiment, it was clear that the GSF improved on PCMCI+. Across
experiments, relative accuracy scores of the GSF stayed around the same level, in-
dicating that performance remains robust in the more realistic case where the true
graph is not necessarily accessible. On the one hand, it was clear that the effects
of model dimensionality and sample size on relative accuracy scores are not uni-
lateral across parameter settings. On the other hand, non-linear dependencies and
larger proportions of lagged causes resulted in improved performance, which can
be explained in terms of better identifiability in the former case and the presence
of asymmetry in p-values in the latter case. In the former case, it seems advan-
tageous to apply a flexible conditional independence test such as GPDC, which
induces identifiability through the ability to fit a wider range of functions. Con-
cerning the latter, we conclude that granularity of time series data is important
for augmenting the GSF’s performance. Hence, it is key that the sampling process
underlying the data is in tune with the minimal time period of causal interaction
within the domain of interest. Instead of deciding which causal interactions take
place, the required domain knowledge thus reduces to knowledge of the minimal
time frame separating cause and effect.
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A Notation Table

Notation Interpretation

℘(·) The power set of the input set.
T A set of time series {X1, ...,Xn} with Xi = {X1

i , ..., X
T
i }.

τ A discrete time lag.
G The space of directed acyclic graphs.
D The space of data samples.

GG, [G]∼ The Markov equivalence class of digraph G.
ϵ A noise or error term.

|| · ||F The Frobenius norm of the input matrix.
⟨·, ·⟩F The Frobenius inner product of the input matrices.
PAi The parent set of Vi in a given graph G = (V,A) defined as {Vj : (Vj , Vi) ∈ A}.
pai A value configuration of the parent set PAi.
π A path in a graph defined as a sequence of adjacent vertices V1...Vn.

σ∗(·) Descendant set, includes the input vertex and all vertices reachable with a directed path.
A(·) The set of adjacencies of the input variable.

X ⊥⊥ Y |Z Shorthand for “X is conditionally independent of Y given Z”.
X → Y Shorthand for “X is a cause of Y ”.
X →G Y Shorthand for “X is a G-cause of Y ”.
X An arbitrary domain of time series or standard random variables.

I : ℘(X )3 → [0, 1] A conditional independence tester returning a probability value.
ϕ : D × G → R A general scoring function.
κ : D ×A → R A bivariate, non-symmetric causal measure.
κ : D × G → R A causal scoring function.

h : V × V → [0, 1] A p-value combiner from p-value vectors and weight vectors to a p-value.
MG The adjacency matrix of graph G.
M∗ A causal scoring matrix.
M∗

G The matrix of scores retrieved from element-wise multiplication of M∗ with MG.
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B Procedures

Algorithm 5 Data Generation Phase

function generate data(M, t)
U, V, F ←M
n← |V |
D ← [t, n]

for i in 1, ..., t do
for j in 1, ..., n do
D[i, j]← fj(D1:i−1)

end for
end for

return D
end function

Algorithm 6 Graph Retrieval Phase

function get best candidate(G, scores)
m← |G|
G← argmaxi∈{1,...,m} scores[i]

if |G| = 1 then
G∗ ← G

else if 1 < |G| then
G∗ ← G[k] for random index 1 ≤ k ≤ |G|

end if

return G∗

end function

58



Algorithm 7 Score Matrix Phase

function get scoring matrix(D,G, κI , τmax)
d← |VG|
M∗ ← [d, d]

for i ∈ {1, ..., d} do
for j ∈ {1, ..., d} do

Xi ← D[:, i]
Xj ← D[:, j]
M∗[i, j]← κI(Xi,Xj,D \ {Xi}, τmax)

end for
end for

return M∗

end function

Algorithm 8 Scoring Phase

function score equivalence class(G,M∗, h)
m← |G|
scores← [m]

for k ∈ {1, ...,m} do
M ←MG[k]

scores[k]← h(M,M∗)
end for

return scores
end function
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C Explanation: Interpretation of p-values

Within PC and PCMCI and their variants, conditional independence in the skele-
ton phase is decided with a conditional independence tester I : X × X × ℘(X )→
[0, 1] and significance level α ∈ [0, 1] as follows:

α < I(X,Y, Z)⇒ X ⊥⊥ Y |Z (32)

I(X,Y, Z) ≤ α⇒ X ̸⊥⊥ Y |Z (33)

In other words, the p-value p = I(X,Y, Z) is used for accepting the null hypothesis
H0 : X ⊥⊥ Y |Z in (32) and accepting the alternative hypothesis H1 : X ̸⊥⊥ Y |Z in
(33). Since the skeleton phase starts with complete undirected graph G = (V,E)
and given faithfulness and the contrapositive of the causal Markov condition, this
results in removal and acceptance of the edge X − Y , respectively. In this way,
p is treated as the probability that the edge is included given the data, with α
acting as a threshold. Under this interpretation, higher values of p correspond to
a higher amount of evidence in favor of the null hypothesis [90, pp. 109–110].

D Proof: Precision-Recall Collapse

We prove that precision and recall of a candidate graph are equal whenever that
graph belongs to the Markov equivalence class of the true graph. Given the defi-
nitions below, it suffices to show that FP = FN for any candidate graph whenever
that graph belongs to the Markov equivalence class of the true graph.

precision =
TP

TP + FP

recall =
TP

TP + FN

Pick an arbitrary graphG = (V,A) and consider the MEC GG as well as a candidate
graph G′ ∈ GG. On expanding FP and FN, we see that FP = |{(Vi, Vj) : (Vi, Vj) ∈
A′ and (Vi, Vj) ̸∈ A}| and FN = |{(Vi, Vj) : (Vi, Vj) ̸∈ A′ and (Vi, Vj) ∈ A}|.
Consider two arbitrary vertices V ′

i , V
′
j′ . Since G and G′ are DAGs and since

(V ′
i , V

′
j ) ∈ A′ if and only if (V ′

i , V
′
j ) ∈ A or (V ′

j , V
′
i ) ∈ A, the following equiva-

lence holds:
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(V ′
i , V

′
j ) ∈ {(Vi, Vj) : (Vi, Vj) ∈ A′ and (Vi, Vj) ̸∈ A}

⇔
(V ′

i , V
′
j ) ∈ A′ and (V ′

i , V
′
j ) ̸∈ A

⇔
(V ′

j , V
′
i ) ̸∈ A′ and (V ′

j , V
′
i ) ∈ A

⇔
(V ′

j , V
′
i ) ∈ {(Vi, Vj) : (Vi, Vj) ̸∈ A′ and (Vi, Vj) ∈ A}

Since V ′
i and V ′

j were arbitrary, it follows that |{(Vi, Vj) : (Vi, Vj) ∈ A′ and (Vi, Vj) ̸∈
A}| = |{(Vi, Vj) : (Vi, Vj) ̸∈ A′ and (Vi, Vj) ∈ A}| and so FP = FN. Since G, G and
G′ were moreover arbitrary, precision and recall of a candidate graph are equal
whenever that graph belongs to the Markov equivalence class of another graph.

E Proof: CPDAG Score

We prove that if a candidate DAG belongs to a MEC, then the number of incorrect
arcs in the CPDAG will always be at least the number of incorrect arcs in the DAG.

Consider a MEC estimate G∗, the corresponding CPDAG CG∗ = (VG∗ , AG∗)
and an arbitrary candidate graph G = (V,A) ∈ G∗. Observe that since G ∈ G∗,
the set of arcs in G and CG∗ are the same. Hence, any difference in scores must
result from the edges in CG∗ . Suppose that the number of edges equals m and
that the number of errors on arcs equals k. Next, take an arbitrary edge {Vi, Vj}.
Since {Vi, Vj} if and only if (Vi, Vj) ∈ AG∗ and (Vj , Vi) ∈ AG∗ , CG∗ gets at least
one error. Since G is a DAG included in G∗, it follows that either (Vi, Vj) ∈ A or
(Vj , Vi) ∈ A. In either case, G receives at most one error. Since this argument
applies to all edges in CG∗ , the number of errors for G equals k+ i for some i ≤ m
whilst the number of errors for CG∗ equals k + j for some m ≤ j. Since therefore
k + i ≤ k + j, the desired conclusion follows.
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F Results Experiment I

F.1 Plots

Figure 14: Plots of dimensionality values d against Structural Hamming Distance (SHD), Frobenius
norm (FN), absolute accuracy (AA) and relative accuracy (RA) scores.

Figure 15: Plots of dimensionality values d against the number of DAGs in the MEC (m), the number
of edges (k) and the proportion of edges over edges and arcs (p).
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Figure 16: Plots of dimensionality values d against Structural Hamming Distance (SHD), Frobenius
norm (FN), absolute accuracy (AA) and relative accuracy (RA) scores, with rows corresponding to specific
sample size parameters.
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Figure 17: Plots of instantaneous link proportion values against Structural Hamming Distance (SHD),
Frobenius norm (FN), absolute accuracy (AA) and relative accuracy (RA) scores, with rows corresponding
to causal discovery methods.
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Figure 18: Plots of lagged link proportion values against Structural Hamming Distance (SHD), Frobenius
norm (FN), absolute accuracy (AA) and relative accuracy (RA) scores, with rows corresponding to causal
discovery methods.
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F.2 Descriptive Statistics

SHD FN AP RP

G
S
F

L
in
ea
r

d rs = 0.476, p = 0.0 rs = 0.456, p = 0.0 rs = 0.58, p = 0.0 rs = 0.069, p = 0.017
m rs = 0.72, p = 0.0 rs = 0.675, p = 0.0 rs = 0.1, p = 0.001 rs = 0.106, p = 0.0
k rs = 0.215, p = 0.0 rs = 0.2, p = 0.0 rs = 0.397, p = 0.0 rs = 0.037, p = 0.204
p rs = −0.013, p = 0.647 rs = −0.015, p = 0.613 rs = 0.413, p = 0.0 rs = 0.044, p = 0.132

N
on

-l
in
ea
r d rs = 0.467, p = 0.0 rs = 0.445, p = 0.0 rs = 0.578, p = 0.0 rs = 0.073, p = 0.012

m rs = 0.718, p = 0.0 rs = 0.667, p = 0.0 rs = 0.094, p = 0.001 rs = 0.111, p = 0.0
k rs = 0.214, p = 0.0 rs = 0.199, p = 0.0 rs = 0.403, p = 0.0 rs = 0.045, p = 0.122
p rs = −0.013, p = 0.651 rs = −0.01, p = 0.723 rs = 0.425, p = 0.0 rs = 0.05, p = 0.081

P
C
M
C
I+ L
in
ea
r

d rs = 0.977, p = 0.0 rs = 0.976, p = 0.0 rs = 0.708, p = 0.0 rs = 0.007, p = 0.812
m rs = 0.666, p = 0.0 rs = 0.666, p = 0.0 rs = 0.443, p = 0.0 rs = 0.04, p = 0.163
k rs = 0.64, p = 0.0 rs = 0.642, p = 0.0 rs = 0.098, p = 0.001 rs = −0.008, p = 0.78
p rs = 0.446, p = 0.0 rs = 0.447, p = 0.0 rs = −0.037, p = 0.197 rs = −0.015, p = 0.595

N
on

-l
in
ea
r d rs = 0.81, p = 0.0 rs = 0.807, p = 0.0 rs = 0.627, p = 0.0 rs = 0.057, p = 0.047

m rs = 0.574, p = 0.0 rs = 0.574, p = 0.0 rs = 0.392, p = 0.0 rs = 0.083, p = 0.004
k rs = 0.694, p = 0.0 rs = 0.697, p = 0.0 rs = 0.095, p = 0.001 rs = −0.008, p = 0.77
p rs = 0.536, p = 0.0 rs = 0.538, p = 0.0 rs = −0.02, p = 0.483 rs = −0.024, p = 0.409

Table 1: Table of Spearman correlation with dimensionality (d), the number of DAGs in the MEC (m),
the number of edges (k) and the proportion of edges over edges and arcs (p).

SHD FN AP RP

G
S
F

L
in
ea
r

t = 20 µ = 3.303, σ = 3.107 µ = 1.51, σ = 1.012 µ = 0.957, σ = 0.096 µ = 0.58, σ = 0.334
t = 40 µ = 2.582, σ = 2.623 µ = 1.268, σ = 0.987 µ = 0.966, σ = 0.084 µ = 0.664, σ = 0.322
t = 60 µ = 2.427, σ = 2.509 µ = 1.222, σ = 0.967 µ = 0.965, σ = 0.089 µ = 0.679, σ = 0.318
t = 80 µ = 2.319, σ = 2.55 µ = 1.157, σ = 0.99 µ = 0.968, σ = 0.082 µ = 0.703, σ = 0.313
t = 100 µ = 2.227, σ = 2.517 µ = 1.117, σ = 0.989 µ = 0.97, σ = 0.08 µ = 0.718, σ = 0.305

N
on

-l
in
ea
r t = 20 µ = 3.222, σ = 3.049 µ = 1.478, σ = 1.019 µ = 0.959, σ = 0.093 µ = 0.59, σ = 0.335

t = 40 µ = 2.569, σ = 2.602 µ = 1.266, σ = 0.983 µ = 0.966, σ = 0.082 µ = 0.664, σ = 0.324
t = 60 µ = 2.371, σ = 2.536 µ = 1.193, σ = 0.974 µ = 0.966, σ = 0.09 µ = 0.684, σ = 0.322
t = 80 µ = 2.391, σ = 2.6 µ = 1.187, σ = 0.991 µ = 0.967, σ = 0.083 µ = 0.69, σ = 0.317
t = 100 µ = 2.148, σ = 2.523 µ = 1.077, σ = 0.994 µ = 0.97, σ = 0.079 µ = 0.725, σ = 0.308

P
C
M
C
I+

L
in
ea
r

t = 20 µ = 18.914, σ = 12.899 µ = 4.031, σ = 1.633 µ = 0.88, σ = 0.077 µ = 0.517, σ = 0.121
t = 40 µ = 20.924, σ = 15.066 µ = 4.191, σ = 1.832 µ = 0.88, σ = 0.068 µ = 0.574, σ = 0.152
t = 60 µ = 21.335, σ = 15.724 µ = 4.211, σ = 1.898 µ = 0.883, σ = 0.062 µ = 0.613, σ = 0.156
t = 80 µ = 21.305, σ = 16.322 µ = 4.182, σ = 1.953 µ = 0.887, σ = 0.057 µ = 0.637, σ = 0.161
t = 100 µ = 21.203, σ = 16.53 µ = 4.166, σ = 1.962 µ = 0.888, σ = 0.056 µ = 0.645, σ = 0.165

N
on

-l
in
ea
r t = 20 µ = 13.809, σ = 10.534 µ = 3.416, σ = 1.463 µ = 0.903, σ = 0.076 µ = 0.51, σ = 0.086

t = 40 µ = 14.269, σ = 11.924 µ = 3.419, σ = 1.606 µ = 0.908, σ = 0.071 µ = 0.557, σ = 0.127
t = 60 µ = 14.153, σ = 12.331 µ = 3.385, σ = 1.642 µ = 0.909, σ = 0.069 µ = 0.583, σ = 0.137
t = 80 µ = 13.75, σ = 12.586 µ = 3.311, σ = 1.67 µ = 0.913, σ = 0.065 µ = 0.604, σ = 0.149
t = 100 µ = 13.21, σ = 12.356 µ = 3.231, σ = 1.664 µ = 0.916, σ = 0.065 µ = 0.612, σ = 0.148

Table 2: Table of line height statistics per metric score, with rows corresponding to sample sizes
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SHD FN AP RP

Linear GSF µ = 2.572, σ = 2.078 µ = 1.255, σ = 0.744 µ = 0.965, σ = 0.067 µ = 0.669, σ = 0.194
Linear PCMCI+ µ = 20.736, σ = 14.879 µ = 4.156, σ = 1.815 µ = 0.883, σ = 0.054 µ = 0.597, σ = 0.11
Non-linear GSF µ = 2.54, σ = 2.074 µ = 1.24, σ = 0.74 µ = 0.965, σ = 0.066 µ = 0.671, σ = 0.197
Non-linear PCMCI+ µ = 13.838, σ = 11.57 µ = 3.352, σ = 1.569 µ = 0.91, σ = 0.064 µ = 0.573, σ = 0.1

Table 3: Table of line height statistics per metric score, averaged over sample size parameters.

SHD FN AP RP

Linear GSF/Linear PCMCI+ µ = 18.208, σ = 13.928 µ = 2.921, σ = 1.564 µ = 0.09, σ = 0.044 µ = 0.149, σ = 0.124
δKS = 0.725, p = 0.0 δKS = 0.728, p = 0.0 δKS = 0.851, p = 0.0 δKS = 0.315, p = 0.0

Linear GSF/Non-linear GSF µ = 0.621, σ = 0.978 µ = 0.241, σ = 0.352 µ = 0.006, σ = 0.017 µ = 0.074, σ = 0.114
δKS = 0.017, p = 0.893 δKS = 0.023, p = 0.531 δKS = 0.015, p = 0.961 δKS = 0.018, p = 0.815

Non-linear GSF/Non-linear PCMCI+ µ = 11.362, σ = 10.932 µ = 2.138, σ = 1.406 µ = 0.064, σ = 0.052 µ = 0.169, σ = 0.129
δKS = 0.634, p = 0.0 δKS = 0.647, p = 0.0 δKS = 0.644, p = 0.0 δKS = 0.41, p = 0.0

Linear PCMCI+/Non-linear PCMCI+ µ = 6.957, σ = 9.422 µ = 0.824, σ = 0.983 µ = 0.03, σ = 0.03 µ = 0.045, σ = 0.067
δKS = 0.227, p = 0.0 δKS = 0.226, p = 0.0 δKS = 0.366, p = 0.0 δKS = 0.16, p = 0.0

Table 4: Table of line distance and KS test statistics, averaged over sample size parameters.

SHD FN AP RP

Linear GSF rs = −0.124, p = 0.0 rs = −0.124, p = 0.0 rs = 0.115, p = 0.0 rs = 0.141, p = 0.0
Linear PCMCI+ rs = 0.021, p = 0.019 rs = 0.021, p = 0.019 rs = −0.005, p = 0.594 rs = 0.308, p = 0.0
Non-linear GSF rs = −0.123, p = 0.0 rs = −0.123, p = 0.0 rs = 0.111, p = 0.0 rs = 0.133, p = 0.0
Non-linear PCMCI+ rs = −0.053, p = 0.0 rs = −0.053, p = 0.0 rs = 0.058, p = 0.0 rs = 0.297, p = 0.0

Table 5: Table of Pearson correlation of metric scores with sample size parameters.

SHD FN AP RP

Linear GSF rs = 0.31, p = 0.0 rs = 0.313, p = 0.0 rs = −0.224, p = 0.0 rs = −0.222, p = 0.0
Linear PCMCI+ rs = 0.12, p = 0.0 rs = 0.122, p = 0.0 rs = −0.301, p = 0.0 rs = −0.474, p = 0.0
Non-linear GSF rs = 0.3, p = 0.0 rs = 0.302, p = 0.0 rs = −0.214, p = 0.0 rs = −0.209, p = 0.0
Non-linear PCMCI+ rs = 0.182, p = 0.0 rs = 0.188, p = 0.0 rs = −0.24, p = 0.0 rs = −0.398, p = 0.0

Table 6: Table of Spearman correlation of metric scores with the proportion of instantaneous causes.

SHD FN AP RP

Linear GSF rs = −0.31, p = 0.0 rs = −0.313, p = 0.0 rs = 0.224, p = 0.0 rs = 0.222, p = 0.0
Linear PCMCI+ rs = −0.12, p = 0.0 rs = −0.122, p = 0.0 rs = 0.301, p = 0.0 rs = 0.474, p = 0.0
Non-linear GSF rs = −0.3, p = 0.0 rs = −0.302, p = 0.0 rs = 0.214, p = 0.0 rs = 0.209, p = 0.0
Non-linear PCMCI+ rs = −0.182, p = 0.0 rs = −0.188, p = 0.0 rs = 0.24, p = 0.0 rs = 0.398, p = 0.0

Table 7: Table of Spearman correlation of metric scores with the proportion of lagged causes.
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G Results Experiment II

G.1 Plots

Figure 19: Plots of dimensionality values d against Structural Hamming Distance (SHD), Frobenius
norm (FN), absolute accuracy (AA) and relative accuracy (RA) scores.

Figure 20: Plots of dimensionality values d against the number of DAGs in the MEC (m), the number
of edges (k) and the proportion of edges over edges and arcs (p).
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Figure 21: Plots of dimensionality values d against Structural Hamming Distance (SHD), Frobenius
norm (FN), absolute accuracy (AA) and relative accuracy (RA) scores, with rows corresponding to specific
sample size parameters.
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Figure 22: Plots of instantaneous link proportion values against Structural Hamming Distance (SHD),
Frobenius norm (FN), absolute accuracy (AA) and relative accuracy (RA) scores, with rows corresponding
to causal discovery methods.
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Figure 23: Plots of lagged link proportion values against Structural Hamming Distance (SHD), Frobenius
norm (FN), absolute accuracy (AA) and relative accuracy (RA) scores, with rows corresponding to causal
discovery methods.
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G.2 Descriptive Statistics

SHD FN AP RP

G
S
F

L
in
ea
r

d rs = 0.882, p = 0.0 rs = 0.879, p = 0.0 rs = 0.818, p = 0.0 rs = 0.167, p = 0.0
m rs = 0.381, p = 0.0 rs = 0.381, p = 0.0 rs = 0.201, p = 0.0 rs = −0.091, p = 0.0
k rs = 0.451, p = 0.0 rs = 0.45, p = 0.0 rs = 0.39, p = 0.0 rs = 0.083, p = 0.0
p rs = 0.105, p = 0.0 rs = 0.105, p = 0.0 rs = 0.171, p = 0.0 rs = 0.114, p = 0.0

N
on

-l
in
ea
r d rs = 0.798, p = 0.0 rs = 0.794, p = 0.0 rs = 0.734, p = 0.0 rs = −0.154, p = 0.0

m rs = 0.417, p = 0.0 rs = 0.416, p = 0.0 rs = 0.114, p = 0.0 rs = −0.466, p = 0.0
k rs = 0.563, p = 0.0 rs = 0.557, p = 0.0 rs = 0.204, p = 0.0 rs = −0.159, p = 0.0
p rs = 0.113, p = 0.0 rs = 0.108, p = 0.0 rs = 0.142, p = 0.0 rs = 0.189, p = 0.0

P
C
M
C
I+ L
in
ea
r

d rs = 0.977, p = 0.0 rs = 0.976, p = 0.0 rs = 0.721, p = 0.0 rs = −0.719, p = 0.0
m rs = 0.37, p = 0.0 rs = 0.371, p = 0.0 rs = 0.166, p = 0.0 rs = −0.115, p = 0.0
k rs = 0.477, p = 0.0 rs = 0.476, p = 0.0 rs = 0.346, p = 0.0 rs = −0.411, p = 0.0
p rs = 0.125, p = 0.0 rs = 0.124, p = 0.0 rs = 0.184, p = 0.0 rs = −0.237, p = 0.0

N
on

-l
in
ea
r d rs = 0.797, p = 0.0 rs = 0.793, p = 0.0 rs = 0.649, p = 0.0 rs = −0.451, p = 0.0

m rs = 0.422, p = 0.0 rs = 0.423, p = 0.0 rs = 0.064, p = 0.002 rs = −0.457, p = 0.0
k rs = 0.685, p = 0.0 rs = 0.681, p = 0.0 rs = −0.005, p = 0.794 rs = −0.664, p = 0.0
p rs = 0.136, p = 0.0 rs = 0.13, p = 0.0 rs = 0.114, p = 0.0 rs = −0.026, p = 0.198

Table 8: Table of Spearman correlation with dimensionality (d), the number of DAGs in the MEC (m),
the number of edges (k) and the proportion of edges over edges and arcs (p).

SHD FN AP RP

G
S
F

L
in
ea
r

t = 20 µ = 14.947, σ = 9.956 µ = 3.605, σ = 1.395 µ = 0.894, σ = 0.086 µ = 0.618, σ = 0.21
t = 40 µ = 13.273, σ = 8.99 µ = 3.378, σ = 1.365 µ = 0.909, σ = 0.07 µ = 0.691, σ = 0.223
t = 60 µ = 12.234, σ = 8.153 µ = 3.251, σ = 1.291 µ = 0.912, σ = 0.079 µ = 0.699, σ = 0.225
t = 80 µ = 11.617, σ = 7.891 µ = 3.15, σ = 1.303 µ = 0.923, σ = 0.059 µ = 0.719, σ = 0.219
t = 100 µ = 11.288, σ = 7.731 µ = 3.1, σ = 1.295 µ = 0.924, σ = 0.06 µ = 0.716, σ = 0.223

N
on

-l
in
ea
r t = 20 µ = 12.09, σ = 8.618 µ = 3.226, σ = 1.298 µ = 0.91, σ = 0.075 µ = 0.733, σ = 0.233

t = 40 µ = 11.098, σ = 7.966 µ = 3.073, σ = 1.287 µ = 0.919, σ = 0.071 µ = 0.702, σ = 0.243
t = 60 µ = 10.428, σ = 7.478 µ = 2.982, σ = 1.238 µ = 0.919, σ = 0.079 µ = 0.682, σ = 0.313
t = 80 µ = 9.766, σ = 7.18 µ = 2.863, σ = 1.253 µ = 0.929, σ = 0.063 µ = 0.724, σ = 0.303
t = 100 µ = 9.402, σ = 7.104 µ = 2.793, σ = 1.266 µ = 0.932, σ = 0.063 µ = 0.713, σ = 0.312

P
C
M
C
I+

L
in
ea
r

t = 20 µ = 18.89, σ = 12.868 µ = 4.028, σ = 1.634 µ = 0.88, σ = 0.08 µ = 0.222, σ = 0.316
t = 40 µ = 20.932, σ = 15.124 µ = 4.188, σ = 1.842 µ = 0.881, σ = 0.064 µ = 0.249, σ = 0.245
t = 60 µ = 21.211, σ = 15.679 µ = 4.198, σ = 1.895 µ = 0.883, σ = 0.065 µ = 0.252, σ = 0.263
t = 80 µ = 21.184, σ = 16.199 µ = 4.172, σ = 1.943 µ = 0.888, σ = 0.055 µ = 0.242, σ = 0.272
t = 100 µ = 21.243, σ = 16.497 µ = 4.168, σ = 1.967 µ = 0.888, σ = 0.056 µ = 0.24, σ = 0.264

N
on

-l
in
ea
r t = 20 µ = 13.622, σ = 10.245 µ = 3.398, σ = 1.441 µ = 0.904, σ = 0.074 µ = 0.524, σ = 0.421

t = 40 µ = 14.049, σ = 11.564 µ = 3.401, σ = 1.576 µ = 0.907, σ = 0.071 µ = 0.464, σ = 0.377
t = 60 µ = 13.78, σ = 11.813 µ = 3.351, σ = 1.597 µ = 0.909, σ = 0.07 µ = 0.48, σ = 0.355
t = 80 µ = 13.365, σ = 12.042 µ = 3.275, σ = 1.624 µ = 0.913, σ = 0.066 µ = 0.516, σ = 0.346
t = 100 µ = 12.862, σ = 11.88 µ = 3.196, σ = 1.627 µ = 0.916, σ = 0.067 µ = 0.518, σ = 0.336

Table 9: Table of line height statistics per metric score, with rows corresponding to sample sizes.
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SHD FN AP RP

Linear GSF µ = 12.672, σ = 8.185 µ = 3.297, σ = 1.28 µ = 0.912, σ = 0.059 µ = 0.688, σ = 0.122
Linear PCMCI+ µ = 20.692, σ = 14.851 µ = 4.151, σ = 1.816 µ = 0.884, σ = 0.053 µ = 0.257, σ = 0.235
Non-linear GSF µ = 10.557, σ = 7.429 µ = 2.987, σ = 1.23 µ = 0.922, σ = 0.063 µ = 0.711, σ = 0.167
Non-linear PCMCI+ µ = 13.536, σ = 11.121 µ = 3.324, σ = 1.529 µ = 0.91, σ = 0.065 µ = 0.5, σ = 0.24
Optimal µ = 10.166, σ = 7.247 µ = 2.921, σ = 1.228 µ = 0.926, σ = 0.06 µ = 0.819, σ = 0.118

Table 10: Table of line height statistics per metric score, averaged over sample size parameters.

SHD FN AP RP

Linear GSF/Linear PCMCI+ µ = 8.039, σ = 8.134 µ = 0.859, σ = 0.744 µ = 0.03, σ = 0.017 µ = 0.438, σ = 0.237
δKS = 0.3, p = 0.0 δKS = 0.301, p = 0.0 δKS = 0.428, p = 0.0 δKS = 0.765, p = 0.0

Linear GSF/Non-linear GSF µ = 2.22, σ = 2.605 µ = 0.348, σ = 0.4 µ = 0.015, σ = 0.022 µ = 0.114, σ = 0.136
δKS = 0.138, p = 0.0 δKS = 0.136, p = 0.0 δKS = 0.161, p = 0.0 δKS = 0.155, p = 0.0

Non-linear GSF/Non-linear PCMCI+ µ = 3.051, σ = 5.789 µ = 0.35, σ = 0.58 µ = 0.013, σ = 0.018 µ = 0.239, σ = 0.225
δKS = 0.132, p = 0.0 δKS = 0.13, p = 0.0 δKS = 0.156, p = 0.0 δKS = 0.401, p = 0.0

Linear PCMCI+/Non-linear PCMCI+ µ = 7.225, σ = 9.534 µ = 0.853, σ = 0.996 µ = 0.031, σ = 0.029 µ = 0.25, σ = 0.268
δKS = 0.233, p = 0.0 δKS = 0.235, p = 0.0 δKS = 0.378, p = 0.0 δKS = 0.439, p = 0.0

Linear GSF/Optimal µ = 2.583, σ = 2.751 µ = 0.407, σ = 0.412 µ = 0.019, σ = 0.025 µ = 0.146, σ = 0.141
δKS = 0.151, p = 0.0 δKS = 0.152, p = 0.0 δKS = 0.185, p = 0.0 δKS = 0.422, p = 0.0

Linear PCMCI+/Optimal µ = 10.571, σ = 9.634 µ = 1.251, σ = 0.947 µ = 0.046, σ = 0.028 µ = 0.565, σ = 0.243
δKS = 0.373, p = 0.0 δKS = 0.373, p = 0.0 δKS = 0.553, p = 0.0 δKS = 0.856, p = 0.0

Non-linear GSF/Optimal µ = 0.39, σ = 0.599 µ = 0.066, σ = 0.102 µ = 0.005, σ = 0.014 µ = 0.108, σ = 0.167
δKS = 0.025, p = 0.441 δKS = 0.026, p = 0.4 δKS = 0.033, p = 0.148 δKS = 0.242, p = 0.0

Non-linear PCMCI+/Optimal µ = 3.375, σ = 5.787 µ = 0.404, σ = 0.578 µ = 0.017, σ = 0.024 µ = 0.32, σ = 0.222
δKS = 0.147, p = 0.0 δKS = 0.145, p = 0.0 δKS = 0.184, p = 0.0 δKS = 0.598, p = 0.0

Table 11: Table of line distance and KS test statistics, averaged over sample size parameters.

SHD FN AP RP

Linear GSF rs = −0.124, p = 0.0 rs = −0.124, p = 0.0 rs = 0.172, p = 0.0 rs = 0.168, p = 0.0
Linear PCMCI+ rs = 0.022, p = 0.017 rs = 0.022, p = 0.017 rs = −0.003, p = 0.726 rs = 0.172, p = 0.0
Non-linear GSF rs = −0.108, p = 0.0 rs = −0.108, p = 0.0 rs = 0.137, p = 0.0 rs = 0.054, p = 0.0
Non-linear PCMCI+ rs = −0.057, p = 0.0 rs = −0.057, p = 0.0 rs = 0.062, p = 0.0 rs = 0.042, p = 0.0

Table 12: Table of Pearson correlation of metric scores with sample size parameters.

SHD FN AP RP

Linear GSF rs = 0.235, p = 0.0 rs = 0.238, p = 0.0 rs = −0.276, p = 0.0 rs = −0.241, p = 0.0
Linear PCMCI+ rs = 0.115, p = 0.0 rs = 0.118, p = 0.0 rs = −0.296, p = 0.0 rs = 0.259, p = 0.0
Non-linear GSF rs = 0.27, p = 0.0 rs = 0.275, p = 0.0 rs = −0.29, p = 0.0 rs = −0.291, p = 0.0
Non-linear PCMCI+ rs = 0.187, p = 0.0 rs = 0.194, p = 0.0 rs = −0.224, p = 0.0 rs = −0.054, p = 0.008

Table 13: Table of Spearman correlation of metric scores with the proportion of instantaneous causes.

SHD FN AP RP

Linear GSF rs = −0.235, p = 0.0 rs = −0.238, p = 0.0 rs = 0.276, p = 0.0 rs = 0.241, p = 0.0
Linear PCMCI+ rs = −0.115, p = 0.0 rs = −0.118, p = 0.0 rs = 0.296, p = 0.0 rs = −0.259, p = 0.0
Non-linear GSF rs = −0.27, p = 0.0 rs = −0.275, p = 0.0 rs = 0.29, p = 0.0 rs = 0.291, p = 0.0
Non-linear PCMCI+ rs = −0.187, p = 0.0 rs = −0.194, p = 0.0 rs = 0.224, p = 0.0 rs = 0.054, p = 0.008

Table 14: Table of Spearman correlation of metric scores with the proportion of lagged causes.
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