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Introduction

The goal of this document is to study the l-adic cohomology of group varieties over an algebraically
closed field k with char(k) ̸= l. A group variety is a connected variety whose functor of points is a
group functor. Examples include An, abelian varieties such as elliptic curves and linear algebraic
groups (subvarieties of GLn whose functors of points inherit the group law). In particular consider
an exact sequence e→ K → G→ Q→ e of group varieties. We will consider the question how the
cohomology rings H∗

ét(K,Ql) and H∗
ét(Q,Ql) are related to H∗

ét(G,Ql).
Functoriality of l-adic cohomology gives that if f : X → Y is a morphism, there is a Ql-algebra
homomorphism f∗ : H∗

ét(Y,Ql) → H∗
ét(X,Ql). In the case that f : X → X is a self-morphism of

a projective variety with finitely many fixed points one has the famous Groethendieck-Lefschetz
trace formula which gives that the graded trace trX(f) of f∗ equals the number of fixed points
with multiplicity. This does not quite generalize to arbitrary varieties, however by the famous
Weil-conjectures one can count the fixed points of the Frobenius morphism by using compactly
supported cohomology. We will see in Chapter 3 that for an endomorphism σ : G→ G of a group
variety with finitely many fixed points the graded trace of σ∗ relates directly to the fixed point
count of σ. The cohomology ring of a general scheme is quite an abstract object and computing
how the pullback morphism behaves may not be doable. We will see that for G a torus an abelian
variety or a unipotent group variety, there is a functorial isomorphism H∗

ét(G,Ql) ∼= R where R is
a graded ring on which we understand the pullback morphism ‘much better’ (more precisely R is
functorially the exterior algebra on the vector space spanned by the characters, resp. the exterior
algebra on the l-adic Tate module, resp. trivial). We will also consider the question if a similar
result holds for a semisimple group variety.

In Chapter 1 an introduction to algebraic groups is given, which is largely based on Milne’s book
[32]. We give a few proofs and state several results that we will need in the later chapters. The
theory of group varieties is in some sense quite close to the theory of groups as many concepts from
the latter carry over to the former; actions, normal subgroups, quotients, isomorphism theorems...
Some of the most important results in this chapter are certain structure theorems such as the
Chevalley-Barsotti theorem, which states that any subgroup variety G over a perfect field has a
largest normal linear group variety Glin such that the quotient Gab := G/Glin is an abelian variety.
Similarly the linear group variety can then be decomposed further into a unipotent group variety,
a torus and a semisimple group variety. We introduce the anti-affine group variety Gant and give
another important structure theorem due to Rosenlicht [37] stating that over a perfect field k the
multiplication map µ : Gant ×k Glin → G is a quotient map.

In Chapter 2 we will give an introduction to étale cohomology. Most of the material in here
is based on another book of Milne [29]. We begin by introducing the étale site of a scheme X
and sheaves on it. After this we introduce the functors f∗ and f∗ associated to a morphism
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f : X → Y . We then introduce étale cohomology and compactly supported cohomology with
their main properties before moving on to stating several classical results such as Poincaré duality,
the Grothendieck-Lefschetz fixed point formula, the proper base change theorem, cohomological
dimension and finiteness of étale cohomology. We then move on to proving the classical result that
an isogeny f : G → H of group varieties induces an isomorphism f∗ : H∗

ét(H,Ql) → H∗
ét(G,Ql) of

which a proof is sketched in Srinivasan [42]. Finally we give a very brief introduction on the Chow
ring A∗(X) of X based on [22] and we state the existence and properties of the l-adic cycle map
clX : A∗(X)⊗Z Ql → H∗

ét(X,Ql).

Chapter 3 is devoted to describing the sequence (σn)n, where σn is the cardinality of the set of
fixed points of σ◦n for σ : G → G is a surjective endomorphism such that all iterates have finitely
many fixed points. It is largely based on work by Byszewski, Cornelissen and Houben [8]. We state
a deep theorem by Steinberg [44] which says that the Lang-map Lσ : g 7→ g−1σ(g) is surjective
when σ is surjective and fixes finitely many points. Using the surjectivity of the Lang-map combined
with a filtration of G by characteristic subgroups allows us to split up the fixed point count of σ
into counting fixed points of the induced endomorphisms on the pieces in the decomposition of G.

As a result, the authors of [8] were able to find the formula σn = |dn|cnrn|n|snp p−tn|n|
−1
p where

rn, sn, tn define gcd-sequences, i.e. they are sequences that have an = agcd(n,ω) for some ω ∈ Z0.
The part dn is linearly recurrent and comes from certain cohomological traces from the pieces in
the decomposition of G. The question that remained is whether we actually have dn = trG(σ).
The authors of [8] solved this over Fp by using a theorem of Arima [1], which implies that in this
case Gab ×Fp

Glin and G are isogenous and thus have isomorphic cohomology rings. However the
general case remained open. This motivates studying how the l-adic cohomology of Glin and Gab

relate to the l-adic cohomology of G.

In Chapter 4 we work towards proving two of Arima’s theorems ([1], Theorem 1 and Theorem 2).
We introduce the Ext(−,−) bifunctor, which classifies extensions of a commutative algebraic group
B by a commutative algebraic group H up to a certain isomorphism. The methods used by Baer [4]
give that Ext(B,H) is a commutative group. One of Arima’s theorems states if G is an extension
of a linear group variety L by an abelian variety A that L ×k A is isogenous to G if and only if
[G] ∈ Ext(A,L) is of finite order. We show that this implies the second theorem of Arima, which
states that in the case of k = Fp that G is isogenous to A×Fp

L. In the process we show that there

is a natural map Ext(B,H) → H1
ét(B,H) for H the étale sheaf Mor(−, H) on B in the case that

H is smooth. We show that under suitable hypothesis on B,H the image of this homomorphism
equals the primitive subspace of H1

ét(B,H). Later in the chapter we exhibit an explicit example of
a generalized Jacobian Jm, which in our case will be an extension of the multiplicative group Gm

by an elliptic curve E such that Jm and E×kGm are not isogenous. This construction can be made
whenever E(k) has a point of infinite order.

In the first part of Chapter 5 we let k be an algebraically closed field and we consider the exact
sequence e→ Glin

ι→ G
π→ Gab → e. The goal is showing that ι∗ : H∗

ét(G,Ql)→ H∗
ét(Glin,Ql) admits

a section s giving that (s ⊗ π∗) : H∗
ét(Glin,Ql) ⊗Ql

H∗
ét(Gab,Ql) → H∗

ét(G,Ql) is an isomorphism
of graded Ql-algebras. First we consider the case where G is commutative. By comparing the
functors H1

ét(−,Z/lnZ) and Ext(−,Z/lnZ) (done earlier by Miyanishi [33]) and using properties

of Ext from Serre’s book [39] we obtain 0→ H1
ét(Gab,Ql)

π∗
→ H1

ét(G,Ql)
ι∗→ H1

ét(Glin,Ql)→ 0 which
is exact. Since H∗

ét(G,Ql) is a finite dimensional graded-commutative Hopf algebra we can use a
cohomological dimension argument together with a structure theorem on such Hopf algebras by
Hopf [5] to obtain an isomorphism (s ⊗ π∗) : H∗

ét(Glin,Ql) ⊗Ql
H∗

ét(Gab,Ql) → H∗
ét(G,Ql) (also
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see [7]).
In the general case we consider the quotient map µ : Gant ×k Glin → G whose kernel is up to
finite index equal to (Gant)lin. For the quotient Q, the fibration (Gant)lin → Gant ×k Glin → Q
satisfies the conditions needed to use the Leray-Hirsch principle. We note that Q and G are
isogenous and thus that their cohomology is isomorphic. As Gant is commutative we know that
its cohomology has the above tensor product decomposition. Using these facts together with the
fact that (Gant)ab and Gab are isogenous we are able to obtain the desired isomorphism given by
(s⊗ π∗) : H∗

ét(Glin,Ql)⊗Ql
H∗

ét(Gab,Ql) → H∗
ét(G,Ql). As far as we know this result is not stated

anywhere in the literature.

In the second part of Chapter 5 we build upon the result of obtaining the previous isomorphism
by showing that any exact sequence of group varieties e→ K

ι→ G
π→ Q→ e over an algebraically

closed field has that ι∗ admits a section s such that (s⊗π∗) : H∗
ét(K,Ql)⊗Ql

H∗
ét(Q,Ql)→ H∗

ét(G,Ql)
is an isomorphism of graded Ql-algebras. For doing this the notion of an almost exact sequence of
group varieties is introduced, which relaxes the conditions ker(ι) = ker(π)/Im(ι) = e to both being
finite group schemes. This concept is introduced because for instance e→ Klin → Glin → Qlin → e
is almost exact when e→ K → G→ Q→ e is exact. We show that the cohomology of the almost
exact sequences that we consider decomposes as above. We then conclude by the above result on
e → Glin

ι→ G
π→ Gab → e and by certain other exact sequences splitting up to isogeny that we

indeed have such an isomorphism (s⊗ π∗) : H∗
ét(K,Ql)⊗Ql

H∗
ét(Q,Ql)→ H∗

ét(G,Ql).

Chapter 6 is devoted to proving the following result: Let G be a semisimple algebraic group
and let σ : G → G be a surjective endomorphism with finitely many fixed points and let T be
a σ-stable maximal torus of G. Let S := Sym(X(T ) ⊗Z Ql) on which the Weyl group W acts
linearly and denote by SW+ the invariants of positive degree and denote J := SW+ /(SW+ )2. The

statement is that there is a functorial isomorphism
∗∧
J[×2 − 1] ∼= H∗

ét(G,Ql), where [×2 − 1]

means that the degrees are doubled and then lowered by 1 and where functorial means that the
pullback morphisms σ∗ on both sides are respected by the isomorphism. Note that the existence of
an isomorphism follows from work done on Lie groups by Borel [5] together with G being defined
over Spec(Z) with a comparison theorem on l-adic cohomology by Friedlander [21]. However this
approach unfortunately does not give the desired functoriality. Altough the semisimple group
variety G lifts to C, the endomorphism σ : G→ G need not lift.
We let (B, T ) be a σ-stable Borel pair and begin by describing the cohomology of G/B. We use
the cellular decomposition of G/B to obtain that clG/B : A∗(G/B) ⊗Z Ql → H∗

ét(G/B,Ql) is an
isomorphism. By a result of Demazure [14] on A∗(G/B)⊗ZQl we then obtain all the dimensions of
Hrét(G/B,Ql). Using that G/T → G/B is a fibration over an affine space we obtain an isomorphism
between H∗

ét(G/T,Ql) and H∗
ét(G/B,Ql) given by the pullback. By applying the Leray spectral

sequence to the morphism π : G → G/T (also done for Lie groups by Leray [28]) we obtain, as
the sheaves Rqπ∗(Z/lnZ) are equal to the constant sheaf Hqét(T,Z/l

nZ), a homomorphism of rings

d0,12 : Sym(H1
ét(T,Ql)) → H∗

ét(G/T,Ql). We show after the identification S = Sym(H1
ét(T,Ql))

is made that ker(d0,12 ) = SW+ · S and that d0,12 is surjective. We also consider the E2-page as

a complex with terms E∗,q
2 =

q∧
(X(T ) ⊗Z Ql)

⊗
Ql

S/(SW+ · S) and we show the existence of a

homomorphism J→ h1(E
∗,•
2 ) = E∗,1

3 that extends to a graded Ql-algebra isomorphism

∗∧
J→ E∗,∗

3 .

After showing that this implies that the spectral sequence degenerates at the E3-page, we obtain
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a Ql-algebra isomorphism

∗∧
J[×2 − 1] → H∗

ét(G,Ql) that has the crucial property for us, namely

that it commutes with pulling back via σ∗. In particular we deduce from the results in Chapter
5 and Chapter 6 that the term dn from Chapter 3 that was defined by the authors in [8] equals
trG(σ

n).
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Chapter 1

Algebraic groups

In this chapter we introduce algebraic groups over a general field k. We state a number of classical
theorems such as the Chevalley-Barsotti theorem and the existence of largest normal subgroup
varieties with certain properties. A good reference for the material covered in this chapter is [32].
Throughout this chapter k will be an arbitrary field.

Definition 1.1. An algebraic group is a scheme G of finite type over k with k-morphisms
µ : G×k G→ G, inv : G→ G and e : Spec(k)→ G such that the following diagrams commute:

G×k G×k G G×k G

G×k G G

Id×µ

µ×Id

µ

µ

Spec(k)×k G G×k G G×k Spec(k)

G

e×Id

µ

Id×e

G G×k G G

Spec(k) G Spec(k)

(inv,Id)

µ

(Id,inv)

e e

Remark 1.2. Let k be a field and let G be an algebraic scheme over k. Then G is an algebraic
group if and only if Homk(Spec(−), G) : k-Alg → Set factors through the category of groups via
the forgetful functor Grp→ Set. This follows by applying the Yoneda Lemma.

Note that an algebraic group need not be connected or geometrically reduced and hence this is
not assumed to be the case unless explicitly stated. Note that for any field k′ containing k, we can
base-change G to Gk′ to obtain an algebraic group over k′.

Definition 1.3. A group variety G over k is a connected geometrically reduced algebraic group
over k.

That we only require connected and not irreducible in the definition has to do with the following.

Lemma 1.4. ([32], Summary 1.3.6) For G an algebraic group the following are equivalent:

• G is connected.

9



10 CHAPTER 1. ALGEBRAIC GROUPS

• G is geometrically irreducible.

We also have that group varieties are smooth.

Proposition 1.5. A geometrically reduced algebraic group G is smooth.

Proof. We base-change the algebraic group G over k to one Gk̄ over k̄ whose underlying scheme
is a variety by assumption. It is a classical fact ([23], Theorem I.5.3) that every variety over an
algebraically closed field has a smooth point x ∈ Gk̄(k̄). Now for any y ∈ Gk̄(k̄), the left-translation
map τxy−1 : Gk̄ → Gk̄ is an isomorphism of schemes and hence an isomorphism OGk̄,y → OGk̄,x and
hence we conclude that y is also a smooth point of Gk̄.

Now we define homomorphisms.

Definition 1.6. A homomorphism of algebraic groups over k is a k-morphism of schemes φ : G→
H such that the maps φR : G(R)→ H(R) are group homomorphisms for all R/k.

There is an equivalent definition involving diagrams as in the definition of an algebraic group.

Remark 1.7. By checking the axioms one verifies that there is a category of algebraic groups whose
objects are algebraic groups and whose morphisms are homomorphisms.

Definition 1.8. Let G be an algebraic group over k. An algebraic subgroup H of G is a subscheme
H of G such that µ, inv, e restrict to H, i.e. H inherits the structure of an algebraic group by G.

We introduce some examples of algebraic subgroups.

Definition 1.9. Denote the component of G that contains e by G◦. It is called the identity
component.

Lemma 1.10. The connected component of G that contains e is an algebraic subgroup of G. When k
is perfect the reduced subscheme Gred is an algebraic subgroup of G.

We have the following lemma that says that algebraic subgroups are closed.

Lemma 1.11. Let G be an algebraic group over k. An algebraic subgroup H of G is in particular
a closed subscheme of G.

The following special cases of homomorphisms are important to us.

Definition 1.12. A homomorphism φ : G→ H is called an embedding if φ is a closed immmersion.
It is called a quotient map if it is faithfully flat.

Just like in group theory there is the notion of normal subgroup.

Definition 1.13. Let H,N be algebraic subgroups of G. Say that H normalizes N if H(R)
normalizes N(R) inside G(R) for all R/k. In particular, say that N is a normal algebraic subgroup
of G if G normalizes N .
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Definition 1.14. A flat sheaf is a covariant functor F : {finitely generated k-algebras} → Grp
such that:

1. Whenever ι : R ↪→ S is faithfully flat the sequence F (R)→ F (S) ⇒ F (S ⊗R S) is exact, i.e.
the elements in F (S) that are mapped to the same element under F (ι⊗ 1) and F (1⊗ ι) are
precisely the elements that come from F (R).

2. The projection maps induce an isomorphism F (R1 × ....×Rn) ∼= F (R1)× ...× F (Rn).

An algebraic group actually defines such a flat sheaf.

Lemma 1.15 ([32], Lemma 5.9). The functor G := Homk(Spec(−), G) is a flat sheaf.

This is quite easy to show when G is affine and by covering G with affine opens subschemes the
general case follows.

Remark 1.16. By the Yoneda-lemma we have that an algebraic group G is completely determined
by its flat sheaf G. Actually, giving a flat sheaf as we defined is the same as giving a sheaf for the
‘flat topology’ on Spec(k). For a covariant functor F : {finitely generated k-algebras} → Grp there
is a flat sheaf aF called the sheafification of F with a morphism F → aF that is universal among
morphisms from F to a flat sheaf ([32], Prop 5.68). It is unique up to unique isomorphism.

We use the sheafification for the following.

Definition 1.17. Let φ : G→ H be a homomorphism of algebraic groups. Define the kernel sheaf
by ker : R 7→ ker(φR). Define the image sheaf Im by setting it to be the sheafification of the
presheaf R 7→ Im(φR).

Remark 1.18. Both of the above flat sheaves are representable by algebraic groups called the kernel
of φ and the image of φ respectively. They are denoted by ker(φ) and φ(G). It is easy to see that

the kernel sheaf is represented by the following fibre product:

G H

ker(φ) Spec(k)

φ

⌝
e

(which also shows that it is in fact a flat sheaf). That the image sheaf is representable is much
harder to show. It is done in Appendix B of [32].

Definition 1.19. A sequence H
f→ G

g→ Q of algebraic groups is exact if Im(f) = ker(g).

Remark 1.20. It follows from the definition of the kernel and image that a sequence H → G→ Q
of algebraic groups is exact if and only if the sequence of flat sheaves on Spec(k), H̃ → G̃ → Q̃,
is exact. Note that this is in general not the same as H(R) → G(R) → Q(R) being exact for
all R. For a counterexample, let k = Q and consider the n’th power map Gm → Gm. Then
Q× → Q× x 7→ xn is not surjective, but for all r ∈ R× one has the faithfully flat ring map
R → R[X]/(Xn − r) and r is in the image of (R[X]/(Xn − r))× → (R[X]/(Xn − r))×, hence

G̃m → G̃m is a surjective morphism of sheaves.

Before introducing a fundamental exact sequence we make a definition.
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Definition 1.21. A k-scheme X is étale if X = Spec(R) is finite over k and R⊗kR ∼=
n∏
i=1

ki where

ki/k is a finite separable field extension.

The following is a basic example of an exact sequence called the ‘connected-étale sequence’

Lemma 1.22 ([32], Prop 2.3.7). For G an algebraic group there is an algebraic group π0(G) that
is étale such that e→ G◦ → G→ π0(G)→ e is exact.

We also have the notion of an action of a group variety.

Definition 1.23. An action of an algebraic groupG on a schemeX/k is a k-morphism f : G×kX →
X such that fR : G(R)×X(R)→ X(R) is an action for all R/k.

As earlier mentioned, showing that quotients exist is nontrivial.

Proposition 1.24 (Existence of quotients, [32] Appendix B). Let G be an algebraic group and let
H be an algebraic subgroup of G.

• There exists a scheme X denoted G/H with an action G ×k X → X and a point o ∈ X(k)
such that the orbit map G → X g 7→ go is faithfully flat and such that the flat sheaf
Hom(Spec(−), X) is the sheafification of the assignment R 7→ G(R)/H(R).

• If G acts on another scheme Y and φ : G → Y is G-equivariant such that φ is constant on
H, then φ factors uniquely via G/H.

• In the case that H = N is a normal subgroup of G we have that G/N inherits the structure
of an algebraic group by G and that π : G→ G/N has kernel N .

• For k′ a separably closed field and G reduced with algebraic subgroup H we have an identifi-
cation (G/H)(k′) = G(k′)/H(k′).

We have the following variant of the first isomorphism theorem.

Proposition 1.25. Let φ : G → H be a homomorhism of algebraic groups. Then φ factors as a
quotient map followed by an embedding φ : G→ G/ ker(φ)

∼→ φ(G) ↪→ H.

One can form the algebraic subgroup generated by two subgroups of an algebraic group.

Definition 1.26. Let G be an algebraic group and let H,N be algebraic subgroups of G. Then
H · N is the algebraic subgroup of G whose flat sheaf is the sheafification of R 7→ H(R) · N(R)
(where by N(R) ·H(R) we mean the smallest subgroup of G(R) containing both N(R) and H(R)).

The following is a variant of the second isomorphism theorem.

Proposition 1.27. Let N,H be algebraic subgroups of G such that H normalizes N . There is a

canonical isomorphism
H ·N
N

→ H

H ∩N
.
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The above isomorphism can be checked on the level of R-points, as the corresponding sheaves
are both sheafifications of the same functor. We now introduce some types of algebraic groups that
are the main building blocks for algebraic groups.

Definition 1.28. Let n > 0. Define the general linear group GLn to be the algebraic group over
k that has functor of points GLn(R) = {M ∈ Mn×n(R) | det(M) ∈ R×}.

It is easy to see that it is represented by Spec(k[{Xij}1≤i,j≤n]det), where det = det[(Xij)i,j ].

Definition 1.29. A homomorphism φ : G → GLn is called a representation. An algebraic group
G is linear if it admits a representation that is an embedding.

Some examples of affine algebraic groups are the following.

Example 1.30. The scheme Ar is an algebraic group as its functor of points is R 7→ Rn, which is
a group functor. Denote the corresponding group scheme by Gr

a. Such an algebraic group is called
a vector group.

Example 1.31. For Gm := Spec(k[X]X) the scheme Gn
m is also an algebraic group as its functor

of points is given by R 7→ (R×)n. Such an algebraic group is called a (split) torus.

Notice that a linear algebraic group is affine. It turns out that the converse is also true.

Theorem 1.32 ([32] Theorem 4.9). Let G be an affine algebraic group. There exists n > 0 and an
embedding ι : G ↪→ GLn.

When one has an affine scheme, the ring of global sections contains all the necessary information
about it. The same is true for a linear algebraic group and in this case the global sections are a
commutative Hopf algebra.

Definition 1.33. Let k be a field. A k-Hopf algebra is a k-algebra (not necessarily commutative)
H equipped with k algebra morphisms comultiplication ∇ : H → H ⊗k H, the antipode ι : H → H
and ϵ : H→ k such that the following diagrams commute:

H H⊗k H H

k H k

(ι,Id) (Id,ι)

∇
ϵϵ

H⊗k H⊗k H H⊗k H

H⊗k H H

∇⊗Id

Id⊗∇ ∇

∇

H⊗k k H⊗k H k ⊗k H

H

(Id,ϵ)(ϵ,Id)

∼∼ ∇

We have the following very natural example.

Example 1.34. For G an affine algebraic group over k we have a commutative Hopf-algebra O(G),
where ∇ is induced by the multiplication of G, ι by the inversion map and ϵ by the neutral point

e : Spec(k) → G. Specifically in the case GLn = Spec(k[{Xij}1≤i,j≤n,
1

det
] the comultiplication

is given by Xij 7→
n∑
l=1

Xil ⊗ Xlj and the inversion map by Xij 7→
1

det
· (−1)i+j det(Mji), where

det(Mji) is the (j, i) minor of the matrix (Xml)m,l. The map ϵ is given by Xij 7→ δji ∈ k.
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Now we define a homomorphism of Hopf algebras.

Definition 1.35. A homomorphism of k-Hopf algebras φ : H→ H′ is a k-algebra homomorphism
that satisfies (φ⊗ φ) ◦ ∇ = ∇′ ◦ φ and ϵ = ϵ′ ◦ φ.

We have the following proposition on affine algebraic groups that can be checked by reversing
all arrows and using the (contravariant) equivalence of categories between affine k-schemes and
commutative k-algebras.

Proposition 1.36. There is a contravariant equivalence of categories:
{Finite type commutative k-Hopf algebras} → {Affine algebraic groups over k}

We have the following classes of linear algebraic groups.

Definition 1.37. A linear algebraic group G is called solvable if it admits a filtration of normal
algebraic subgroups e = G0 ⊴ G1 ⊴ ... ⊴ Gn = G such that all quotients Gi/Gi+1 are commutative.

We give several examples below.

Example 1.38. Consider the algebraic group of upper triangular matrices Tn defined by:

Tn(R) =



a11 a12 . . . a1n
0 a22 . . . a2n
... 0

. . .
...

0 . . . 0 ann


 ≤ GLn(R)

Example 1.39. Consider the algebraic group of unipotent matrices Un, which is defined by:

Un(R) =



1 a12 . . . a1n
0 1 . . . a2n
... 0

. . .
...

0 . . . 0 1


 ≤ GLn(R)

Example 1.40. Consider the algebraic group of diagonal matrices Dn, which is defined by:

Dn(R) =



a11 0 . . . 0
0 a22 . . . 0
... 0

. . .
...

0 . . . 0 ann


 ≤ GLn(R)

Remark 1.41. It follows that Un is a solvable subgroup by considering its composition series with
successive quotients isomorphic to Ga given in ([32], p.137). It also follows that Dn is solvable as
it has a composition series with successive quotients isomorphic to Gm.
It follows that e→ Un → Tn → Dn → 0 is exact and that hence Tn is solvable.

The group variety Un can be used to make the following definition.

Definition 1.42. A linear algebraic group G is unipotent if it admits an embedding G ↪→ Un.
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We also have the following class of algebraic groups, which are in some sense opposite to linear
algebraic groups.

Definition 1.43. An algebraic group G over k is anti-affine if it has OG(G) = k.

A basic example of such a type of algebraic group is the following.

Definition 1.44. A group variety G over k is an abelian variety if it is complete.

We have the following basic examples.

Example 1.45. A smooth geometrically irreducible cubic curve E in P2
k with a point O ∈ E(k)

gives an example of a one dimensional abelian variety (see [40]), called an elliptic curve.
Any abelian variety is an example of an anti-affine group variety. For an example of an anti-affine
group variety that is not an abelian variety, consider an extension e→ Gm → G→ E → e, where
E is an elliptic curve. Clearly no such G is an abelian variety as it contains a closed affine subgroup
of positive dimension. Over an infinite field k there exist such extensions such that G contains
no abelian variety (we will see this in Chapter 4). This implies that by Theorem 1.60, we must
necessarily have Gant = G as otherwise Gant is isogenous (see Definition 1.57) to E and Gant would
be an abelian variety.

We now state a lemma about when an algebraic group has a largest smooth normal connected
subgroup of a certain type.

Lemma 1.46 ([32], Section 6g). Let P be a property of algebraic groups such that: Any extension
of an algebraic group with P by an algebraic groups with P has P , any quotient of an algebraic
group with P has P and e has P . Then for any algebraic group G there exists a largest normal
algebraic subgroup N ⊂ G having P . The quotient G/N has no such normal subgroup. If G is
smooth, and k is perfect then G has a largest normal subgroup variety with property P .

The hypothesis that k is perfect above is such that one can find the largest normal connected N
with P and then take the underlying reduced subscheme Nred.

Remark 1.47 ([32], p.61, p.135). Properties P satisfying the hypothesis of 1.46 include:

P ∈ {linear, complete, anti affine, solvable,unipotent}

The references given are for P being linear and unipotent respectively. For P being anti-affine and
solvable it follows from the definitions. For P being complete we note that if G is an extension of
N by Q, we may base-change to k̄ and then apply ([32], Prop. 8.25) stating that Gk̄ is proper over
k̄ variety if and only if it has no affine algebraic subgroup of positive dimension. This holds as Nk̄

and Qk̄ are both complete. Now by faithfully flat descent and since Spec(k̄)→ Spec(k) is faithfully
flat we obtain that G is proper over k.

Definition 1.48. For G an algebraic group we denote:

• The largest linear normal group variety of G by Glin.

• The quotient G/Glin by Gab.
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• The largest anti-affine normal group variety of G by Gant.

In the case that G is linear, denote:

• The largest normal solvable group variety of G by R(G), called the radical.

• The largest normal unipotent group variety of G by Ru(G), called the unipotent radical.

Example 1.49. Let G = GLn for n ≥ 2 over an algebraically closed field k and consider the normal
diagonal torus Gm ⊴ GLn. The quotient is PSLn given by PSLn(R) = GLn(R)/R

× (as can be seen
by using that the flat cohomology group H1

flat(k,Gm) vanishes, see [32] p.111). It is known that
the group PSLn(k) is simple for n ≥ 2 and hence Gm is in fact the largest proper normal subgroup
variety of GLn, hence R(GLn) = Gm.

The following justifies the notation Gab.

Theorem 1.50 (Chevalley-Barsotti, [32] Theorem 8.27). Let G be a group variety over a perfect
field k. Then G has a largest linear normal subgroup variety Glin such that G/Glin is an abelian
variety.

In [32] (Theorem 8.27) it is shown that when k is perfect G containing no normal linear subgroup
variety is equivalent to G being an abelian variety. Then the above theorem follows directly from
Lemma 1.46. Combining the Chevalley-Barsotti theorem with the fact that an abelian variety is
projective (see [30] Theorem 6.4) is used to show the following proposition.

Proposition 1.51 ([32] Theorem 8.45, Homogeneous spaces are quasi-projective). Let X be a
separated scheme over k on which an algebraic group G acts such that G×k X → X ×k X
(g, x) 7→ (gx, x) is faithfully flat. Then X is quasi-projective.

In particular any algebraic group is quasi-projective, which follows from the case X = G above.
The anti-affine algebraic group Gant also has some nice properties.

Proposition 1.52 ([32], Cor 8.14 and Prop 8.37). The algebraic group Gant is connected, smooth
and contained in the centre of G.

For checking that Gant is smooth and connected k can be assumed to be algebraically closed
and in this case the quotient Gant/(Gant)

◦
red is finite, hence affine and hence trivial. For checking

that it is central, note that G/Z(G) is affine since G/Z(G) acts faithfully on G by conjugation with
fixed point e, (see Prop 8.9 in [32]).

Now we define other types of linear algebraic groups.

Definition 1.53. A linear algebraic group G is called reductive if Ru(Gk̄) = e and semisimple if
R(Gk̄) = e.

Notice that a semisimple algebraic group is reductive. The following gives an example of a
semisimple algebraic group.
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Definition 1.54. The derived group D(G) of G is the intersection of all normal N ⊴ G such that
G/N is commutative.

It is a fully characteristic subgroup of G (See [32], p.129). In some cases we can say something
about the normal subgroups of algebraic groups with a certain property.

Lemma 1.55. Let G be a linear algebraic group. Then any algebraic subgroup of G is also linear.
If G is solvable resp. unipotent then every algebraic subgroup of G is solvable resp. unipotent.

The unipotent case follows by definition. The solvable case follows from the fact that if one
has that e = G0 ⊴ ... ⊴ G is a subnormal series with commutative quotients and H ≤ G a normal
algebraic subgroup that e = G0 ∩ N ⊴ ... ⊴ N is a subnormal series for N with commutative
quotients.

Definition 1.56. An algebraic group G is almost simple if it is non-commutative and it contains
no normal algebraic subgroup of positive dimension.

We also make the following definition.

Definition 1.57. A homomorphism φ : G→ H is called an isogeny if ker(φ) is finite and H/φ(G)
is finite. Say that G,H are isogenous if there exists G = G0 − ... − Gn = H where − means an
isogeny going in either direction.

Remark 1.58. If H is a group variety over a perfect field, then an isogeny is a quotient map with
finite kernel. Such a morphism is a finite morphism and thus it has a degree.

We now have a lemma for quotients of algebraic groups with certain properties.

Lemma 1.59. Let G/k̄ be a group variety with property P ∈ {complete, reductive, semisimple, solvable}.
Then any quotient of G has P .

Proof. In the solvable case: Pick a filtration of G with commutative quotients, then the images
give a filtration of H with commutative quotients.
For the complete case: The image of a connected complete variety is a connected complete variety.
An algebraic group G is semisimple if and only if for G1, ...Gr its minimal almost-simple normal
subgroup varieties, the multiplication map G1 × ... × Gr → G is an isogeny ([24], p.167). The
quotient of an almost-simple algebraic group is almost-simple as it is either {e} or a quotient by a
finite group scheme. We get that multiplication π(G1)× ...×π(Gr)→ π(G) is an isogeny since the
π(Gi) are almost-simple, hence their intersection is finite, hence π(G) is an almost direct product
of almost-simple algebraic subgroups, thus π(G) is semisimple.
A group variety is reductive if and only if (Proposition 21.60 [32]) it is an almost direct product of
a torus with a semisimple algebraic group. In fact the multiplication map R(G)×Gder → G is an
isogeny. A quotient map π : G→ H gives that the multiplication map π(R(G))× π(Gder)→ H is
surjective. A quotient of a solvable algebraic group is solvable and we have seen that the quotient
of a semisimple group variety is semisimple. Hence π(R(G)) is a torus and π(Gder) is semisimple
respectively. The kernel of the multiplication map π(Gder) × π(R(G)) → H is isomorphic to the
intersection π(Gder)∩π(R(G)), which is necessarily finite since it is solvable and semisimple. Hence
H is reductive as it is the almost direct product of a torus and a semisimple group variety.
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The following decomposition theorem is by Rosenlicht.

Theorem 1.60 (Corollary 5 [37]). Let G be a group variety over a perfect field. The multiplication
map µ : Gant ×k Glin → G is a surjective quotient map.

Proof. That µ is a homomorphism follows from Gant ⊂ Z(G). Consider the image Gant ·Glin ⊂ G
and the quotient Q := G/(Gant ·Glin). There are quotient maps Gab → Q and Gaff → Q. Hence Q
is both affine and complete, hence finite. Since G is a group variety it has no nontrivial algebraic
subgroup of finite index, hence Gant ·Glin = G and hence µ is surjective.

The following lemma gives us that in some cases there are induced maps between the largest
subgroup varieties of the above type.

Lemma 1.61. Let G be an algebraic group and denote by G∗ the largest normal subgroup variety
with some property P ∈ {linear,unipotent, solvable} (the properties unipotent and solvable are
only considered when G is linear). Let φ : G → H be a homomorphism that is either a normal
embdedding or a quotient map. Then φ(G∗) is normal in H and φ induces a homomorphism
G∗ → H∗.

Proof. It suffices to show that φ(G∗) is normal in H since it is a group variety (as G∗ is a group
variety) with property P , thus contained in H∗ if it is normal. If φ is a quotient map, then because
G∗ is normal in G, φ(G∗) is normal in φ(G) = H. If φ is a normal embedding, G is a normal
subgroup of H. Let γ be any automorphism of H restricting to an automorphism on G (such as
conjugation by an element of H). Then γ(G∗) ⊂ γ(G) = G is a normal group variety with property
P and it follows that it equals G∗.

In the following proposition we keep the notation of Lemma 1.61. It is almost identical to the
proof of (Lemma 4.7 [6]). Again the subscript ∗ will be put under G to denote the largest normal
subgroup variety of G with property P ∈ {linear,unipotent, solvable}.

Proposition 1.62. Let e → K
ι→ G

π→ Q → e be an exact sequence of algebraic groups over
an algebraically closed field k. Then there is a commuting diagram with exact rows and with q an
isogeny:

e G∗ ∩K G∗ Q∗ e

e K∗ G∗ H e

Id q

Proof. By Lemma 1.61 we get that there is an induced sequence e → K∗ → G∗ → Q∗ → e which
need not be exact. The hardest part is showing that the homomorphism G∗ → Q∗ is surjective. We
start with showing this. The same lemma gives us a sequence e → K/K∗ → G/G∗ → Q/Q∗ → e,

which is also not necessarily exact. Note that there is a commuting square:

G Q

G/G∗ Q/Q∗
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As G→ Q and Q→ Q/Q∗ are both quotient maps, so is G/G∗ → Q/Q∗.

We now compute ker(K/K∗ → G/G∗). This is equal to
G∗ ∩K
K∗

of which we claim that it is finite.

Since the field k is perfect we have the algebraic subgroup (G∗ ∩K)◦red, which is normal in K as
it is characteristic in G∗ ∩ K and G∗ ∩ K is normal in K. Since (G∗ ∩ K) is also normal in G∗,
so is (G∗ ∩K)◦red, hence by Lemma 1.55 we obtain that (G∗ ∩K)◦red has property P . Thus we get
(G∗ ∩K)◦red ⊂ K∗. The other inclusion also holds as K∗ is characteristic in K and K is normal in
G, thus K∗ is normal in G and has property P , thus K∗ ⊂ G∗. So we get K∗ = (G∗ ∩K)◦red, which
is of finite index in G∗ ∩K since the dimensions are the same.

We now show that
ker(G/G∗ → Q/Q∗)

Im(K/K∗ → G/G∗)
is finite. The top algebraic group equals

π−1(Q∗)

G∗
. The

one on the bottom equals
K ·G∗
G∗

, hence
ker(G/G∗ → Q/Q∗)

Im(K/K∗ → G/G∗)
∼=
π−1(Q∗)

K ·G∗
. We have an isomorphism

π−1(Q∗)/K ∼= Q∗, which has property P . Hence as
π−1(Q∗)

K ·G∗
is a quotient ofQ∗ it has property P . It

is also a quotient of
π−1(Q∗)
G∗

. This is a normal algebraic subgroup of G/G∗, which has the ‘opposite

property’ of P , i.e. it is either complete, reductive or semisimple. A normal algebraic subgroup
also has this ’opposite property’. Quotients also have this ’opposite property’ by Lemma 1.59. So

we see that as
π−1(Q∗)

K ·G∗
both has the property P as well as the opposite property, that it is finite.

From these computations we obtain that dim(G/G∗) = dim(Q/Q∗) + dim(K/K∗). We also have
that dim(π(G∗)) = dim(G∗) − dim(ker(π|G∗)) = dim(G∗) − dim(G∗ ∩ K) = dim(G∗) − dim(K∗)
since we have already seen that K∗ is a subgroup of finite index in G∗∩K. The right hand side can
be rewritten as dim(G)−dim(G/G∗)−dim(K)+dim(K/K∗), which equals dim(Q)−dim(Q/Q∗) =
dim(Q∗). Hence since π(G∗) ⊂ Q∗ is a closed subvariety of the same dimension it is the whole of
Q∗. This shows the exactness of the top sequence in the proposition. That the bottom sequence is
exact follows from the fact that K∗ has finite index in G∗ ∩K.

Remark 1.63. It follows from the above proof that the algebraic group π−1(Q∗) actually equals
G∗ · K. Since G∗ · K is of finite index in π−1(Q∗) it suffices to show that π−1(Q∗) is a group
variety. Connectedness follows from the exact sequence π0(K) → π0(π

−1(Q∗)) → π0(Q∗) → e
(exercise 5-9 [32]) and smoothness follows from the fact that ker(π) is smooth if and only if π is
smooth (III.10.5 [23]) and that the base-change of π to π|π−1(Q∗) : π

−1(Q∗) → Q∗ is smooth as π

is smooth, thus π−1(Q∗) → Q∗ → Spec(k) is smooth since Q∗ is smooth and smoothness is stable
under composition.
However it does not always hold that K ∩G∗ = K∗ although K∗ is an algebraic subgroup of finite
index. For a counterexample, take G = GLn for n ≥ 2, K = SLn and G∗ = Gm = R(GLn). Then
G∗ ∩ K = µn, which is not a group variety, however K∗ = {e} ⊂ SLn. So G∗ ∩ K need not be
reduced nor connected.

We now begin with introducing Borel subgroups and maximal tori, which are especially useful
to study reductive group varieties.

Definition 1.64. Let G be a linear algebraic group over a field k. A Borel subgroup of G is a
maximal solvable subgroup of G.

We have the following definition that we will use frequently.
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Definition 1.65. Let G be a linear algebraic group over k. A maximal torus is a subtorus T of G
that is not properly contained in any other subtorus of G.

Example 1.66. For G = GLn over k = k we have that Tn is a Borel subgroup (Lie-Kolchin
theorem 16.30 [32] and Proposition 16.2 [32]) and that Dn is a maximal torus.

Note that a torus is solvable, hence every maximal torus T has T ⊂ B for B some Borel
subgroup of G. We have the following structure theorem on Borel subgroups and maximal tori.

Proposition 1.67 (Theorem 17.9.(b) [32] and Theorem 17.10 [32]). Let G be a linear group variety
over an algebraically closed field k. Let B be a Borel subgroup of G and let T be a maximal torus
of G. The Borel subgroups of G are precisely {gBg−1 | g ∈ G(k)} and the maximal tori of G are
precisely {gTg−1 | g ∈ G(k)}.

We now introduce the Weyl group of a reductive group variety.

Definition 1.68. Let G be a reductive group variety over a perfect field k and let T be a maximal
torus. Define the Weyl group with respect to T by W (G,T ) := NG(T )/T .

The Weyl group acts on the maximal torus T by conjugation.

Lemma 1.69 (Prop 21.1 [32]). The Weyl group W (G,T ) is a finite étale group scheme.

This implies that we can think of W as just being a finite group. By Proposition 1.67 it follows
that over an algebraically closed field W (G,T ) does not depend on T as an abstract group, so just
write W =W (G,T ) in this case

Example 1.70. Consider G = GLn and the maximal torus T = Dn over an algebraically closed
field. Consider the equation (aij) · (dij) = (eij) · (aij) for (dij), (eij) ∈ Dn(k). Then notice that
comparing the relations from the first column of the resulting matrix gives that d11 = ei1i1 for some
i1. Continuing, it follows that there is σ ∈ Sn such that bii = aσ(i)σ(i) for all 1 ≤ i ≤ n. So this
gives W ≤ Sn. Any transposition between entries (i, i + 1) can be realized by conjugating with a

matrix of the form:



1 . . . . . . 0
...

. . . . . .
...

...

(
0 1
−1 0

)
. . .

...

... . . .
. . .

...
0 . . . . . . 1


Hence we conclude that the Weyl group of GLn is precisely Sn.

We make the following definition.

Definition 1.71. Let G be an algebraic group. A character of G is a homomorphism G → Gm.
Denote the character group of G by X(G).

This is especially interesting for a split torus.

Lemma 1.72. Let T ∼= Gn
m be a split torus, then X(T ) ∼= Zn.
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The proof is done by observing that X(T ) has a basis consisting of the projections to Gm. Note
that as the Weyl group acts on T , it also acts on X(T ).

Definition 1.73. Let G be a reductive algebraic group over k = k̄ and let T be a maximal torus.
Define S := Sym(X(T )⊗ZQl) for l ̸= char(k) prime. Then the Weyl group invariants of G are SW .

We can easily compute this in the previously mentioned case.

Example 1.74. Let G = GLn and T = Dn, W = Sn. It follows that S ∼= Ql[X1, ..., Xn] and
that W acts by permuting the variables. Hence we obtain SW = Ql[e1, ..., en], where the ei are

the elementary symmetric polynomials ei =
∑

i1+...+in=i

Xi1
1 · ... ·X

in
n . That SW is a polynomial ring

follows from the Chevalley-Shephard-Todd theorem [10].

To finish the chapter we state some general results about isogenies that we will use later.

Definition 1.75. We say that an isogeny is separable if ker(φ) is an étale group scheme. Say that
φ is inseparable if this is not the case and that it is purely inseparable if ker(φ) is connected.

Lemma 1.76. An isogeny φ : G→ H factors as φ = ϕ◦ψ, where ϕ : Q→ H is a separable isogeny
and ψ : G→ H is a purely inseparable isogeny.

Proof. Let K = ker(φ)◦. Then φ factors via the quotient map G→ G/K. Since ker(G/K → H) is
isomorphic to ker(φ)/K, which is an étale group scheme and since K is connected, this gives the
factorization.

For G,H commutative group varieties we can in some cases reverse the isogeny.

Lemma 1.77. Let φ : G → H be an isogeny between commutative group varieties such that
[deg(φ)] : H → H is an isogeny. An isogeny ψ : H → G exists such that φ ◦ ψ = ψ ◦ φ = [deg(φ)].

The proof of the lemma follows from the fact that a commutative finite group scheme G is killed
by multiplication by its order dimk(O(G)) (Corollary 2.2 [38]).



Chapter 2

Étale cohomology

In this chapter we introduce étale cohomology, which is related to ordinary sheaf cohomology,
though with ‘opens’ in the étale topology. We will state some results without a proof in this chapter
to not get too far astray from the purpose of this document. For a more thorough introduction to
this topic we refer to [31] and the references in these notes.

First we recall the definition of an étale morphism.

Definition 2.1. A morphism of schemes f : X → Y is étale if it is locally of finite type, flat and
unramified; unramified meaning that for all x ∈ X with f(x) = y, the map f# : OY,y → OX,x
induces a finite separable field extension κ(x)/κ(y) and mX = f#(mY ) · OX,x.

Remark 2.2. Étale morphisms have the following basic properties:

• Equidimensionality: A particular property that unramified morphisms have is that they
have relative dimension 0, i.e. for f : X → Y unramified and y ∈ Y , dim(Xy) = 0. To
see this, reduce to the affine case X = Spec(S) → Spec(R) = Y with x = [q], y = [p] and
note that Xy = Spec(S ⊗R κ(p)q̄ = Sq/pSq) = κ(q), which is finite over κ(p). Then we
apply [43, Tag 00PK]. As an étale morphism f : X → Y is moreover flat, we have that
dim(OX,x)−dim(OY,y) = dim(Xy) by Corollary (21.10) in [26]. Thus if X and Y are integral
schemes and f : X → Y is étale we have dim(X) = dim(Y ).

• Openness: An étale morphism is in particular flat and locally of finite presentation, which
implies that it is open by Lemma 29.25.10 [43, Tag 01U2].

• ‘Locally’ standard étaleness: For f : X → Y étale, x ∈ X there exists Spec(R), an affine
open neighbourhood of f(x), and an affine open neighbourhood U of x together with an open
immersion j : U → Spec(R[T ]h/(f)) for a monic polynomial f ∈ R[T ] such that f ′ is invertible

inR[T ]h such that the following diagram commutes:

U Spec(R[T ]f ′/(f))

Spec(R)

f

j

Here the right arrow is the canonical one. For more background see [43, Tag 025A].
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https://stacks.math.columbia.edu/tag/025A
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• Stability under base-change: For f : X → Y étale and Z → Y any morphism, the induced
morphism X ×Y Z → Z is étale. The flatness and locally of finite presentation properties are
basic and follow from the fact that flat ring maps and ring maps of finite presentation are
stable under taking the tensor product. That unramifiedness is stable under base-change is
a bit harder to see and follow by using the characterisation; f : X → Y is unramified if and
only if Ω1

X/Y = 0 [43, Tag 02G3].

• Stability under composition: For f : X → Y étale and g : Y → Z étale we have that
g ◦ f : X → Z is étale.

Example 2.3. We give some easy (non)examples of étale morphisms: Consider for k an alge-
braically closed field the ring map φ : k[T ] → k[T ] T 7→ Tn, which gives f : A1 → A1 and a
restriction f : Gm → Gm. It is clear that f is flat as φ is a flat ring map as k[T ] is a free k[Tn]-
module and it is also clearly of finite presentation. However it is not unramified for n ≥ 2 as the
ring map f(T ) : k[T ](T ) → k[T ](T ) has T /∈ f(T )((T )) · k[T ](T ).
Whether the restriction to Gm is étale depends on char(k) and n. Clearly it is still flat and of finite
presentation. For (T − a) a prime ideal with pre-image (T − an) we consider the induced map on
the local rings k[T ](T−an) → k[T ](T−a). Under this map (T − an) goes to (Tn − an), which is equal
to:

(Tn − an) =

{
(T − a)n if char(k)|n
(T − a) ·Q with (T − a) ∤ Q if char(k) ∤ n

Hence we see that φ(T − an) · k[T ](T−a) = (T − a)(T−a) is satisfied if and only if char(k) ∤ n. The
map on the residue fields is after the identification k ∼= k[T ]/(T − b) by T 7→ b given by the identity
map on k, thus indeed this is a finite separable extension.

We now have the following abstract definition of a site. It is a generalization of the notion of a
topological space. The definition includes the analogies between a topological space and a site.

Definition 2.4. A site is given by the following data:

• A category C

• For any object U of C a set of coverings {Ui → U}i such that:

1. (homeomorphism) Any isomorphism is a covering.

2. (arbitrary union of opens is open) If {Ui → U} is a cover and {Vij → Ui}j are covers
then {Vij → U}i,j is a cover.

3. (finite intersection of opens is open) If {Ui → U}i is a cover and V → U a morphism,
then Ui ×U V exist for all i and {Ui ×U V → V }i is a cover.

The following are examples. The first one should be familiar while the second one will be of
interest for us.

Example 2.5. Let X be a scheme and let C be the category whose objects are open sets of X and
whose morphisms are the inclusion maps between these open sets. Define a covering to be a family

{Ui → U}i such that U =
⋃
i

Ui. This is the Zariski site of X and it satisfies the properties above.

We can also let C be the category whose objects are étale morphisms φU : U → X and whose

https://stacks.math.columbia.edu/tag/02G3
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morphisms Hom(φU , φV ) are the commuting triangles, where U → V is a morphism of schemes:

U V

X

φU

φV

Then we define the coverings {Ui → X}i to be the families of étale morphisms such that
⊔
i

Ui → X

is surjective. By stability of étale morphisms under composition and base-change it follows that
what is written above defines a site, which we will call the étale site of X, denoted Xét.
Another site to consider is the flat site of X, whose objects are flat morphisms of finite type Y → X
and whose coverings are {Yi → X}i such that the images cover X.

It follows that one can define presheaves and sheaves for sites just as one can for a topological
spaces. We let S be any site, but the reader is encouraged to only think about the three sites above.

Definition 2.6. Let S be a site with underlying category C. A presheaf of abelian groups on S is
a contravariant functor F : C → Ab. A sheaf on S is a presheaf F on S such that for any object
U in C and any covering (Ui → U)i there is an exact sequence:

F(U)→
∏
i

F(Ui)→
∏
i,j

F(Ui ×U Uj)

Here the last map is induced by the natural restriction maps ρi : F(Ui) → F(Ui ×U Uj) and
−ρj : F(Uj)→ F(Ui ×U Uj).

Now we define certain objects attached to sheaves analogously to how they are defined for
topological spaces.

Definition 2.7. A morphism of presheaves F → G is a natural transformation. A morphism
of sheaves is a morphism of the underlying presheaves. Denote by Sh(Xét) the category of étale
sheaves on X.

Example 2.8. The following are commonly used sheaves on the étale site of a scheme X:

• Hom-sheaves: For G a commutative group scheme, one defines the sheaf G on Xét, which
assigns to an étale morphism U → X the abelian group G(U) := Hom(U,G) and assigns to
a morphism U → V over X the natural map G(V )→ G(U).
To check that this is in fact a sheaf we have the following criterion for a presheaf to be a sheaf
for the étale topology, which is ([31], p.44): A presheaf F on Xét is a sheaf if and only if the
sheaf condition holds for arbitrary Zariski covers and for étale covers consisting of a single
morphism U → V between affine schemes.
The fact that it satisfies the sheaf condition for Zariski covers follows directly from the fact
that one can glue morphisms from open sets to any scheme that agree on intersections. The
case of an étale cover V → U is done by first reducing to the case in which all the schemes
are affine. Then we note that if R is the ring corresponding to G, A to U and B to V we
are requiring that the sequence Hom(R,A)→ Hom(R,B) ⇒ Hom(R,B⊗AB) is exact. This
follows from exactness of 0→ A→ B ⇒ B ⊗A B for any B/A faithfully flat.

• Constant sheaves: We let Λ be a finite abelian group and then define Λ(U) = Λπ
0(U). For

φ : V → U an X-morphism the induced map Λ(U) → Λ(V ) has yet to be defined. For Ui a
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path-component of U and Vj one of V we set ΛUi → ΛVj to be the zero-map if φ(Vj)∩Ui = ø

and we set it to be the identity if φ(Vj) ∩ Ui ̸= ø. This yields a map Λπ
0(U) → Λπ

0(V ). For
proving that this is a sheaf, notice that this assignment coincides with the assignment G

defined by the group scheme G :=
⊔
λ∈Λ

Spec(Z), which is a sheaf by what was written above.

• Common examples of the above:

– Ga := Hom(−,A1
Z) given by the additive group U 7→ OU (U).

– Gm : Hom(−,Gm,Z) given by the multiplicative group U 7→ OU (U)∗.

– Z/lnZ, a constant sheaf.

– µln , a sheaf defined by the group scheme µln = Spec(Z[X]/(X ln − 1). In the case that
X/k̄ is a variety and char(k) ∤ l this sheaf is isomorphic to Z/lnZ, but in general the
sheaves are not isomorphic.

We underline the above sheafs in order to be able to distinguish them from the corresponding
algebraic groups. In later chapters we may omit the underlining of Z/lnZ. One can also define the
stalk of an étale sheaf.

Definition 2.9. Let F be a sheaf on Xét. The stalk at a geometric point x̄ ∈ X is given by
lim−→
(U,ū)

F(U), the colimit taken over all étale neighbourhoods U → X such that ū maps to x̄.

As in the Zariski case one can sheafify.

Proposition 2.10 (Sheafification exists, [31] Theorem 7.15). Let F be a presheaf on Xét, then there
exsits a sheaf aF with a morphism of presheaves F → aF that is universal among all morphisms
from F to a sheaf. The stalks of F and aF are isomorphic and aF is called the sheafification of F .

We have the following notion of an exact sequence of sheaves. There are other equivalent
definitions, see [31].

Definition 2.11. A sequence of sheaves on Xét, K → G → Q, is exact if for any geometric point
x̄ ∈ X the sequence Kx̄ → Gx̄ → Qx̄ is exact in the category of abelian groups.

Thus we can now define the following operation. This in particular implies that the inverse
image functor is exact.

Definition 2.12. For g : X → Y a morphism and F ∈ Sh(Yét) let g∗F be the sheaf on Xét that
is the sheafification of the assignment (g∗F)P (U → X) 7→ lim−→

V→Y

F(V ), the colimit taken over all

V → Y étale that give a commuting square:

U X

V Y

g

It follows that g∗ defines a functor Sh(Yét)→ Sh(Xét), called the inverse image functor.
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We have the following trivial example.

Example 2.13. Let g : X → Y be a morphism and let ΛY be a constant sheaf on Y . Then note
that we have (g∗ΛY )(U) = lim−→

V→Y

Λ(V ). Notice that there is an identification Λ(V ) = MorY (V,ΛZ),

where ΛZ =
⊔
λ∈Λ

Spec(Z)λ is a constant group scheme. For any such V appearing in the colimit

there is a morphism MorY (V,ΛZ) → MorX(U,ΛZ) by postcomposition. This gives a morphism of
presheaves (g∗ΛY )

P → ΛX . Note that it is injectice as (U → V → ΛZ) being the 0-element is if
and only if the image lands in Spec(Z)0 ⊂ ΛZ, which means that we can take V ′ ⊂ V such that V ′

equals the union of connected components of V to which U maps. Then note that (V ′ → ΛZ) = 0
and hence (V → ΛZ) is zero in the colimit. Note that it is also surjective at every U as we can take

V =
⊔
π0(U)

Y such that (U → V → ΛZ) can be any element of Λπ0(U). By the universal mapping

property of sheafification we have hence constructed an isomorphism g∗ΛY → ΛX .

The above isomorphism of sheaves can be realized in a bit of an easier way by just thinking
of ΛY ,ΛX as constant group schemes rather than Hom-sets, which will give the same result. The
reason why we make the above strange computation is that we have the Kummer-sequence (see
Proposition 2.21) in which the Hom-sheaves Gm and µn appear. We want to introduce sheaf
cohomology for étale sheaves. Before we do this, we state the following important theorem.

Theorem 2.14 (existence of ‘enough injectives’, [31] p.61). For a sheaf F on Xét, there exists a
complex of injective sheaves I• = I0 → I1 → ... such that 0→ F → I• is exact.

The theorem above implies together and the fact that category of sheaves on Xét is an abelian
category ([31], p.53) together with the theory of derived functors imply that any left-exact functor
F : Sh(Xét) → Ab admits its right derived functors {RtF : Sh(Xét) → Ab}t∈Z≥0

. They have the
following properties:

Proposition 2.15. Let F : A → B be a left-exact functor between abelian categories A and B, such
that A has ‘enough injectives’, i.e. any object has an injective resolution (as in Theorem 2.14).
Then there exist functors {RtF : A → B}t∈Z≥0

such that:

• R0F = F

• For a short exact sequence 0 → A1 → A2 → A3 → 0 in A there exist ‘boundary maps’

{δt}t∈Z≥0
such that ... → RtF (A1) → RtF (A2) → RtF (A3)

δt→ Rt+1F (A1) → Rt+1F (A2) →
... is a long exact sequence in B.

• For I an injective object of A we have RtF (I) = 0 for t > 0.

• For A an object of A and A→ I• an injective resolution, the objects RtF (A) can be calculated

by RtFA ∼= ht(F (I•)) :=
ker(F (It)→ F (It+1))

Im(F (It)→ F (It+1)
.

The first example will be the crucial one for us, while the second one also occurs at times.
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Example 2.16. For X a scheme the global sections functor Γ(X,−) : Sh(Xét)→ Ab, which sends
a sheaf of abelian groups to its sections on X is left-exact. We can hence form its right-derived
functors. For π : X → Y a morphism of schemes the direct image functor π∗ : Sh(Xét)→ Sh(Yét),
which sends a sheaf F to the sheaf π∗F , which assigns (U → Y ) 7→ F(U ×Y X → X). This functor
is also left-exact, hence we can form its right-derived functors.

Using the above we define étale cohomology.

Definition 2.17. For X a scheme and n ≥ 0 we denote RnΓ(X,−) =: Hnét(X,−).
The n’th étale cohomology group of X with values in F ∈ Sh(Xét) is H

n
ét(X,F).

There are many properties of étale cohomology that we will use. They are listed below.

Proposition 2.18. Étale cohomology has the following properties:

• (δ-functor) Whenever 0 → K → F → Q → 0 is a short exact sequence in Sh(Xét), there
exist connecting homomorphism δn : Hnét(X,Q)→ Hn+1

ét (X,K) such that there is a long exact
sequence:

...→ Hnét(X,K)→ Hnét(X,F)→ Hnét(X,Q)
δn→ Hn+1

ét (X,K)→ ...

This is functorial with respect to homomorphism of short exact sequences.

• (pullback homomorphism) For g : X → Y a morphism we have, since Γ(X,−) = Γ(Y,−)◦
g∗, natural transformations Hrét(Y, g

∗−)→ Hrét(X,−). There is also a natural transformation
Id(−)→ g∗g

∗(−) of functors Sh(Yét)→ Sh(Yét). Thus we have g∗ : Hrét(Y,F)→ Hrét(X, g
∗F)

by composing them, which is called the pullback by g. The pullback homorphisms satisfy
(g ◦ f)∗ = f∗ ◦ g∗ and Id∗ = Id.

The last claim follows from the fact that givenX
f→ Y

g→ Z the two homomorphisms (g◦f)∗ and
f∗ ◦ g∗ Hrét(Z,F) ⇒ Hrét(X, f

∗g∗F) agree for r = 0 and Hrét(Z,−)→ Hrét(X, g
∗f∗−) is a morphism

of δ-functors. Since Hrét(Z,−) is a universal δ-functor, the maps Hrét(Z,−) → Hrét(X, g
∗f∗−) are

determined by the ones with r = 0 and hence they are equal (see [43, Tag 010P]). Similarly we
define the higher direct images.

Definition 2.19. For π : X → Y a morphism of schemes and n ≥ 0, define the n’th higher direct
image functor by Rnπ∗(−) : Sh(Xét)→ Sh(Yét).

It turns out that there is an alternative way to describe the n’th higher direct images.

Proposition 2.20. Let π : X → Y be a morphism and let Hn(−) : Sh(Xét) → Sh(Yét) be the
functor that takes F to Hn(F) ∈ Sh(Yét), which is defined to be the sheafification of the assignment
U 7→ Hnét(U ×Y X,F). The functors Hn(−) and Rnπ∗(−) are canonically isomorphic.

We are often interested in the cohomology of a variety with coefficients in the constant sheaf
Z/nZ. As mentioned earlier, the sheaf µn agrees with Z/nZ in some cases and we have the following
exact sequence of sheaves involving µn.

https://stacks.math.columbia.edu/tag/010P
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Proposition 2.21 (Kummer sequence). For X a scheme over a field k and n an integer not
divisible by char(k) the following sequence of sheaves on Xét is exact:

0→ µn
ι→ Gm

[n]→ Gm → 0

Here [n] denotes the morphism of sheaves induced by O(U)∗ → O(U)∗ x 7→ xn.

Proof. That ker([n]) = ι(µn) follows easily. Now we need to check that [n] : Gm → Gm is surjective,
i.e. that for any section s ∈ Gm(U) there is V → U étale such that s|V ∈ Gm(V ) is in the image
of [n](V ). First of all, as surjectivity can be checked locally, we may shrink U to make it affine,
U = Spec(R). Take V := Spec(R[X]/(Xn − s))→ Spec(R) = U to be induced by the inclusion of
R into R[X]/(Xn − s). Under [n](V ) the element X ∈ (R[X]/(Xn − s))∗ is mapped to s. As the
derivative of Xn − s is n ·Xn−1, which is invertible in R[X]/(Xn − s) we see that the morphism
V → U is standard-étale, hence étale, so indeed [n] is surjective.

This gives us the following result.

Corollary 2.22. For X a scheme over a field whose characteristic does not divide n there is a

long exact sequence: ...→ Hrét(X,µn)→ Hrét(X,Gm)
[n]→ Hrét(X,Gm)→ Hr+1

ét (X,µn)→ ...

As in the case of the Zariski topology one has the Cech cohomology groups. First we define the
Cech-complex.

Definition 2.23. Let F be a sheaf on Xét and let U = {Ui → X}i be an étale covering. We define
the Cech-complex of F relative to U to be:

C(U ,F)• = 0→ F(X)→
∏
i

F(Ui)
d0→

∏
i,j

F(Ui ×X Uj)
d1→

∏
i,j,k

F(Ui ×X ×Uj ×X Uk)→ ...

Using the abbreviation Ui1 ×X ...×X Uin = Ui1....in , the maps dn are defined on
∏

i0,...,in

F(Ui1...in) by

(dn(s))i0...in+1 =

n+1∑
k=0

(−1)kresk(si1...îk...in+1
), where resk denotes the restriction map obtained from

the projection Ui0...in+1 → Ui0...îk...in+1
(the hat means ‘omit’).

One checks that this indeed defines a complex. Using this we can define the étale Cech coho-
mology groups.

Definition 2.24. Let F be a sheaf on Xét and U = {Ui} an étale cover of X. The r’th Cech
cohomology group of F relative to U is defined to be Ȟrét(U ,F) := hr(C(U ,F)•).
Define the r’th Cech cohomology group of X with coefficients in F to be Ȟrét(X,F) := lim−→

U
Ȟrét(U ,F),

where the colimit is taken over the refinements of étale covers.

One easily that Ȟrét(X,−) is in fact a functor Sh(Xét)→ Ab, it can even be defined as a functor
from PSh(Xét) (the category of étale presheafs). In particular the first Cech group is interesting to
us.
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Remark 2.25. We consider Ȟ1
ét(X,F). Take a cover U = (Ui)i of X, then giving an element of

Ȟ1(U ,F) is the same as giving elements gij ∈ F(Uij) such that gij + gjk = gik up to changing
gij to gij + h|Uij for h ∈ F(X). Now consider the case F = Gm, then the gij lie in O(Uij)×. It

follows from ([31] p.78) that Ȟ1
ét(X,Gm) ∼= L1(X), the isomorphism classes of étale locally trivial

line bundles. By Proposition 4.32 any such line bundle is locally trivial for the Zariski topology
and hence we obtain Pic(X) ∼= Ȟ1

ét(X,Gm).

The 0’th and first Cech groups always agree with the derived functor cohomology groups.

Proposition 2.26 ([29], III Corollary 2.10). Let C/X be a site and let r ∈ {0, 1}, then there are
canonical iomorphisms ȞrC(X,F) ∼= HrC(X,F)

This follows from the Cech to derived spectral sequence (see [29] III Prop. 2.7). Another
consequence of this is the following.

Proposition 2.27 (Mayer Vietoris). Let X be a scheme with cover U0, U1 by open immersions and
let F ∈ Sh(Xét). There is a long exact sequence where ϕ(s0, s1) = s0 − s1:

...→ Hnét(U0,F)
⊕

Hnét(U1,F)
ϕ→ Hnét(U0∩U1,F)→ Hn+1

ét (X,F)→ Hn+1
ét (U0,F)

⊕
Hn+1

ét (U1,F)→ ...

Our goal now is to construct the cup product in étale cohomology on a quasi-projective variety
X. One can do this for any scheme X via the language of derived categories [43, Tag 0FKU] but
derived categories lie beyond the scope of this thesis (see [36] for an intuitive introduction and [43,
Tag 05QI] for a rigorous treatment).

Theorem 2.28 ([2] Theorem 4.2). Let X be a variety such that any finite set of geometric points
of X is contained in an affine open subscheme of X. Then Ȟ∗

ét(X,−) is a δ-functor Sh(Xét)→ Ab
and the isomorphism H0

ét(X,−) → Ȟ0
ét(X,−) in degree 0 extends to an isomorphism of δ-functors

H∗
ét(X,−)→ Ȟ∗

ét(X,−).

Any variety X that is quasi-projective over a Noetherian ring meets the condition in the above
theorem [2]. Thus by Proposition 1.51 we have that in particular for an algebraic group that étale
Cech cohomology and derived functor cohomology agree.

Before introducing cup products we introduce the following notion.

Definition 2.29. Let Λ be a commutative ring and also denote by Λ the constant sheaf on Xét.
Then F ∈ Sh(Xét) is sheaf of Λ-modules if for each U , F(U) is a Λ(U)-module and the obvious
diagramms commute.
For F ,G sheaves of Λ-modules, we define their tensor product F⊗ΛG over Λ to be the sheafification
of the assignment U 7→ F(U)⊗Λ(U) G(U).

Remark 2.30. The tensor product of two Λ-modules satisfies the usual universal mapping property
in the category of Λ-modules. If g : X → Y is a morphism, then g∗(F ⊗Λ G) ∼= g∗F ⊗Λ g

∗G
canonically (by using that tensor products and filtered colimits commute).

We now give the properties of cup-products.

Proposition 2.31 (Cup products). Let F ,G ∈ Sh(Xét) be sheaves of Λ-modules. For all p, q ≥ 0
there exist Λ-linear maps called cup products ∪ : Hpét(X,F)⊗ΛH

q
ét(X,G)→ Hp+qét (X,F⊗ΛG). They

satisfy the following properties:

https://stacks.math.columbia.edu/tag/0FKU
https://stacks.math.columbia.edu/tag/05QI
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• The cup product is associative, i.e. for x ∈ Hpét(X,F), y ∈ Hqét(X,G) and z ∈ Hrét(X,H) we
have (x ∪ y) ∪ z = x ∪ (y ∪ z).

• If F → F ′ and G → G′ are morphisms of Λ-modules then the following diagram commutes:

Hpét(X,F)⊗Λ Hqét(X,G) Hp+qét (X,F ⊗Λ G)

Hpét(X,F
′)⊗Λ Hqét(X,G

′) Hp+qét (X,F ′ ⊗Λ G′)

∪

∪

• If g : X → Y is a morphism, then the cup products of X and Y are related by the following
commuting diagram:

Hpét(X, g
∗F)⊗Λ Hqét(X, g

∗G) Hp+qét (X, g∗F ⊗Λ g
∗G)

Hpét(Y,F)⊗Λ Hqét(Y,G) Hp+qét (X,F ⊗Λ G)

∪

∪

g∗⊗g∗ g∗

• If A = F = G is a sheaf of Λ-algebras then H∗
ét(X,A) :=

⊕
n

Hnét(X,A) becomes a graded

Λ-algebra, so for x ∈ Hpét(X,A) and y ∈ Hqét(X,A) we have x ∪ y = (−1)pqy ∪ x.

A proof of the existence of these producs is given in the Appendix. The case when F = Λ is
the most interesting as in this case we in fact can construct a ring.

Definition 2.32. Let Λ be a constant sheaf of commutative rings on Xét. The cohomology ring of

X with coefficients in Λ is the set H∗
ét(X,Λ) =

⊕
n≥0

Hnét(X,Λ) with multiplication ∪.

Note that naturality of cup products in the second argument implies that if f : X → Y is a
morphism, then f∗ : H∗

ét(X,Λ)→ H∗
ét(Y,Λ) is a Λ-algebra homomorphism.

Remark 2.33. By the first property of the cup products applied to the sheaves Z/lnZ, one can pass
to the limit and apply −⊗Zl

Ql to obtain Ql-linear maps:

∪ : Hpét(X,Ql)⊗Ql
Hqét(X,Ql)→ Hp+qét (X,Ql)

This puts a Ql-algebra structure on H∗
ét(X,Ql) :=

⊕
n≥0

Hnét(X,Ql).

Note that for X,Y schemes and F ∈ Sh(Xét), G ∈ Sh(Yét) sheaves of Λ-modules there are maps
Hpét(X,F) ⊗Λ Hqét(Y,G) → Hp+qét (X ×k Y,F ⊗Λ G) x ⊗ y 7→ p∗1(x) ∪ p∗2(y). These induce a map⊕
p+q=n

Hpét(X,F)⊗Λ Hqét(Y,G)→ Hnét(X ×k Y, p∗1F ⊗Λ p
∗
2G) is an isomorphism. Below we mean by a

flat sheaf F that F(U) is flat over Λ(U) for all U .

Theorem 2.34 (Künneth, [29] Cor. VI.8.13). Let X,Y,F ,G,Λ as above and assume that F is flat
over Λ and for all m ≥ 0 that Hmét(X,F) is flat over Λ. Then for all p, q the above maps⊕
p+q=n

Hpét(X,F)⊗Λ Hqét(Y,G)→ Hnét(X ×k Y, p∗1F ⊗Λ p
∗
2G) are isomorphisms of Λ-modules.
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A very useful tool in étale cohomology is the Leray spectral sequence. For stating the existence
of this spectral sequence we give the definition of a spectral sequence. For background knowledge
on spectral sequences, see [46].

Definition 2.35. A spectral sequence in an abelian category A consists of the following data:

1. A ‘starting page’ for r0 ∈ Z>0; with objects {Ep,qr0 }p,q∈Z such that Ep,qr0 ̸= 0 implies p, q ≥ 0.

2. Differentials on the starting page dp,qr : Ep,qr0 → Ep+r0,q−r0+1 such that dp+r0,q−r0+1
r ◦ dp,qr = 0.

3. The r’th pages for r > r0, where E
p,q
r+1 =

ker(dp,qr )

Im(dp−r,q+r−1
r )

, i.e. the object in position (p, q) on

the r + 1’th page equal the homology in position (p, q) on the r′th page.

4. Differentials on the r’th page dp,qr : Ep,qr → Ep+r,q−r+1
r that satisfy the same condition as in

2.

We note that for the (p, q) ∈ Z2
≥0 and r ≥ q + 2 that the differential dp,qr : Ep,qr → Ep+r,q−r+1

r

has to have Ep,qr as kernel as q − r + 1 < 0, hence Ep+r,q−r+1
r = 0. Moreover we note that for

r ≥ p+ 1 the differential Ep−r,q+r−1
r → Ep,qr is the zero-map as Ep−r,q+r−1

r = 0. So we see that for
some rp,q large enough, the homology in position (p, q) on page r will be Ep,qrp,q for all r ≥ rp,q. We
will call this convergence of the spectral sequence.

Definition 2.36. We denote the entry Ep,qrp,q above by Ep,q∞ . We say that a spectral sequence

converges to (Mn)n≥0 if there is an isomorphism of graded objects
⊕
n≥0

(
⊕
p+q=n

Ep,q∞ ) ∼=
⊕
n≥0

Mn.

We denote the convergence by Ep,qr0 =⇒ Mn.

We now introduce the most fundamental spectral sequence of the ones that we will be using.
In fact, the existence of the others are derived from this one.

Proposition 2.37 ([46], p.150 Grothendieck spectral sequence). Let F : A → B and G : B → C be
two additive left-exact functors between abelian categories such that A and B have enough injectives
and assume that F takes injective objects to G-acyclic objects. Then there is a spectral sequence:
Ep,q2 = (RpG ◦RqF ) =⇒ Rp+q(G ◦ F )

One application of this is the existence of the Leray spectral sequence.

Proposition 2.38 (Leray spectral sequence). Let f : X → Y be a morphism of schemes and let
F be a sheaf on Xét. There is a spectral sequence Ep,q2 = Hpét(Y,R

qf∗F) =⇒ Hp+q(X,F).

Proof. We have that the composition of the functors Γ(Y,−) ◦ f∗ : Sh(Xét)→ Sh(Yét)→ Ab equals
Γ(X,−). We note that the spectral sequence above is then just the Grothendieck spectral sequence
for these specific functors. The only thing left to show is that f∗ sends injective sheaves to Γ(Y,−)-
acyclic sheaves. We do this by showing that f∗I is injective for I injective. This is equivalent
to the functor Hom(−, f∗I) being exact, which by the adjunction Hom(f∗F ,G) ∼= Hom(F , f∗G) is
equivalent to Hom(f∗(−), I) being exact. This follows since f∗ is an exact functor and Hom(−, I)
is an exact functor. So we conclude that the spectral sequence exists.
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Sometimes it is easier to work over a field of characteristic 0 than with an abelian group, so we
make the following definition.

Definition 2.39. Define H∗
ét(X,Zl) := lim←−

n

H∗
ét(X,Z/lnZ). It has the structure of a Zl-module. We

define H∗
ét(X,Ql) := H∗

ét(X,Zl)⊗Zl
Ql, which we call the l-adic cohomology of X.

We can ‘upgrade’ the spectral sequences above to their l-adic versions under a suitable hypoth-
esis.

Remark 2.40 (Upgrading spectral sequence to l-adic variant under conditions). Let {E(n)p,qr }n∈Z>0

be spectral seqeuences of abelian groups starting at the same page r = r0 and assume that E(n)p,qr0 is
a Z/lnZ-module. Then notice that all the terms E(n)p,qr have the structure of a Z/lnZ-module and
that the differentials d(n)p,qr on each page are Z/lnZ linear (as they are Z-linear). Suppose that we
are given maps ...← E(n)p,qr0 ← E(n+1)p,qr0 ← ... for all p, q that commute with the differentials and
such that for all other pages r ≥ r0 the induce maps E(n+1)p,qr → E(n)p,qr also commute with the
differentials. This implies that one can define an r0’th page with objects lim←−

n

E(n)p,qr0 and differentials

lim←−
n

d(n)p,qr0 , which are now Zl-linear. If we assume that taking the inverse limit is exact on all the

pages then we get
ker(lim←−n d(n)

p,q
r0 )

Im(lim←−n d(n)
p,q
r0 )

= lim←−
n

E(n)p,qr0+1. Similarly on all the higher pages, one gets the

result above with r0 replaced by r. Hence there is a spectral sequence {Ep,qr } := {lim←−
n

Er(n)
p,q} and

as the convergence of E(n)p,qr does not depend on n it converges to Ep,q∞ = lim←−
n

E(n)p,q∞ .

Once one has the spectral sequence {Ep,qr } := {lim←−
n

Er(n)
p,q}, one can consider the terms Ep,qr ⊗Zl

Ql.

The differentials then extend to Ql-linear differentials. Notice that as Ql is flat over Zl that
Ep,qr+1⊗Zl

Ql equals ker(d
p,q
r ⊗ 1)/Im(dp−r,q+r−1

r ⊗ 1), hence we get a spectral sequence {Ep,qr ⊗Zl
Ql}

with infinity page Ep,q∞ ⊗Zl
Ql.

We now define another operation that one can do on sheafs.

Definition 2.41. Let U ⊂ X be an open subset of a scheme X and denote the inclusion map by
j. Then for any F ∈ Sh(Uét) and any étale φ : V → X we consider the assignment:

V 7→

{
F(V ) if φ(V ) ⊂ U
0 else

The corresponding sheaf j!F ∈ Sh(Xét) is called the extension by 0 of F .

For defining compactly supported cohomology we are interested in the case of embedding a
variety X into a complete one. The fundamental theorem concering this is the following.

Theorem 2.42 (Nagata, [35]). Let f : X → S be a finite type morphism between Noetherian
schemes. Then there exists an open immersion j : X → X and a proper morphism f : X → S such
that the following diagram commutes:

X S

X

f

j f
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Such X is called a compactification of X. In particular a compactification of a scheme of finite
type over a field exists.

Definition 2.43. (Cohomology with compact support) Let X be a scheme that admits a compact-
ification j : X ↪→ X and let F be a torsion sheaf on Xét. Define the n’th cohomology group with
compact support to be Hnc (X,F) := Hnét(X, j!F).

An important thing to mention is that the above definition does not depend on the compacifi-
cation j : X → X.

Proposition 2.44 ([29], Prop. VI.3.1 and Prop. III.1.29). The following holds:

• The definition of cohomology with compact support does not depend on the choice of compact-
ification j : X ↪→ X.

• The functor Hnc (X,−) defines a δ-functor, i.e. a short exact sequence of sheaves on Xét is
sent to a long exact sequence functorially.

• For f : X → Y a morphism of finite type k-schemes and F a torsion sheaf on Yét there exists
a pullback homomorphism Hrc(Y,F)→ Hrc(X, f

∗F).

We use the Nagata compactification for the following definition.

Definition 2.45. For π : X → S a finite type morphism of Noetherian schemes, define Rnc π∗π(F)
for F a torsion sheaf as follows: Choose a compactification j : X → X such that π factors via a
proper morphism π : X → S. Then define Rnc π∗(F) = Rnπ∗(j!F) ∈ Sh(Sét).

For a proof that the previous is well defined, see ([29], Prop VI.3.1). Just as in the case of
étale cohomology, a commuting square as below and a torsion sheaf F ∈ Sh(Xét) gives a canonical
base-change morphism g∗Rnc π∗F → Rnc π∗f

∗F .

X ′ Y ′

X Y

π′

g f

π

Compactly supported cohomology has the following nice feature.

Proposition 2.46 ([29], Cor VI.2.3 and Prop VI.3.2). If we have a commuting square as above
that is cartesian (i.e. X ′ = Y ′ ×Y X) and F is a torsion sheaef on Xét then:

• For étale cohomology: The base-change morphism g∗Rnπ∗F → Rnπ∗f
∗F is an isomorphism

when π is proper. This is called proper base change.

• For compactly supported cohomology: The base-change morphism g∗Rnc π∗F → Rnc π∗f
∗F is

an isomorphism.

The proof of the second statement makes use of the first statement. The other important
feature that compactly supported cohomology has is Poincaré duality. We present it here for
constant torsion sheaves, but it also holds for ‘constructible’ sheaves, which we did not define.
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Theorem 2.47 (Poincare duality, [29], Theorem VI.11.1). Let X be a smooth variety of dimension
d over an algebraically closed field and let Λ ∈ Sh(Xét) be a constant torsion sheaf. Then for all
n ≤ 2d there are perfect pairings ⟨−,−⟩ : Hnét(X,Λ)×H2d−n

c (X,Λ)→ H2d
c (X,Λ) ∼= Λ such that:

• For f : Y → X a morphism of smooth varieties of dimension d one has ⟨f∗x, f∗y⟩ = f∗⟨x, y⟩.
The former equals deg(f) · ⟨x, y⟩ when f is a finite flat morphism.

• The pairings are functorial in the sheaf Λ and in particular, they induce a perfect pairing of
Ql-vector spaces Hnét(X,Ql)→ H2d−n

c (X,Ql)→ H2d
c (X,Ql) ∼= Ql.

Two other important finiteness theorems are the following:

Theorem 2.48 (Cohomological dimension, [29] Theorem VI.1.1 and SGA 4, §2,3). Let X be a
finite type scheme of dimension d over a separably closed field k and let l ̸= char(k) be a prime
such that ln kills F ∈ Sh(Xét). Then:

• In general Hrét(X,F) = 0 for r > 2d.

• If X is affine, then Hrét(X,F) = 0 for r > d.

Theorem 2.49 (Finiteness of étale cohomology, SGA41⁄2 Corollaire 1.10 p.236). Let X be a finite
type scheme over a separably closed field k and let F be a locally constant sheaf on X killed by ln

where char(k) ̸= l is prime. Then Hrét(X,F) are finite groups for all r.

It is time to use all of the above machinery above to actually calculate some étale cohomolgy
groups. We begin with perhaps the most basic schemes and sheaves that one can consider.

Example 2.50. Let k be a separably closed field over which we consider the following varieties
and let l ̸= char(k) be a prime. Then we have:

• H0
ét(A1,Z/lnZ) = Z/lnZ and Hrét(A1,Z/lnZ) = 0 for r > 0.

• H1
ét(Gm,Z/lnZ) = H0

ét(Gm,Z/lnZ) = Z/lnZ and Hrét(Gm,Z/lnZ) = 0 for r > 1.

• H2
ét(P1,Z/lnZ) = H0

ét(P1,Z/lnZ) = Z/lnZ and Hrét(P1,Z/lnZ) = 0 for r ̸= 0, 2.

Proof. As A1 and Gm are affine of dimension 1 and connected it suffices to show by Theorem 2.48
that H1

ét(A1,Z/lnZ) = 0 and H1
ét(Gm,Z/lnZ) = Z/lnZ for the first two points. Note that over a

separably closed field k with char(k) ̸= l the sheaves µln and Z/lnZ are isomorphic.

For A1, consider the Kummer sequence: 0→ µln(k)→ k×
x 7→xl

n

→ k× → H1
ét(A1, µln)→ H1

ét(A1,Gm).

We have H1
ét(A1,Gm) = Ȟ1

ét(A1,Gm) = Pic(A1) = Pic(k[X]) = 0 since k[X] is a UFD and hence
H1

ét(A1, µln) = 0 since k× → k× is onto.

For Gm, note that H1
ét(Gm,Gm) = 0 and hence H1

ét(Gm, µln) = coker(O(Gm)
× → O(Gm)

×), the

map being the ln’th power map. As we have O(Gm)
× = k× · {Xn}n∈Z we see that this cokernel is

Z/lnZ.
For the third point, apply the Mayer-Vietoris sequence 2.27 to the standard open covering U0, U1

of P1 with intersection Gm.



35

Note that by the Künneth formula we can now calculate the l-adic cohomology of Ar and Gr
m

for all r ≥ 1. We also have the following useful example.

Example 2.51. Let A be an abelian variety of dimension g over a separably closed field k and let
l ̸= char(k) be prime. Then H1

ét(A,Z/lnZ) = (Z/lnZ)2g.

Proof. We again apply the Kummer sequence. Since A is complete and connected we have O(A)× =

k× and hence it follows that H1
ét(A,Z/lnZ) = ker(Pic(A)

[ln]→ Pic(A)). For τa : A → A translation

by a ∈ A(k) we define Pic0(A)(k) = {L ∈ Pic(A) | L ∼= τ∗aL for all a ∈ k}. Then any torsion point
of Pic(A) lies in Pic0(A)(k) ([34] (v) p.75). It is a theorem ([34], Section 13) that Pic0(A)(k) is
isomorphic to A∨(k), where A∨ is the dual abelian variety of A, which is an abelian variety of the
same dimension g (see [30] or [34]). When char(k) ∤ n the n-torsion points of an abelian variety are
isomorphic to (Z/nZ)2g ([34] p.64). So this gives the result.

To understand the étale cohomology of group varieties, the following classical result is one of
the most important ones.

Theorem 2.52. Let G,H be connected group varieties over an algebraically closed field k and let
φ : G→ H an isogeny. Then φ∗ : H∗

ét(H,Ql)→ H∗
ét(G,Ql) is an isomorphism.

To prove this statement, we begin with the following special case.

Lemma 2.53. Let φ : G→ H be a purely inseparable isogeny of group varieties over k = k̄. Then
φ∗ : Hnét(H,Λ)→ Hnét(G,F) is an isomorphism for any constant sheaf F ∈ Sh(Hét).

Proof. As φ is purely inseparable, we have that K := ker(φ) is connected. An isogeny is in
particular a finite morphism, which is proper. So the proper base change theorem 2.46 gives that
the stalk of Rqφ∗F = 0 at ȳ is the cohomology of the fibre over ȳ and the fibre has dimension 0.
So for q ≥ 1 the sheaves Rqφ∗F are 0. This causes the Leray Spectral sequence associated to F , φ
to degenerate at the E2-page. So this causes the edge morphism Hnét(H,φ∗φ

∗F) → Hnét(G,φ
∗F)

to be an isomorphism. The pullback Hnét(H,F) → Hnét(G,φ
∗F) is equal to the composition of

homomorphisms Hnét(G,F) → Hnét(H,φ∗φ
∗F) → Hnét(G,φ

∗F), where the first map is induced by
the morphism of sheaves F → φ∗φ

∗F (indeed the edge map in the Leray spectral sequence equals
the second map, see ([46], p.150)).
The second map in the composition is an isomorphism by what is written above. Now for F = Λ
a constant sheaf we claim that Λ → φ∗φ

∗Λ is an isomorphism. Indeed, note that φ∗φ
∗Λ is the

sheaf associated to the presheaf U 7→ lim−→
V→H

Λ(V ). Since φ is a purely inseparable isogeny, it is a

homeomorphism, hence π0(G×H U) = π0(U) for any U → H étale. For U → H étale, the inclusion
Λ(U)→ lim−→

V→H

Λ(V ) defines the morphism of sheaves Λ→ φ∗φ
∗Λ. Now note that we may take the

limit over over those V for which π0(V ) = π0(U ×G H) = π0(U) as these V form a cofinal system.
It hence follows that Λ(U) → lim−→

V→H

Λ(V ) is an isomorphism, hence the morphism Λ → φ∗φ
∗Λ is

an isomorphism. We conclude that Hnét(H,Λ)→ Hnét(H,φ∗φ
∗Λ) is an isomorphism and hence that

φ∗ : Hnét(H,Λ)→ Hnét(G,φ
∗Λ) is an isomorphism.

Now we want to show that the result also holds for a separable isogeny to conclude that the
general case holds. This is quite involved and is written out below.



36 CHAPTER 2. ÉTALE COHOMOLOGY

Proof. (of Theorem 2.52, starting with the case of a separable isogeny)

The transfer map Hnét(Y, f∗f
∗F)→ Hnét(Y,F)

Let Y = X/G for G a finite group and let f : X → Y be the natural quotient map. Then notice that
f is a Galois cover, i.e. the natural map G×k X → X ×Y X (g, x) 7→ (x, xg) is an isomorphism.
Let F ∈ Sh(Yét). We consider f∗f

∗F ∈ Sh(Yét). Notice that this assigns to U → Y an étale
morphism lim−→

U×XY→V→Y

F(V ). This actually equals F(X ×Y U) as X ×Y U → Y is étale, since

being étale is stable under base-change and composition, hence X ×Y U is the cofinal object in the
diagram corresponding to the colimit.
We will now define a left action of G on f∗f

∗F , i.e. we will define for all g ∈ G an isomorphism
γg : f∗f

∗F → f∗f
∗F such that γe = Id and such that γg ◦ γh = γgh. To do this, notice that for any

étale U → Y if we denote by τg : X → X the map x 7→ xg the following diagram commutes:

U ×Y X

Y

U ×Y X

(Id,τg)

Moreover, the map (Id, τg) is an isomorphism, hence étale, so by F being an étale sheaf, we get
an induced map γg := F(Id × τg) : f∗f

∗F(U) → f∗f
∗F(U). It is clear that if g = e, then

γe(U) = Id(U). To show that this is a morphism of sheaves, use that for V → U étale over Y that

the following diagram commutes together with the functoriality of F :
V ×Y X U ×Y X

V ×Y X U ×Y X

(Id,τg) (Id,τg)

Note that we have a natural morphism of sheaves ι : F → f∗f
∗F , defined on U by applying

functoriality of F giving F(U ×Y X → U) : F(U)→ F(U ×Y X). In the case that F is a separated
sheaf, this map is injective as U ×Y X → U is an étale cover. We will now assume that F is
separated.

Notice that the following triangle commutes:

U ×Y X U ×Y X

U

(Id,τg)

This implies that the image of F(U) inside f∗f
∗F(U) is fixed by the action of G. Actually, what

we will be showing now is that F ⊂ f∗f∗F equals (f∗f
∗F)G. The isomorphism G×kX → X ×Y X

induces an isomorphism G ×k U → U ×Y X (g, u) 7→ (u, ug) for all étale U → X → Y . This
isomorphism fits into the following commuting square:



37

G×k U U ×Y X

G×k U U ×Y X

(·g,Id) (Id,τg)

As for x̄ → Y a geometric point, the étale neighbourhoods of x̄ that factor via f : X → Y are
cofinal in all of the étale neighbourhoods of x̄ we obtain:

(f∗f
∗F)x̄ = lim−→

x̄→U

f∗f
∗F(U) = lim−→

x̄→U

F(U ×Y X) = lim−→
x̄→U

F(G×k U)

By the commuting square above and since G acts trivially on F(U) it follows that there is an

isomorphism of G-modules (f∗f
∗F)x̄ ∼= lim−→

x̄→U

F(G ×k U) =
⊕
g∈G
Fx̄, where G acts on

⊕
g∈G
Fx̄ by

h · (sg)g = (shg)g, i.e. by permuting the entries. It follows from the fact that the relevant map
F(U) → F(U ×k G) is induced by the projection U ×k G → U that F → f∗f

∗F embeds Fx̄
into (f∗f

∗F)x̄ =
⊕
g∈G
Fx̄ diagonally and hence we see that Fx̄ = (f∗f

∗Fx̄)G. Thus the morphism

F → (f∗f
∗F)G is an isomorphism on stalks, hence an isomorphism.

Now that we have established that F = (f∗f
∗F)G, we will define a map µ : f∗f

∗F → F that is
called the ‘trace map’ in the literature for more general f . It is a variant of the Reynolds operator.

Namely, one defines µ(U) : f∗f
∗F(U) → (f∗f

∗F(U))G by s 7→
∑
g∈G

g · s. This gives a morphism

of sheaves µ : f∗f
∗F → F after identifying F = (f∗f

∗F)G. We note that µ ◦ ι : F → F is

just multiplication by |G| and that ι ◦ µ is given by
∑
g∈G

γg (the sum taken in the abelian group

HomSh(Yét)(f∗f
∗F , f∗f∗F)).

By the functoriality of étale cohomology we have a left-action of G on Hnét(Y, f∗f
∗F) and we

have that the natural map ι : Hnét(Y,F) → Hnét(Y, f∗f
∗F) lands inside Hnét(Y, f∗f

∗F)G. By the
functoriality in the second argument of Hnét(Y,−) together with the fact that this functor is additive
we obtain that there is a morphism µ : Hnét(Y, f∗f

∗F) → Hnét(Y,F) such that µ ◦ ι = |G| and such

that ι ◦ µ(x) =
∑
g∈G

g · x.

The G actions on Hnét(Y, f∗f
∗F) and Hnét(X, f

∗F)

Now we want to relate the G-actions on Hnét(Y, f∗f
∗F) and Hnét(X, f

∗F) with each other. We have
that the G-action on Hnét(X, f

∗F) is given by τ∗g : Hnét(X, f
∗F)→ Hnét(X, τ

∗
g f

∗F) = Hnét(X, ∗f∗F) as
f ◦τg = f . There is an edge morphism in the Leray spectral sequence Hnét(Y, f∗f

∗F)→ Hnét(X, f
∗F).

Since f is a finite morphism, the functor f∗ is exact, which implies that this homomorphism is in
fact an isomorphism. By the pullback property of the Leray spectral sequence we have that the
following diagram commutes:

Hnét(Y, f∗f
∗F) Hnét(X, f

∗F)

Hnét(Y, f∗f
∗F) Hnét(X, f

∗F)

BC

Edge

τ∗g

Edge
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Here BC denotes the homomorphism induced by the base-change morphism:
f∗f

∗F = Id∗f∗(f
∗F)→ f∗τ

∗
g (f

∗F) = f∗f
∗F .

We claim that this base-change morphism is the isomorphism of sheaves γg : f∗f
∗F → f∗f

∗F
making the Edge homomorphism a G-equivariant isomorphism. That this is true is quite easy to see,
namely take any sheaf G ∈ Sh(Xét), then the base change morphism is the natural map f∗G → f∗τ

∗
gG

that on an étale open U → X is given by the map G(U ×Y X → X)→ G(U ×Y X → X
τg→ X) that

one gets from applying the functoriality of G to (Id× τg) : U ×Y X → U ×Y X.
So the edge homomorphisms are G-equivariant isomorphisms. The pullback homomorphism is
given by f∗ : Hnét(Y,F) → Hnét(Y, f∗f

∗F) → Hnét(X, f
∗F). So we can apply the result from the

previous subsection, which gives that there exists a homomorphism µ : Hnét(X, f
∗F) → Hnét(Y,F)

such that µ ◦ f∗ is multiplication by |G| and such that (f∗ ◦ µ)(x) =
∑
g∈G

g · x.

Now we are ready to show that Hnét(Y,Ql) = Hnét(X,Ql)
G. Notice that for all Λn := Z/lnZ ∈ Sh(Yét)

we have such maps µ as above. This gives that after passing to the limit and applying −⊗Zl
Ql we

have a map µ : Hnét(X,Ql)→ Hnét(Y,Ql) such that µ◦f∗ = |G| and such that (f∗ ◦µ)(x) =
∑
g∈G

g ·x.

It is clear that f∗ : Hnét(Y,Ql) → Hnét(X,Ql)
G is injective (as F → f∗f

∗F is injective) and as
(f∗ ◦ µ) restricted to Hnét(X,Ql)

G equals |G| we have that µ is also injective, giving that the
dimensions of Hnét(Y,Ql) and Hnét(X,Ql)

G are the same and hence f∗ : Hnét(Y,Ql)→ Hnét(X,Ql)
G is

an isomorphism.

Connected algebraic groups act trivially on cohomology

Now we want to show that if X is a variety over an algebraically closed field k and G is a connected
algebraic group that acts on X, then G(k) acts trivially on Hnét(X,Λ) for Λ some constant sheaf
on X. As we will consider X to be smooth it will suffice to show it for the compactly supported
cohomology Hnc (X,Λ) by the Poincare duality theorem.
The general strategy will be as follows: To show that τ∗g : Hnc (X,Λ) → Hnc (X,Λ) is the identity
map we will consider Hnc (X,Λ) as a constant sheaf on Gét. We will then construct a morphism of
sheaves f̃ : Hnc (X,Λ)→ Hnc (X,Λ) such that on all stalks we have that f̃g : H

n
c (X,Λ)g → Hnc (X,Λ)g

equals τ∗g for all g ∈ G(k). If we can do this, then as G is connected, we that f̃ is determined by

f̃(G) as Hnc (X,Λ) is a constant sheaf and as G is connected, f̃(G) then equals τ∗g for all g ∈ G(k).
So all τ∗g are equal to τ∗e = Id and hence G(k) acts trivially on Hnc (X,Λ).

We proceed with constructing f̃ . Consider the morphism f : G×k X → G×k X (g, x) 7→ (g, gx).
For π : G×k X → G the projection we have π ◦ f = π. So we have a base-change homomorphism
of sheaves h̃ : Rnc π∗Λ → Rnc π∗f

∗Λ = Rnc π∗Λ (the last equality holding as Λ is constant). Now we
consider the following the following square where the top arrow is the projection:

G×k X X

G Spec(k)

π

By applying the base-change theorem for compactly supported cohomology for the sheaf Λ on X
we obtain that Rnc π∗Λ = Hnc (X,Λ) as sheaves on G. For g ∈ G(k) we note that by the base-change
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theorem we have Hnc (X × {g},Λ)
∼→ Rnc π∗Λ. Now by definition of h̃, we note that it is induced

by taking for all U → G étale, the induced map h∗U : Hnét(U ×k X) → Hnét(U ×k X), where hU is
the map (u, x) 7→ (u, ux) (u identified with its image in G in the second argument). In particular
we note that on the fibre over g, the map h̃g on the stalk Hnc (X,Λ)g is precisely τ∗g . Now we have

constructed the desired morphism of sheaves f̃ : Hnét(X,Λ) → Hnét(X,Λ) described above. From
this we conclude that G(k) acts trivially on Hnc (X,Λ) for Λ any constant sheaf.
The poincaré duality pairing satisfies ⟨f∗x, f∗y⟩ = f∗⟨x, y⟩ = deg(f)⟨x, y⟩ for f : X → X a finite
morphism. Now τg is finite of degree 1, hence we have for any x ∈ Hnét(X,Λ) and y ∈ H2d−n

c (X,Λ)
that ⟨τ∗g x, y⟩ = ⟨x, τ∗g−1y⟩ = ⟨x, y⟩ as G(k) acts trivially on H2d−n

c (X,Λ). Hence as the pairing is
perfect and y is arbitrary we obtain that τ∗g x = x for all x ∈ Hnét(X,Λ). So we conclude that for
X a smooth variety, Λ a constant sheaf on X and G a connected algebraic group acting on X that
G(k) acts trivially on Hnét(X,Λ). In particular G(k) acts trivially on Hnét(X,Ql).

Isogenies induce isomorphisms on l-adic cohomology

Let φ : G→ H be an isogeny of group varieties. Then φ factors asG→ G/ ker(φ) composed with an
isomorphism. Let ker(ϕ)0 be the connected component of ker(φ). Then as G→ G/ ker(ϕ)0 is purely
inseparable, it gives an isomorphism on the l-adic cohomology as seen in Lemma 2.53. Now let
G = G/ ker(ϕ)0 andK = ker(φ)/ ker(φ)0 and consider the natural map π : G→ G/K. AsK is étale

and we are working over an algebraically closed field we have that K =
⊔
m∈M

Spec(k) for M some

finite group. Hence G/K is the quotient by a finite groupM , hence π∗ : Hnét(G/K,Ql)→ Hnét(G,Ql)
is injective and its image equals Hnét(G,Ql)

M . Now notice thatM ⊂ G(k) and that the action ofM
is induced by the action of G(k) on Hnét(G,Ql), which is induced by the action of G on itself.
This implies by the previous part that M acts trivially as G is a (connected) group variety. So
π∗ : Hnét(G/K,Ql) → Hnét(G,Ql) is in fact an isomorphism. Hence φ∗ : Hnét(H,Ql) → Hnét(G,Ql)
is the composition of three isomorphisms, hence an isomorphism. This concludes the proof of
Theorem 2.52.

We now state the existence of two fundamental exact sequences. The first one is for compactly
supported cohomology.

Proposition 2.54 ([29] Remark III.1.30). Let Z be a closed subscheme of X and let F ∈ Sh(Xét).
Denote U = X \ Z, j : U ↪→ X and i : Z ↪→ X. The sequence 0 → j!F|U → F → i∗i

∗F → 0 in
Sh(Xét) is exact and gives rise to a long exact sequence:

...→ Hrc(U, j
∗F)→ Hrc(X,F)→ Hrc(Z, i

∗F)→ Hr+1
c (U, |∗F )→ ...

The second one is called the Gysin sequence.

Proposition 2.55 (Gysin sequence, [31] Corollary 16.2). Let (Z,X) be a smooth pair of k-varieties
of codimension c and let U = X \ Z with inclusions ι : Z → X and j : U → X. Let F be a locally
constant sheaf of Λ-modules on X. There is a long exact sequence:

...→ Hrét(X,F)→ Hrét(U, j
∗F)→ Hr−2c

ét (Z, i∗F)→ Hr+1
ét (X,F)→ ...

Note that in the sequence we put Hrét(Z,F) = 0 when r < 0. This sequence is called the Gysin
sequence and Hrét(Z,F)→ Hr+2c

ét (X,F) is called the Gysin map.
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Intersection theory

We give a brief introduction to intersection theory as we will use some results from this area later.
For a more thorough introduction see [22]. Throughout this part X will be a scheme of finite type
over a field k.

Definition 2.56. An integral subvariety Z of X is called a prime cycle.

Definition 2.57. The group of codimension r-cycles is Zr(X) :=
⊕
Z⊂X

Z · Z, the sum being taken

over all prime cycles of codimension r. We denote by Zr(XL) = Zdim(X)−r(X) the group of
dimension r cycles. A codimension 1 cycle is called a divisor and the group of them is denoted
Div(X).

When X is irreducible we can associate a divisor to a rational function.

Definition 2.58. Let X be irreducible and V ⊂ X be irreducible of codimension 1 with generic

point v. For 0 ̸= c ∈ OX,v define ordV (c) := lengthOX,v
(OX,v/(c)). Then for f =

a

b
with a, b ∈ OX,v

define ordV (f) = ordV (a)− ordV (b).

Notice that if X is smooth, then OX,v is a DVR and hence lengthOX,v
(OX,v/(a)) = n for the

unique n ∈ Z≥0 such that tn · u = a for u ∈ O×
X,v and (t) = mv.

Remark 2.59. From the relation lengthA(A/(a)) + lengthA(A/(d)) = lengthA(A/(ad)) whenever
these are finite ([22], Lemma A.2.5) together with dim(OX,v) = 1 and that OX,v has no nonzero
zero divisors, it follows that the definition of ordV (f) makes sense. In fact from the above additivity,
it follows that ordV : K(X)× → Z is a homomorphism.

Definition 2.60. Let X be an irreducible variety and f ∈ K(X)×. The principal divisor corresp-

doning to f is div(f) :=
∑
Z

ordZ(f) · Z, the sum taken over all prime divisors.

Since div : K(X)× → Div(X) is a homomorphism, div(K(X)×) ⊂ Div(X) is a subgroup.

Now we make a generalization of the previous definition to arbitrary codimension.

Definition 2.61. A cycle Z ∈ Zr(X) is rationally equivalent to 0 if there exist a finite number of

prime cycles of codimension r − 1, {Wi}, and fi ∈ K(Wi)
× such that Z =

∑
i

div(fi).

Remark 2.62. Notice that by div being a homomorphism, it follows that the codimension r-cycles
that are rationally equivalent to 0 form a subgroup of Zr(X).

This leads to the following definition.

Definition 2.63. The r’th Chow group of X is the quotient of Zr(X) by the cycles that are
rationally equivalent to 0. Denote it by Ar(X). Denote Ar(X) = Ad−r(X) for d = dim(X).

We have the following trivial example.
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Example 2.64. The Chow group of A1 has A0(A1) = Z, which is generated by the class [A1]
and A1(A1) = 0 as any closed point is the vanishing locus of some polynomial. By applying ([22]
Proposition 1.9) it follows that A0(Ar) = Z and Ai(Ar) = 0 for all i > 0. We will calculate the
Chow groups of a complete variety X that admits a filtration X = Yn ⊃ .... ⊃ Y0 = ø of closed
subschemes such that Yi\Yi−1 is a disjoint union of affine spaces in Section 6. Note that an example
of such a space X is Pn.

It is also possible to attach a cycle to certain closed subschemes.

Definition 2.65. Let Z be a closed subscheme of X such that all the irreducible components Zi
with generic points ηi of Z have the same dimension. Let mi := lengthOX,ηi

(OZ,ηi). Then the cycle

corresponding to Z is [Z] :=
∑
i

mi · Zi.

Now we define the flat pullback of a cycle.

Definition 2.66. Let f : X → Y be a flat morphism of relative dimension d. Define the flat
pullback f∗ : Zr(Y )→ Zr−d(X) by f∗([Z]) = [f−1(Z)].

We have the following basic functoriality of the Chow groups.

Proposition 2.67 ([22] p.19 Theorem 1.7). Let f : X → Y be a flat morphism of relative dimension
d. The map f∗ defined above is a homomorphism of abelian groups and descends to a homomorphism
f∗ : Ar(Y )→ Ar−d(X).

Given a proper morphism such as a closed immersion, one gets covariant functoriality. In
particular one has the functoriality for closed immersions.

Proposition 2.68. Let π : X → Y be a proper morphism and let dim(Y ) = d. Define a map

by π∗ : Zr(X) → Zr(Y ) π∗[Z] =

{
0 if dim(f(Z)) < d− r
m · [f(Z)] else

for m = deg(π : Z → f(Z)). The

function π∗ descends to a homomorphism of abelian groups π∗ : A
r(X)→ Ar(Y ).

It is possible to put all the Chow groups together and make a commutative ring.

Theorem 2.69 ([22] Chapter 6). Let X be a variety of dimension d. Let 0 ≤ m,n ≤ d. There
exists a Z-bilinear map Am(X)×An(X)→ Am+n(X) called the ‘intersection product’ such that:

• The abelian group A∗(X) :=

d⊕
i=0

Ai becomes a graded ring that is commutative when put

together with the intersection product.

• For f : X → Y a flat morphism, f∗ : A∗(Y )→ A∗(X) is a ring homomorphism.

Definition 2.70. Call the ring A∗(X) :=
⊕
i

Ai(X) the Chow ring of X.

There turns out to be a way to compare the l-adic cohomology of a smooth variety with its
Chow ring.
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Theorem 2.71 (Cycle class map, [29] Paragraph VI. 9). Let X be a smooth quasiprojective variety
over an algebraically closed field k and let char(k) ̸= l be prime. There exists a cycle map clX :
A∗(X)→ H∗

ét(X,Z/lnZ) which is a ring homomorphism and maps Ar(X) into H2r
ét (X,Z/lnZ) and

has the following properties:

• For [Z] ∈ Ar(X) the class of a smooth prime cycle Z we have that clX([Z]) is equal to the
image of 1 ∈ H0

ét(Z,Λ) under the Gysin map H0
ét(Z,Λ)

∼→ H2r
Z (X,Λ)→ H2r

ét (X,Λ).

• If f : X → Y is flat then the pullbacks commute, i.e. clX ◦ f∗ = f∗ ◦ clY .

• One may pass to the limit and apply −⊗Zl
Ql to obtain the l-adic cycle class map, which is

a homomorphism of Ql-algebras clX : A∗(X)⊗Z Ql → H∗
ét(X,Ql).

We use the following notation for the graded trace on l-adic cohomology.

Definition 2.72. For f : X → X a morphism over an algebraically closed field denote the graded

trace of f by trX(f) :=
∑
i

(−1)itr(f∗ |Hiét(X,Ql))

The following theorem can is proved by applying properties of the cycle map.

Theorem 2.73 (Grothendieck-Lefschetz fixed point formula, [29] Theorem VI.12.3 and [31] Lemma
25.6). Let X be a smooth projective variety over k = k̄ of dimension d and let f : X → X such
that f fixes finitely many points. Then:

Γf ·∆ = trX(f)

If for all P ∈ X(k) that are fixed by f we have that dfP : TP (X) → TP (X) does not have 1 as an
eigenvalue, then the above graded trace is the actual fixed point count of f .

To conclude the chapter we have the following calculation. We use Example 2.13 which gives
the canonical isomorphism of the pullback of a constant sheaf.

Proposition 2.74. Let T be a split torus and let A be an abelian variety both over a field k
that contains the ln’th roots unity (l ̸= char(k)). There are isomorphisms of abelian groups
H1

ét(T,Z/lnZ) ∼= X(T )/(ln) and H1
ét(A,Z/lnZ) ∼= Pic0(A)[ln] that are functorial in the follow-

ing sense: For f : B → A a homomorphism of abelian varieties and g : S → T of algebraic
tori, the pullback maps on cohomology are the natural pullbacks f∗ : Pic0(A)[n] → Pic0(B)[n] and
g∗ : X(T )/(ln)→ X(S)/(ln).

Proof. We begin with the case of the split tori. Since k contains the l’nth roots of unity, the sheaf
µln is constant and hence g∗ : H1

ét(T, µln,T ) → H1
ét(S, g

∗µln,T )
∼→ H1

ét(S, µn,S) is the pullback as in
Example 2.13 Note that the last map is compatible with the Kummer sequence in the sense that
there is a morphism of short exact sequences, with map below induced by (g∗Gm,T )

P → Gm,S ,
which at the level of U → S étale maps V → Gm in the colimit to U → V → Gm:

0 g∗µln,T g∗Gm,T g∗Gm,T 0

0 µln,S Gm,S Gm,S 0
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Thus in particular the following square commutes:

Mor(S,Gm) Mor(S,Gm) H1
ét(S, µln,S) 0

Mor(T,Gm) Mor(T,Gm) H1
ét(T, µln,T ) 0

[ln]

g∗ g∗ g∗

[ln]

The pullback maps g∗ : Mor(S,Gm) → Mor(T,Gm) are postcomposition by g, which follows
directly from considering the composition Gm,S(S) → g∗g

∗Gm,S(S) = g∗Gm,S(T ) → Gm,T (T ).

So the isomorphism H1
ét(S, µln,S)

∼= Mor(S,Gm)/(l
n) is functorial in the sense that the pullback

H1
ét(S, µln,S) → H1

ét(T, µln,T ) is postcomposition by g. Now the above works perfectly fine for any

morphism g and any schemes S, T such that Pic(S) = Pic(T ) = 0. For tori S, T and a homomor-
phism g : S → T there is a pullback map X(T )→ X(S) and X(T ) ⊂ Mor(T,Gm) has X(T )/(ln) =
Mor(T,Gm)/(l

n). Hence in this case we may take H1
ét(S, µln,S)

∼= Mor(S,Gm)/(l
n) = X(S)/(ln)

such that the following diagram commutes:

X(T )/(ln) H1
ét(T, µln,T )

X(S)/(ln) H1
ét(S, µln,S)

g∗ g∗

Now we look at the case of a homorphism f : B → A between abelian varieties. As above the
Kummer sequence provides us with the following commuting diagram:

0 H1
ét(A,µln,A) H1

ét(A,Gm,A) H1
ét(A,Gm,A)

0 H1
ét(B,µln,B) H1

ét(B,Gm,B) H1
ét(B,Gm,B)

f∗

[ln]

f∗ f∗

[ln]

(2.1)

The isomorphism Ȟ1(A,Gm) → H1
ét(A,Gm,A) (actually for an arbitrary scheme A and sheaf

Gm,A) comes from the Cech to derived spectral sequence ([29] Prop III.2.7), which is compatible with

the pullback homomorphism in the sense that, for U = (Ui → A)i a cover and U ′ = (Ui×AB → B)i
the pulled back cover, the following diagram commutes (compare with [16] diagram (12.1.4.2):

Ȟ1(U ,Gm,A) H1
ét(A,Gm,A)

Ȟ1(U ′, f∗Gm,A) H1
ét(B, f

∗Gm,A)

f∗ f∗

The Cech to Derived spectral sequence is a particular case of the Groehtendieck spectral se-
quence, which is functorial in the sheaf argument, hence it is compatible with the morphism
f∗Gm,A → Gm,B. This implies that there is a commuting diagram:



44 CHAPTER 2. ÉTALE COHOMOLOGY

Ȟ1(U ,Gm,A) H1
ét(A,Gm,A)

Ȟ1(U ′,Gm,B) H1
ét(B,Gm,B)

f∗ f∗ (2.2)

The map f∗ on Cech cohomology is induced by mapping (gij)ij ∈
∏
i,j

Mor(Uij ,Gm) to its class

in ([gij ])i,j ∈
∏
i,j

f∗Gm,A(Uij×BA) and then to (gij ◦f)ij ∈
∏
i,j

Mor(Uij×BA,Gm) (this follows since

the pullback homomorphism is defined on the level of sections of the sheaves and as above we know
that they are hence defined like this). In particular it is thus the usual pullback homomorphism
f∗ : Pic(A)→ Pic(B). We see by Diagram 2.1 that f∗ : H1

ét(A,µln,A)→ H1
ét(B,µln,B) corresponds

is given by the map f∗ : H1
ét(A,Gm,A) → H1

ét(B,Gm,B) restricted to the ln-torsion, which by

Diagram 2.2 and the above corresponds to the map f∗ : Pic(A) → Pic(B) restricted to the ln-
torsion. We know that for any abelian variety A and n > 0 we have Pic0(A)[n] = Pic(A)[n]
([34], p.75 (v)), which finishes of the proof.



Chapter 3

Counting fixed points

Throughout this chapter let G be an algebraic group over an arbitrary algebraically closed field k
and let σ : G→ G be an endomorphism. Throughout this chapter we will be interested in counting
fixed points of all the iterates of σ.

Definition 3.1. For σ : G → G an endomorphism, define the fixed subscheme of σ, Fix(σ), to
be the subgroup scheme of G defined by Fix(σ)(R) = {g ∈ G(R) |σR(g) = g}.

This is represented by the scheme Eq(σ, Id).

Definition 3.2. An endomorphism σ : G→ G is confined if Fix(σn) is a finite scheme over k for
all n or equivalently if σn fixes finitely many points in G(k) for all n.

We are interested in the following sequence.

Definition 3.3. Let σ be a confined endomorphism. Define the fixed point sequence (σn)n by
setting σn = #Fix(σn)(k).

We have the following example.

Example 3.4. Let G/Fp be an algebraic group (or an algebraic scheme, this also works fine here)
defined over a finite field Fq. Denote the algebraic group over Fq by GFq . Then one has the q-
Frobenius endomorphism Frobq : G → G, which is defined on any affine open U = Spec(R) ⊂ G
where we have R = Fp[X1, ..., Xn]/(f1, ..., fm) with fi ∈ Fq[X1, ..., Xn] by Frobq(Xi) = Xq

i . Note
that (a1, ..., an) ∈ G(Fp) is fixed if and only ai ∈ Fq for all i, hence if and only if this points lies in
GFq(Fq). So we see that understanding the sequence (Frobqn)n is equivalent to understanding the
sequence (GFq(Fqn))n.

Remark 3.5. If one is interested in understanding the sequence (σn)n, then one may assume that
σ is surjective. Indeed, the images σ(G) ⊃ σ2(G) ⊃ σ3(G) ⊃ ... form a descending chain of closed
subschemes of G, which terminates at some j and one can replace G by σj(G).

We have the following theorem by Steinberg.

Theorem 3.6 (Lang-Steinberg, Theorem 10.1 [44]). Let σ : G→ G be a surjective endomorphism
of a group variety such that Fix(σ) is finite, then the Lang map Lσ : G → G g 7→ g−1σ(g) is
surjective.
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By applying this theorem we are able to split up the fixed point count.

Lemma 3.7. Let H be a subgroup of an algebraic group G and let σ be a confined endomorphism of
G that restricts to an endomorphism τ of H and hence induces an endomorphism φ of the quotient
Q := G/H. Then σn = τn · φn.

Proof. Note that it suffices to prove n = 1. As k is algebraically closed we have Q(k) = G(k)/H(k).
If x ∈ G(k) is fixed, then the reduction (mod H(k)) is fixed. The fibre over x (mod K(k)) is
{x ·y | y ∈ H(k)} and a point x ·y in this fibre is fixed if and only if y is fixed. So the number of fixed
points in this fibre equals τ1. Hence we see that it suffices to show that Fix(σG)(k)→ Fix(σQ)(k)
is surjective. Consider x ∈ G(k) such that x (mod H(k)) is fixed by σ. Then x−1σ(x) ∈ H(k) and
hence by surjectivity of the Lang map 3.6 we obtain x−1σ(x) = y−1σ(y) for y ∈ H(k). So xy−1 is
a point fixed by σ that lies over x (mod H(k)).

We see that if we can get a filtration of our algebraic group by characteristic subgroups that
understanding the sequence (σn)n may be easier. To obtain such a filtration we assume that σ is
surjective (note that after some n > 0 the map σ◦n(G) → σ◦n+1(G) is surjective as the algebraic
subgroups of G satisfy the d.c.c. condition. Now note that by surjectivity of σ, σ(Glin) is normal in
G and hence contained in Glin. For linear G, note that σRu(G) is contained in Ru(G) and note that
for reductive G, σ(R(G)), which is a torus, is contained in R(G). This gives the desired filtration.
Note that instead of ‘contained in’ above we may actually write ‘equals’ because of dimension
reasons.

Corollary 3.8. Let G be a group variety and σ a surjective confined endomorphism. Then
σn = σAn ·σUn ·σTn ·σssn for σA a confined endomorphism on an abelian variety, σU an endomorphism
on a unipotent group variety, σT an endomorphism on a torus and σss an endomorphism on a
semisimple group variety.

Proof. Apply the above lemma to G/Glin being an abelian variety, Glin/Ru(G) being reductive and
Gred/R(G) being semisimple.

It turns out that we can do slightly better than just any unipotent algebraic group.

Lemma 3.9. ([8], Prop 7.1.2) For σ a confined endomorphism on a unipotent group variety U we
have σn = σV1n · ... · σVrn for V1, ..., Vr vector groups.

Proof. Consider the derived series of U ⊃ D(U) ⊃ D(D(U)) ⊃ ..., which is a filtration of U by
characteristic subgroups. As U is solvable the derived series terminates. The quotients Qi in this
series are commutative and unipotent, hence the Qi admit a subnormal series with quotients Ga

([32], Corollary 16.6 together with the subnormal series of Tn that has quotients Ga or Gm). So Qi
admits a finite filtration by the characteristic subgroups pmQi, whose quotients are commutative
unipotent algebraic groups in which every element has order p, which are vector groups ([39]
p.177).

We have the following additional proposition, which will also aid us later in Chapter 6. It is
used in Chapter 5 of [8] to understand the fixed point count in the case of a semisimple group
variety.
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Proposition 3.10 (Steinberg, [44] Corollary 10.10). Let σ : G → G be a surjective confined
endomorphism of a linear algebraic group. There exists a σ-stable Borel pair (B, T ) of G.

Remark 3.11. It is easily checked that the above proposition is a direct consequence of the Lang
Steinberg Theorem 3.6 (though one should note that Steinberg first shows the existence of a σ-stable
Borel group for surjective σ : G → G [44] Theorem 7.2 before proving Theorem 3.6). The above
proposition is used in [8] Chapter 5 to give a fixed point formula for a semisimple group variety G,
which then reduces to giving one for B and one for G/B for B a σ-stable Borel subgroup. We will
also use this Proposition heavily in chapter 6.

In the following theorem by a gcd-sequence we mean a sequence (an)n such that an = agcd(n,ω)
for some ω ∈ Z. Any gcd-sequence is periodic. Recall that SW denote the Weyl group invariants.
Let SW+ ⊂ SW be the ideal of those of positive degree.

Theorem 3.12 (Byszewski, Cornelissen, Houben [8]). Let σA be an endomorphism on an abelian
variety A, σV on a vector group V , σT on a torus T and σG on a semisimple group variety G, all
surjective and confined. Assume that the field that we are working over has characteristic p > 0.

• σAn = |dn| · rn · |n|snp where rn ∈ Q>0 and sn ∈ Z≥0 define gcd-sequences and dn = trA((σ
A)n).

• σTn = |dn| · rn · |n|snp where rn ∈ Q>0 and sn ∈ Z≥0 define gcd-sequences and dn = trT ((σ
T )n).

• σGn = |dn| · cn where dn = det(1− σ∗ | J), where J = SW+ /(SW+ )2.

• When k = Fp, then σVn = cnp−tn|n|
−1
p where tn ∈ Z≥0 defines a gcd-sequence.

As a consequence, a confined surjective endomorphism σ : G → G over Fp has fixed point count
given by:

σn = |dn|cnrn|n|snp p−tn|n|
−1
p

Here dn is linearly recurrent, c = pr and rn ∈ Q>0, sn, tn ∈ Z≥0 all three define gcd-sequences.

Remark 3.13. It should be noted that in the first three cases the terms |dn| equal deg(σn − 1) and
that other terms make up degi(σ

n − 1)−1. For the first three cases the methods used in [8] also
apply to char(k) = 0 and hence the fixed point count reduces to |dn| in all the three above cases
when char(k) = 0. For the fourth cases, note that any endomorphism of a vector group over k with
char(k) = 0 is linear, hence any confined endomorphism fixes only one point in this case.

Note that the last case of Theorem 3.12 is only over Fp.

Question 1. Let V be a vector group over an arbitrary algebraically closed field k with char(k) = p.

Does there exist a gcd-sequence (tn)n ∈ ZN such that σn = cnp−tn|n|
−1
p ?

Solving this problem would be very desirable. Unfortunately the efforts of the author came
up short. Another interesting problem is understanding the terms |dn|. They seem to have a
cohomological interpretation.

Question 2. Let G be a group variety and let σ : G→ G be a surjective confined endomorphism.
Set |dn|G to be the product of the three |dn| in Theorem 3.12 that one obtains by applying the
filtration of G by fully characteristic subgroups. Do we have |dn|G = trG(σ

n)?
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In this thesis we show among other things that the above question has a positive answer. The
main focus of the authors in [8] was the case k = Fp and they found the following solution in this
case after finding that |dn|G equals trGlin

(σ) · trGab
(σ).

Partial answer ([8] Lemma 12.3.6). Let G be a group variety over Fp. There is an isogeny
Glin ×Fp

Gab → G that commutes with the relevant morphisms induced by σ.

The above is a direct consequence of Arima’s theorem [1], which we shall see in the next chapter.
Theorem 2.52 then implies that H∗

ét(G,Ql)→ H∗
ét(Glin,Ql)⊗Ql

H∗
ét(Gab,Ql) is an isomorphism that

commutes with the action of σ∗. Thus it follows that |dn|G = trG(σ) in the case of k = Fp. For
general k however there does not exist an isogeny Glin ×k Gab → G. We will see an explicit
counterexample in the next chapter. In Chapter 5 and 6 we show by using different methods that
Question 2 has a positive answer in general by studying the l-adic cohomology of group varieties.



Chapter 4

Arima’s Theorem

In this chapter we let k be an algebraically closed field. We are interested in whether Glin×kGab and
G are isogenous. At the beginning of this chapter we will see that it suffices to study this question
when G is commutative and divisible. We then introduce the Ext(−,−) bifunctor and we give a
proof of Arima’s theorem, which states that for commutative G we have that [G] ∈ Ext(Gab, Glin) is
of finite order if and only if an isogeny Glin×kGab → G exists. Using this we state and proof another
one of Arima’s theorems, which states that if we work over Fp, thenGlin×Fp

Gab andG are isogenous.
We conclude the section by give an example of an exact sequence e→ Glin → G→ Gab → e where
such that G and Glin ×k Gab are not isogenous.

First we state the two theorems of Arima.

Theorem 4.1 (Arima’s Theorem 1, ([1] p.235)). Let G be a commutative group variety. Then G
is isogenous to Glin ×k Gab if and only if the class of G in Ext(Gab, Glin) is of finite order.

We introduce the notion of Ext(−,−) in Subsection 4.2.

Theorem 4.2 (Arima’s Theorem 2, ([1] p.235)). Let G be a group variety over Fp. Then there
exists an abelian subvariety A ⊂ G such that A ·Glin = G.

Although this is stated a bit differently from how it is written above, it will turn out to be
equivalent to Glin ×k Gab and G being isogenous by Lemma 4.3 below.

4.1 Reducing to the case that G is commutative and divisible

In this subsection we show that G is isogenous to Gant ×k Glin if and only if Gant is an abelian
variety (and thus equal to (Gant)ab). As Gant commutative and divisible, this allows us to reduce
to the case that G is commutative and divisible. We have the following equivalent characterization
of splitting up to isogeny.

Lemma 4.3. Let G be a connected group variety, then G ≃ Glin×Gab is equivalent to there existing
an abelian subvariety A ⊂ G such that A ·Glin = G.

49
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Proof. Suppose that A ·Glin = G. Any abelian subvariety A is contained in Gant, which is contained
in Z(G) by Lemma 1.52. Hence the natural map A × Glin → G is a homomorphism of algebraic
groups. We notice that the kernel is isomorphic as a scheme to A ∩ Glin, so it is complete and
affine, hence finite, i.e. the map is an isogeny. On the other hand, the Chevally-Barsotti theorem
gives us that e→ Glin → Glin · A→ Gab → e is exact. Hence the restriction of G→ Gab to A is a
quotient map with kernel A ∩ Glin, which is finite, hence this is an isogeny. This gives an isogeny
Glin ×A→ Glin ×Gab, which means that G ≃ Glin ×Gab.
Now suppose that G ≃ Glin × Gab, i.e. we have a chain G = G0 − ... − Gn = Glin × Gab. We
claim that it suffices to prove the following: There exists B ⊴ G such that B/F = A is an abelian
variety for F finite and G/(B · Glin) is finite. Indeed, the second condition implies G = B · Glin

as G is a connected group variety. As B and Glin generate G we have Gant ⊂ B, so Gant → A′ is
an isogeny for A′ an abelian subvariety of A. As Gant is commutative and divisible, this isogeny
reverses, hence Gant is complete as it is also a connected group variety. So as G = Gant ·Glin and
Gant is complete, we see that the statements are equivalent.
We will now show that G satisfies this equivalent condition by decreasing induction: Clearly Gn =
Glin × Gab satisfies it. Suppose Gk satisfies it, then we need to show that Gk−1 satisfies it. If
φ : Gk → Gk−1 is an isogeny, then up to finite index Gk−1 equals φ((Gk)lin) · φ(B) for B ⊂ Gk
such that B/F = A an abelian variety. Now notice that φ(B)/φ(F ) is complete, and that we have
an inclusion φ((Gk)lin) ⊂ (Gk−1)lin, which shows the induction step in this case.
If φ : Gk−1 → Gk is an isogeny then up to finite index Gk−1 equals φ−1((Gk)lin) · φ−1(B). Notice
that (Gk−1)lin is contained in φ−1((Gk)lin). It follows from Gk−1 = (Gk−1)lin · (Gk−1)ant and that
φ is an isogeny that it equals φ−1((Gk)lin) up to finite index. As φ−1(B) → B has finite kernel,
there exists finite F ′ such that φ−1(B)/F ′ → A is a closed immersion, hence φ−1(B) is an abelian
variety up to finite index. This proves the induction step, hence the lemma.

Next we have the following lemma.

Lemma 4.4. Let G be a group variety. Then Gant is divisible. Moreover Gant is an abelian variety
if and only if G is isogenous to Glin ×k Gab.

Proof. For showing that Gant is divisible we consider [n] : Gant → Gant and let H denote the
cokernel. Then Hab is an abelian variety such that [n] is trivial on this abelian variety. This implies
that the abelian variety is trivial as abelian varieties are divisible. So H = Hlin. Thus the image of
the map Gant → H must be trivial, so H is trivial. So [n] is surjective and hence Gant is divisible.

Let A ⊂ G be an abelian subvariety variety, then since Gant = ker(G → Spec(O(G))) we have
A ⊂ Gant. Notice that Gant ·Glin = G as G/Gant ·Glin admits quotient maps coming from G/Gant

and G/Glin showing that it is a complete, affine, smooth and connected variety, which is trivial.

Let D be another subgroup variety of G such that D · Glin = G. Then
D

D ∩Gant

∼=
Gant ·D
Gant

is

linear as it is a subgroup of Spec(O(G)). Notice that D ∩Gant is a normal subgroup of G as it is

contained in Z(G). Consider the quotient map G → G

D ∩Gant
. Then the images of D and Glin

generate the quotient. As both the images are linear, the quotient is linear. So the image of Gant is
trivial in the quotient, hence Gant = Gant ∩D, so Gant ⊂ D. In particular if Glin×k Gab and G are
isogenous we have by Lemma 4.3 that A ·Glin = G for A an abelian variety, giving A ⊂ Gant ⊂ A
and hence Gant = A.
Conversely if Gant is an abelian variety, note that µ : Gant ×k Glin → G is an isogeny as it is a
quotient map by Theorem 1.60 and its kernel is complete and affine.
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4.2 The Ext functor

In this section we introduce the Ext functor. Until the end of this chapter all algebraic groups are
assumed to be commutative unless stated otherwise.

Proposition 4.5 ([32], p.115). The category of commutative algebraic groups is an abelian subcat-
egory of the category of algebraic groups. Denote this subcategory by C.

This ensures that we can use some basic tools that apply in abelian categories such as pushouts,
the Snake Lemma, etc.

Definition 4.6. Let B and L be algebraic groups. We define Ext(B,L) to be the set of exact
sequences [G] = 0 → L → G → B → 0 modulo the equivalence relation [G] ∼ [G′] whenever a
commuting diagram as follows exists:

0 L G B 0

0 L G B 0

Id f Id

Note that this indeed defines an equivalence relation. If such an f exists, it is necessarily an
isomorphism by the Snake Lemma.

Remark 4.7. Note that if [G] := 0 → L → G → A → 0 is an exact sequence and φ : L → L′ is a
homomorphism, we can form another exact sequence as follows:

0 L G B 0

0 L′ G×L L′ B 0

ι

φ Id

Here G×LL =
G× L
N

andN is the algebraic group defined byN(R) = {(φ(l),−ι(l)) | l ∈ L(R)}.
We denote the bottom sequence that is obtain by this by φ∗([G]). We call φ∗ the pushforward.

Now suppose that we have a homomorphism φ : B′ → B. Then we get from [G] the following
exact sequence:

0 L G B 0

0 L G×B B′ B′ 0

Id φ

We denote the bottom sequence by φ∗([G]). We call φ∗ the pullback.

We note that both the pullback and the pushforward respect the relation defined in Definition
4.6.

Remark 4.8. Very useful characterizations of the pullback and the pushforward are the following
(p. 162 [39]): For [G] ∈ Ext(B,L) and φ : B′ → B and ψ : L→ L′ we have that φ∗[G] ∈ Ext(B′, L)
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is the unique element represented by a sequence e → L → C → B′ → e such that there exists a
commuting diagram:

e L G B e

e L C B′ e

Id φ

Indeed note that there is a natural map C → G ×B B′ giving that the relevant sequences are
equivalent. Similarly we have that ψ∗[G] ∈ Ext(B,L′) is the unique element represented by a
sequence e→ L′ → C → B → e such that there exists a commuting diagram:

e L G B e

e L′ C B e

ψ Id

Again a natural map G×LL′ → C exists giving that the sequences [C] and [G×LL′] are equivalent.

As a consequence we obtain that Ext is functorial in both arguments.

Lemma 4.9. Let B be an algebraic group, then Ext(B,−), which sends an object L to the set
Ext(B,L) and a homomorphism φ : L → L′ to the pushforward φ∗ : Ext(B,L) → Ext(B,L′)
defines a covariant functor C → Set.
For L an algebraic group, Ext(−, L), which sends an object A to the set Ext(B,L) and a morphism
φ : B′ → B to the pullback φ∗ : Ext(B′, L)→ Ext(B,L) defines a contravariant functor C → Set.

Proof. This follows directly from the uniqueness of the relevant extension classes in Remark 4.8.

We give the construction of the Baer sum below.

Definition 4.10. Let [G1], [G2] ∈ Ext(B,L), then [0 → L ⊕ L → G1 ⊕ G2 → B ⊕ B → 0] is an
element of Ext(B⊕B,L⊕L), which we call ⊕([G1], [G2]). As the diagonal map ∆ : B → B⊕B is a
homomorphism we get ∆∗ ◦⊕([G1], [G2]) ∈ Ext(B,L⊕L). As L is commutative, the multiplication
map µL : L⊕ L→ L is a homomorphism, so (µL)∗ ◦∆∗ ◦ ⊕([G1], [G2]) ∈ Ext(L,B). This element
is called the Baer sum of [G1] and [G2].

We now have the following lemma that we will not prove. Baer (Satz 1 p.395 [4]) has shown
that the lemma below is true when B, L are abelian groups. His methods generalize to the category
of commutative algebraic groups as claimed by Serre ([39] p.163).

Lemma 4.11. The operation ‘+’ defined above defines a group structure on Ext(B,L), where the
inverse of a sequence [G] is given by the same sequence with ι : L → G replaced by −ι and with
neutral element being the split sequence [B ×k L].

Remark 4.12. Note that Baer works in slightly in more generality then we do as he considers group
extensions e → N → G → Q → e where Q need not be abelian and Q has some prediscribed
action on N (called χg in [4]) which corresponds to the action induced by conjugation when one
has an exact sequence e → N → G → Q → e. The case that Q is abelian and the action is
trivial corresponds to the central extensions of Q by N . It follows that if [G1], [G2] are given by
commutative algebraic groups, then so is their Baer sum [G1] + [G2], so Ext(Q,N) (as we defined
it, i.e. the extension being commutative) inherits the group structure from the central extensions
of Q by N .



4.2. THE EXT FUNCTOR 53

To deduce other properties of Ext we prove a lemma.

Lemma 4.13. Let [G] ∈ Ext(B,L) and [G′] ∈ Ext(B′, L′) and let ψ : L → L′ and φ : B → B′ be
homomorphisms. Then φ∗[G′] = ψ∗[G] in Ext(B,L′) is equivalent to there existing a commuting
diagram:

e L G B e

e L′ G′ B′ e

ψ

π

F φ

Proof. If ψ∗[G] = φ∗[G′] then the existence of such a diagram follows by Remark 4.8. If such a
diagram exists, then one can construct a homomorphism Ψ : G×LL′ → G′×B′B which is on points
given by (g, l) 7→ (F (g) · l, π(g)). We obtain the following commuting diagram, which implies that
ψ∗[G] = φ∗[G′]:

e L′ G×L L′ B e

e L′ G×B′ B B e

Id Ψ Id

We obtain the following corollary.

Corollary 4.14. For φ : B′ → B and ψ : L→ L′ homomorphisms we have φ∗ψ∗ = ψ∗φ
∗.

Proof. Let G ∈ Ext(B,L) and write [C] = ψ∗[G] and D = φ∗[G]. By the previous lemma we have
that φ∗ψ∗[G] = ψ∗φ

∗[G], is equivalent to the existence of a commuting diagram:

e L D B′ e

e L′ C B e

ψ φ

It is immediate that this diagram exists by putting the commuting diagram that features C,G and
the one that features D,G together.

We can upgrade the previous lemma to that Ext is a functor in both arguments to the category
of groups.

Lemma 4.15. The set-valued functors Ext(B,−) and Ext(−, L) factor through the category of
abelian groups via the forgetful functor Grp→ Set.

Proof. By the previous lemma we have that Ext(B,L) are abelian groups, hence it suffices to show
that the pullback and pushforward are group homomorphisms. For showing this for the pullback
we have to show that if φ : B′ → B is a homomorphism then φ∗[G1 + G2] = φ∗[G1] + φ∗[G2] for
any [G1], [G2] ∈ Ext(B,L). So we want φ∗(µL)∗∆

∗
B([G1]⊕ [G2]) = (µL)∗∆

∗
B′(φ∗[G1]⊕ φ∗[G2]). As

pullbacks and pushforwards commute by Corollary 4.14 we get that the left-hand side is equal to
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(µL)∗(∆B◦φ)∗([G1]⊕[G2]), so it suffices to show that (∆B◦φ)∗([G1]⊕[G2]) = ∆∗
B′(φ∗[G1]⊕φ∗[G2]).

The left-hand side (denoted [C]) is the unique class in Ext(L×kL,B′) such that a diagram as follows
exists:

e L×k L C B′ e

e L×k L G×k G B ×k B e

Id ∆B◦φ

Note that such a diagram also exists for ∆∗
B′(φ∗[G1]⊕ φ∗[G2]) as B

′ ∆B′→ B′ ×k B′ φ×φ→ B ×k B
equals ∆B ◦ φ and makes the relevant diagram commute by Remark 4.8.
Checking the functoriality in the first argument is done similarly.

Another important property of the Ext functor is that it is additive in both arguments. We will
only need the additivity in the second argument so for conciseness we restrict ourself to proving
this case.

Lemma 4.16. The Ext functor is additive in both arguments, i.e. for homomorphisms of algebraic
groups φ1, φ2 : L → L′ and π1, π2 : B → B′ we have (φ1 + φ2)∗ = (φ1)∗ + (φ2)∗ and we have
(π1)

∗ + (π2)
∗ = (π1 + π2)

∗.

Proof. Let [G] ∈ Ext(B,L) and let f, g : B′ → B be homomorphisms. We need to show that
(f+g)∗[G] = f∗[G]+g∗[G] := (µL)∗∆

∗(f∗[G]⊕g∗[G]). Let C := ∆∗(f∗[G]⊕g∗[G]). By Lemma 4.13
it suffices to show that there exists a commuting diagram:

e L×k L C B′ e

e L G B e

µL f+g

Note that by Remark 4.8 there is a commuting diagram:

e L×k L G×k G B ×k B e

e L×k L C B′ e

Id (f×g)◦∆

As we have µB ◦ (f × g) ◦∆ = f + g we can consider compose the previous commuting diagram
with the following commuting diagram to get that (f + g)∗[G] = f∗[G] + g∗[G]:

e L×k L G×k G B ×k B e

e L G B e

µL µG µB

For showing additivity in the first argument, one has to show that (f+g)∗[G] = (µL)∗∆
∗(f∗[G]⊕

g∗[G]) = ∆∗(µL)∗(f∗[G] ⊕ g∗[G]). Then one uses a similar argument, which is again based on
Lemma 4.13.
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Remark 4.17. A slightly easier approach such as one takes in the category of R-modules would be
to show that Ext(B,−) and Ext(−, L) equal R1Hom(B,−) and L1Hom(−, L) where these Hom
functors are from the category of commutative algebraic groups to the category of abelian groups.
The problem with this in our setting is shown by Brion ([6], p.40). He shows that there do not
exist any nonzero injective objects in the category of commutative algebraic groups. So one can
not define these derived functors.

4.3 Principal G-bundles

In this section we introduce principal G-bundles over some variety Y . For the general definition
we make the exception that G may be a non-commutative algebraic group. We use this to study
extensions of commutative algebraic groups B by L by thinking of them as principal L-bundles
over B.

Definition 4.18. Let G be an algebraic group. A (left) principal G-bundle is a morphism
π : X → Y that is faithfully flat and of finite type together with a (left) action ρ : G ×k X → X
such that π ◦ ρ = π ◦ πX for πX : X ×k G→ X the projection. We also require that the morphism
(ρ, IdX) : L×k X → X ×Y X is an isomorphism.

Note that the last condition implies that the action is free, i.e. all stabilizers are trivial. A basic
example that we will use a lot is the following:

Example 4.19. Let e→ L→ G→ B → 0 be an exact sequence of algebraic groups. Then L acts
on G with trivial stabilizers and the image of L in B is trivial. It follows by looking at the functor
of points that L×k X → X ×B X is an isomorphism.

We wish to consider principal bundles up to isomorphism.

Definition 4.20. Two G-bundles X,X ′ over Y are isomorphic if there is an isomorphism X → Y
that respects the action of G and commutes with the maps to Y . We denote the set of principal
G-bundles over Y up to isomorphism by PBY,G.

Now we define sections.

Definition 4.21. Let π : X → Y be a principal G-bundle. A section to this bundle is a morphism
s : Y → X such that π ◦ s = IdY .

It follows that a principal bundle X → Y is isomorphic to the trivial bundle Y ×k G→ Y with
G acting on itself if and only if X → Y admits a section.

Definition 4.22. In the previous definition, we say that X is locally trivial for the Zariski (resp.
étale) topology if there exists a covering (Ui → Y )i such that XUi → Ui has a section for all i.
For T either of these topologies, denote by PBT

X,G the classes of G-bundles over A that are locally
trivial for T .

It follows by the definition that any principal G-bundle is locally trivial in the flat topology.
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Remark 4.23. We have the following operations that we can do on principal G-bundles [X],[X ′]
over Y :

• We can take the product bundle [X ×k X ′] over B × B, which is a principal G × G-bundle,
each copy of G acting componentwise.

• For a morphism φ : B′ → B we can form the pullback φ∗[X] = [X×BB′], which is a principal
G-bundle over B′.

• For a homomorphism G → G′ we can form the pushforward φ∗[X] = [X ×G G′], which
is a principal G′-bundle over B. Here we considering X × G′ and quotienting out by the
anti-diagonal action given by (g, (x, g′)) 7→ (g · x, φ(g)−1 · g′) of G on X ×G′.

In particular we can imitate the Baer-sum, which was defined on Ext(B,L).

Lemma 4.24. For G commutative, PBY,G is a commutative group with (µG)∗ ◦ ∆∗ ◦ × as its
operation. The neutral element is given by [Y ×k G] with G acting on itself and the projection
to Y . The inverse of an element [X] with G-action ρ is given by the same element only with a new
action ρ′ being ρ′(g, x) = ρ(−g, x).
Moreover PB−,− is functorial in both arguments by sending a morphism to its pullback, resp. its
pushforward. The pullback and pushforward maps are group homomorphisms.

The proving that the group structure exists is the same as proving that the Baer-sum makes
Ext(B,L) into an abelian group see [4] (Satz 1 p.395).

Remark 4.25. Showing that the pullback and pushforward are group homomorphisms can be done
in a similar way as in Lemma 4.15, namely the pullback φ∗[X] and pushforward ψ∗[X] are charac-
terized by similar diagrams as in Remark 4.8. This follows from the fact that a morphism between
principle bundles over a base is always an isomorphism (this is true flat-locally and one ‘descends
down’ the isomorphism).

Remark 4.26. Denote by PB−,G| the restriction of PB−,G to the category of commutative algebraic
groups C. The lemma implies that for B,L algebraic groups there are natural transformations
Ext(−, L)→ PB−,L| and Ext(B,−)→ PBB,−.

Definition 4.27. Given a cover U = (Ui → Y )i for the T -topology, denote the set of principal
G-bundles that trivialize over U by PBU

Y,G.

Let GY denote the T -sheaf Homk(−, G) on Y . For such an element [X] ∈ PBU
Y,G we can assign

an element of Ȟ1(U , GY ) is follows: A trivializing cover (Ui → Y )i can be taken to consist of
a single element by taking the disjoint union (formally the fibre product over Y ), so the cover
is U → Y with a section s : U → U ×Y X → X. For k = 1, 2 these can be pulled back to
p∗ks : U ×Y U → U → X, thus defining a morphism (p∗1(s), p

∗
2(s)) : U ×Y U → X ×Y X. Then using

that as X is a principal G-bundle over Y there is the isomorphism (ρ, p2) : G×k X → X ×Y X we
get that there is a unique morphism g : U ×Y U → G such that ρ(g, p∗2(s)) = p∗1(s). We can check
that the element s ∈ GY (U ×Y U) gives an element that maps to 0 in GY (U ×A U ×Y U), hence it
defines an element of Ȟ1

T (U , GY ).

Example 4.28. We go through this process in the example that X → Y is given by the n’th power
map π = [n] : Gm → Gm and G = µn acting on Gm in the obvious way. We take T to be the
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étale topology and n not divisible by the characteristic of the field k. Then we have an étale cover
[n] : U = Gm → Gm such that there is a section s : U → Gm to π : Gm → Gm, namely take s to
be the identity map. Hence we get an induced map (p1, p2) : Gm ×[n] Gm → Gm ×[n] Gm. Hence
the element g of µn(Gm ×[n] Gm) that we get is the unique element such that g(x, y) · x = y for all

x, y ∈ Gm ×[n] Gm, thus it equals g(x, y) =
y

x
. Note that p∗12g · p∗23g · (p∗13g)−1 ∈ µn(G3

m) (omitting

the fibre product subscript) equals the morphism (x, y, z) 7→ x

y
· y
z
· (x
z
)−1 = 1 as needed.

By our above discussion, any isomorphism class of a principal bundle gives a 1-cocycle. It turns
out that the converse is also true. By the discussion on Cech cohomology of Section 2 we obtain
the following.

Proposition 4.29 ([31], p.77). The assignment above PBU
Y,G → Ȟ1

T (U , G) gives a bijection. It

gives an isomorphism PBT
Y,G → Ȟ1

T (Y,G).

In the future we write G instead of GY for the sheaf on Y . The following proposition is claimed
in [11]. What we mean below by functorial in Y is that for f : X → Y a morphism, the below
isomorphisms for X and Y commute with Ȟ1

T (Y,GY )→ Ȟ1
T (X, f

∗GY )→ Ȟ1
T (X,GX), which on a

cocycle is given by componentwise precomposotion with f (see Proposition 2.74).

Proposition 4.30. Let G be a commutative algebraic group. There is an isomorphism of abelian
groups PBT

Y,G
∼= Ȟ1

T (Y,G). It is functorial in both G and in Y .

Proof. We need to check that the the bijection above respects the group law induced by the Baer-
sum and that it is functorial in both Y and G. First we check the addition law. Given principal
G-bundles [X] and [X ′] over Y . We may pick a trivializing open cover U = (φ : U → Y ) that
trivializes both [X] and [X ′]. Let s : U → X and σ : U → X ′ denote the sections of [X] and [X ′]
respectively and denote by (gX) and (gX′) the corresponding cocycles in Ȟ1

T (U , GA). Taking the
product G×kG-bundle [X×kX ′] over Y ×k Y gives that φ×kφ : U ×kU → Y ×k Y is a trivializing
open cover such that (s × σ) : U ×k U → X ×k X ′ is a section. Then taking the pullback of
[X ×kX ′] with respect to ∆ : Y → Y ×k Y gives that φ : U → Y is a trivializing cover with section
(s, σ, φ) : U → X×kX ′×Y×kY ×Y . Then taking the pushforward (µG)∗∆

∗[X×kX ′] = X+X ′ gives
that (s, σ, φ, 0) : U → X×kX ′×Y×kY ×Y ×

G×GG is a section. We call this section Φ for simplicity.
Taking the pullbacks p∗iΦ, we need to show that p∗2Φ(x, y) + gX(x, y) + gX′(x, y) = p∗1Φ. The
left side reads (s(y), σ(y), φ(y), gX(x, y) + gY (x, y)) = (s(y) + gX(x, y), σ(y) + gY (x, y), φ(y), 0) =
(s(x), σ(x), φ(y), 0), which equals p∗1Φ(x) as φ(x) = φ(y) as the elements (x, y) are in U ×Y U ,
where the fibre product taken over φ : U → Y .

We now check that this identification is functorial in Y . Let ψ : Y ′ → Y be a morphism
and φ : U → A be a cover. The pullback morpism then maps a cocycle g : U ×Y U → G to
ψ∗g : U ×Y U ×Y Y ′ → U ×Y U → G. Let [X] be a principal G-bundle over Y such that s : U → X
is a section. Then U ×Y Y ′ → Y ′ is a cover and (s × Id) : U ×Y Y ′ → X ×Y Y ′ is a section.
Then p∗i (s × Id) : (U ×Y Y ′) ×Y ′ (U ×Y Y ′) → X ×Y Y ′ are sections. Through the isomorphism
(U ×Y Y ′) ×Y ′ (U ×Y Y ′) → U ×Y U ×Y Y ′ these sections correspond to the sections given by
(p∗i s, Id) : U ×Y U ×Y Y ′ → X ×Y Y ′. Let g be the cocycle obtained by s and let ψ∗(g) denote its
pullback U ×Y U ×Y Y ′ → G. We have (p∗2s, Id)(x, y, z)+ g(x, y, z) = (s(y)+ g(x, y), z) = (s(x), z),
hence indeed ψ∗(g) is the cocycle that corresponds to ψ∗[X]. Checking the functoriality in G is
routine as well.
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Putting this together with Proposition 2.26 gives the following.

Corollary 4.31. For B and G commutative algebraic groups such that any extension of B by G
is locally trivial in the T -topology there are natural homomorphisms:

Ext(B,G)→ PBT
B,G → H1

T (B,G)

All of them are functorial in both B and G and the last map is an isomorphism.

If we assume that G is a linear group variety then we get more information. We omit underlining
the flat sheaves to improve notation.

Proposition 4.32 ([39], p.169)). Let X be a principal G-bundle over Y , where G is a commutative
linear group variety. Then X → Y is locally trivial for the Zariski topology.

Proof. Let η ∈ B be the generic point and let Xη ⊂ X denote the generic fibre. Let λ ∈ X be some
point sent to η, then there is a morphism of local rings K(Y ) := OY,η → OX,λ. Giving a rational
section Y 99K X that maps η to λ is equivalent to giving a section to K(Y ) → OX,λ, which is a
K(Y )-homomorphism. As K(Y ) is a field, the former is equivalent to K(Y ) ∼= OX,λ/mλ = κ(λ).
The scheme Xη is by definition the pullback of X by the morpihism {η} → B, thus it is a principal
G-bundle over η. A section {η} → Xη is thus equivalent to Xη being the trivial G-bundle. Hence
it suffices to prove the following statement: For G a commutative group variety any principal G-
bundle over Spec(K) forK a field is trivial. The group PBSpec(K),G is isomorphic to H1

fl(Spec(K), G)
as any G-bundle trivializes in the flat topology.

As G is a linear commutative group variety it admits a composition series e = G0 ≤ ... ≤ Gm =
G such that Gi+1/Gi is isomorphic to H ∈ {Ga,Gm} ([6], prop 2.8). As exactness of a sequence
of algebraic groups is preserved under an extension of the basefield ([32], p.24) we have the exact
sequence of algebraic groups over {η} = Spec(K), which reads 0→ (Gi)K → (Gi+1)K → HK → 0.
We get an exact sequence of the corresponding flat sheaves on {η}, which gives the following long
exact sequence in cohomology:

0→ (Gi)K(K)→ (Gi+1)K(K)→ HK(K)→ H1
fl({η}, (Gi)K)→ H1

fl({η}, (Gi+1)K)→ H1
fl({η}, HK)→ ...

The flat sheafs HomK(−, GK) and Homk(−, G) on {η} are equal, so their derived functors are
also equal, hence it suffices to show that H1

fl({η}, GK) = 0. We see that by induction on the
dimension i and by noting that dim((G1)K) = 1, hence G1 ∈ {Ga,Gm}, that it suffices to show
that H1

fl(Spec(K), HK) = 0 for HK ∈ {(Gm)K , (Ga)K}. In the next part the K-subscripts are
omitted.

We can show that this vanishes by using Cech-chomology. Let R be a K-algebra, then in the
case H = Ga the Cech-complex is R → R ⊗K R → R ⊗K R ⊗K R → ... where the maps are given
by r 7→ r ⊗ 1 − 1 ⊗ r and r ⊗ r′ 7→ 1 ⊗ r ⊗ r′ − r ⊗ 1 ⊗ r′ + r ⊗ r′ ⊗ 1. This complex is always
exact for R/K flat ([43, Tag 023M]), hence the cohomology groups vanish. In the case of H = Gm

we have H1
fl(Spec(K),Gm) ∼= H1

zar(Spec(K),Gm) by (Theorem 11.4, [31]), thus it is isomorphic
to Pic(Spec(K)), hence we get that this vanishes as the only invertible sheaf on Spec(K) is the
structure sheaf. This concludes the proof of the proposition.

The assumption that G is connected and smooth is crucial for the above to work as we have
the following counterexample for disconnected or singlar G.

https://stacks.math.columbia.edu/tag/023M
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Example 4.33. Consider the quotient map Gm → Gm x 7→ xn. The kernel of this map equals
µn, which is either disconnected or singular for n > 1. Suppose for a contradiction that this map
has a rational section Gm 99K Gm. This corresponds to a section to the map between the function
fields k(T )→ k(T ) T 7→ Tn. Note that this map having a section implies that there is an element
x ∈ k(T ) such that xn = T , which one can check by hand does not happen unless n = 1. So this
principal µn-bundle is not Zariski locally trivial.

There is a variant of the above for local triviality for the étale topology.

Lemma 4.34. Let π : X → Y be a principal G-bundle with G smooth (not necessarily commuta-
tive). Then π : X → Y is locally trivial for the étale topology.

Proof. As X → Y is a principal G-bundle the following is a pullback square:

G×k X X

X Y

(g,x)7→gx

p2

As G is smooth over Spec(k) we have that p2 is a smooth morphism. For any closed point y ∈ Y
we have that Xy is smooth as G is smooth. Hence by ([23] III.10.5) we obtain that π is smooth.
This implies by ([43, Tag 02GH]) that for any point y ∈ Y there is an open neigbbourhood V of y,
an open neighbourhood U of X such that π(U) ⊂ V and an étale map α : U → AdV such that the
following diagram commutes:

U V

AdV

π

α

Note that AdV → V has a section s. Then note that V ×Ad
V
U → V is an étale map. We have that

X ×Y (U ×Ad
V
V )→ U ×Ad

V
V admits a section by (u, v) 7→ (u, u, v) and hence π : X → Y is étale

locally trivial.

4.4 The image of Ext(B,L) inside H1
T (B,L)

We wish to determine the image of Ext(B,L) inside H1
T (B,L). Under certain assumptions on B

and L we can find a description of this.

Lemma 4.35. Let L,B be commutative algebraic groups such that any morphism B × B → L is
constant. Then Ext(B,L)→ PBT

B,L is injective.

Proof. Let [G] be in the kernel, so G → B has a section s. We may assume that s(0) = 0 by
composing with a translation. Consider the morphism B×B → L, (x, y) 7→ s(x+y)−s(x)−s(y).
This morphism has 0 in the image and it is constant, hence s is a homomorphism. Thus [G] is
trivial.

https://stacks.math.columbia.edu/tag/02GH
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Remark 4.36. Let T be any of HrT (G,L) for r ≥ 1, L a commutative algebraic group and G an
algebraic group. There are projections morphisms pi : G × G → G and inclusion morphisms
ιi : G → G × G. They have that pj ◦ ιi is constant if i ̸= j and it is the identity if i = j.
This implies that on T we have that ι∗i p

∗
j is the zero map if i ̸= j and the identity if i = j. In

particular both p∗i are injective and the intersection of p∗i (T ) and p∗j (T ) in HrT (G × G,L) is {0},
thus p∗1(T )

⊕
p∗2(T ) ⊂ HrT (G×G,L) and (ι∗1, ι

∗
2) is a retraction to (p∗1+ p∗2), hence p

∗
1(T )

⊕
p∗2(T )

is a direct factor of HrT (G × G,L). The multiplication map µ : G × G → G induces the map
µ∗ : T → HrT (G×G,L). As ι∗iµ

∗x = Id∗x = x for all x ∈ T we see that projecting µ∗(x) onto the

p∗1(T )
⊕

p∗2(T )-component gives exactly p∗1x+ p∗2x.

We now define the elements of T for which µ∗x and this component are equal.

Definition 4.37. Let G be an algebraic group. Let T be some HrT (G,L) for some r ≥ 1. An
element x ∈ T is primitive if p∗1x+ p∗2x = µ∗x. Denote the set of primitive elements by P (T ).

Remark 4.38. With T again as above, P (T ) forms a subgroup of T . Moreover notice that if
φ : G → G′ is a homomorphism of algebraic groups, then the pullback morphism φ∗ : TG → TG′

maps primitive elements to primitive elements. This makes P (HrT (−, L)) into a functor from the
category of commutative algebraic groups to the category of abelian groups.

Lemma 4.39 ([39], p.181). The functor P(HrT (−, L)) is additive.

Proof. Let φ + ψ = θ as homomorphisms G → G′. We must show that θ∗ = φ∗ + ψ∗ to conclude
the proof. Note that θ = µG′ ◦ (ψ × φ) ◦∆, hence we get θ∗(x) = ∆∗(ψ × φ)∗µ∗(x) = ∆∗ ◦ (ψ ×
φ)∗(p∗1(x) + p∗2(x)). As we have p1 ◦ (ψ×φ) ◦∆ = ψ and similarly p2 ◦ (ψ×φ) ◦∆ = φ we get that
θ∗(x) = φ∗(x) + ψ∗(x).

We have the following proposition, which is based on ([39], p.181 Theorem 5). Actually the
proof is identical, however the assumptions that are made here are slighly weaker than in the
original proof, where B was required to be an abelian variety. These assumptions suffice though as
the proof demonstrates.

Proposition 4.40. ([39], p.181) Let L,B be a commutative algebraic groups such that any mor-
phism B → L, B×B → L and B3 → L is constant. Then the image of Ext(B,L) in H1

T (B,L) are
the primitive elements of H1

T (B,L).

Proof. Let [G] ∈ Ext(B,L). Then we have by additivity of Ext and the fact that the natural map
Φ : Ext(B,L)→ H1

T (B,L) is functorial in B that:

µ∗Φ([G])−p∗1(Φ([G]))−p∗2(Φ([G])) = Φ(µ∗[G])−Φ(p∗1[G])−Φ(p∗2[G]) = Φ(µ∗[G]−(p1+p2)∗[G]) = 0

So the image of any element of Ext(B,L) inside H1
T (B,L) is primitive.

Given a primitive element x ∈ H1
T (B,L), which we represent by some principal L-bundle [π :

X → B], we need to show that there exists [G] ∈ Ext(B,L) such that [G] = [X] as principal
L-bundles. We have that p∗1[X] + p∗2[X] = µ∗[X]. The left side equals ∇∗(∆

∗(p∗1[X]× p∗2[X])).

We claim that ∆∗(p∗1[X]× p∗2[X]) is isomorphic to L×L-bundle [π× π : X ×X → B×B] with
componentwise L × L-action. We have that p∗1[X] is isomorphic to [π × IdB : X × B → B × B]
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with L acting on X, which follows from its description as a fibre product. Similarly we see that
p∗2[X] = [IdB × π : B ×X → B ×B] with L acting on X. This means that we get p∗1[X]× p∗2[X] =
[IdB×π×π×IdB : X×B×B×X → B4] with L×L acting componentwise on X×X. This implies
that ∆∗(p∗1[X]× q∗2[X]) = [q2 : (X ×B×B×X)×B4 B2 → B2] for q2 the projection on the second
factor with L × L acting componentwise on X ×X. This principal bundle is a closed subscheme
of X × B × B ×X, which by looking at the points equals X ×X. Through this isomorphism the
projection map becomes π × π : X ×X → B ×B, which shows that the claim holds.

The condition of [X] being primitive implies that (µL)∗[X × X] = (µB)
∗[X]. This gives the

following commuting diagram:

X ×X B ×B

µ∗B[X] B ×B

X B

µB

π

Note that the map f : X × X → µ∗B[X] is the induced map X × X → (µL)∗[X], which satisfies
the equation f(x + l, y + l′) = f(x + y) + l + l′ for any l, l′ ∈ L, while h : µ∗B[X] → X satisfies
l+h(x) = h(x+ l), hence the composition g : X×X → X has that g(x+ l, x′+ l) = g(x, x′)+ l+ l′.
We pick a point e ∈ X such that π(e) = 0. Then by the diagram above we see that π(g(e, e)) = 0,
hence multiply g by an element of L to get g(e, e) = e. We now claim that (X, g, e) is an algebraic
group, which is an extension of B by L.

From the commuting diagram, we see that g respects elements of L, i.e. g(x + a, y + b) =
g(x, y) + a+ b for a, b ∈ L. This shows that if g defines a group law, then L is indeed an algebraic
subgroup and will imply that π makes B into a quotient of G by L.

First we show that g(x, e) = x for all x ∈ G. Note that π(g(x, e)) = π(x), so the map x 7→ g(x, e)
is given by x 7→ x + h(x) for h : X → L regular. Note that for b ∈ L that x + b + h(x + b) =
g(x+b, e) = g(x, e)+b = b+x+h(x), so h is constant on L. Therefore h factors through X/L = B,
which means that h is constant. As g(e, e) = e we conclude that h(x) = e for all x.

Now we show that g(x, y) = g(y, x) for all x, y ∈ X. Note that π(g(x, y)) = π(x) + π(y), hence
the map (x, y) 7→ g(x, y) is given by (x, y) 7→ g(y, x) + α(x, y) for α : X × X → L regular. For
(l, l′) ∈ L×L we have g(x+ l, y+ l′) = g(x, y)+ l+ l′ and g(y+ l′, x+ l) = g(y, x)+ l+ l′, hence we
see that α is invariant under the action of L× L. Thus α factors through B ×B giving the result.

Now we show that g(g((x, y), z) = g(x, g(y, z)). By doing a similar computation we get that
g(g(x, y), z) = g(x, g(y, z))+ k(x, y, z) for k(x, y, z) : X3 → L a regular map. By the same tricks as
above this map is constant giving that it factors through B3, hence it is constant, thus we obtain
g(g(x, y), z) = g(x, g(y, z)).

Now we show that there is an inversion map. For νL the inversion map on L we have the principal
L-bundle (νL)∗[X], which equals −[X]. On the other hand we have that as [X] is primitive that
for νB the inversion map on B we have ν∗A[X] + [X] = (Id + νA)

∗[X] = [0]∗[X], which is trivial,
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hence ν∗A[X] = −[X] = (νL)∗[X]. This gives the following commuting diagram:

X B

ν∗B[X] B

X B

νB

Id

Denote the vertical map X → X in the diagram by ν. As X → ν∗B[X] is the map X → (νL)∗[X]
we see that it maps ν(x + l) = ν(x) − l for l ∈ L. We have π(ν(e)) = νB(π(e)) = 0, hence
by multiplying ν by an element of L we may assume that ν(e) = e. We need to check that
g(ν(x), x)) = e for any x ∈ X. Note that π(g(x, ν(x))) = 0, hence g(x, ν(x) = e + k(x) for
k : X → L a regular map. Note that g(x+ l, ν(x+ l)) = g(x+ l, ν(x)− l) = g(x, ν(x)), hence k is
invariant under L. Thus k factors via B, hence it is constant.

There are two cases in which the proposition applies that we are specifically interested in,
namely either L being a connected linear algebraic group and B an abelian variety or L a finite
group scheme and B a connected group variety.

4.5 Extensions of abelian varieties by the multiplicative group

In this section we set B = A to be an abelian variety and we set L = Gm. As they satisfy the
conditions of Proposition 4.40, there is a natural injection Ext(Gm, A) → H1

zar(A,Gm) ∼= Pic(A),
the Picard group of A and the image equals the primitive elements. So the image consists of the
classes of line bundles [L] satisfying µ∗A(L) ∼= p∗1(L)⊗ p∗2(L).

Definition 4.41. For A an abelian variety and la : A→ A the translation map by a ∈ A(k) define
Pic0(A) := {[L] ∈ Pic(A) s.t. for all a ∈ A(k), l∗aL ∼= L}.

This is a subgroup of (Pic(X),⊗) as pullbacks respect the tensor product. We state the following
theorem, which we will assume. A proof can be found in ([34], p.123).

Theorem 4.42. There exists an abelian variety A∨, called the dual abelian variety of A, such
that for any field k ⊂ k′ we have A∨(k′) = Pic0(Ak′) as abelian groups. Moreover, A∨ has the same
dimension as A.

The following proposition relates the primitive elements to this.

Proposition 4.43. The primitive elements in Pic(A) are precisely Pic0(A).

Proof. Let [L] be a primitive element and consider (µA(L) ⊗ p∗1(L∨))|{x}×A for some x ∈ A(k̄).
After identifying {x} ×A with A in the obvious way, we note that as an invertible sheaf on A this
is given by l∗x(L) ⊗ OA as the map (x, a) 7→ x is constant, hence p∗1(L∨)|{x}×A is trivial. On the
other hand, as [L] is primitive, (µA(L)⊗p∗1(L∨))|{x}×A is isomorphic to p∗2(L)|{x}×A, which is given
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by L as a 7→ (x, a) 7→ a is simply the identity map on A. Hence we see that the primitive elements
are in Pic0(A).
Now given an element [L] ∈ Pic0(A), then we want to show that µ∗A(L) ∼= p∗1(L) ⊗ p∗2(L). By
similar reasoning as before we have for all a ∈ A(k) that (µ∗AL ⊗ p∗1L∨)|A×{a} = l∗aL ⊗ L∨ ∼= OA
and we have that (p∗2L)|A×{a} = OA. Moreover we have that (µ∗AL ⊗ p∗1L∨)|{0}×A ∼= L ⊗ OA and
(p∗2L)|{0}×A = L, so (p∗2L)|{0}×A and (µ∗AL ⊗ p∗1L∨)|{0}×A are isomorphic. This puts us into a
position to use the Seesaw Lemma ([30], Corollary 5.18), which states that if M is a line bundle
on A × A that is trivial when restricted to all {x} × A and trivial when restricted to A × {y} for
one particular y ∈ A(k̄), thenM is the trivial bundle. This implies that µ∗AL⊗ p∗1L∨ ∼= p∗2L, hence
[L] is a primitive element.

4.6 A proof of Arima’s theorems

Using the machinery from the Ext functor as well as its comparison with principle bundles we
prove the two theorems of Arima in this section. We begin with Theorem 4.1, which states that an
isogeny G = A ·Glin for A an abelian subvariety of G if and only if [G] ∈ Ext(Gab, Glin) is of finite
order.

Proof. (of Theorem 4.1)
Let [G] be of finite order d. Then note that since Ext(−, Glin) is an additive functor that we have
[d]∗([G]) = d · [1]∗([G]) = d · [G] is trivial. So we get a commuting pullback square:

G Gab

Glin ×Gab Gab

[d]

So as [d] : Gab → Gab is an isogeny, it is surjective and since surjectivity is stable under base change
we obtain that the homomorphism Glin × Gab → G is surjective, therefore it is a quotient map.
The dimension of the kernel is dim(G) − dim(Glin) − dim(Gab) = 0, so the kernel is finite and an
isogeny Glin ×k Gab → G exists.
Conversely if the isogeny Glin ×k Gab → G exists then G = Glin · A for A an abelian subvariety
of G by Lemma 4.3. The map π|A : A → Gab is surjective. We have ker(π|A) = A ∩ Glin which
is affine and complete and thus finite, so π|A is an isogeny. Let the degree be d. Then there is an
isogeny ν : Gab → A such that the composition Gab → Gab is [d]. We consider (π|A)∗([G]). This is
trivial as A→ G×Gab

A, a 7→ (a, a) is a homomorphism section. By functoriality of Ext and the
fact that the pullback maps are homomorphisms we have that [d]∗([G]) = ν∗(π|A)∗([G]) is trivial.
Again using the additivity of Ext we get [d]∗([G]) = d · [G] = 0, hence [G] is of finite order.

We can use the above theorem to prove the second theorem of Arima, which is Theorem 4.2.
This theorem states that when k = Fp there exists an isogeny Glin ×Fp

Gab → G.

Proof. (of Theorem 4.2)
We have seen that for this it suffices to prove the theorem for commutative divisible group varieties
over Fp in Lemma 4.4. By the previous theorem of Arima we have that G ≃ Glin×Gab is equivalent
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to [G] ∈ Ext(Gab, Glin) being of finite order. Over an algebraically closed field, which is perfect
we have that as Glin is commutative that Glin

∼= T ×k U (Theorem 16.13 (b) [32]) where U is
unipotent and T ∼= (Gm)

n as the field is algebraically closed. As the field has characteristic p and
·p : G → G is an isogeny as G is divisible, the unipotent group U is trivial, which follows by it
admits a composition series with succesive quotients all being Ga.

So the extension group in question is Ext(Gab,Gn
m)
∼=

n⊕
i−1

Ext(Gab,Gm) as Ext(Gab,−) is an

additive functor. So it suffices to show that any element in Ext(Gab,Gm) has finite order. By
Lemma 4.43 this is isomorphic to A(Fp), where we denote A = G∨

ab. Now the theorem follows since
any point P ∈ A(Fp) is of finite order. This is true because we can find a finite field Fq such that
A is defined over Fp. Then after possibly extending the base field by a finite extension we may
assume that P is also defined over Fp. So P is an Fq point on an abelian variety AFq over Fq such
that A is the base-change of AFq to Fp. As AFq is a projective variety there are only finitely points
in AFq(Fq) and hence P is of finite order in AFq . The multiplication map on A is induced by the
one on AFq and hence P ∈ A is of finite order.

4.7 Extensions of abelian varieties by unipotent groups

If we do not assume that the characteristic of our base field k is p ̸= 0, then we can not conclude as
in the proof above that as G is divisible and commutative that Glin is a torus. As in the previous
proof we have Glin = (Gm)

n × U , where U is a unipotent algebraic group. We want to describe
Ext(A,U) from which we have an injection Ext(A,U) → H1

zar(A,U). We begin with the case
U = Ga.

Proposition 4.44. ([39], p. 185) The homomorphism Ext(A,Ga) → H1
zar(A,Ga) is an isomor-

phism.

Proof. Recall that the image of Ext(A,Ga) are the primitive elements of H1
zar(A,Ga). Recall that

there is an injection H1
zar(A,Ga) × H1

zar(A,Ga)
(p∗1+p

∗
2)→ H1

zar(A × A,Ga) for which we have that
an element of the form µ∗A(x) has H1

zar(A,Ga) × H1
zar(A,Ga)-part equal to (x, x). So if p∗1 + p∗2

is an isomorphism then we are done. As the sheaf Ga is the structure sheaf, we have that the
Künneth-formula for quasi-coherent sheafs applies [43, Tag 0BEC], hence this map is indeed an
isomorphism.

Now we want to treat the general unipotent case.

Proposition 4.45. The injection Ext(A,U)→ H1
zar(A,U) is an isomorphism.

Proof. We will show this by induction on dim(U). The case dim(U) = 1 has been treated above.
For the general case: We have a composition series 0 = U0 ≤ ... ≤ Un = U where Ui/Ui−1

∼= Ga.
The isomorphism U/Un ∼= Ga gives an exact sequence of flat sheaves on A: 0→ Un → U → Ga → 0.
Hence we get an exact sequence in flat cohomology:

H0
fl(A,Un)→ H0

fl(A,U)→ H0
fl(A,Ga)→ H1

fl(A,Un)→ H1
fl(A,U)→ H1

fl(A,Ga)

https://stacks.math.columbia.edu/tag/0BEC
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For any commutative group variety L there is an isomorphism H1
fl(A,L) → PBA,L. As L is linear

in this case we have PBA,L = PBzar
A,L by Proposition 4.32 and we have PBzar

A,L = H1
zar(A,L). So the

above exact sequence reads:

H0
zar(A,Un)→ H0

zar(A,U)→ H0
zar(A,Ga)→ H1

zar(A,Un)→ H1
zar(A,U)→ H1

zar(A,Ga)

We have U ∼= An as varieties because the field k is perfect, we note that there is no non-constant map
A→ U as A is complete and connected, so we have that the map H0

zar(A,U)→ H0
zar(A,Ga) is given

by U(k) → Ga(k), which is onto. So the sequence 0 → H1
zar(A,Un) → H1

zar(A,U) → H1
zar(A,Ga)

is exact. As the maps on the cohomology defined by the morphisms of sheaves commute with
pullbacks, we can do the following: Recall that by Remark 4.36 L a commutative algebraic group the
map (p∗1, p

∗
2) : H

1
zar(A,L)×H1

zar(A,L) had a right inversem∗ defined by the injections ιi : A→ A×A.
Thus we get the following large commuting diagram with exact rows:

0 H1
zar(A×A,Un) H1

zar(A×A,U) H1
zar(A×A,Ga)

0 H1
zar(A,Un)×H1

zar(A,Un) H1
zar(A,U)×H1

zar(A,U) H1
zar(A×A,Ga)

m∗ m∗ m∗

We had assumed that (p∗1 + p∗2) was an isomorphism for Un and Ga, so its right inverse m∗ is also
an isomorphism for Un and Ga. By a variant of the four-lemma we conclude that the middle m∗ is
an injection, hence it is an isomorphism, the inverse of (p∗1 + p∗2).

Remark 4.46. The above proposition implies that for L a linear group variety and A an abelian
variety one has Ext(A,L) = Ext(A, T ×k U) = Ext(A, T ) × Ext(A,U) = Ext(A, T ) × H1

zar(A,U).
In particular we see that if the field has characteristic p ̸= 0, then H1

zar(A,U) is p-torsion as this is
a k-vector space. Thus we see that in this case whether an element of Ext(A,L) has infinite order
or not depends only on the Ext(A, T ) part (making it logical that we could reduce to L being a
torus in the proof of Theorem 4.2).

On the other hand if char(k) = 0, then we have the following:

Corollary 4.47. For char(k) = 0 a commutative group variety G is isogenous to Glin×Gab if and
only if e→ U → G/T → Gab → e is split and [G/U ] has finite order in Ext(Gab, T ).

Proof. We have Ext(Gab, Glin) = Ext(Gab, T ) × Ext(Gab, U). In order for G to be isogenous to
Glin×Gab we need that [G] is of finite order. By what is written above the corollary, [G] is of finite
order if and only if [G/U ] is of finite order and [G/T ] is of finite order and the second happens if
and only if it is trivial as it is an element of a k-vector space, where char(k) = 0.

4.8 Examples of when G is not isogenous to Glin ×k Gab

In this subsection we wish to give an explicit example of a case in which G and Glin ×k Gab are
not isogenous. An excellent reference for this subsection is Chapter 5 from [39]. For simplicity we
assume that we are working over some algebraically closed field k, so by points on a variety X we
will mean elements of X(k). For the example we will take A = E an elliptic curve. It turns out
that for an elliptic curve, E∨ is quite easy to describe.
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Proposition 4.48. An elliptic curve E is isomorphic to its own dual E∨. The isomorphism is
given by E → E∨ P 7→ O([P ]− [O]).

A proof can be found in ([40], p.61). Note that as E is smooth, we can also identify E∨ with
the group of degree 0 divisors modulo linear equivalence. We denote the linear equivalence relation
by ∼.

Definition 4.49. Let m be an effective divisor on a smooth projective curve X. We then define
the following equivalence relation on Div(X): We have D ∼m E if and only if D − E = (g) where
g ∈ K(X)∗ such that νP (g − 1) ≥ m(P ) for all P ∈ Supp(m).

So in particular we see that ∼m is a stronger equivalence relation than linear equivalence, ∼.
In the case m = 0 we recover ∼.

Definition 4.50. For X a smooth projective curve, the divisor class group for m-equivalence is
given by Div(X \ S)/ ∼m. We denote it by Cl(X)m.

Note that in the case that m = 0 we recover the divisor class group of X.

Remark 4.51. Note that for any [D] ∈ Cl(X) and any effective divisor m we may take a repre-
sentative D ∈ Div(X) such that Supp(D) ∩ m = ø. This relies on the fact that we may pick a
uniformizer at P that is nonvanishing at given points Q1, .., Qm. This holds as we may pick an
affine open Spec(R) containing all these points. Using the chinese remainder theorem on the map

R →
m⊕
i=1

R/mi ⊕ R/m2
P and quotienting in the second factor to RmP /m

2
P gives that there exists

an element t in R that has νP (t) = 1 and νQi(t) = 0 for all i. In partcicular this shows that we
have a quotient map of groups Cl(X)m → Cl(X). This map respects the degree of divisors, hence
it factors through as a quotient map Cl0(X)m → Cl0(X).

We now state the following theorem. It is proven in ([39], p.105).

Theorem 4.52. Let X be a nonsingular curve. There exists a group variety Jm such that as a
group, Jm = Cl0(X)m. Write J for J0. After this identification, the map Jm → J induced by
Cl0(X)m → Cl0(X) is a homomorphism of algebraic groups.

Then J is the Jacobian of the curve X and Jm the generalized Jacobian of X.

Remark 4.53. As J is a quotient of Xg, which is complete, J is complete, hence an abelian variety.
Serre ([39], p.96) shows that Lm := ker(Jm → J) is a linear subgroup variety of Jm, hence we see
that 0→ Lm → Jm → J → 0 is the Chevalley sequence of Jm.

Now we set X = E an elliptic curve and m = P +Q for P ̸= Q and P,Q ̸= O.

Proposition 4.54. In the setting above we have ker(Jm → J) = Gm.

Proof. The kernel consists exactly of the divisor classes (g)m such that P,Q /∈ Supp(g). This

subgroup is isomorphic to
{g ∈ K(X)∗ | νP (g) = νP (g) = 0}/k∗

{g ∈ K(X)∗ | 0 ̸= g(P ) = g(Q)}/k∗
∼=

O∗
X,P ∩ O∗

X,Q

{g | g(P ) = g(Q)}
. Consider
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the homomorphism O∗
X,P ∩ O∗

X,Q → k∗ given by g 7→ g(P )

g(Q)
. It is surjective as we can find a

uniformizer tP at P such that tP (Q) = a− 1 for any a ̸= 1 giving that g = tp+ a maps to a. Hence

this homomorphism factors as an isomorphism
O∗
X,P ∩ O∗

X,Q

{g | g(P ) = g(Q)}
→ k∗. The inverse is given by

a 7→ (ga)m where ga(P ) = a and ga(Q) = 1. It is shown in Theorem 3 of [39] that this map is a
morphism, hence we conclude that ker(Jm → J) = Gm.

Now we have constructed an exact sequence of algebraic groups 0→ Gm → Jm → E → 0 (after
identifying J with E). Note that as Gm is a linear group variety and J is an abelian variety (J is
complete by Theorem 5.1 in III [30]) we have (Jm)lin = Gm and (Jm)ab = J . To determine whether
Jm is isogenous to Gm × E we look at the class [Jm] ∈ Ext(E,Gm).

Proposition 4.55 ([39], p.88). There is a rational section sm : E 99K Jm given by R 7→ [R−O]m.
It is regular on E \ {P,Q}.

Note that it is indeed a section to Jm → E. Rather than taking sections regular at P,Q, we
first construct a map φP : E → Gm and then show that the section sP := sm − φP is regular at P
(the same can be done for Q).

Definition 4.56. Define for n ≥ 1 the variety X(n) := Xn/Sn, where the symmetric group acts by
permuting variables.

Notice that the k-points of X(n) may be identified with the effective degree n divisors of X.

Remark 4.57. The rational map sm : E 99K Jm extends to one sm : E(n) 99K Jm by putting
sm(P1 + ...+ Pn) = sm(P1) + ...+ sm(Pn). It is regular on the subset {D ∈ E(n) |P,Q /∈ Supp(D)}.

We have the following lemma that will aid us in proving the next proposition.

Lemma 4.58. (Lemma V.14, [39]) Let X be a smooth projective curve and let f : X → P1 be a
non-constant rational function of degree d + 1. For λ ∈ P1 define the divisor Hλ := f−1[λ]. Then
the map X → X(d) R 7→ Hf(R) −R is regular.

Recall that we have seen an isomorphism Ext(E,Gm) ∼= Pic0(E) by combining Propositions
4.43 and 4.40.

Proposition 4.59. The element [Jm] ∈ Ext(E,Gm) corressponds to [P ]− [Q] ∈ Pic0(E) under the
isomorphism Ext(E,Gm) ∼= Pic0(E).

Proof. The invertible sheaf that corresponds to the element [Jm] is given by O(div(sm)) as we have
that sm : E 99K Jm is a rational section (and hence the line bundle Jm ×Gm A1 → E also has sm as
a rational section). Thus we need to compute the zeros and poles of sm. Note that sm is nowhere
vanishing on E \ {P,Q} so it suffices to see what happens at P and Q (as being a regular section
to the Gm-bundle is equivalent to being a non-vanishing section on the induced line bundle). For
this we follow p.190 of [39]. We let tP be a uniformizer at P and tQ a uniformizer at Q such that
tQ(P ) = tP (Q) = 1. We consider the partially defined function φP : E 99K Jm R 7→ (gR)m for

gR := tP − TP (R). This is corresponds to a rational map into Gm ⊂ Jm given by R 7→ tP (R)

tP (R)− 1
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and hence νP (φP ) = 1.
We now consider the rational map sP := φP − sm : E 99K Jm. If we can show that sP is regular
at P , then it will show that sm : E 99K Jm ×Gm A1 has νP (sm) = νP (φP ) = 1.
Write Hλ for the effective divisor (t−1

P (λ)) for any λ ∈ P1. Notice that as a divisor we have

(gR) = Ht(R) −H∞ for all R ∈ E. We consider Ht(R) as an element of E(n+1) for some n ≥ 0 (the
same n for all R). Then sP is given by R 7→ sm(R)− sm(HtP (R)) + sm(H∞) as we can extend sm to

a rational map E(n+1) 99K Jm as in Remark 4.57. Now notice that HtP (R) = R+H ′
R for H ′

R ∈ E(n).

By Lemma 4.58 the map R 7→ H ′
R is a regular map E → E(n). So our rational map sP is given

by R 7→ −sm(H ′
R) + sm(H∞). We note that sm(H∞) is just a constant and does not influence

whether sP is regular at P . Thus it suffices to show that R 7→ sm(H
′
R) is regular at P . Note that

H ′
P = Ht(P ) − P and as P is a uniformizer at P , this divisor does not have P in the support. So

R 7→ H ′
R 7→ sm(H

′
R) is regular at P by Remark 4.57.

We conclude that sP = sm − φP is regular at P and hence νP (sm) = νP (φP ) = 1. Completely
analogously it follows that νQ(sm) = −1 by doing the same steps but with φQ : R 7→ (tQ− tQ(R))m
and by showing that sQ := sm − φQ is regular at Q. So we obtain that div(φm) = [P ] − [Q] and
hence the element corresponding to [Jm] in Pic0(E) is [P ]− [Q].

Remark 4.60. This gives us many examples of extensions of E by Gm that do not split isogenously.
A way to do this is to pick E an elliptic curve and P ∈ E(k) of infinite order with m = [P ] + [−P ].
Then this leads to Ext(E,Gm) ∋ [Jm]←→ [2P − 2O] ∈ Pic0(E) implying that Jm is not isogenous
to Gm ×k E. One can do this construction over any algebraically closed field k that is not Fp for
any p since any abelian variety A over k of positive dimension has a point x ∈ A(k) of infinite order
(Theorem 10.1 [20]).



Chapter 5

The l-adic cohomology of group
varieties

In this chapter we have k = k̄ and we have l ̸= char(k) prime. We will compute the l-adic
cohomology of a group variety G in terms of the cohomology of Glin and Gab. The goal is showing
that there is a natural isomorphism H∗

ét(G,Ql) ∼= H∗
ét(Glin,Ql)⊗H∗

ét(Gab,Ql) of graded Ql-algebras.
We begin with comparing Ext and cohomology after which we prove the statement in case of
commutative G. After this we prove the general case. In the second section we show that there is
a natural isomorphism H∗

ét(G,Ql) ∼= H∗
ét(K,Ql)⊗H∗

ét(Q,Ql) whenever G is an extension of a group
variety Q by a group variety K. We end the chapter with a section in which we calculate the l-adic
cohomology of several semisimple group varieties.

First we consider the case of a principle G-bundle X over a scheme Y . It turns out that even
in the following natural case we need not have H∗

ét(X,Ql) ∼= H∗
ét(Y,Ql)⊗H∗

ét(G,Ql).

Example 5.1. ConsiderX = A2
k\{(0, 0)}, which hasX(R){φ : k[x, y]→ R |φ−1(p) ̸= (x, y) for any p}

as its R-poins. The condition (x, y) ̸= φ−1(p) for all p is equivalent to (φ(x)) + (φ(y)) = R and
hence X(R) = {(r1, r2) ∈ R2 | (r1) + (r2) = R}. Then Gm(R) acts freely on X(R) by mapping
((x, y), λ) 7→ (λx, λy). The flat presheaf defined by R 7→ {(r1, r2) ∈ R2 | (r1) + (r2) = R}/R× is
actually a flat sheaf as it is represented by P1

k. This implies that P1 is identified with the quotient
X/Gm and that X → P1 is a principle Gm-bundle.
The codimension of {0} in A2 is 2. By using the Gysin sequence (Proposition 2.55), we obtain:

Hrét(X,Λn) =

{
Z/lnZ if r = 0, 3

0 else

Thus H∗
ét(X,Ql) ̸= H∗

ét(P1,Ql)⊗H∗
ét(Gm,Ql) as H

∗
ét(X,Ql) has no degree 1 elements but by Example

2.50 H∗
ét(Gm,Ql)⊗H∗

ét(P1,Ql) has elements in degree 1.

We now make an easy observation given the first two chapters.

Lemma 5.2. Let G be a group variety over k. Then H∗
ét(G,Ql) is a finite dimensional graded-

commutative Ql-Hopf algebra.

69
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We define µ∗ : H∗
ét(G,Ql)→ H∗

ét(G×G,Ql)
Künneth→ H∗

ét(G,Ql)⊗Ql
H∗

ét(G,Ql) to be the comul-

tiplication. We set inv∗ to be the antipode and we set ϵ to be Ql
∼= H0

ét(Spec(k),Ql)
e∗→ H0

ét(G,Ql).
One checks that by functoriality of étale cohomology all the diagrams in Definition 1.33 commute.
The graded-commutativity comes from the cup-product and the finite dimensionality from Theo-
rems 2.48 and 2.49.

5.1 Comparison of H1
ét(G,Z/lnZ) and Ext(G,Z/lnZ)

In this section we let G be a commutative group variety. Consider Z/lnZ :=
⊔

a∈Z/lnZ

Spec(k), which

is an étale algebraic group denoted the same as the abstract group Z/lnZ. By Proposition 4.34 we
get a homomorphism Ext(G,Z/lnZ)→ H1

ét(G,Z/lnZ) that is functorial in G.

Lemma 5.3. Let G be a commutative group variety. Then Ext(G,Z/lnZ) → H1
ét(G,Z/lnZ) is

injective. The image of this homomorphism is exactly the primitive elements of H1
ét(G,Z/lnZ).

Proof. The first claim is Lemma 4.35. The second claim follows from Proposition 4.40.

Proposition 5.4. ([39], p.196) The sequence 0 → Ext(Gab,Λ) → Ext(G,Λ) → Ext(Glin,Λ) → 0
is exact for G a commutative group variety and Λ a finite algebraic group.

Proof. There is an exact sequence for Λ any algebraic group stated in ([39], p.165), which comes
from applying Hom(−,Λ) to the Chevalley sequence:

0→ Hom(Gab,Λ)→ Hom(G,Λ)→ Hom(Glin,Λ)
d→ Ext(Gab,Λ)→ Ext(G,Λ)→ Ext(Glin,Λ)

As Λ is finite in our case we have Hom(Glin,Λ) = 0, so it suffices to show that the last arrow is
surjective. We need to show that any isogeny φ : H → Glin with kernel Λ extends to an isogeny
φ′ : H ′ → G with kernel Λ such that φ is the pullback morphism of φ′. Note that H is a linear
algebraic group. By ([39] p.195) we have that for A an abelian variety that Ext(A,−) is an exact
functor when restricted to the subcategory of commutative linear algebraic groups. So we can find
some [H ′] ∈ Ext(H,A) such that φ∗([H

′]) = [G]. This gives the following commuting diagram:

0 H H ′ Gab 0

0 Glin G Gab 0

φ φ′

ι

Upon applying the Snake Lemma we find that H ′ → G is an isogeny with kernel Λ. Any morphisms
from a scheme to H ′ and Glin that agree in G gives rise to a unique morphism through H by how
G is constructed, so the left square is a pullback square. Hence we conclude that ι∗([H

′]) = [H]
and so Ext(G,Λ)→ Ext(Glin,Λ) is surjective.

The following lemma allows us to pass to take coefficients in Ql. Write Z/lnZ = Λn for the
constant sheaf. Recall the notation PH for the primitive elements in H.
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Lemma 5.5. For G an algebraic group we have P lim←−
k

H1
ét(G,Λn) = lim←−

n

PH1
ét(G,Λn).

Moreover we have (P lim←−
n

H1
ét(G,Λn))⊗Zl

Ql = P(lim←−
n

H1
ét(G,Λn)⊗Zl

Ql).

Proof. By definition the pullback maps µ∗, p∗1, p
∗
2 work on lim←−

n

H1
ét(Gab,Λn) componentwise. Hence

we have µ∗((xn)n) = (µ∗xn)n and p∗1(xn)k + p∗2(xn)k = (p∗1xn + p∗2xn)n. Thus (xn)n is primitive if
and only if all components xn are primitive, which takes care of the first claim.
We have that H1

ét(G,Ql) = H1
ét(G,Zl)⊗Zl

Ql is the localisation at the prime (l) of Zl. The pullbacks
µ∗, p∗1, p

∗
2 on H1

ét(G,Ql) are those induced by localisation. We have that
a

b
is primitive if and only

if
µ∗(a)− p∗1(a)− p∗2(a)

b
= 0. This vanishes if and only if µ∗(a) − p∗1(a) − p∗2(a) is ln-torsion for

some n. So then we have µ∗(a · ln)− p∗1(a · lk)− p∗2(a · ln) = 0, hence a · ln ∈ PH1
ét(G,Zl). Thus we

obtain that
a

b
=
aln

bln
showing that PH1

ét(G,Ql) ⊂ (PH1
ét(G,Zl))⊗Zl

Ql. The other inclusion follows

trivially.

We want a certain condition for lim←−
n

(−) to preserve exactness.

Definition 5.6. An inverse system satisfies the Mittag-Leffler condition if for all i the descend-
ing chain Im(Mk →Mi)k stabilizes. We will refer to it as the ML-condition.

Remark 5.7. By [43, Tag 02MY] we have that for inverse systems (Ai)i, (Bi)i, (Ci)i and exact
sequences 0→ Ai → Bi → Ci → 0 that are compatible with the inverse systems that the sequence
0 → lim←−

i

Ai → lim←−
i

Bi → lim←−
i

Ci → 0 is exact if it satisfies the ML-condition. Note that if each Ai

is a module of finite length, then the condition is automatically satsified. So by finiteness of étale
cohomology (Theorem 2.49) we have that in all the relevant situations the ML-condition will be
satisfied.

Lemma 5.8. The sequence 0 → lim←−
n

PH1
ét(Gab,Λn) → lim←−

n

PH1
ét(G,Λn) → lim←−

n

PH1
ét(Glin,Λn) → 0

is exact for G a commutative group variety.

Proof. It suffices to show that the inverse system (PH1
ét(Gab,Λk))k satisfies the ML condition. As

each Mk := PH1
ét(Gab,Λk) is a Λk-module of finite length and the sequence Im(Mi → Mk)i is

a decscending chain of Λk-submodules this chain stabilizes, so combining this with the previous
lemma gives the exact sequence.

Proposition 5.9. For G a commutative algebraic group the canonical sequence of Ql-vectorspaces
0→ H1

ét(Gab,Ql)→ H1
ét(G,Ql)→ H1

ét(Glin,Ql)→ 0 is exact.

Proof. As Ql is a flat Zl-module, we can take the exact sequence of the previous lemma to obtain
an exact sequence:

0→ lim←−
n

PH1
ét(Gab,Λn)⊗Zl

Ql → lim←−
n

PH1
ét(G,Λn)⊗Zl

Ql → lim←−
n

PH1
ét(Glin,Λn)⊗Zl

Ql → 0

As taking primitive elements commutes with inverse limits and −⊗Zl
Ql we get the exact sequence:

0→ PH1
ét(Gab,Ql)→ PH1

ét(G,Ql)→ PH1
ét(Glin,Ql)→ 0

https://stacks.math.columbia.edu/tag/02MY
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We have H1
ét(B × B,Ql) ∼= H0

ét(B,Ql) ⊗ H1
ét(B,Ql)

⊕
H1

ét(B,Ql) ⊗ H0
ét(B,Ql) for B any group

variety by the Künneth formula induced from right to left by (p∗1∪p∗2). Since B is connected we have

H1
ét(B × B,Ql) = p∗1H

1
ét(B,Ql)

⊕
p∗2H

1
ét(B,Ql). Thus we see that any element of H1

ét(B × B,Ql)

is primitive by Remark 4.36. The exact sequence of primitive elements then reads:

0→ H1
ét(Gab,Ql)→ H1

ét(G,Ql)→ H1
ét(Glin,Ql)→ 0

We make the following definition.

Definition 5.10. A morphism π : X → Y of k-varieties is called a fibration if all the fibres over
the points in Y (k) are isomorphic to some k-scheme F . We say that the fibration locally trivial for
T (the flat/étale/Zariski topology) if T -locally there are sections to π.

In the case of certain fibrations we know something about the higher direct image sheaf which
is useful for understanding the Leray spectral sequence associated the fibration.

Lemma 5.11. Let π : X → Y be a fibration that is locally trivial for the étale topology. Assume that
for all q ≥ 0 the Λ-module Hqét(Xȳ,Λn) is flat over Z/lnZ. Then for all q ≥ 0 the sheaves Rqπ∗Λn
are finite locally constant sheaves on Yét with stalks isomorphic to (Rqπ∗Λn)ȳ ∼= Hqét(Xȳ,Λn).

Proof. The sheaf Rqπ∗Λn is the sheafifiction of the presheaf U 7→ Hqét(U ×Y X,Λn). Hence its
stalk at ȳ is given by lim−→

U

Hqét(U ×Y X,Λn), where the filtered direct limit is taken over all étale

neighbourhoods U → Y that have ȳ in the image. Note that the étale neighbourhoods V of ȳ
over which the fibration V ×Y X → V is trivial form a cofinal system in the system of étale
neighbourhoods of ȳ. For such étale neighbourhoods one has V ×Y X ∼= Xȳ × V . Hence the stalk
is isomorphic to lim−→

V

Hqét(V ×Xȳ,Λn).

As we had assumed that Hqét(Xȳ,Λ) is a flat Λ-module for all q ≥ 0 the Künneth fornula applies,

so
⊕
r+s=q

Hrét(V,Λ)⊗Hsét(Xȳ,Λ)→ Hqét(Xȳ × V,Λ) is an isomorphism. We have the identification

lim−→
V

Hrét(V,Λ) =

{
Λ if r = 0

0 else

Combining this with the facts that filtered colimits are excat and commute with direct sums gives
us that (Rqπ∗Λn)ȳ = Hqét(Xȳ,ΛXȳ). Now we show that the sheaf is locally constant.
For U → Y an étale neighbourhood such that the fibration U×Y X → Y is trivial, one has for F the
constant fibre and for V → U étale a morphism Hqét(F,Λn) → Hqét(F × V,Λn) = Hqét(V ×X Y,Λn)
defined by pulling back along the projection F × V → V . This homomorphism is natural in V ,
hence it defines a morphism of presheaves on Uét, H

q
ét(F,Λn)

P → (Rqπ∗Λn|U )P , where (Rqπ∗Λn|U )P
is the presheaf defined by the assignment V 7→ Hqét(V ×X Y,Λn). By taking the sheafifications on
both sides, we get a morphism of sheaves on Uét, Hqét(F,Λn)U → Rqπ∗Λn|U , which by what is
written above is an isomorphism on the stalks, hence Hqét(F,Λn)U → Rqπ∗Λn|U is an isomorphism
and thus Rqπ∗Λn is a locally constant sheaf.

We have the following basic result on the cohomological dimension of a semi-abelian variety.
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Lemma 5.12. Let G be a semi-abelian variety, i.e. 0 → (Gm)
n → G → A → 0 is exact for some

n and A an abelian variety of dimension g. Then Hrét(G,Ql) = 0 for all r > 2g + n.

Proof. As G is a principle Gn
m bundle over A we have that G→ A is locally trivial for the Zariski

topology. Applying Lemma 5.11 gives that the sheaves Rqπ∗(Λn) are locally constant with stalks
at x̄ equal to Hqét(G

n
m,Λn). As Gn

m is affine we have by Theorem 2.48 that Hqét(G
n
m,Λn) = 0 for

q > n and hence Rqπ∗(Λn) = 0 for q > n. We obtain by Theorem 2.48 that Hpét(A,R
qπ∗(Λn)) = 0

for p > 2g as Rqπ∗(Λn) is locally constant and killed by ln. Consider the Leray spectral sequence
Ep,q2 = Hpét(A,R

qπ∗(Λn)) =⇒ Hp+qét (G,Λ). The only nonzero terms on the E2-page have p ≤ 2g
and q ≤ n, hence p+ q ≤ 2g+n. This gives that Ep,q∞ = 0 for all p, q with p+ q > 2g+n and hence
Hrét(G,Ql) = 0 for all r > 2g + n.

We have the following structure theorem on graded commutative Hopf algebras.

Lemma 5.13. (p.191, [39]) Let H be a graded-commutative finite dimensional Hopf-algebra over
a field k with H0 = k. Let r > 0 such that for all i > r we have Hi = 0. If dimk H

1 = r then

H =
∗∧
H1.

Proof. By the structure theorem of Hopf-algebras of Hopf-Borel ([5], p.141) we have an isomorphism

of graded Ql-vectorspaces H ∼=
⊗
i

k[xi]/(fi), where the tensor product is taken over k and fi is a

polynomial of degree > 1 in xi. Let ni = deg(xi), then
∏
i

xi ∈ H
∑

i ni is a nonzero element, hence

we have
∑
i

ni ≤ r, which implies ni = 1 for all i. Also we have that x2i = 0 for all i as otherwise

x2i ·
∏
i ̸=j

xj is a nonzero element of degree > r. Together with the graded commutativity this implies

H =

∗∧
H1.

A lemma that will help us prove the concluding theorem is the following.

Lemma 5.14. Let Λ be a finite group such that char(k) ∤ #Λ. Let π : X → Y be a fibration that is
locally trivial for the étale topology and assume that the fibre F is connected and that Hrét(F,Λ) = 0
for all r > 0. Then π∗ : H∗

ét(Y,Λn)→ H∗
ét(X,Λn) is an isomorphism.

Proof. The sheaf Rqπ∗Λ is locally constant and hence 0 for q > 0 by Lemma 5.11. So the Leray
spectral sequence degenerates associated to π at the E2-page. The pullback morphism is given
by Hrét(Y,Λ) → Hrét(X,π∗π

∗Λ) → Hrét(Y, π
∗Λ) where the second map is the edge map from the

Leray spectral sequence. This second map is an isomorphism as Rqπ∗π
∗Λ = 0 for q > 0. The first

map is induced by Λ ↪→ π∗π
∗Λ. We have (π∗π

∗Λ)x̄ = lim−→
(U,ū)

π∗π
∗Λ(U) = lim−→

(U,ū)

π∗Λ(U ×Y X). By

étale local triviality, the étale (U, ū) with U of the form V ×k F with V → Y étale form a cofinal
system. Hence we obtain lim−→

(V,v̄)

π∗Λ(V ×k F ) = lim−→
(V,v̄)

π∗Λ(V ) as π∗Λ is consant and F is connected.

Hence we note that the obtained limit is exactly Λx̄ and hence the inclusion Λ → π∗π
∗Λ is an
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equality. Thus the map Hrét(Y,Λ) → Hrét(Y, π∗π
∗Λ) is an isomorphism and hence the pullback π∗

is an isomorphism.

We can use this to conclude that the desired isomorphism holds in the case that G is commu-
tative.

Theorem 5.15. Let G be a commutative group variety. Then H∗
ét(G,Ql) ∼=

∗∧
H1(G,Ql) as graded

Ql-algebras. Also there is an isomorphism of Ql-algebras H
∗
ét(G,Ql) ∼= H∗

ét(Glin,Ql)⊗H∗
ét(Gab,Ql).

Proof. Let Ru(Glin) be the unipotent radical of Glin. Then as a scheme, Ru(Glin) ∼= As for some s
([32], Prop 14.32). Hence the fibration G → G/Ru(Glin) is Zariski locally trivial by Proposition
4.32. So Lemma 5.14 applies which gives that H∗

ét(G/Ru(Glin),Ql)→ H∗
ét(G,Ql) is an isomorphism

of Ql-algebras. Hence it suffices to understand H∗
ét(G/Ru(Glin),Ql).

We have that G′ := G/Ru(G) is a semi-abelian variety. So by applying Proposition 5.9 we get
dimH1

ét(G
′,Ql) = n + 2g for n the dimension of the maximal torus of G′ and g the dimension

of G′
ab. By Lemma 5.12, Hrét(G

′,Ql) = 0 for r > 2g + n.Then by applying Lemma 5.13 we get

H∗
ét(G

′,Ql) ∼=
∗∧
H1

ét(G
′,Ql). As H1

ét(G,Ql) ∼= H1
ét(G

′,Ql) this implies H∗
ét(G,Ql) ∼=

∗∧
H1

ét(G,Ql)

as Ql-algebras.
The second statement follows directly from the split exact sequence of Proposition 5.9 combined
with that we know that the ring structure on H∗

ét(G,Ql) is determined by the first degree.

We have seen applied the identification Ext(G,Z/lnZ) = PH1
ét(G,Λn) together with the Künneth

formula to obtain that H1
ét(G,Ql) = lim←−

n

Ext(G,Z/lnZ) ⊗Zl
Ql (by Lemma 5.5) and which allowed

us to use properties of Ext to obtain the results about H1
ét(G,Ql). A natural question would

be whether Ext(G,Z/lnZ) = H1
ét(G,Λn) holds. This is a actually true by a result of Miyanishi

(Theorem 2 [33]).

5.2 The Chevalley sequence for non-commutative G

We have the following intermediate lemma.

Lemma 5.16. Let G be a group variety and let D := Gant. Then D ∩Glin contains Dlin and they
are equal up to finite index. More precisely we have Dlin = (D ∩Glin)

◦
red.

Proof. This follows directly from the proof of Remark 1.63 applied to the case D = K and ∗ being
the property ‘linear’.

We will now prove a lemma on fibre bundles originally from algebraic topology but it also
applies to algebraic geometry. As we could not find a good source for the lemma we modify the
proof in the context of algebraic topology given in ([25] p.245). We omit writing the Ql-coefficients
in the proof below.
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Lemma 5.17 (The Leray-Hirsch principle). Let π : E → B fibration that is locally trivial for
the Zariski topology and let F be the fibre. Assume that the inclusion ι : F → E induces a
surjection ι∗ : H∗

ét(E,Ql) → H∗
ét(F,Ql). Then there is an isomorphism of H∗

ét(B,Ql)-modules:
H∗

ét(B,Ql) ⊗ H∗
ét(F,QL) ∼= Hét(E,Ql). It is given as follows: Pick classes drrj ∈ Hrét(E,Ql) such

that the ι∗(drrj ) form a basis of Hrét(F,Ql). Then the isomorphism maps a⊗ ι∗(drrj ) 7→ π(a) ∪ drrj .

Proof. We pick a finite trivializing cover {Ui}1≤i≤n of B and we denote π−1(U) = EU for any
open U of B. We will prove the result by induction on the number of elements in the cover.
Note that for any EU we still have a surjection H∗

ét(EU ) → H∗
ét(F ) as F → E factors via EU ,

hence we may indeed proceed by induction. The case n = 1 is covered by the Künneth formula.
So it suffices to show that if H∗

ét(U) ⊗ H∗
ét(F ) → H∗

ét(EU ) and H∗
ét(V ) ⊗ H∗

ét(F ) → H∗
ét(EV ) are

isomorphisms then H∗
ét(U ∪V )⊗H∗

ét(F )→ H∗
ét(EU∪V ) is an isomorphism. Note that we can assume

that H∗
ét(U∩V )⊗H∗

ét(F )→ H∗
ét(EU∩V ) is an isomorphism as EU∩V → U∩V has a trivializing cover

with no more elements than EU → U . We have the following exact sequence, which is induced by
the Mayer-Vietoris sequence for U ∪ V :

...→
⊕

n+m=r

(Hnét(U)⊕Hnét(V ))⊗Hmét(F )→
⊕

n+m=r

Hnét(U∩V )⊗Hmét(F )→
⊕

n+m=r+1

Hnét(U∪V )⊗Hmét(F )→ ...

We also have the following exact sequence, which is the Mayer-Vietoris sequence for EU∪V :

...→ Hrét(EU )⊕Hrét(EV )→ Hrét(EU∩V )→ Hr+1
ét (EU∪V )→ ...

There is a natural map from the first exact sequence to the second one. For W any of the opens
U, V, U∩V or U∪V it is defined by Hnét(W )⊗Hmét(F )→ Hn+mét (EW ) sending α⊗ι∗βσmm 7→ π∗(α)⊗βσmm
for homogeneous elements βσmm ∈ Hmét(EW ) such that ι∗βσmm generate Hmét(F ) freely over Ql and then
it is extended to the whole of the elements in the above exact sequence. These maps commute with
the horizontal maps in the exact sequences as the Mayer-Vietoris sequence is compatible with
pullbacks. Now we use that we assumed that for U, V and U ∩ V this map is an isomorphism to

conclude by the ’five lemma’ that
⊕

n+m=r

Hnét(U ∪V )⊗Hmét(F )→ Hrét(EU∪V ) is an isomorphism.

In the following theorem we exploit Lemma 1.60, which says that Glin · Gant = G for a group
variety G together with the fact that Gant is commutative. We may omit writing the Ql coefficients
for l-adic cohomology in the upcoming proofs.

Theorem 5.18. Let G be a group variety. Then H∗
ét(G,Ql) and H∗

ét(Glin,Ql) ⊗ H∗
ét(Gab,Ql) are

isomorphic as graded Ql-vectorspaces.

Proof. LetD := Gant, which is a commutative group variety. We have an exact sequence of algebraic
groups 0 → ker

ι→ D × Glin
m→ G → 0, where ker ∼= D ∩ Glin and the map D ∩ Glin → D × Glin

is given by a 7→ (−a, a). Note that by Lemma 5.16 we have that Dlin is a normal subgroup of
D ×Glin, hence we can form the following commuting diagram with exact rows:

e Dlin D ×Glin Q e

e D ∩Glin D ×Glin G e

j′

ιlin

m′

Id q

j m
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Note that Q is a group variety as it is a quotient of D×Glin. Also note that q is an isogeny as
Dlin and D ∩ Glin are equal up to finite index by Lemma 5.16. Composing Dlin → D × Glin with

the projection p1 : D × Glin → D gives an exact sequence 0 → Dlin
−ιD→ D

πD→ D/Dlin → 0. By
Corollary 5.15 we have the canonical isomorphism H∗

ét(D) ∼= H∗
ét(Dlin) ⊗ H∗

ét(D/Dlin), hence the
induced map H∗

ét(D)→ H∗
ét(Dlin) is surjective. This gives that (j

′)∗ : H∗
ét(D ×Glin)→ H∗

ét(Dlin) is
surjective.
Since Dlin is a commutative linear group variety we have by Proposition 4.32 that the D×Glin → Q
is a Zariski locally trivial fibre bundle. Thus the Leray-Hirsch principle 5.17 applies, which
gives an H∗

ét(Q)-module isomorphism H∗
ét(Glin × D) ∼= H∗

ét(Q) ⊗ H∗
ét(Dlin). By the Künneth for-

mula we have H∗
ét(Glin × D) ∼= H∗

ét(Glin) ⊗ H∗
ét(D) and by the previous Theorem 5.15 this is

isomorphic to H∗
ét(Glin) ⊗ H∗

ét(Dlin) ⊗ H∗
ét(D/Dlin). Because we have G = D · Glin we obtain

Gab = G/Glin =
D ·Glin

Glin
=

D

D ∩Glin
, which is admits an isogeny qab to Dab =

D

Dlin
. As isogenies

induce isomorphisms on the cohomology by Theorem 2.52, we can put this together to obtain an
isomorphism of graded Ql-vectorspaces H

∗
ét(G)⊗H∗

ét(Dlin) ∼= H∗
ét(Gab)⊗H∗

ét(Glin)⊗H∗
ét(Dlin). As

H∗
ét(Dlin) is a nonzero graded Ql-vectorspace we see by induction on the grading that there is an

isomorphism of graded Ql-vectorspace isomorphism H∗
ét(G)

∼= H∗
ét(Gab)⊗H∗

ét(Glin) by ‘dimension-
counting’.

This is a first step but not quite yet the result that we want as we want an isomorphism of
graded Ql-algebras.

Remark 5.19. It is useful to trace the isomorphisms used in the theorem above. We put them into
the following diagram:

H∗
ét(Glin ×D) H∗

ét(Glin)⊗H∗
ét(D)

H∗
ét(Q)⊗H∗

ét(Dlin) H∗
ét(Glin)⊗H∗

ét(Dab)⊗H∗
ét(Dlin)

H∗
ét(G)⊗H∗

ét(Dlin) H∗
ét(Glin)⊗H∗

ét(Gab)⊗H∗
ét(Dlin)

Künneth

LH 1⊗LH

q∗⊗1 1⊗q∗ab⊗1

For the left Leray-Hirsch map we have that as (j′)∗ is surjective and that j′ ◦ p1 = −ιD as homo-
morphisms Dlin → D that we can pick homogeneous classes of weight k, p∗1d

σk
k ∈ H∗

ét(Glin × D),

such that {(−ιD)∗dσkk } generates Hk(Dlin) and the Leray-Hirsch map maps (−ιD)∗dσkk 7→ p∗1d
σk
k .

By the commuting diagram of the previous theorem we have that m = m′ ◦ q, hence the map
H∗

ét(G)⊗ H∗
ét(Dlin) → H∗

ét(Glin ×D) maps an element x ∈ H∗
ét(G) to m

∗x. The Leray-Hirsch map
on the right sends an element of x ∈ H∗

ét(Dab) to π
∗
Dx. As we have qab ◦ πD = π, the restriction of

the map G→ Gab, hence on the right side the map is π∗ when restricted to H∗
ét(Gab).

Another useful observation to make is that the maps LH and 1⊗ LH are injective graded ring
homomorphisms when restricted to H∗

ét(Q) and H∗
ét(Glin) ⊗ H∗

ét(Dab). The isomorphisms induced
by the isogenies are isomorphisms of graded rings. This implies that H∗

ét(G)→ H∗
ét(Glin ×D) and

H∗
ét(Glin)⊗H∗

ét(Gab)→ H∗
ét(Glin)⊗H∗

ét(D) are injective homomorphisms of graded rings.

Now we will use the above to show that the desired isomorphism indeed exists.

Theorem 5.20. There is an isomorphism H∗
ét(Glin,Ql)⊗H∗

ét(Gab,Ql)→ H∗
ét(G,Ql) of graded Ql-

algebras. On H∗
ét(Gab,Ql) it is given by a 7→ π∗(a). On H∗

ét(Glin,Ql) it is given by a section to
ι∗ : H∗

ét(G,Ql)→ H∗
ét(Glin,Ql).
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Proof. We consider the following composition of isomorphisms of graded Ql-vectors spaces:

H∗
ét(G)⊗H∗

ét(Dlin)→ H∗
ét(D ×Glin)→ H∗

ét(D)⊗H∗
ét(Glin)→ H∗

ét(Glin)⊗H∗
ét(Gab)⊗H∗

ét(Dlin)

An element x of H∗
ét(Glin) corresponds to p

∗
2x ∈ H∗

ét(D×Glin). This is then equal to
∑

m∗βk∪p∗1αnr
r ,

where r and k denote the homogeneous degrees. Hence we obtain that x =
∑

ι∗2m
∗βk ∪ ι∗2p∗1αnr

r ,

which equals the same sum but with all the terms taken out that have r ̸= 0. Hence p∗1x equals
an element of the form m∗y for y ∈ H∗

ét(G). For an element in a ∈ H∗
ét(Gab), we have that it

corresponds to the element p∗2π
∗
D(a) = m∗π∗(a) in H∗

ét(Glin × D), so we see that H∗
ét(Gab) is also

contained in the image of H∗
ét(G). Hence the image of H∗

ét(Glin)⊗H∗
ét(Gab) in H∗

ét(Glin×D) is a sub
Ql-algebra of m∗H∗

ét(G). As their dimensions over Ql are the same by Proposition 5.18, we get that
these rings are equal. The middle arrow above is an isomorphism of rings. The left arrow restricted
to H∗

ét(G) is an isomorphism of rings H∗
ét(G)→ m∗H∗

ét(G). The inverse of the right arrow induces
an isomorphism of rings H∗

ét(Glin)⊗H∗
ét(Gab)→ H∗

ét(Glin)⊗ π∗DH∗
ét(Gab). Putting this together we

find that H∗
ét(G)→ H∗

ét(Glin)⊗H∗
ét(Gab) is a graded ring isomorphism.

An element a ∈ H∗
ét(Gab) corresponds to m

∗π∗(a) ∈ m∗H∗
ét(G) under the above isomorphisms and

so it maps to π∗(a). For an element b of H∗
ét(Glin) we have that it maps to p∗1(b) ∈ m∗H∗

ét(G), so the
corresponding element is some c ∈ H∗

ét(G) such that m∗(c) = p∗1(b). This means that our element b
is ι∗1p

∗
1(b) = ι∗1m

∗(c) = ι∗(c), so indeed the induced map H∗
ét(Glin)→ H∗

ét(G) is a section to ι∗.

Notation 5.21. Let σ : G → G be an endomorphism. Then it restricts to the fully characteristic
subgroup Glin. We denote σlin : Glin → Glin and σab : Gab → Gab for the endomorphisms induced by
σ. For f an endomorphism of a finite dimensional graded vectorspace V ∗, write tr(f |V r) =: tr(f, r).

We apply the result of Theorem 5.20 to compare the graded traces (see Definition 2.72) of the
above endomorphisms .

Proposition 5.22. Let σ : G→ G be an endomorphism. Then tr(σ) = tr(σlin) · tr(σab).

Proof. Let σ∗ : Hrét(G) → Hrét(G). By the isomorphism H∗
ét(Glin) ⊗ H∗

ét(Gab) → H∗
ét(G), there is

a unique graded Ql-algebra endomorphism H∗
ét(Glin) ⊗ H∗

ét(Gab) → H∗
ét(Glin) ⊗ H∗

ét(Gab) giving a
commuting diagram:

H∗
ét(G) H∗

ét(G)

H∗
ét(Glin)⊗H∗

ét(Gab) H∗
ét(Glin)⊗H∗

ét(Gab)

σ∗

We claim that this endomorphism is σ∗lin⊗σ∗ab. Indeed for a ∈ H∗
ét(Gab) we have σ

∗π∗(a) = π∗σ∗ab(a)
and we have for an element ι∗(b) of H∗

ét(Glin) that σ
∗
linι

∗(b) = ι∗σ∗(b), which is mapped to σ∗(b) by s,

so the diagram commutes for σ∗lin⊗σ∗ab. Thus tr(σ∗, r) = tr(σ∗lin⊗σ∗ab, r) =
∑
i+j=r

tr(σ∗lin, i)·tr(σ∗ab, j).

Hence we obtain:

tr(σ) =
∑
r

(−1)r
∑
i+j=r

tr(σ∗lin, i) · tr(σ∗ab, j) =
∑
i,j

(−1)i+jtr(σ∗lin, i) · tr(σ∗ab, j) = tr(σlin) · tr(σab)
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5.3 General extensions of group varieties and l-adic cohomology

We introduce the following notion for this subsection.

Definition 5.23. A sequence of group varieties e → K
ι→ G

π→ Q → e is called almost exact if
ker(ι) is finite, π is a quotient map and ker(π)/Im(ι) is finite.

We have seen several examples of this.

Example 5.24. • For any exact sequence of group varieties e→ K → G→ Q→ e, there is an
almost exact sequence e→ Klin

ι→ Glin
π→ Qlin → e by Proposition 1.62. In this case we even

have ker(ι) = e. By the proof of the same proposition we see that e→ Kab
ι→ Gab → Qab → e

is also almost exact but now ι need not be injective.

• Similarly if e → K → G → K → e is an exact sequence of linear group varieties then all of
the above holds with −lin replaced by Ru(−) and −ab by −red. If e→ K → G→ Q→ e is a
sequence of reductive group varieties, then all of the above holds with −lin replaced by R(−)
and −ab by −ss.

We now want to show that any exact sequence of connected group varieties over an algebraically
closed field e → K

ι→ G
π→ Q → e, there exists a Künneth type isomorphism as in Proposition

5.20.

Definition 5.25. An almost exact sequence of group varieties e → K
ι→ G

π→ Q → e has the
property (∗) if there exists a section s to ι∗ such that (s ⊗ π∗) : H∗

ét(K) ⊗ H∗
ét(Q) → H∗

ét(G) is an
isomorphism of graded Ql-algebras.

The strategy will be to decompose the exact sequence e→ N → G→ Q→ e into almost exact
sequences where the group varieties are of a special type (all semisimple, all tori or all abelian
varities). After proving that these sequences have (∗) we put the pieces back together to conclude
that the original sequence has (∗).

Lemma 5.26. Consider the commuting diagram of group varieties with exact rows and all columns
isogenies:

e K1 G1 Q1 e

e K2 G2 Q2 e

ι1 π1

ι2

qK

π2

qG qQ

Then the top row has (∗) if and only if the bottom row has (∗).

Proof. Suppose that the bottom row has (∗). Denote by s2 the homomorphism section to ι∗2. As
isogenies induce isomorphisms on the cohomology we can make an isomorphism as follows:

H∗
ét(K1)⊗H∗

ét(Q1)
q∗K⊗q∗Q→ H∗

ét(K2)⊗H∗
ét(Q2)

s2⊗π∗
2→ H∗

ét(G2)
(q∗G)−1

→ H∗
ét(G1)

On H∗
ét(Q1) this equals (q∗G)

−1π∗2q
∗
Q and as the diagram commutes this is (q∗G)

−1q∗Gπ
∗
1 = π∗1 as

desired. On H∗
ét(K1) applying ι∗1 to the map gives ι∗1(q

∗
G)

−1s2π
∗
K . As the diagram commutes we

have ι∗2q
∗
G = q∗Kι

∗
1, hence ι

∗
1 = (q∗K)−1ι∗2q

∗
G. This implies that the map H∗

ét(K1)→ H∗
ét(G1) followed

by ι∗1 is the identity as desired. So the top row has (∗). The proof of the other direction is the same
but with some inverse signs changed.
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Following our strategy mentioned above we look at the case of semisimple group varieties.

Lemma 5.27. Let e → K
ι→ G

π→ Q → e be an exact sequence of semisimple group varieties.
Then this sequence has (∗).

Proof. Let G1, ..., Gn+m be the normal minimal almost simple subgroup varieties of G. As K is a
normal subgroup variety of G we have by ([24], p.167) that K = G1 · ... ·Gm. Putting this together
with the fact that G is the almost direct product of G1, ..., Gn+m under the multiplication map
gives the following commuting diagram with exact rows, where ιm1 is the injection on the first µ
factors and pm+n

m+1 is the projection on the last n factors.

e K G Q e

e

m∏
i=1

Gi

n+m∏
i=1

Gi

n∏
i=m+1

Gi e

ι π

ιm1

µ|

pm+n
m+1

µ µQ

By the snake lemma we have that mQ is an isogeny as both µ and µ| are isogenies. The bottom
sequence splits and has (∗) by the Künneth isomorphism. Hence the top sequence has (∗) by
Lemma 5.26.

Now treat the case of an exact sequence of tori.

Lemma 5.28. Let e→ K
ι→ G

π→ Q→ e be an exact sequence of tori (so all algebraic groups are
(Gm)

n for some n). Then this sequence splits, which implies that it has (∗).

Proof. Let K = Gnk
m and Q = Gnq

m . We consider the class [G] ∈ PBzar
K,Q (see Chapter 4). Then there

is a homomorphism PBzar
K,Q → H1

zar(Q,K) = H1
zar(Q,Gnk

m ) =
⊕
nk

H1
zar(Q,Gm) =

⊕
nk

Pic(Q). As Q

is an affine variety, Pic(Q) equals Cl(O(Q)) and as O(Q) = k[X1, ..., Xnq ]X1,...,Xnq
is a localization

of a UFD it is a UFD, hence its class group is trivial. So we see that the image of [G] in H1
zar(Q,K)

is 0, hence the fibration π : G → Q admits a section s. By applying translations we may assume
that s(e) = e. By ([32], Prop. 12.49) we have that any regular map φ from a connected group
variety to a group of multiplicative type satisfying φ(e) = e is a homomorphism of algebraic groups.
A torus is of multiplicative type, hence we conclude that s : Q→ G is a homomorphism, hence the
sequence splits. Thus we have a Künneth isomorphism on the l-adic cohomology induced by ι and
π, so the sequence has (∗).

And last we treat the case of an exact sequence of abelian varieties.

Lemma 5.29. An exact sequence of abelian varieties e→ K → G→ Q→ e has (∗).

Proof. For any abelian variety A, the simple abelian subvarieties A1, ..., An (finitely many) of A
satisfy that the multiplication map A1 × ... × An → A is an isogeny ([30], p.42). This implies
that for any abelian subvariety K ⊂ G there exists an abelian subvariety H ⊂ G such that the
multiplication map K ×H → G is an isogeny. The proof is now just the same proof as the one of
Lemma 5.27.
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We now show that the following sequence also has the property.

Proposition 5.30. For G reductive the exact sequence e→ R(G)→ G→ Gss → e has (∗).

Proof. As G is reductive, the multiplication map µ : R(G)×Gder → G is an isogeny. As the image
of R(G) inside Gss is trivial, the homomorphism R(G) × Gder → Gss factors via Gder. This gives
the following commuting diagram with exact rows:

e R(G) G Gss e

e R(G) R(G)×Gder Gder e
ι1

Id

p2

µ

The bottom row has (∗) by the Künneth isomorphism. The homomorphism Gder → Gss is an
isogeny by the Snake lemma. So the top row has (∗) by Lemma 5.26.

Using the results on the exact sequences of tori and semisimple group varieties we can prove
the following.

Proposition 5.31. Let e → K
ι→ G

π→ Q → e be an exact sequence of reductive group varieties.
Then the almost exact sequences e→ R(K)

ιR→ R(G)
πR→ R(Q)→ e and e→ Kss

ιs→ Gss
πs→ Qss → e

both have (∗).

Proof. This follows almost immediately from Proposition 1.62. As K,G,Q are reductive there is an

exact sequence of group varieties e→ R(K)
ιR→ R(G)

π′
→ R′ → e and an isogeny q : R′ → R(Q) such

that q◦π′ = πR. As G,K are reductive we have that R(G), R(K) are tori and as quotients of tori are

tori, so is R′. Hence the sequence e→ R(K)
ιR→ R(G)

π′
→ R′ → e has (∗) by Lemma 5.28. So there

is an isomorphism of Ql-algebras H∗
ét(R(Q)) ⊗ H∗

ét(R(K))
q∗⊗1→ H∗

ét(R
′) ⊗ H∗

ét(R(K))
π′∗⊗s→ H∗

ét(G).
As q∗π′∗ = π∗R we conclude that the sequence of radicals has (∗).
The case of the sequence of semisimple algebraic groups is very much the same and follows from
the exact sequence e → Kss/F → Gss → Qss → e for F a finite algebraic group combined with
Lemma 5.27.

We now have a general statement on finitely generated graded-commutative Hopf-Algebras by
Hopf [5] also shown in ([9], Sections 2.3, 2.4).

Proposition 5.32. Let H be a graded-commutative Hopf-algebra that is finitely generated over a
field k of characteristic 0 such that H0 = k. Then there is an isomorphsim of graded k-algebras

H ∼=
∗∧
PH, thus H is identified with the exterior algebra on the primitive elements.

Note that for G a connected group variety the previous proposition applies to the Hopf-algebra
H∗

ét(G,Ql). Also note that for f : G → H a homomorphism of group varieties the pullback
f∗ : H∗

ét(H,Ql)→ H∗
ét(G,Ql) preserves the subspace of primitive elements.

Lemma 5.33. Let e → K
ι→ G

π→ Q → e be a sequence of group varieties (it need not be exact).

Then the sequence satisfies (∗) if and only if 0→ PH∗
ét(Q)

π∗
→ PH∗

ét(G)
ι∗→ PH∗

ét(K)→ 0 is an exact
sequence of Ql-vectorspaces.
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Proof. If 0 → PH∗
ét(Q)

π∗
→ PH∗

ét(G)
ι∗→ PH∗

ét(K) → 0 is exact, then the sequence induced by the

pullbacks H∗
ét(Q)→ H∗

ét(G)→ H∗
ét(K) is induced by this sequence, hence as H∗

ét(G) =
∗∧
PH∗

ét(G),

it is identified with
∗∧
(PH∗

ét(K)⊕ PH∗
ét(Q)) = H∗

ét(K)⊗H∗
ét(Q).

Now suppose that s is a section to ι∗ such that s⊗ π∗ :
∗∧
PH∗

ét(K)⊗
∗∧
PH∗

ét(Q)→
∗∧
PH∗

ét(G) is

an isomorphism. After identifying the left side with
∗∧
(PH∗

ét(K)⊕PH∗
ét(Q)) it follows that s⊗ π∗

is induced by s ⊕ π∗ : PH∗
ét(K) ⊕ PH∗

ét(Q) → PH∗
ét(G) extended to the exterior algebra. As the

extension to the exterior algebra is an isomorphism of Ql-algebras the map s⊕π∗ is an isomorphism
of Ql-vectorspaces. Hence the sequence 0→ PH∗

ét(Q)→ PH∗
ét(G)→ PH∗

ét(K)→ 0 is exact.

Lemma 5.34. Any exact sequence e → K → G → Q → e of reductive group varieties has (∗).
Moreover for e→ K → G→ Q→ e an exact sequence of linear group varieties, the induced almost
exact sequence of reductive group varieties e→ Kred → Gred → Qred → e has (∗).

Proof. There is a large commuting diagram with exact columns:

e e e

e R(K) R(G) R(Q) e

e K G Q e

e Kss Gss Qss e

e e e

The diagram above gives another large commuting diagram of primitive elements, where the arrows
are the pullbacks.

0 0 0

0 PH∗
ét(R(K)) PH∗

ét(R(G)) PH∗
ét(R(Q)) 0

0 PH∗
ét(K) PH∗

ét(G) PH∗
ét(Q) 0

0 PH∗
ét(Kss) PH∗

ét(Gss) PH∗
ét(Qss) 0

0 0 0

Using Lemma 5.33 we see that all of the vertical sequences are exact by Proposition 5.30 and the
top horizontal row and bottom horizontal row are exact by Proposition 5.31. Applying the snake
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Lemma twice gives that the maps PH∗
ét(Q)→ PH∗

ét(G) and PH∗
ét(G)→ PH∗

ét(K) are injective resp.
surjective. As K → G → Q is constant, we have that PH∗

ét(Q) is contained in ker(PH∗
ét(G) →

PH∗
ét(K)). Using exactness of the columns and top and bottom row implies that the dimension of

the kernel and PH∗
ét(Q) are the same, hence they coincide. Hence the exact sequence e → K →

G→ Q→ e has (∗).
For an exact sequence of linear group varieties e → K → G → Q → e we have the almost exact
sequence e→ Kred → Gred → Qred → e . Completely analogously to the proof of Proposition 5.31
it thus follows that e→ Kred → Gred → Qred → e has (∗).

Lemma 5.35. An exact sequence e→ K → G→ Q→ e of linear group varieties has (∗).

Proof. There is a commuting diagram where the top row is exact (here the subscript refers to
reductive and not reduced):

e K G Q e

e Kred Gred Qred eι π

For any linear group variety L the homomorphism π : L → Lred has constant fibre Ru(B), which
as a scheme is isomorphic to As for some s, hence the cohomology of the fibre is concentrated in
degree 0. This implies that π : B → Bred induces an isomorphism on the cohomology for all group
varieties B. Similarly to how Lemma 5.26 was proven we therefore see that it suffices to show
that the sequence e → Kred → Gred → Qred → e has (∗). By Proposition 1.62 there is an exact

sequence e→ Kred/F
ι′→ Gred

π→ Qred → e for F finite and an isogeny q : Kred → Kred/F such that
ι = q ◦ ι′. We have seen in Lemma 5.34 that the bottom sequence of reductive group varieties has
e→ Kred → Gred → Qred → e has (∗). This concludes the proof.

Proposition 5.36. Let e→ K
ι→ G

π→ Q→ e be an exact sequence of group varieties. The almost
exact sequences e→ Klin

ιl→ Glin
πl→ Qlin → e and e→ Kab

ιa→ Gab
πa→ Qab → e both have (∗).

Proof. This is the same proof as Proposition 5.31. First use Proposition 1.62 and then for the
linear case use Lemma 5.35 and for the abelian variety case use Lemma 5.29.

We conclude the chapter with the following theorem, putting everything together.

Theorem 5.37. Let e → K
ι→ G

π→ Q → e be an exact sequence of group varieties over an
algebraically closed field. Then ι∗ : H∗

ét(G,Ql)→ H∗
ét(K,Ql) admits a section s that is a Ql-algebra

homomorphism such that the induced map s ⊗ π∗ : H∗
ét(K,Ql) ⊗ H∗

ét(Q,Ql) → H∗
ét(G,Ql) is an

isomorphism of graded Ql-algebras.
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Proof. This is mainly the proof of Lemma 5.34 repeated. We have a large commuting diagram:

0 0 0

0 PH∗
ét(Klin) PH∗

ét(Glin) PH∗
ét(Qlin) 0

0 PH∗
ét(K) PH∗

ét(G) PH∗
ét(Q) 0

0 PH∗
ét(Kab) PH∗

ét(Gab) PH∗
ét(Qab) 0

0 0 0

By Proposition 5.36 the top and bottom horizontal sequences are exact. By Proposition 5.20 all
of the vertical sequences are exact. Hence by doing the same as in the proof of Lemma 5.34 we
conclude that the middle horizontal sequence is exact and that there thus exists a section s to ι∗

such that the induced map s ⊗ π∗ : H∗
ét(K,Ql) ⊗ H∗

ét(Q,Ql) → H∗
ét(G,Ql) is an isomorphism of

graded Ql-algebras.

Remark 5.38. One might wonder if the condition that K ⊂ G is normal can be relaxed to K being
any subgroup variety of G. This fails already in some very simple cases. For instance, for n ≥ 2 we
can take G = GLn and K = {diag(t1, ..., tn) | t1, ..., tn ∈ k∗} ∼= Gn

m. We will see in the next section
that H∗

ét(SLn,Ql) has no degree 1 elements, hence as GLn is an extension of Gm by SLn we see
that H1

ét(GLn,Ql) = H1
ét(Gm,Ql), which is not isomorphic to H1

ét(Gn
m,Ql) when n ≥ 2.

Question 3. The proof of Theorem 5.37 relies on various structure theorems for algebraic groups
and being able to compare certain exact to a split exact sequences. One may ask if there is a more
intrinsic proof than ours. For example, does the l-adic Leray spectral sequence of G → Q have
Ep,q2 = Hpét(Q,Ql)⊗Ql

Hqét(K,Ql) and does it degenerate at the E2-page?

5.4 Calculating the l-adic cohomology in explicit examples

We have seen that for any group variety G, that H∗
ét(G)

∼= H∗
ét(Gab)⊗H∗

ét(R(Gred))⊗H∗
ét(Gss) as Ql-

algebras in a natural way. Here H∗
ét(Gab) and H∗

ét(R(Gred)) are well understood as R(Gred) ∼= Gn
m

for some n, so H∗
ét(Gab) and H∗

ét(R(Gred)) both only depend on the dimension of Gab and Gred

respectively (see Examples 2.50 and 2.51). The more complicated part is H∗
ét(Gss). Write Gss = Q.

We have by ([24], p.167) that for Q1, ..., Qn the minimal normal subgroup varieties of Q that the
multiplication map µ : Q1×...×Qn → Q is an isogeny. The pullback map µ∗ is then an isomorphism

H∗
ét(Q) ∼=

⊗
1≤i≤n

H∗
ét(Qi). The subgroups Qi are almost-simple algebraic groups that are classified

up to isogeny (which thus classifies their cohomology) by their root data (see [41] Chapter 17).
By the former decomposition of the cohomology of Q we see that it suffices to understand the
cohomology of almost-simple algebraic groups. Omitting the case that char(k) = 2 we have that
the isogeny classes of almost-simple group varieties are as follows:
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• The groups of type An (n ≥ 2). The isogeny class is represented by SLn, which is the algebraic
group given by SLn(R) = {M ∈ GLn(R) | det(M) = 1}.

• The group varieties of type Bn (n ≥ 2). The isogeny class is represented by SO2n+1, defined as

follows: Let J0 =

1 0 0
0 0 In
0 In 0

 and define O2n+1(R) := {M ∈ GL2n+1(R) |MTJ0M = J0}.

Then we set SO2n+1 := ker(det : O2n+1 → Gm).

• The group varieties of type Cn (n ≥ 3). The isogeny class is represented by Sp2n, which is

defined as follows: Define J1 :=

(
0 In
−In 0

)
and then Sp2n(R) := {M ∈ GL2n |MTJ1M =

J }.

• The group varieties of type Dn (n ≥ 4). The isogeny class is given by SO2n, defined as follows:

First define J2 =

(
0 In
−In 0

)
and O2n(R) := {M ∈ GL2n(R) |MTJ2M = J2}. Then we set

SO2n := ker(det : O2n+1 → Gm).

• The exceptional group varieties of isogeny class G2, F4, E6, E7, E8. These are harder to de-
scribe explicitly. Their root data is given in ([41] Chapter 17).

Remark 5.39. The same classification holds in the case that char(k) = 2, the only thing being that
one should define Sp2n and SOn a bit differently (see Section 24 of [32]).

We have the following proposition that is stated in (SGA 41⁄2 p.230-231). Note that the degree
below is well-defined by the Chevalley-Shephard-Todd theorem [10].

Proposition 5.40. Let G be a reductive group variety with maximal torus T and Weyl group W .

There is an isomorphism of graded Ql-algebras
∗∧
J ∼= H∗

ét(G,Ql), where J = SW+ /(SW+ )2 and the

degree d of a polynomial F ∈ J is set to be 2d− 1.

Functoriality of the above isomorphism will be discussed in the next chapter. Note that it makes
sense to write Sym(X(T )⊗Ql)

W as W acts on X(T ), so W also acts on Sym(X(T )⊗Ql). We will
use this to calculate the cohomology rings of the almost simple groups of type An, Bn, Cn, Dn. For
this we use the following results on the Weyl groups of the almost-simple algebraic groups, which
is given in the Section 21.j of [32].

Proposition 5.41. The Weyl groups and maximal tori of the groups listed above are given by:

• SLn: A maximal torus is given by T = {diag(t1, ..., tn) |
∏
i

ti = 1}. The Weyl group is

isomorphic to Sn and acts on T by σ · diag(t1, ..., tn) = diag(tσ(1), ...tσ(n)).

• Sp2n: A maximal torus is given by T = {diag(t1, ..., tn, t−1
1 , ..., t−1

n )}. The Weyl group is
⟨−1⟩n⋊Sn with Sn acting by σ ·diag(t1, ..., tn, t−1

1 , ..., t−1
n ) = diag(tσ(1), ..., tσ(n), t

−1
σ(1), ..., t

−1
σ(n))

and ⟨−1⟩n acting by (ϵ1, ..., ϵn)·diag(t1, ..., tn, t−1
1 , ..., t−1

n ) = diag(tϵ11 , ..., t
ϵn
n , (t

ϵ1
1 )−1, ..., (tϵnn )−1).

• SO2n: A maximal torus is given by T = {diag(t1, ..., tn, t−1
1 , ..., t−1

n )}. The Weyl group is
Hn−1 ⋊ Sn with Hn−1 := ker(µ : ⟨−1⟩n → ⟨−1⟩) acting in the same way as ⟨−1⟩n above and
Sn also acting as above.
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• SO2n+1: A maximal torus is given by T = {diag(1, t1, ..., tn, t−1
1 , ..., t−1

n }. The Weyl group is
isomorphic to ⟨−1⟩n ⋊ Sn, which acts the same as in the case of Sp2n.

For proving that any of the above tori T is maximal, note that any of the above group varieties
G is contained in GLr for some r and the tori in Dr for r either n or 2n + 1. For T ′ a maximal
torus of G that contains T we have that any element of T ′ commutes with all elements of T . It can
be shown though that the elements of GLr that commute with any element of T are exactly Dr.
So T ′ ⊂ Dr ∩G, which can be checked is equal to T in all cases.
For showing that the Weyl groups are the correct ones, one can either calculate explicitly or note
that all the above permutations can be realized by conjugation and then compare the cardinality
with the Weyl groups of the corresponding Dynkin-diagrams ([41], Chapter 17).
Using this proposition and Proposition 5.40 we can calculate the cohomology rings of the groups
above. First of all notice that cohomology rings of SO2n+1 and Sp2n are isomorphic.

First we prove a short lemma on invariants.

Lemma 5.42. Let G be a finite group acting on a finitely generated k-algebra A such that char(k) =
0. Let I ⊂ A be an ideal spanned by f1, ..., fn ∈ AG. Then the natural map AG → (A/I)G is
surjective.

Proof. The assumption that I is spanned by invariant polynomials allows the map AG → (A/I)G

to exist. Let ḡ ∈ (A/I)G. Pick any g ∈ A that reduces to ḡ in A/I. As char(k) = 0 we have the

Reynolds-operator ρ : A → AG that maps f 7→ 1

|G|
∑
σ∈G

σ · f . The assumption that ḡ is invariant

implies that σ · g = g+ hσ, where hσ ∈ I. Thus we see that ρ(g) =
1

|G|
∑
σ

g+ hσ = g+
1

|G|
∑
σ

hσ.

Hence the image of ρ(g) inside (A/I)G equals ḡ, which as ρ(g) is invariant under G implies that
AG → (A/I)G is surjective.

In the following proposition we write Q(k)
l ⊂ H for H a graded algebra to indicate that the

elements of Q(k)
l are in degree k.

Proposition 5.43. For n ≥ 2 there is an isomorphism of graded Ql-algebras:

H∗
ét(SLn,Ql) ∼=

∗∧
(
⊕

2≤k≤n
Q(2k−1)
l )

Proof. We use the identification

∗∧
J ∼= H∗

ét(SLn,Ql) from Proposition 5.40 with Weyl groupW and

maximal torus given in Proposition 5.41. As the maximal torus T = {(diag(t1, ..., tn) |
∏
i

ti = 1}

is a maximal torus, the character group is given by X(T ) =
⊕

1≤i≤n
Z · xi/(

∑
i

xi) where W = Sn

acts by permuting the variables. Hence Sym(X(T )⊗Ql) ∼= Ql[X1, ..., Xn]/(
∑
i

Xi). This action is

inherited by the action of Sn on Ql[X1, ..., Xn] by permuting variables. The ring of invariants under
this action is Ql[e1, ..., en], where {ej}1≤j≤n are the elementary symmetric polynomials. We need
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the ring of invariant of Ql[X1, ..., Xn]/(e1). By Lemma 5.42 this algebra is generated by the images
of e2, ..., en, so for R = Ql[e1, ..., en] it is given by R/(e1 ·R). We claim that e2, ..., en form a set of
indecomposable generators of (Ql[X1, ..., Xn]/(e1))

G, i.e. we need to show that no ej is a polynomial
in the other ei. Since R is isomorphic as a ring to a polynomial ring in variables ei we have that
(Ql[X1, ..., Xn]/(e1))

G = R/(e1 · R) is isomorphic to a polynomial ring in e2, .., en, hence e2, ..., en
are algebraically independent, which in particular implies that they form a set of indecomposable
generators of (Ql[X1, ..., Xn]/(e1))

G. Therefore we conclude that J ∼= ⟨e2, ..., en⟩Ql
. As ei is a

polynomial of degree i we have by Proposition 5.40 that H∗
ét(SLn,Ql) ∼=

∗∧
(
⊕

2≤k≤n
Q(2k−1)
l ).

Now we deal with the case Sp2n.

Proposition 5.44. For n ≥ 2 there is an isomorphism of graded Ql-algebras:

H∗
ét(Sp2n,Ql) ∼=

∗∧
(
⊕

1≤k≤n
Q(4k−1)
l )

Proof. By Proposition 5.41 a maximal torus of Sp2n is T = {diag(t1, ..., tn, t−1
1 , ..., t−1

n )} and the
Weyl group W is ⟨−1⟩n ⋊ Sn with Sn acting by permuting t1, ..., tn and the action of ⟨−1⟩n
is (ϵ1, ..., ϵn) · diag(t1, ..., tn, t−1

1 , ..., t−1
n ) = diag(tϵ11 , ..., t

ϵn
n , (t

ϵ1
1 )−1, ..., (tϵnn )−1). This implies that

Sym(X(T ) ⊗ Ql) is isomorphic to Ql[X1, ..., Xn] with Sn acting on it by permuting variables and
⟨−1⟩n acting on it by (ϵi)i · Xj = ϵj · Xj . Clearly a polynomial f is invariant under W if and

only if it is both invariant under Sn and ⟨−1⟩n. Hence Ql[X1, ..., Xn]
W ⊂ Ql[X1, ..., Xn]

⟨−1⟩n .
As the action of ⟨−1⟩n preserves monomials, f is invariant if and only if all monomials of f
are invariant. So the ring of invariants for ⟨−1⟩n is exactly Ql[X

2
1 , ..., X

2
n]. This subring in-

herits the action of Sn. As Ql[X
2
1 , ..., X

2
n] is a polynomial ring in variables {X2

i }, the indecom-
posable invariants are the elementary symmetric functions {ej} in variables {X2

i }. Thus we get
Ql[X1, ..., Xn]

W = Ql[X
2
1 , ..., X

2
n]
Sn = Ql[e1(X

2
1 , ..., X

2
n), ..., en(X

2
1 , ..., X

2
n)]. Using Proposition 5.40

this then gives H∗
ét(Sp2n,Ql) ∼=

∗∧
(
⊕

1≤k≤n
Q(4k−1)
l ).

Remark 5.45. As we saw in Proposition 5.41 that Sp2n and SO2n+1 have isomorphic maximal tori
and isomorphic Weyl groups that act in the same way on the torus, we obtain:

H∗
ét(SO2n+1,Ql) ∼=

∗∧
(
⊕

1≤k≤n
Q(4k−1)
l )

Last we deal with the case SO2n.

Proposition 5.46. For n ≥ 4 there is an isomorphism of graded Ql-algebras:

H∗
ét(SO2n,Ql) ∼=

∗∧
((

⊕
1≤k≤n−1

Q4k−1
l )⊕Q(2n−1)

l )

Proof. By Proposition 5.41 a maximal torus of SO2n is given by T = {diag(t1, ..., tn, t−1
1 , ..., t−1

n )}
and the Weyl group W is isomorphic to Hn−1 ⋊ Sn with Sn acting in the same way as in the
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case of Sp2n and Hn−1 := ker(µ : ⟨−1⟩n → ⟨−1⟩) also acting in the same way as ⟨−1⟩n in the
case of Sp2n. This means that Sym(X(T )⊗Ql) ∼= Ql[X1, ..., Xn] with Sn acting by permuting the
variables and Hn−1 by (ϵi)i · Xj = ϵj · Xj . Notice that Ql[X1, ..., Xn]

⟨−1⟩n⋊Sn ⊂ Ql[X1, ..., Xn]
W .

Hence Ql[e1(X
2
1 , ..., X

2
n), ..., en(X

2
1 , ..., X

2
n)] is contained in the ring of invariants for W . We also

have an invariant polynomial en as for any (ϵi)i ∈ Hn−1 an even number of ϵi are −1. Hence
Ql[e1(X

2
1 , ..., X

2
n), ..., en−1(X

2
1 , ..., X

2
n), en] ⊂ Ql[X1, ..., Xn]

W . We claim that this is an equality.
Let f be any invariant polynomial and let Xλ1

1 · ... ·X
λn
n be a monomial occuring in f . Then this

monomial is invariant under Hn−1. And hence (Xλ1
1 · ... ·X

λn
n )/emini{λi}

n =: Xµ1
1 · ... ·X

µn
n is invariant

under Hn−1. Since at least one µi is 0 this implies that all µj are even by invariance under Hn−1.
Thus f is in the ring Ql[X

2
1 , ..., X

2
n, en]. This ring inherits the Sn action of Ql[X1, ..., Xn] and

Ql[X
2
1 , ..., X

2
n, en]

∼= Ql[Y1, ..., Yn, Z]/(Z
2−Y1 · ... ·Yn) is an isomorphism, which preserves the action

of Sn by permuting the Yi and acting trivially on Z. Since Y 2−Y1 · ... ·Yn is invariant under Sn we
can use Lemma 5.42 which provides us with a surjection Ql[Y1, ..., Yn, Z]

Sn → Ql[X
2
1 , ..., X

2
n, en]

Sn .
The Sn invariants of Ql[Y1, ..., Yn, Z] are given by Ql[e1(Y ), ..., en(Y ), Z] which gives us the equality:

Ql[X1, ..., Xn]
W = Ql[X

2
1 , ..., X

2
n, en]

Sn = Ql[e1(X
2
1 , ..., X

2
n), ..., en−1(X

2
1 , ..., X

2
n), en]

The last thing that we do is that we show that e1(X
2
1 , ..., X

2
n), ..., en are algebraically independent.

Notice that Ql[e1(X
2
1 , ..., X

2
n), ..., en] is a finite module over Ql[e1(X

2
1 , ..., X

2
n), ..., en(X

2
1 , .., X

2
n)],

hence their dimension is the same. Hence the dimension of Ql[e1(X
2
1 , ..., X

2
n), ..., en] is n, thus as

e1(X
2
1 , ..., X

2
n), ..., en generate it, they are algebraically independent. By Proposition 5.40 we have

an isomorphism of graded Ql-algebras:

H∗
ét(SO2n,Ql) ∼=

∗∧
((

⊕
1≤k≤n−1

Q(4k−1)
l )⊕Q2n−1

l )

Remark 5.47. As a sanity check we compute the highest j with Hjét(G,Ql) ̸= 0 for G any of the
three groups in the preceeing calculations. We know that an affine variety X has no cohomology
above degree dim(X).

• SLn: The dimension of SLn is n2− 1 as it is the kernel of the quotient map det : GLn → Gm.

The highest j such that Hjét(SLn,Ql) ̸= 0 is j =
n∑
k=2

(2k−1) =
n∑
k=1

(2k−1)−1 = 2·n · (n+ 1)

2
−

n− 1 = n2 − 1.

• Sp2n: The dimension of Sp2n is 2n2 + n.

The highest j such that Hjét(Sp2n,Ql) ̸= 0 is j =
n∑
k=1

(4k − 1) = 4 · n(n+ 1)

2
− n = 2n2 + n.

• SOn: The dimension of SOn is n(n− 1)/2. The highest j such that Hjét(SO2n,Ql) ̸= 0 is

j =
n−1∑
k=1

(4k−1)+2n−1 = 2·n·(n−1)−(n−1)+2n−1 = (2n2−2n)+(1−n)+(2n−1) = 2n2−n.

By the previous item we can also tick off SO2n+1.

The sanity check indeed holds.
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The claims about the dimensions can be checked by looking at the Lie algebras (tangent spaces
at identity element). For k[ϵ] = k[X]/(X2) we have Te(G) = {gϵ ∈ G(k[ϵ]) | g0 = e ∈ G(k)} where
g0 is the image of gϵ in G(k) under the induced map G(k[ϵ])→ G(k) by ϵ→ 0. Recall how J0,J1,J2
were defined in the beginning of this section.
We note that TIn(Sp2n) consists A = ϵM + I2n with M ∈ M2n(k) such that ATJ1A = J1, which
as k-vectorspace is isomorphic to {M ∈ M2n(k), |MTJ1 + J1M = 0} from which follows that the
dimension of Sp2n is TIn(Sp2n) = 2n2 + n.
Two similar computations show that TIn(SO2n+1) ∼= {M ∈ M2n+1(k) |MTJ0 + J0M = 0} and
that TIn(SO2n) ∼= {M ∈M2n(k) |MTJ2+J2M = 0} from which it follows that the dimensions are
indeed what they are claimed to be in Remark 5.47.



Chapter 6

The l-adic cohomology of semisimple
group varieties

We have by Theorem 5.37 that the cohomology of a group variety can be decomposed functorially
into the cohomology of a semisimple group variety, a torus and an abelian variety. The l-adic coho-
mology of the abelian variety and the torus are relatively easy to understand (see Proposition 2.74).
In this chapter we focus on the l-adic cohomology of a semisimple group variety and throughout
this chapter G will be a semisimple group variety over an algebraically closed field k. For such G
one has that there exists a group scheme GZ over Spec(Z) such that G = GZ×Z Spec(k), shown in
SGA3 XXV, p.268 [3] and one can consider GC := GZ ×Z Spec(C). There is a comparison isomor-
phism between H∗

ét(G,Ql) and H∗
ét(GC,Ql) as shown in Friedlander [21]. As for any variety X over

C there is a comparison isomorphism H∗
ét(X,Ql) ∼= H∗

sing(X(C),Z)⊗ZQl, it suffices to calculate the
singular cohomology of the complex lie group GC(C). This was done by Borel [5], who gave the
following description where T ⊂ GC(C) is a maximal torus:

H∗
ét(G,Ql) ∼= H∗

sing(GC(C),Z)⊗Z Ql
∼=

∗∧
(SW+ /(SW+ )2)[×2− 1] (6.1)

So we know all the Betti numbers and the algebra structure of H∗
ét(G,Ql).

Suppose that σ : G→ G is an endomorphism of G. Sometimes one wants to compute the pullback
morphism σ∗ on H∗

ét(G,Ql) (for instance we will see that the graded trace of σ∗ relates to counting
fixed points of σ) and although G lifts to a group variety GC over C, it need not happen that σ lifts
to an endomorphism of GC. This section is devoted to reproving (6.1) but in a functorial manner,
i.e. such that one keeps track of what endomorphisms do.

Notation 6.1. Throughout this section we denote:

• σ : G→ G will be a fixed surjective endomorphism and (B, T ) is a σ-stable Borel pair (which
we assume exists). We denote W = NG(T )/T , which may be regarded as a finite group and
which acts by conjugation on T .

• We denote S = Sym(X(T )⊗Z Ql) and S
W the W -invariants of S. Denote J := SW+ /(SW+ )2.

Note that this σ-stable Borel pair exists if Fix(σ) is finite and σ is surjective by Proposition
3.10.

89
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We must define a pullback morphism σ∗ on

∗∧
J. This is possible when σ is surjective and T is

σ-stable.

Proposition 6.2. For σ : G → G surjective and T σ-stable there is a pullback homomorphism

σ∗ :
∗∧
J→

∗∧
J.

Proof. As T is σ-stable we have a pullback homomorphism σ∗ : X(T ) → X(T ) which is defined
by σ∗(χ) = χ ◦ σ. So this defines a linear endomorphism of Ql-algebras σ

∗ : S → S. Now
it suffices to show that σ∗ preserves W -invariants in order to show that J inherits the pullback
morphism from S. Let f = f(χ1, ..., χn) be W -invariant and consider σ∗f = f(σ∗χ1, ..., σ

∗χn). For
w ∈ W we have w · σ∗f = f((σ ◦ γw)∗χ1, ..., (σ ◦ γw)∗χn), where γw denotes conjugation by w.
Note that (σ ◦ γw) = γσ(n) ◦ σ for n ∈ NG(T ) representing w. As σ is surjective we have that

σ(n)Tσ(n)−1 = σ(n)σ(T )σ(n)−1 = σ(T ) = T as n normalizes T . So we have σ(n) ∈ NG(T ),
so γσ(n) equals γv for some v ∈ W . Hence we obtain w · σ∗f = σ∗(v · f) = σ∗f , so σ∗ preserves
W -invariants.

6.1 The cohomology of G/B

In this subsection we do not require that (B, T ) is a σ-stable Borel pair. A first step in understanding
H∗

ét(G,Ql) will be understanding H∗
ét(G/B,Ql). To understand this object, the main tool is the

cellular decomposition of G/B. For more background on these tools we refer to ([41], Section
8).

Theorem 6.3. For G a semisimple group variety we have the Bruhat decomposition:

G =
⊔
w∈W

BwB

Moreover we have the cellular decomposition:

G/B =
⊔
w∈W

BwB/B

The double cosets BwB are open in their closures and for all w ∈ W there are v ∈ W such that

BwB =
⊔
v

BvB.

We now introduce some notation and state several results from ([41], Section 8).

Notation 6.4. We use the following notation in this subsection:

• Denote the set of roots of (G,T ) by R and denote a set of positive roots by R+. For w ∈W
we denote R(w) := {α ∈ R+ |w · α ∈ −R+}, which has cardinality l(w).

• For α ∈ R we denote by Uα ⊂ G the unique algebraic subgroup of G for which there is an
isomorphism uα : Ga → Uα that satisfies tuα(x)t

−1 = uα(α(t)x) for all t ∈ T (k), x ∈ Ga(k).
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• For w ∈W we denote Uw = Uα1 · ... · Uαn where the product is taken over all αij ∈ R(w).
It is isomorphic as a variety to Al(w).

• The double cosets BwB will be denoted by C(w) and the cells BwB/B by X(w).

We have the following proposition, which is Lemma 8.3.6.(ii) in [41].

Proposition 6.5. Denote ẇ for a lift of w to NG(T ). The morphism

Uw ×B → C(w) (u, b) 7→ uẇb

is an isomorphism of varieties. In particular X(w) is isomorphic to Al(w).

We have the following lemma, which states how we can obtain a filtration of G/B by closed
subvarieties.

Lemma 6.6. The cellular decomposition induces a filtration of G/B by smooth closed subvarieties
Ym ⊂ ... ⊂ Y0 = G/B and such that Ym and for all n < m, Yn \ Yn+1 are disjoint unions of affine
spaces.

Proof. For exactly one w0 we must have dim(X(w0)) = dim(G/B) (this is called the ‘big cell’).
Hence X(w0) = G/B and hence X(W0) is an open cell of G/B. Set W0 = {w0}, then the

complement Y1 :=
⊔

w/∈W0

X(w) is closed. Let Zi1 be the irreducible components of Y1. As the X(w)

with w ̸= w0 are irreducible, so are their closures, hence each of them is contained in at least one
Zi1. Now each Zi1 contains some X(wi1) of the same dimension and as the X(wi1) are open in their

closures, we have that X(wi1) is open in Zi1. SetW1 =W0∪{wi1}, then we get that Y2 :=
⊔

w/∈W1

X(w)

is closed inside Y1 and Y2 \Y1 =
⊔
i

X(wi1). Repeating the process for Y2 as we did for Y1 and so on

yields the filtration of G/B by closed subvarieties Yn and the complements are given by
⊔
i

X(win),

which are disjoint unions of affine spaces by Proposition 6.5.

If all the Yj would be smooth then we would be in a position to use the Gysin sequence and
obtain a complete description of the cohomology of G/B. Unfortunately matters are not that simple
as the varieties Yn can in general have singularities. We can use compactly supported cohomology
to remedy the situation together with the following statement.

Proposition 6.7. The variety G/B is projective.

Proof. It is shown in ([32], p.368) that there is an isomorphism of varieties G/B → B, where B
is the flag variety of G. In ([32], Proposition 7.30) it is shown that flag varieties are complete. A
homogeneous space is quasi-projective and hence smooth by Theorem 1.51.

Now we calculate the cohomology of G/B.
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Proposition 6.8. For Λ a finite group with p ∤ #Λ we have Hrét(G/B,Λ) = 0 for every odd r.

When Λ ∈ {Z/lnZ} we have Hrét(G/B,Λ) =
⊕
w

Λ2dw , where dw = dim(X(w)) and the Λ2dw are in

degree 2dw.

Proof. We consider for n ≥ 2 the exact sequence of compactly supported cohomology of the pair
(Yn, Un) ([29], Remark III.1.30) where Un = Yn \Yn−1, which is a disjoint union of rn affine spaces:

...→ Hrc(Un,Λ)→ Hrc(Yn,Λ)→ Hrc(Yn−1,Λ)→ Hr+1
c (Un,Λ)→ ...

As Un is a disjoint union of affine spaces X(wjn) of dimensions dji where 1 ≤ j ≤ rn we have

that H∗
c(Un,Λ) =

∏
j

H∗
c(X(wjn),Λ) =

∏
j

Λ
2dji

where the subscript 2dji means that the cohomol-

ogy is concentrated in degree 2dji . For proving the the vanishing when r is odd: Note that by
Poincaré duality it suffices to show that Hrc(G/B,Λ) = 0 for all odd r. Now we may prove the
first statement by decreasing induction on the Yn. Notice that Ym, the smallest proper closed
subset in the filtration, is a disjoint union of affine spaces, hence it indeed has Hrc(Ym,Λ) = 0 for
all odd r. For the induction step, consider for odd r the part of the exact sequence that reads
Hrc(Un,Λ)→ Hrc(Yn,Λ)→ Hrc(Yn−1,Λ), which by the induction hypothesis for Yn−1 directly implies
that Hrc(Yn,Λ) = 0.

For the second statement we will show by decreasing induction on the Yn that H
∗
c(Yn) =

⊕
X(w)⊂Yn

Λ2dw ,

where dw = dim(X(w)). This is clear for the case n = m. For the induction step, consider for
even r the exact sequence of Λ-modules 0 → Hrc(Un,Λ) → Hrc(Yn,Λ) → Hrc(Yn−1,Λ) → 0. By the

induction step this sequence reads 0 →
⊕

X(w)⊂Un
2dw=r

Λ → Hrc(Yn,Λ) →
⊕

X(w)⊂Yn−1
2dw=r

Λ → 0. This exact

sequence splits and note that the X(w) inside Un and those inside Yn−1 precisely make up those

inside Yn. Hence we obtain Hrc(Yn,Λ) =
⊕

2dw=r
X(w)⊂Yn

Λ, which proves the induction step. Now using

that G/B is projective gives the expression Hrét(G/B,Λ) =
⊕
w

Λ2dw .

We want to compare H∗
ét(G/B,Ql) with the cycle class group A∗(G/B). Actually we will show

that the cycle morphism clG/B is an isomorphism.

Notation 6.9. • We denote Ui := X \ Yi. This gives a filtration X = U0 ⊃ ... ⊃ Un = ø of X by
open subschemes such that Ui \ Ui+1 = Vi+1.

• To ease notation somewhat we will write Ar(S) (resp. Ar(S)) for A
r(S)⊗ZQl (resp. Ar(S)⊗Z

Ql). Moreover we write Hrét(S) = Hrét(S,Ql).

Our main strategy for showing that the Chow ring and cohomology ring are isomorphic will
be as follows: We will consider the sequence in étale cohomology that is associated to the pair
(Ui, Vi+1) that is given by: ...→ H2r−1

ét (Ui+1)→ H2r
Vi+1

(Ui)→ H2r
ét (Ui)→ H2r

ét (Ui+1)→ ...
We will then construct a map Ad−r(Vi+1)→ HrVi+1

(Ui) such that the following diagram commutes:
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H2r−1
ét (Ui+1) H2r

Vi+1
(Ui) H2r

ét (Ui) H2r
ét (Ui+1)

Ad−r(Vi+1) Ad−r(Ui) Ad−r(Ui+1) 0

clUi clUi+1 (6.2)

Then we show that Hjét(Ui) = 0 for all odd j. We will apply decreasing induction on i together
with the fact that our constructed map Ad−r(Vi+1)→ HrVi(Ui) will be an isomorphism to conclude

by the Snake lemma that clUi is an isomorphism. By induction this then implies that clX is an
isomorphism. We begin with constructing the map Ad−r(Vi+1) → HrVi(Ui), which is the hardest
part.

The map Ad−r(Vi+1)→ HrVi+1
(Ui)

As we have Vi+1 =
⊔
j

X(wji+1), we get that the inclusion maps X(wi+1)→ Vi+1 induce an isomor-

phism
⊕
j

Ad−r(X(wji+1))→ Ad−r(Vi+1). Let cj be the codimension of X(wji+1) inside Vi+1. Then

note that for V r
i+1 :=

⊔
cj=d−r

X(wji+1) we have that Ar(V
r
i+1)→ Ar(Vi+1) is an isomorphism.

On the other hand, the exact sequence associated to the triple of opens ([29], III remark 1.26)
(Ui, Ui \ V r

i+1), Ui \ Vi+1) gives a long exact sequence

...→ H2r−1
Vi+1\V r

i+1
(Ui \ V r

i+1)→ H2r
V r
i+1

(Ui)→ H2r
Vi+1

(Ui)→ H2r
Vi+1\V r

i+1
(Ui \ V r

i+1)→ ...

We claim that H2r
Vi+1\V r

i+1
(Ui \ V r

i+1) and H2r−1
Vi+1\V r

i+1
(Ui \ V r

i+1) vanish for all r. Note that we have

Vi+1 =
⊔
s

V s
i+1. For s ̸= r the triple (Ui \V r

i+1, Ui \ (V r
i+1 ⊔V s

i+1), Ui \Vi+1) gives an exact sequence:

...→ HpV s
i+1

(Ui \ V r
i+1)→ Hp⊔

s ̸=r V
s
i+1

(Ui \ V r
i+1)→ Hp⊔

j ̸=s,r V
j
i+1

(Ui \ (V r
i+1 ⊔ V s

i+1))→ ...

As V s
i+1 is smooth of codimension d− s ̸= d− r we have HpV s

i+1
(Ui \ V r

i+1)
∼= H

p−2(d−s)
ét (V s

i+1) by the

Gysin isomorphism and as V s
i+1 is a disjoint union of affine spaces this vanishes for all p ̸= 2(d− s)

and so in particular for all odd p and p = 2r. Now the statement that H2r−1
Vi+1\V r

i+1
(Ui \ V r

i+1) and

H2r
Vi+1\V r

i+1
(Ui \ V r

i+1) vanish follows by induction on cutting out the V j
i+1 out of

⊔
j ̸=s,r

V j
i+1 and

repeatedly applying the sequence of triples together with the above arugment. We conclude that
H2r
V r
i+1

(Ui)→ H2r
Vi+1

(Ui) is an isomorphism.

As the sequence of triples is functorial in the triples (see Remark 6.11) and as the sequence of
the pair (Ui, Vi+1) is a special case of a sequence of triples we have that the following diagram
commutes:

H2r
ét (Ui)

H2r
Vi+1

(Ui) H2r
V r
i+1

(Ui+1)
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As V r
i is smooth of codimension r inside Ui, there is a Gysin isomorphism H2r

V r
i+1

(Ui) ∼= H0(V r
i+1)

such that the following diagram commutes:

H2r
ét (Ui)

H0
ét(V

r
i+1) H2r

V r
i+1

(Ui+1)

By ([29], VI Prop 9.3) the cycle maps of V r
i+1 and Ui are compatible, i.e. the following diagram

commutes:

A0(V r
i+1) H0

ét(V
r
i+1)

Ar(Ui) Hrét(V
r
i+1)

Now as Ad−r(Vi+1) = A0(V r
i+1) we simply define Ad−r(Vi+1)→ H2r

Vi+1
(Ui) by taking the map induced

from the cycle map A0(V r
i+1) → H0

ét(V
r
i+1). After showing that in (6.2) we have Hjét(Ui) = 0 for

all odd j this will imply that (6.2) commutes by all the above diagrams. It is also clear that as
A0(V r

i+1)→ H0
ét(V

r
i+1) that Ad−r(Vi+1)→ H2r

Vi+1
(Ui) is an isomorphism.

The last missing piece is showing that the odd cohomology of Ui is trivial for all i. As the Ui
are smooth this is equivalent to showing that the odd compactly supported is trivial. We will prove
this by using descreasing induction. We have already done the case i = n − 1 (the highest i) as
Un−1 = X \ Yn−1 is the big cell (an affine space). From Hrc(Ui+1) → Hrc(Ui) → Hrc(Vi+1), which is
exact, the statement now follows from induction.

Theorem 6.10. The l-adic cycle map clX : A∗(X) → H∗
ét(X) is an isomorphism of graded rings

(where the grading on A∗(X) is doubled).

Proof. The l-adic cycle map is a homomorphism of graded rings, so it suffices to show that it is
bijective on all the graded pieces. Note that clUn−1 : A∗(Un−1)→ H∗

ét(Un−1) is an isomorphism as
Un−1 is an affine space. We now assume that the cycle map is an isomorphism for Ui+1 for some i.
Then consider the diagram (6.2) which exists as we have shown the existence of the isomorphism
Ad−r(Vi+1) → H2r

Vi+1
(Ui) and that H2r−1

ét (Ui+1) = 0. By the snake lemma we conclude that clUi is

also an isomorphism. So by induction clX is an isomorphism.

Remark 6.11. Associated to a triple of opens (X,U, V ) with V ⊂ U ⊂ X and F ∈ Sh(Xét) there
is a long exact sequence in cohomology that is contravariantly functorial in triples (X,U, V ) ↪→
(X,U ′, V ′) and covariantly in F :

...→ HrX\U (X,F)→ HrX\V (X,F)→ HrU\V (U,F|U )→ Hr+1
X\V (X,F)→ ...

Its construction is based on ([29] III Prop 1.25, Remark 1.26). Use the notation jU : U → V ,
i : U \ V → U , iV : X \ V → X and iU : X \ U → X. Let Z be the constant sheaf on Xét. Then
there is a short exact sequence of sheafs on Xét:

0→ j!i∗i
∗j∗Z→ (iV )∗i

∗
V Z→ (iU )∗i

∗
UZ→ 0 (6.3)
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To check that it is exact, look at the stalks, where it shows that j!i∗i
∗j∗Z has support on U \ V ,

(iV )∗i
∗
V Z on X \ V and (iU )∗i

∗
UZ on X \ U . We consider the long exact sequence in cohomology

that we get from applying HomSh(Xét)(−,F):

...→ Extr((iU )∗i
∗
UZ,F)→ Extr((iV )∗i

∗
V Z,F)→ Extr(j!i∗i

∗j∗Z,F)→ Extr+1((iU )∗i
∗
UZ,F)→ ...

(6.4)
Then by the proof of ([29] III Prop 1.25) this is after some identifications the sequence:

...→ HrX\U (X)→ HrX\V (X)→ HrU\V (U)→ Hr+1
X\U (X)→ ...

A morphism of sheaves F → G on Xét defines a morphism of δ-functors Ext∗(−,F)→ Ext∗(−,G)
and hence one gets the functoriality in F . An inclusion of triples (Id, ι1, ι2) : (X,U, V ) ↪→ (X,U1, V1)
gives a morphism of short exact sequences in (6.3) (from the one from (X,U, V ) to the one from
(X,U1, V1)). Now applying that Ext∗(−,F) is a δ-functor gives that there is an induced morphism
of long exact sequences in (6.4) (now from the one from (X,U1, V1) to the one from (X,U, V ))
which gives the desired functoriality.

6.2 The Leray spectral sequence of G→ G/T

For this section we switch back to the notation introduced in Notation 6.1, so (B, T ) is a σ-stable
Borel pair. We will investigate the Leray spectral sequence associated to π : G → G/T . This was
also done by Leray [28] in the case where G is a compact Lie group. This is a Zariski locally trivial
fibration as it is a principle T -bundle and T is linear, commutative.

We have the following general properties on the Leray spectral sequence. We will just state
them without giving a proof. A proof of the statements concerning cup products can be found in
([45], p.202). The statements for the pullbacks are formulated in the language of derived categories.
Refences on this topic are ([12], Section 1) and ([13], Section 7).

Proposition 6.12. Let f : X → Y be a morphism of schemes and let F ∈ Sh(X) be a sheaf of
Λ-modules. The Leray spectral sequence associated to f has the following properties:

1. Cup products: The E2-page of the Leray spectral sequence has a product:

Hpét(Y,R
qf∗F)⊗Λ Hp

′

ét(Y,R
q′f∗F)→ Hp+p

′

ét (Y,Rq+q
′
f∗F)

It induces a product on Tot(E∗,∗
∞ ) which equals the product on H∗

ét(X,F). The product on the
E2-page is given by first applying the cup product of Y :

∪ : Hpét(Y,R
qf∗F)⊗Λ Hp

′

ét(Y,R
q′f∗F)→ Hp+p

′

ét (Y,Rqf∗F ⊗Λ R
q′f∗F)

and then applying Hp+p
′

ét (Y, ϕ), where ϕ : Rqf∗F ⊗Λ R
q′f∗F → Rq+q

′
f∗F is the morphism of

sheaves that is induced by the cup products on U ×Y X (note that indeed this induces cup
products as Rqf∗F is the sheafification of U 7→ Hqét(U ×Y X,F)).
Then this composition is multiplied by (−1)qp′ to give a product Ep,q2 ⊗Λ E

p′,q′

2 → Ep+p
′,q+q′

2 .

2. Differentials and cup products: The differentials and the products satisfy the following
relation: Denote the differentials by ds,tr : Es,tr → Es+r,t−(r−1)

r . Then for x ∈ Ep+p
′

r and
y ∈ Eq+q′r we have dp+p

′,q+q′
r (x · y) = dp,qr (x) · y + (−1)p+qx · dp′,q′r (y).
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3. Pullback morphism: Suppose that we have a commuting diagram of the form

X Y

X ′ Y ′

f

g h

f ′

and that we have F ∈ Sh(X ′). Denote by Er the Leray spectral sequence associated to f and
g∗F and E′

r the one associated to f ′ and F . Then there is a morphism of Leray spectral
sequences E′

r → Er such that the induced morphism Tot(E′
∞)→ Tot(E∞) coincides with the

normal pullback morphism g∗ : H∗
ét(X

′,F)→ H∗
ét(X, g

∗F).
The morphism of the spectral sequences is induced by how it is defined on the E2-page, where
one defines Ep,q2 → E′

2
p,q

as follows:
First one takes the pullback h∗ : Hpét(Y

′, Rqf ′∗F) → Hpét(Y, h
∗Rqf ′∗F). Then one applies

Hpét(Y, ϕ), where ϕ denotes the base-change morphism of sheafs: ϕ : h∗Rqf ′∗F → Rqf∗g
∗F

(this base-change morphism exists by the commuting diagram, as g maps U×YX into V ×Y ′X ′

for any V → Y ′ étale such that there is a commuting square

U Y

V Y ′

h ).

4. Fibrations with trivial local system: Let Λ ∈ {Z/lnZ} and let π : X → Y be an étale
locally trivial fibration with constant fibre F such that Rqπ∗Λ = Hqét(F,Λ) is a free Λ-module.
For Er the Leray spectral sequence corresponding to π and Λ we then have an isomorphism
Ep,q2

∼= Hpét(Y,Λ)⊗Λ Hqét(F,Λ) such that:

• The product on Ep,q2 is equal to:

(Hpét(Y,Λ)⊗Λ Hqét(F,Λ))⊗Λ (Hp
′

ét(Y,Λ)⊗Λ Hq
′

ét(F,Λ))→ Hp+p
′

ét (Y,Λ)⊗Λ Hq+q
′

ét (F,Λ)

(ap ⊗ bq)⊗ (cp′ ⊗ dq′) 7→ (−1)p′q(ap ∪ cp′)⊗ (bq ∪ dq′)
In particular E∗,∗

2 is then a differential bigraded algebra.

• If we have a morphism of fibrations such as in the second point

F X Y

F ′ X ′ Y ′

f g

then morphism of Leray spectral sequences induced by this is given on the E2-page by

Hpét(Y
′,Λ)⊗Λ Hqét(F

′,Λ)
g∗⊗f∗→ Hpét(Y,Λ)⊗Λ Hqét(F,Λ).

We have knowledge of the on the cohomology of the fibre T of the fibration. It turns out that
we also have knowledge on the cohomology of G/T .

Lemma 6.13. Let Λ be a finite group such that p ∤ #Λ. The natural map π : G/T → G/B induces
an isomorphism of graded rings π∗ : H∗

ét(G/T,Λ)→ H∗
ét(G/B,Λ).

Proof. The fibre of G/T → G/B is Ru(B), which is isomorphic to an affine space and has no higher
cohomology. In particular this gives that π : G/T → G/B is étale locally trivial by Proposition
4.34. By applying Lemma 5.14 we get that π∗ : H∗

ét(G/T,Λ)→ H∗
ét(G/B,Λ) is an isomorphism.

We have the following lemma on locally constant sheafs.
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Lemma 6.14 (Stacks[43, Tag 0DV4]). There is a bijection:

{finite locally constant sheafs on Xét} ←→ {finite π1ét sets}

We now investigate the locally constant sheaf Rqπ∗Λ for π : G→ G/T .

Lemma 6.15. Let G be a semisimple group variety and let π : G→ G/T be the canonical map and
ΛG ∈ {(Z/lnZ)G}. The sheafs Rqπ∗ΛG are equal to the constant sheaf Hqét(T,Λ)G/T for all q ≥ 0.

Proof. We have H1
ét(Gm,Λ) = Λ, which follows from the Kummer sequence. Hence flatness of Λ

over itself implies by the Künneth-formula that Hqét(T,Λ) =

q∧
(⊕nΛ) for T = Gn

m. This is a flat

Λ-module, hence Rqπ∗Λ is a finite locally constant sheaf for all q ≥ 0 by Lemma 5.11. By Lemma
6.14 it suffices to show that π1ét(G/T ) = 0. We have H1

ét(G/T,Λ) = 0 for all finite Λ with #Λ
coprime to p by Lemma 6.13 and Proposition 6.8. As H1

ét(G/T,Λ) = Hom(π1ét(G/T ),Λ) = 0 for all
finite Λ we obtain π1ét(G/T ) = 0 and hence we obtain the result.

Using this we obtain information about the differentials on the E2-page. As all the terms inside
the Leray spectral sequences associated to π : G→ G/T and Z/lnZ are finite (as sets) we may pass
to the limit in the following lemma.

Lemma 6.16. On the E2-page of the Leray spectral sequence, the differentials are completely de-
termined by an isomorphism d0,12 : H1

ét(T,Ql)
∼→ H2

ét(G/T,Ql) and are given by:

dp,q2 : Hpét(G/T,Ql)⊗Ql

q∧
H1

ét(T,Ql)→ Hp+2
ét (G/T,Ql)⊗Ql

q−1∧
H1

ét(T,Ql)

b⊗ s1 ∧ ... ∧ sq 7→
q∑
i=1

(−1)i+1b · d0,12 (si)⊗ s1 ∧ ... ∧ ŝi ∧ ... ∧ sq

Proof. Notice that by Propositition 6.12 we have Ep,q2 = Hpét(G/T,Ql) ⊗Ql
Hqét(T,Ql) and the

product structure is induced by the ones on H∗
ét(G/T,Ql) and H∗

ét(T,Ql). We also know that
∗∧
H1

ét(T,Ql) = H∗
ét(T,Ql). Note that for r ≥ 3 all the outgoing differentials from E0,1

3 are zero.

All the incoming differentials to E0,1
r are zero for r ≥ 2. So ker(d0,12 ) = E0,1

∞ . As G is semisimple
we have H1

ét(G,Ql) = 0. Indeed we have H1
ét(G,Z/lnZ) = Ext(G,Z/lnZ) by (Theorem 2 [33]) and

Ext(G,Z/lnZ) is finite as the semisimple group variety G admits a universal covering map with
finite kernel (Ch18 [32]). So this gives ker(d0,12 ) = 0. Notice that all outgoing differentials from

E2,0
r are zero for r ≥ 2 and all incoming differentials are zero for r ≥ 3. So E2,0

∞ = coker(d0,12 ).
As H∗

ét(G,Ql) is a finite Ql-Hopf algebra we have that it is generated by elements of odd degree.
Hence H2

ét(G,Ql) = 0. So d0,12 is surjective, hence it is an isomorphism of Ql-algebras.
By Proposition 6.12, we know how the differentials and the product on the E2-page interact and
the (−1)pq term that appears when taking the product (see the same proposition) can be taken
to be 1 as Hpét(G/T,Ql) = 0 when p is odd. We have d(b) = 0 (omitting the super/sub-scripts

here) for all b ∈ H∗
ét(G/T,Ql). So an element b ⊗ s1 ∧ ... ∧ sq ∈ Hpét(G/T,Ql) ⊗Ql

∗∧
H1

ét(T,Ql) is

sent to 0 + (−1)p+qb · d(s1 ∧ ... ∧ sq) by the differential. Repeatedly applying the second point in
Proposition 6.12 (which lowers the degree of whatever is inside d(−) by 1, which flips the sign)

gives that d(b⊗ s1 ∧ ... ∧ sq) =
q∑
i=1

(−1)i+1b · d0,12 (si)⊗ s1 ∧ ... ∧ ŝi ∧ ... ∧ sq.

https://stacks.math.columbia.edu/tag/0DV4
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To extract information out of this we first state a helpful theorem by Demazure.

Theorem 6.17 (Demazure [15], 4.6 p.79). Let G be a semisimple group variety. There exists a
homomorphism X(T ) → Pic(G/B) that extends to a homomorphism S → A∗(X) ⊗Z Ql of graded
Ql-algebras with kernel SW+ · S.

Ideally one would prove that d0,12 : S → H∗
ét(G/T,Ql) is induced by this map, but this unfor-

tunately does not follow directly. Knowing that dimQl
(S/SW+ · S) = dimQl

H∗
ét(G/T,Ql) is very

helpful in the proof of the upcoming proposition.

Remark 6.18. There is an identification H1
ét(T,Ql) ∼= X(T ) ⊗Z Ql that is functorial in pullbacks

σ : G → G by endomorphisms. As G/T has no odd cohomology we have that H∗
ét(G/T,Ql) is

a commutative Ql-algebra. So d0,12 can be extended to a homomorphism of graded Ql-algebras

d0,12 : S[×2]→ H∗
ét(G,Ql).

We have that NG(T ) acts on T by conjugation: n · t = γn(t) := ntn−1. This gives the following
commuting diagram:

T G G/T

T G G/T

γn γn γn

The last point of Proposition 6.12 this gives a morphism of Leray spectral sequences such that the
following diagram commutes:

X(T )⊗Z Ql H2
ét(G/T,Ql)

X(T )⊗Z Ql H2
ét(G/T,Ql)

d0,12

d0,12

γ∗n γ∗n

Of course γ∗n extends to automorphisms of graded Ql-algebras on H∗
ét(G/T,Ql) and S. As T is a

connected algebraic group, T (k) ⊂ NG(T )(k) acts trivially on H∗
ét(G/T,Ql), so the action factors as

an action of
NG(T )(k)

T (k)
∼=W (k) on H∗

ét(G/T ). Putting this together gives that the homomorphism

d0,12 : S → H∗
ét(G/T,Ql) is W -equivariant.

To obtain more information on d0,12 : S → H∗
ét(G/T,Ql) we compute its kernel. We write N for

NG(T ) next.

Proposition 6.19. The kernel of d0,12 : S → H∗
ét(G/T,Ql) is S

W
+ · S and d0,12 is surjective.

Proof. We first show that any element in H∗
ét(G/T,Ql) that is invariant under W is of degree 0.

We may as well show that the same holds for any invariant element of H∗
ét(G/T,Ql) For this we

want to compute tr(τ∗w). Note that N(k) acts on G/T by gT 7→ ngT . This action is trivial on
H∗

ét(G/T,Ql) as it is induced by the action of G(k) on H∗
ét(G/T,Ql) and G is a connected group

variety. So we may as well consider the action of N on G/T by τn(gT ) = gn−1T for n ∈ N(k).
Note that N acts analogously on G/B giving the following commuting diagram:

H∗
ét(G/T,Ql) H∗

ét(G/B,Ql)

H∗
ét(G/T,Ql) H∗

ét(G/B,Ql)

τ∗n τ∗n
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As τ∗n = γ∗n as automorphisms of H∗
ét(G/T,Ql) and as H∗

ét(G/T,Ql) ∼= H∗
ét(G/B,Ql) we may as well

compute trG/B(τ
∗
n). Again, note that τ

∗
n only depends on the class of n in W (k). Of course we have

for n ∈ T that τ∗n is the identity map. For n /∈ T we have that τn : G/B → G/B has no fixed point
as else we would have Bn = B, so n ∈ B contradicting the fact that W acts simply transitively on
BT , the set of Borel subgroups containing T ([32], Prop 17.53). Combining the above with the fact
that G/B is projective so that the Grothendieck-Lefschetz trace formula applies gives that:

trG/B(τ
∗
n) =

{
χ(G/B) if n ∈ T
0 else

We have seen in Proposition 6.8 that χ(G/B) = |W |. Now we consider the representation W →
GL(Ql[W ]). Notice that the elements of the Ql-basis {w ∈ W} are permuted by all v ∈ W . If
v ̸= e then this permutation fixes no such base element. Hence for v a nontrivial element of W , the
matrix representing v has only zeros on the diagonal giving that:

tr(v |Ql[W ]) =

{
|W | if v = e

0 else

As the the traces of all v ∈W on H∗
ét(G/T,Ql) and Ql[W ] are the same and because the field Ql is

algebraically closed we have that the representations W → GL(Ql[W ]) and W → GL(H∗
ét(G/T,Ql)

are equivalent as they have the same character ([17], p.869). It is easily follows that the fixed

subspace of equivalent representations is isomorphic. If
∑
w

aw · w ∈ Ql[W ] is fixed by W then as

W acts transitively on the basis {w ∈ W} this implies that aw = av for all w, v ∈ W . It follows

that any element
∑
w

a · w is invariant under W , hence dimQl
(Ql[W ]W ) = 1. As we have for all

w ∈ W that τ∗w : H∗
ét(G/T,Ql) → H∗

ét(G/T,Ql) is a Ql-algebra isomorphism this gives that all
τ∗w fix H0

ét(G/T,Ql). So by dimension counting we get H∗
ét(G/T,Ql)

W = H0
ét(G/T,Ql) and hence

H∗
ét(G/T,Ql)

W = H0
ét(G/T,Ql).

Thus by W -equivariance of d0,12 : S → H∗
ét(G/T,Ql) that SW+ · S ⊂ ker(d0,12 ). By Proposition

6.17, which implies dimQl
(S/SW+ ·S) = dimQl

H∗
ét(G/T,Ql) we get that ker(d

0,1
2 ) = SW+ ·S and that

d0,12 is surjective.

The identification H∗
ét(G/T,Ql) ∼= S/(SW+ ·S) is very useful as the ideal SW+ ·S is well understood.

Theorem 6.20 ([10] Chevalley-Shephard-Todd). The ideal SW+ · S ⊂ S is generated by a regular
sequence f1, ..., fn of homogeneous polynomials, where n = dim(S).

6.3 Degeneration at the E3-page

The goal of this subsection is to show that the Leray spectral sequence of G → G/T degerates at

E3 and to conclude that the isomorphism

∗∧
J[×2 − 1] ∼= H∗

ét(G,Ql) commutes with pulling back

via σ on both sides.

Notation 6.21. Let E∗,∗
r be the r’th page of the Leray spectral sequence of G→ G/T .
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• Write E∗,•
r for the differential graded algebra with terms E∗,n

r :=
⊕
p

Ep,nr and differential of

degree −r + 1; d : E∗,n
r → E∗,n−r+1

r induced by the differential on the Er-page.

• Write hn(E
∗,•
r ) for the homology of the complex and write H(E∗,•

r ) =
⊕
n

hn(E
∗,•
r ). Note that

H(E∗,•
r ) is also a differential graded algebra, equal to E∗,•

r+1.

• Write V = X(T )⊗Z Ql
∼= H1

ét(T,Ql) and I := SW+ · S.

The first step will be using homological methods to calculate dimQl
hq(E

∗,•
2 ). Then we will show

that H(E∗,•
r ) has algebra generators in degree 1, which will imply the degeneration of the spectral

sequence at E3.

Lemma 6.22. There is an isomorphism of Ql-vectorspaces hq(E
∗,•
2 ) ∼= TorSq (S/I,Ql), where Ql is

an S-module by Ql = S/(x1, ..., xn).

Proof. We note that the complex E∗,•
2 can be obtained by taking the complex

•∧
V
⊗
Ql

S with

differential d(ei1 ∧ ... ∧ eiq ⊗ s) =

q∑
j=1

(−1)j+1ei1 ∧ ... ∧ êij ∧ ... ∧ eiq ⊗ s · xij and then applying

−
⊗
S

S/I. The S-module complex
•∧
V
⊗
Ql

S is exact ([27], p.856), hence it gives a free resu-

lotion of S/(x1, ..., xn) as an S-module. Thus applying −
⊗
S

S/I and taking hq(−) indeed gives

TorSq (S/I,Ql).

Using a property of TorSq (−,−) we can calculate the dimensions of E∗,q
3 .

Lemma 6.23. We have an isomorphism of Ql-vectorspaces

q∧
V ∼= TorSq (S/I,Ql).

Proof. By symmetry of the TorSq (−,−) bifunctor we can also take a projective resolution P • → S/I

and then apply −
⊗
S

Ql to calculate TorSq (S/I,Ql). By Theorem 6.20 that I = (f1, ..., fn) where

the fi are homogeneous polynomials that form a regular sequence for S. Hence by ([27], p.856)

the complex
•∧
V
⊗

S → S/I provides a free resolution, where the map S → S/I is the canonical

map and the differential is given by:

q∧
V
⊗

S →
q−1∧

V
⊗

S ei1 ∧ ... ∧ eiq ⊗ s 7→
q∑
j=1

(−1)j+1ei1 ∧ ... ∧ êik ∧ ... ∧ eiq ⊗ fij · s

Tensoring this complex over S with Ql = S/(x1, ..., xn) gives that all the differentials vanish as the
fk are homogeneous polynomials in x1, ..., xn. Thus we obtain the isomorphisms of Ql-vectorspaces:

TorSq (S/I,Ql) = hq(

•∧
V
⊗
S

Ql) =

q∧
V
⊗
S

Ql
∼=

q∧
V
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For the following proposition denote Df =
n∑
k=1

ek ⊗
∂f

∂xk
.

Proposition 6.24. The Ql-linear map φ1 : J → h1(E
∗,•
2 ) f 7→ Df is well-defined and induces a

homomorphism of Ql-algebras φ
∗ :

∗∧
J→ H(E∗,•

2 ).

Proof. It is clear that the map is Ql-linear if it is well-defined. We need to show that (SW+ )2 is killed

by this map. Take any f · g ∈ (SW+ )2. It is sent to
n∑
k=1

ek ⊗
∂fg

∂xk
=

n∑
k=1

ek ⊗ (g
∂f

∂xk
+ f

∂g

∂xk)
= 0.

We also need to show that for f ∈ SW+ , Df is sent to 0 by d : V ⊗Ql
S/I → S/I. We have

d(Df) =
n∑
k=1

xk
∂f

∂xk
= n · f = 0 by the Euler formula. So indeed there is a well-defined map

J→ h1(E
∗,•
2 ).

To get the homomorphism of Ql-algebras φ
∗ :

∗∧
J → H(E∗,•

2 ) it suffices to show that we have

φ1(f) · φ1(g) + φ1(g) · φ1(f) = 0 for all f, g ∈ J by the universal mapping property of exterior
algebra. We compute:

φ1(f) · φ1(g) + φ1(g) · φ1(f) =
∑

1≤i,j≤n
ei ∧ ej ⊗

∂f

∂xi
· ∂g
∂xj

+
∑

1≤i,j≤n
ej ∧ ei ⊗

∂f

∂xi
· ∂g
∂xj

= 0

Hence φ1 extends to a Ql-algebra homomorphism φ∗ :

∗∧
J→

∗∧
V
⊗

S/I.

Now we show that φ∗ is an isomorphism.

Proposition 6.25. The homomorphism of Ql-algebras φ
∗ :

∗∧
J→ H(E∗,•

2 ) is an isomorphism.

Proof. By Lemma 6.23 we see that it suffices to show that φ∗ is injective. This implies that it suffices

to show that φn :

n∧
J→ hn(E

•,∗
2 ) is injective or equivalently nonzero. The basis element f1∧...∧fn

is sent to φ1(f1)·...·φ1(fn) =

n∑
j1=1

ej1⊗
∂f1
∂xj1

·....·
n∑

jn=1

ejn
∂fn
xjn

=
∑

1≤j1,...,jn≤n
ej1∧...∧ejn⊗

∂f1
∂xj1

·...· ∂fn
∂xjn

The terms in the last sum are nonzero if and only if the ji are pairwise distinct. If they are pairwise
distinct, then (j1, ..., jn) = τ · (1, ..., n) for some τ ∈ Sn and ej1 ∧ ...∧ ejn = (−1)sign(τ) · e1 ∧ ...∧ en.

So the last sum becomes e1 ∧ ...∧ en⊗
∑
τ∈Sn

sign(τ) · ∂f1
∂xτ(1)

· ... · ∂fn
∂xτ(n)

= e1 ∧ ...∧ en⊗ det(
∂fi
∂xj

) by

the Leibniz determinant formula. So we see that the map φ∗ is injective if and only if det(
∂fi
∂xj

) /∈ I.

Denote ∆ :=
∂fi
∂xj

and M = (
∂fi
∂xj

). As (S/I)n
·M→ (S/I)n

ei 7→dxi→ Ω1
S/I → 0 is an exact sequence of

S/I-modules we have that det(∆) may be identified with the 0’th fitting ideal of Ω1
S/I (the Kähler
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differentials of S/I over Ql). It is then shown in ([19], Theorem 8.3) that the 0’th fitting ideal
of Ω1

S/I (also denoted DK((S/I)/Ql) in this text) is equal to the Noether different DN ((S/I)/Ql)
which is defined to be µ(Ann(D)) where we have that µ : S/I ⊗k S/I → S/I is the multiplication
map and D its kernel. As I is generated by a regular sequence of length n we have dim(S/I) = 0,

thus S/I =
∏
I⊂m

Sm/Im, the product taken over maximal ideals in S. By standard properties of the

Noether different [43, Tag 0BVK] we have DN (S/I) =
∏
I⊂m

DN ((Sm/Im)/Ql). It is then shown in

([19], Theorem 8.5) that DN ((Sm/Im)/Ql) is equal to soc(Sm/Im) :=
⋂

E⊂Sm/Im

E, the intersection

taken over all essential submodules of Sm/Im. As Sm/Im is a local ring that is a complete intersection,
it is in particular Gorenstein ([43, Tag 0DW6], Lemma 47.21.6) and hence by ([18], Theorem 21.5)
the socle of Sm/Im is a simple submodule of Sm/Im, hence it is in particular nonzero. This shows that

(∆) ⊂ S/I is not the zero-ideal and hence we conclude that the map φ∗ :
∗∧
V → H∗(

•∧
V
⊗

S/I)

is an isomorphism of Ql-algebras.

Now we can show that the Leray spectral sequence of G→ G/T degenerates at E3.

Corollary 6.26. The Leray spectral sequence associated to π : G → G/T degenerates at the E3-

page, where it gives an isomorphism of Ql-algebras H∗
ét(G,Ql) ∼=

∗∧
J[×2− 1].

Proof. We have by the previous proposition an isomorphism between the bigraded algebras E∗,∗
3

and
∗∧
⟨Dfk⟩1≤k≤nQl

. Note that the second bigraded algebra is generated over Ql by the Dfk that

are in bidegrees (2k − 2, 1). These are all sent to 0 by the differential on the E3-page as they land

in E2k+1,−1
3 . Hence the differential on the E3-page is 0 and so E3 = E∞.

This can be used to achieve the goal of this section.

Theorem 6.27. Let G be a semisimple group variety and σ : G → G a surjective endomorphism

and choose a σ-stable maximal torus T . There is an isomorphism
∗∧
J[×2 − 1] ∼= H∗

ét(G,Ql) of

graded Ql-algebras that commutes with the pullbacks of σ.

Proof. As the Leray spectral sequence associated to π : G→ G/T degenerates at the E3-page, there
is an isomorphism of graded Ql-algebras Tot(E

∗,∗
3 ) ∼= H∗

ét(G,Ql) that commutes with the pullback

of σ∗ (see Proposition 6.12). There is an isomorphism of Ql-algebras
∗∧
J→ Tot(E∗,∗

3 ) defined by

f 7→ Df as described above. As Df has bidegree (2 deg(f)−2, 1) we should change the grading on J

to J[×2−1] to get an isomorphism of graded Ql-algebras
∗∧
J[×2−1]→ Tot(E∗,∗

3 ). It remains to be

checked that this isomorphism commutes with the pullbacks of σ. The pullback of σ on Tot(E∗,∗
3 )

is induced by the pullback on the E2-page. This pullback homomorphism is given by σ∗ ⊗ σ∗ :
Hqét(T,Ql) ⊗Ql

Hpét(G/T,Ql) → Hqét(T,Ql) ⊗Ql
Hpét(G/T,Ql). The isomorphism V ∼= H∗

ét(T,Ql)
commutes with the pullbacks of σ∗ by Proposition 2.74. The isomorphism S/I → H∗

ét(G/T,Ql)
was induced by a differential from the Leray spectral sequence, so this isomorphism also commutes

https://stacks.math.columbia.edu/tag/0BVK
https://stacks.math.columbia.edu/tag/0DW6
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with the pullback of σ. The map

∗∧
J→ Tot(E∗,∗

3 ) was initially defined as a map

∗∧
J→

∗∧
V ⊗S/I,

which was induced by J → V ⊗ S/I, so it suffices to show that this last map commutes with the
pullbacks of σ, i.e. we need to show that D(σ∗(f)) = σ∗(Df) for all f ∈ J. As σ∗ acts linearly on S

we can use the chain rule to get D(σ∗(f)) =
n∑
i=1

ei ⊗
∂(f(σ∗x1, ..., σ

∗xn))

∂xi
=

n∑
i=1

σ∗ei ⊗ σ∗(
∂f

∂xi
).

This thus concludes the proof that the isomorphism
∗∧
J[×2− 1] ∼= H∗

ét(G,Ql) commutes with the

pullbacks of σ.

We obtain the following immediate corollary.

Corollary 6.28. Let σ : G→ G be an endomorphism and let (B, T ) be a σ-stable Borel pair of G.
Define d1 := trT (σ) · trG/B(σ). We have d1 = trG(σ).

Proof. The proof is more or less reciting the functoriality above. We have that σ∗ on H∗
ét(G/B,Ql)

may be identified with σ∗ on S/I. By ([8] Lemma 3.5.3) we have PS/I,σ(t) =
det(1− tσ∗ | J)
det(1− tσ∗ |V )

,

hence we obtain d1 = det(1 − σ∗ | J) = trG(σ) by the functoriality above and as the generators of
J[×2− 1] are in odd degree.

We use this to calculate the graded trace in a simple example.

Example 6.29. Let G = SLn over a field of characteristic p and let σ be the endomorphism
induced by O(SLn) → O(SLn) Xij 7→ Xp

ij . Then note that on points SLn(k) → SLn(k) it maps
(mij) 7→ (mp

ij), so its fixed points are SLn(Fp) and it is surjective on the k-points as k is perfect. The
maximal torus Dn is σ-stable and hence one gets the pullback σ∗ : J[×2−1]→ J[×2−1]. A character
χi is mapped to χpi under σ, hence σ

∗ : S → S is given by Xi 7→ pXi. As S
W = Ql[e2, ..., en] and the

ei are homogeneous of degree i we see that σ∗ acts via the diagonal matrix (dij) with entries dii = pi

on J with respect to the basis {e2, ..., en} of J. This gives trG(σ) = det(1− σ∗ | J) =
n∏
i=2

(pi − 1).

By [8] Theorem 5.4.2 and [44] Remark 11.19 we have #Fix(σ)(k) = #SLn(Fq) = c · trG(σ) where
we have c = σ∗Jac/Jac with Jac the Jacobian determinant of the indecomposable invariants w.r.t

X2, ..., Xn. The term | det(1 − σ∗ |V )|p equals 1 as σ∗ acts as ·p and since
∂ej
∂xi

is homogeneous of

degree j − 1 we have that σ∗Jac equals

n−1∏
j=1

pjJac. So we get #SLn(Fp) =
n−1∏
i=1

pi ·
n∏
i=2

(pi − 1). This

may very well be the hardest way to calculate #SLn(Fp), but the use of the above method lies in
the generality in which it can be applied.



Chapter 7

Appendix: Construction of cup
products

We describe how to construct the cup products using Cech cohomology. This is mainly based on
([43, Tag 01FP]). Note that on the Stacks page the construction is done for a complex F•. Our
construction is the special case (...→ 0→ F → 0→ ...). Note that by a result of Artin [2] we have
that étale and Cech cohomology agree for schemes quasiprojective over a Noetherian ring, which
is more than sufficient for our purposes. The cup products can be defined for even more general
schemes though [45].

Proposition 7.1. Let F ,G ∈ Sh(Xét) be sheafs of Λ-modules. For all p, q ≥ 0 there exist Λ-linear
maps called cup products ∪ : Hpét(X,F) ⊗Λ Hqét(X,G) → Hp+qét (X,F ⊗Λ G). They satisfy the
following properties:

• The cup product is associative, i.e. for xp, yq, zn homogeneous we have
xp ∪ (yq ∪ zn) = (xp ∪ yq) ∪ zn.

• If F → F ′ and G → G′ are morphisms of Λ-modules then the following diagram commutes:

Hpét(X,F)⊗Λ Hqét(X,G) Hp+qét (X,F ⊗Λ G)

Hpét(X,F
′)⊗Λ Hqét(X,G

′) Hp+qét (X,F ′ ⊗Λ G′)

∪

∪

• If g : X → Y is a morphism, then the cup products of X and Y are related by the following
commuting diagram:

Hpét(X, g
∗F)⊗Λ Hqét(X, g

∗G) Hp+qét (X, g∗F ⊗Λ g
∗G)

Hpét(Y,F)⊗Λ Hqét(Y,G) Hp+qét (X,F ⊗Λ G)

∪

∪

g∗⊗g∗ g∗

• When A = F = G is a sheaf of commutative Λ-algebras, so it is equipped with a multiplication
map ∧ : A ⊗Λ A → A, the cup product is a graded commutative ring, so for x ∈ Hpét(X,A)
and y ∈ Hqét(X,A) we have ∧(x ∪ y) = (−1)pq ∧ (y ∪ x).

104

https://stacks.math.columbia.edu/tag/01FP
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In the next part we give the construction for Cech cohomology.

Construction

Let F ,G,Λ be as above. Given a cover U = (Ui → X)i of X and (h) := (hi0...ip)i0...ip ∈ Ȟp(U ,F)
and (h) := (gj0...jq)j0...jq ∈ Ȟq(U ,F). Then we define (g) ∪ (h) ∈ Ȟp+q(U ,F ⊗Λ G) by setting:

((g) ∪ (h))i0....ip+q = a(gi0...ip ⊗ hip...ip+q) (7.1)

where a : (F ⊗Λ G)P → F ⊗Λ G is the sheafification map. Before getting to the above properties
we have to check that this assignment is well-defined, i.e. if the class representing (g) or (h) is
in the image of d, then the class representing (g) ∪ (h) should also have this and we should have
d((g) ∪ (h)) = 0. We have the formula

d((g) ∪ (h)) = d(g) ∪ (h) + (−1)deg(g)(g) ∪ d(h)

which can be checked componentwise. The first point follows from the fact that one can form the

total complex Totn :=
⊕
p+q=n

Cp(U ,F)⊗Λ Cp(U ,G) with d : Totn → Totn+1 : d(a⊗ b) = a⊗ d(b) +

(−1)deg(a) ⊗ b for homogeneous a, b. By the above formula we have that Tot• → C•(U ,F ⊗Λ G)
defined by a ⊗ b 7→ a ∪ b is a morphism of complexes. Hence by passing to homology we obtain
a map hn(Tot

•) → Ȟn(U ,F ⊗Λ G). For p + q = n there is the obvious map ([43, Tag 068G])
Ȟp(U ,F) ⊗Λ Ȟq(U ,F) → Totn and notice that the composition with Totn → Ȟn(U ,F ⊗Λ G) is
precisely equal to equation (7.1), which gives that the map in equation (7.1) is well defined.

The properties

The cup product defined as above has all the properties.

Proof. We first check the properties for Cech cohomology w.r.t. some cover U . Associativity
follows as whenever deg(x) = p, deg(y) = q, deg(z) = n we have that ((x ∪ y) ∪ z)i0...ip+q+n =
(x ∪ (y ∪ z))i0...ip+q+n equals the image of xi0...ip ⊗ yip...ip+q ⊗ zip+q ...ip+q+n inside F ⊗Λ G ⊗Λ H.
Functoriality in the sheaf argument holds because F ⊗Λ G → F ′⊗Λ G′ is induced by the morphism
of the corresponding presheafs.
For naturality with respect to a morphism f : X → Y , let U = (Ui → Y )i be a cover and form the
pulled back cover U ′ = (Ui ×Y X → X)i. Given (g) = (gi0...ip)i0...ip ∈ Ȟp(Y,F), then the pullback

f∗ is given by f∗(g)i0...ip = a([gi0...ip ]) where a : (f∗F)P → f∗F is the sheafification and [gi0...ip ] is
the class inside lim−→

V→Y

F(V ) = (f∗F)(Ui0...ip ×X Y ). Hence for (g) ∈ Ȟp(Y,F) and (h) ∈ Ȟq(Y,F)

we have that

(f∗(g) ∪ f∗(h))i0...ip+q = [gi0...ip ]⊗ [hip...ip+q ] ∈ Ȟp+q(U ′, f∗F ⊗ f∗G)P

and we have

f∗((g) ∪ (h))i0...ip+q = [gi0...ip ⊗ hip...ip+q ] ∈ Ȟp+q(U ′, f∗(F ⊗ G))P

https://stacks.math.columbia.edu/tag/068G
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-more precisely they are the images of these elements after sheafiffying-. As colimits and tensor
products commute, the above presheafs are isomorphic by mapping [a] ⊗ [b] 7→ [a ⊗ b], so indeed
through this canonical identification we have that f∗((g) ∪ (h)) = f∗(g) ∪ f∗(h).
For the last statement of the proposition, define τ : F(Ui0...ip)→ F(Ui0...ip) gi0...ip 7→ (−1)p(p+1)/2gip...i0 .
It follows that τ commutes with d and hence defines an endomorphism of the complex C•(U ,F). A

calculation ([43, Tag 01FP]) shows that h : Cp+1(U ,F)→ Cp(U ,F) h(α)i0...ip =

p∑
j=0

ϵp(α)αi0...ij ...ipij

where we set ϵp(α) = (−1)
(p−a)(p−a−1)

2
+p is a homotopy from τ to the identity, hence τ induces the

identity map on the homology of C•(U ,F). We now let F = A be a sheaf of Λ-algebras with
multiplication ∧. Then for (g) ∈ Ȟp(Y,A) and (h) ∈ Ȟq(Y,A) we have

gi0...ip ⊗ hip...ip+q = ((g) ∪ (h))i0...ip+q = τ(∧(τ(g) ∪ τ(h)))i0...ip+q = (−1)Nhi0...iq ⊗ gip...ip+q

where N =
p(p+ 1) + q(q + 1) + (p+ q)(p+ q + 1)

2
. It follows that N ≡ pq (mod 2) and hence we

obtain the graded commutativity.

By passing to the colimit over refinements of covers U as in ([43, Tag 01FP]) we obtain cup
products on Ȟp(X,F) ⊗Λ Ȟq(X,G) → Ȟp+q(X,F ⊗Λ G) with all the properties of Proposition
7.1. If we assume Cech cohomology computes étale cohomology, then we obtain the cup products
Hpét(X,F) ⊗Λ Hqét(X,G) → Hp+qét (X,F ⊗Λ G), which by the functoriality of the Cech to derived
sequence in both arguments has all the properties of Proposition 7.1.

https://stacks.math.columbia.edu/tag/01FP
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