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Introduction

The goal of this document is to study the l-adic cohomology of group varieties over an algebraically
closed field k& with char(k) # [. A group variety is a connected variety whose functor of points is a
group functor. Examples include A", abelian varieties such as elliptic curves and linear algebraic
groups (subvarieties of GL,, whose functors of points inherit the group law). In particular consider
an exact sequence e - K — G — () — e of group varieties. We will consider the question how the
cohomology rings H}, (K, Q;) and HZ (Q,Q;) are related to H (G, Q).

Functoriality of l-adic cohomology gives that if f : X — Y is a morphism, there is a (Q;-algebra
homomorphism f* : HZ (Y,Q;) — HZ (X, Q). In the case that f : X — X is a self-morphism of
a projective variety with finitely many fixed points one has the famous Groethendieck-Lefschetz
trace formula which gives that the graded trace trx(f) of f* equals the number of fixed points
with multiplicity. This does not quite generalize to arbitrary varieties, however by the famous
Weil-conjectures one can count the fixed points of the Frobenius morphism by using compactly
supported cohomology. We will see in Chapter [3| that for an endomorphism ¢ : G — G of a group
variety with finitely many fixed points the graded trace of o* relates directly to the fixed point
count of 0. The cohomology ring of a general scheme is quite an abstract object and computing
how the pullback morphism behaves may not be doable. We will see that for G a torus an abelian
variety or a unipotent group variety, there is a functorial isomorphism HY (G, Q;) = R where R is
a graded ring on which we understand the pullback morphism ‘much better’ (more precisely R is
functorially the exterior algebra on the vector space spanned by the characters, resp. the exterior
algebra on the [-adic Tate module, resp. trivial). We will also consider the question if a similar
result holds for a semisimple group variety.

In Chapter |l]an introduction to algebraic groups is given, which is largely based on Milne’s book
[32]. We give a few proofs and state several results that we will need in the later chapters. The
theory of group varieties is in some sense quite close to the theory of groups as many concepts from
the latter carry over to the former; actions, normal subgroups, quotients, isomorphism theorems...
Some of the most important results in this chapter are certain structure theorems such as the
Chevalley-Barsotti theorem, which states that any subgroup variety G over a perfect field has a
largest normal linear group variety Gy, such that the quotient Gy, := G /Gy, is an abelian variety.
Similarly the linear group variety can then be decomposed further into a unipotent group variety,
a torus and a semisimple group variety. We introduce the anti-affine group variety Gant and give
another important structure theorem due to Rosenlicht [37] stating that over a perfect field k the
multiplication map p : Gang X Giin — G is a quotient map.

In Chapter [2| we will give an introduction to étale cohomology. Most of the material in here
is based on another book of Milne [29]. We begin by introducing the étale site of a scheme X
and sheaves on it. After this we introduce the functors f, and f* associated to a morphism



f X — Y. We then introduce étale cohomology and compactly supported cohomology with
their main properties before moving on to stating several classical results such as Poincaré duality,
the Grothendieck-Lefschetz fixed point formula, the proper base change theorem, cohomological
dimension and finiteness of étale cohomology. We then move on to proving the classical result that
an isogeny f : G — H of group varieties induces an isomorphism f* : H% (H, Q) — HZ (G, Q) of
which a proof is sketched in Srinivasan [42]|. Finally we give a very brief introduction on the Chow
ring A*(X) of X based on [22] and we state the existence and properties of the [-adic cycle map
X A*(X) ®7 Q — HZt(Xv QZ)

Chapter |3|is devoted to describing the sequence (oy,),, where o, is the cardinality of the set of
fixed points of ¢°" for o : G — G is a surjective endomorphism such that all iterates have finitely
many fixed points. It is largely based on work by Byszewski, Cornelissen and Houben [8]. We state
a deep theorem by Steinberg [44] which says that the Lang-map L, : g — ¢ ‘o(g) is surjective
when o is surjective and fixes finitely many points. Using the surjectivity of the Lang-map combined
with a filtration of G by characteristic subgroups allows us to split up the fixed point count of o
into counting fixed points of the induced endomorphisms on the pieces in the decomposition of G.
As a result, the authors of [8] were able to find the formula o, = |dn|c”rn|n]f)"p_t"|"|; " where
Tn, Sn, tn define ged-sequences, i.e. they are sequences that have a, = ageq(nw) for some w € Zo.
The part d,, is linearly recurrent and comes from certain cohomological traces from the pieces in
the decomposition of G. The question that remained is whether we actually have d,, = trg(o).
The authors of [8] solved this over F, by using a theorem of Arima [1], which implies that in this
case Gy, XF, Giin and G are isogenous and thus have isomorphic cohomology rings. However the
general case remained open. This motivates studying how the l-adic cohomology of Gy, and Gap
relate to the l-adic cohomology of G.

In Chapter [{] we work towards proving two of Arima’s theorems ([1], Theorem 1 and Theorem 2).
We introduce the Ext(—, —) bifunctor, which classifies extensions of a commutative algebraic group
B by a commutative algebraic group H up to a certain isomorphism. The methods used by Baer [4]
give that Ext(B, H) is a commutative group. One of Arima’s theorems states if G is an extension
of a linear group variety L by an abelian variety A that L x; A is isogenous to G if and only if
[G] € Ext(A, L) is of finite order. We show that this implies the second theorem of Arima, which

states that in the case of k = [F), that G is isogenous to A XF, L. In the process we show that there

is a natural map Ext(B, H) — H, (B, H) for H the étale sheaf Mor(—, H) on B in the case that
H is smooth. We show that under suitable hypothesis on B, H the image of this homomorphism
equals the primitive subspace of H (B, H). Later in the chapter we exhibit an explicit example of
a generalized Jacobian Jy,, which in our case will be an extension of the multiplicative group Gy,
by an elliptic curve E such that Jy and E X G, are not isogenous. This construction can be made
whenever FE(k) has a point of infinite order.

In the first part of Chapter [5| we let k be an algebraically closed field and we consider the exact
sequence e — Glin — G = Gap — e. The goal is showing that * : H% (G, Q) — HZ, (Ghin, Q;) admits
a section s giving that (s ® 7*) : Hg (Giin, Q1) ®q, Hg (Gab, Q1) — Hg (G, Q) is an isomorphism
of graded Qj-algebras. First we consider the case where G is commutative. By comparing the
functors H, (—,Z/I"Z) and Ext(—,Z/I"Z) (done earlier by Miyanishi [33]) and using properties
of Ext from Serre’s book [39] we obtain 0 — H}, (Gap, Q) LN H (G, Q) LN H}, (Giin, Q;) — 0 which
is exact. Since H (G, Q) is a finite dimensional graded-commutative Hopf algebra we can use a
cohomological dimension argument together with a structure theorem on such Hopf algebras by
Hopf [5] to obtain an isomorphism (s ® 7*) : H% (G, Qi) ®q, Hi (Gab, Q1) — HZ (G, Q) (also



see [7]).

In the general case we consider the quotient map p : Gant Xk Giin — G whose kernel is up to
finite index equal to (Gant)iin. For the quotient @, the fibration (Gant)iin — Gant Xk Gin — @
satisfies the conditions needed to use the Leray-Hirsch principle. We note that @Q and G are
isogenous and thus that their cohomology is isomorphic. As G,nt is commutative we know that
its cohomology has the above tensor product decomposition. Using these facts together with the
fact that (Gant)ab and G,p are isogenous we are able to obtain the desired isomorphism given by
(s @ 7*) : Hg (Giin, Q1) ®q, HE (Gab, Q1) = H% (G, Q;). As far as we know this result is not stated
anywhere in the literature.

In the second part of Chapter [5| we build upon the result of obtaining the previous isomorphism
by showing that any exact sequence of group varieties e — K — G = @ — e over an algebraically
closed field has that .* admits a section s such that (s@7*) : Hg, (K, Q) ®q, Hz (@, Qi) — H% (G, Q)
is an isomorphism of graded ;-algebras. For doing this the notion of an almost exact sequence of
group varieties is introduced, which relaxes the conditions ker(¢) = ker(m)/Im(¢) = e to both being
finite group schemes. This concept is introduced because for instance e — Ky, — Giin = Quin — €
is almost exact when e - K — G — ) — e is exact. We show that the cohomology of the almost
exact sequences that we consider decomposes as above. We then conclude by the above result on
e — Gin — G5 Gy, — e and by certain other exact sequences splitting up to isogeny that we
indeed have such an isomorphism (s ® 7*) : Hz, (K, Q) ®q, H% (Q, Q1) — HZ (G, Q).

Chapter [6] is devoted to proving the following result: Let G be a semisimple algebraic group
and let 0 : G — G be a surjective endomorphism with finitely many fixed points and let T' be
a o-stable maximal torus of G. Let S := Sym(X(7T") ®z Q;) on which the Weyl group W acts
linearly and denote by SKV the invariants of positive degree and denote J := SK_V/(SK/)Q. The

*
statement is that there is a functorial isomorphism /\J [x2 — 1] = H (G, Q;), where [x2 — 1]
means that the degrees are doubled and then lowered by 1 and where functorial means that the
pullback morphisms ¢* on both sides are respected by the isomorphism. Note that the existence of
an isomorphism follows from work done on Lie groups by Borel [5] together with G being defined
over Spec(Z) with a comparison theorem on [-adic cohomology by Friedlander [21]. However this
approach unfortunately does not give the desired functoriality. Altough the semisimple group
variety G lifts to C, the endomorphism ¢ : G — G need not lift.

We let (B,T) be a o-stable Borel pair and begin by describing the cohomology of G/B. We use
the cellular decomposition of G/B to obtain that cI¥/B : A*(G/B) @7 Q; — H3(G/B,Q,) is an
isomorphism. By a result of Demazure [14] on A*(G/B) ®z Q; we then obtain all the dimensions of
HY (G/B, Q). Using that G/T — G/B is a fibration over an affine space we obtain an isomorphism
between H% (G/T,Q;) and Hf, (G/B,Q;) given by the pullback. By applying the Leray spectral
sequence to the morphism 7 : G — G/T (also done for Lie groups by Leray [28]) we obtain, as
the sheaves Ri7,(Z/I"Z) are equal to the constant sheaf Hf, (T',Z/1"7Z), a homomorphism of rings
dg’l . Sym(HL (T, Q) — H5(G/T,Q;). We show after the identification S = Sym(H. (T, Q;))
is made that ker(dg’l) = SKV - S and that dg’l is surjective. We also consider the FEs-page as

q

a complex with terms Ey? = /\(X(T) ®z Q) ®S/(SKV - S) and we show the existence of a
Q

*
homomorphism J — hl(E;") = E; ! that extends to a graded (;-algebra isomorphism /\ J— Eg*
After showing that this implies that the spectral sequence degenerates at the Fs3-page, we obtain



a (Qj-algebra isomorphism /\ J[x2 — 1] — H% (G, Q;) that has the crucial property for us, namely
that it commutes with pulling back via ¢*. In particular we deduce from the results in Chapter
and Chapter [6] that the term d,, from Chapter [3| that was defined by the authors in [8] equals
trg(o”).
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Chapter 1
Algebraic groups

In this chapter we introduce algebraic groups over a general field k. We state a number of classical
theorems such as the Chevalley-Barsotti theorem and the existence of largest normal subgroup
varieties with certain properties. A good reference for the material covered in this chapter is [32].
Throughout this chapter £ will be an arbitrary field.

Definition 1.1. An algebraic group is a scheme G of finite type over k with k-morphisms
w:G %, G— G, inv: G — G and e : Spec(k) — G such that the following diagrams commute:

GxpGxp G GG Spec(k) xj, G -“M G x), G < G x; Spec(k)

l“x“ . l“ \\\\\\\\$ l (////////

Gx, G — (G

(inv,Id) (Id,inv)

G GxpG G

! J» !

Spec(k) = G = Spec(k)

Remark 1.2. Let k be a field and let G be an algebraic scheme over k. Then G is an algebraic
group if and only if Homy(Spec(—),G) : k-Alg — Set factors through the category of groups via
the forgetful functor Grp — Set. This follows by applying the Yoneda Lemma.

Note that an algebraic group need not be connected or geometrically reduced and hence this is
not assumed to be the case unless explicitly stated. Note that for any field £’ containing %k, we can
base-change G to Gy to obtain an algebraic group over £’

Definition 1.3. A group variety G over k is a connected geometrically reduced algebraic group
over k.

That we only require connected and not irreducible in the definition has to do with the following.

Lemma 1.4. ([32], Summary 1.5.6) For G an algebraic group the following are equivalent:

o (G is connected.
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e GG is geometrically irreducible.

We also have that group varieties are smooth.

Proposition 1.5. A geometrically reduced algebraic group G is smooth.

Proof. We base-change the algebraic group G over k to one G over k whose underlying scheme
is a variety by assumption. It is a classical fact (|23], Theorem 1.5.3) that every variety over an

algebraically closed field has a smooth point z € G (k). Now for any y € Gz (k), the left-translation
map 7,,-1 : Gy — Gy is an isomorphism of schemes and hence an isomorphism Og; , — Og; . and
hence we conclude that y is also a smooth point of Gy, O

Now we define homomorphisms.
Definition 1.6. A homomorphism of algebraic groups over k is a k-morphism of schemes ¢ : G —

H such that the maps ¢ : G(R) — H(R) are group homomorphisms for all R/k.

There is an equivalent definition involving diagrams as in the definition of an algebraic group.

Remark 1.7. By checking the axioms one verifies that there is a category of algebraic groups whose
objects are algebraic groups and whose morphisms are homomorphisms.

Definition 1.8. Let G be an algebraic group over k. An algebraic subgroup H of G is a subscheme
H of G such that p,inv, e restrict to H, i.e. H inherits the structure of an algebraic group by G.
We introduce some examples of algebraic subgroups.

Definition 1.9. Denote the component of G that contains e by G°. It is called the identity
component.

Lemma 1.10. The connected component of G that contains e is an algebraic subgroup of G. When k
1s perfect the reduced subscheme Greq is an algebraic subgroup of G.

We have the following lemma that says that algebraic subgroups are closed.
Lemma 1.11. Let G be an algebraic group over k. An algebraic subgroup H of G is in particular
a closed subscheme of G.

The following special cases of homomorphisms are important to us.
Definition 1.12. A homomorphism ¢ : G — H is called an embedding if ¢ is a closed immmersion.
It is called a quotient map if it is faithfully flat.

Just like in group theory there is the notion of normal subgroup.

Definition 1.13. Let H, N be algebraic subgroups of G. Say that H normalizes N if H(R)
normalizes N(R) inside G(R) for all R/k. In particular, say that N is a normal algebraic subgroup
of G if G normalizes N.
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Definition 1.14. A flat sheaf is a covariant functor F' : {finitely generated k-algebras} — Grp
such that:

1. Whenever ¢ : R < S is faithfully flat the sequence F(R) — F(S) = F(S ®g S) is exact, i.e.
the elements in F'(S) that are mapped to the same element under F(: ® 1) and F(1 ® ¢) are
precisely the elements that come from F(R).

2. The projection maps induce an isomorphism F'(R; X .... X R,) = F(R1) X ... X F(Ry).

An algebraic group actually defines such a flat sheaf.

Lemma 1.15 ([32], Lemma 5.9). The functor G := Homy(Spec(—), G) is a flat sheaf.

This is quite easy to show when G is affine and by covering G with affine opens subschemes the
general case follows.

Remark 1.16. By the Yoneda-lemma we have that an algebraic group G is completely determined
by its flat sheaf G. Actually, giving a flat sheaf as we defined is the same as giving a sheaf for the
‘flat topology’ on Spec(k). For a covariant functor F' : {finitely generated k-algebras} — Grp there
is a flat sheaf aF called the sheafification of F with a morphism F' — aF' that is universal among
morphisms from F to a flat sheaf ([32], Prop 5.68). It is unique up to unique isomorphism.

We use the sheafification for the following.

Definition 1.17. Let ¢ : G — H be a homomorphism of algebraic groups. Define the kernel sheaf
by ker : R — ker(pg). Define the image sheaf Im by setting it to be the sheafification of the
presheaf R — Im(pr).

Remark 1.18. Both of the above flat sheaves are representable by algebraic groups called the kernel
of ¢ and the image of ¢ respectively. They are denoted by ker(yp) and ¢(G). It is easy to see that

G—— H
the kernel sheaf is represented by the following fibre product: T B eT
ker(¢p) —— Spec(k)

(which also shows that it is in fact a flat sheaf). That the image sheaf is representable is much
harder to show. It is done in Appendix B of [32].

Definition 1.19. A sequence H ENYEIEN @ of algebraic groups is ezact if Im(f) = ker(g).

Remark 1.20. It follows from the definition of the kernel and image that a sequence H - G — @
of algebraic groups is exact if and only if the sequence of flat sheaves on Spec(k), H - G — @,
is exact. Note that this is in general not the same as H(R) — G(R) — Q(R) being exact for
all R. For a counterexample, let &k = Q and consider the n’th power map G,, — G,,. Then
Q* — Q* z ~— 2" is not surjective, but for all r € R* one has the faithfully flat ring map
R — R[X]/(X™ —r) and r is in the image of (R[X]/(X" — r))* — (R[X]/(X™ —r))*, hence
@TZ — @,; is a surjective morphism of sheaves.

Before introducing a fundamental exact sequence we make a definition.
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n
Definition 1.21. A k-scheme X is étale if X = Spec(R) is finite over k and R ®j, R = H k; where
i=1
k;i/k is a finite separable field extension.

The following is a basic example of an exact sequence called the ‘connected-étale sequence’
Lemma 1.22 ([32], Prop 2.3.7). For G an algebraic group there is an algebraic group 7°(G) that
is étale such that e — G° — G — 1°(G) — e is exact.

We also have the notion of an action of a group variety.

Definition 1.23. An action of an algebraic group G on a scheme X /k is a k-morphism f : Gx X —
X such that fr: G(R) x X(R) — X(R) is an action for all R/k.

As earlier mentioned, showing that quotients exist is nontrivial.

Proposition 1.24 (Existence of quotients, [32] Appendix B). Let G be an algebraic group and let

H be an algebraic subgroup of G.

o There exists a scheme X denoted G/H with an action G X, X — X and a point o € X (k)
such that the orbit map G — X g — go is faithfully flat and such that the flat sheaf
Hom(Spec(—), X) is the sheafification of the assignment R +— G(R)/H(R).

o If G acts on another scheme Y and ¢ : G = Y is G-equivariant such that ¢ is constant on
H, then ¢ factors uniquely via G/H.

e In the case that H = N is a normal subgroup of G we have that G/N inherits the structure
of an algebraic group by G and that m : G — G /N has kernel N.

e For k' a separably closed field and G reduced with algebraic subgroup H we have an identifi-
cation (G/H)(K') = G(K')/H(K').
We have the following variant of the first isomorphism theorem.
Proposition 1.25. Let ¢ : G — H be a homomorhism of algebraic groups. Then ¢ factors as a
quotient map followed by an embedding ¢ : G — G/ ker(p) = o(G) — H.
One can form the algebraic subgroup generated by two subgroups of an algebraic group.

Definition 1.26. Let G be an algebraic group and let H, N be algebraic subgroups of G. Then
H - N is the algebraic subgroup of G whose flat sheaf is the sheafification of R — H(R) - N(R)
(where by N(R)- H(R) we mean the smallest subgroup of G(R) containing both N(R) and H(R)).

The following is a variant of the second isomorphism theorem.

Proposition 1.27. Let N, H be algebraic subgroups of G such that H normalizes N. There is a
. H

canonical isomorphism — .
P N HON



13

The above isomorphism can be checked on the level of R-points, as the corresponding sheaves
are both sheafifications of the same functor. We now introduce some types of algebraic groups that
are the main building blocks for algebraic groups.

Definition 1.28. Let n > 0. Define the general linear group GL, to be the algebraic group over
k that has functor of points GL,(R) = {M € M, x,(R) | det(M) € R*}.

It is easy to see that it is represented by Spec(k[{Xij}1<i j<n]det), Where det = det[(Xj;)i ;].

Definition 1.29. A homomorphism ¢ : G — GL,, is called a representation. An algebraic group
G is linear if it admits a representation that is an embedding.

Some examples of affine algebraic groups are the following.

Example 1.30. The scheme A" is an algebraic group as its functor of points is R — R", which is
a group functor. Denote the corresponding group scheme by G/,. Such an algebraic group is called
a vector group.

Example 1.31. For G, := Spec(k[X]x) the scheme G}, is also an algebraic group as its functor
of points is given by R — (R*)"™. Such an algebraic group is called a (split) torus.

Notice that a linear algebraic group is affine. It turns out that the converse is also true.

Theorem 1.32 ([32] Theorem 4.9). Let G be an affine algebraic group. There exists n > 0 and an
embedding ¢ : G — GL,.

When one has an affine scheme, the ring of global sections contains all the necessary information
about it. The same is true for a linear algebraic group and in this case the global sections are a
commutative Hopf algebra.

Definition 1.33. Let k be a field. A k-Hopf algebra is a k-algebra (not necessarily commutative)
H equipped with k£ algebra morphisms comultiplication V : H — H ® H, the antipode + : H — H
and € : H — k such that the following diagrams commute:

(e Id) Id ,€)

IE | ] e l \ y /

€ H € k H®r H

—> ko H

We have the following very natural example.

Example 1.34. For GG an affine algebraic group over k& we have a commutative Hopf-algebra O(G),
where V is induced by the multiplication of GG, ¢ by the inversion map and e by the neutral point

1
e : Spec(k) — G. Specifically in the case GL, = Spec(k[{X;;}i1<i j<n, a] the comultiplication
== de
n
1 o
is given by X;; — ZX” ® Xj; and the inversion map by X;; — i (—1)z+ﬂ det(Mj;), where
e
=1
det(Mj;) is the (j,4) minor of the matrix (Xy;;)m,. The map € is given by X;; — 67 € k.
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Now we define a homomorphism of Hopf algebras.
Definition 1.35. A homomorphism of k-Hopf algebras ¢ : H — H’ is a k-algebra homomorphism
that satisfies (¢ ® ) oV =V op and e = ¢ o .

We have the following proposition on affine algebraic groups that can be checked by reversing
all arrows and using the (contravariant) equivalence of categories between affine k-schemes and
commutative k-algebras.

Proposition 1.36. There is a contravariant equivalence of categories:
{ Finite type commutative k-Hopf algebras} — {Affine algebraic groups over k}
We have the following classes of linear algebraic groups.
Definition 1.37. A linear algebraic group G is called solvable if it admits a filtration of normal
algebraic subgroups e = Gy < G < ... < G, = G such that all quotients G;/G; 41 are commutative.
We give several examples below.

Example 1.38. Consider the algebraic group of upper triangular matrices T" defined by:

ai; a2 ... Qain
0 agy ... QAa2p

Tn(R) = . 0 - . < GLn(R)
0O ... 0 apn

Example 1.39. Consider the algebraic group of unipotent matrices U,, which is defined by:

1 a2 ... Qin
0 1 ... Qop

Un(R) =< | . 0 . < GLA(R)
0o ... 0 1

Example 1.40. Consider the algebraic group of diagonal matrices D, which is defined by:

all 0 e 0
0 as ... 0
Dn(R) = . 0 . < GLy(R)
0 ... 0 apn

Remark 1.41. Tt follows that U™ is a solvable subgroup by considering its composition series with
successive quotients isomorphic to G, given in ([32], p.137). It also follows that D" is solvable as
it has a composition series with successive quotients isomorphic to Gy,.

It follows that e — U,, — T,, — ID,, — 0 is exact and that hence T,, is solvable.

The group variety U, can be used to make the following definition.

Definition 1.42. A linear algebraic group G is unipotent if it admits an embedding G — U,.
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We also have the following class of algebraic groups, which are in some sense opposite to linear
algebraic groups.

Definition 1.43. An algebraic group G over k is anti-affine if it has Og(G) = k.

A basic example of such a type of algebraic group is the following.

Definition 1.44. A group variety G over k is an abelian variety if it is complete.

We have the following basic examples.

Example 1.45. A smooth geometrically irreducible cubic curve E in P} with a point O € E(k)
gives an example of a one dimensional abelian variety (see [40]), called an elliptic curve.

Any abelian variety is an example of an anti-affine group variety. For an example of an anti-affine
group variety that is not an abelian variety, consider an extension e — G,, - G — FE — e, where
FE is an elliptic curve. Clearly no such G is an abelian variety as it contains a closed affine subgroup
of positive dimension. Over an infinite field k£ there exist such extensions such that G contains
no abelian variety (we will see this in Chapter 4). This implies that by Theorem we must
necessarily have Gnt = G as otherwise Gy is isogenous (see Definition to E and G, would
be an abelian variety.

We now state a lemma about when an algebraic group has a largest smooth normal connected
subgroup of a certain type.

Lemma 1.46 ([32], Section 6g). Let P be a property of algebraic groups such that: Any extension
of an algebraic group with P by an algebraic groups with P has P, any quotient of an algebraic
group with P has P and e has P. Then for any algebraic group G there exists a largest normal
algebraic subgroup N C G having P. The quotient G/N has no such normal subgroup. If G is
smooth, and k is perfect then G has a largest normal subgroup variety with property P.

The hypothesis that & is perfect above is such that one can find the largest normal connected N
with P and then take the underlying reduced subscheme Nqq.

Remark 1.47 (|32], p.61, p.135). Properties P satisfying the hypothesis of include:
P € {linear, complete, anti affine, solvable, unipotent }

The references given are for P being linear and unipotent respectively. For P being anti-affine and
solvable it follows from the definitions. For P being complete we note that if G is an extension of
N by Q, we may base-change to k and then apply ([32], Prop. 8.25) stating that G, is proper over
k variety if and only if it has no affine algebraic subgroup of positive dimension. This holds as Nj,
and Qj, are both complete. Now by faithfully flat descent and since Spec(k) — Spec(k) is faithfully
flat we obtain that G is proper over k.

Definition 1.48. For G an algebraic group we denote:

e The largest linear normal group variety of G by Giin.

e The quotient G/Gyn by Gap.
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e The largest anti-affine normal group variety of G by Gans.
In the case that G is linear, denote:

e The largest normal solvable group variety of G by R(G), called the radical.
e The largest normal unipotent group variety of G by Ry(G), called the unipotent radical.

Example 1.49. Let G = GL,, for n > 2 over an algebraically closed field k& and consider the normal
diagonal torus G,, < GL,,. The quotient is PSL,, given by PSL,(R) = GL,(R)/R* (as can be seen
by using that the flat cohomology group Hj.,(k,G,,) vanishes, see [32] p.111). It is known that
the group PSL,, (k) is simple for n > 2 and hence G,, is in fact the largest proper normal subgroup
variety of GL,,, hence R(GL,) = G,,.

The following justifies the notation G,p.

Theorem 1.50 (Chevalley-Barsotti, [32] Theorem 8.27). Let G be a group variety over a perfect
field k. Then G has a largest linear normal subgroup variety Gy, such that G/Ghy, is an abelian
variety.

In [32] (Theorem 8.27) it is shown that when & is perfect G containing no normal linear subgroup
variety is equivalent to G being an abelian variety. Then the above theorem follows directly from
Lemma Combining the Chevalley-Barsotti theorem with the fact that an abelian variety is
projective (see [30] Theorem 6.4) is used to show the following proposition.

Proposition 1.51 ([32] Theorem 8.45, Homogeneous spaces are quasi-projective). Let X be a
separated scheme over k on which an algebraic group G acts such that G xp X — X x; X
(9,x) — (gz,x) is faithfully flat. Then X is quasi-projective.

In particular any algebraic group is quasi-projective, which follows from the case X = G above.
The anti-affine algebraic group Gant also has some nice properties.

Proposition 1.52 ([32], Cor 8.14 and Prop 8.37). The algebraic group Gant is connected, smooth
and contained in the centre of G.

For checking that Gant is smooth and connected k£ can be assumed to be algebraically closed
and in this case the quotient Gant/(Gant)jeq 1S finite, hence affine and hence trivial. For checking
that it is central, note that G/Z(G) is affine since G/Z(G) acts faithfully on G' by conjugation with
fixed point e, (see Prop 8.9 in [32]).

Now we define other types of linear algebraic groups.
Definition 1.53. A linear algebraic group G is called reductive if Ry (Gf) = e and semisimple if
R(Gj) =e.

Notice that a semisimple algebraic group is reductive. The following gives an example of a
semisimple algebraic group.
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Definition 1.54. The derived group D(G) of G is the intersection of all normal N < G such that
G/N is commutative.

It is a fully characteristic subgroup of G' (See [32], p.129). In some cases we can say something
about the normal subgroups of algebraic groups with a certain property.

Lemma 1.55. Let G be a linear algebraic group. Then any algebraic subgroup of G is also linear.
If G is solvable resp. unipotent then every algebraic subgroup of G is solvable resp. unipotent.

The unipotent case follows by definition. The solvable case follows from the fact that if one
has that e = Gy < ... < G is a subnormal series with commutative quotients and H < G a normal
algebraic subgroup that e = Go "N < ... < N is a subnormal series for N with commutative
quotients.

Definition 1.56. An algebraic group G is almost simple if it is non-commutative and it contains
no normal algebraic subgroup of positive dimension.

We also make the following definition.

Definition 1.57. A homomorphism ¢ : G — H is called an isogeny if ker(y) is finite and H/¢(G)
is finite. Say that G, H are isogenous if there exists G = Gg — ... — G, = H where — means an
isogeny going in either direction.

Remark 1.58. If H is a group variety over a perfect field, then an isogeny is a quotient map with
finite kernel. Such a morphism is a finite morphism and thus it has a degree.

We now have a lemma for quotients of algebraic groups with certain properties.

Lemma 1.59. Let G/k be a group variety with property P € {complete, reductive, semisimple, solvable}.
Then any quotient of G has P.

Proof. In the solvable case: Pick a filtration of G with commutative quotients, then the images
give a filtration of H with commutative quotients.

For the complete case: The image of a connected complete variety is a connected complete variety.
An algebraic group G is semisimple if and only if for G1,...G, its minimal almost-simple normal
subgroup varieties, the multiplication map Gy X ... x G, — G is an isogeny ([24], p.167). The
quotient of an almost-simple algebraic group is almost-simple as it is either {e} or a quotient by a
finite group scheme. We get that multiplication 7(G1) X ... x m(G,) — m(G) is an isogeny since the
7(G;) are almost-simple, hence their intersection is finite, hence 7(G) is an almost direct product
of almost-simple algebraic subgroups, thus 7(G) is semisimple.

A group variety is reductive if and only if (Proposition 21.60 [32]) it is an almost direct product of
a torus with a semisimple algebraic group. In fact the multiplication map R(G) X Gger — G is an
isogeny. A quotient map 7 : G — H gives that the multiplication map 7(R(G)) X 7(Gger) — H is
surjective. A quotient of a solvable algebraic group is solvable and we have seen that the quotient
of a semisimple group variety is semisimple. Hence 7(R(G)) is a torus and m(Gqe,) is semisimple
respectively. The kernel of the multiplication map m(Gger) X w(R(G)) — H is isomorphic to the
intersection m(Gger) N7 (R(G)), which is necessarily finite since it is solvable and semisimple. Hence
H is reductive as it is the almost direct product of a torus and a semisimple group variety. O
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The following decomposition theorem is by Rosenlicht.

Theorem 1.60 (Corollary 5 [37]). Let G be a group variety over a perfect field. The multiplication
map p: Gant X Giin — G 18 a surjective quotient map.

Proof. That p is a homomorphism follows from G,y C Z(G). Consider the image Gayt - Giin C G
and the quotient @ := G/(Gant - Giin). There are quotient maps G, — @Q and G, — Q. Hence @
is both affine and complete, hence finite. Since G is a group variety it has no nontrivial algebraic
subgroup of finite index, hence G,y - Giin, = G and hence p is surjective. O

The following lemma gives us that in some cases there are induced maps between the largest
subgroup varieties of the above type.

Lemma 1.61. Let G be an algebraic group and denote by G the largest normal subgroup variety
with some property P € {linear,unipotent,solvable} (the properties unipotent and solvable are
only considered when G is linear). Let ¢ : G — H be a homomorphism that is either a normal
embdedding or a quotient map. Then ¢(G) is normal in H and ¢ induces a homomorphism
G.— H,.

Proof. Tt suffices to show that ¢(G,) is normal in H since it is a group variety (as G, is a group
variety) with property P, thus contained in H, if it is normal. If ¢ is a quotient map, then because
G, is normal in G, ¢(Gy) is normal in o(G) = H. If ¢ is a normal embedding, G is a normal
subgroup of H. Let « be any automorphism of H restricting to an automorphism on G (such as
conjugation by an element of H). Then v(G.) C v(G) = G is a normal group variety with property
P and it follows that it equals G,. O

In the following proposition we keep the notation of Lemma It is almost identical to the
proof of (Lemma 4.7 [6]). Again the subscript * will be put under G to denote the largest normal
subgroup variety of G with property P € {linear, unipotent, solvable}.

Proposition 1.62. Let e - K = G 5 Q — e be an exact sequence of algebraic groups over
an algebraically closed field k. Then there is a commuting diagram with exact rows and with q an
150geny:

e — GuNK G, Q+ > e
J oo
e K. G, H > e

Proof. By Lemma we get that there is an induced sequence e — K, — G4« — Q. — e which
need not be exact. The hardest part is showing that the homomorphism G, — Q. is surjective. We
start with showing this. The same lemma gives us a sequence ¢ - K/K, — G/G, — Q/Q« — e,

G—» Q@

which is also not necessarily exact. Note that there is a commuting square: l l

G/G. — Q/Qx
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As G — @Q and Q — Q/Q. are both quotient maps, so is G/Gyx — Q/Qx.
G.NK . . . .
We now compute ker(K/K, — G/G,). This is equal to e of which we claim that it is finite.

*

Since the field k is perfect we have the algebraic subgroup (G« N K)p.q, which is normal in K as
it is characteristic in G, N K and G, N K is normal in K. Since (G, N K) is also normal in G,
50 is (G« N K)peq, hence by Lemma we obtain that (G N K),.4 has property P. Thus we get
(Gx N K)poq C K. The other inclusion also holds as K, is characteristic in K and K is normal in
G, thus K, is normal in G and has property P, thus K, C G.. So we get K, = (G, N K);.4, which
is of finite index in G4 N K since the dimensions are the same.

k * * - -
er(G/Gy — Q/Q) is finite. The top algebraic group equals w

. Th
Im(K/K, — G/G,) G, ¢

‘We now show that

: * k * * -1 *
one on the bottom equals G*G , hence IE{IG(;IG(* : g;g*; & WK (g*) . We have an isomorphism
-1
Fﬁl(Q*)/K 2 ()., which has property P. Hence as WK(g*) is a quotient of Q, it has property P. It

is also a quotient of . This is a normal algebraic subgroup of G/G,, which has the ‘opposite

Q%)
G
property’ of P, i.e. it is either complete, reductive or semisimple. A normal algebraic subgroup
also has this ’opposite property’. Quotients also have this ’opposite property’ by Lemma So

-1
we see that as ﬂ[((g*) both has the property P as well as the opposite property, that it is finite.
From these Computat}kons we obtain that dim(G/G,) = dim(Q/Q.) + dim(K/K,). We also have
that dim(7(Gx)) = dim(G,) — dim(ker(7|q,)) = dim(Gy) — dim(G, N K) = dim(G,) — dim(K)
since we have already seen that K, is a subgroup of finite index in GG, N K. The right hand side can
be rewritten as dim(G) —dim(G/Gy) —dim(K) +dim(K/K.), which equals dim(Q) —dim(Q/Q«) =
dim(Q.). Hence since m(G,) C Q. is a closed subvariety of the same dimension it is the whole of
Q. This shows the exactness of the top sequence in the proposition. That the bottom sequence is

exact follows from the fact that K, has finite index in G, N K. O

Remark 1.63. Tt follows from the above proof that the algebraic group 7 !(Q.) actually equals
G, - K. Since G, - K is of finite index in 7['71(@*) it suffices to show that 71'71(@*) is a group
variety. Connectedness follows from the exact sequence mo(K) — mo(m HQy)) — m0(Qs) — e
(exercise 5-9 [32]) and smoothness follows from the fact that ker(r) is smooth if and only if 7 is
smooth (IT1.10.5 [23]) and that the base-change of 7 to 7|.-1(q,) : 7 HQ.) = Q. is smooth as 7
is smooth, thus 7~ (Q,) — Q« — Spec(k) is smooth since Q, is smooth and smoothness is stable
under composition.

However it does not always hold that K N G, = K, although K, is an algebraic subgroup of finite
index. For a counterexample, take G = GL,, for n > 2, K = SL,, and G, = G,,, = R(GL,,). Then
G. N K = py, which is not a group variety, however K, = {e} C SL,. So G, N K need not be
reduced nor connected.

We now begin with introducing Borel subgroups and maximal tori, which are especially useful
to study reductive group varieties.

Definition 1.64. Let G be a linear algebraic group over a field k. A Borel subgroup of G is a
maximal solvable subgroup of G.

We have the following definition that we will use frequently.
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Definition 1.65. Let G be a linear algebraic group over k. A maximal torus is a subtorus T of G
that is not properly contained in any other subtorus of G.

Example 1.66. For G = GL, over k = k we have that T, is a Borel subgroup (Lie-Kolchin
theorem 16.30 [32] and Proposition 16.2 [32]) and that D,, is a maximal torus.

Note that a torus is solvable, hence every maximal torus 7" has T C B for B some Borel
subgroup of G. We have the following structure theorem on Borel subgroups and maximal tori.

Proposition 1.67 (Theorem 17.9.(b) |32] and Theorem 17.10 [32]). Let G be a linear group variety
over an algebraically closed field k. Let B be a Borel subgroup of G and let T be a mazimal torus
of G. The Borel subgroups of G are precisely {gBg~'|g € G(k)} and the mazximal tori of G are

precisely {gTg™ " | g € G(k)}.

We now introduce the Weyl group of a reductive group variety.

Definition 1.68. Let G be a reductive group variety over a perfect field k£ and let T' be a maximal
torus. Define the Weyl group with respect to T" by W(G,T) := Ng(T)/T.

The Weyl group acts on the maximal torus 7" by conjugation.

Lemma 1.69 (Prop 21.1 [32]). The Weyl group W(G,T) is a finite étale group scheme.

This implies that we can think of W as just being a finite group. By Proposition it follows
that over an algebraically closed field W (G, T') does not depend on T" as an abstract group, so just
write W = W(G,T) in this case

Example 1.70. Consider G = GL,, and the maximal torus T" = D,, over an algebraically closed

field. Consider the equation (ai;) - (dij) = (ei;) - (aij) for (dij), (€i;) € Dp(k). Then notice that

comparing the relations from the first column of the resulting matrix gives that di; = e;,;, for some

i1. Continuing, it follows that there is o € S, such that b;; = a,(;)s(;) for all 1 <i < n. So this

gives W < S,,. Any transposition between entries (i,7 + 1) can be realized by conjugating with a
1 ... 0

matrix of the form: | : < 0 1) o

0 ... e 1
Hence we conclude that the Weyl group of GL,, is precisely S,,.

We make the following definition.
Definition 1.71. Let G be an algebraic group. A character of G is a homomorphism G — G,,.
Denote the character group of G by X(G).

This is especially interesting for a split torus.

Lemma 1.72. Let T = G}, be a split torus, then X(T') = Z".
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The proof is done by observing that X (7) has a basis consisting of the projections to G,,. Note
that as the Weyl group acts on T, it also acts on X (7).

Definition 1.73. Let G be a reductive algebraic group over k = k and let T be a maximal torus.
Define S := Sym(X (T) ®zQ,) for | # char(k) prime. Then the Weyl group invariants of G are S".

We can easily compute this in the previously mentioned case.

Example 1.74. Let G = GL,, and T' = D,,, W = S,,. It follows that S = Q[Xy,..., X,] and
that W acts by permuting the variables. Hence we obtain SV =@ [e1, ..., en], where the e; are

the elementary symmetric polynomials e; = Z X fl S X,i”. That S" is a polynomial ring
i1+ i =1

follows from the Chevalley-Shephard-Todd theorem [10].
To finish the chapter we state some general results about isogenies that we will use later.

Definition 1.75. We say that an isogeny is separable if ker(y) is an étale group scheme. Say that
 is inseparable if this is not the case and that it is purely inseparable if ker(y) is connected.

Lemma 1.76. An isogeny ¢ : G — H factors as p = ¢potp, where ¢ : Q — H is a separable isogeny

and ¢ : G — H is a purely inseparable isogeny.

Proof. Let K = ker(p)°. Then ¢ factors via the quotient map G — G/K. Since ker(G/K — H) is
isomorphic to ker(y)/K, which is an étale group scheme and since K is connected, this gives the
factorization. O

For G, H commutative group varieties we can in some cases reverse the isogeny.
Lemma 1.77. Let ¢ : G — H be an isogeny between commutative group varieties such that

[deg(p)] : H — H is an isogeny. An isogeny v : H — G exists such that ¢ o = 1) o ¢ = [deg(y)].

The proof of the lemma follows from the fact that a commutative finite group scheme G is killed
by multiplication by its order dimy(O(G)) (Corollary 2.2 [38]).



Chapter 2

Etale cohomology

In this chapter we introduce étale cohomology, which is related to ordinary sheaf cohomology,
though with ‘opens’ in the étale topology. We will state some results without a proof in this chapter
to not get too far astray from the purpose of this document. For a more thorough introduction to
this topic we refer to [31] and the references in these notes.

First we recall the definition of an étale morphism.

Definition 2.1. A morphism of schemes f : X — Y is étale if it is locally of finite type, flat and
unramified; unramified meaning that for all z € X with f(z) = y, the map f# : Oyy — Oxz
induces a finite separable field extension x(z)/k(y) and mx = f#(my) - Ox .

Remark 2.2. Etale morphisms have the following basic properties:

e Equidimensionality: A particular property that unramified morphisms have is that they
have relative dimension 0, i.e. for f : X — Y unramified and y € Y, dim(X,) = 0. To
see this, reduce to the affine case X = Spec(S) — Spec(R) =Y with = = [q], y = [p] and
note that X, = Spec(S ®r k(p)g = Sq/pS;) = r(q), which is finite over s(p). Then we
apply [43, Tag O0PK]. As an étale morphism f : X — Y is moreover flat, we have that
dim(Ox ) — dim(Oy,y) = dim(Xy) by Corollary (21.10) in [26]. Thus if X and Y are integral
schemes and f: X — Y is étale we have dim(X) = dim(Y").

e Openness: An étale morphism is in particular flat and locally of finite presentation, which
implies that it is open by Lemma 29.25.10 [43, Tag 01U2].

e ‘Locally’ standard étaleness: For f: X — Y étale, z € X there exists Spec(R), an affine
open neighbourhood of f(z), and an affine open neighbourhood U of z together with an open
immersion j : U — Spec(R[T)/(f)) for a monic polynomial f € R[T] such that f’is invertible

Spec(R[T]/(f))

U j
in R[T7], such that the following diagram commutes: \ /

Spec(R)

Here the right arrow is the canonical one. For more background see |43 Tag 025A].
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e Stability under base-change: For f : X — Y étale and Z — Y any morphism, the induced
morphism X Xy Z — Z is étale. The flatness and locally of finite presentation properties are
basic and follow from the fact that flat ring maps and ring maps of finite presentation are
stable under taking the tensor product. That unramifiedness is stable under base-change is
a bit harder to see and follow by using the characterisation; f : X — Y is unramified if and
only if Qﬁqy = 0 [43, Tag 02G3].

e Stability under composition: For f : X — Y étale and g : Y — Z étale we have that
go f: X — Z is étale.

Example 2.3. We give some easy (non)examples of étale morphisms: Consider for k an alge-
braically closed field the ring map ¢ : k[T] — k[T] T ~ T", which gives f : A' = A! and a
restriction f : G, — Gy,. It is clear that f is flat as ¢ is a flat ring map as k[T is a free k[T"]-
module and it is also clearly of finite presentation. However it is not unramified for n > 2 as the
ring map fr) : k[T|1y = k[T)r) has T ¢ fr)((T)) - k[T](1).-

Whether the restriction to G, is étale depends on char(k) and n. Clearly it is still flat and of finite
presentation. For (T'— a) a prime ideal with pre-image (T' — a") we consider the induced map on
the local rings k[T|(p_qn) — k[T](7—q)- Under this map (T — a™) goes to (1™ — a™), which is equal
to:

(" — amy = {(T —a)" if char(k)|n

- (T —a) - Q with (T —a) 1 Q if char(k) { n

Hence we see that ¢(T' — a™) - k[T](1_q) = (T — a)(7_q) is satisfied if and only if char(k) { n. The
map on the residue fields is after the identification k = k[T']/(T — b) by T + b given by the identity
map on k, thus indeed this is a finite separable extension.

We now have the following abstract definition of a site. It is a generalization of the notion of a
topological space. The definition includes the analogies between a topological space and a site.

Definition 2.4. A site is given by the following data:

e A category C
e For any object U of C a set of coverings {U; — U}; such that:

1. (homeomorphism) Any isomorphism is a covering.

2. (arbitrary union of opens is open) If {U; — U} is a cover and {V;; — U;}; are covers
then {Vi; — U}, ; is a cover.

3. (finite intersection of opens is open) If {U; — U}; is a cover and V' — U a morphism,
then U; xy V exist for all ¢ and {U; xy V' — V}; is a cover.

The following are examples. The first one should be familiar while the second one will be of
interest for us.

Example 2.5. Let X be a scheme and let C be the category whose objects are open sets of X and
whose morphisms are the inclusion maps between these open sets. Define a covering to be a family
{U; — U}, such that U = U U;. This is the Zariski site of X and it satisfies the properties above.

i
We can also let C be the category whose objects are étale morphisms ¢y : U — X and whose
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morphisms Hom(pr, py) are the commuting triangles, where U — V' is a morphism of schemes:
U ——F—F—>V

N A

Then we define the coverings {U; — X }; to be the families of étale morphisms such that |_| Uy — X

is surjective. By stability of étale morphisms under composition and base-change it foflows that
what is written above defines a site, which we will call the étale site of X, denoted X;.

Another site to consider is the flat site of X, whose objects are flat morphisms of finite type ¥ — X
and whose coverings are {Y; — X }; such that the images cover X.

It follows that one can define presheaves and sheaves for sites just as one can for a topological
spaces. We let S be any site, but the reader is encouraged to only think about the three sites above.

Definition 2.6. Let S be a site with underlying category C. A presheaf of abelian groups on S is
a contravariant functor F : C — Ab. A sheaf on S is a presheaf F on S such that for any object
U in C and any covering (U; — U); there is an exact sequence:

FU) = [[FW) = [[FU xu Uy)
i ij
Here the last map is induced by the natural restriction maps p; : F(U;) — F(U; xy U;) and
—pj: .F(UJ) — .F(UZ Xyu Uj).

Now we define certain objects attached to sheaves analogously to how they are defined for
topological spaces.

Definition 2.7. A morphism of presheaves 7 — G is a natural transformation. A morphism
of sheaves is a morphism of the underlying presheaves. Denote by Sh(Xg;) the category of étale
sheaves on X.

Example 2.8. The following are commonly used sheaves on the étale site of a scheme X:

e Hom-sheaves: For G a commutative group scheme, one defines the sheaf G on Xg;, which
assigns to an étale morphism U — X the abelian group G(U) := Hom(U, G) and assigns to
a morphism U — V over X the natural map G(V) — G(U).

To check that this is in fact a sheaf we have the following criterion for a presheaf to be a sheaf
for the étale topology, which is ([31], p.44): A presheaf F on Xg; is a sheaf if and only if the
sheaf condition holds for arbitrary Zariski covers and for étale covers consisting of a single
morphism U — V between affine schemes.

The fact that it satisfies the sheaf condition for Zariski covers follows directly from the fact
that one can glue morphisms from open sets to any scheme that agree on intersections. The
case of an étale cover V' — U is done by first reducing to the case in which all the schemes
are affine. Then we note that if R is the ring corresponding to G, A to U and B to V we
are requiring that the sequence Hom(R, A) — Hom(R, B) = Hom(R, B ®4 B) is exact. This
follows from exactness of 0 -+ A — B =% B ®4 B for any B/A faithfully flat.

e Constant sheaves: We let A be a finite abelian group and then define A(U) = A" @) For
¢ : V. — U an X-morphism the induced map A(U) — A(V) has yet to be defined. For U; a
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path-component of U and V; one of V' we set Ay, — Ay, to be the zero-map if ¢(V;) NU; = ¢

and we set it to be the identity if ¢(V;) NU; # ¢. This yields a map AT ) 5 AT V) | For

proving that this is a sheaf, notice that this assignment coincides with the assignment G

defined by the group scheme G := |_| Spec(Z), which is a sheaf by what was written above.
AEA

e Common examples of the above:

- Gq = Hom(—, A%) given by the additive group U — Oy (U).

— Gy, : Hom(—, Gy, z) given by the multiplicative group U — Oy (U)*.

— Z/I"Z, a constant sheaf.

— tun, a sheaf defined by the group scheme pn = Spec(Z[X]/(X" —1). In the case that
X/k is a variety and char(k) 1 [ this sheaf is isomorphic to Z/I"Z, but in general the
sheaves are not isomorphic.

We underline the above sheafs in order to be able to distinguish them from the corresponding
algebraic groups. In later chapters we may omit the underlining of Z/I"7Z. One can also define the
stalk of an étale sheaf.

Definition 2.9. Let F be a sheaf on X¢. The stalk at a geometric point & € X is given by

ligi}" (U), the colimit taken over all étale neighbourhoods U — X such that « maps to .
(Uu)

As in the Zariski case one can sheafify.

Proposition 2.10 (Sheafification exists, [31] Theorem 7.15). Let F be a presheaf on X ¢, then there
exsits a sheaf aF with a morphism of presheaves F — aF that is universal among all morphisms
from F to a sheaf. The stalks of F and aF are isomorphic and aF is called the sheafification of F.

We have the following notion of an exact sequence of sheaves. There are other equivalent
definitions, see [31].

Definition 2.11. A sequence of sheaves on X, K — G — Q, is exact if for any geometric point
T € X the sequence Kz — Gz — Qz is exact in the category of abelian groups.

Thus we can now define the following operation. This in particular implies that the inverse
image functor is exact.

Definition 2.12. For g : X — Y a morphism and F € Sh(Yy) let ¢"F be the sheaf on X that
is the sheafification of the assignment (¢*F)"'(U — X) — lim F (V), the colimit taken over all

V=Y
V — Y étale that give a commuting square:

U——X
|k
V—Y
It follows that ¢* defines a functor Sh(Ys) — Sh(Xe), called the inverse image functor.
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We have the following trivial example.

Example 2.13. Let g : X — Y be a morphism and let Ay be a constant sheaf on Y. Then note

that we have (¢"Ay)(U) = lim A(V). Notice that there is an identification A(V') = Mory (V, Az),
V=Y

where Ay = |_| Spec(Z)y is a constant group scheme. For any such V appearing in the colimit

AEA
there is a morphism Mory (V, Az) — Morx (U, Az) by postcomposition. This gives a morphism of

presheaves (g*Ay)” — Ay. Note that it is injectice as (U — V — Ay) being the 0-element is if

and only if the image lands in Spec(Z)o C Az, which means that we can take V' C V such that V'

equals the union of connected components of V' to which U maps. Then note that (V' — Az) =0

and hence (V' — Agz) is zero in the colimit. Note that it is also surjective at every U as we can take

V= |_| Y such that (U — V — Az) can be any element of A™W) By the universal mapping
(V)

property of sheafification we have hence constructed an isomorphism g*Ay — Ax.

The above isomorphism of sheaves can be realized in a bit of an easier way by just thinking
of Ay, Ax as constant group schemes rather than Hom-sets, which will give the same result. The
reason why we make the above strange computation is that we have the Kummer-sequence (see
Proposition in which the Hom-sheaves G, and pu, appear. We want to introduce sheaf
cohomology for étale sheaves. Before we do this, we state the following important theorem.

Theorem 2.14 (existence of ‘enough injectives’, [31] p.61). For a sheaf F on Xg, there exists a
complezx of injective sheaves I® = I° — T' — ... such that 0 — F — I°® is exact.

The theorem above implies together and the fact that category of sheaves on Xg; is an abelian
category ([31], p.53) together with the theory of derived functors imply that any left-exact functor
F : Sh(X4) — Ab admits its right derived functors {R'F : Sh(Xg) — Ab}iez.,. They have the
following properties: -

Proposition 2.15. Let F': A — B be a left-exact functor between abelian categories A and B, such
that A has ‘enough injectives’, i.e. any object has an injective resolution (as in Theorem )
Then there exist functors {R'F : A — B}iez, such that:

e ROF=F

o For a short exact sequence 0 — Ay — Ay — As — 0 in A there exist ‘boundary maps’
{0t}1ez., such that ... — R'F(A;) — R'F(Ay) — R'F(As) % RMIF(A)) — RUMLF(Ay) —
.. 18 a long exact sequence in B.

e For I an injective object of A we have R'F(I) =0 fort > 0.
e For A an object of A and A — I°® an injective resolution, the objects R'F(A) can be calculated

er t t+1
by RSP = T e

The first example will be the crucial one for us, while the second one also occurs at times.
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Example 2.16. For X a scheme the global sections functor I'(X, —) : Sh(X¢) — Ab, which sends
a sheaf of abelian groups to its sections on X is left-exact. We can hence form its right-derived
functors. For 7 : X — Y a morphism of schemes the direct image functor . : Sh(Xe¢) — Sh(Yz),
which sends a sheaf F to the sheaf 7, F, which assigns (U — Y') — F(U xy X — X). This functor
is also left-exact, hence we can form its right-derived functors.

Using the above we define étale cohomology.

Definition 2.17. For X a scheme and n > 0 we denote R"I'(X, —) =: HZ (X, —).
The n’th étale cohomology group of X with values in F € Sh(Xg) is HZ, (X, F).

There are many properties of étale cohomology that we will use. They are listed below.

Proposition 2.18. Etale cohomology has the following properties:

o (0-functor) Whenever 0 — K — F — Q — 0 is a short exact sequence in Sh(Xg), there
exist connecting homomorphism §, : Hg (X, Q) — Hgfl(X7 KC) such that there is a long exact
sequence:

o HE(X,K) - HL(X, F) - HL(X, Q) 3 HEPY(X,K) — ...
This is functorial with respect to homomorphism of short exact sequences.

e (pullback homomorphism) For g : X — Y a morphism we have, since I'(X,—) =T'(Y,—)o
gx, natural transformations H (Y, g*—) — HL (X, —). There is also a natural transformation
Id(—) — g+g"(—) of functors Sh(Ye) — Sh(Yy). Thus we have g* : Hy (Y, F) — Hy (X, " F)
by composing them, which is called the pullback by g. The pullback homorphisms satisfy
(go f)" = f*og* and Id* = Id.

The last claim follows from the fact that given X i> Y % Z the two homomorphisms (gof)* and
ffog" Hy(Z,F) = Hi (X, ffg"F) agree for r = 0 and H (Z,—) — H% (X, ¢" f*—) is a morphism
of d-functors. Since Hf (Z, —) is a universal d-functor, the maps Hy, (Z, —) — Hg (X, ¢" f*—) are
determined by the ones with » = 0 and hence they are equal (see |43, Tag 010P]). Similarly we
define the higher direct images.

Definition 2.19. For 7 : X — Y a morphism of schemes and n > 0, define the n’th higher direct
image functor by R"m.(—) : Sh(X¢) — Sh(Yz).

It turns out that there is an alternative way to describe the n’th higher direct images.

Proposition 2.20. Let 7 : X — Y be a morphism and let H"(—) : Sh(Xs) — Sh(Ye) be the
functor that takes F to H"(F) € Sh(Ys), which is defined to be the sheafification of the assignment
U HL (U xy X, F). The functors H"(—) and R"m.(—) are canonically isomorphic.

We are often interested in the cohomology of a variety with coefficients in the constant sheaf
Z/nZ. As mentioned earlier, the sheaf y,, agrees with Z/nZ in some cases and we have the following
exact sequence of sheaves involving fiy,.
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Proposition 2.21 (Kummer sequence). For X a scheme over a field k and n an integer not
divisible by char(k) the following sequence of sheaves on X4 is exact:

n

Here [n] denotes the morphism of sheaves induced by O(U)* — OU)* z — a".

Proof. That ker([n]) = ¢(un) follows easily. Now we need to check that [n] : Gy, — Gy, is surjective,
i.e. that for any section s € G,,(U) there is V — U étale such that s|y € G,,,(V) is in the image
of [n](V'). First of all, as surjectivity can be checked locally, we may shrink U to make it affine,
U = Spec(R). Take V := Spec(R[X]/(X"™ — s)) — Spec(R) = U to be induced by the inclusion of
R into R[X]/(X"™ —s). Under [n](V) the element X € (R[X]/(X™ — s))* is mapped to s. As the
derivative of X™ — s is n - X", which is invertible in R[X]/(X"™ — s) we see that the morphism
V — U is standard-étale, hence étale, so indeed [n] is surjective. O

This gives us the following result.

Corollary 2.22. For X a scheme over a field whose characteristic does not divide n there is a

long exact sequence: ... — Hi (X, pn) — Hg (X, Gp) ] HL (X, Gp) — HE (X, ) — .

As in the case of the Zariski topology one has the Cech cohomology groups. First we define the
Cech-complex.

Definition 2.23. Let F be a sheaf on X¢ and let U = {U; — X }; be an étale covering. We define
the Cech-complex of F relative to U to be:

CUF)* =0 FX)= [[F0) S T[FW xx U) S [ FU xx xUs xx Uy) = ..

0, .5,k

Using the abbreviation U;; X x ... xx U;,, = Uj, i, the maps d" are defined on H F(Ui..4,) by

10,eensin
n+1
(d"™(8))ig...insr = Z(—1)kresk(si1_._i}€_._in+1), where res; denotes the restriction map obtained from
k=0

the projection U, 4,., — U, (the hat means ‘omit’).

10U In4+1

One checks that this indeed defines a complex. Using this we can define the étale Cech coho-
mology groups.

Definition 2.24. Let F be a sheaf on X¢ and U = {U;} an étale cover of X. The r’th Cech
cohomology group of F relative to U is defined to be HE, (U, F) := h" (C(U, F)*).

Define the r’th Cech cohomology group of X with coefficients in F to be Hy, (X, F) := hgﬁgt Uu,Fr),
u
where the colimit is taken over the refinements of étale covers.
One easily that HY, (X, —) is in fact a functor Sh(Xg;) — Ab, it can even be defined as a functor

from PSh(X¢;) (the category of étale presheafs). In particular the first Cech group is interesting to
us.
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Remark 2.25. We consider H, (X, F). Take a cover U = (U;); of X, then giving an element of
H' (U, F) is the same as giving elements g;; € F(U;;) such that g;; + gjx = gi. up to changing
9ij to gij + hly,, for h € F(X). Now consider the case 7 = Gy, then the g;; lie in O(Uj;)™. Tt
follows from ([31] p.78) that HZ (X, G,,) = L1(X), the isomorphism classes of étale locally trivial
line bundles. By Proposition [4.32] any such line bundle is locally trivial for the Zariski topology
and hence we obtain Pic(X) = H, (X, Gy).

The 0’th and first Cech groups always agree with the derived functor cohomology groups.

Proposition 2.26 ([29], III Corollary 2.10). Let C/X be a site and let r € {0,1}, then there are
canonical tomorphisms Hp (X, F) = Hp (X, F)

This follows from the Cech to derived spectral sequence (see [29] III Prop. 2.7). Another
consequence of this is the following.

Proposition 2.27 (Mayer Vietoris). Let X be a scheme with cover Uy, Uy by open immersions and
let F € Sh(X¢). There is a long exact sequence where ¢(so,s1) = So — s1:

.. = HE (U0, F) @ HE (U1, F) & HE (UonUy, F) — HEFY(X, F) — HEH Uy, F) Pzt (v, F) - ...

Our goal now is to construct the cup product in étale cohomology on a quasi-projective variety
X. One can do this for any scheme X via the language of derived categories [43, Tag OFKU] but
derived categories lie beyond the scope of this thesis (see [36] for an intuitive introduction and [43,
Tag 05QI] for a rigorous treatment).

Theorem 2.28 ([2] Theorem 4.2). Let X be a variety such that any finite set of geometric points
of X is contained in an affine open subscheme of X. Then H%,(X, —) is a 0-functor Sh(X¢) — Ab
and the isomorphism HY (X, —) — H%(X, =) in degree 0 extends to an isomorphism of 6-functors
He (X, =) = Hy(X, —).

Any variety X that is quasi-projective over a Noetherian ring meets the condition in the above
theorem [2|. Thus by Proposition we have that in particular for an algebraic group that étale
Cech cohomology and derived functor cohomology agree.

Before introducing cup products we introduce the following notion.

Definition 2.29. Let A be a commutative ring and also denote by A the constant sheaf on Xg;.
Then F € Sh(Xg) is sheaf of A-modules if for each U, F(U) is a A(U)-module and the obvious
diagramms commute.

For F, G sheaves of A-modules, we define their tensor product F @5 G over A to be the sheafification
of the assignment U — F(U) ®, () G(U).

Remark 2.30. The tensor product of two A-modules satisfies the usual universal mapping property
in the category of A-modules. If g : X — Y is a morphism, then ¢"(F ®j G) = ¢*F @4 ¢°G
canonically (by using that tensor products and filtered colimits commute).

We now give the properties of cup-products.

Proposition 2.31 (Cup products). Let F,G € Sh(X) be sheaves of A-modules. For all p,q > 0
there exist A-linear maps called cup products U : HY (X, F) @, HE (X, G) — H’é’jq(X, F®@1rG). They
satisfy the following properties:
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o The cup product is associative, i.e. for x € HY (X, F), y € HL (X, G) and z € H (X, H) we
have (x Uy)Uz=2U (yU z2).

o If F — F and G — G' are morphisms of A-modules then the following diagram commutes:

Hgt(Xv‘F) QA Hgt(X, g) % ngq(X,]:@)A g)

! |

HY, (X, F') @ HY (X, §') —%— HEH(X, F @, §)

o If g: X — Y is a morphism, then the cup products of X and Y are related by the following
commuting diagram:

HY (X, g*F) @a HY (X, g7G) ———— HLM(X, g*F @4 g°G)

g* ®g*1\ Q*T

HE (Y, F) @z HE (Y, G) = H2M(X, F @, G)

o If A =F =G is a sheaf of A-algebras then H% (X, A) := @Hgt(X, A) becomes a graded

A-algebra, so for x € HE (X, A) and y € H (X, A) we have x Uy = (—1)Py U z.

A proof of the existence of these producs is given in the Appendix. The case when F = A is
the most interesting as in this case we in fact can construct a ring.

Definition 2.32. Let A be a constant sheaf of commutative rings on X¢. The cohomology ring of
X with coefficients in A is the set Hz (X, A) = @HQ(X ,A) with multiplication U.
n>0

Note that naturality of cup products in the second argument implies that if f : X — Y is a
morphism, then f*: H% (X,A) — H% (Y, A) is a A-algebra homomorphism.

Remark 2.33. By the first property of the cup products applied to the sheaves Z/I"7Z, one can pass
to the limit and apply — ®z, Q; to obtain Q;-linear maps:

HY (X, Q) ®q, HL (X, Q) — HEM(X, Q)

This puts a Q-algebra structure on H (X, Q) : EB HE (X, Q).
n>0

Note that for X, Y schemes and F € Sh(X¢;), G € Sh(Yz;) sheaves of A-modules there are maps
HE (X, F) @p HL(Y,G) — HEFU(X xp Y,.7-"®A G) z®y— pi(z)Ups(y). These induce a map
@ HY (X, F)@a HL (Y, G) — HE (X X3, Y, p]F ®4 p5G) is an isomorphism. Below we mean by a
ptq=n
flat sheaf F that F(U) is flat over A(U) for all U.

Theorem 2.34 (Kiinneth, [29] Cor. VI.8.13). Let X,Y,F,G, A as above and assume that F is flat
over A and for all m > 0 that HZ (X, F) is flat over A. Then for all p,q the above maps

@ HY (X, F) @x HL (Y, G) — HE (X x5, Y, pi F @4 p3G) are isomorphisms of A-modules.
pg=n
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A very useful tool in étale cohomology is the Leray spectral sequence. For stating the existence
of this spectral sequence we give the definition of a spectral sequence. For background knowledge
on spectral sequences, see [46].

Definition 2.35. A spectral sequence in an abelian category A consists of the following data:

1. A ‘starting page’ for ro € Zso; with objects { EL:?},, sz such that ER? # 0 implies p,q > 0.

2. Differentials on the starting page di>? : ELY — EPtroa=rotl guch that @Pt7o9 ot o gPd = 0,

k dpzq
3. The r’th pages for r > rg, where V'Y, = er(dr)

= ————" — i.e. the object in position (p, q) on
r+1 Im(dg—r,q—&-r—l) ( )

the r + 1’th page equal the homology in position (p,q) on the r'th page.

4. Differentials on the 7'th page @4 : EP? — EPT™477+1 that satisfy the same condition as in
2.

We note that for the (p,q) € Z%, and r > ¢ + 2 that the differential @>? : EP¢ — EPTma—7+1
has to have EP'? as kernel as ¢ — r + 1 < 0, hence Ef“‘r’q_rﬂ = 0. Moreover we note that for
r > p+ 1 the differential EP~"4T""1 — EP4 is the zero-map as EP~"4""~1 = 0. So we see that for
some 1y 4 large enough, the homology in position (p,q) on page r will be Ef;?q for all » > rp,,. We
will call this convergence of the spectral sequence.

Definition 2.36. We denote the entry E;?};qq above by EPY. We say that a spectral sequence

converges to (Mp)n>o if there is an isomorphism of graded objects @( @ EPT) = @ M,,.
n>0 p+qg=n n>0
We denote the convergence by ER'? = M,

We now introduce the most fundamental spectral sequence of the ones that we will be using.
In fact, the existence of the others are derived from this one.

Proposition 2.37 ([46], p.150 Grothendieck spectral sequence). Let F': A — B and G : B — C be
two additive left-exact functors between abelian categories such that A and B have enough injectives
and assume that F' takes injective objects to G-acyclic objects. Then there is a spectral sequence:

EPY = (RPGo RIF) = RPTY(GoF)

One application of this is the existence of the Leray spectral sequence.

Proposition 2.38 (Leray spectral sequence). Let f : X — Y be a morphism of schemes and let
F be a sheaf on X¢. There is a spectral sequence EY? = HE (Y, R1f,F) = HPY(X,F).

Proof. We have that the composition of the functors I'(Y, —) o f, : Sh(X¢) — Sh(Yz) — Ab equals
I'(X, —). We note that the spectral sequence above is then just the Grothendieck spectral sequence
for these specific functors. The only thing left to show is that f. sends injective sheaves to T'(Y, —)-
acyclic sheaves. We do this by showing that f.Z is injective for Z injective. This is equivalent
to the functor Hom(—, f,Z) being exact, which by the adjunction Hom(f*F,G) = Hom(F, f.G) is
equivalent to Hom(f*(—),Z) being exact. This follows since f* is an exact functor and Hom(—,Z)
is an exact functor. So we conclude that the spectral sequence exists. O
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Sometimes it is easier to work over a field of characteristic 0 than with an abelian group, so we
make the following definition.

Definition 2.39. Define H}, (X,7Z;) : L m HZ, (X, Z/I"Z). It has the structure of a Z;-module. We
define HZ, (X, Q) := H% (X, Z;) ®z, Qy, Wthh we call the l-adic cohomology of X.

We can ‘upgrade’ the spectral sequences above to their [-adic versions under a suitable hypoth-
esis.

Remark 2.40 (Upgrading spectral sequence to l-adic variant under conditions). Let {E(n)2?},ez.,
be spectral seqeuences of abelian groups starting at the same page r = ro and assume that £(n)l? is
a Z /1" Z-module. Then notice that all the terms F(n)?? have the structure of a Z/I"Z-module and
that the differentials d(n)P? on each page are Z/I"Z linear (as they are Z-linear). Suppose that we
are given maps ... <= E(n)l? «— E(n+1)E7 < ... for all p, ¢ that commute with the differentials and
such that for all other pages r > rg the induce maps E(n + 1)2?7 — E(n)P? also commute with the
differentials. This implies that one can define an ro’th page with objects lim £ (n)P:4 and differentials

n
@d(n)ﬁf&q, which are now Z;-linear. If we assume that taking the inverse limit is exact on all the

ker(lim d(n)%?)
pages then we get A— hm E(n )TO 1- Similarly on all the higher pages, one gets the

Tm(lim, AR
result above with ry replaced by r. Hence there is a spectral sequence { EP1} := {L m E,(n)P?} and
as the convergence of E(n)P? does not depend on n it converges to ELI = L (n )7’ 4

Once one has the spectral sequence { EP?} := {L »(n)P?}, one can cons1der the terms E9®z, Q.

n
The differentials then extend to Q;-linear differentials. Notice that as Q; is flat over Z; that
E? ql ®z, Qi equals ker(dP? ® 1) /Im(dl™" atr—l g 1), hence we get a spectral sequence { EZ? @7, Q;}
Wlth infinity page EL! ®7, Q.

We now define another operation that one can do on sheafs.

Definition 2.41. Let U C X be an open subset of a scheme X and denote the inclusion map by
j. Then for any F € Sh(Ug ) and any étale ¢ : V' — X we consider the assignment:

FV)if (V) CcU
o [F e
0 else
The corresponding sheaf jIF € Sh(Xg) is called the extension by 0 of F.
For defining compactly supported cohomology we are interested in the case of embedding a
variety X into a complete one. The fundamental theorem concering this is the following.

Theorem 2.42 (Nagata, [35]). Let f : X — S be a finite type morphism between Noetherian
schemes. Then there exists an open immersion j : X — X and a proper morphism f : X — S such

that the following diagram commutes:
X ! s
X
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Such X is called a compactification of X. In particular a compactification of a scheme of finite
type over a field exists.

Definition 2.43. (Cohomology with compact support) Let X be a scheme that admits a compact-
ification j : X < X and let F be a torsion sheaf on X¢;. Define the n’th cohomology group with
compact support to be HY (X, F) := Hf, (X, jIF).

An important thing to mention is that the above definition does not depend on the compacifi-
cation j : X — X.

Proposition 2.44 ([29], Prop. VI.3.1 and Prop. 111.1.29). The following holds:

o The definition of cohomology with compact support does not depend on the choice of compact-
ification j : X — X.

o The functor H. (X, —) defines a 0-functor, i.e. a short exact sequence of sheaves on X is
sent to a long exact sequence functorially.

o For f: X — Y amorphism of finite type k-schemes and F a torsion sheaf on Yy there exists
a pullback homomorphism H.(Y, F) — HL(X, f*F).

We use the Nagata compactification for the following definition.

Definition 2.45. For 7 : X — S a finite type morphism of Noetherian schemes, define Ry 7.7 (F)
for F a torsion sheaf as follows: Choose a compactification j : X — X such that 7« factors via a

proper morphism 7 : X — S. Then define Rl'm.(F) = R"7.(j!F) € Sh(Se).

For a proof that the previous is well defined, see (|29], Prop VI.3.1). Just as in the case of
étale cohomology, a commuting square as below and a torsion sheaf F € Sh(Xg;) gives a canonical
base-change morphism ¢*R.m,F — Rom, f*F.

7|'l

X —T5Y'

o]

X —T"5Y

Compactly supported cohomology has the following nice feature.

Proposition 2.46 (|29, Cor VI.2.3 and Prop VI.3.2). If we have a commuting square as above
that is cartesian (i.e. X' =Y’ xy X ) and F is a torsion sheaef on X then:

e For étale cohomology: The base-change morphism ¢*R'm.JF — R"m. f*F is an isomorphism
when w is proper. This is called proper base change.

e For compactly supported cohomology: The base-change morphism g*R.m.F — Ry f*F is
an isomorphism.

The proof of the second statement makes use of the first statement. The other important
feature that compactly supported cohomology has is Poincaré duality. We present it here for
constant torsion sheaves, but it also holds for ‘constructible’ sheaves, which we did not define.
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Theorem 2.47 (Poincare duality, [29], Theorem VI.11.1). Let X be a smooth variety of dimension
d over an algebraically closed field and let A € Sh(Xg) be a constant torsion sheaf. Then for all
n < 2d there are perfect pairings (—, =) : H% (X, A) x H2™"(X, A) — H2(X, A) = A such that:

e For f:Y — X a morphism of smooth varieties of dimension d one has (f*z, f*y) = f*(x,y).
The former equals deg(f) - (x,y) when f is a finite flat morphism.

e The pairings are functorial in the sheaf A and in particular, they induce a perfect pairing of
Qq-vector spaces HA (X, Q) — H2 (X, Q) — H¥(X, Q) = Q.

Two other important finiteness theorems are the following:

Theorem 2.48 (Cohomological dimension, [29] Theorem VI.1.1 and SGA 4, §2,3). Let X be a
finite type scheme of dimension d over a separably closed field k and let | # char(k) be a prime
such that 1" kills F € Sh(X¢). Then:

o In general Hy (X, F) =0 forr > 2d.

o If X is affine, then Hy (X, F) =0 forr > d.

Theorem 2.49 (Finiteness of étale cohomology, SGA4%. Corollaire 1.10 p.236). Let X be a finite
type scheme over a separably closed field k and let F be a locally constant sheaf on X killed by I"
where char(k) # 1 is prime. Then HY (X, F) are finite groups for all r.

It is time to use all of the above machinery above to actually calculate some étale cohomolgy
groups. We begin with perhaps the most basic schemes and sheaves that one can consider.

Example 2.50. Let k be a separably closed field over which we consider the following varieties
and let [ # char(k) be a prime. Then we have:

o HY(AY,Z/1"7) = Z)I"7 and HY (A', Z/1"Z) = 0 for > 0.
e H}.(G,,,Z/1"7) = HY (G, Z/I"Z) = Z.J1"Z and H%, (G, Z/1"Z) = 0 for r > 1.
o HZ (P!, Z/1"7) = HY,(P', Z/1"7) = Z.)I"7 and HY, (P!, Z/I"Z) = 0 for  # 0, 2.
Proof. As A' and G,, are affine of dimension 1 and connected it suffices to show by Theorem m

that H} (A',Z/1"Z) = 0 and H,(G,,,Z/1"Z) = Z/I"Z for the first two points. Note that over a
separably closed field k with char(k) # [ the sheaves yy» and Z/I"Z are isomorphic.

For A', consider the Kummer sequence: 0 — pin (k) — k* g S SN Hi (AL, ) — HY (AL, Gy).
We have H (A!,G,,) = HE (AY, G,,) = Pic(A') = Pic(k[X]) = 0 since k[X] is a UFD and hence
H, (A, pyn) = 0 since k™ — £ is onto.

For G, note that Hi (G, Gy) = 0 and hence Hg (G, pyn) = coker(O(Gy,)* — O(Gy,)*), the
map being the ["’th power map. As we have O(G,,)* = k™ - {X"},,cz we see that this cokernel is
Z/1"7.

F(Zr the third point, apply the Mayer-Vietoris sequence to the standard open covering Uy, Uy
of P! with intersection G,y,. O
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Note that by the Kiinneth formula we can now calculate the l-adic cohomology of A" and GJ,
for all r > 1. We also have the following useful example.

Example 2.51. Let A be an abelian variety of dimension g over a separably closed field k£ and let
| # char(k) be prime. Then H} (A, Z/I"Z) = (Z./1"Z)*.

Proof. We again apply the Kummer sequence. Since A is complete and connected we have O(A)* =
k> and hence it follows that H} (A, Z/I"Z) = ker(Pic(A) ) Pic(A)). For 7, : A — A translation

by a € A(k) we define Pic’(A)(k) = {L£ € Pic(A) | L = 1)L for all a € k}. Then any torsion point
of Pic(A) lies in Pic®(A)(k) ([34] (v) p.75). It is a theorem ([34], Section 13) that Pic®(A)(k) is
isomorphic to A" (k), where A" is the dual abelian variety of A, which is an abelian variety of the

same dimension g (see [30] or [34]). When char(k)  n the n-torsion points of an abelian variety are
isomorphic to (Z/nZ)% (|34] p.64). So this gives the result. O

To understand the étale cohomology of group varieties, the following classical result is one of
the most important ones.

Theorem 2.52. Let G, H be connected group varieties over an algebraically closed field k and let
¢ : G — H an isogeny. Then ¢* : Hg (H,Q;) — HZ (G, Q;) is an isomorphism.

To prove this statement, we begin with the following special case.

Lemma 2.53. Let ¢ : G — H be a purely inseparable isogeny of group varieties over k = k. Then
©* tHL (H,A) — HL (G, F) is an isomorphism for any constant sheaf F € Sh(Hyg;).

Proof. As ¢ is purely inseparable, we have that K := ker(¢) is connected. An isogeny is in
particular a finite morphism, which is proper. So the proper base change theorem [2.40] gives that
the stalk of Rip,F = 0 at ¢ is the cohomology of the fibre over § and the fibre has dimension 0.
So for ¢ > 1 the sheaves R%p,F are 0. This causes the Leray Spectral sequence associated to F, ¢
to degenerate at the Ep-page. So this causes the edge morphism HY (H, p.¢*F) — HL (G, ¢*F)
to be an isomorphism. The pullback Hf (H, F) — Hg (G, ¢*F) is equal to the composition of
homomorphisms H, (G, F) — Hf, (H, p«p*F) — HE (G, 9" F), where the first map is induced by
the morphism of sheaves F — p.p*F (indeed the edge map in the Leray spectral sequence equals
the second map, see ([46], p.150)).

The second map in the composition is an isomorphism by what is written above. Now for F = A
a constant sheaf we claim that A — @.p*A is an isomorphism. Indeed, note that ¢.p*A is the
sheaf associated to the presheaf U +— h%rn A(V). Since ¢ is a purely inseparable isogeny, it is a

—H

v
homeomorphism, hence my(G x g U) = mo(U) for any U — H étale. For U — H étale, the inclusion

AU) — lim A(V') defines the morphism of sheaves A — p.p"A. Now note that we may take the
V—H
limit over over those V for which 7o(V) = mo(U xg H) = mo(U) as these V form a cofinal system.

It hence follows that A(U) — hﬂ A(V) is an isomorphism, hence the morphism A — @,*A is
V—H

an isomorphism. We conclude that Hg (H,A) — H% (H, ¢.¢*A) is an isomorphism and hence that

©* tHi (H,A) — HE (G, ¢*A) is an isomorphism. O

Now we want to show that the result also holds for a separable isogeny to conclude that the
general case holds. This is quite involved and is written out below.
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Proof. (of Theorem starting with the case of a separable isogeny)

The transfer map H} (Y, f.f*F) — HL (Y, F)

Let Y = X/G for G a finite group and let f : X — Y be the natural quotient map. Then notice that

f is a Galois cover, i.e. the natural map G xy X — X xy X (g,z) — (x,zg) is an isomorphism.

Let F € Sh(Ys). We consider f.f*F € Sh(Yg). Notice that this assigns to U — Y an étale

morphism lim F (V). This actually equals F(X xy U) as X xy U — Y is étale, since
UxxY—=V-=Y

being étale is stable under base-change and composition, hence X xy U is the cofinal object in the

diagram corresponding to the colimit.

We will now define a left action of G on f,f*F, i.e. we will define for all g € G an isomorphism
Vg : f«f*F — fof*F such that v, = Id and such that v4 0y, = 4. To do this, notice that for any
étale U — Y if we denote by 7, : X — X the map z — xg the following diagram commutes:

UXyX

(I1d,79) Y

T
UXYX/

Moreover, the map (Id, 7,) is an isomorphism, hence étale, so by F being an étale sheaf, we get
an induced map v, = F(Id x 75) : fuf*F(U) = f.f*"F(U). It is clear that if ¢ = e, then
Ye(U) =1d(U). To show that this is a morphism of sheaves, use that for V' — U étale over Y that
|4 Xy X —U Xy X
the following diagram commutes together with the functoriality of F: i(ldfg) l(Id,Tg)

VXYXHUX}/X

Note that we have a natural morphism of sheaves ¢ : F — f.f*F, defined on U by applying
functoriality of F giving F(U xy X = U) : F(U) = F(U xy X). In the case that F is a separated
sheaf, this map is injective as U xy X — U is an étale cover. We will now assume that F is

separated.

Uxy X {1d.7) Uxy X

Notice that the following triangle commutes: \ /
U

This implies that the image of F(U) inside f, f*F(U) is fixed by the action of G. Actually, what
we will be showing now is that F C f, f*F equals (f,f*F)¢. The isomorphism G x; X — X xy X
induces an isomorphism G x; U — U xy X (g,u) — (u,ug) for all étale U - X — Y. This
isomorphism fits into the following commuting square:
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GXkU—>UXyX

|caaa) |

GxpU—— Uxy X

As for £ — Y a geometric point, the étale neighbourhoods of Z that factor via f: X — Y are

cofinal in all of the étale neighbourhoods of Z we obtain:
(Fof F)s = lim £ f*F(U) = lim F(U xy X) = lim F(G x; U)
z—U z—U z—U
By the commuting square above and since G acts trivially on F(U) it follows that there is an
isomorphism of G-modules (f.f"F)z = lim F(G x; U) = @]—}C, where G acts on @}}C by
z—U geqG geG
h-(sg)g = (Shg)g, i-e. by permuting the entries. It follows from the fact that the relevant map
F(U) — F(U x G) is induced by the projection U xj G — U that F — f.f*F embeds Fz
into (fuf*F)z = @]—} diagonally and hence we see that Fz = (f.f*Fz)¥. Thus the morphism
geG
F = (fof*F)% is an isomorphism on stalks, hence an isomorphism.
Now that we have established that F = (f,f*F)%, we will define a map p : fof*F — F that is
called the ‘trace map’ in the literature for more general f. It is a variant of the Reynolds operator.
Namely, one defines u(U) : fo f*F(U) = (fof*F(U))C by s — Zg - 5. This gives a morphism
geG
of sheaves yu : f.f*F — F after identifying F = (f,f*F)“. We note that gos : F — F is
just multiplication by |G| and that ¢ o u is given by Z v (the sum taken in the abelian group
geG
Homgy, v,y (f« f*F, fuf " F)).
By the functoriality of étale cohomology we have a left-action of G on Hy (Y, fo f*F) and we
have that the natural map ¢ : HZ (Y, F) — HZ(Y, f.f*F) lands inside HZ (Y, f.f*F)¢. By the
functoriality in the second argument of H; (Y, —) together with the fact that this functor is additive
we obtain that there is a morphism p : HE, (Y, fo f*F) — Hg (Y, F) such that pov = |G| and such
that ¢ o u(x) = Zg-x.
geG

The G actions on H{, (Y, f. f*F) and H{, (X, f*F)

Now we want to relate the G-actions on Hg, (Y, f. f*F) and H{, (X, f*F) with each other. We have
that the G-action on Hg, (X, f*F) is given by 7 : Hgy (X, f*F) — Hg (X, 7, f*F) = Hg (X, xf*F) as
forg = f. There is an edge morphism in the Leray spectral sequence Hy, (Y, f. f*F) — Hg (X, f*F).
Since f is a finite morphism, the functor f, is exact, which implies that this homomorphism is in
fact an isomorphism. By the pullback property of the Leray spectral sequence we have that the
following diagram commutes:

n * Ed n *
HE (Y, fof*F) £ HAL(X, f*F)

[re |

n * Edge n *
HE, (Y, fof*F) £ HL(X, f*F)
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Here BC denotes the homomorphism induced by the base-change morphism:
Lo PF =1 f(f°F) = farg (FFF) = [ f*F.
We claim that this base- change morphism is the isomorphism of sheaves v, : fif*"F — fof*F
making the Edge homomorphism a G-equivariant isomorphism. That this is true is quite easy to see,
namely take any sheaf G € Sh(X), then the base change morphism is the natural map .G — f*T; g

that on an étale open U — X is given by the map G(U xy X — X) — G(U xy X — X 3 X) that
one gets from applying the functoriality of G to (Id x 75) : U xy X = U xy X.
So the edge homomorphisms are G-equivariant isomorphisms. The pullback homomorphism is
given by f* : HL (Y, F) — HL(Y, fo f*F) — HL(X, f*F). So we can apply the result from the
previous subsection, which gives that there exists a homomorphism o HE (X, f*F) = Hg (Y, F)
such that p o f* is multiplication by |G| and such that ( Z g-T.

geG
Now we are ready to show that H% (Y, Q;) = H% (X, Q). Notice that for all A, := Z/I"Z € Sh(Yg,)
we have such maps p as above. This gives that after passing to the limit and applying ®z, Q we
have a map p : HE, (X, Q) — HE (Y, Q;) such that po f* = |G| and such that ( Z g-x.

geG

It is clear that f* : H2(Y,Q;) — HZ(X, Q) is injective (as F — f.f*F is injective) and as
(f* o ) restricted to H% (X, Q)¢ equals |G| we have that p is also injective, giving that the
dimensions of H% (Y, Q;) and H% (X, Q)¢ are the same and hence f* : H% (Y, Q) — HZ (X, Q)¢ is
an isomorphism.

Connected algebraic groups act trivially on cohomology

Now we want to show that if X is a variety over an algebraically closed field k and G is a connected
algebraic group that acts on X, then G(k) acts trivially on HZ (X, A) for A some constant sheaf
on X. As we will consider X to be smooth it will suffice to show it for the compactly supported
cohomology H{ (X, A) by the Poincare duality theorem.

The general strategy will be as follows: To show that 7, : H(X,A) — H(X,A) is the identity
map we will consider H{' (X, A) as a constant sheaf on Gg. We will then construct a morphism of
sheaves f H(X,A) — H?(X, A) such that on all stalks we have that f, : H*(X,A), — H*(X,A),
equals 7, for all g € G(k). If we can do this, then as G is connected, we that f is determined by
f(@) as H"(X A) is a constant sheaf and as G is connected, f(G) then equals 7, for all g € G(k).
So all 7, are equal to 7, = Id and hence G(k) acts trivially on Hg (X, A).

We proceed with constructing f. Consider the morphism f: G x5 X — G x5 X (g,2) — (g,9).
For 7 : G x;, X — G the projection we have m o f = w. So we have a base-change homomorphism
of sheaves h : Ri'm,A — R, f*A = R'r.A (the last equality holding as A is constant). Now we
consider the following the following square where the top arrow is the projection:

Gxp X — X

- !

G — Spec(k)

By applying the base-change theorem for compactly supported cohomology for the sheaf A on X
we obtain that R} m,A = HZ (X, A) as sheaves on G. For g € G(k) we note that by the base-change
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theorem we have H?(X x {g},A) = R"m.A. Now by definition of &, we note that it is induced
by taking for all U — G étale, the induced map hy; : HE, (U x X) — Hg (U xi X), where hy is
the map (u,z) — (u,ux) (u identified with its image in G in the second argument). In particular
we note that on the fibre over g, the map ﬁg on the stalk H{ (X, A)y is precisely 7. Now we have
constructed the desired morphism of sheaves f : H (X, A) — HZ (X, A) described above. From
this we conclude that G(k) acts trivially on H{ (X, A) for A any constant sheaf.

The poincaré duality pairing satisfies (f*z, f*y) = f*(x,y) = deg(f)(z,y) for f : X — X a finite
morphism. Now 7, is finite of degree 1, hence we have for any 2 € H% (X, A) and y € H?"(X, A)
that (7yz,y) = (z,7,.1y) = (2,y) as G(k) acts trivially on H2""(X, A). Hence as the pairing is
perfect and y is arbitrary we obtain that 7z = x for all x € Hg (X, A). So we conclude that for
X a smooth variety, A a constant sheaf on X and G a connected algebraic group acting on X that

G(k) acts trivially on HZ (X, A). In particular G(k) acts trivially on HZ (X, Q).

Isogenies induce isomorphisms on [-adic cohomology

Let ¢ : G — H be an isogeny of group varieties. Then ¢ factors as G — G/ ker(yp) composed with an
isomorphism. Let ker(¢)® be the connected component of ker(¢). Then as G — G/ ker(¢)° is purely
inseparable, it gives an isomorphism on the l-adic cohomology as seen in Lemma Now let
G = G/ ker(¢)? and K = ker(y)/ ker(p)? and consider the natural map 7 : G — G/K. As K is étale
and we are working over an algebraically closed field we have that K = |_| Spec(k) for M some

meM
finite group. Hence G/K is the quotient by a finite group M, hence 7* : H (G/K,Q;) — HZ (G, Q)
is injective and its image equals H% (G, Q). Now notice that M C G(k) and that the action of M
is induced by the action of G(k) on HZ (G, Q;), which is induced by the action of G on itself.
This implies by the previous part that M acts trivially as G is a (connected) group variety. So
7 HL(G/K, Q) — HZ (G, Q) is in fact an isomorphism. Hence ¢* : HY (H,Q;) — HZ (G, Q)
is the composition of three isomorphisms, hence an isomorphism. This concludes the proof of
Theorem [2.52] O

We now state the existence of two fundamental exact sequences. The first one is for compactly
supported cohomology.

Proposition 2.54 ([29] Remark I11.1.30). Let Z be a closed subscheme of X and let F € Sh(X¢).
Denote U = X\ Z,j:U — X andi: Z — X. The sequence 0 — jlF|y — F — i,i*F — 0 in
Sh(X ) is exact and gives rise to a long exact sequence:

o (U, F) — (X, F) - H(Z,i*F) —» (U, ['F) — ...

The second one is called the Gysin sequence.

Proposition 2.55 (Gysin sequence, [31] Corollary 16.2). Let (Z, X) be a smooth pair of k-varieties
of codimension ¢ and let U = X \ Z with inclusions 1 : Z — X and j : U — X. Let F be a locally
constant sheaf of A-modules on X. There is a long exact sequence:

o = HL (X, F) = HL (U, j*F) — Hy 92,0 F) — HLPH (X, F) — .

Note that in the sequence we put Hy (Z, F) = 0 when r < 0. This sequence is called the Gysin
sequence and Hy (Z, F) — Hztﬁc(X, F) is called the Gysin map.
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Intersection theory

We give a brief introduction to intersection theory as we will use some results from this area later.
For a more thorough introduction see [22]. Throughout this part X will be a scheme of finite type
over a field k.

Definition 2.56. An integral subvariety Z of X is called a prime cycle.

Definition 2.57. The group of codimension r-cycles is Z"(X) := @ 7 - Z, the sum being taken
ZCX

over all prime cycles of codimension . We denote by Z.(XL) = zZ9™X)=(X) the group of

dimension r cycles. A codimension 1 cycle is called a divisor and the group of them is denoted

Div(X).

When X is irreducible we can associate a divisor to a rational function.

Definition 2.58. Let X be irreducible and V' C X be irreducible of codimension 1 with generic
point v. For 0 # ¢ € Ox,, define ordy (c) := lengthy . (Ox,»/(c)). Then for f = % with a,b € Ox,
define ordy (f) = ordy (a) — ordy (b).

Notice that if X is smooth, then Ox, is a DVR and hence lengthy, (Ox./(a)) = n for the
unique n € Zxo such that t" - v = a for u € O, and (t) = m,.

Remark 2.59. From the relation length,(A/(a)) + length4(A/(d)) = length,(A/(ad)) whenever
these are finite ([22], Lemma A.2.5) together with dim(Ox,) = 1 and that Ox, has no nonzero
zero divisors, it follows that the definition of ordy (f) makes sense. In fact from the above additivity,
it follows that ordy : K(X)* — Z is a homomorphism.

Definition 2.60. Let X be an irreducible variety and f € K(X)*. The principal divisor corresp-
doning to f is div(f) := Zordz( f) - Z, the sum taken over all prime divisors.
Z

Since div : K(X)* — Div(X) is a homomorphism, div(K(X)*) C Div(X) is a subgroup.

Now we make a generalization of the previous definition to arbitrary codimension.
Definition 2.61. A cycle Z € Z"(X) is rationally equivalent to 0 if there exist a finite number of
prime cycles of codimension r — 1, {W;}, and f; € K(W;)* such that Z = Z div(fi)-
i

Remark 2.62. Notice that by div being a homomorphism, it follows that the codimension r-cycles
that are rationally equivalent to 0 form a subgroup of Z"(X).

This leads to the following definition.

Definition 2.63. The r’th Chow group of X is the quotient of Z"(X) by the cycles that are
rationally equivalent to 0. Denote it by A"(X). Denote A,(X) = A9"(X) for d = dim(X).

We have the following trivial example.
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Example 2.64. The Chow group of A! has A°(A') = Z, which is generated by the class [A']
and A'(A') = 0 as any closed point is the vanishing locus of some polynomial. By applying ([22]
Proposition 1.9) it follows that A°(A™) = Z and A’(A") = 0 for all i > 0. We will calculate the
Chow groups of a complete variety X that admits a filtration X =Y, D .... D Yy = ¢ of closed
subschemes such that Y;\Y;_; is a disjoint union of affine spaces in Section 6. Note that an example
of such a space X is P".

It is also possible to attach a cycle to certain closed subschemes.
Definition 2.65. Let Z be a closed subscheme of X such that all the irreducible components Z;
with generic points 7; of Z have the same dimension. Let m; := lengthy, . (Ozy:)- Then the cycle
corresponding to Z is [Z] := Zml - Z;.
i

Now we define the flat pullback of a cycle.

Definition 2.66. Let f : X — Y be a flat morphism of relative dimension d. Define the flat
pullback f*: Z"(Y) = Z"4(X) by f*([2]) = [f(2)].

We have the following basic functoriality of the Chow groups.

Proposition 2.67 ([22] p.19 Theorem 1.7). Let f : X — Y be a flat morphism of relative dimension

d. The map f* defined above is a homomorphism of abelian groups and descends to a homomorphism
frAT(Y) = AT4X).

Given a proper morphism such as a closed immersion, one gets covariant functoriality. In
particular one has the functoriality for closed immersions.

Proposition 2.68. Let m : X — Y be a proper morphism and let dim(Y) = d. Define a map
04f dim(f(Z2)) <d—r
m - [f(Z)] else

function m, descends to a homomorphism of abelian groups . : A"(X) — A"(Y).

by Z27(X) = Z7(Y) m|Z] = { for m = deg(m : Z — f(Z)). The

It is possible to put all the Chow groups together and make a commutative ring.

Theorem 2.69 ([22] Chapter 6). Let X be a variety of dimension d. Let 0 < m,n < d. There
exists a Z-bilinear map A™(X) x A™(X) — A™"(X) called the ‘intersection product’ such that:

d
e The abelian group A*(X) := @Ai becomes a graded ring that is commutative when put

=0
together with the intersection product.
e For f: X —Y a flat morphism, f*: A*(Y) — A*(X) is a ring homomorphism.

Definition 2.70. Call the ring A*(X) := @Ai(X) the Chow ring of X.

There turns out to be a way to compare the [-adic cohomology of a smooth variety with its
Chow ring.



42 CHAPTER 2. ETALE COHOMOLOGY

Theorem 2.71 (Cycle class map, [29] Paragraph VI. 9). Let X be a smooth quasiprojective variety
over an algebraically closed field k and let char(k) # | be prime. There exists a cycle map X -
A*(X) — HE (X, Z/1"Z) which is a ring homomorphism and maps A"(X) into H2, (X, Z/1"Z) and
has the following properties:

o For [Z] € A"(X) the class of a smooth prime cycle Z we have that clx([Z]) is equal to the
image of 1 € HY,(Z, A) under the Gysin map H%(Z,A) = HY (X, A) — HZ' (X, A).

o If f: X =Y is flat then the pullbacks commute, i.e. X o f* = f*ocl¥.

e One may pass to the limit and apply — @z, Q; to obtain the l-adic cycle class map, which is
a homomorphism of Q;-algebras c1X : A*(X) @7 Q; — HZ (X, Q).

We use the following notation for the graded trace on [-adic cohomology.

Definition 2.72. For f: X — X a morphism over an algebraically closed field denote the graded
trace of f by trx(f) i= S (=1)itr(F* | Hiy (X, Q)

%

The following theorem can is proved by applying properties of the cycle map.

Theorem 2.73 (Grothendieck-Lefschetz fixed point formula, [29] Theorem VI.12.3 and [31] Lemma
25.6). Let X be a smooth projective variety over k = k of dimension d and let f : X — X such
that f fizes finitely many points. Then:

Ly A=trx(f)

If for all P € X (k) that are fized by f we have that dfp : Tp(X) — Tp(X) does not have 1 as an
etgenvalue, then the above graded trace is the actual fized point count of f.

To conclude the chapter we have the following calculation. We use Example which gives
the canonical isomorphism of the pullback of a constant sheaf.

Proposition 2.74. Let T be a split torus and let A be an abelian variety both over a field k
that contains the 1" ’th roots unity (I # char(k)). There are isomorphisms of abelian groups
HY (T, Z/1"Z) = X(T)/(I") and H (A, Z/1"Z) = Pic’(A)[I"] that are functorial in the follow-
ing sense: For f : B — A a homomorphism of abelian varieties and g : S — T of algebraic
tori, the pullback maps on cohomology are the natural pullbacks f* : Pic’(A)[n] — Pic®(B)[n] and
g*: X(T)/(I") = X(5)/(I").

Proof. We begin with the case of the split tori. Since k contains the {’'nth roots of unity, the sheaf
fun is constant and hence ¢* : Hi (T, pun 1) — HE (S, g% pun 1) = H (S, pin,s) is the pullback as in
Example Note that the last map is compatible with the Kummer sequence in the sense that
there is a morphism of short exact sequences, with map below induced by (g*GmT)P — G5,
which at the level of U — S étale maps V — G, in the colimit to U — V — G,,: -

0 — g"nr — 9°Gpr — ¢°Gpyr —— 0

|

0 —— upng — Gpg — Gpg —— 0
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Thus in particular the following square commutes:

Mor(S, Gr) b5 Mor(S, Gr) —— HY (S, pn.g) —— 0

lg* lg* lg*

Mor(T, Gp) —bs Mot(T, Gp) —— HY(T, pynr) —— 0

The pullback maps ¢* : Mor(S,G,,) — Mor(T,G,,) are postcomposition by g, which follows
directly from considering the composition G, 5(S) = 649G, s(S) = ¢°Gp s(T) = G (7).
So the isomorphism Hg, (S, . g) = Mor(S, G,,)/(I") is functorial in the sense that the pullback
HL (S, ) — HY (T, fn 1) is postcomposition by g. Now the above works perfectly fine for any
morphism ¢ and any schemes S, T such that Pic(S) = Pic(T") = 0. For tori S,T" and a homomor-
phism g : S — T there is a pullback map X (7T') — X (S) and X(T') C Mor(T, G,,) has X(T)/(I") =
Mor (T, G,,)/(I"). Hence in this case we may take HZ (S, tyn ) = Mor(S,G,,)/(I") = X(S)/(1™)
such that the following diagram commutes: -

X(T)/(1") —— H(T, pur,7)

J» |

X(8)/(") —— H(S, puns)

Now we look at the case of a homorphism f : B — A between abelian varieties. As above the
Kummer sequence provides us with the following commuting diagram:

l’n/
0 —— H}et(Ahu'l",A) — Hét(A7Gm,A) % Hét(Au Gm,A)
lf* lf* lf* (2.1)

lTL
0 —— Hi (B, wn ) — H&(B, Gy p) SN H (B, Gum,B)

The isomorphism H'(A,G,,) — H%(A,G,, 1) (actually for an arbitrary scheme A and sheaf
Gm,4) comes from the Cech to derived spectral sequence (|29] Prop I11.2.7), which is compatible with

the pullback homomorphism in the sense that, for Y = (U; — A); a cover and U’ = (U; x 4 B — B);
the pulled back cover, the following diagram commutes (compare with [16] diagram (12.1.4.2):

H' (U, Gmn) —— Hi (A, Gyyn)

)

Jr [

H'U, f*Cpn) —— HY(B, f*Gpnoa)

The Cech to Derived spectral sequence is a particular case of the Groehtendieck spectral se-
quence, which is functorial in the sheaf argument, hence it is compatible with the morphism
f*Gm,a — Gy p. This implies that there is a commuting diagram:
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H' (U, Gna) — HL(A,Gpya)

)

lf* lf* (2.2)

HU', Gy p) —— HL(B,Gp.)

The map f* on Cech cohomology is induced by mapping (gi;)ij € H Mor(Uij;, Gp,) to its class
Y]
in ([gi;])i; € H [*Gp a(Uij x g A) and then to (gijo f)i; € H Mor(U;j x B A, Gy,) (this follows since
2% 2%

the pullback homomorphism is defined on the level of sections of the sheaves and as above we know
that they are hence defined like this). In particular it is thus the usual pullback homomorphism
f*: Pic(A) — Pic(B). We see by Diagram [2.1| that f* : H}, (A, ) — Hg (B, jun g) corresponds
is given by the map f* : H}(A,Gyya) — HE(B,Gyp p) restricted to the [™-torsion, which by
Diagram and the above corresponds to the map f* : Pic(4) — Pic(B) restricted to the ["-
torsion. We know that for any abelian variety A and n > 0 we have Pic’(A)[n] = Pic(A)[n]
([34], p.75 (v)), which finishes of the proof. O




Chapter 3

Counting fixed points

Throughout this chapter let G be an algebraic group over an arbitrary algebraically closed field k
and let 0 : G — G be an endomorphism. Throughout this chapter we will be interested in counting
fixed points of all the iterates of o.

Definition 3.1. For 0 : G — G an endomorphism, define the fixed subscheme of o, Fix(o), to
be the subgroup scheme of G defined by Fix(o)(R) = {g € G(R) | or(g) = g}

This is represented by the scheme Eq(c,1d).

Definition 3.2. An endomorphism o : G — G is confined if Fix(c") is a finite scheme over k for
all n or equivalently if o™ fixes finitely many points in G(k) for all n.

We are interested in the following sequence.

Definition 3.3. Let o be a confined endomorphism. Define the fixed point sequence (o,,), by
setting o, = #Fix(c")(k).

We have the following example.

Example 3.4. Let G/F, be an algebraic group (or an algebraic scheme, this also works fine here)
defined over a finite field F,. Denote the algebraic group over F, by Gr,. Then one has the g-
Frobenius endomorphism Frob, : G — G, which is defined on any affine open U = Spec(R) C G
where we have R = F,[X1, ..., X,/ (f1, .y fn) With f; € Fy[X1, ..., X;)] by Froby(X;) = XI. Note
that (a1, ..., a,) € G(Fp) is fixed if and only a; € F, for all i, hence if and only if this points lies in
Gr,(F;). So we see that understanding the sequence (Frobgn),, is equivalent to understanding the
sequence (Gr,(Fgn))n.

Remark 3.5. If one is interested in understanding the sequence (o), then one may assume that
o is surjective. Indeed, the images o(G) D 0*(G) D ¢*(G) D ... form a descending chain of closed
subschemes of G, which terminates at some j and one can replace G by ¢’ (G).

We have the following theorem by Steinberg.

Theorem 3.6 (Lang-Steinberg, Theorem 10.1 [44]). Let 0 : G — G be a surjective endomorphism
of a group variety such that Fix(c) is finite, then the Lang map L, : G — G g +— g lo(g) is
surjective.

45
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By applying this theorem we are able to split up the fixed point count.

Lemma 3.7. Let H be a subgroup of an algebraic group G and let o be a confined endomorphism of
G that restricts to an endomorphism T of H and hence induces an endomorphism ¢ of the quotient
Q:=G/H. Then o, = Ty, - pn.

Proof. Note that it suffices to prove n = 1. As k is algebraically closed we have Q(k) = G(k)/H (k).
If € G(k) is fixed, then the reduction (mod H(k)) is fixed. The fibre over x (mod K (k)) is
{z-y|y € H(k)} and a point z-y in this fibre is fixed if and only if y is fixed. So the number of fixed
points in this fibre equals 71. Hence we see that it suffices to show that Fix(og)(k) — Fix(og)(k)
is surjective. Consider x € G(k) such that = (mod H(k)) is fixed by o. Then z~'o(x) € H(k) and
hence by surjectivity of the Lang map we obtain z lo(z) =y to(y) for y € H(k). So zy~ ! is
a point fixed by o that lies over z (mod H(k)). O

We see that if we can get a filtration of our algebraic group by characteristic subgroups that
understanding the sequence (o0,,), may be easier. To obtain such a filtration we assume that o is
surjective (note that after some n > 0 the map ¢°*(G) — ¢°"1(G) is surjective as the algebraic
subgroups of G satisfy the d.c.c. condition. Now note that by surjectivity of o, o(Gliy) is normal in
G and hence contained in Gyy,. For linear G, note that oR,(G) is contained in Ry, (G) and note that
for reductive G, o(R(G)), which is a torus, is contained in R(G). This gives the desired filtration.
Note that instead of ‘contained in’ above we may actually write ‘equals’ because of dimension
reasons.

Corollary 3.8. Let G be a group variety and o a surjective confined endomorphism. Then
On = U;?-O’E-O’;IL"UZS for o™ a confined endomorphism on an abelian variety, oV an endomorphism
on a unipotent group variety, o' an endomorphism on a torus and o an endomorphism on a

semisimple group variety.

Proof. Apply the above lemma to G /Gy, being an abelian variety, Gy, /Ry (G) being reductive and
Gred/R(G) being semisimple. O

It turns out that we can do slightly better than just any unipotent algebraic group.

Lemma 3.9. (/§/, Prop 7.1.2) For o a confined endomorphism on a unipotent group variety U we
have o, = JXI S U,‘;" for Vi,..., V. vector groups.

Proof. Consider the derived series of U D D(U) D D(D(U)) D ..., which is a filtration of U by
characteristic subgroups. As U is solvable the derived series terminates. The quotients @); in this
series are commutative and unipotent, hence the ); admit a subnormal series with quotients G,
([32], Corollary 16.6 together with the subnormal series of T" that has quotients G, or G,,). So Q;
admits a finite filtration by the characteristic subgroups p™@;, whose quotients are commutative
unipotent algebraic groups in which every element has order p, which are vector groups ([39]

p.177). O

We have the following additional proposition, which will also aid us later in Chapter [6] It is
used in Chapter 5 of [8] to understand the fixed point count in the case of a semisimple group
variety.
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Proposition 3.10 (Steinberg, [44] Corollary 10.10). Let 0 : G — G be a surjective confined
endomorphism of a linear algebraic group. There exists a o-stable Borel pair (B,T) of G.

Remark 3.11. It is easily checked that the above proposition is a direct consequence of the Lang
Steinberg Theorem [3.6| (though one should note that Steinberg first shows the existence of a o-stable
Borel group for surjective o : G — G [44] Theorem 7.2 before proving Theorem [3.6). The above
proposition is used in [8] Chapter 5 to give a fixed point formula for a semisimple group variety G,
which then reduces to giving one for B and one for G/B for B a o-stable Borel subgroup. We will
also use this Proposition heavily in chapter 6.

In the following theorem by a ged-sequence we mean a sequence (an), such that a, = aged(nw)

for some w € Z. Any ged-sequence is periodic. Recall that S denote the Weyl group invariants.
Let SJVFV  S" be the ideal of those of positive degree.

Theorem 3.12 (Byszewski, Cornelissen, Houben [8]). Let ot be an endomorphism on an abelian
variety A, oV on a vector group V., 0% on a torus T and 6@ on a semisimple group variety G, all
surjective and confined. Assume that the field that we are working over has characteristic p > 0.

o o =|dy| -rp- In|," where 7, € Qs and s, € Z>q define gcd-sequences and d,, = tra((c®)).
o ol = |dy| -7y [n|,» where m, € Qo and s, € Z>o define ged-sequences and d,, = trp((o)™).
e 0% =|d,| - " where d, = det(1 — *|J), where J = SY/(SY)2

— 1
o When k =T,, then O'X = p e where t, € Z>o defines a ged-sequence.
As a consequence, a confined surjective endomorphism o : G — G over F), has fized point count
given by:

0 = [du|c"ra|nl5rp

Here d,, is linearly recurrent, ¢ = p" and ry, € Qso, Sp,tn € Z>o all three define gcd-sequences.

Remark 3.13. It should be noted that in the first three cases the terms |d,| equal deg(c™ — 1) and
that other terms make up deg;(¢™ — 1), For the first three cases the methods used in [8] also
apply to char(k) = 0 and hence the fixed point count reduces to |d,| in all the three above cases
when char(k) = 0. For the fourth cases, note that any endomorphism of a vector group over k with
char(k) = 0 is linear, hence any confined endomorphism fixes only one point in this case.

Note that the last case of Theorem is only over F,,.

Question 1. Let V be a vector group over an arbitrary algebraically closed field k with char(k) = p.
-1
Does there exist a ged-sequence (t,), € Z such that o, = crptninle 7

Solving this problem would be very desirable. Unfortunately the efforts of the author came
up short. Another interesting problem is understanding the terms |d,|. They seem to have a
cohomological interpretation.

Question 2. Let G be a group variety and let o : G — G be a surjective confined endomorphism.
Set |dp|c to be the product of the three |dy,| in Theorem that one obtains by applying the
filtration of G by fully characteristic subgroups. Do we have |d,|q = trg(c™)?
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In this thesis we show among other things that the above question has a positive answer. The
main focus of the authors in [§] was the case k = ), and they found the following solution in this
case after finding that |d,|q equals trg,, (o) - trg,, (o).

Partial answer ([8] Lemma 12.3.6). Let G be a group variety over F,. There is an isogeny
Giin <F, Gap — G that commutes with the relevant morphisms induced by o.

The above is a direct consequence of Arima’s theorem [1], which we shall see in the next chapter.
Theorem then implies that Hg, (G, Q;) — Hg, (Glin, Qi) ®q, H (Gap, Q;) is an isomorphism that
commutes with the action of o*. Thus it follows that |d,|¢ = trg(o) in the case of k = F,. For
general k£ however there does not exist an isogeny Giin, X Gapy — G. We will see an explicit
counterexample in the next chapter. In Chapter 5 and 6 we show by using different methods that
Question [2l has a positive answer in general by studying the [-adic cohomology of group varieties.



Chapter 4

Arima’s Theorem

In this chapter we let k£ be an algebraically closed field. We are interested in whether Gy, X Gap and
G are isogenous. At the beginning of this chapter we will see that it suffices to study this question
when G is commutative and divisible. We then introduce the Ext(—, —) bifunctor and we give a
proof of Arima’s theorem, which states that for commutative G we have that [G] € Ext(Gap, Gin) i8
of finite order if and only if an isogeny Giin X Gap — G exists. Using this we state and proof another
one of Arima’s theorems, which states that if we work over Fp, then Gy, XF, Gap and G are isogenous.
We conclude the section by give an example of an exact sequence e — Gy, — G — G,p — € where
such that G and Gy, X Gap are not isogenous.

First we state the two theorems of Arima.
Theorem 4.1 (Arima’s Theorem 1, ([1] p.235)). Let G be a commutative group variety. Then G
is isogenous to Guy X Gap if and only if the class of G in Ext(Gap, Gin) s of finite order.

We introduce the notion of Ext(—, —) in Subsection
Theorem 4.2 (Arima’s Theorem 2, ([1] p.235)). Let G be a group variety over F,. Then there

erists an abelian subvariety A C G such that A - Gy, = G.

Although this is stated a bit differently from how it is written above, it will turn out to be
equivalent to Gy, X Gap and G being isogenous by Lemma below.

4.1 Reducing to the case that G is commutative and divisible

In this subsection we show that G is isogenous to Gant X Gun if and only if G,y is an abelian
variety (and thus equal to (Gant)ap). As Gant commutative and divisible, this allows us to reduce
to the case that G is commutative and divisible. We have the following equivalent characterization
of splitting up to isogeny.

Lemma 4.3. Let G be a connected group variety, then G ~ Giin X Gap, s equivalent to there existing
an abelian subvariety A C G such that A - Gin = G.

49
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Proof. Suppose that A-Gj;, = G. Any abelian subvariety A is contained in Gayt, which is contained
in Z(G) by Lemma Hence the natural map A x Gj, — G is a homomorphism of algebraic
groups. We notice that the kernel is isomorphic as a scheme to A N Gyn, so it is complete and
affine, hence finite, i.e. the map is an isogeny. On the other hand, the Chevally-Barsotti theorem
gives us that e = Giin — Giin - A — G4 — e is exact. Hence the restriction of G — G, to A is a
quotient map with kernel A N Gy, which is finite, hence this is an isogeny. This gives an isogeny
Giin X A — Giin X Gap, which means that G ~ G, X Gap.

Now suppose that G ~ Giin X Gy, i.e. we have a chain G = Gy — ... — G, = Giin X Gap. We
claim that it suffices to prove the following: There exists B < G such that B/F = A is an abelian
variety for F' finite and G/(B - Gyiy,) is finite. Indeed, the second condition implies G = B - Gy
as G is a connected group variety. As B and Gy, generate G we have Gayy C B, 50 Gany — A’ is
an isogeny for A’ an abelian subvariety of A. As G.yu is commutative and divisible, this isogeny
reverses, hence Gyt is complete as it is also a connected group variety. So as G = Gant - Giin and
Gant 1s complete, we see that the statements are equivalent.

We will now show that G satisfies this equivalent condition by decreasing induction: Clearly G,, =
Ghin X Gap satisfies it. Suppose G}, satisfies it, then we need to show that Gj_; satisfies it. If
¢ : G — Gj—1 is an isogeny, then up to finite index Gr_1 equals ©((Gg)in) - ¢(B) for B C G
such that B/F = A an abelian variety. Now notice that ¢(B)/¢(F) is complete, and that we have
an inclusion ¢((Gg)in) C (Gg—1)1n, which shows the induction step in this case.

If ¢ : G_1 — Gy is an isogeny then up to finite index Gj_1 equals go_l((Gk)lin) . (p_l(B). Notice
that (Gr—1)in is contained in 90_1((Gk.)hn). It follows from Gg_1 = (Gk—1)iin - (Gg—1)ant and that
@ is an isogeny that it equals ¢ ' ((Gg)n) up to finite index. As ¢~ '(B) — B has finite kernel,
there exists finite F” such that ¢ 1(B)/F’ — A is a closed immersion, hence ¢ !(B) is an abelian
variety up to finite index. This proves the induction step, hence the lemma. ]

Next we have the following lemma.

Lemma 4.4. Let G be a group variety. Then Gapnt is divisible. Moreover Gan s an abelian variety
if and only if G is isogenous to Gin X Gap.

Proof. For showing that Gan is divisible we consider [n] : Gant — Gant and let H denote the
cokernel. Then H,}, is an abelian variety such that [n] is trivial on this abelian variety. This implies
that the abelian variety is trivial as abelian varieties are divisible. So H = Hj;,. Thus the image of
the map Gan — H must be trivial, so H is trivial. So [n] is surjective and hence G,y is divisible.

Let A C G be an abelian subvariety variety, then since Gany = ker(G — Spec(O(G))) we have
A C Gant. Notice that Gant - Glin = G as G/Gant - Glin admits quotient maps coming from G/Gant

and G/Gyy, showing that it is a complete, affine, smooth and connected variety, which is trivial.

D Gant - D
Let D be another subgroup variety of G such that D - Gy, = G. Then o~ Tant is
DN Gant Gant

linear as it is a subgroup of Spec(O(G)). Notice that D N Gayg is @ normal subgroup of G as it is
Then the images of D and G,

contained in Z(G). Consider the quotient map G — ————.
DN Gant

generate the quotient. As both the images are linear, the quotient is linear. So the image of Gy is
trivial in the quotient, hence Gang = Gant N D, S0 Gang C D. In particular if Gy, X Gap and G are
isogenous we have by Lemma that A - Giin = G for A an abelian variety, giving A C Gang C A
and hence G,y = A.

Conversely if G, is an abelian variety, note that u : Gant Xrx Giin — G is an isogeny as it is a
quotient map by Theorem [1.60| and its kernel is complete and affine. O
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4.2 The Ext functor

In this section we introduce the Ext functor. Until the end of this chapter all algebraic groups are
assumed to be commutative unless stated otherwise.

Proposition 4.5 ([32], p.115). The category of commutative algebraic groups is an abelian subcat-
egory of the category of algebraic groups. Denote this subcategory by C.

This ensures that we can use some basic tools that apply in abelian categories such as pushouts,
the Snake Lemma, etc.

Definition 4.6. Let B and L be algebraic groups. We define Ext(B, L) to be the set of exact
sequences [G] = 0 - L — G — B — 0 modulo the equivalence relation [G] ~ [G'] whenever a
commuting diagram as follows exists:

0 L G B 0
o
0 L G B 0

Note that this indeed defines an equivalence relation. If such an f exists, it is necessarily an
isomorphism by the Snake Lemma.

Remark 4.7. Note that if [G] :==0 —- L - G — A — 0 is an exact sequence and ¢ : L — L' is a
homomorphism, we can form another exact sequence as follows:

0 L : G B 0

ool

0—— L —GxtL — B——0

L
Here Gx 'L = G x and N is the algebraic group defined by N(R) = {(¢(1),—¢(1)) |l € L(R)}.

We denote the bottom sequence that is obtain by this by ¢.([G]). We call ¢, the pushforward.

Now suppose that we have a homomorphism ¢ : B’ — B. Then we get from [G] the following
exact sequence:

0 L G B 0
IdT 1 o
0 —— L —— GxgB B’ 0

We denote the bottom sequence by ¢*([G]). We call ¢* the pullback.
We note that both the pullback and the pushforward respect the relation defined in Definition

4.6l

Remark 4.8. Very useful characterizations of the pullback and the pushforward are the following
(p. 162 [39]): For [G] € Ext(B, L) and ¢ : B' — B and ¢ : L — L' we have that ¢©*[G] € Ext(B’, L)
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is the unique element represented by a sequence e — L — C' — B’ — e such that there exists a
commuting diagram:

e > L G » B e
| [
e > L C B > e

Indeed note that there is a natural map C — G xp B’ giving that the relevant sequences are
equivalent. Similarly we have that 1.[G] € Ext(B, L) is the unique element represented by a
sequence e — L' — C' — B — e such that there exists a commuting diagram:

e > L > G > B e
wi J ild
e > L > C » B > e

Again a natural map G x' I’ — C exists giving that the sequences [C] and [G x* L'] are equivalent.

As a consequence we obtain that Ext is functorial in both arguments.

Lemma 4.9. Let B be an algebraic group, then Ext(B,—), which sends an object L to the set
Ext(B,L) and a homomorphism ¢ : L — L' to the pushforward ¢, : Ext(B,L) — Ext(B,L’)
defines a covariant functor C — Set.

For L an algebraic group, Ext(—, L), which sends an object A to the set Ext(B, L) and a morphism
¢ : B' — B to the pullback ©* : Ext(B’, L) — Ext(B, L) defines a contravariant functor C — Set.

Proof. This follows directly from the uniqueness of the relevant extension classes in Remark O

We give the construction of the Baer sum below.

Definition 4.10. Let [G1],[G2] € Ext(B,L), then [0 = L& L - G &Gy - B& B — 0] is an
element of Ext(B® B, L® L), which we call ®([G1], [G2]). As the diagonal map A: B — B@®Bisa
homomorphism we get A* o B([G1], [G2]) € Ext(B, L& L). As L is commutative, the multiplication
map pur, : L& L — L is a homomorphism, so (ur)« o A* o &([G1], [G2]) € Ext(L, B). This element
is called the Baer sum of [G;] and [G2].

We now have the following lemma that we will not prove. Baer (Satz 1 p.395 [4]) has shown
that the lemma below is true when B, L are abelian groups. His methods generalize to the category
of commutative algebraic groups as claimed by Serre ([39] p.163).

Lemma 4.11. The operation ‘+’ defined above defines a group structure on Ext(B, L), where the
inverse of a sequence [G] is given by the same sequence with v : L — G replaced by —t and with
neutral element being the split sequence [B Xy, L.

Remark 4.12. Note that Baer works in slightly in more generality then we do as he considers group
extensions e - N — G — @ — e where Q need not be abelian and () has some prediscribed
action on N (called x4 in [4]) which corresponds to the action induced by conjugation when one
has an exact sequence e -+ N — G — () — e. The case that () is abelian and the action is
trivial corresponds to the central extensions of @@ by N. It follows that if [G1], [G2] are given by
commutative algebraic groups, then so is their Baer sum [G1] 4 [G2], so Ext(Q, N) (as we defined
it, i.e. the extension being commutative) inherits the group structure from the central extensions
of Q by N.
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To deduce other properties of Ext we prove a lemma.

Lemma 4.13. Let [G] € Ext(B, L) and [G'] € Ext(B', L") and let ¢ : L — L' and ¢ : B — B’ be

homomorphisms. Then ¢*[G'] = .G in Ext(B, L') is equivalent to there existing a commuting
diagram:
e » L »G —— B e
wi iF l%’
e > L G’ B e

Proof. If 1¥.[G] = ¢*[G’] then the existence of such a diagram follows by Remark If such a
diagram exists, then one can construct a homomorphism ¥ : G x* L' — G’ x g B which is on points
given by (g,1) — (F(g) - 1,m(g)). We obtain the following commuting diagram, which implies that

]G] = " [C]:

e r s Gxl L — B —— ¢

b e

e——IL —GxgB——sB——e¢

We obtain the following corollary.

Corollary 4.14. For ¢ : B’ — B and ¢ : L — L' homomorphisms we have ©*1, = ,o*.

Proof. Let G € Ext(B, L) and write [C] = ¥.[G] and D = ¢*[G]. By the previous lemma we have
that ©*1.[G] = ¥.@*[G], is equivalent to the existence of a commuting diagram:

e L D y B’ e
wi l ¥
e y I/ s C B e

It is immediate that this diagram exists by putting the commuting diagram that features C, G and
the one that features D, G together. O

We can upgrade the previous lemma to that Ext is a functor in both arguments to the category
of groups.

Lemma 4.15. The set-valued functors Ext(B,—) and Ext(—, L) factor through the category of
abelian groups via the forgetful functor Grp — Set.

Proof. By the previous lemma we have that Ext(B, L) are abelian groups, hence it suffices to show
that the pullback and pushforward are group homomorphisms. For showing this for the pullback
we have to show that if ¢ : B’ — B is a homomorphism then ¢*[Gy + Go] = ¢*[G1] + ¢*[Ga] for
any [G1], [Ga] € Ext(B, L). So we want ¢*(ur)«Ap([G1] ® [G2]) = (1)« AR (¢*[G1] ® ¢*[G2]). As
pullbacks and pushforwards commute by Corollary we get that the left-hand side is equal to
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(1r)«(Apow)*(|G1]®[G2]), so it suffices to show that (Agop)*([G1]®[G2]) = AL (¢*[G1]D¢*[Ga)).
The left-hand side (denoted [C]) is the unique class in Ext(L x L, B') such that a diagram as follows
exists:

e —— L xi L » C B’ b e

1 | |anes

e —— Lxy L — Gx, G —— Bx, B—— ¢

Apgr
Note that such a diagram also exists for A%, (9*[G1] @ ©*[Ga]) as B' =8’ B’ x, B' %’ B x;, B
equals Ap o ¢ and makes the relevant diagram commute by Remark
Checking the functoriality in the first argument is done similarly. O

Another important property of the Ext functor is that it is additive in both arguments. We will
only need the additivity in the second argument so for conciseness we restrict ourself to proving
this case.

Lemma 4.16. The Ext functor is additive in both arguments, i.e. for homomorphisms of algebraic
groups 1,2 1 L — L' and m,m : B — B’ we have (o1 + p2)« = (01)« + (¥2)x and we have
(m)* + (m2)* = (m + m2)*.

Proof. Let [G] € Ext(B,L) and let f,g : B® — B be homomorphisms. We need to show that
(f+9)°G] = '[G)+4°G) = (ur)o A" (f*[G) 99" [G)). Let C i= A*(f*[G]®g"[G]). By LommafLT]
it suffices to show that there exists a commuting diagram:

e —— L x, L » C » B > e
lﬂL i lf—&-g
e > L > G » B e

Note that by Remark [A.8| there is a commuting diagram:

e — Lxy L — Gx; G —— Bxy; B—— ¢

mT T (fxm0AT

e —— L x L » C B’

~
[y

As we have ppo (f x g)oA = f+ g we can consider compose the previous commuting diagram
with the following commuting diagram to get that (f + ¢)*[G] = f*[G] + ¢"[G]:

e —— Lxpy L —— Gxp, G —— Bx, B——ce¢

Iz |po |s

e > L > G B e

For showing additivity in the first argument, one has to show that (f+¢)[G] = (uL) A" (f[G]®
9x|G]) = A*(ur)«(f«]|G] ® g«[G]). Then one uses a similar argument, which is again based on
Lemma [4.13] O
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Remark 4.17. A slightly easier approach such as one takes in the category of R-modules would be
to show that Ext(B,—) and Ext(—, L) equal R'Hom(B, —) and L'Hom(—, L) where these Hom
functors are from the category of commutative algebraic groups to the category of abelian groups.
The problem with this in our setting is shown by Brion ([6], p.40). He shows that there do not
exist any nonzero injective objects in the category of commutative algebraic groups. So one can
not define these derived functors.

4.3 Principal G-bundles

In this section we introduce principal G-bundles over some variety Y. For the general definition
we make the exception that G may be a non-commutative algebraic group. We use this to study
extensions of commutative algebraic groups B by L by thinking of them as principal L-bundles
over B.

Definition 4.18. Let G be an algebraic group. A (left) principal G-bundle is a morphism
m: X — Y that is faithfully flat and of finite type together with a (left) action p: G x; X — X
such that mop =mwomyx for mx : X X G — X the projection. We also require that the morphism
(p,Idx) : L xx X — X Xy X is an isomorphism.

Note that the last condition implies that the action is free, i.e. all stabilizers are trivial. A basic
example that we will use a lot is the following:

Example 4.19. Let e - L — G — B — 0 be an exact sequence of algebraic groups. Then L acts
on G with trivial stabilizers and the image of L in B is trivial. It follows by looking at the functor
of points that L x; X — X xp X is an isomorphism.

We wish to consider principal bundles up to isomorphism.

Definition 4.20. Two G-bundles X, X’ over Y are isomorphic if there is an isomorphism X — Y
that respects the action of G and commutes with the maps to Y. We denote the set of principal
G-bundles over Y up to isomorphism by PBy .

Now we define sections.
Definition 4.21. Let 7 : X — Y be a principal G-bundle. A section to this bundle is a morphism
s:Y — X such that m o s = Idy.

It follows that a principal bundle X — Y is isomorphic to the trivial bundle Y x, G — Y with
G acting on itself if and only if X — Y admits a section.

Definition 4.22. In the previous definition, we say that X is locally trivial for the Zariski (resp.
étale) topology if there exists a covering (U; — Y'); such that Xy, — U; has a section for all i.
For T either of these topologies, denote by PB;G the classes of G-bundles over A that are locally
trivial for 7.

It follows by the definition that any principal G-bundle is locally trivial in the flat topology.
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Remark 4.23. We have the following operations that we can do on principal G-bundles [X],[X’]
over Y:

e We can take the product bundle [X x; X'] over B x B, which is a principal G x G-bundle,
each copy of G acting componentwise.

e For a morphism ¢ : B’ — B we can form the pullback ©*[X] = [X x g B], which is a principal
G-bundle over B’

e For a homomorphism G — G’ we can form the pushforward .[X] = [X x G|, which
is a principal G’-bundle over B. Here we considering X x G’ and quotienting out by the
anti-diagonal action given by (g, (z,¢')) = (g-z,0(9)"" - ¢') of G on X x G'.

In particular we can imitate the Baer-sum, which was defined on Ext(B, L).

Lemma 4.24. For G commutative, PBy g is a commutative group with (ug)« o A* o X as its
operation. The neutral element is given by [Y xj G| with G acting on itself and the projection
to Y. The inverse of an element [X] with G-action p is given by the same element only with a new
action p’ being p'(g,2) = p(—g, ).

Moreover PB_ _ is functorial in both arguments by sending a morphism to its pullback, resp. its
pushforward. The pullback and pushforward maps are group homomorphisms.

The proving that the group structure exists is the same as proving that the Baer-sum makes
Ext(B, L) into an abelian group see |4] (Satz 1 p.395).

Remark 4.25. Showing that the pullback and pushforward are group homomorphisms can be done
in a similar way as in Lemma namely the pullback ¢*[X] and pushforward v,[X] are charac-
terized by similar diagrams as in Remark This follows from the fact that a morphism between
principle bundles over a base is always an isomorphism (this is true flat-locally and one ‘descends
down’ the isomorphism).

Remark 4.26. Denote by PB_ | the restriction of PB_ ¢ to the category of commutative algebraic
groups C. The lemma implies that for B, L algebraic groups there are natural transformations
Ext(—,L) — PB_ 1| and Ext(B,—) — PBp _.

Definition 4.27. Given a cover U = (U; — Y'); for the T-topology, denote the set of principal
G-bundles that trivialize over U by PBZ{/’G.

Let Gy denote the T-sheaf Homy(—,G) on Y. For such an element [X] € PBZ}/{/,G we can assign
an element of H'(U,Gy) is follows: A trivializing cover (U; — Y); can be taken to consist of
a single element by taking the disjoint union (formally the fibre product over Y'), so the cover
is U — Y with a section s : U - U xy X — X. For k = 1,2 these can be pulled back to
prs: U xy U — U — X, thus defining a morphism (pj(s),p5(s)) : U xy U — X Xy X. Then using
that as X is a principal G-bundle over Y there is the isomorphism (p,p2) : G X X — X xy X we
get that there is a unique morphism g : U Xy U — G such that p(g, p5(s)) = pj(s). We can check
that the element s € Gy (U xy U) gives an element that maps to 0 in Gy (U x4 U xy U), hence it
defines an element of H7-(U,Gy).

Example 4.28. We go through this process in the example that X — Y is given by the n’th power
map 7 = [n] : G, - G, and G = p,, acting on G,, in the obvious way. We take 7 to be the
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étale topology and n not divisible by the characteristic of the field k. Then we have an étale cover

[n] : U = Gy, — Gy, such that there is a section s : U — Gy, to 7 : Gy, — Gy, namely take s to

be the identity map. Hence we get an induced map (p1,p2) : G, X(n] Gm = Gm X[n] G Hence

the element g of n(Gm X[ Gin) that we get is the unique element such that g(z,y) -z =y for all

7,y € Gy X|p) Gm, thus it equals g(z,y) = % Note that pleg - pisg - (D739) " € pn(G2,) (omitting
Yy T

the fibre product subscript) equals the morphism (z,y, z) — Ty, (5)7t =1 as needed.
y z 'z

By our above discussion, any isomorphism class of a principal bundle gives a 1-cocycle. It turns
out that the converse is also true. By the discussion on Cech cohomology of Section [2| we obtain
the following.

Proposition 4.29 ([31], p.77). The assignment above PBZ{CG — HYX(U,G) gives a bijection. It
gives an isomorphism PB;G — (Y, G).

In the future we write GG instead of Gy for the sheaf on Y. The following proposition is claimed
in [11]. What we mean below by functorial in Y is that for f : X — Y a morphism, the below
isomorphisms for X and Y commute with H¥-(Y,Gy) — HH(X, f*Gy) — H-(X, Gx), which on a
cocycle is given by componentwise precomposotion with f (see Proposition .

Proposition 4.30. Let G be a commutative algebraic group. There is an isomorphism of abelian
groups PB;G =~ H(Y,G). It is functorial in both G and in Y.

Proof. We need to check that the the bijection above respects the group law induced by the Baer-
sum and that it is functorial in both Y and G. First we check the addition law. Given principal
G-bundles [X] and [X'] over Y. We may pick a trivializing open cover U = (p : U — Y) that
trivializes both [X] and [X']. Let s : U — X and ¢ : U — X’ denote the sections of [X] and [X]
respectively and denote by (gx) and (gx) the corresponding cocycles in Hi-(U, G 4). Taking the
product G xj G-bundle [X x; X'] over Y x; Y gives that o xp ¢ : Uxx U — Y %, Y is a trivializing
open cover such that (s x ) : U x, U — X xj;, X' is a section. Then taking the pullback of
[X xx X'] with respect to A : Y — Y x Y gives that ¢ : U — Y is a trivializing cover with section
(s,0,0) : U= X x; X" xyx,y xY. Then taking the pushforward (ug)«A*[X x; X'] = X+ X' gives
that (s,0,0,0): U = X X X' Xy« v XY x %G G is a section. We call this section ® for simplicity.
Tak