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More than €62 billion in funding for Research & Innovation was 

allocated via the Smart Specialization Strategy. Therewith, smart 

specialization may well be one of the biggest multinational strategies 

aiming to boost innovation ever. Various scholars have pointed out 

that regional S3 strategies target too many broad areas of 

intervention. This paper shows how this lack of selectivity undermines 

the correspondence between S3 priorities and regional technological 

capabilities, the alignment between S3 priorities and R&I funding, 

and the relation between R&I funding and knowledge production. The 

results indicate that concentrating R&I funding on a limited set of 

technological domains increases its effectiveness in terms of 

knowledge production. 

 



 

 

 

1 

1. INTRODUCTION 

The Smart Specialization Strategy (S3) plays a vital role in the EU’s Cohesion Policy.  

More than €62 billion in funding for Research & Innovation was allocated via the S3 policy in 

Europe between 2014-2020 (European Commission, 2022). Therewith, smart specialisation 

may well be one of the biggest multinational strategies aiming to boost innovation ever 

(Asheim et al., 2017).  

Its relatively short journey from concept to policy has given it the reputation of being “a 

perfect example of a policy running ahead of theory” (Foray et al., 2011, p. 1). Thus far, only 

a few scholars begun examining the policy’s first programming period (2014-2020) by 

assessing the correspondence between regional implementations of the S3 and each region's 

intrinsic characteristics. Several point out that regional S3 strategies lack selectivity in their 

targeted areas of intervention (Iacobucci & Guzzini, 2016; Giannelle et al., 2020a; Di Cataldo 

et al., 2021; Kramer et al., 2021; Marrocu et al., 2023), although the policy prescribes that 

resources should be concentrated on a limited set of research and innovation priorities (Foray 

et al., 2012). 

This paper shows how this lack of selectivity undermines S3’s implementation and 

effectiveness by examining three aspects of the policy. 1) The correspondence between 

regional S3 priorities and regional technological capabilities. 2) The correspondence between 

regional S3 priorities and regional R&I funding through the European Regional Development 

Fund (ERDF). 3) The relation between ERDF R&I funding and knowledge production. I do so 

through a novel integration of three large datasets (Eye@RIS3, ERDF project data, and 

OECD’s REGPAT dataset). Therewith, I will answer the following research questions: 

1. To what extent do a region’s prioritized technological domains reflect regional 

capabilities? 

2. To what extent do regions spend ERDF R&I funding in line with prioritized 

technological domains? 

3. Is there a relation between ERDF R&I funding and knowledge production in the 

associated technological domains? 

The remaining part of this paper is structured as follows. The next section discusses the 

concept of S3, the scientific debate surrounding it, and the evaluations of its implementation 

conducted thus far. The third section describes the different sources of data used in this study 

and how these were integrated. Section 4 examines the results of the analysis of the three 
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research questions. The last section concludes by discussing this study’s limitations, its 

implications, and directions for future research. 

2. THEORETICAL BACKGROUND 

2.1 WHAT IS S3?  

The concept of smart specialization stems from the idea that the evolution of a regional 

innovation system is inherently linked to its context. A region’s development path depends on 

its ongoing economic dynamics and institutional structures. This is aptly illustrated by 

Boschma & Wenting (2007) in their study on the spatial evolution of the British automobile 

industry. They show that the automobile industry mostly thrived in the regions that were 

already heavily involved in industries closely related to the car industry, such as bicycle or 

coach making. Hence, regions should build on their existing strengths and capabilities.  

Therefore, S3 diverges from a top-down one-size-fits-all policy towards a bottom-up 

innovation policy that is tailor-made to each region. Every region should concentrate its public 

resources on a limited set of well-defined economic, technological or scientific domains, in 

which it either shows a competitive advantage or a considerable growth potential (Foray et al., 

2012).  

These targeted domains are called priorities or priority areas and are identified via the 

Entrepreneurial Discovery Process (EDP) (Foray et al., 2012). The involvement of local 

entrepreneurial actors in the process of discovering priority areas is a key feature of S3. Its 

underlying rationale can be traced back to Storper’s (1997) idea of regional economies as 

stocks of relational assets, i.e., local communities with their very own conventions, practices 

and (tacit) knowledge. Given their direct involvement in such communities, local 

entrepreneurial actors are probably better equipped than policymakers to understand these 

communities and identify the most promising paths for regional diversification (Foray et al., 

2009; D’Adda et al., 2019).  

A systematic identification of these diversification paths is a key challenge for smart 

specialization. Balland et al. (2019) developed a theoretical framework for regions to identify 

the most promising areas for smart specialization. Central to this framework are the concepts 

of relatedness and knowledge complexity. It is most interesting for regions to diversify into 

highly complex technologies, since these are hard to imitate, therefore sticky in space (Balland 

et al., 2020), and so, are expected to generate the highest long-term profits. Unfortunately, the 
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knowledge and capabilities needed to diversify into these complex technologies, are hard to 

attain. Therefore, regions have the most potential to develop new complex technologies in those 

areas related to existing capabilities (Hidalgo et al., 2018), as shown in Figure 1. There is a 

large strand of literature showing empirical evidence in support of this framework (Hausmann 

et al., 2006; Hidalgo & Hausmann, 2009; Neffke et al., 2011; Essletzbichler, 2013; Kogler et 

al., 2013; Rigby, 2013; Boschma et al., 2015; Petralia et al. 2022; Rigby et al., 2022; Antonelli 

et al., 2022; Mewes & Broekel, 2022). 

 

Figure 1. Framework for smart specialization (Balland et al., 2019). 

2.2 CONCERNS AND CRITIQUES ABOUT S3 

Smart specialization gained its importance in a relatively short period of time. It was first 

coined by the Knowledge for Growth Expert Group around 2009 (Foray, 2014) and initially 

implemented only 5 years later. This short journey from concept to policy raised a range of 

concerns among experts.  

Hassink & Gong (2019) argue that the smart specialization became to be an umbrella term 

for various concepts in economic geography. Therefore, it is often not well understood by those 

responsible for its implementation (Kroll, 2015; Capello & Kroll, 2016; Pugh, 2018). Others 

are concerned that involving local stakeholders in regional innovation policy entails the risk of 

rent-seeking behaviour, corruption, and regional lock-ins (Camagni & Capello, 2013; 

Boschma, 2014; Rodríguez-Pose et al., 2014; Grillitsch, 2016; Trippl et al., 2020).  

Moreover, there are several concerns about S3 related to governance institutions. 

Rodríguez-Pose et al. (2014) show that a high quality of regional governmental institutions 

seems to be crucial for a successful implementation. On top of that, the EU is characterized by 

diverse structures of governance within its Member States. Embedding S3 in these various 

institutional contexts can be challenging (Kroll, 2015; Capello & Kroll, 2016; Pugh, 2018). 
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This also relates with Hassink & Gong’s (2019) concern of how well S3 works next to already 

existing innovation policies.  

Lastly, several scholars point out that, while the Cohesion Policy tends to strengthen weaker 

regions, the logic behind S3 favours more advanced regions. The elements crucial for the 

policy’s implementation are exactly those that are missing in lagging regions (Boschma et al., 

2014; McCann & Ortega-Argilés, 2015; Capello & Kroll, 2016; Iacobucci & Guzzini, 2016). 

This may drive these regions to set many broad priorities instead of a few well-defined ones 

(Boschma, 2014; Capello & Kroll, 2016; Di Cataldo et al., 2021).  

2.3 EVALUATIONS OF S3 IMPLEMENTATION 

There is a growing body of literature evaluating the implementation of S3. This section 

provides an overview and emphasizes where the current paper differentiates. These studies can 

be divided into two groups: studies examining regional S3 priorities (see Table 1), and studies 

investigating regional S3 strategies and regional funding decisions (see Table 2). 

Table 1. Overview of studies evaluating S3 prioritization in alphabetic order. 

Study Focus / aim Geographical scope Type of priority  Data 

Biagi et al. 

(2021) 

The rationale of regions for 

prioritizing tourism in S3 

191 EU regions Tourism Regional tourism statistics 

Buyukyazici 

(2022) 

Do priorities reflect regional 

workplace knowledge and 

skills? 

20 Italian regions Economic 

domains 

Italian Sample Survey on 

Professions and Italian 

Labour Force Survey 

D’Adda et 

al. (2019) 

Do priorities reflect regional 

innovative capabilities? 

23 Italian regions Technological 

domains 

Patent data 

D’Adda et 

al. (2020) 

The relatedness between 

priorities 

19 Italian regions Technological 

domains 

Patent data 

Deegan et 

al. (2021) 

The relatedness and 

complexity of priorities 

128 European regions Economic 

domains 

SBS employment data  

Di Cataldo 

et al. (2021) 

Do priorities reflect economic 

characteristics? 

All regions and 

countries in the 

Eye@RIS3 dataset 

Economic and 

scientific 

domains, and 

policy objectives 

GDP, population, 

unemployment, EU QoG 

index, patents per 

inhabitant, tertiary 

educated 

Farinha et 

al. (2020) 

Do priorities reflect regional 

stakeholders’ perceptions? 

7 Portuguese regions Priorities in 

general 

Survey among 

stakeholders 

Gianelle et 

al. (2020a) 

How are priorities indicated 

and described? 

39 Italian and Polish 

regions 

Priorities in 

general 

Descriptive analysis of 

RIS3 documents 

Iacobucci & 

Guzzini 

(2016) 

The relatedness of priorities 

and their potential 

interregional links  

16 Italian regions Technological 

domains 

Descriptive analysis of 

RIS3 documents 

Kramer et 

al. (2021) 

Do priorities reflect regional 

capabilities? 

185 European regions Technological, 

economic, and 

scientific domains 

Patent data, SBS 

employment data, and 

scientific publication data. 

Lopes et al. 

(2018) 

Do priorities reflect regional 

stakeholders’ perceptions? 

7 Portuguese regions Priorities in 

general 

Survey among 

stakeholders 

Marrocu et 

al. (2023) 

Do priorities reflect regional 

capabilities? 

243 European regions Economic 

domains 

SBS employment data 

Sörvik & 

Kleibrink 

(2015) 

 

What are the most common 

(combinations) priorities? Do 

priorities reflect economic 

characteristics? 

174 Eu regions, 18 

non-EU regions 

Economic 

domains 

Descriptive statistics of 

Eye@RIS3 data and SBS 

employment data 
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As can be seen in Table 1, most studies in the first group examine how well regional S3 

priorities reflect regional capabilities. They vary in their geographical scope and type of 

priority, the latter determining the data used (e.g., employment data for economic domains and 

patent data for technological domains). Moreover, the second column shows that researchers 

use different indicators to evaluate S3 priorities. Some look at the relatedness between priorities 

(Iacobucci & Guzzini, 2016; D’Adda et al., 2020), whereas others measure the relatedness of 

chosen priorities to a region’s technological or economic profile (Deegan et al., 2021; Kramer 

et al., 2021; Marrocu et al., 2023). Location quotients or revealed comparative advantages are 

used to compare priorities to regional capabilities (D’Adda et al., 2019; Kramer et al., 2021; 

Marrocu et al., 2023).  Following Balland et al.’s (2019) framework, two studies also 

considered the complexity of prioritized domains (Deegan et al., 2021; Kramer et al., 2021).  

Several scholars point out that a systematic analysis of S3 priorities is challenging because 

priorities are defined in a non-codified way (Iacobucci & Guzzini, 2016; D’Adda et al., 2019; 

Marrocu et al., 2023). This methodological problem is less of an issue for analysing economic 

domains since regions also have to select the associated NACE sectors for each priority (see 

Data and Methods section for a more detailed description of S3 priority data). However, this 

is not the case for the analysis of technological domains. In their analysis of Italian regions, 

D’Adda et al. (2019) and D’Adda et al. (2020) overcome this issue by matching priorities to 

three-digit IPC codes using WIPO’s automatic categorization assistant1. Alternatively, Kramer 

et al. (2021) use a less fine-grained codifying method, by matching priorities with Schmoch’s 

(2008) technology classes via automatic text mining. By thoroughly analysing all S3 priorities, 

the current study created a technological taxonomy that is tailored to S3 priority data (see Data 

and Methods). Therewith, the correspondence between prioritized technological domains and 

a region’s technological capabilities can be measured more accurately. 

Some syntheses about S3 priorities can be drawn from the studies in Table 1. First, Marrocu 

et al. (2023) show that most regions tend to prioritize economic domains that are not very 

related to their economic profile. The results of Deegan et al. (2021) indicate a stronger relation 

between economic relatedness and selected priorities. Second, Deegan et al. (2021) also show 

that regions tend to prioritize more complex economic domains. However, overall, regions do 

 

 

 

1 Categorization Assistant in the International Patent Classification (IPCCAT), see www.wipo.int/ipccat/. 

http://www.wipo.int/ipccat/
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not consider relatedness and complexity in tandem when selecting priorities, as proposed by 

Balland et al. (2019), but rather independently. Third, both Deegan et al. (2021) and Di Cataldo 

et al. (2021) notice that regions often mimic neighbouring regions in their S3 strategies. Fourth, 

there is a moderate degree of coherence between each region’s prioritized technological 

domains and the domains in which they possess a comparative advantage, with a slightly higher 

degree for more developed regions (D’Adda et al., 2019; Kramer et al. 2021). This degree tends 

to be lower for prioritized economic domains (Kramer et al. 2021; Marrocu et al. 2023). 

Moreover, Kramer et al. (2021) note that the regions that define more broad and vague priorities 

often have a better correlation between priorities and regional capabilities. This relates to the 

commonly shared notion that regions are not selective in their priority setting, and that most 

priority areas are very broadly defined (Iacobucci & Guzzini, 2016; Gianelle et al., 2020a; Di 

Cataldo et al., 2021; Marrocu et al., 2023). This seems to be more of an issue for regions with 

a weaker quality of governance (Di Cataldo et al., 2021). 

As shown in Table 2, a relatively small body of literature is concerned with how S3 

influences regional funding decisions. D’Adda et al. (2021) investigate to what extent S3 

changed the allocation of structural funds in Italy by comparing S3’s first programming period 

of 2014-2020 with the preceding one. They find that the changes are modest and differentiate 

among regions. The other studies in this group focus on the alignment between S3 priorities 

and a region’s funding decisions by analysing regional project selection procedures, commonly 

referred to as calls for proposals. In the same vein as D’Adda et al. (2021), both Giannelle et 

al. (2020a) and Fratesi et al. (2021) conclude that S3 did not engender much change from 

former more horizontal industry intervention policies. They argue that this is caused by the 

lack of selectivity in S3 priorities, as well as the fact that most calls for proposals address all a 

region’s S3 priorities collectively. Kramer et al. (2021) add that this is more prevalent in less 

developed regions. 

Table 2. Overview of studies evaluating S3 funding in alphabetic order. 

Study Focus / aim Geographical scope Data 

D’Adda et al. 

(2021) 

To what extent is the allocation of structural 

funds changed because of S3? 

15 Italian regions ESF project data, ERDF 

projects are excluded. 

Fratesi et al. 

(2021) 

Are calls for proposals aligned with priorities? 

Do they favour collaborative projects? Do they 

stimulate entry into new activities? Do they 

support stakeholder communities? 

6 EU countries and 17 

EU regions 

Calls for proposals and 

RIS3 documents 

Gianelle et al. 

(2020a) 

How are priorities defined? Are calls for 

proposals aligned with priorities? How specific 

are calls for proposals? 

21 Italian and 16 

Polish regions 

Calls for proposals and 

RIS3 documents 

Kramer et al. 

(2021) 

Are calls for proposals aligned with priorities? 

Are funded projects aligned with priorities? 

185 European regions Calls for proposals, ERDF 

project data 
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Additionally, Kramer et al. (2021) study the alignment of S3 priorities and funding 

decisions by examining the actual projects that are funded by the ERDF. They clearly show 

that the use of funded projects gives a more accurate picture of how well funding is aligned 

with S3 priorities. Where they find that 84% of the calls for proposals correspond to S3 

priorities, only 54% of the funded projects are aligned. The current piece of work will do 

something similar by building upon the work of Bachtrögler et al. (2021). However, as argued 

before, by using a technological taxonomy tailored to S3 priority data, I will be able to provide 

a more precise view of the alignment between S3 priorities and funded projects.   

2.3 THE IMPACT OF S3 

Evidence on the impact of S3 is very limited, mainly because it is not yet possible to 

measure the policy’s structural effects on innovation and regional economies. Rigby et al. 

(2022) overcome this issue, not by examining the actual impact of S3, but by mapping to what 

extent EU cities have followed a smart specialization trajectory since 1980. They do this by 

tracking technological complexity and relatedness of cities, as proposed by Balland et al. 

(2019). Their results indicate that cities following such a smart specialization trajectory enjoy 

an economic performance premium over cities that do not.  

Additionally, some scholars investigate S3’s short term impact. For instance, Romão 

(2020) studies the effect of S3 on the tourism sector, and find positive effects on tourism 

demand, supply and specialization in regions that prioritized tourism. Santos et al. (2022) study 

the effect of S3 on regional productivity in Portugal by comparing the S3’s first programming 

period of 2014-2020 with the preceding one. They find that the policy generates an additional 

effect on regional productivity, but only when it is combined with other types of innovation 

subsidies. Likewise, Crescenzi et al. (2020) analyse the effect of an S3 forerunner programme 

in Italy on firm performance in Italy. Their analysis indicates that the programme was 

unsuccessful in boosting investments, value added and employment, except for low-tech 

sectors. However, as the authors conclude, their results are not applicable to other EU regions. 

An EU-wide analysis of S3’s impact is still missing. Moreover, none of the aforementioned 

literature investigates the policy’s impact on technological innovation, although this is one of 

its main targets.  
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2.4 HYPOTHESES 

Collectively, the studies presented above provide a detailed picture of S3’s first 

programming period. I will move along the same lines, aiming to fill the following gaps. 1) An 

EU-wide analysis of the consistency of regional S3 priorities with each region’s technological 

capabilities, using a taxonomy that accurately fits S3 priority data. 2) The alignment between 

R&I-projects funded by the ERDF and prioritized technological domains. 3) The short-term 

impact of ERDF R&I funding on knowledge production, and how this impact is influenced by 

the lack of selectivity in regional S3 strategies.  

Building upon the body of literature discussed above, I formulate three hypotheses:  

Hypothesis 1: A region’s prioritized technological domains reflect its 

technological capabilities. 

Hypothesis 2: A region’s ERDF R&I expenditure is in line with its prioritized 

technological domains. 

Hypothesis 3: There is a positive relation between a region’s ERDF R&I 

expenditure and knowledge production. The more a region concentrates its 

expenditure on a particular technological domain, the stronger this 

relationship becomes. 

3. DATA AND METHODS 

3.1 TECHNOLOGICAL TAXONOMY 

To examine the research questions, a novel integration of the following three datasets is 

made: Eye@RIS3 dataset (European Commission, 2018), ERDF project data (Bachtrögler et 

al., 2021), and OECD REGPAT database (OECD, August 2022). This integration is achieved 

by making use of the taxonomy of technological domains shown in Figure 2. This taxonomy 

is based on a thorough analysis of all regional S3 priorities in the Eye@RIS3 dataset, and 

therefore aptly fits this dataset. Most of the technological domains are relatively specific, but 

since some priorities described very broad technological domains (such as ‘ICT’ or ‘sustainable 

energy’) it was necessary to also include broader domains. Figure 2 shows how the specific 

domains are connected to the broader ones.  
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Figure 2. Technological taxonomy 

3.2 S3 PRIORITIES (EYE@RIS3 DATASET) 

Eye@RIS3 is an online database, available at the European Commission’s (EC) S3 

Platform2, containing all the S3 priorities defined by national and regional authorities in RIS3 

documents. The strategies differ in territorial level, but most are on a NUTS2 level3. Each 

priority comprises the following pieces of information: the region or Member State, a free text 

description of the priority, the associated economic domains (based on the 2-digit NACE 

sectors), the associated scientific domains (based on NABS2007 categories), the associated 

 

 

 

2 https://s3platform.jrc.ec.europa.eu/map  

3 All national strategies were excluded from the analysis and all other strategies were converted to the NUTS2 

level to make comparable analysis possible. See Appendix 7.1 for a description of the used procedure.  
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policy objectives (based societal grand challenges identified in Horizon2020 and the headline 

policies in the Innovation Union Flagship Initiative), and the date when a priority was set (see 

Appendix 7.1 for a description of how the date and the territorial level of S3 priorities are treated 

in the econometric analysis). 

Priorities were matched to technological domains by combining automatic text mining and 

manual content analysis of the free text descriptions, and an analysis of the selected economic 

and scientific domains and policy objectives. Regions identify 5.8 priorities on average, of 

which 93.7% were covered by the technological taxonomy. As discussed before, regions tend 

to define very broad priorities. Therefore, each individual priority is associated with 4.6 

technological domains on average, which means that the total number of prioritized 

technological domains averages 15.6. This strongly contradicts the selectivity of intervention 

areas that S3 advocates, which is a common finding in studies evaluating S3 priorities (Gianelle 

et al., 2020a; Di Cataldo et al., 2021; Marrocu et al., 2023). 

3.3 S3 AND R&I FUNDING (ERDF DATASET) 

S3 priorities form the guiding foundation for the allocation of the European Regional 

Development Fund (ERDF). Bachtrögler et al. (2021) created a structured and comprehensive 

dataset compiling most of the projects co-funded by the ERDF (95% of the official 

commitments reported on the EC’s Open Data Platform). The dataset contains projects from 

the 27 EU Member States and the United Kingdom over the programming period of 2014-2020 

that were reported in lists of operations by a certain cut-off date (mostly end of 2020 or 

beginning of 2021).  

For each project in this dataset, the following pieces of information are relevant: the NUTS2 

region in which the project was carried out, the starting date of the project, a free text 

description of the project, a dummy variable indicating whether the project is R&I-related4, 

and the actual ERDF co-funding amount. By text mining the free text descriptions5, 42.4% of 

 

 

 

4 Since this study focusses on innovation, only R&I-related projects are included in the analysis (24.5% of 

the total ERDF co-funding amount). 

5 See Appendix 7.2 for a detailed description of the text mining procedure.  
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the R&I projects could be matched to one or more technological domains6. On average, each 

of these projects were associated with 3.4 domains.  

Figure 3. ERDF R&I projects per technological domain. Note: projects can be matched to more than one 

domain, so percentages do not add up to 100%. 

 

Figure 3 shows the distribution of ERDF funded projects among the technological domains.  

The technological domains with the highest shares a generally also the domains that have a 

broad definition, therefore relatively many projects are related to those domains. In general, 

the domains with the lowest shares are either relatively new (e.g., blockchain) or more complex 

 

 

 

6 The remaining projects were excluded from the analysis. 
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(e.g., quantum computing) technologies. This is probably because these technologies are harder 

to imitate, therefore only a few firms work on R&I projects related to these technologies.  

 

 

Figure 4a. Total ERDF funding for R&I projects per 

NUTS2 between 2014-2020. 

 

Figure 4b. Share of Total ERDF Expenditure 

dedicated to R&I projects between 2014-2020 

 

As depicted in Figure 4a, the total amount of ERDF funding between 2014-2020 varies 

significantly among regions. Especially Southern and Eastern European regions (with the 

exception of Greece, Romania and Bulgaria) have a relatively high amount of R&I funding. 

Figure 4b puts this amount in the context of the total ERDF budget per NUTS2 region. 

Strikingly, the regions with high R&I expenditure in Figure 4a, are generally not the regions 

with a high share of their ERDF budget dedicated to R&I projects in Figure 4b. Most Dutch 

and British regions have a relatively high share of their total ERDF budget dedicated to R&I, 

but simultaneously have a low absolute amount of R&I funding. A possible explanation could 

be that there are more R&I-related activities going on in more developed regions, and so it is 

easier to find R&I-related projects to fund.  

3.4 REGIONAL TECHNOLOGICAL CAPABILITIES (REGPAT DATASET) 

The OECD’s REGPAT database is used to measure each region’s technological 

capabilities. This dataset contains all patent applications to the European Patent Office between 

1977 and 2020. The patent applications are regionalized at the NUTS2 level using the address 

of their inventor(s) and categorized according to this study’s technological taxonomy (Figure 

2) using their Cooperative Patent Classification (CPC) codes.  
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A region’s technological capabilities are measured by the computation of a region’s 

Relative Technological Advantage (RTA) in each technological domain and the degree of 

relatedness of each domain to the rest of the region’s technological profile, also known as the 

relatedness density (Boschma et al., 2015). Based on Hidalgo et al. (2007), region r has an 

RTA in technology i at time t if the share of patents in technology i in region r is greater than 

the share of patents in technology i in the entire sample. More formally, RTA = 1 if 

 

𝑝𝑎𝑡𝑒𝑛𝑡𝑠𝑖,𝑟,𝑡/ ∑ 𝑝𝑎𝑡𝑒𝑛𝑡𝑠𝑖,𝑟,𝑡𝑖

∑ 𝑝𝑎𝑡𝑒𝑛𝑡𝑠𝑖,𝑟,𝑡/ ∑ ∑ 𝑝𝑎𝑡𝑒𝑛𝑡𝑠𝑖,𝑟,𝑡𝑖𝑟𝑟
> 1 

 

Then, following Hidalgo et al. (2007) and Boschma et al. (2015), the density around 

technology i in region r at time t can be computed using the relatedness of technology i to the 

technologies in which region r has an RTA at time t, divided by the sum of technological 

relatedness of technology i  to all the other technologies in the entire sample: 

 

𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑟,𝑡 =   
∑ 𝜑𝑖𝑗𝜖𝑟,𝑗≠𝑖

∑ 𝜑𝑖𝑗𝑗≠𝑖
 

 

RTA as well as relatedness density were calculated using the EconGeo R package by 

Balland (2017). 

4. RESULTS 

4.1 S3 PRIORITIES AND TECHNOLOGICAL CAPABILITIES 

This section aims to analyse how well S3 priorities reflect a region’s technological profile. 

As discussed in the previous section, each region prioritizes 15.6 technological domains on 

average. As Figure 5a shows, this amount varies considerably among regions. These regional 

differences can partially be explained by the relation between the number of prioritized 

technological domains and the number of domains in which a region is specialized (i.e., having 

an RTA above 1), shown in Figure 6.  
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Figure 5a. Total number of prioritized 

technologies. 
 

Strikingly, the relation shown in Figure 6 seems to be stronger than shown in a similar 

graph for economic domains in a paper by Deegan et al. (2021, p. 509). Although this does not 

say anything decisive, it seems to be that regional prioritization choices for technological 

domains are generally more grounded than for economic domains. This view is supported by 

Kramer et al. (2021), who conclude that, in general, S3 priorities match better to a region’s 

technological profile than to their economic profile. Moreover, Figure 6 also shows that GDP 

does not seem to be related to the number of prioritized domains or the number of 

specializations. However, as expected, it appears that the more specializations a region has, the 

higher its share of prioritized domains in which it is specialized (see also Figure 5b). 

Figure 5b maps each region’s share of prioritized domains in which it has an RTA. This 

share averages 39.6% of prioritized domains, which is about the same as Marrocu et al. (2023) 

found for economic domains (43%). Kramer et al. (2021) also examined the correspondence 

between S3 priorities and technological domains and conclude that they match “relatively well” 

(p. 129). As they do not mention the average share, it is difficult to compare these findings one-

to-one, but one could argue that a 39.6% match is not a “relatively well” match. This difference 

could be caused by their use of a less fine-grained taxonomy.  
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Figure 5b. Share of prioritized technologies in 

which a region has an RTA. 
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Figure 6. Relation between a region's total number of RTAs and their total number of prioritized 

technological domains. 

 

Tables 3a-c reveal some more insights on the prioritization of technological domains. First 

of all, as presented in Table 3a, 16.44% of RTAs across EU regions are not prioritized. It could 

be that these were overlooked in the prioritization process, but it could also be that these are 

deliberately bypassed to avoid regional lock-ins. Second, the bottom row of each table shows 

the difference between prioritized and not prioritized technological domains in which regions 

are not specialized. The reason for prioritizing such an unacquired technology could be that the 

region aims to diversify into such a technological domain. As discussed before, a region is most 

likely to diversify into a new domain if it already possesses capabilities in related domains. 

Therefore, one would expect a large difference between the prioritized unacquired domains 

and unprioritized unacquired domains in Table 3a and 3b. Although this is somewhat true, the 

difference seems to be marginal.  
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Table 3a. Distribution of technological domains.7 

 Priority = 0 Priority = 1 

RTA = 1 16.44% 19.51% 

RTA = 0 34.23% 29.82% 
 

Table 3b. Average relatedness density. 

 Priority = 0 Priority = 1 

RTA = 1 44.34 45.88 

RTA = 0 31.80 33.37 
 

 

Table 3c. Average RTA. 

 Priority = 0 Priority = 1 

RTA > 1 2.30 1.90 

RTA < 1 0.46 0.52 
 

 

 

Hypothesis 1 can be tested using a logit model in which the dependent variable represents 

the likelihood that region r prioritizes technological domain i explained by having an RTA in 

technology i (dummy) and the degree of relatedness of technology i to the region’s 

technological portfolio. Hence, the basic equation to be estimated is written as follows: 

 

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖,𝑟,𝑡 =  𝛽0 +  𝛽1𝑅𝑇𝐴𝑖,𝑟,𝑡 +  𝛽2𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑟,𝑡 +  𝜀𝑖,𝑟,𝑡 

 

where 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖,𝑟,𝑡 = 1 if technology i is prioritized by region r in year t. Table 4 shows that 

both variables stay significant, even when adding control variables and fixed effects for regions 

and years. The results support Hypothesis 1. Although regions tend to prioritize large sets of 

technological domains, they seem to consider their own technological profile when designing 

S3 priorities.  

  

 

 

 

7  There are 33 technologies for 256 NUTS2 regions, so 100% is equal to 8448 region-technology 

combinations. 
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Table 4. Correspondence between a region’s S3 priorities and technological profile. 

Dependent variable:  

Priority (dummy) 

Model 1 

RTA & Rel. Density 

Model 2 

Covariates 

Model 3 

Fixed Effects 

Constant -0.013164 0.010565 0.192831 

  (0.020172) (0.021330) (0.181486) 

RTA (dummy) 0.066404** 0.068480** 0.078054** 

  (0.023442) (0.024887) (0.029880) 

Relatedness density 0.162268*** 0.142144*** 0.140523** 

  (0.023624) (0.026549) (0.051783) 

GDP   -0.010628 0.006776 

    (0.028277) (0.075874) 

Population density   -0.081329*** -0.056569 

    (0.022344) (0.053871) 

Population size (log)   0.250414*** 0.258608*** 

    (0.027683) (0.069210) 

Pseudo R2 (McFadden) 0.007441 0.019309  

Conditional R2   0.202 

Region F.E. No No Yes 

Year F.E. No No Yes 

Num. Observations 9933 9042 9042 

Num. NUTS2 regions  255 230 230 

Num. Years  7 7 7 
***P < 0.001; **P < 0.01; *P < 0.05 

4.2 S3 PRIORITIES AND R&I FUNDING  

Next, I examine to what extent regions spend their R&I funding in line with their S3 

priorities. Overall, 76% of all ERDF funding for R&I is spent on projects that are associated 

with a region’s prioritized technological domains (see Table 5). It is worth noting that this 

percentage only considers the projects that could be matched to a technological domain via the 

text mining procedure (45.6% of all projects). It is hard to say anything decisive about the 

unmatched ERDF projects, as the cause could be either the inadequacy of the text mining 

process or the inadequacy of the text descriptions of these projects. The latter could imply a 

poor alignment with S3 priorities. 

Table 5. Distribution of ERDF R&I funding. 

 Priority = 0 Priority = 1 

RTA = 1 10% 36% 

RTA = 0 14% 40% 
 

 

Figure 7 displays the spatial distribution of the share of ERDF expenditure on R&I projects 

that was in line with a region’s prioritized technological domains. Most regions spend the 

overall share of their ERDF R&I funding in line with S3 priorities, however, there are some 

exceptions with a relative low share (such as Helsinki, Stockholm, Northern Denmark, and 

Northern Romania). This is mainly because these regions developed their S3 priorities nearing 
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the end of the programming period, and so, already spent a great deal of their funding before 

defining priorities.  

 

Figure 7. Share of ERDF expenditure on R&I in line with S3 priorities per NUTS2 region between 2014-

2020. 

 

To examine this correspondence in more detail, a logit model was created regressing 

whether technology i was funded by region r in year t over whether this technology was 

prioritized that year. The equation to be estimated can be written as follows: 

 

𝐹𝑢𝑛𝑑𝑒𝑑𝑖,𝑟,𝑡 =  𝛽0 +  𝛽1𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖,𝑟,𝑡 + 𝜀𝑖,𝑟,𝑡 

 

where 𝐹𝑢𝑛𝑑𝑒𝑑𝑖,𝑟,𝑡 =  1 if region r funded one or more projects associated with technology i 

in year t.  Table 6 shows there is a strong positive relation between prioritizing a technological 

domain and funding it. The variable priority maintains significant when adding fixed effects 

for countries, technologies and years. 
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Table 6. Correspondence between a region's ERDF spending and S3 priorities. 

Dependent variable:  

ERDF funding (dummy) 

Model 1  

Priority 

Model 2 

Covariates 

Model 3 

Fixed Effects 

Intercept -0.663244*** -0.606078*** -1.961176 

  (0.007987) (0.009590) (1.222037) 

Priority 0.569061*** 0.648513*** 0.152211*** 

  (0.007750) (0.009382) (0.016811) 

GDP   -0.053835*** -0.500360** 

    (0.012599) (0.154176) 

Population density   0.007730 -0.151395 

    (0.009675) (0.138730) 

Population size (log)   0.370779*** 1.012923*** 

    (0.012924) (0.171620) 

Pseudo R2 (McFadden) 0.056449 0.092238  

Conditional R2   0.842 

Region F.E. No No Yes 

Technology F.E. No No Yes 

Year F.E. No No Yes 

Num. Obs. 75999 54714 54714 

Num. NUTS2 regions 256 238 238 

Num. Technologies 33 33 33 

Num. Years 9 7 7 
***P < 0.001; **P < 0.01; *P < 0.05 

 

Although the results represented above suggest a confirmation of Hypothesis 2, a critical 

nuance should be made. As Figure 8 evidently shows, there is a strong positive relation 

between each region’s total number of prioritized technological domains and their share of R&I 

funding spent in line with those prioritized domains. Therefore, the high alignment between S3 

priorities and R&I expenditure is mainly caused by the lack of selectivity in regional S3 

strategies. For instance, the region of Brittany in the northeast corner of France, spent 95% of 

their funding on R&I projects that are related to their prioritized technological domains, which 

seems to support Hypothesis 2. However, of the 33 technological domains that are considered 

in this paper, they prioritized 30. Therefore, funding projects that are in line with their S3 

strategy is relatively easy. While this may be self-evident, it is important to keep this in mind 

when interpreting these results. Especially when considering that most regions are not very 

selective in prioritizing technological domains (see Figure 5a).  

So, although the results indicate a confirmation of Hypothesis 2, the high correspondence 

between S3 priorities and ERDF R&I funding is mainly a result of the overall large number of 

prioritized domains.   
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Figure 8. Relation between the number of prioritized technological domains and the share of R&I funding 

in line with those priorities per NUTS2 region. 

 

4.3 R&I FUNDING AND KNOWLEDGE PRODUCTION 

A knowledge production model was created to test the last hypothesis. The econometric 

model estimates the relation between a region’s R&I expenditure in a technological domain 

and new patent applications related to that domain filed afterwards. To incorporate a sufficient 

time lag between R&I expenditure and patent applications, I use a 2-year lag between the 

starting year of an R&I project and the year a patent application is first filed to the patent office.  

Because I am also interested in how the lack of selectivity in S3 strategies affects the impact 

of R&I funding on knowledge production, I include an interaction term. Rather than using a 

region’s total number of prioritized domains, I use a more direct measure of a region’s 

selectivity, namely the share of a region’s total funding in year t that is dedicated to 

technological domain i. The underlying logic is that the more a region concentrates its 

resources, the more effective these are. Additionally, whether region r has an RTA in 

technology i and the relatedness of that technology to the regional technological profile are 

also considered. 

As common in research using patent data, the current panel dataset has a large number of 

observations with zero patents. To deal with this issue, I follow the method proposed by Burger 
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et al. (2009) and create a zero-inflated negative binomial model. This overcomes the biases 

usually created by logarithmic transformation and deals with overdispersion and excess zeros. 

Both the negative binomial and the zero-inflated part of the model are estimated using the 

following econometric equation: 

 

𝑃𝑎𝑡𝑒𝑛𝑡𝑠𝑖,𝑟,𝑡 =  𝛽0 +  𝛽1𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑖,𝑟,𝑡−2 + 𝛽2𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑖,𝑟,𝑡−2

∗ 𝑆ℎ𝑎𝑟𝑒 𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑝.𝑖,𝑟,𝑡−2 +  𝛽3𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑛𝑒𝑠𝑠  𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖,𝑟,𝑡−2 +  𝛽4𝑅𝑇𝐴𝑖,𝑟,𝑡−2  

+  𝜀𝑖,𝑟,𝑡−2 

 

Table 7 shows the results for the different econometric models. Expenditure is significant 

in all models, but, with the addition of covariates in Model 3, its sign reverses in both parts of 

the model. This is caused by the relation between GDP and R&I Expenditure (see Figure 9a-b 

in the Appendix). In general, regions with a higher GDP have less ERDF expenditure but 

generate more patents. The regional fixed effects in Model 4 control for this.  

Table 7. Knowledge production model. 

Dependent variable:  

Patents (2-year lag) 

M1: Expenditure & 

Share of Tot. Exp. 

M2: Relatedness 

density & RTA 

M3: Covariates M4: Fixed Effects 

 NB Logit NB Logit NB Logit NB Logit 

Constant 1.929*** -7.743*** 1.772*** -7.606*** 1.608*** -5.486*** 0.399 -3.816*** 

   (0.013) (0.899) (0.012) (0.845) (0.013) (0.185) (0.420) (0.294) 

Log(Expenditure + 1) 0.040** -5.877* 0.046*** -4.709* -0.166*** 0.066* 0.324*** -0.812** 

  (0.012) (2.652) (0.012) (2.285) (0.011) (0.034) (0.012) (0.257) 

Interaction term:  

Exp. (log) * Share of 
Total Expenditure 

0.201*** -30.613*** 0.196*** -27.339*** 0.235*** -0.154*** 0.136*** -4.189*** 

  (0.011) (7.270) (0.010) (6.252) (0.009) (0.026) (0.006) (0.782) 

Relatedness density  
 

0.223*** -0.087 -0.112*** -0.488*** 0.144*** -0.544*** 
   

 
(0.012) (0.189) (0.013) (0.036) (0.023) (0.129) 

RTA (dummy)    0.402*** -0.060 0.491*** -0.019 0.352*** 0.073 

     (0.012) (0.162) (0.012) (0.032) (0.013) (0.105) 
GDP     

 

1.045*** 
-

10.324*** 
0.535*** -5.531*** 

      
 

(0.026) (0.319) (0.088) (0.602) 
Population size (log)     

 
-0.110*** 0.269*** 0.621*** 0.582*** 

      
 

(0.024) (0.035) (0.101) (0.163) 

Population density     
 

0.031 0.085 0.215 0.207 
      

 
(0.016) (0.091) (0.138) (0.327) 

Log(Theta) -1.688***   -1.604*** 
 

-0.992*** 
 

 
 

  (0.008)   (0.008) 
 

(0.011) 
 

 
 

AIC 230351.821 227479.890 177172.448 160134.896 

Log likelihood -115168.911 -113728.945 -88569.224 -80046.448 

Num. Obs. 48180 48180 40425 40425 
Region F.E. No No No Yes 

Year F.E. No No No Yes 

Num. NUTS2 regions 289 289 242 242 
Num. Years 5 5 5 5 
***P < 0.001; **P < 0.01; *P < 0.05 

 

The interaction term is stable in all models and has a relatively large estimate (all variables 

are mean-centred), especially in the zero-inflated models. This means that the more expenditure 
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is concentrated on a certain technological domain, the more effective it is in generating new 

knowledge. Moreover, RTA and Relatedness density are both significant (RTA only in the 

negative binomial model), indicating the importance of the consideration of both aspects in 

defining S3 priorities.  

Overall, the model shows there is a relation between regional R&I funding of a certain 

technology and a region’s knowledge production in that same technology 2 years later. This 

relation seems to become stronger when funding is concentrated on a few domains. Hence, 

these findings suggest a confirmation of Hypothesis 3.  

5. DISCUSSION AND CONCLUSIONS 

This paper analysed three aspects of S3’s first programming period: the correspondence 

between S3 priorities and regional capabilities, the alignment between S3 priorities and R&I 

funding, and the relation between R&I funding and knowledge production. A recurring issue 

throughout the analysis is the lack of selectivity in both S3 priorities and regional funding 

decisions. Although prioritized technological domains reflect to some extent regional 

technological profiles, there is still much room for improvement. The broadly defined priority 

areas target numerous technological domains often unrelated to a region’s technological 

capabilities. Moreover, R&I funding seems to be well aligned with prioritized domains, but 

this is mainly caused by the large number of prioritized domains. Nevertheless, there is a 

significant and positive relation between R&I funding and knowledge production. However, 

this relation becomes stronger when funding is spent more concentrated as opposed to spread 

out over many domains. Therewith, unveiling the importance of selectivity for the effectiveness 

of R&I funding.  

Still, being selective is not enough. As the analysis shows, a region’s critical mass in a 

certain domain and its relatedness to a region’s profile are also determinants of a region’s 

knowledge production. Hence, regions should not only be selective, but also select those 

domains with the greatest growth potential. Therefore, selecting and defining priority areas 

should be substantiated by a sound analytical base. The extensive smart specialization literature 

has proposed several analytical tools and quantifiable concepts (like relatedness density and 

complexity) that could guide regions in this prioritization process. This paper and several others 

have shown that these concepts are only partially used by regional authorities. Providing 



 

 

 

23 

regional policymakers with these analytical tools and the necessary data could help them to 

make more informed decisions.  

Naturally, this study has some limitations. Although S3 tries to stimulate general regional 

development, this paper focusses solely on the technological dimension, more specifically 

technological capabilities captured in patent data. It is important to stress that patents do not 

reflect all technological capabilities and capture only a specific type of regional development. 

Therefore, this study should be complemented with research investigating other dimensions, 

as extensively discussed in the Theoretical Background.  

Another, more methodological, limitation originates from the text mining procedure. Only 

42.4% of the ERDF projects could be matched to one or more technological domains, which 

challenges the accuracy of the analysis of Hypotheses 2 and 3. This insufficiency could be 

caused by an inadequacy of the project descriptions or an inadequacy of the text mining process 

(see Appendix 7.2 for more details). The former is difficult to solve, but there are several things 

future research can do to overcome the latter. For instance, by generating more extensive 

keyword lists for each technology, though this entails the risk of including keywords that are 

either too general or relate to several technological domains at once. Therefore, the addition of 

new keywords should always be complemented with manually scrutinizing the text mining 

results. Another option would be to use different, more advanced text mining techniques (for 

an overview see Talib et al. (2016) and Tandel et al. (2019)).  

Although this study is the first to shed light on S3’s short-term impact on regional 

knowledge production, its structural impact is yet to be revealed. In a similar vein as the current 

work, future research could focus on S3’s long-term impact on knowledge production, but its 

impact on other dynamics, such as technological diversification, complexity, economic growth, 

or inter-regional collaborations, is important too.   

On top of that, the current paper presents new evidence on the importance of selectivity in 

S3 strategies and the concentration of public resources on a few intervention areas. However, 

more analysis is still needed to explore in more detail what the most ideal composition of 

intervention areas would be. This probably depends on regional characteristics, but also on 

certain features of the targeted technological domains, such as their complexity or maturity. 

Although this paper has shown the need for more selective S3 strategies, it is still unclear 

why regions tend to define large sets of broadly defined priority areas. While a few scholars 

have made some speculations about the underlying rationale (Iacobucci & Guzzini, 2016; Di 

Cataldo et al., 2021), there is still no substantiated understanding of why certain S3 principles 
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are circumvented in the policy’s implementation. Therefore, a natural progression of this work 

would be to investigate the regional implementation of S3 more closely to understand why 

regions tend to be unselective. 
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7. APPENDIX 

7.1 REGIONAL AND TEMPORAL DIMENSION OF S3 PRIORITY DATA 

Most S3 strategies were developed at the NUTS2 level, however, some also at the NUTS1, 

NUTS3 or national level8. In order to make comparable analysis possible, all strategies were 

converted to the NUTS2 level. This entailed duplicating NUTS1 region strategies to its 

subordinate NUTS2 regions, and aggregating NUTS3 level strategies to their overarching 

NUTS2 region. The S3 strategies at the national level were excluded from the analysis, except 

for smaller countries where the national level is the same as the NUTS2 level, such as 

Luxembourg and Latvia. 

The Eye@RIS3 dataset also includes the date on which the strategy was submitted to the 

S3 platform. This date was incorporated in the econometric analysis for both Hypothesis 1 and 

2. This means that regional capabilities were measured in the year that a strategy was designed, 

and that the correspondence between S3 priorities and R&I funding is measured from the year 

a strategy was designed to the end of the programming period.  

7.2  TEXT MINING PROCESS 

For each technological domain, a comprehensive list of associated keywords was created. 

This was done by manually selecting several glossary/terminology websites for each 

 

 

 

8 For a more detailed description of the varying territorial levels of S3 strategies, see Di Cataldo et al. (2021). 
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technology9. These websites contain key terms associated with a certain technology which were 

automatically scraped and then compiled per technological domain. Keywords that were too 

general were deleted. For instance, the term ‘kilowatt per hour’, which can be associated with 

several technologies that focus on the generation of energy. The keyword lists that resulted 

from this were then used to automatically text mine the ERDF project descriptions. The results 

of this matching process were then manually scrutinized to fine-tune the keywords list, 

whereafter the automatic text mining exercise was repeated. These last steps were reiterated 

several times until the matching results seemed satisfactory. 

7.3 THE RELATION BETWEEN GDP, R&I FUNDING, AND KNOWLEDGE 

PRODUCTION 

 

Figure 9a. The relation between GDP and ERDF R&I 

funding per capita. Note: both variables are log 

transformed. 

 

Figure 9b. The relation between GDP and regional 

patent stock. Note: both variables are log 

transformed. 

 

 

 

 

9  For example, https://en.wikipedia.org/wiki/Glossary_of_artificial_intelligence and 

https://www.expert.ai/glossary-of-ai-terms/ were, among others, used to gather keywords associated with 

Artificial Intelligence. 
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