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Preface

Technological Diversification in the Periphery:

An Empirical Study of the Importance of

Interregional Linkages across European Regions
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Therefore, I would like to address special thanks to my supervisors for their immense sup-

port during the process. I both thank Dr. I. Wanzenböck and Dr. P. den Hertog for their

in-depth discussions and feedback on my process. You have raised the level of my thesis by a

lot and I was eager to learn from your thoughts.

I also thank my peer students from the masters programme for the time we went through

and the results we were able to deliver together. I appreciate the time spent together during

the courses and of course I hope to keep seeing you as a friend and during our career. I would

also like to thank my family for their stable support and caring when in need. The last year

was challenging but marks an astonishing ending to my studies.

I hope the thesis is entertaining and engrossing to read.

Sebastiaan A. M. Kragting

Utrecht, June 2023
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Summary

Technological Diversification in the Periphery:

An Empirical Study of the Importance of

Interregional Linkages across European Regions

This thesis puts the literature on Evolutionary Economic Geography central and assumes

that technological diversification is necessary in peripheral regions to foster sustainable and

inclusive growth across regions. However, the paradox is that peripheral regions are less prob-

able to diversify because they tend to lock-into their existing specialisations. Therewith, the

knowledge production in peripheral regions is low, and due to the principle of relatedness,

peripheral regions are prone to lock-into their narrow knowledge base. The literature on eco-

nomic geography suggests that interregional linkages leads to external knowledge spillovers

and therefore complements internal knowledge production. Thus, interregional collaboration

is especially important for peripheral regions to escape a lock-in into their existing specialisa-

tions. This thesis scrutinises this general perception on interregional linkages by explaining

that core and peripheral regions receive different benefits from external knowledge spillovers.

The main research question is: How do the interregional linkages with core and peripheral

regions affect the probability of a region to technologically diversify?

To answer this question the thesis adheres to a quantitative explanatory and exploratory

approach to understand technological diversification in core and peripheral regions. The anal-

yses draws upon economic and patent data between 2005 ´ 2018 to investigate the entry of

technological fields. The conclusions are as following. First, regressionmodels suggest that ex-

ternal knowledge spillovers from core regions are of greater importance to technological diver-

sification than that from peripheral regions. Further analysis of assortative mixing shows that

core regions increasingly collaborate with core regions whilst peripheral regions remain rigid

and do not increase in interregional collaboration. Therefore, the importance of interregional

collaboration seems promising in theory but might not entirely enable peripheral regions to

catch-up to core regions. Nevertheless, external knowledge spillovers through collaboration

remain crucial for technological diversification in peripheral regions. Second, a network anal-

ysis of co-invention reveals that those peripheral regions that do diversify are exceptionally

high in betweenness centrality. Likely, these regions can function as a bridge between core

and peripheral regions, for instance, due to providing access to different labour markets (and

migration), or flows of natural resources. Third, whilst peripheral regions do show low novelty

in technological diversification, an unexpected novel finding is that core regions that do collab-

orate with peripheral regions show highest novelty in technological diversification. Therefore,

potentially, the collaboration between core and peripheral regions induces recombination of

knowledge that is new to the world.
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Nomenclature

The following nomenclature describes the abbreviations and mathematical symbols used.

Abbreviations

Abbreviation Definition

EU European Union

EEG Evolutionary Economic Geography

GDP Gross Domestic Product

S3 Smart Specialisation Strategy

SNA Social Network Analysis

Symbols

Symbol Definition Unit

ACr,t Absorptive Capacity [1]

...

ILCr,t Interregional Linkages with Core Regions [1]

...

ILPr,t Interregional Linkages with Peripheral Regions [1]

...

RDi,r,t Relatedness Density [1]

...

RTAi,r,t Relative Technological Advantage [1]

...

φi,j,t Relatedness [1]

...

ϕc Country Fixed-Effects [1]

...

ψi Technological Class Fixed-Effects [1]

...

v
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Introduction

”In the European Union (EU) in the new millennium, inequality among regions has turned

sharply up” (Iammarino et al., 2019, p. 2). The income inequality across regions defines the

core-periphery dichotomy in the EU1, and this regional inequality continues to increase. Here-

with, peripheral regions fall behind in economic development (GDP per capita) in opposition

to core regions. Therewith, the peripheral regions decline in population, reduce in employ-

ment, and suffer from unemployment in opposition to core regions. Iammarino et al. (2019)

call for evidence to promote sustainable and inclusive growth across regions.

The literature on evolutionary economic geography (EEG) describes technological diversi-

fication as a key driver towards economic growth (Dosi, 1982). Technological diversification

refers to a region specialising into technological fields that are new to the region (Hassink &

Gong, 2019). Therefore, technological diversification leads to new activities which foster em-

ployment and suppress unemployment growth (Castaldi et al., 2015; Frenken et al., 2007).

The production of knowledge is seen as central to technological diversification. The pro-

duction of knowledge is a cumulative, path-dependent, and interactive process (Boschma et al.,

2015). In other words, regions produce knowledge that is related to their existing knowledge

base, and thus technological diversification is not a randomprocess. Therefore, the production

of knowledge concentrates in space and time; meaning that core regions easily exploit knowl-

edge that is related to their diverse knowledge basewhilst peripheral regions struggle to exploit

knowledge from their narrow knowledge base (McCann & Ortega-Argilés, 2015). The process

of technological diversification towards related knowledge defines the principle of relatedness.

According to Hidalgo et al. (2018), ”the principle of relatedness is a force that increases spatial

inequality and can reduce the ability of peripheral [regions] to develop” (p. 455).

The paradox is that peripheral regions require to diversify for sustainable and inclusive

growth, however, peripheral regions are less probable to diversify than core regions, andmore

likely to lock-in into existing specialisations, due to the principle of relatedness (Hassink &

Gong, 2019; Iacobucci & Guzzini, 2016).

The literature on economic geography suggests that regions draw upon external knowledge

to complement internal knowledge production (Bathelt et al., 2004). Several observations

have been made that interregional linkages i.e., collaboration between regions by organisa-

tions, causes external knowledge to spillover between regions and reduces the tendency of

regions to lock-in into their knowledge base (Boschma & Iammarino, 2009; Grillitsch & Nils-

son, 2015). Accordingly, the observation by Balland and Boschma (2021) is that interregional

linkages indeed enable (especially peripheral) regions to diversify.

1
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This thesis builds further upon the importance of interregional linkages by Balland and

Boschma (2021) in the body of literature on EEG under the header of smart specialisation by

differentiating core and peripheral regions further. Within smart specialisation, McCann and

Ortega-Argilés (2015) discuss that peripheral regions are lagging regions which follow core re-

gionswhere knowledge production is higher. Therefore, peripheral regions need to link to core

regions to foster external knowledge spillovers to induce technological diversification (Balland

& Boschma, 2021; Iacobucci & Guzzini, 2016). As McCann and Ortega-Argilés (2015) suggest,

public policy must maximise ’learning linkages’ between core and peripheral regions. This

means to transfer knowledge from core to peripheral regions. Here, the implicit assumption

is that interregional linkages with core and peripheral regions are of unequal importance (Has-

sink & Gong, 2019). Therefore, the main research question is:

How do the interregional linkages with core and peripheral

regions affect the probability of a region to technologically diversify?

The research design is split into an explanatory and exploratory approach and draws upon

regions in the EU for quantitative empirical analysis.

For the former, a regression model is used to estimate the effect of interregional linkage

on the probability of a region to diversify. Here, a novelty is made by measuring interregional

linkages with core and peripheral regions in Europe separately because the research seeks to

explain whether external knowledge spillover yields unequal effects across the core-periphery

dichotomy. This separation has been neglected in prior studies. We need to know this to

confirm whether interregional linkages are equally important for core and peripheral regions

to engage in technological diversification.

For the latter, the question is how interregional linkages establish in space anddevelop over

time. Whether peripheral regions link mostly to peripheral regions, or, whether peripheral

regions also link to core regions is unknown. In technical terms, is interregional linkage as a

network homophilous or heterophilous (by assortative mixing) between core and peripheral

regions. We need to know this to understand how core and peripheral regions can draw upon

external knowledge in a time of increasing globalisation.

The research studies technological diversification in regions over 2005 ´ 2018 over five

subsequent periods. The research scope is delimited to „ 176 regions by the Nomenclature of

Territorial Units for Statistics (NUTS2) in Western European countries.1 In line with the EU

Cohesion policy, the peripheral regions fall below a 75% of the average GDP per capita, if else,

the regions are considered as core regions. The research operationalises „ 650 technological

fields by the Cooperative Patent Classifications (CPC4). Therewith, the unit of analysis is at the

region-technology level i.e., each technological field is observed solitary within each region.

1The delimitation of the sample is a result of combining economic with patent data. First, due to the availability
of economic data in Eurostat, the sample consists of the 27 EUmember states as of 2023, but also, Albania, Ireland,
Lithuania, Montenegro, North Macedonia, Norway, Serbia, Swiss, and Turkey. Second, due to the eligibility of
patent data in OECD, the sample is further delimited to Western European regions as explained in Appendix C.
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The scientific relevance of the research holds in the argument to nuance the importance

of interregional linkages, and therewith understand the bottlenecks in external knowledge

spillovers between core and peripheral regions. In particular, the importance of interregional

linkages is promising in theory, however, interregional linkages may pertain unequal over the

core-periphery dichotomy empirically (Hassink & Gong, 2019). Further, an attempt is made

to scrutinise how peripheral regions can be innovative through analysing peripheral regions

that do diversify in their geography and as a network of co-invention (Eder, 2019).

The societal relevance of the research holds in examining technological diversification as a

process of smart specialisation. Therewith, smart specialisation is a place-based (bottom-up)

approach that sets technology-driven priorities to solve socio-economic challenges. In line

with the European Investment Bank (EIB), the lesser developed (i.e., peripheral) European

regions require to diversify in order to induce economic competitiveness, expand the labour

market, and transition towards a sustainable and digital economy (Balland et al., 2019). In

order to justify smart specialisation strategy (S3), peripheral regions should be considered as

regions with valuable, but diverging, local capabilities (Balland & Boschma, 2021). If the pro-

cess of technological diversification could be understood more comprehensively in terms of

interregional linkages over core and peripheral regions, then, S3 is able to target technological

change between core and peripheral regions more accurately, and therewith foster economic

cohesion in the European Union. In summary, emphasising the bottlenecks between interre-

gional linkage and regional diversification in peripheral regions allows justified allocation of

funding for the EU Cohesion Policy (Foray, 2014).

The structure of the thesis is as following. Hereafter, Chapter 2 reviews the theoretical

foundations of the core-periphery dichotomy, the principle of relatedness, and the importance

of interregional linkages. Subsequently, Chapter 3 explains the methodology in terms of the

data and the analytical approaches taken. Thereafter, Chapter 4 presents the empirical find-

ings, which is followed by a conclusion on the key findings in Chapter 5. Finally, Chapter 6

describes the theoretical contributions, limitations, and policy implications of this thesis.

https://www.eib.org/attachments/publications/eib_group_operational_plan_2022_en.pdf
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Theoretical Foundations

2.1. The Core-Periphery Dichotomy
This thesis defines a core-periphery dichotomy in order to contrast policy objectives over two

types of regions i.e., core and peripheral regions (Iammarino et al., 2019). Therewith, the

dichotomy is useful to separate further definitions of technological diversification, economic

development, and external knowledge spillovers (Hassink & Gong, 2019).

The core-periphery dichotomy by McCann and Ortega-Argilés (2015) generalises how all

the peripheral regions suffer from an inability to produce knowledge in a variety of dimensions

(e.g., sectoral, transactional, technological, behavioural, financial, cultural) as opposed to core

regions. The argument is that peripheral regions lack the required organisational conditions to

induce sustainable and inclusive growth (Whittle & Kogler, 2020). This thesis builds upon the

core-periphery dichotomy to generalise and explain how core and peripheral regions differ in

their internal knowledge production. In particular, the core-periphery dichotomy summarises

innovation in six stylised facts that dichotomise core and peripheral regions. The six stylised

facts explain how organisations (e.g., firms, universities, and public institutions) exploit the

knowledge that a region exhibits (Buenstorf & Klepper, 2009; Klepper, 2007).

The six stylised facts of innovation between the core-periphery dichotomy are as following.

First, innovation tends to be higher in densely than in scarcely populated regions. Second,

innovation tends to be higher in regions with diverse sectors than in regions that specialise.

Third, innovation tends to be higher in regions with a variety of small firms rather than regions

with few large firms. Fourth, innovation tends to be higher in regions with internationally

oriented multinational firms. Fifth, innovation tends be higher in regions with high market

potential. Sixth, the adoption of information and communication technologies emphasises

the core-periphery dichotomy. As a consequence of these stylised facts, core regions thrive in

knowledge production, whilst peripheral regions fall short (McCann & Ortega-Argilés, 2015).

This thesis will build on, and scrutinise, the core-periphery dichotomy emphasised by these

six stylised facts related to the process of technological knowledge production.

Last but not least, a novel stream in literature on the geography of innovation attempts

to identify how peripheral regions provide benefits towards innovation (Eder, 2019). Periph-

eral regions may be innovative (Eder & Trippl, 2019) due to, for example, lower wages that

are attractive for labour-intensive industries (and their corresponding technological fields),

proximity to natural resources (due to less urbanisation) and industry specific advantages, or,

peripheral regions limit unintentional knowledge spillover. Nevertheless, few generalisations

have beenmade within this stream of literature, therefore, this thesis attempts to identify how

peripheral regions are innovative in terms of technological diversification.

4



2.2. The Principle of Relatedness 5

2.2. The Principle of Relatedness
The literature on EEG acknowledges that economic activities do not arise spontaneously, but

instead arise as a path-dependent process of related activities (Dosi, 1982; Frenken et al.,

2007). Therefore, EEG puts the principle of relatedness central to explain how regions diver-

sify into activities that evolve out of their existing knowledge base. The theory suggests that

technological diversification is not a random process. Instead, technological diversification in

regions is dependent on the path they follow from the past, and thus, the specialisation into

new technological fields diverges from region to region (Boschma et al., 2015; Rigby, 2015). In

short, regions tend to diversify into technological fields that are alike to their hitherto present

technological fields in their economy (Boschma et al., 2013).

In this thesis a technological field refers to an aggregation of single inventions among their

knowledge producing organisations in an identical field and their corresponding knowledge

base (Balland et al., 2019). Thus, diversification in a region refers to a new specialisation into

a (to the region) novel knowledge base of a technological field (Hassink & Gong, 2019).

In this thesis, relatedness refers to how technological fields in a region co-occur. If techno-

logical fields co-occur frequently within regions, then technological fields are related between

one another. Thus, relatedness refers to the implicit interconnections between technological

fields as a consequence of co-occurrence. Therewith, the recombination of existing knowledge

in technological fields should lead regions to diversify into technological fields that are implic-

itly related by co-occurrence (Boschma et al., 2015).

The principle of relatedness is further extended to the concept of the technology space. The

technology space is the representation of relatedness between technological fields as a network.

Therewith, related technological fields tie together, whereas unrelated technological fields do

not tie and are distant in the technology space (Hidalgo et al., 2007). All in all, the argument is

that regions diversify into technological fields that are nearby to their existing knowledge base,

because, organisations tend to exploit nearby knowledge instead of knowledge that is distant

to their existing knowledge base (Boschma et al., 2015).

The issue is that peripheral regions cannot draw from technological relatedness equally as

core regions because peripheral regions tend to specialise narrowly (Caragliu et al., 2016). As

Balland et al. (2019, p. 1263) state ”peripheral regions provide one of the most complicated

cases to build an effective smart speciali[s]ation policy”. In particular, diversification for pe-

ripheral regions requires them to take ’long jumps’ from their existing knowledge base towards

the novel knowledge in a new technological field. However, peripheral regions often do not

have the organisational conditions to do so (McCann & Ortega-Argilés, 2015).

How different factors foster technological diversification in countries and regions has been

widely scrutinised (Boschma et al., 2015). However, how these factors affect core and periph-

eral regions differently has lastingly been neglected. Prevailing studies that consider core and

peripheral regions have been focusing on, internal and external knowledgenetworks (Boschma

& Iammarino, 2009), the role of entrepreneurial activities (McCann & Ortega-Argilés, 2015),

and the quality of government (Rodriguez-Pose & Di Cataldo, 2015). This thesis continues to

study the importance of external knowledge networks due to its possibility of active change.
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2.3. The Importance of Interregional Linkage
The debate in the diversification of peripheral regions is taken further into the importance of

interregional linkages with the emphasis on regions to draw upon external knowledge (Bathelt

et al., 2004). The interregional linkages signify that organisations are able to search for knowl-

edge outside of their region which complements the production of knowledge within their

region (Balland & Boschma, 2021; Grillitsch & Nilsson, 2015). Therewith, the interregional

linkages provide regions with external knowledge and enables regions to diversify into rather

distant knowledge from their internal specialisation, and accordingly, preventing regions from

a technological lock-in (Asheim & Isaksen, 1997; Isaksen, 2014).

In short, the interregional collaborations as a matter of interregional linkages lead to ex-

ternal knowledge spillovers. Here, external knowledge spillovers is defined as the acquisition

of non-local knowledge by organisations as a consequence of collaborative efforts between or-

ganisations that locate in distinct regions (Grillitsch & Nilsson, 2015).

Even though previous literature points to the importance of interregional linkage towards

diversification in peripheral regions. Two problems arise in the current body of literature.

First, qualitative studies have been focusing on, for example, Onsager et al. (2007) illus-

trate how external knowledge is complementary to local knowledge for high-technology in

small regions inNorway; Fitjar andRodriguez-Pose (2011) suggest that knowledge production

in remote regions in Norway is not a consequence of agglomeration economies but instead of

distant social interaction; Fitjar and Rodriguez-Pose (2014) point out that local knowledge is

not sufficient for core regions in Norway to diversify; and Rodriguez-Pose and Fitjar (2013)

show that promoting external knowledge enhances further generation, diffusion and absorp-

tion of knowledge in peripheral regions in Norway. The qualitative studies fail to generalise

beyond the sample of individual case studies because qualitative research is not offering a

systematic conceptualisation of what the core-periphery dichotomy entails. Therefore, the

conceptual definitions and empirical findings in qualitative research are too controversial to

conclude on to what extent interregional linkages are important to peripheral regions.

Second, quantitative studies have been focusing on, for example, Grillitsch and Nilsson

(2015) observe that external knowledge spillovers complement knowledge production in pe-

ripheral regions if the absorptive capacity of a region allows to withdraw external knowledge;

De Noni et al. (2017) and De Noni et al. (2018) illustrate that interregional and intraregional

linkages in tandem enable both core and peripheral regions to produce knowledge; and Bal-

land and Boschma (2021) show that cognitive proximate interregional linkages enable (par-

ticularly peripheral) regions to diversify. The quantitative studies are delimited to a set of

indicators to conceptualise interregional linkages on average. Therefore, the prior conceptual

definitions of interregional linkage have been too deterministic in terms of to whom regions

link and thereby hasn’t allowed to differentiate between core and peripheral regions yet.

All in all, this thesis nuances contemporary literature by separating core from peripheral

interregional linkages in quantitative means by considering to whom regions link.
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According to McCann and Ortega-Argilés (2015), a major aim of EU Cohesion Policy is to

let peripheral regions learn from core regions. The question is how to interregional collab-

oration occurs between core and peripheral regions so that (particularly peripheral) regions

benefit from external knowledge spillovers (Iacobucci & Guzzini, 2016). Two issues arise in

the current understanding in interregional linkages. First, whether interregional linkages with

core regions are more important to those with peripheral regions remains unknown. Second,

whether peripheral regions draw upon the external knowledge from core regions, or mainly

from peripheral regions, remains unknown. Therefore, this thesis aims to explain the differ-

ence on to what extent regions collaborate in terms of their own economic development and

the economic development of to whom those regions link.

In this thesis the importance of interregional linkage refers to the extent to which organ-

isations in regions are withdrawing external knowledge through collaboration with organisa-

tions in other regions.1 The importance of interregional linkages is taken as an aggregate of

co-inventions between regions (Balland & Boschma, 2021). The novel suggestion in this the-

sis is to measure interregional linkages with core and peripheral regions separately to study

whether external knowledge spillovers affect technological diversification differently over the

core-periphery dichotomy. Therewith, the separate conceptualisation of interregional link-

ages with core and peripheral regions would be able to discern collaboration between regions

where knowledge production is low or high.

1Note, this thesis neglects the adverse effects of interregional linkage, such as, labour out-migration due to
workers that seek fortune, or, exploitation of resources in the periphery by the core (Krugman, 1979).
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2.4. Hypotheses
In summary, the principle of relatedness explains that regions tend to specialise into knowl-

edge which is close to their existing knowledge base (Boschma et al., 2015; Dosi, 1982). The

organisations prefer to search for nearby knowledge instead of distant knowledge, therefore,

the production of knowledge tends to cluster geographically (Balland, 2017; Balland et al.,

2020). Therewith, regions face the risk to lock-into nearby knowledge bases, particularly if a

region specialises narrowly (Iacobucci & Guzzini, 2016; McCann & Ortega-Argilés, 2015).

The risk to lock-into a narrow specialisation may be overcome by complementing internal

knowledge production with external knowledge (McCann & Ortega-Argilés, 2015). Despite

the fact that peripheral regions possess weak internal knowledge production, the literature

implies any form of external knowledge spillovers complements internal knowledge produc-

tion (Bathelt et al., 2004). Thus also interregional linkages with peripheral regions do induce

knowledge production. The expectation is that both the interregional linkages with core and

peripheral regions contribute to diversification in regions. The first hypothesis is:

Hypothesis 1 (H1) A positive relationship exists between the probability of a region to di-

versify and the number of interregional linkages with both core and peripheral regions.

As McCann and Ortega-Argilés (2015) summarise, the six stylised facts explain the core-

periphery dichotomy in terms of regions their (in)ability to produce knowledge. Therewith,

the fact that interregional linkages enables a region to draw upon external knowledge spillover

indicates that interregional linkages with core regions are of greater importance than interre-

gional linkages with peripheral regions. In other words, knowledge production is higher in

core regions, and therefore the external knowledge spillovers through interregional linkages

with core regions should be beneficial for a region to diversify than through interregional link-

ages with peripheral regions (McCann & Ortega-Argilés, 2015). In particular, the high knowl-

edge production from linking core regions eases organisations to exploit and recombine the

variety in knowledge in comparison to linking peripheral regions (Buenstorf & Klepper, 2009;

Klepper, 2007). In terms of path-dependency, interregional linkages with core regions extend

the existing knowledge base of a region to a larger variety of knowledge than interregional

linkages with peripheral regions (Boschma et al., 2013; Hidalgo et al., 2007), because, the

knowledge base in core regions is diverse, and, the knowledge base in peripheral regions is

narrow (McCann & Ortega-Argilés, 2015). The second hypothesis is:

Hypothesis 2 (H2) A stronger relationship exists between the probability of a region to

diversify and the number of interregional linkageswith core regions compared to the number

of interregional linkages with peripheral regions.
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Figure 2.1 depicts the theoretical model. This thesis considers that a set of technological

fields is existent within each of the regions. In other words, a region encompasses each techno-

logical fields in which the region can specialise or not. The first hypothesis is that the interre-

gional linkages from both core and peripheral regions affect the technological diversification

of a technological field positively. The interregional linkages are taken in sum of all technolog-

ical fields in each region. The second hypothesis is that the interregional linkages from core

and peripheral regions are of unequal importance because knowledge production is higher in

core regions than in peripheral regions. Nevertheless, how core and peripheral regions link

remains open for exploration.

with Core

with Periphery

Diversification

++

+

Technological Field

Region

Interregional Linkages

Figure 2.1: Theoretical Model.

The novel stream in literature on the geography of innovation suggests that peripheral

regions can be innovative (Eder, 2019; Eder & Trippl, 2019). Therefore, Hypothesis 2 may

reverse if a qualitative difference in (all) peripheral regions (in the sample) exist to produce

knowledge of certain technological fields. HowHypothesis 2 withstands over different techno-

logical fields is an open question that could be answered a posteriori. Potentially, in specific

cases, peripheral regions could be the technological frontier, whereas regions are learning from

peripheral regions. In other words, instead of considering technological fields equally, here,

the suggestion is to allow for variance by considering technological fields also as separate.



3

Methodology

3.1. Research Design
Figure 3.1 depicts the research design as a process. The research starts with gathering the

data and turning that into meaningful variables (i.e., data cleaning, imputation, and creation).

Subsequently, the research design is split into two approaches. The descriptive analysis of

the variables may lead to errors in data cleaning, imputation, and creation. Therefore, the

descriptive analysis may feedback in those prior steps to resolve errors.

First, the explanatory approach is to compare the relation between the probability of a

region to diversify and the separate effect of interregional linkage with core and peripheral

regions. Therefore, a macro-economic perspective is taken to analyse technological diversifi-

cation in regions over time. In particular, the research employs the entry model by (Boschma

et al., 2015). Therefore, the research adheres to an econometric model that operates at the

region-technology level. The explanatory approach leads to the confirmation of hypotheses.

Second, the exploratory approach is to propose new insights on technological diversifica-

tion and interregional collaboration over the core-periphery dichotomy. Therefore, regions

are analysed as a network of co-invention. Further, the technology space and metrics on tech-

nological fields are explored to investigate how interregional collaboration relates to the pro-

duction of novel knowledge.

The conclusion and discussion of the thesis follow after the explanatory and exploratory

findings. There, the confirmations and the propositions are summarised in terms of the most

interesting findings, the recommendations for further research, and the pitfalls of the theory

and methodology.

Start Data
collection

Data
cleaning

Data
imputation

Variable
creation

Data
structure

Descriptive
analysis

Explanatory
analysis

Confirmations
Exploratory
analysis

PropositionsEnd

Figure 3.1: Research Process.
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3.2. Data & Sample
Within literature of EEG, numerous scientific publications knuckled down onto measuring

technological diversification using patent data (Balland et al., 2019; Boschma et al., 2015;

Rigby, 2015). Specifically, patents are seen as an extensive source of data to measure knowl-

edge in technological inventions (Whittle & Kogler, 2020). The information within patents as

inventions allows to link the counts of technological fields to regions.

First, a technological field among information on inventions is taken by the four-digit Co-

operative Patent Classification (CPC41). The CPC4 represents the aggregation of single inven-

tions into an overarching subclass. Second, a region among economic information is taken by

the second level of the Nomenclature of Territorial Units for Statistics (NUTS22). The NUTS2

refer to ”basic regions for the application of regional policies” (Eurostat, 2023).

This thesis delimits to Western European regions due to the relation to S3 in the EU Cohe-

sion Policy and the availability of economic and patent data. The consideration of the sample

is discussed in Appendix C. The sample consists of „ 176 NUTS 2 regions over the years

2005 ´ 2018 which leads to „ 5, 000, 000 patents over „ 650 technological fields by their four-

digit CPC. A number of 14 subsequent time frames are taken over the periods as a moving

window of five years to aggregate data. This aggregation is necessary to balance the variation

in patent application delay, and to increase the data quantity for the robustness of computa-

tions (Eck & Waltman, 2009; Steijn, 2021).

To assign patents to regions, the inventor address is taken, and not the applicant address,

because the former represents the location of the inventions foremost (Kogler et al., 2017).

Therewith, the fractional share of regions and technological fields listed on a patent is taken

for more fine-grained data. First, the fractional share by region avoids an overestimation of

the regions where headquarters reside. Second, the fractional share by technological field

avoids an overestimation of technological fields that frequently list in conjunction of other

technological fields (De Rassenfosse et al., 2014).

Two concerns arise in the data. First, patent data is a rich source of data that contains gran-

ular data on technological fields e.g., patent texts, citations, inventors, and location. However,

an issue in the use of patent data for spatial analysis is the presence of data in core regions,

and the absence of data in peripheral regions. Although the research design takes upon a rela-

tive approach (Equation 3.1), the absence of data leads to sensitivity in variables (law of small

numbers). Thus, the sensitivity leads to under- and overestimation of variables. Accordingly,

a threshold is set to a minimum of 50 patents per technological fields at the entire sample

to avoid computational issues (Balland et al., 2019) Also a threshold of of „ 10 patents per

period is set to regions, which is explained further in Appendix C. Second, an issue is that

missing economic data is mainly from peripheral regions, discarding such observations would

be problematic for the validity of the sample. Therefore, a practicality is to impute missing

data to involve the periphery, mean imputation is most time-efficient and relatively accurate,

or to redefine the sample.

1HTTP: Definition of IPC by World Intellectual Property Organization (WIPO).
2HTTP: Definition of NUTS by Organization for Economic Cooperation and Development (OECD).

https://ipcpub.wipo.int/?notion=scheme&version=20220101&symbol=none&menulang=en&lang=en&viewmode=f&fipcpc=no&showdeleted=yes&indexes=no&headings=yes&notes=yes&direction=o2n&initial=A&cwid=none&tree=no&searchmode=smart
https://www.oecd.org/cfe/regionaldevelopment/territorial-grid.pdf
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3.3. Operationalisation
The operationalisation adheres to two independent variables, one dependent variable, and

four control variables. An overview of the variable operationalisation is in Appendix A.

3.3.1. The Core-Periphery Dichotomy
The core-periphery dichotomy adheres to the EU Cohesion Policy (McCann & Ortega-Argilés,

2015). The policy assigns regions to objectives. The objectives classify regions as peripheral

(lesser developed) regions if the GDP per capita is less than 75% of the EU average, if else,

regions classify as core (transition and more developed) regions (Balland & Boschma, 2021).

Furthermore, previous studies take theGDPper capita as an indicator for the core-periphery

dichotomydue to themacro-economic relevance to knowledge production (Balland&Boschma,

2021; Rodriguez-Pose & Di Cataldo, 2015; Rodriguez-Pose et al., 2014). On that account,

Iammarino et al. (2019) declare that GDP per capita is a good indicator for ”education lev-

els, science and technology endowments, infrastructure and institutional quality”. Therewith,

GDP per capita captures the level of knowledge production over a variety of dimension that

aligns directly with the six stylised facts from McCann and Ortega-Argilés (2015).

In summary, the GDP per capita defines the fundamental problem of the core-periphery

dichotomy by the EU Cohesion Policy, but also relates scientifically to regional inequality. The

dichotomy is taken as binary, and thus not continuous. The binary definition relates directly

to the objectives of the EU Cohesion Policy but also eases the interpretation of findings.

Nevertheless, juxtaposing a variety of proxies remains interesting due to lack of consensus

in defining the core-periphery dichotomy. In particular, regions are non-linear systems and a

lack of one variable often leads to a lack into another variable. However, to allow for variabil-

ity between regions the comparison of proxies is helpful for robustness checks of a statistical

model, and therewith increase the reliability of the results. For example, R&D expenditure per

capita, the number of (small) firms, or, the regional innovation scoreboard.

3.3.2. The Technology Space
The principle of relatedness explains how technological fields relate to one each other as exis-

tent in the technology space (Boschma et al., 2015). Originally, the technology space derives

from the product space by (Hidalgo et al., 2007). Therewith, the technology space is a network

representation of technological activities within the economy. The entities (nodes) represent

the technological fields and the relationships (edges) represent the relatedness between tech-

nological fields. In the technology space, two technological fields are observed as related if

they co-occur on a patent. In this thesis the technology space as a visual representation of

the network is useful to understand how technological fields arise differently within core and

peripheral regions, but also to grasp how interregional collaboration may relate to the related-

ness between technological fields. Therewith, the assumption is that the technological fields

at the periphery of the technology space are least related to the technological activities within

the sample (Fleming & Sorenson, 2001). Thereby, the unrelated technological fields are novel

in the economy (Balland, 2017).
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3.3.3. Interregional Linkages
The interregional linkages are taken by the number of co-inventors of patents that reside in

various regions as direct extension to Balland and Boschma (2021). The residence of inven-

tors represent that the regions of co-inventors (within organisations) embody the knowledge

from patented inventions. Therewith, co-invention signifies that organisations collaborate be-

tween regions and cause external knowledge spillovers. All in all, the measure of interregional

linkages is defined as the total centrality degree of co-inventors in a region as an undirected

network (Le Gallo & Plunket, 2020; Whittle et al., 2020).

This thesis delineates interregional linkages with core regions ILCr,t from interregional

linkages with peripheral regions ILPr,t. Thus, the variables ILCr,t and ILPr,t are the quantities

of inventors in a region r having an inventors in remaining regions s that classify as either a

core or peripheral region. The measures of interregional linkages are taken for each region r

at time t specifically as an aggregation of all technological fields.3 Thus, no distinction is made

in external knowledge spillovers between technological fields i.

Periphery: s = 2

Core: r = 1 Core: s = 3

Core: s = 4

1×

3×

2×

Figure 3.2: The operationalisation of interregional linkages with core and peripheral regions.

For example, in Figure 3.2 region r = 1 links to regions s = 2 once, s = 3 thrice, and s = 4

twice within time frame t. Therewith, region s = 2 is a peripheral region and s = 3 and s = 4

are core regions. Then, for r = 1 the number of interregional linkages with core regions is

ILC1,t = 2 + 3 = 5 and those with peripheral regions is ILP1,t = 1. On top of the number of

interregional linkages with core and peripheral regions also the total number of interregional

linkages ILTr,t = ILCr,t + ILPr,t is of interest as a baseline to compare the statistical effects of

the interregional linkages with core and peripheral regions.

3Note, no data about the core-periphery dichotomy is available (at hand) outside of the sample. Thus, interre-
gional linkages do not exist with regions in other continents for example.
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3.3.4. Entry of a Technological Field
The dependent variable technological diversification is operationalised by the entry of a tech-

nological field in a region. The entry model measures technological diversification in regions

and allows for path-dependency statistically at the region-technology level. The entry model

considers a region to specialise into a technological field if the region relatively has a higher

number of patents in a technological field in comparison to the reference sample. Therefore,

the entry model is an appropriate representation of technological diversification because the

model captures in a simplified manner whether a region does or does not specialise into a

technological field that is new to the region (Boschma et al., 2015).

The entry of a technological field is defined as theRelativeTechnological AdvantageRTAi,r,t

which signifies whether a region r specialises in a technological field i at time t (Balland, 2016)

in comparison to the reference sample:

RTAi,r,t

$

&

%

1, if pt,r,i
ř

i pt,r,i
ą

ř

r pt,r,i
ř

r

ř

i pt,r,i

0, otherwise
(3.1)

thus RTAi,r,t = 1 if a region r yields relatively more patents p in a technological field i at

time t. In other words, the indicator is a binary variable which is true if the regional share in

a technological field is greater than the reference sample (the EU). The time frame in which a

region specialises in a technological field i.e., the time frame in which RTAi,r,t = 0 turns into

RTAi,r,t = 1, is the entry of a technological field entryi,r,t. The variable takes no value (NA) if

RTAi,r,t = RTAi,r,t´1 = 1, which means a region specialises in a technological field already.

All in all, the entry model captures whether a region specialises into a new technological

field regardless of the quantity of patents in a region or technological field. Further, no inher-

ent bias exist towards the propensity to patent in high-technology industries and core regions.

Therefore, the entry model is especially relevant to study technological diversification in pe-

ripheral due to the ability to overcome the general bias in patent data.

Within the entry model it is crucial to control for the relatedness density i.e., the knowl-

edge gap within a region towards diversifying into a technological field, to take into account

the existing knowledge base of a region (Boschma et al., 2015). Notable is that the entrymodel

measures horizontal development as of the width of technological diversification, but neglects

vertical development as of the depth of technological specialisation. Despite that technologi-

cal diversification is important for peripheral regions to broaden their economic activities, pe-

ripheral regions may rely more on technological specialisations due to their path-dependency

(Hassink & Gong, 2019). How the relation between technological diversification and speciali-

sation should be handled into statistical modelling is unresearched and therefore is not taken

into account in this thesis.
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3.3.5. Relatedness Density
An essential control variable is the relatedness density, which is an indicator of the existing

knowledge in a region. The relatedness density signifies the nearness of a technological field

to the portfolio of a region (Boschma et al., 2015). A prior step is to compute the relatedness

φi,j,t between pairs of technological fields i and j on patent applications (Balland, 2016):

φi,j,t = mintP (RTAi,t ą 1|RTAj,t ą 1), (RTAj,t ą 1|RTAi,t ą 1)u (3.2)

herewith, the relatedness φi,j,t is theminimum of the pair-wise conditional probabilities of

regions that specialise into a technological field i as well as a technological field j at time t. The

approach is to count the co-occurrence between the primary listed technological fields i and

j within a region r, and subsequently standardising the count by the total number of patents

in technological fields i and j. The co-occurrences are normalised through cosine similarity

indexing to preserve the independence assumption between entities (Eck & Waltman, 2009).

The subsequent step is to compute the relatedness density RDi,r,t of technological field i in

region r for a region to diversify (Balland, 2016):

RDi,r,t =

ř

jPr,j‰i φi,j
ř

j‰i φi,j
¨ 100% (3.3)

so, the density in the production of knowledge in technological field i for region r at time

t is build upon φi,j as of the relatedness of technological field i to the remaining technological

fields j in which a region has an RTAi,r,t = 1 relative to the reference sample (the EU). The

relatedness density RDi,r,t yields a minimum value of 0% if no technological fields relate to

technological field i in region r, and yields a maximum value of 100% if all remaining techno-

logical fields related to technological field i co-occur in region r at time t.

3.3.6. Covariates
Next to the independent and dependent variables four control variables are taken in line with

Balland andBoschma (2021). First, the expectation is that the level of population sizePopSizer,t
(log) yields a positive effect on the probability of a region to diversify because this depicts the

effect of total variety of knowledge in a region. Second, the expectation is that the level of GDP

per capita GDPr,t yields a positive effect on the probability of a region to diversify because

this depicts the effect of economic development (i.e., education levels, science and technol-

ogy endowments, infrastructure and institutional quality). Third, the inclusion of periodical

fixed-effects αt adjust for variation in technological change over time. Fourth, the interaction

between absorptive capacity ACr,t and interregional linkages is of interest because regions

are limited to the extent they are able to absorb external knowledge spillovers. The absorp-

tive capacity is taken by the gross R&D expenditures of a region (Lau & Lo, 2015). Fifth, the

population density is taken into account to control for the effect of agglomeration economies

whereas dense population lead to the exchange of knowledge. Further, control variables are

taken by fixed-effects of countries ϕc and technological classes ψi. The entire description on

control variables follows in the empirical findings.
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3.4. Analytical Strategy
The research design revolves around both an explanatory and an exploratory approach. But,

the research kicks-off with a descriptive analysis to assure the quality of variables.

3.4.1. Explanatory Analysis
This thesis revolves around the two independent variables of interregional linkages with core

and peripheral regions and one dependent variable of the entry of a technological field in a

region. This thesis investigates how these two independent variables (H1) affect the dependent

variable, and how these independent variables are different from each other in their effects

on the dependent variable (H2). Therefore, a single linear probability model is of interest to

compare the coefficients of the two independent variables. The equation to estimate the linear

probability model is:

Entryi,r,t = β1 ¨ ILCi,r,t´1 + β2 ¨ ILPi,r,t´1 + β3 ¨RDi,r,t´1

+β4 ¨GDPr,t´1 + β5 ¨ PopSizer,t´1 + αt + ϵi,r,t
(3.4)

The first hypothesis (H1) is simply analysing the significance of the coefficients. The sec-

ond hypothesis is analysis the regression model as stepwise variable selection. The straight-

forward way is to first include the variable ILPi,r,t, and then the variable ILCi,r,t separately

and concurrently. Both coefficients should be significant, however, if the former coefficient

loses significance or turns in sign after adding the latter coefficient that would imply the in-

terregional linkages with core regions absorbs the variance of those with peripheral regions.

In other words, linking to the core may be more determinant than linking with the periphery.

The same analytical process is done to compare the effect of ILPi,r,t and ILCi,r,t to the base

line of the total number of interregional linkages ILTi,r,t.

To investigate the core-periphery dichotomy further, the binary distinction at 75% of the

average GDP per capita is taken as a parameter to create further binary distinctions between

50% ´ 150% of the average GDP per capita. Therewith, the effect of the interregional linkages

with core ILCi,r,t and with peripheral ILPi,r,t regions are scrutinised over this parameter.

Further, stratified sampling are done by running the linear probability model for core and

peripheral regions separately. By this means, whether interregional linkages with core and

peripheral regions is more important for peripheral regions can be analysed. Also, robustness

checks are done by adding more variables i.e., absorptive capacity ACr,t, population density

PopDensr,t, and fixed-effects of countries ϕc and technological classes ψi. These fixed-effects

are set up by disaggregating the labels of regions and technological fields into 2-digit labels.

Further, robustness checks are done by stratifying the sample over two equal samples in time

and applying a logistic regression model instead of a linear regression model.
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3.4.2. Exploratory Analysis
To take the analysis of technological diversification the exploratory analysis investigates the

regions and technological fields further. At the regional level, the collaboration between core

and peripheral regions is scrutinised through social network analysis (SNA). At the technolog-

ical level, several measures of the technology space are investigated.

First, the regional analysis puts regions in quadrants by the dimensions of economic de-

velopment and the relative number of entries in regions. These quadrants are useful to depict

over- and underachieving regions at a geographical map and as a social network of regions.

Here, the social network consists of regions as entities (nodes) and co-inventions as relation-

ships (edges). The SNA is interesting to explore as a visualisation but also according to central-

ity measures. The degree, eigenvector and betweeness are of interest. The degree centrality

is the total number of interregional linkages and measures the direct extent to which external

knowledge spillovers are available to a region. The eigenvector centrality is the extent to which

a region’s neighbours connect and measures the indirect extent to which external knowledge

spillovers are available to a region. The betweenness centrality is the shortest path to other re-

gions andmeasures the extent to which a region is a gatekeeper, or a bridge, of knowledge flow

between regions. The centrality measures are analysed per quadrant by taking the average.

To understand whether interregional linkages tend to mix between core and peripheral

regions, or not, the measure of assortative mixing by enumerative characteristics is applied

(Newman, 2002). The assortativity coefficients indicates homophily versus heterophily in a

social network of co-invention. The social network of interregional linkage consists of regions

as entities (nodes) and co-inventions as relationships (edges). The explanation of assortative

mixing is in Appendix B. The assortativity coefficient is computed for each time frame of five

years over the period 2005 ´ 2018. The final equation is:

´1 ď r =
Q

Qmax
=
AE ´ EE

m´ EE
ď 1. (3.5)

here the assortativity coefficient r is an outcome of the actual linkages between regions of

the same objective AE and the expected linkages between regions of the same objective EE

in comparison to the total number of linkages in the sample m. Here, r = ´100% if all co-

invention is between core and peripheral regions, but not between core regions themselves

and peripheral regions themselves, and r = 100% if all co-invention is between core regions

themselves and peripheral regions themselves, but not between core and peripheral regions.

Lastly, r = 0% if co-invention distributes as if the network is random.

Second, technological analysis puts technological fields in quadrants by the dimensions of

the assortativity coefficient for each technological field and the difference in entries over the

core-periphery dichotomy. Here, the assortativity coefficient for each technological field refers

to the extent to which core and peripheral regions collaborate (or not) over that specific tech-

nological field. The difference in entries over the core-periphery dichotomy indicates whether

a technological field relatively arises more in core or in peripheral regions. These quadrants

are useful to analysis the potential in collaboration between core and peripheral regions in

conjunction with the competitive advantage that core and peripheral regions take.
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The technology space is explored further with the measures of technological ubiquity and

novelty. The technological ubiquity measures the number of regions in which a technological

field is present in terms of Relative Technological AdvantageRTAi,r,t. The technological ubiq-

uity describes whether a technological field is unique (or not) and is important to understand

whether core or peripheral regions take a competitive advantage over such ubiquity (Balland

& Rigby, 2017). Further, the technological novelty here is taken by the mean relatedness of

a technological field to other technological fields (Balland, 2016). In terms of the recombi-

nation of inventions, a low mean relatedness refers to that a technological field is novel due

to few synthesis of existing technological fields, but is also risky due to the uncertainty of a

successful outcome i.e., whether a recombination of inventions reaches the implementation

to society (Fleming & Sorenson, 2001). Therewith, a high mean relatedness refers to low nov-

elty and low risk (Balland, 2016). The technological ubiquity and novelty are investigated over

the quadrants that put the technological fields into perspective of interregional collaboration

between core and peripheral regions.

3.5. Quality Criteria
The quality of this thesis revolves around reliability and validity (Bryman, 2016). First, the ex-

ternal validity delimits to the sample of the EUmember states, which is relatively the high-end

in the spectrum of technological change and the periphery, therefore, technology is consider-

ably more present in comparison to the worldwide spectrum. How the technological diversifi-

cation persists in developing (i.e., the low-end in the spectrum of technological development)

regions is abdicated. Nevertheless, this thesis is relevant for S3 policy and economic cohesion

of the EU. Second, the internal validity delimits to the patentability of inventions in the sam-

ple of the EU member states. As Pugh and Dubois (2021) state ”it’s all relative” in peripheral

regions. Therewith, through missing data imputation and the approach of RTA these issues

resolve, however, RTA is a sensitive to a low number of patents in a region, such observa-

tionsmust be removed. Third, external reliability delimits to the operationalisation of proxies,

nonetheless, performing robustness checks overmultiple proxies improves external reliability.

Fourth, internal reliability delimits to the comparability between time periods and technolog-

ical fields, improvements are done through controlling for time fixed-effects and adjusting for

technological fields as separate.

Furthermore, problems arise using regions as units. First, NUTS2 are statistical units for

spatial analysis, however, regions remain difficult to compare i.e., regions are not a systematic

unit of comparison. Second, ’correlation is no causation’ which is even more true for regions

as non-linear systems. Therefore, controlling for variables for causal inference is dubious,

and the results are rather correlational. Therefore, complete certainty in the interpretation of

coefficients does not exist, and thus, relationships are discussed in terms of associations but

not in causal terms.
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Empirical Findings

4.1. Descriptive Analysis
As first part of the empirical findings, the descriptive analysis creates an understanding in the

data and puts the variables into their context before proceeding with the explanatory and ex-

ploratory analysis. The descriptive analysis starts with Figure 4.1 to depict core and peripheral

regions by economic development over time.1 Unless specified otherwise, the core-periphery

dichotomy is split at 75% of the sample mean GDP per capita at a given year.

Figure 4.1 indicates that the core-periphery dichotomy shifts to the Southern countries in

Western Europe over time. In Figure 4.1a in 2000 (North) Germany (DE) has more peripheral

regions than in Figure 4.1d in 2015. In contrast, in Figure 4.1a in 2000 France (FR) has fewer

peripheral regions than in Figure 4.1d in 2015. Further, in Figure 4.1b in 2005 and in Figure 4.1c

in 2010 (North-East) Spain (ES) has fewer peripheral regions than in in Figure 4.1a in 2000 and

in Figure 4.1d in 2015. Lastly, the number of peripheral regions has risen in (North) Italy (IT)

from 2010 and on-wards as in Figure 4.1c. Apart from a small shift in peripheral regions, a set

of core regions comprise core countries that do not turn peripheral at any time in the sample.

Swiss (CH), Denmark (DK), Finland (FI), Luxembourg (LU), Netherlands (NL), Norway (NO),

Sweden (SE) do not comprise of any peripheral region at any time within this sample.

In general, peripheral regions are geographically proximate to peripheral regions (and vice

versa for core regions).2 Further, since peripheral regions reside in peripheral countries, pe-

ripheral regions would be culturally proximate to peripheral regions as well (Boschma, 2005).

One interesting notice is that none of the capital regions except Área Metropolitana de Lisboa

is peripheral within this sample which emphasises economic growth within capitals.

The definition of the core-periphery dichotomy is somewhat sensitive to those regions that

reside at the boundary of being a core or a peripheral region. However, as Table 4.1 indicates,

the core-periphery dichotomy remains roughly stable over time considering the number of

core and peripheral regions in Figure 4.1.

Table 4.1: The number of core and peripheral regions over time.

2000 2005 2010 2015

Number of core regions 125 129 128 124
Number of peripheral regions 46 42 43 47

1Note, Appendix C discusses the reselection of the sample to create a coherent sample of Western European
regions and countries (for which economic and patent data is available).

2The geographical proximity between core and peripheral regions underling indicates spatial autocorrelation
may be necessary to accommodate for spatial dependence in regression models.

19
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(a) The year 2000. (b) The year 2005.

(c) The year 2010. (d) The year 2015.

Figure 4.1: The core-periphery dichotomy relative to Western European regions over time.
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The following analysis concerns the descriptive statistics of all the variables in this thesis.

Table 4.2 summarises the variables for core and peripheral regions separately. The descriptive

statistics are useful to interpret the difference between core and peripheral regions their mean

and their maximum values of variables.

Table 4.2: Descriptive statistics stratified over the core-periphery dichotomy.

Statistic N Mean St. Dev. Min Max

Core

Entry 828,518 0.136 0.343 0 1
Relatedness Density 1,101,325 27.487 17.702 0 100
Linkages Core 1,101,325 1,768 2,162 5 11,278
Linkages Periphery 1,101,325 107 189 0 1,953
GDP per Capita 1,101,325 36,877 12,423 21,500 98,800
Population Size 1,101,325 1,972,447 1,799,714 26,530 12,213,447
Population Density 1,101,325 384 831 3 7,472
R&D Expenditure 1,040,586 3,787 5,633 1 18,664

Periphery

Entry 328,858 0.073 0.261 0 1
Relatedness Density 383,682 18.379 16.062 0 100
Linkages Core 383,682 307 535 0 3,352
Linkages Periphery 383,682 47 67 0 425
GDP per Capita 383,682 19,976 3,847 5,300 27,600
Population Size 383,682 1,777,506 1,673,166 84,708 8,410,095
Population Density 383,682 182 369 2 6,059
R&D Expenditure 383,682 2,292 5,195 0 18,664

First, the mean of the entry of a new specialisation in a technological field is higher in core

(0.136) than in peripheral (0.073) regions. Thus, in this sample of Western European regions,

the economic dichotomy disseminates into a technological dichotomy as well. This indicates

that the core regions are leading, whereas the peripheral regions are lagging, in technological

diversification (Hassink & Gong, 2019; McCann & Ortega-Argilés, 2015).

Second, the mean of the relatedness density is higher in core (27.487%) than in peripheral

(18.379%) regions. The difference emphasises the path-dependency of technological diversifi-

cation over the core-periphery dichotomy. Since core regions specialise into a broader set of

new technological fields, the relatedness density grows higher in core regions in comparison

to peripheral regions, and as a consequence, the entry of new specialisations in technological

fields reflects back upon the relatedness density as a virtuous cycle for core regions (Whittle

& Kogler, 2020). In other words, the knowledge base in core regions grows wider due to the

relatedness to new technological fields whilst peripheral regions tend to lock-in into a narrow

knowledge base due to the lack of relatedness to new technological fields.
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Third, and not surprisingly, also the mean of the interregional linkages of both the types

(i.e., with core and with peripheral regions) are higher in core (1, 768& 107) than in peripheral

(307& 47) regions. The statistics indicate that core regions are better connectedwithin the sam-

ple than peripheral regions are. Therewith, the difference between core and peripheral regions

is less explicit in themean of the interregional linkages with peripheral regions (107/47 « 2) in

comparison to the mean of the interregional linkages with core regions (1, 768/307 « 6). The

results indicate that peripheral regions are rather proximate to other peripheral regions in con-

trast to core regions in terms of co-invention. From another perspective, the results indicate

that the core regions dominantly collaborate mainly to other core regions (1, 768/107 « 17)

in comparison to peripheral regions (307/47 « 6). The region with the most interregional

linkages with core regions (11, 278) is Karlsruhe in 2009. The the region with the most interre-

gional linkages with peripheral regions (1, 953) is Berlin in 2013. These two regions are both

core regions in Germany.

Fourth, the mean population size is slightly lower in peripheral (1, 777, 506) than in core

(1, 972, 447) regions. Further, the maximum population size is lower in peripheral (8, 410, 095)

than in core (12, 213, 447) regions. Thus, in general, no notable differences exist in the popula-

tion size between core and peripheral regions. Nevertheless, the largest population resides in

a core region, which is Île de France in 2018.

Fifth, the mean population density (inhabitants per km2) is lower in peripheral (384) than

in core (182) regions. Likely, peripheral regions comprise less cities and more rural areas in

comparison to core regions. The difference between core and peripheral regions in the mini-

mum and maximum population density is less apparent. The region with the highest popula-

tion density (7, 472) is Brussels, which is a core region.

Sixth, the mean R&D expenditure (in million Euro) is lower in peripheral (2, 292) than in

core regions (3, 787). In line with the core-periphery dichotomy in economic development, the

core regions spend more than peripheral regions on R&D. The difference between core and

peripheral regions in the minimum and maximum R&D expenditure is negligible.
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As a next step, Table 4.3 comprises the correlations between all the variables in this thesis

to investigate generic associations. The interpretation of the Pearson’s correlation coefficients

(i.e., weak, moderate, and strong associations) for political science by Akoglu (2018) is taken

to highlight several associations between variables.

First, a set of correlations yields moderate associations (0.4 ď r ă 0.7). In line with prior

expectations, a moderate association exists between the interregional linkages with core and

the interregional linkages with peripheral regions within the sample. Thus, according to the

extent to which a region is outward looking, a moderate association exists to linking with both

core and peripheral regions. Besides, according to the population size, a moderate association

exists to linking more with both core and peripheral regions. Straightforwardly, a large pop-

ulation size leads to more inventors and thus more interregional linkages in general. Those

moderate associations may cause multicollinearity which are problematic in regression mod-

els. The separate consideration of these variables in regression model is of importance to pre-

vent undesirable results in the interpretation of variable coefficients.

Second, a set of correlations yields weak associations (0.3 ď r ă 0.4). The GDP per capita

yields a weak association to interregional linkages with core regions, but not with peripheral

regions. In other words, richer regions tend to havemore links to other rich regions, but not as

much to poorer regions. Next to this, the population density of a region has a weak association

to interregional linkages with peripheral regions, but not with core regions. In other words,

high density regions associate with linking to poor regions, but not so much to richer regions.

Contradictory, the population density of a region has a weak association with GDP per capita.

Likely, densely populated regions comprise larger cities which tend to be the relatively richer

regions in the sample. Nevertheless, the associations are weak and thus are deceptive because

these weak associations do not deem to be significant relationships.

Table 4.3 does not indicate strong associations (r ě 0.7) between variables in this thesis.

Nonetheless, further analysis of associations through regression models using multivariate

statistics would lead to substantiated findings that suffer less from the effect of spurious cor-

relations. Specifically, correlations do not indicate true relationships, therefore, regression

models (and theory) are necessary to exclude confounding causes. All in all, one should not

conclude on relationships on basis of correlations.

Table 4.3: Correlation between variables.

(1) (2) (3) (4) (5) (6) (7) (8)

(1) Entry 1
(2) Relatedness Density 0.204 1
(3) Linkages Core 0.058 0.174 1
(4) Linkages Periphery 0.043 0.121 0.488 1
(5) GDP per Capita 0.055 0.124 0.336 0.201 1
(6) Population Size 0.063 0.199 0.392 0.405 0.025 1
(7) Population Density 0.016 0.029 0.168 0.379 0.347 0.103 1
(8) R&D Expenditure 0.000 -0.054 0.077 0.075 -0.119 0.193 -0.037 1
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Figure 4.2 indicates the percentage mean entries (versus non-entries) of new specialisa-

tions in any technological field relative to all technological fields over regions between the

core-periphery dichotomy. The figure indicates, alike Table 4.2, that the entry of a technolog-

ical field is less likely in peripheral regions than in core regions. However, when considering

the trend (moving-window of five years) over time3, core regions remain rather stable in tech-

nological diversification (+1%), whilst peripheral regions show an increasing amount of tech-

nological diversification (+3%). The increasing trend in peripheral regions seems to flatten

at the end of the time frame. Nevertheless, considering the standard deviations around the

means, not every peripheral region has less entries than some of the core regions do.

Figure 4.2: The mean percentage of total entries in technological fields in regions over time between the
core-periphery dichotomy. The shaded ribbon indicates the standard deviation around the mean. The data is

grouped corresponding to whether the region is core or peripheral.

Putting the results of Table 4.2 and Figure 4.2 in line with theory, the magnitude of knowl-

edge production between core and peripheral regions defined by economic development sep-

arates the extent of technological diversification (Balland & Boschma, 2021). In other words,

the core regions are leading regionswhereas the peripheral regions are lagging regions because

the core regions run ahead from peripheral regions in technological diversification (McCann&

Ortega-Argilés, 2015). As Hassink and Gong (2019) state, peripheral regions are followers of

knowledge production of core regions. Accordingly, the core regions define the technological

frontier, and thus the peripheral regions require to learn from novel knowledge through exter-

nal knowledge spillovers from, especially, the core regions. Therewith, the trend indicates that

peripheral regions attempt to catch-up, but, whether this trend continues, and thus, whether

the difference in technological diversification between core and peripheral regions may even

out over the long run is unpredictable. Interestingly, whilst the gap in economic development

has grown, the gap in technological diversification has shrunk. Yet, peripheral regions may be

leading over core regions in some aspects whilst overall they do not.
3Note, the year 2005 indicates the aggregation of patents over 2001´2005 and the year 2018 that of 2014´2018.

In total, the moving-window consists of 14 periods of five years over 2005 ´ 2018.
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4.2. Explanatory Analysis
The regression analysis consists of 621 technological fields within 172 regions in order to es-

timate the separate effect of interregional linkages with core and with peripheral regions on

technological diversification. The analysis consists of a central model andmultiple robustness

checks to confirmwhether the results withstand under different circumstances. All regression

tables are relevant to test the two hypotheses.

Table 4.4 is the central model and involves the variables relatedness density, GDP per

capita, population size, and time-fixed effects as a baseline of control variables. In short, all

variables have a significant positive effect on the entry of a technological field in a region. Note,

the variables are not standardised, therefore variables of different units are not comparable

among each other. Nevertheless, the goal is to investigate the variables of interregional link-

ages with core and with peripheral regions. These two variables are of an identical measure,

and thus are directly comparable. The variableR&Dexpenditure, interaction effects, and coun-

try & technology fixed-effects are excluded from the central model to have a directly compara-

ble model (apart from the sample) to the model by Balland and Boschma (2021). Notable is

that themagnitudes of all variable regression coefficients are identical to Balland andBoschma

(2021). Nevertheless, in this thesis the interregional linkages with core and peripheral regions

are taken separately to investigate the core-periphery dichotomy.

First, relatedness density has a positive effect on the probability of a region to diversify into

a new technological field.4 Therefore, regions diversify into technological fields that are nearby

to their existing knowledge base. This result confirms the importance of path-dependency for

a region to diversify (Balland et al., 2019; Boschma et al., 2015; Rigby, 2015).

Second, GDP per capita has a positive, yet negligible, effect on the probability of a region to

diversify into a new technological field4. Thus, the level of economic development contributes

to a region to diversify (Petralia et al., 2017), but is almost nil, especially when considering the

coefficient in conjunction with the range of the variable as in Table 4.2, which is „ 10, 000 ´

100, 000 Euro per inhabitant, and is relatively low in comparison to other variables.

Third, population size has a positive effect on the probability of a region to diversify into

a new technological field4. The population size leads to more inventors and thus more knowl-

edge production (Boschma et al., 2015). The population size has a large effect when consid-

ering the coefficient in conjunction with the range of the variable as in Table 4.2, which is

„ 1, 000, 000 ´ 10, 000, 000 people and is relatively high in comparison to other variables.

Fourth, the total number of interregional linkages has a positive effect on the probability

of a region to diversify into a new technological field inmodel 1. Therefore, the external knowl-

edge spillovers indeed contribute to a region to diversify (Balland&Boschma, 2021). However,

when involving the number of interregional linkages with core and peripheral regions, the to-

tal number of interregional linkages loses its positive effect. The loss of the positive effect of

this variable is discussed further in the following subsections in line with the hypotheses.

4The results remain stable considering all seven models in Table 4.4.
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4.2.1. Effects of Interregional Linkages with Core and Peripheral Regions
In Table 4.4model 1, 2, and 3 indicate that any variable of interregional linkages, may it be the

total, or, solely with core and peripheral regions, has a positive effect on the probability of a

region to diversify into a new technological field when considered individually. Therefore, the

risk to lock-into a narrow specialisation may be overcome by complementing internal knowl-

edge production with external knowledge production from both core and peripheral regions

(McCann & Ortega-Argilés, 2015). The results imply that both external knowledge spillovers

from core and peripheral regions complement internal knowledge production (Bathelt et al.,

2004). All in all, both interregional linkages with core and peripheral regions seem to con-

tribute to knowledge production. The results in model 2 and 3 together with the perception

of literature provides evidence to accept H1. Thus, a positive relationship exists between the

probability of a region to diversify and the number of interregional linkages with both core

and peripheral regions. However, as shown in Table 4.3, a note should be made that the two

variables of interregional linkages with core and peripheral regions correlate. Thus, the posi-

tive effect of interregional linkages with peripheral regions could be attributable to the effect of

interregional linkages with core regions. The following hypotheses explores this doubt further.

Inmodel 6 and 7 of Table 4.4, when consideringmultiple variables of interregional linkages

into a single model, the effect of the total number of interregional linkages and those with pe-

ripheral regions diminish. In particular, the effects of those variables turn negative whilst the

effect of interregional linkages with core regions remains positive. The fact that the effect of

two out of three variables of an identical measure change drastically is due to multicollinear-

ity between independent variables. The variance inflation factor (VIF) explains statistically

whether multicollinearity occurs. In model 4-7, between all the variables of interregional link-

ages considerable collinearity is present due to a VIF ą 2.5 (Johnston et al., 2018). In this

case, the effect of interregional linkages with core regions takes over the explainable variance

of the other variables, and thus explains the entry of technological fields best. This collinearity

is discussed further along the model evaluation & diagnostics.

Furthermore, McCann and Ortega-Argilés (2015) substantiate theoretically why the loss

of effects occur. Namely, the six stylised facts explain the core-periphery in terms of regions

their (in)ability to produce knowledge. Here, the results indicate that interregional linkages

with core regions are of greater importance because knowledge production is higher in core

regions. Therewith, an interregional linkages with a core region weights higher than interre-

gional linkages in general and interregional linkages with peripheral regions because higher

knowledge production leads to more knowledge spillovers between regions. In other words,

the cost of an interregional linkages with a peripheral region is higher than the cost of an inter-

regional linkages with a core region due to an inherent different quality of external knowledge

spillovers. The results in model 6 together with the perception of literature provides evidence

to accept H2. Thus, a stronger relationship exists between the probability of a region to diver-

sify and the quantity of interregional linkages with core regions compared to the number of

interregional linkages with peripheral regions.
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Table 4.4: The central technological diversification model i.e., entry, or not, of a new specialisation in a technological field in a region. All the models refer to
Equation 3.4 (OLS) and include time fixed-effects αt Balland and Boschma (2021). The models 2 and 3 are relevant to test H1, and the models 6 is relevant to test H2.

Dependent variable:

Entryi,r,t

(1) (2) (3) (4) (5) (6) (7)

Relatedness Density 0.004˚˚˚ 0.004˚˚˚ 0.004˚˚˚ 0.004˚˚˚ 0.004˚˚˚ 0.004˚˚˚ 0.004˚˚˚

(0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002) (0.00002)

GDP per Capita 0.000˚˚˚ 0.000˚˚˚ 0.000˚˚˚ 0.000˚˚˚ 0.000˚˚˚ 0.000˚˚˚ 0.000˚˚˚

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Population Size 0.002˚˚˚ 0.002˚˚˚ 0.010˚˚˚ 0.003˚˚˚ 0.004˚˚˚ 0.003˚˚˚ 0.003˚˚˚

(log) (0.0004) (0.0004) (0.0004) (0.0004) (0.0005) (0.0005) (0.0005)

Linkages Total 0.009˚˚˚ ´0.015˚˚˚ 0.012˚˚˚ ´0.009˚˚˚

(log) (0.0002) (0.002) (0.0003) (0.002)

Linkages Core 0.009˚˚˚ 0.024˚˚˚ 0.011˚˚˚ 0.019˚˚˚

(log) (0.0002) (0.002) (0.0003) (0.002)

Linkages Periphery 0.003˚˚˚ ´0.003˚˚˚ ´0.002˚˚˚ ´0.002˚˚˚

(log) (0.0002) (0.0003) (0.0003) (0.0003)

Period Included Included Included Included Included Included Included

Constant ´0.060˚˚˚ ´0.057˚˚˚ ´0.142˚˚˚ ´0.064˚˚˚ ´0.082˚˚˚ ´0.075˚˚˚ ´0.072˚˚˚

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Observations 1,157,376 1,157,376 1,157,376 1,157,376 1,157,376 1,157,376 1,157,376
R2 0.045 0.045 0.044 0.045 0.045 0.045 0.045
Residual Std. Error 0.316 0.315 0.316 0.315 0.315 0.315 0.315
F Statistic 3,225.501˚˚˚ 3,234.520˚˚˚ 3,143.085˚˚˚ 3,059.680˚˚˚ 3,054.954˚˚˚ 2,899.709˚˚˚ 2,899.709˚˚˚

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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4.2.2. Parameterisation of the Core-Periphery Dichotomy
Thus far the core-periphery dichotomy is split at 75% of the average GDP per capita. To in-

vestigate the hypotheses further, the core-periphery dichotomy is split at multiple positions.

The core-periphery dichotomy and variable creation is re-split in a range of 50%-150% in steps

of 5% to investigate how the dichotomy in external knowledge spillovers exists. For each re-

computation of the core-periphery dichotomy the regression is repeat. The interpretation of

model 2 and 3 as in Table 4.4 is taken to avoid multicollinearity.

In Figure 4.3, the dashed horizontal line represents the effect of the total number interre-

gional linkages. The dashed horizontal line is static because LTr,t = LCr,t+LPr,t. The dashed

vertical line represents the core-periphery dichotomy as in Table 4.4. The green line repre-

sents the regression coefficient for interregional linkages with core regions. The yellow line

represents the regression coefficient for interregional linkages with peripheral regions. Inter-

estingly, the effect of interregional linkages with core regions remains stable whilst adjusting

the core-periphery dichotomy. However, the effect of interregional linkages with peripheral

regions is highly variable. In particular, the effect of interregional linkages with peripheral re-

gions shows a sigmoidal curve. At a split of 100% and beyond, the core and peripheral regions

become comparable, and thus, from that split and on, the core-periphery dichotomy evens out.

Figure 4.3: The parameterisation of the core-periphery dichotomy with the interpretation of model 2 and 3 as
in Table 4.4. The shaded ribbon indicates three times the standard deviation around the regression coefficient.

In theoretical terms, core regions are stable providers of high quality external knowledge

spillovers whilst peripheral regions are variable. Therefore, the far periphery would have less

potential with regard to interregional collaboration. In contrast, core regions (no matter the

split) do have potential to cause external knowledge spillovers. At the far periphery (below a

split of 70%), the effect of interregional linkages with peripheral regions turns negative, which

would suggest that linking to the far periphery obstructs technological diversification. Yet,

another underlying cause could be that regions in the far periphery link together which repre-

sent a confounding effect of an inherent lock-in that is independent frommeasuring the actual

effect of external knowledge spillovers from peripheral regions (i.e., a spurious relationship).
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4.2.3. Stratification of the Core-Periphery Dichotomy
The next analysis stratifies core and peripheral regions in the central model. The stratification

is of interest to investigate how interregional linkages affect technological diversification in

core and peripheral regions differently. Table 4.5 indicates that interregional linkages with

core and peripheral regions have different results for core regions from that in Table 4.4 be-

cause the effect of interregional linkages with peripheral regions loses significance in model

1 and 4. Therewith, the results in model 2 and 3 are similar to Table 4.4. In model 1, the ef-

fect of interregional linkages with peripheral regions does not seem to impact technological

diversification in core regions. In model 4, the effect of interregional linkages with peripheral

regions does not turn negative after adding the effect of interregional linkages with core re-

gions. The results suggest that a difference exist in the flow of external knowledge spillovers

as in Figure 4.4. All in all, a positive relationship exists (+) between the probability of a region

to diversify and the number of interregional linkages with both core and peripheral regions,

however, the effect of interregional linkages with peripheral regions has an insignificant ef-

fect (´) to core regions. Furthermore, the effect of interregional linkages with core regions is

greater (++) to peripheral than to core regions.

In theoretical terms, whilst peripheral regions do benefit from interregional linkages with

peripheral regions, core regions seem to not benefit from those. Thus, external knowledge

spillovers seem to have a greater importance for peripheral regionswith no difference towhom

they link (may it be core or peripheral regions). Those results are crucial for policy-making in

peripheral regions. If interregional linkages between core and peripheral regions does not

benefit core regions, but solely benefits the peripheral regions, then the results would suggest

the benefits of interregional linkages is unequal over the core-periphery dichotomy. From a

positive perspective, peripheral regions benefit from external knowledge spillover regardless

of whether the interregional linkages are with core and peripheral regions. Furthermore, no

distinction is made between technological fields and external knowledge spillovers, and Fig-

ure 4.4 may revolve for technological field specific effects.

Peripheral
Regions

Core
Regions

External Knowledge Spillovers

−

++∗∗∗

+∗∗∗ +∗∗∗

Figure 4.4: A visual summary of the interpretation of the effect of interregional linkages with core and
peripheral regions for core and peripheral regions separately considering the sign of coefficients as in Table 4.5.

The dotted lines represent the flow of external knowledge spillovers.
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The insignificant effect of interregional linkages with peripheral regions to core regions

can be interpreted as following. The overall effect of interregional linkages with peripheral

regions to core regions is negligible. However, the effect of interregional linkages may vary

over inherent characteristics of technological fields. In this thesis the interregional linkages

are taken as a sum of all technological fields, and therefore no distinction is made between

external knowledge spillovers for each technological field specifically. Further research could

apply the specific definitions of interregional linkages Balland and Boschma (2021) for allow-

ing the variance within technological fields. The exploratory analysis investigates further how

collaboration between core and peripheral regions occurs over technological fields.

Table 4.5: The stratification of core and peripheral regions from the central model as in Table 4.4. All the
models refer to Equation 3.4 (OLS) and include time fixed-effects αt.

Dependent variable:

Entryi,r,t
Core Periphery

(1) (2) (3) (4)

Relatedness Density 0.004˚˚˚ 0.004˚˚˚ 0.003˚˚˚ 0.003˚˚˚

(0.00002) (0.00002) (0.00004) (0.00004)

GDP per Capita 0.000˚˚˚ 0.000˚˚˚ 0.000˚˚˚ ´0.000
(0.00000) (0.00000) (0.00000) (0.00000)

Population Size 0.013˚˚˚ 0.008˚˚˚ 0.007˚˚˚ 0.001˚˚

(log) (0.001) (0.001) (0.001) (0.001)

Linkages Core 0.007˚˚˚ 0.013˚˚˚

(log) (0.0004) (0.001)

Linkages Periphery ´0.0004 ´0.003˚˚˚ 0.010˚˚˚ 0.001
(log) (0.0003) (0.0003) (0.0004) (0.001)

Period Included Included Included Included

Constant ´0.155˚˚˚ ´0.119˚˚˚ ´0.149˚˚˚ ´0.054˚˚˚

(0.008) (0.008) (0.008) (0.009)

Observations 828,518 828,518 328,858 328,858
R2 0.035 0.036 0.051 0.052
Residual Std. Error 0.337 0.337 0.254 0.254
F Statistic 1,789.296˚˚˚ 1,706.712˚˚˚ 1,031.806˚˚˚ 1,004.863˚˚˚

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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4.2.4. Model Evaluation & Diagnostics
The following paragraph contains a discussion in terms of the model evaluation & diagnostics.

The model diagnostics revolves around specific tests on residuals and autocorrelation. These

results on Breusch-Pagan tests, Durbin-Watson tests, and Moran tests can be found in the R

code online at https://github.com/SebastiaanK97/EconomicGeography.

The evaluation of the central OLS model as in Table 4.4 is as following. Overall, the model

fit by R2 and the residual standard errors remain equal over model 1 to 7. Note, the model fit

byR2 is low, and the residual standard errors are high („ 0.3) considering that the dependent

variable range takes upon a value of either 0 or 1. In other words, the average misfit of the

predicted value to the actual value is „ 30% of the total range. Despite of that, the aim of

the model is causal inference of the independent variables, and not achieving a high model

fit. Regarding the model fit by F -statistics, model 2 (including the number of interregional

linkages with core regions only) is a slightly better fit thanmodel 1 (including the total number

of interregional linkages only), and model 3 (including the number of interregional linkages

with peripheral regions only) is the worst fit out of these three models. In line with previous

results, the interregional linkages with core regions explains technological diversification best.

The diagnostics of the central OLS model as in Table 4.4 is as following. Analysis of the

Breusch-Pagan test indicates that significant heteroskedasticity is present in all models (and

also in robustness checks). The test indicates that the the model leads to unequal variance

of residual error terms along independent variables. Likely, the definition of the dependent

variable causes the violation of residuals to be constant in variance (Breusch & Pagan, 1980).

Potentially, the independent variable is highly deterministic to assume that the entry of a tech-

nological field in a region is a binary variable. Nevertheless, the entry model is seen as a state-

of-the-art model due to the ability to omit the bias in patent data well. Another issue that

causes heteroskedasticity are spatial and temporal autocorrelation (Getis, 2007; Watson &

Durbin, 1951). Analysis of the Durbin-Watson and Moran tests indicates that both significant

spatial and temporal autocorrelation could be present in all models (and also in robustness

checks). In other words, the entry of a technological field in one year or a neighbouring re-

gions correlates with the entry of a technological field in the following year or the region itself.

All in all, introducing additional variables or interactions may reduce autocorrelation.

Bear in mind, one should remain sceptic on the interpretation of regression coefficients.

Specifically, how the effect of interregional linkages is attributable to further causes remains

unknown i.e., are external knowledge spillovers measured by interregional linkages a cause

of technological diversification, or, does a underlying pattern exist that confounds the effect

of interregional linkages? For instance, one should question how the effect of interregional

linkages is further attributable to different factors of knowledge production e.g., hard and soft

infrastructure (Bathelt et al., 2004), or, the quality of government (Cortinovis et al., 2017).

The discussion continues to list potential further causes and reflects on the bias in this thesis.

Nevertheless, the robustness testing (subsection 4.2.5) of four furthermodels indicate that the

results withstand under various circumstances and alternative explanations.

https://github.com/SebastiaanK97/EconomicGeography
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4.2.5. Robustness Testing
The next step is performing robustness checks to investigate whether the hypotheses with-

stand different circumstances. As following, four robustness checks are performed. First, a

robustness check is done by adding more variables and interaction effects to rule out various

explanations. Second, a robustness check is done by adding 2-digit NUTS (country) and CPC

(technological class titles) to adjust for country and technology specific differences. Third, a

robustness check is done by stratifying the sample over time to regulate for fluctuations in

time. Fourth, a robustness check is done by replacing ordinary linear regression with logistic

regression to overcome inconsistencies in regression coefficients and to reduce the observa-

tional error of an entry (or not). Prior research by Balland and Boschma (2021) already shows

themodel is robust to zero-inflated negative binomials and adjusting the entry of a new techno-

logical field in a region from RTA ą 1 to RTA ą 2. Further, testing quadratic transformations

are not relevant for the hypotheses since plenty literature suggests a linear positive effect of

external knowledge spillovers on technological diversification.

The first robustness check takes two new variables and two interaction effects into account.

First, the population density of a region is controlled for to rule out the effect of agglomeration

economies. Namely, dense populations causes increased interactions between the population

which in turn increase the probability of sharing knowledge between e.g., inventors (Frenken

et al., 2007). This effect of interaction and sharing of knowledge is expected to have a posi-

tive relationship with technological diversification (Boschma et al., 2015). However, Table 4.6

indicates that the population density results into a significant negative effect.5 Likely, the vari-

ance of population density to have a positive effect is taken over by other variables as a con-

sequence of over-controlling which introduces multicollinearity into the models. Second, the

R&Dexpenditure of a region is taken into account to control for a regions’ inventive capacity. A

region investing into technological advancements is expected to have increased technological

diversification. Indeed, the variable yields a positive significant effect.5 Third, the interaction

effect between interregional linkages and the relatedness density is added to confirm whether

interregional linkages may overcome the effect of relatedness density. In other words, the in-

teraction effect represents whether external knowledge spillovers may over come the lock-in

effects of path-dependency (Balland & Boschma, 2021).

Considering the two new variables and two interaction effects, the effect of both interre-

gional linkages with core and peripheral regions remain significantly positive in model 1 and

2. Therefore, H1 remains true. Furthermore, the effect of interregional linkages with core

regions also takes over the effect of interregional linkages with peripheral regions in model 3

and 4. Therefore, H2 remains true. All in all, interregional linkages overcome the confounding

effects of agglomeration economies, inventive capacity, and its relation to path-dependency.

5The results remain stable considering all four models in Table 4.6.
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In addition to the confounding effect by alternative explanations, model 3 and 4 in Ta-

ble 4.6 compares the model with and without time fixed-effects i.e., the variable period. No

significant differences are apparent apart that the interregional linkages with peripheral re-

gions turns sign, nevertheless its effects in model 3 and 4 are insignificant.

Table 4.6: Robustness check by adding variables and interaction effects.

Dependent variable:

Entryi,r,t

(1) (2) (3) (4)

Relatedness Density 0.002˚˚˚ 0.004˚˚˚ 0.002˚˚˚ 0.002˚˚˚

(RD) (0.0001) (0.00005) (0.0001) (0.0001)

GDP per Capita 0.000˚˚˚ 0.000˚˚˚ 0.000˚˚ 0.000˚˚˚

(0.00000) (0.00000) (0.00000) (0.00000)

Population Size 0.002˚˚˚ 0.007˚˚˚ 0.003˚˚˚ 0.004˚˚˚

(log) (0.0005) (0.0005) (0.0005) (0.001)

Population Density ´0.000˚˚˚ ´0.000˚˚˚ ´0.000˚˚˚ ´0.003˚˚˚

(log) (0.00000) (0.00000) (0.00000) (0.0003)

R&D Expenditure 0.001˚˚˚ 0.003˚˚˚ 0.001˚˚˚ 0.001˚˚˚

(log) (0.0002) (0.0002) (0.0002) (0.0002)

Linkages Core 0.006˚˚˚ 0.006˚˚˚ 0.005˚˚˚

(log) - LC (0.0003) (0.0004) (0.0004)

Linkages Periphery 0.002˚˚˚ ´0.001 0.001
(log) - LP (0.0003) (0.0005) (0.0005)

RD:LC 0.0003˚˚˚ 0.0003˚˚˚ 0.0004˚˚˚

(0.00001) (0.00001) (0.00001)

RD:LP 0.00004˚˚˚ ´0.0001˚˚˚ ´0.0001˚˚˚

(0.00001) (0.00002) (0.00002)

Period Included Included Included Excluded

Constant ´0.036˚˚˚ ´0.118˚˚˚ ´0.055˚˚˚ ´0.048˚˚

(0.006) (0.006) (0.006) (0.009)

Observations 1,113,635 1,113,635 1,113,635 1,113,635
R2 0.046 0.044 0.046 0.046
Residual Std. Error 0.313 0.313 0.313 0.313
F Statistic 2,698.615˚˚˚ 2,592.229˚˚˚ 2,460.080˚˚˚ 6,004.812˚˚˚

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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The second robustness check takes country and technological class fixed-effects into ac-

count. Here, controlling for countries is useful to attribute differences in country population

their perception to the government (Cortinovis et al., 2017), and their attitude towards en-

trepreneurship and innovation (McCann & Ortega-Argilés, 2015). Additionally, controlling

for technological classes is helpful to attribute differences in technological complexity i.e., tacit

knowledge (Balland et al., 2019). Table 4.7 indicates that including the fixed-effect of 2-digit

NUTS (countries) and CPC (technological class) leads to nomajor changes. Solely, the effect of

economic development (GDP per capita) turns sign in model 1 and 3. Furthermore, the effect

of interregional linkages with peripheral regions is positive in model 3, yet, remains smaller

than the effect of interregional linkages with core regions. It should be mentioned that the

estimation of 2-digit NUTS (countries) and CPC (technological class) are rough indicators due

to the higher aggregation of regions and technological fields their 4-digit specification.6

Table 4.7: Robustness check by adding country ϕc and technological class ψi fixed-effects.

Dependent variable:

Entryi,r,t

(1) (2) (3) (4)

Relatedness Density 0.004˚˚˚ 0.004˚˚˚ 0.004˚˚˚ 0.004˚˚˚

(0.00002) (0.00002) (0.00002) (0.00002)

GDP per Capita ´0.000˚˚ 0.000˚˚˚ ´0.000˚˚ 0.000˚˚˚

(0.00000) (0.00000) (0.00000) (0.00000)

Population Size 0.004˚˚˚ 0.011˚˚˚ 0.003˚˚˚ 0.003˚˚˚

(0.001) (0.001) (0.001) (0.0005)

Linkages Core 0.009˚˚˚ 0.008˚˚˚ 0.010˚˚˚

(log) (0.0004) (0.0005) (0.0003)

Linkages Periphery 0.004˚˚˚ 0.001˚˚˚ ´0.002˚˚˚

(log) (0.0003) (0.0004) (0.0003)

Period Included Included Included Excluded

Country Included Included Included Excluded

Technology Included Included Included Excluded

Constant ´0.065˚˚˚ ´0.123˚˚˚ ´0.056˚˚˚ ´0.071˚˚˚

(0.007) (0.007) (0.008) (0.006)

Observations 1,157,376 1,157,376 1,157,376 1,157,376
R2 0.049 0.049 0.049 0.045
Residual Std. Error 0.315 0.315 0.315 0.315
F Statistic 1,026.624˚˚˚ 1,021.208˚˚˚ 1,009.440˚˚˚ 10,982.970˚˚˚

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

6Including fixed-effects at 4-digits of 176 regions and 621 technological fields is computationally impossible.
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The third robustness check stratifies two periods of time from the central model. The strat-

ification is of interest to investigate how variance in time affects technological diversification.

Table 4.8 indicates that all the results are robust to splitting the time frame of 2005 ´ 2018

over two equal sub-periods 2005´ 2011 and 2012´ 2018 because none of the variables change

in sign. Arguably, the interregional linkages have become less important over time as the re-

gression coefficients have become smaller. Potentially and underlying reason would be that

regions have become better developed in e.g., hard and soft infrastructure, and thus the effect

of interregional linkages may have become less apparent over time.

Table 4.8: Robustness check by stratifying two periods of time.

Dependent variable:

Entryi,r,t
2005-2011 2012-2018

(1) (2) (3) (4)

Relatedness Density 0.004˚˚˚ 0.004˚˚˚ 0.004˚˚˚ 0.004˚˚˚

(0.00003) (0.00003) (0.00003) (0.00003)

GDP per Capita 0.000˚˚˚ 0.000˚˚˚ 0.000˚˚˚ 0.000˚

(0.00000) (0.00000) (0.00000) (0.00000)

Population Size 0.011˚˚˚ 0.004˚˚˚ 0.010˚˚˚ 0.004˚˚˚

(log) (0.001) (0.001) (0.001) (0.001)

Linkages Core 0.013˚˚˚ 0.009˚˚˚

(log) (0.0004) (0.0004)

Linkages Periphery 0.004˚˚˚ ´0.003˚˚˚ 0.001˚˚˚ ´0.002˚˚˚

(log) (0.0003) (0.0004) (0.0004) (0.0004)

Period Included Included Included Included

Constant ´0.164˚˚˚ ´0.093˚˚˚ ´0.126˚˚˚ ´0.058˚˚˚

(0.008) (0.008) (0.009) (0.009)

Observations 581,011 581,011 576,365 576,365
R2 0.046 0.047 0.043 0.044
Residual Std. Error 0.310 0.310 0.321 0.321
F Statistic 2,771.339˚˚˚ 2,617.129˚˚˚ 2,574.200˚˚˚ 2,394.871˚˚˚

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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The fourth robustness check replaces linear regression with logistic regression to test the

hypotheses under different statistical assumptions (Li et al., 2020). Specifically, linear regres-

sion is not commonly applied when dealing with a binary dependent variable because logistic

regression bounds the range between 0 and 1. Therefore, linear regression leads to biased

regression coefficients and measurement errors in the dependent variable. However, logistic

regression suffers from biased regression coefficients due to inconsistent model optimisation

when dealing with large number of fixed-effects and too few degrees of freedom. In contrast,

linear regression is not restricted in the usage of fixed-effects. Nevertheless, the overall ef-

fects of linear regression models are alike to logistic regression models. Therefore, linear re-

gression is commonly applied in the literature of technological diversification (Balland et al.,

2019; Boschma et al., 2015). Table 4.9 indicates the results logistic regression are similar to

the results of linear regression as in Table 4.4 because none of the variables change in sign.

Table 4.9: Robustness check by logistic regression.

Dependent variable:

Entryi,r,t

(1) (2) (3) (4)

Relatedness Density 0.030˚˚˚ 0.030˚˚˚ 0.032˚˚˚ 0.030˚˚˚

(0.0002) (0.0002) (0.0002) (0.0002)

GDP per Capita 0.000˚˚˚ 0.000˚˚˚ 0.000˚˚˚ 0.000˚˚˚

(0.00000) (0.00000) (0.00000) (0.00000)

Population Size 0.026˚˚˚ 0.030˚˚˚ 0.149˚˚˚ 0.057˚˚˚

(log) (0.005) (0.005) (0.005) (0.005)

Linkages Total 0.163˚˚˚ ´0.048
(log) (0.003) (0.031)

Linkages Core 0.160˚˚˚ 0.225˚˚˚

(log) (0.003) (0.028)

Linkages Periphery 0.040˚˚˚ ´0.038˚˚˚

(log) (0.002) (0.004)

Period Included Included Included Included

Constant ´4.292˚˚˚ ´4.294˚˚˚ ´5.410˚˚˚ ´4.640˚˚˚

(0.060) (0.060) (0.062) (0.065)

Observations 1,157,376 1,157,376 1,157,376 1,157,376
Log Likelihood ´394,765.500 ´394,647.600 ´396,466.000 ´394,530.000
Akaike Inf. Crit. 789,567.000 789,331.200 792,968.000 789,100.000

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01
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4.3. Exploratory Analysis
As following is an exploratory analysis of both regions and technologies as separate units. The

analysis aims to uncover how core and peripheral regions situate in terms of technological

diversification and interregional linkages, and how interregional collaboration occurs.

4.3.1. Regional Analysis
To investigate regions further, the relative amount of entries and the relative GDP per capita

are of interest to investigate the peripheral regions that overachieve in technological diversifi-

cation. Therefore, aggregations are made over all regions over the entire period (the standard

deviations that arise from aggregating time are low). The regions are classified on basis of

quadrants that separate core and peripheral regions (75% of the average GDP per capita) and

diversifying and non-diversifying regions (mean entries over all regions, which is 9.15%) to

separate the regions into over- and underachievers according to their economic development.

Figure 4.5 depicts the points of data within the four quadrants. Apparent is that peripheral

regions are less likely to diversify than core regions, but also show the lowest amount of tech-

nological diversification. The quadrant of interest is that of diversifying peripheral regions

(green) to understand how these regions situate. To take the analysis further the regions are

mapped to their geography, and as a network of interregional linkages.

Figure 4.5: The representations of regions over the variables of economic development and technological
diversification. The classification of the four quadrants clockwise are as following; purple depicts 94 diversifying
core regions, blue depicts 33 non-diversifying core regions, orange 32 depicts non-diversifying peripheral regions,

and green depicts 13 diversifying peripheral regions.

The diversifying peripheral regions are as following. Brandenburg, Chemnitz, Lüneburg,

Mecklenburg-Vorpommern, Sachsen-Anhalt, and Thüringen in Germany. Andalucía and Co-

munidad Valenciana in Spain. Languedoc-Roussillon, Lorraine, and Picardy in France. Cam-

pania and Puglia in Italy. The diversifying peripheral regions are a compelling case for further

qualitative analysis (e.g., comparative analysis or interviews) to understand how these regions

overcome low knowledge production and do not restrict to a lock-in.
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To create transparency in the data, Figure 4.6 visualises the quadrants geographically. In

doing so, Figure 4.6 clarifies that the core and the peripheral regions cluster geographically.

Especially the non-diversifying peripheral regions reside together and therewith add up to

peripheral countries. The countries with the majority of non-diversifying peripheral regions

are Belgium, Italy, Portugal, and Spain. The remaining peripheral regions reside in France

and Germany. Likely, external knowledge spillovers, but also the quality of government, at

the regional-level reflects back upon the country-level that causes technological diversifica-

tion (Balland & Boschma, 2021; Cortinovis et al., 2017). In this thesis, clustering could be at-

tributed to e.g., a lack of cultural, geographical, and institutional proximity (Boschma, 2005).

Figure 4.6: The geographical representations of the quadrants as in Figure 4.5.
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Figure 4.7 depicts the regions as a network of co-invention. The network is set up using

the quadrants to distinguish the regions (nodes) that collaborate through interregional link-

ages (edges). The SNA is useful to understand how regions draw upon external knowledge

spillovers. Here, the network indicates that the core regions (by economic development) link

closely together in the core of the network, further, the peripheral regions (by economic devel-

opment) are also the periphery of the network. However, the peripheral regions that diversify

situate less peripheral than those peripheral regions that do not diversify as much. Neverthe-

less, the explanatory results of Table 4.4 have already shown how interregional linkages affects

technological diversification. The following exploratory analysis draws upon metrics of SNA

to explore the importance of interregional linkages further.

Table 4.10 illustrates the mean of three centrality metrics of the SNA for each quadrant.

First, in line with the explanatory results of Table 4.4, the degree centrality (i.e., the total num-

ber of interregional linkages) is higher for regions that diversify regardless of being a core

or peripheral region. However, the non-diversifying core regions (blue) yield a much higher

degree centrality than non-diversifying peripheral regions (orange). Therefore, the core re-

gions benefit relatively more from external knowledge spillovers than the peripheral regions

do. Second, the eigenvector centrality (i.e., the extent to which a region’s neighbours connect)

is exceptionally low for the non-diversifying peripheral regions (orange). This result indicates

that the non-diversifying peripheral regions (orange) have low connectivity to other regions

overall, and thus are the far periphery of the social network. Therefore, the exposure to a va-

riety of external knowledge is lowest for non-diversifying peripheral regions (orange). This

could be the exact reason why these regions tend to lock-in into their narrow knowledge base

(Caragliu et al., 2016). Last but not least, the betweenness centrality (i.e., the shortest path to

other regions) is remarkably large for the diversifying peripheral regions (green). Therefore,

the diversifying peripheral regions (green) act as a bridge between regions. Further investi-

gation of Table 4.10 clarifies that the diversifying peripheral regions intermediate between

the core and the peripheral regions. In other words, external knowledge spillovers between

the non-diversifying peripheral regions and all the core regions are indirect. One could say

that diversifying peripheral regions are the gatekeepers of knowledge flow between the non-

diversifying peripheral regions and all the core regions. Why diversifying peripheral regions

are gatekeepers remains unknown. Further research could focus on how to attribute the vari-

ance in betweenness centrality (as a form of power relations) to factors such as entrepreneur-

ship, labour markets (and migration), or flows of natural resources (Nilsen et al., 2023).

Table 4.10: Mean centrality metrics of the network in Table 4.10 per quadrant.

Quadrant Entries Degree Eigenvector Betweenness

(1) Diversifying & Core 11.17% 110 0.32 68
(2) Non-Diversifying & Core 7.42% 83 0.23 66
(3) Non-Diversifying & Periphery 4.16% 40 0.04 66
(4) Diversifying & Periphery 11.24% 98 0.25 84
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Figure 4.7: Network depicting the regions as nodes and interregional linkages as edges with an identical indication of the quadrants as in Figure 4.5.



4.3. Exploratory Analysis 41

Figure 4.8 depicts the assortativity coefficient over time to understand how core and pe-

ripheral regions draw upon external knowledge spillovers.7 Here, interregional collaboration

between core and peripheral Western European regions is (slightly) homophilous. Thus, core

regions tend to drawupon external knowledge spillovers fromother core regionswhilst periph-

eral regions tend to draw upon external knowledge spillovers from other peripheral regions.

Furthermore, Figure 4.8 indicates that interregional linkages becomemore homophilous over

time. Further investigation signifies that especially core regions increasingly link to other core

regions whilst the development of interregional linkages in peripheral regions remains rather

stable over time. In other words, core regions increase their access to high quality external

knowledge spillovers whilst peripheral regions are rigid and do not.

A straightforward explanation would be that core regions reside in core countries. The

core regions in core countries increase in their interregional collaboration whilst peripheral

regions remain rigid. The general conception would be that peripheral regions face excessive

barriers to reach out to an external network of co-invention due to e.g., cultural and geograph-

ical, institutional, and organisational proximity (Boschma, 2005). How these barriers could

be attributed further to factors of e.g., hard and soft infrastructure (Bathelt et al., 2004), or

the quality of government (Cortinovis et al., 2017) would be appealing for further research.

From the perspective of economic equality, policy should intervene and aim for a het-

erophilous network of interregional collaboration. Especially due to the results in Table 4.4

indicate that interregional linkages with core regions cause high quality external knowledge

spillovers in comparison to interregional linkages with peripheral regions. The peripheral re-

gions should become able to draw upon external knowledge spillovers from core regions to

restore an equilibrium in external knowledge spillovers and thus technological diversification.

Figure 4.8: Assortativity coefficient of the core-periphery dichotomy over time.

7Whereas 0% would indicate a random network, ´100% indicates heterophily (i.e., core regions only link to
peripheral regions, and vice versa, peripheral regions only link to core regions), and +100% indicates homophily
(i.e., core regions only link to core regions, and vice versa, peripheral regions only link to peripheral regions)
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4.3.2. Technological Analysis
To investigate technological fields further, the difference in entries as in Table D.1 is taken in

conjunction with the assortativity coefficient specific for each technological field over the en-

tire period of 2005 ´ 2018. The technological fields are classified on basis of quadrants that

separate homophilous and heterophilous technological fields and technological fields that are

dominant in either core or peripheral regions. Figure 4.9 depicts the points of data within

the four quadrants. Apparent is that the majority of the technological fields is dominant in

core regions and the majority of technological fields is homophilous. In other words, the ma-

jority of technological fields arise in core regions through collaboration between core regions.

The quadrant of interest is the technological fields that arise dominantly in peripheral regions

through heterophilous collaboration (thus with core regions) because the results in Table 4.4

indicate that such collaboration induces technological diversification. To take the analysis fur-

ther the technological fields are mapped in the technology space and metrics are analysed.

Figure 4.9: The representations of technological fields over the variables of assortativity and core-periphery
dominance. The classification of the four quadrants clockwise are as following; green depicts 66 homophilous
peripheral technological fields, blue depicts 298 homophilous core technological fields, purple 202 depicts
heterophilous core technological fields, and orange depicts 12 heterophilous peripheral technological fields.

The heterophilous peripheral dominant technological fields are as following. Dentistry;

Oral Dental Hygiene (A61C) in Human Necessities. Vehicle Suspension (B60G) and Motor

Vehicles; Trailers (B62D) in Performing Operations & Transporting. Macromolecular Com-

pounds; Carbon-to-Carbon (C08F), Cracking Hydrocarbon Oils (C10G), Detergent Composi-

tions (C11D), andManufacture of Iron Steel (C21B) in Chemistry &Metallurgy. Paper-Making

Machines (D21F) inTextiles&Paper. Locks; Accessories; Handcuffs (E05B) andEarthDrilling

(E21B) in Fixed Constructions. Ignition (F02P) and Domestic Stoves or Ranges (F24B) in Me-

chanical Engineering. These technological fields are a compelling case for further qualitative

analysis (e.g., comparative analysis or interviews) to understand why interregional collabora-

tion occurs between these technological fields whilst benefiting peripheral regions.
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As Hassink and Gong (2019) state ”[peripheral] regions should also have policy portfolios

to support their horizontal research and innovation capabilities, so that they would not run the

risk of further lagging behind in the current and future rounds of the digital and knowledge

economy.” Therefore, peripheral regions should diversify into any technological field possi-

ble (regardless of complexity, novelty, or ubiquity). Thus, considering the external knowledge

spillovers from core regions (as proven in Table 4.4), policy should support heterophilous tech-

nological fields to enable knowledge spillovers across the core-periphery dichotomy.

To understand what general contrasts exist, Figure 4.10 indicates the percentage to what

the quadrants belong to a technological section. Apparent is that Chemistry & Metallurgy (C)

and Fixed Constructions (E) are most dominant in peripheral regions. Probably, these tech-

nological sections reflect upon labour and natural resource intensive industries (Eder, 2019;

Eder & Trippl, 2019). Further, homophilous peripheral regions are not presented in the tech-

nological section of Textiles & Paper (D). Besides, heterophilous peripheral regions are not

presented in the technological sections of Physics (G) and Electricity (H). The under presenta-

tion in these technological sections is likely in line with the reasoning that solely core regions

diversify into complex technological fields (Balland et al., 2020). No contrasts are found be-

tween homophilous and heterophilous collaboration in Figure 4.10.

Figure 4.10: Presence of technological section per quadrant as in Figure 4.9.

Figure 4.11 depicts the technology space using the quadrants to distinguish technological

fields (nodes) that tie together according to their relatedness (edges). The technology space is

useful to depict how technological fields relate in a general sense. Here, the technology space

indicates that the technological fields that relatively arisemore in peripheral regions (orange&

green) tend to cluster slightly. Further, the heterophilous peripheral dominant technological

fields (orange) scatter randomly in the network. The periphery of the technology space i.e.,

novel technological fields, consists only of technological fields that arise dominantly in core

regions (blue & purple). Figure 4.12 describes these findings further along theoretical terms.
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Figure 4.12 depicts the mean novelty of technological fields per quadrant which is taken by

themean relatedness to other technological fields (Balland&Rigby, 2017; Fleming&Sorenson,

2001). Therewith, lower mean relatedness refers to higher novelty in regions. Figure 4.12

highlights two findings in a general sense; the technological fields that arise dominantly in

peripheral regions are less novel, and the technological fields that arise through heterophilous

collaboration are more novel i.e., those with core regions. These two findings are as follows:

Figure 4.12: The novelty of technological fields per quadrant measured by the mean relatedness with the
whiskers that represent the standard deviation around the mean.

First, peripheral regions face the challenge to catch-up to overall technological develop-

ment in the global environment. On one hand, the major technological change in peripheral

regions lies inmodernisation towards general-purpose technologies to upgrade their economy

at a basic level (Hassink & Gong, 2019). On the other hand, core regions already control such

general-purpose technologies and upgrade their economy further towards novel and complex

technological fields at the boundary of the technological frontier (McCann & Ortega-Argilés,

2015). All in all, core regions are able to diversify into novel technological fields whilst periph-

eral regions lag and therefore tend to diversify into general-purpose technologies. Notable is

that the diversification into novel technological fields is risky anduncertain but also brings new

market opportunities (Balland & Rigby, 2017). By definition, the core regions have benefits to

deal with risk and uncertainty due to the available resources in those core regions.

Second, considering the prior results, one could expect that the introduction of novel tech-

nological fields would occur between core regions. However, Figure 4.12 highlights that the

technological fields that arise through heterophilous collaboration are lower in their related-

ness to other technological fields i.e., more novel. In other words, collaboration between core

and peripheral regions leads to the introduction of novel technological fields. These findings

are unexpected and unknown in theory of technological diversification. An explanation could

be that the core and peripheral regions diverge in their knowledge bases and that the recombi-

nation of those knowledge bases leads to the creation of novel knowledge (Fleming&Sorenson,

2001). Another explanation could be that collaboration between core and peripheral regions

leads to effective use of labour and natural resource intensive industries which enables the

production of novel knowledge (Eder, 2019; Eder & Trippl, 2019).
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Figure 4.13 depicts the mean ubiquity of technological fields per quadrant. The ubiquity

is taken by the the relative entries of technological fields over all regions. Therewith, high

relative number of entries in regions refers to high ubiquity whereas a low relative number of

entries in regions refers to low ubiquity. In other words, a high ubiquity means that the entry

of technological fields is available to many regions whereas low ubiquity means the entry of

technological fields is rare in comparison to the sample. No notable differences are found in

the technological ubiquity between the four quadrants.

Figure 4.13: The ubiquity of technological fields per quadrant measured by the relative entries of regions with
the whiskers that represent the standard deviation around the mean.

The findings would indicate that the technological fields within those quadrants are nei-

ther different in rarity nor availability. Therefore, the technological fields regions specialise

in are just as present in core regions as in peripheral regions considering the mean ubiquity.

Furthermore, interregional collaboration over the core-periphery dichotomy does not seem to

cause a difference in the mean ubiquity of technological fields.

In summary, the regression models in thesis have shown to what extent interregional link-

ages affect technological diversification in core and peripheral regions differently. Further

analysis shows how core and peripheral regions situate in a network of co-invention as of in-

terregional linkages, and that interregional collaboration may lead to novel knowledge in the

economy. The next chapter is the conclusion that recapitulates on theses findings.



5

Conclusion

This thesis builds upon the theoretical foundations of EvolutionaryEconomicGeography (EEG)

literature particularly on how external knowledge spillovers enable technological diversifica-

tion in especially peripheral European regions. Therewith, the main research question is:

How do the interregional linkages with core and peripheral

regions affect the probability of a region to technologically diversify?

To address this research question, a quantitative explanatory and exploratory approach

was taken to investigate technological diversification measured by the entry of a technological

field (CPC4) in regions (NUTS2) between 2005´2018. Herewith, external knowledge spillovers

traced by interregional linkages were put central because of its presumed positive impact to

peripheral regions. The explanatory analysis aimed to explain the importance of interregional

linkages with core and with peripheral regions on technological diversification in regions. The

exploratory analysis aimed to explore how technological diversification comes about in periph-

eral regions, and what technological fields show potential for technological diversification in

peripheral regions. The results of both types of analyses revealed:

First, considering the regression models, it seems that interregional linkages with core

regions are more beneficial to technological diversification than interregional linkages with

peripheral regions. One possible explanation for this pattern could be that the cost of collabo-

rating with peripheral regions is higher than collaborating with core regions because internal

knowledge production is lower in peripheral regions. Another possible explanation could be

that interregional linkages actually measures an underlying pattern of innovation that is par-

tially independent from external knowledge spillovers because the interregional linkages of a

region may relate to internal knowledge production itself. Additionally, analysis of the assor-

tativity coefficient identifies that the number of interregional linkages between core regions

has risen whilst peripheral regions are more rigid and have not increased their relative num-

ber of interregional linkages with core regions. Therefore, at this rate, external knowledge

spillovers do not seem to close the gap in knowledge production between leading core and

lagging peripheral regions. All in all, it is likely that core regions are less willing to collabo-

rate with peripheral regions than with core regions due to the higher benefits of collaborating

with those core regions. Thus, the importance of interregional linkages to peripheral regions

is promising in theory but might not entirely enable peripheral regions to catch-up to core

regions. Nevertheless, as shown by the regression models, external knowledge spillovers can

reduce the tendency of peripheral regions to lock-in due to its positive effect on technological

diversification. Therefore, interregional collaboration remains crucial for peripheral regions.
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Second, the exploratory analysis of regions aims to identify patterns in the geography of

regions and as network of co-invention. The most interesting findings concern peripheral re-

gions that diversify since these regions are overachieving in terms of technological diversifica-

tion in comparison to what is expected of their level of economic development. Therewith, the

SNA of co-invention indicates that a notable difference exist between core and peripheral re-

gions. In particular, the regions that are peripheral by their economic development are also the

periphery in a network of co-invention. However, an interesting finding is that the between-

ness centrality is remarkably large for peripheral regions that diversify. Likely, these regions

function as a bridge between core and peripheral regions due to, for instance, speaking multi-

ple languages, low travel distances, and an agreement between institutions. Herewith, these

regions may have the benefit to access different labour markets (and migration), or flows of

natural resources (Nilsen et al., 2023). A question for further research is how peripheral re-

gions can close their gap in collaboration with core regions, and thus which type of proximity

is most important to bring core and peripheral regions together (Boschma, 2005).

Third, the exploratory analysis of technological fields investigates patterns in collaboration

between core and peripheral regions. It becomes apparent that core and peripheral regions

have different benefits to different technological sections which is in line with that peripheral

regions specialise into less complex technological fields (Balland et al., 2020). Further, the

technology space among which the mean relatedness of technological fields indicates an in-

teresting finding on how novelty arises in technological diversification. The findings suggest

that heterophilous collaboration (i.e., interregional collaboration between core and peripheral

regions) leads to diversification into novel technological fields in comparison to homophilous

collaboration. These findings may relate to the understanding that distant (unrelated) knowl-

edge recombination leads to novelty (Fleming & Sorenson, 2001) All in all, collaboration be-

tween core and peripheral regions could lead to the creation of novel knowledge that benefits

society at the whole. However, these findings should be further tested in future research by

performing explanatory analysis at the level of technological fields.

Overall, a scientific and societal debate is not settled on what the role is of policy in place-

based bottom-up approaches (Iammarino et al., 2019). Another debate has mainly drawn at-

tention to economic activity of firms and sectors, but nevertheless could also apply to regions.

The statement byMazzucato (2018) ”from picking winners to picking the willing” would trans-

late in the context of this thesis into that the winners refer to core regions and the willing refers

to any region where change can be made. Throughout history policy has been focusing on

putting large organisations within core regions together because there technological change

has been most prominent. This thesis promotes that the role of policy should shift from a

preference to make technological change happen in core regions to regions where change in

innovation can be made. Therewith, if interregional collaboration between core and periph-

eral truly leads to novel technological change then the role of policy could highlight peripheral

regions better. Such policy would be beneficial for sustainable and inclusive growth across

core and peripheral regions.



6

Discussion

As following is the discussion which consists out of four sections. First, the discussion starts

with describing the theoretical contributions in terms of alignment to previous literature and

recommendations for further research. Subsequently, the theoretical and the methodological

limitations are explained. Thereafter, the methodological suggestions are described in terms

of how the data and the entry model can be improved for future analysis. Lastly, the policy

implications are drawn in the context of the EU Cohesion Policy and S3.

6.1. Theoretical Contributions
This thesis is contributing to the understanding of technological diversification in peripheral

regions through explanatory and exploratory analysis. The explanatory analysis extends the

literature on the effect of interregional linkages (i.e., external knowledge spillovers) on techno-

logical diversification (Balland & Boschma, 2021) by separating the effect of interregional link-

ages from those with core and peripheral regions. The exploratory analysis identifies to what

extent core and peripheral regions make use of interregional linkages over the core-periphery

dichotomy. Further, the exploratory analysis scrutinises interregional collaboration between

core and peripheral regions in terms of the technology space.

Prior research has argued that interregional linkages enable technological diversification

in regions. However, prior research has neglected to whom these regions link. The explana-

tory analysis indicates that interregional linkages with core and peripheral regions are not of

equal importance due to the difference in knowledge production in those core and peripheral

regions. In other words, a hierarchy may exist between low and high quality external knowl-

edge spillovers. Thus, next to the argument of Balland and Boschma (2021) that interregional

linkages are especially important to peripheral regions to overcome a lock-in into their exist-

ing knowledge base, this thesis argues that the level of economic development of the linking

region is important as well for technological diversification. Therefore, in economic terms,

costs are related to the economic development of interregional collaboration i.e., the cost of

collaborating with core regions is lower than collaborating with peripheral regions due to fac-

tors of internal knowledge production in regions. These factors refer to the stylised facts such

as the population density, the market size, the number of firms, the number of start-ups, and

the number of multinational firms in a region. This theoretical contribution lead directly to

policy implications on how to make interregional collaboration more inclusive over the core-

periphery dichotomy.
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Additionally, this thesis attempts to identify underlying patterns of how technological di-

versification is possible in peripheral regions (Eder, 2019; Eder & Trippl, 2019). The findings

identify that peripheral regions that do diversify are exceptionally high in betweenness degree

in comparison to core regions. The findings indicate that the peripheral regions that diversify

situate between peripheral regions that do not diversify and all core regions. In other words,

these regions could be seen as gatekeepers of knowledge between the knowledge production

within core and peripheral regions. Further research could focus on how this relates to labour

markets (and migration), or flows of natural resources (Nilsen et al., 2023). Therefore, fur-

ther research could take the betweenness centrality of regions as the dependent variable with

indicators on labour costs and natural resource intensity as the independent variables.

Further findings highlight that cultural, geographical, and institutional proximity may af-

fect how interregional linkages occur (Boschma, 2005). Therewith, the importance of interre-

gional linkages with core regions over those with peripheral regions brings us to the question

on how to bridge the gap in proximity between core and peripheral regions, for example, in

terms of language barriers (cultural proximity), long travelling distance (geographical proxim-

ity), and political or social differences (institutional proximity). Thus far, it remains unknown

which proximity is most influential to link (European) core and peripheral regions (Balland &

Boschma, 2021). Further research into proximity would directly relate to the policy implica-

tion of how to justify allocation of funding in improving, for instance, hard (e.g., highways and

airports) and soft (e.g., high-speed internet) infrastructure, linguistic education, and popula-

tions their perceptions and experiences with the government. Therewith, it would be crucial

to stratify the effects over core and peripheral regions when performing further quantitative

explanatory research because these effects could differ over the core-periphery dichotomy.

Next to the level of regions this thesis has shown that at the level of technological fields

differences exist that relate to collaboration between core and peripheral regions. In particular,

the novel technological fields seem to arise in core regionswhich puts a negative emphasises on

peripheral regions further. However, it seems that within the technological fields where high

interregional collaboration occurs between core and peripheral regions novelty arises. In these

terms of novelty, peripheral regionsmay lead to the production of novel knowledge. How these

technological fields relate to e.g., labour and resource intensity would be appealing for further

research (Eder, 2019; Eder & Trippl, 2019). A straightforward approach would be to take the

novelty of technological fields as the dependent variable whereas the assortativity coefficient

(considering core and peripheral regions as nodes and co-invention between regions as edges)

as the independent variable. Therewith, controlling for the complexity of technological fields

would be crucial to assign the statistical differences correctly (Balland et al., 2020).
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6.2. Limitations
This thesis has several theoretical and methodological limitations. The theoretical limitations

hold in the delimitation to technological change, and thus neglecting topics such as social in-

novation and political importance. The methodological limitations hold in the generalisation

beyond the sample, the definition of interregional linkages, and further bias in patent data.

The theoretical limitations are as following. First, an important notice is that social innova-

tion may be of greater importance than technological innovation in peripheral regions (Eder,

2019). Therefore, the emphasis on technological innovation shifts the centre of attention in

this thesis towards a type of innovation that is difficult to achieve in peripheral regions. This

limitation also reflects upon the methodological issues of taking patent data to measure inno-

vation in peripheral regions (which is addressed further in this section).

Second, in relation to internal reliability, this thesis neglects the confounding effects which

are here taken by the fixed-effects of countries and technological classes. The underlying pat-

tern of how technological diversification relates to countries and regions could be measured

by the quality of government (Cortinovis et al., 2017). However, statistical modelling on ba-

sis of this data is difficult since it is only measured in the years 2010, 2013, 2017, and 2021

(from which only three periods overlap the available patent data). Moreover, the underlying

pattern of how technological diversification relates to technological classes and fields could be

measured by technological complexity (Balland et al., 2019). Therewith, complex technolog-

ical fields are often referred to tacit knowledge which is difficult to produce and thus could

bring greater economic benefits. Herewith, the assumption is that new specialisations into

complex technological fields is easier for core regions than for peripheral regions because core

regions have a broader and deeper knowledge base. This thesis did not consider the complex-

ity of technological field as an additional factor in the study of diversification which could be

a limitation and issue for further research. However, the issue of complex technological fields

need to be treated with caution in the context of peripheral regions. As argued by Hassink

and Gong (2019), peripheral regions should prioritise specialising into any new technological

field to broaden their knowledge base in general ”so that they would not run the risk of further

lagging behind in the current and future rounds of the digital and knowledge economy” (p. 8).

Third, this thesis investigates the core-periphery dichotomy as a divide in poor and rich

regions because GDP per capita is a solid and widely available indicator of knowledge produc-

tion (Iammarino et al., 2019). However, different definitions of the core-periphery dichotomy

in knowledge production and innovation could be thought off. As the six stylised facts indicate,

other definitions could revolve around the population density, the market size, the number of

firms, the number of start-ups, or the number of multinational firms in a region. According

to Eder (2019), the population density would be another common measurement of the core-

periphery dichotomy (as urban and rural regions besides rich and poor regions) to describe

knowledge production and innovation. Furthermore, one could think of that, besides a gen-

eral core-periphery dichotomy, also a core-periphery dichotomywould exist within nations (or

other non-geographical boundaries). In other words, a region may be core within the general

sample, but still be perceived as a peripheral region within different boundaries.
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The methodological limitations are as following. First, in relation to external validity, the

findings are delimited to the sample of Western European Regions, and worldwide, this sam-

ple is at the extremity of core regions in First World countries. How the explanatory findings

(i.e., effects of interregional linkages) withstand under another spectrum of core and periph-

eral regions would be interesting in itself, and particularly to understand the costs associated

with external knowledge spillovers better. But note, the eligibility of regions using patent data

(i.e., a threshold of 50 patents per region per year) is bound to the level of economic develop-

ment, and therefore researching technological diversification in regions with lower economic

development would be controversial. Therefore, researching more peripheral regions would

rely on different methodologies (e.g., surveys) or different theories (e.g., social innovation).

Second, due to the delimitation of the sample to Western European regions, also the inter-

regional linkages delimit to those regions. In other words, co-invention does not exist outside

Western European regions due to the data availability (of GDP per capita) to regions in the

EU. Herewith, this thesis underestimates measuring external knowledge spillovers for certain

regions that are deeply embedded into global value chains outside of Western Europe. On top

of that, a small remark can be made that interregional linkages should not be counted for core

and peripheral regions separately but should be measured as weighted according to the level

of economic development of linking regions. The binary dichotomy eases theorisation and

interpretations, yet, leads to biased and less significant results.

Third, in relation to internal validity, the entry model is a relative approach that makes

regions comparable regardless of their number of patents. However, the entry model also

overestimates the entry of a new specialisation in regions with very few patents. Even though

a threshold of 50 patents per region per year is taken into account, the methodology remains

sensitive to (peripheral) regions at the lower boundary of only 50 patents in a year (considering

that 621 technological fields apply). Furthermore, the entry model neglects the depth of a spe-

cialisation in technological fields. Even though S3 emphasises that peripheral regions should

diversify as of horizontal development, and not specialise as of vertical development, the re-

lation between horizontal and vertical development could be of importance to technological

change. Additionally, the entry model in this thesis does not consider the sustainability of a

specialisation in a technological field in two ways. First, this thesis does not consider whether

a specialisation in a technological field is sustainable regarding that these specialisations re-

main over multiple periods. Second, this thesis neither considers whether a specialisation in a

technological field is sustainable in terms of mitigation or adaptation against climate change.

Fourth, a last remark should bemade that collaboration and exploitation is not considered

in measuring interregional linkages. This distinction refers to the dependency between core

and peripheral regions. Thus, core regionsmay collaboratewith peripheral regionsmeanwhile

they exploit peripheral regions for e.g., their (low-cost) resources or labour. Therewith, in spite

of that collaboration may lead to economic benefits to peripheral regions, collaboration may

also have an adverse impact on society due to exploitation as of economic dependencies.
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6.3. Policy Implications
This thesis is contributing to policy-making in the context of S3 in the EU. The S3 is a place-

based approach that sets technology-driven priorities to solve socio-economic challenges. In

these means, S3 considers that policy must be kept bottom-up and that technological change

should allow for regional path-dependent development. Therewith, this thesis seeks to justify

how the allocation of funding fosters external knowledge spillovers between core and periph-

eral regions by pinpointing different aspects of technological fields.

As stated before in this thesis, the lesser developed (i.e., peripheral) European regions re-

quire to diversify in order to induce economic competitiveness, expand the labourmarket, and

transition towards a sustainable and digital economy (Balland et al., 2019). To enable techno-

logical diversification, this thesis emphasises that collaborating with core regions is of greater

importance than collaborating with peripheral regions. Therewith, especially the peripheral

regions benefit from collaborating with core regions. However, in relation to e.g., cultural,

geographical, and institutional proximity, peripheral regions tend to collaborate with other

peripheral regions whilst core regions dominantly collaborate reciprocally. To foster sustain-

able and inclusive growth across regions, the EU Cohesion Policy has a task to link core and

peripheral regions together to not let the core-periphery dichotomy grow further.

This thesis identifies that several peripheral regions do diversify whilst many peripheral

regions do not. The peripheral regions that do diversify are self-sufficient. Especially, the

peripheral regions that do not diversify require aid from the EU Cohesion Policy. A generic

solution would be that EU funding programmes target collaboration between peripheral re-

gions that do not diversify and the core regions that provide complementary knowledge to

each other (Balland & Boschma, 2021). But, how to make interregional collaboration between

core and peripheral regions practical and effective, and, how to make interregional collabora-

tion between core and peripheral regions attractive for core regions is a challenging task. A

specific solution could be to target collaboration between core and peripheral regions whereas

the peripheral regions also cause a positive contribution (i.e, external knowledge spillovers)

to core regions. These solutions would be specific to technological fields and requires further

consideration their particular circumstances.

The overlapping issue is that policy-makers in the EU also have the responsibility to reduce

the productivity gap between the EU to other nations from which especially the United States

of America andChina (Foray, 2014). In doing so, the prioritywould revolve around funding en-

trepreneurs and organisations in core regions, and therewith, the preference would be to link

entrepreneurs and organisations from core regions together. As a consequence, peripheral re-

gions are often overlooked. Therewith, place-based policy should remain bottom-up and keep

in mind the path-dependency of regions which limits the opportunities in peripheral regions.

However, in terms of sustainable and inclusive growth, policy-makers and researchers of S3

should seek how to make competitive use of peripheral regions and pick the willing.
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6.4. Methodological Suggestions
In this thesis several methodological issues are put forward to develop the entry model and

place-based policy further. The suggestions to improve methodology are as following. A gen-

eral issue is that regional analysis involves aggregations of data in which causality gets lost.

For example, measuring the mean of GDP per capita neglects the underlying distribution of

economic development within the region. Thus, due to aggregation of data, regions may clas-

sify as core whilst parts of the region may be peripheral. These issues lead findings to become

rather correlational than causal. Nevertheless, these aggregations of data are necessary to

have an eligible amount of patents per region for the analyses in this thesis. Further research

could experiment how regression models withstand under smaller aggregations of data (e.g.,

FunctionalUrbanAreas) throughmeasuring (technological) diversification onbasis of surveys.

Besides, qualitative research on technological diversification have been widely neglected, thus

how the entry model reflects regions in on basis of qualitative judgement is appealing to de-

velop the methodology further.

The entry model is a state-of-the-art model that exist to study technological change with

few bias in peripheral regions. Nevertheless, further improvements in the model may lie in

introducing the right variables and interaction effects into regression models to deal with het-

eroskedasticity, applying further model specification to deal with spatial and temporal auto-

correlation, and extensive data preparation to deal with sample biases. An improvement to

the statistical modelling would be to consider the definition of complementary interregional

linkages by Balland and Boschma (2021) to involve the cognitive proximity of interregional

collaboration. In other words, interregional collaboration is more effective if the interregional

linkages are related to regions with a similar knowledge base. Furthermore, the measure of

complementary interregional linkages is specifically at the region-technology level, and thus

that definition is less of a one-size fits all approach.

Further research could also take the interregional linkages as the dependent variable of

instead of the entry of a new specialisation. Such research could embrace network analysis

to apply regression models at the level of interregional linkages (edges) and different types

of proximity between regions as the independent variables as explained before. Especially

relating different types proximity to interregional linkages would lead a better understanding

of why peripheral regions were able to diversify. Therewith, such analysis could investigate

the betweenness centrality further.
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A

Variable Operationalisation

Table A.1: The operationalisation of variables.

Variable Model Operationalisation Category Reference

Entry Dependent Entry of a technological field i in region r at time t Binary OECD

Linkages Core Independent Number of external co-inventors in core regions s at time t Discrete OECD

Linkages Periphery Independent Number of external co-inventors in peripheral regions s at time t Discrete OECD

Relatedness Density Control Relatedness of a technological field i in region r at time t Continuous OECD

GDP per Capita Control GDP per capita of region r at time t Continuous Eurostat

Population Size Control Population size of region r at time t Discrete Eurostat

Population Density Control Population density of region r at time t Continuous Eurostat

Absorptive Capacity Control Gross R&D expenditure of region r at time t Continuous Eurostat

Period Control Period time t Categorical Model
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B

Assortative Mixing

Assortative mixing by enumerative characteristics is a measure to compare the actual number

AE and the expected numberEE of linkages between regions their objective (Newman, 2002).

The assortativity coefficient r is a measure of homophily and heterophily i.e., the tendency to

associate with similar or dissimilar entities. The number of actual linkages between regions of

an identical objective is:

AE =
ÿ

(i,j)PE

δ(ci, cj) =
1

2

ÿ

i,j

ai,jδ(ci, cj) (B.1)

where E is the set of linkages in the social network and ai,j is the number of actual link-

ages between region i and j. The factor one-half accounts for the undirected linkages. The

Kronecker delta is a formal definition for regions belonging to identical objectives:

δ(ci, cj) =

$

&

%

0, if i ‰ j,

1, if i = j.
(B.2)

The expected number of linkages between regions of an identical objective is a mathemat-

ical estimation as if the objectives are spread randomly over the social network:

EE =
1

2

ÿ

i,j

didj
2m

δ(ci, cj) (B.3)

m is the number of linkages in the social network. Regions i and j yield a degree di and

dj respectively. Thus, didj
m refers to the expected number of linkages between region i and

j. The modularity is a measure of difference between the actual and the expected number of

linkages:1

Q =
1

2m

ÿ

i,j

(
ai,j ´

didj
2m

)
δ(ci, cj) (B.4)

whereas the maximum possible modularity is the difference between the total and the ex-

pected number of linkages:

Qmax =
1

2m

(
2m´

ÿ

i,j

didj
2m

δ(ci, cj)

)
. (B.5)

All in all, normalising modularity results in the assortativity coefficient r in Equation 3.5.

1http://users.dimi.uniud.it/~massimo.franceschet/teaching/datascience/network/assortative.html
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C

Sample Reselection

It is important is to ensure that the quantity of patents in regions is eligible in terms of data

validity and outliers, and therewith, to perform computations on. If the number of patents of

a region is too low, then the region needs to be discarded. As in Figure C.1a, similar to Balland

et al. (2019), if a region exhibits less than 10 fractional patent counts in any of the periods,

then the amount of patents in a region could be considered as insufficient. Here, a sufficient

amount of patents refers to an eligible region. However, this thesis discards regions on basis

of regional eligibility at the country level to draw upon a coherent sample of regions in terms

of interregional linkages. In particular, the sample should not consist of regions that would

exist in isolation. The selection of regions is restricted to countries in Western Europe (from

an iterative perspective) which are available in the dataset of Eurostat (2023). The believe is

that this sample of regions in Western Europe links coherently. How the sample of Western

regions link is investigated in further analysis.

Second is to ensure that the quantity of patents per technological field is sufficient and

independent from small absolute numbers. A threshold is set for technological fields to have

at least a fractional patent count of 50 over the years 2000 ´ 2018. The threshold of excluding

technological fields is applied after reconsidering the sample of regions.

The process of sample selection by region is substantiated as follows. The goal is to se-

lect countries that fit within a coherent sample of Western Europe. Figure C.1 depicts the

overview of the sample. Portugal (PT) is considered as the threshold because this country has

the least amount of eligible regions at the country-level within Western European Countries.

The countries are discarded if their fraction of eligible regions at the country-level is lower than

Portugal (PT). The countries are eligible if their fraction of eligible regions at the country-level

is higher than Portugal (PT). The Western European countries are hand-picked in line with

Google (2023), the perception to be a coherent sample, and data availability.

The countries Greece (EL), Poland (PL), Slovakia (SK), Bulgaria (BG), Romania (RO), and

Turkey (TR) yield the lowest amount of eligible regions over time, and thus these countries

are discarded directly. Further, the countries Albania (AL), Cyprus (CY), Estonia (EE), Croatia

(HR), Lithuania (LT), Latvia (LV),Montenegro (ME), NorthMonaco (MK),Malta (MT), Servia

(RS), Slovenia (SI), Czechia (CZ), and Hungary (HU) are eligible, yet are discarded, to avoid

countries (among their regions) to exist in isolation as of geographic proximity, but also due

to cultural proximity. Therewith, the expectation is that interregional linkages among non-

Western countries is scarce and would lead to a bias of incoherent collaboration.
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(a) The sample by region. (b) The sample by country.

Figure C.1: The selection of the sample.

The remainder sample ofWesternEuropean countries includesAustria (AT), Belgium (BE),

Swiss (CH), Germany (DE), Denmark (DK), Luxembourg (LU), Netherlands (NL), Norway

(NO), Sweden (SE), Italy (IT), Spain (ES), Finland (FI), France (FR), and Portugal (PT). The

believe is that these countries are coherent in interregional linkages due to geographic and

cultural proximities between those countries. Notable is that Portugal (PT) yields few eligible

regions, nevertheless, the country is considered as belonging to Western European countries.

Further, due to Brexit no data is available for the United Kingdom (UK) because there is no

agreement made on statistical cooperation at the current date (Eurostat, 2023). Lastly, due

to regional formations, the regions in Ireland (IE) and Nord-Norge and Trøndelag in Norway

(NO) are not compatible inNUTS2 regions betweenOECD2013 andEurostat 2023. TheWest-

ern European countries, considering all available data, leads to a sample of 176 regions.

The percentage of eligible regions in the sample increases from 77.71% to 91.53% when

delimiting to sample of Western European countries. Furthermore, the sample of Western

European countries is expected to be coherent in terms of interregional linkages in compari-

son to the previous sample. The next step is to impute missing years of economic data from

Eurostat 2023. The last-observation carried forward (then backward) over time for each re-

gion is a applied to impute missing data (Jalali et al., 2022).

chapter 4 depicts the core-periphery dichotomy for the new sample. The classification of

core and peripheral regions is adjusted relative to the sample ofWestern countries (byGDPper

capita for each year separately). The adjusted classification is not according to the European

Cohesion Policy, but still is relevant to the theory and hypotheses.

https://ec.europa.eu/eurostat/web/main/help/faq#Dissemination%20of%20European%20statistics%20after%20Brexit
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D

Difference in Entries over the

Core-Periphery Dichotomy

The total entries in technological fields variate strongly over the core-periphery dichotomy.

The ten most dominant contrasts in technological diversification between core and peripheral

regions in 2005 ´ 2018 are listed in Table D.1. The∆Entry resembles the relative difference of

all entries in peripheral regions in contrast to core regions. Note, the∆Entry deviates further

from zero for core regions, meaning that core regions lead by a larger percentage in techno-

logical diversification for those technological fields. For example, peripheral (in contrast to

core) regions diversify dominantly in preservation of bodies of humans, animals, or plants

(A01N), composition of macromolecular compounds (C08L), and fixed or movable closures

for openings in buildings, vehicles, or fences (E06B).

Table D.1: Top 10 differences in the entry of technological fields over the core-periphery dichotomy.

CPC4 ∆Entry Description of the Technological Field

Core

G01H ´12.33% Measurement of mechanical vibrations, or ultra- or infrasonic waves
B03B ´12.20% Separating solid materials using liquids, pneumatic tables, or jigs
F23K ´12.07% Feeding fuel to combustion apparatus
B25H ´11.96% Workshop equipment e.g., for marking-out work
B24D ´11.89% Tools for grinding, buffing, or sharpening
B24C ´11.74% Abrasive or related blasting with particulate material
B64F ´11.71% Ground or aircraft-carrier-deck installations
E05G ´11.35% Safes or strong-rooms for valuables; Bank protection devices
A63F ´11.19% Card, board, or roulette games; Indoor games; Video Games
B42F ´11.14% Sheets temporarily attached together; Filing appliances

Periphery

H04L 5.19% Transmission of digital information
A61F 5.20% Filters implantable into blood vessels; Prostheses; Stents
C08G 5.76% Macromolecular compounds obtained otherwise than by reactions
A61Q 5.96% Specific use of cosmetic or similar toiletry preparations
C07C 5.99% Acyclic or cabrocyclic compounds
C07K 6.09% Peptides
A61K 6.41% Preparations for medical, dental, or toiletry purposes
E06B 6.76% Fixed or movable closures for openings in buildings, vehicles, or fences
C08L 7.16% Composition of macromolecular compounds
A01N 7.87% Preservation of bodies of humans, animals, or plants
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