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Abstract

The problem to be considered is non-preemptive stochastic single machine scheduling to minimize the
total weighted completion time of a set of N jobs. This is a classical problem setting that has been
studied in the literature on scheduling, with many applications in operations research. In this thesis, we
try to understand algorithms and models where the underlying probability distributions are unknown,
and processing times can only be assessed via samples. Specifically, the thesis asks what can be done
when there is one single sample only.

Whenever the expected processing times are known exactly, it is known since the 1960’s that one
must schedule jobs in decreasing order of weight over expected processing time. For the setting with
access to only one sample of the processing time, we define SWOPS, the algorithm that Schedules by
Weights Over Processing Time Samples. This algorithm is the most intuitive candidate for a better-
than-random algorithm. We first formalize the concept of comparing algorithm performance. This allows
us to formulate our main research question; in which scenarios does SWOPS perform at least as well as
R, the uniformly random algorithm? We show by counter-example that in general, the performance of
SWOPS can be arbitrarily worse than R, motivating that our research question is not trivial. We then
show that the matter of comparing relative performance of algorithms can be simplified to a case where
the number of jobs N equals 2. We also introduce a novel concept called the Relative Optimality Gap
(ROG) of an algorithm. This scales the algorithm’s cost to always lie in the interval [0, 1], where a ROG
of 0 corresponds to an optimal algorithm and a ROG of 1 means the expected performance is the worst
possible. It is then proven that finding an upper ROG-bound at most 1

2
on an algorithm A is equivalent

to showing that A performs at least as well as R.
We apply these methods to several scenarios, for different types of processing time distributions, and

show that SWOPS performs well in these cases. The first scenario is when processing time distributions are
symmetric. Second, when all processing time distributions are translated versions of the same underlying
distribution. Third, when all processing time distributions are linearly scaled versions of the same under-
lying distribution. Lastly, we consider several special sub-cases for exponentially distributed processing
times.

In the end, we discuss what perspective these findings give us about the performance of SWOPS. We
also speculate about the broader implications of our results, in terms of what types of critical failure
modes might exist when insufficient samples are available.
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2 Introduction: Single Machine Scheduling and Sam-
pling

The research into job scheduling is extremely prolific. In the 1950’s, the problem was first
introduced to explore optimal ways to organise such things as assembly lines in factories.
Since then, many variations have been proposed and researched. Applications have been
found in a wide variety of topics, including manufacturing, healthcare, supply chains,
computer operating systems, and many more [1].

2.1 Background for fully known processing time distributions

One of the earliest papers in the field, by Smith [2] in 1956, introduces the following
problem. Consider N jobs with weights wj and processing times pj , 1 ≤ j ≤ N . Here
the weights can be interpreted as stating something about the urgency of a job. The
processing time, as the name suggests, is a measure of how long the execution of a job
will take from start to completion. The optimization goal is to find a permutation s ∈ SN
(also called the schedule) that minimizes the cost function Cost(s) =

∑
j wjCj(s). Here

Cj(s) :=
∑
i,s(i)≤s(j) pi is the completion time of job j under schedule s, which is given as

the sum of processing times of all jobs before and up to job j in schedule s. SN denotes
the set of all N ! possible permutations of the N jobs. This cost function can be thought
of as a weighted sum of the waiting times of jobs under the schedule s. An additional
assumption we make in the entire setting of this thesis is that jobs are non-preemptive.
This means that a job cannot be halted or discontinued until it is completed.
In the Smith [2] paper, it is proven by a simple exchange argument that the optimal solu-
tion to the above problem is achieved if and only if the jobs are scheduled in descending
order of the value of wi

pi
, i.e. , the job weights divided by their processing times (See [2],

Section IV). The higher the weight per processing time for a given job, the better it is
to schedule this job early. This is sometimes called the WSPT rule, because it schedules
the jobs with the Weighted Shortest Processing Time first.

An extension of the original problem called stochastic single-machine scheduling was
later formulated. In the stochastic version of the problem, processing times are given as

distributions Pj , and the new cost-function is defined as Cost(s) := E
(∑

j wjCj(s)
)

.

The problem of stochastic single-machine scheduling was discussed in 1966 by Rothkopf
[3]. It can be shown that the optimal schedule is to put the jobs in non-increasing order
of the value of

wj
E(Pj) , i.e. the weights divided by the expected processing times. A re-

cap of the proof of this result in the notation of this thesis will be discussed in Section 3.1.

2.2 Motivation

In practical applications, it is rare to have access to the expected processing times of
jobs. Rather, it seems more reasonable that a number of samples is made to sufficiently
accurately estimate the expected processing times. Since the result by Rothkopf strictly
speaking only applies to the cases where the expected processing time is known precisely,
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we can only apply it when the number of samples is high enough, by the law of large
numbers. This thesis will give some results and insight into the scenarios where the
number of samples is smaller.
It is also worth noting that this research is related to learning-augmented algorithms,
which is currently a very active field of study. In learning-augmented algorithms, an
algorithm uses a limited number of samples to learn an unknown parameter or set of
parameters. See also Algorithms with Predictions [4] for a depository of recent papers on
this topic.

2.3 Problem description for sampled processing times

We define a new version of the single machine scheduling problem, in which the underlying
processing time distributions are unknown, and can only be assessed through sampling.
Specifically, we focus on the extreme case where each such distribution may only be
sampled exactly once. The goal is to investigate the algorithm that Schedules by Weights
Over Processing-time Samples, referred to as SWOPS. This algorithm divides the weight
wj of each job j by its sampled processing time pj , and then schedules the jobs in non-
increasing order of these values. In case of ties, it decides on a schedule uniformly at
random. Intuitively, one can think of SWOPS as doing what can be considered common
practice, namely assuming the finite samples actually correspond to the full distribution
of processing times. The difference is that this is now applied to the setting where we
only have one such sample.
Our main research question is in which scenarios we can show that SWOPS performs at
least as well as R, the uniformly random algorithm. The statement of this question will
be made more rigorous in Section 3.2 of this thesis.

2.4 Outline of the thesis

In Section 3, we first build up a methodology for analyzing the single-sample stochastic
single-machine scheduling problem. In Section 3.1 we discuss the result and proof achieved
by Rothkopf [3] for the case where processing time distributions are fully known. Next,
in Section 3.2, we discuss what challenges arise in the case where distributions are only
accessible through sampling. We also give a number of definitions to formalize what it
means for an algorithm to perform better than random. Then, in Section 3.3, we discuss
a concrete example as a motivation that finding an algorithm that performs better than
random is non-trivial. Afterwards, in Section 3.4, we show that under some assumptions
on the problem space and the algorithms, the problem can be reduced to problem instances
with only two jobs. Lastly, in Section 3.5, we introduce the concept of the Relative
Optimality Gap (ROG), which allows us to show stronger results for the performance of
algorithms when compared to the uniformly random algorithm R.
Next, in Section 4, we apply the derived methods to study the behavior of SWOPS in specific
scenarios. First we consider the case of jobs with symmetrically distributed processing
times in Section 4.1. Then, in Sections 4.2 and 4.3, we study the cases where processing
time distributions are translated or scaled versions of the same underlying distribution,
respectively. In Section 4.4 we study the very specific case where jobs have exponentially
distributed processing times, and show that under some additional assumptions on the
job parameters, we can get a strong result using the Relative Optimality Gap approach.
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After that, in Section 4.5, we explore whether SWOPS still performs provably well if we
relax some of the constraints from Section 4.4.
Finally, in Section 5.2, we outline future challenges, and potential research directions to
be looked into.

3 Methods: Algorithm Analysis for Sampled Process-
ing Times

3.1 Results in the case of fully known processing time distribu-
tions

We briefly summarize one of the results from Rothkopf [3].

We will prove that a schedule s∗ minimizes Cost(s) := E
(∑

j wjCj(s)
)

if and only if the

following implication holds:
If job j occurs before job k in the schedule s∗, then

wj
E(Pj) ≥

wk
E(Pk) .

In other words, s∗ is optimal if and only if it schedules the jobs in order of descending
value of the fraction of the job weights over their expected processing times.

Proof. =⇒: From the fact that there exists only a finite number of distinct schedules s,
it follows that there must exist at least one schedule that minimizes the cost-function.
Assume s∗ to be such an optimal schedule. Suppose to the contrary that there exist two
jobs j, k such that j occurs before k in s∗, but

wj
E(Pj) <

wk
E(Pk) . Then it follows that there

must also exist two consecutive jobs l,m in the schedule s∗ such that l occurs before m
but wl

E(Pl) <
wm

E(Pm) .

We can rewrite the expression for Cost(s) as

Cost(s) = E

∑
j

wjCj(s)

 =
∑
j

wjE(Pj) +
∑
j,k

j occurs before k in s

wkE(Pj),

where we have used linearity of expectation. Consider the schedule s′ which is the same
as s∗, except with jobs l,m swapped. By the above expression for Cost(s), we see that
this swap adds and removes precisely one term from the right-hand sum, and otherwise
leaves the cost-function value unchanged. Expressing this in an equation yields

Cost(s∗)− Cost(s′) = wmE(Pl)− wlE(Pm) > 0,

where the last inequality follows from the fact that wl
E(Pl) <

wm
E(Pm) .

This contradicts our initial assumption that s∗ is optimal, and concludes the proof in this
direction.

⇐=:
Assume that s is such that the jobs are in non-increasing order of the value of the fractions
wj

E(Pj) . Then we must show that s minimizes Cost(s).
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Suppose s′ is an optimal schedule, and s′ 6= s.
By the previous argument s′ must also schedule the jobs in non-increasing order of the
value of the fractions

wj
E(Pj) . Therefore, s and s′ can only differ in the order of jobs that

have equal values for
wj

E(Pj) . It can easily be shown using a similar argument to the one

above that permuting such jobs does not affect the value of the cost-function, because if
wj

E(Pj) = wk
E(Pk) , then wjE(Pk) − wkE(Pj) = 0. By repeated swaps of adjacent jobs with

equal values of
wj

E(Pj) , we can turn s′ into s. Since each swap leaves the cost unchanged,

we see that Cost(s′) = Cost(s).

3.2 Formalizing the sampling version of the single-machine schedul-
ing problem

In this section we will introduce several new definitions and notations to help formalize
the single-sample stochastic single-machine scheduling problem.
There are again N jobs, with weights wj and processing time distributions Pj , 1 ≤ j ≤ N .

3.2.1 Algorithms for sampled processing times

The types of algorithm that will be considered in this thesis are referred to in the literature
as “non-preemptive static list policies”. Below is a quoted definition from Pinedo [5], page
257. 1

Definition 3.1 (Non-preemptive static list policy). Under a non-preemptive static list
policy the decision maker orders the jobs at time zero according to a priority list. This
priority list does not change during the evolution of the process. Every time the machine
is freed, the next job on the list is selected for processing.

Here the word static means that the priority list, once made, is not updated. This is
in contrast to dynamic algorithms, which can choose to change the priority list order of
jobs that have not yet been started, based on the realized processing times of executed
jobs. In the setting of the Rothkopf paper, with fully known processing times, we can
without loss of generality consider only static policies. This is because the processing time
distributions of different jobs are independent from one another. Therefore, knowing the
realized processing of one job does not change the optimal order in which to schedule the
other jobs. This is formally proven in Pinedo [5], Theorem 10.1.1.
In the case of sampled processing times, we expect for the same reasons that it is sufficient
to consider only non-preemptive static list policies.

Formally, we consider non-preemptive static list policy algorithms A to be functions that
take as their input the number of jobs, the weights, and a single sample of each processing
time distribution. A then returns a discrete distribution over all possible schedules s ∈ SN .
The schedule used is then pulled from this distribution.

1The definition has been reworded slightly to apply to single-machine scheduling rather than parallel
machine-scheduling.
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Algorithm A

Input: N, (wj)1≤j≤N , (pj ∼ Pj)1≤j≤N
Output: a distribution over the set of schedules, SN .

The reason A returns a distribution over schedules rather than a schedule, is because
we also allow for non-deterministic algorithms. An example is R, the uniformly random
algorithm, which assigns each schedule an equal probability of 1

N ! . For ease of reading,
in the future we will refer to the resulting schedule as “the schedule picked by A”, rather
than “the schedule pulled from the distribution that was output by A”.

3.2.2 Cost-function for sampled processing times

The changes compared to the case where processing time distributions were fully known
add multiple sources of randomness into the problem. Firstly, different processing time
samples may lead to different schedules. Secondly, because the algorithms themselves are
not necessarily deterministic, even running them multiple times with the same samples
in the input may lead to different schedules. In order to make meaningful statements
about algorithm performance we want a cost-function that is deterministic, eliminating
both these sources of randomness. This motivates the following definition.

Definition 3.2 (cost function). The cost function in the single machine scheduling prob-
lem with sampled processing times is defined as

Cost(A) :=
∑
s∈SN

Pr (A picks s)Ep∼P

∑
j

wjCj(s)

 .

Note that this cost-function is now a function of the algorithm A, rather than the schedule
s. This makes sense, because in the single-sample setting, the question of what schedule
we pick may change based on what we sample for the processing times. The meaningful
things to compare are the algorithms, not the schedules themselves.

Another point to note is that the right-most part of the expression, E
(∑

j wjCj(s)
)

, is a

deterministic function of s. It is equivalent to the cost-function used in the setting of the
Rothkopf [3] paper. The expectation operator takes the expectation over the processing
times. When a schedule s is fixed, this expression simply yields the expected sum of
weighted completion times corresponding to that schedule.
The fact that the right-most part of the expression is deterministic when we fix s, means
that we can interpret Cost(A) as a weighted sum over schedules. From this perspective,
the role of the algorithm A is to determine the “weights”, Pr (A picks s). It is important
to realize that s must not depend on the realized processing times, as these are not known
to A. We see that Cost(A) decreases as A returns bad schedules with lower probability,
and good schedules with higher probability. In the ideal case, A would return the best

schedule, minimizing E
(∑

j wjCj(s)
)

, with probability 1. However, since the processing

time distributions are not fully known, and only sampled once, in general this is not
possible.
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Also remark that this cost-function can be seen as a generalization of the cost-function
employed in the Rothkopf [3] paper. Consider the case where A has the full processing
time distributions as its input rather than a single sample (eliminating randomness from
sampling), and was required to give a deterministic output rather than a distribution over
schedules. Then the cost-function defined above simplifies to the cost-function defined by

Rothkopf [3], namely E
(∑

j wjCj(s)
)

.

Another perspective on this cost-function is that minimizing it is equivalent to minimiz-
ing the expected regret achieved by an algorithm A. Here the regret is the difference in
cost compared to the offline optimal solution that one could obtain if one had known in
advance the realized processing times. Since this idea is not key to any of our further
proofs and statements, its explanation can be found in the Appendix, Section A.

3.2.3 Comparing algorithm performance

This new cost-function allows us to compare the performance of algorithms on a sin-
gle problem instance, as characterized by the weights and processing time distributions.
However, we would prefer to be able to meaningfully compare algorithms also in a broader
context. This motivates the following definitions.
We formally define a problem instance, denoted I, as I := (wj , Pj)1≤j≤N , where N ≥ 2,
wj ∈ R>0, and Pj are distributions over R≥0. That is to say, a problem instance consists
of a tuple of N ≥ 2 jobs, which in turn are fully described in terms of their weights and
processing time distributions.
The full problem space, denoted Iall, is then defined to be the set of all such prob-
lem instances. Or in mathematical notation, Iall := {I = (wj , Pj)|wj ∈ R>0, Pj ∈
{distributions over R≥0}}.
In our research, we will often only consider the problem in the context of a subset of the full
problem space. An example of what such a subset could be is Iexp := {I = (wj , Pj)|wj ∈
R>0, Pj with PDF fj(x) = λje

−λjx}. This problem space would correspond to the case
where we consider arbitrary weights, but only allow exponentially distributed processing
times. The ability to distinguish between the problem as considered on different problem
spaces allows us to be more nuanced when comparing the performance of algorithms. For
example, an algorithm that does not outperform another algorithm in general, might do
so when we restrict the problem space to a set of more “reasonable” problems.

Now we have all the tools needed to formally define what it means for an algorithm to
outperform another algorithm.
Let I ⊂ Iall be a problem space, and let A,B be algorithms that are well-defined on
all of I. We define a partial order “≤I” on algorithms. Namely, A ≤I B if and only
if CostI(A) ≤ CostI(B) for all I ∈ I. Here the cost-function, CostI(A), has been sub-
scripted with the problem instance I to emphasize that it gives the cost-function value
achieved by A for problem instance I. When A ≤I B, we say that “A performs as well as
B on the problem space I”. Another way to interpret this definition is that in order for
A to be as good as B, we require that there does not exist a problem instance on which
B achieves a better cost-function value than A.
Note that this order is indeed only partial. There are many easy examples of cases
where for two problem instances I, I ′ ∈ I, we have that CostI(A) < CostI(B), but
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CostI′(A) > CostI′(B). When this is the case, we cannot compare A and B using ≤I .

3.2.4 Formally defining the SWOPS algorithm

Lastly, let us reiterate the definition of the SWOPS algorithm, already briefly mentioned in
Section 2.2. Its name stands for the algorithm that Schedules by Weights Over Processing-
time Samples. As the name implies, this algorithm calculates the value of the fraction
wj
pj

for each job j, where wj is the weight of job j, and pj is the sampled processing time

of job j. The algorithm then schedules the jobs in descending order of the value of these
fractions, deciding uniformly at random in the case of ties. Note that the case where
pj = 0 does not form a problem, as we can simply decide to always put such a job (or
jobs) at the start of the schedule.
The SWOPS algorithm is arguably the best candidate for an algorithm to outperform R.
It mirrors the idea behind the proof in Section 3.1. There we saw that for fully known
distributions, the optimal schedule is achieved by scheduling jobs in order of the value of
the fraction

wj
E(Pj) . It follows trivially that if the samples of the processing times pj that

form the input of the SWOPS algorithm correspond exactly to the expected processing times
E(Pj), then the SWOPS algorithm is optimal as well. In particular, it would outperform
R.
In reality, the samples are unlikely to precisely match the expected values of the distri-
butions they are drawn from. Nevertheless, in cases where processing time samples carry
a lot of information about expected processing times, it seems reasonable to expect the
SWOPS algorithm to perform at least better than R.
The common practice when doing stochastic scheduling with a finite number of samples,
is to make the simplifying assumption that enough samples are available that their av-
erage is equal to the expected processing time of a job. Another way to look at SWOPS

is as the algorithm that applies this practice to the scenario where only one sample is
available. Our goal in considering SWOPS is in a sense to see under what circumstances
this simplification is harmful.

Having prepared the necessary mathematical tools, we can now state our main research
question in the following way. Under what restrictions on I ⊂ Iall, if any, does it hold
that SWOPS ≤I R?

3.3 A concrete example to show that sampling may not help

At this point, the critical reader might well be wondering if the single-sample single-
machine stochastic scheduling problem is, in fact, non-trivial. The algorithm R, which
selects among all N ! possible schedules s ∈ SN uniformly at random, does not seem like a
very formidable adversary. We have asked under what restrictions on I ⊂ Iall, if any, does
it hold that SWOPS ≤I R. In this section we will argue that this question is non-trivial,
using a concrete example that shows that following the samples may generally perform
worse than random. The example is from [6]. In the problem instance we will construct,
the SWOPS algorithm performs worse than R. Not only that, but the cost-function value
achieved by SWOPS can be made an arbitrary amount worse than that achieved by R by
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simply changing the problem parameters.

Consider the problem instance I with N = 2 jobs, and uniform weights w1 = w2 = 1.
The processing time distributions are given as discrete distributions, as follows

P1 =

{
0 with probability 1− 1

M

M2 with probability 1
M

P2 = ε with probability 1.

Here M ∈ R>0 is an arbitrary positive number, taken to be very large. Similarly, ε ∈ R>0

is also an arbitrary positive number, taken to be very small.
One can easily calculate the expected values of the processing times for P1 and P2 to be
E(P1) = 0(1− 1

M ) +M2( 1
M ) = M , and E(P2) = ε.

We can see that when the SWOPS algorithm has as its input a sample p1 = 0, which
happens with probability 1 − 1

M , it schedules job 1 before job 2. And when the sample
is p1 = M2, which happens with probability 1

M , it schedules job 2 before job 1. The
cost-function value achieved by SWOPS is then simply

CostI(SWOPS) :=
∑
s∈S2

Pr (SWOPS picks s)E

∑
j

wjCj(s)


= w1E(P1) + w2E(P2) + (1− 1

M
)w2E(P1) +

1

M
w1E(P2)

The first two terms here are independent of the schedule picked by SWOPS. They can be
thought of as representing the fact that every job has to at least wait the length of its
own processing time before it is completed. The third term means that with probability
(1 − 1

M ), SWOPS will schedule in the order 12, incurring a cost of w2E(P1). The fourth
term signifies that with probability 1

M , SWOPS will schedule in the order 21, incurring a
cost of w1E(P2).
Plugging in the weights and expected processing times, we obtain the expression

CostI(SWOPS) = M + ε+ (1− 1

M
)M +

1

M
ε

= 2M − 1 + ε+
ε

M
.

The algorithm R on the other hand schedules job 1 before job 2 with probability 1
2 , and

job 2 before job 1 with probability 1
2 . The cost-function value achieved by R is then
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CostI(R) :=
∑
s∈S2

Pr (R picks s)E

∑
j

wjCj(s)


= w1E(P1) + w2E(P2) +

1

2
w2E(P1) +

1

2
w1E(P2)

= M + ε+
1

2
M +

1

2
ε

=
3

2
M +

3

2
ε.

Consider the limit whereM � 1 and ε� 1. Then we have that the difference CostI(SWOPS)−
CostI(R) ≈ 1

2M � 1. In other words, the difference in cost-function value between the
two algorithms can be made arbitrarily large by increasing the parameter M .

With this example we have illustrated that there exist settings in which SWOPS, an al-
gorithm that seemingly makes good use of the additional information in the form of
processing time samples, nevertheless performs worse than R, which does not make use
of the processing time samples. This motivates that our main research question is indeed
non-trivial. In the next section, we will give one of our main results. Namely, we will show
that under sufficient assumptions on the algorithms and problem space, the question of
whether one algorithm outperforms another can be answered by only looking at problem
instances of size N = 2.

3.4 Reduction to number of jobs N = 2

In this section we will show that under specific assumptions on the problem space I, and
on the algorithms A and B, the question of whether A ≤I B can be simplified in terms
of the behavior of the algorithms on pairs of jobs only. In order to obtain this result, we
first introduce several new definitions and notations.

Definition 3.3 (closed). Let I ⊂ Iall be a problem space. We say a job j = (wj , Pj) is
legal in I if there exists a problem instance I such that j ∈ I ∈ I.
We call the problem space I closed under deletion and insertion of legal jobs (henceforth
shortened to closed) if and only if we have that

I ∈ Iall and each j ∈ I is legal in I =⇒ I ∈ I.

In other words, a problem space is closed if and only if any problem instance I ∈ Iall
consisting of only legal jobs in I is guaranteed to be in the problem space I. One can
also think of this as the guarantee that deleting or inserting legal jobs will not result in
the modified problem instance lying outside the problem space.

As an example of a closed problem space, consider the problem space of exponentially
distributed jobs, Ie = {I ∈ Iall|∀j = (wj , Pj) ∈ I : Pj ∼ exp(λj)}. Here, legal jobs are
those with exponentially distributed processing times. Inserting or deleting any such job
from a problem instance will not yield a problem instance outside the problem space Ie.
Therefore Ie is closed.
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A toy example of a problem space that isn’t closed, is Inot closed := {I ∈ Iall|at least half of the jobs j ∈
I have a weight of 1}. It is easy to see that deletion of legal jobs with weight 1 can yield
a problem instance outside Inot closed. Therefore, Inot closed is not closed.

For a problem instance I ∈ I containing jobs j, k, we denote with Aj→k(I) the event that
A picks a schedule in which job j occurs before job k, given a problem instance I. Then
we define the following property on A.

Definition 3.4 (Independent of irrelevant alternatives (IIA)). Let I ⊂ Iall be a problem
space, and A an algorithm that is well-defined on all of I. Let j, k be two jobs j = (wj , Pj)
and k = (wk, Pk) that are legal in I. The algorithm A is called independent of irrelevant
alternatives (IIA) on I if and only if for any two such jobs there exists a unique value
Pr (Aj→k) such that for any I ∈ I with j, k ∈ I, we have that Pr (Aj→k(I)) = Pr (Aj→k).2

In words, A is IIA if and only if the relative order of any jobs j, k depends only on the
parameters of those two jobs, and not on the parameters of other jobs.

These definitions give us all the ingredients to prove the following lemma. The lemma
allows us to express the cost-function value CostI(A) in terms of the probabilities with
which the algorithm A schedules each pair of jobs.

Lemma 3.5. Let I ⊂ Iall be a closed problem space, and A an algorithm that is well-
defined on all of I, such that A is IIA on I. Let I ∈ I be a problem instance. Denote
with I{j,k} the problem instance consisting of only jobs j, k. Then we can rewrite the
cost-function CostI(A) as

CostI(A) =
∑
j

wjE(Pj) +

N−1∑
j=1

N∑
k=j+1

(
Pr
(
Aj→k(I{j,k})

)
wkE(Pj) + Pr

(
Ak→j(I{j,k})

)
wjE(Pk)

)
.

2In the context of this thesis, we use the letters j, k to refer to either job indices or the jobs themselves,
interchangeably. It is important to note that in the definition of the IIA property, the letters j, k refer
to the jobs, and not their indices. This distinction is relevant. If there are two problem instances, one
containing the job j, and another containing the job j′ with the same weight wj = wj′ and the same
processing time Pj = Pj′ , then we consider j to be equivalent to j′, even if their indices may be different.
If we instead referred to jobs by their indices in the definition of the IIA property, this would lead to
issues. For example, consider an algorithm A on a problem space I, and a problem instance I ∈ I where
j is the job with index 1, and k is the job with index N > 2. For the algorithm A to be IIA, Pr

(
Aj→k

)
should be independent of parameters of other jobs. So in particular, it should remain the same if we
omit all other jobs from the problem instance (denoted I2). However, since the index of job k is N > 2,
omitting all other jobs forces us to modify the job k by changing its index. The choice of how to newly
index the jobs j, k is quite arbitrary. There is no clear argument in favor of either possible indexation,
giving j index 1 and k index 2, or vice versa. This arguably arbitrary decision could in principle influence
the value of Pr

(
Aj→k(I2)

)
, if the algorithm A depends on the job indices. This in turn means that

whether or not A is IIA on I could depend on arbitrary indexing decisions. Defining jobs j, k by their
weights and processing time distributions, rather than also their indices, avoids this issue.
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Proof. First, we rewrite the cost-function as follows.

CostI(A) :=
∑
s∈SN

Pr (A picks s ∈ SN )E

∑
j

wjCj(s)


=
∑
s∈SN

Pr (A picks s ∈ SN )∑
j

wjE(Pj) +

N−1∑
j=1

N∑
k=j+1

(
δ(j → k in s)wkE(Pj) + δ(k → j in s)wjE(Pk)

) .

Here, the term
∑
j wjE(Pj) corresponds to the fact that each job has to wait its own

processing time before being completed. The double sum over jobs j, k goes over all pairs
of jobs. For each pair, either job j has to wait for job k, or job k has to wait for job j,
depending on which comes first in the schedule. If job j is first, then the Kronecker-delta
function δ(j → k in s) = 1, δ(k → j in s) = 0, and a cost wkE(Pj) is incurred. Vice versa
if job k is first. Together, these sums add up to the total incurred cost under a given
schedule. Then the part of the expression

∑
s∈SN Pr (A picks s ∈ SN ) takes the expected

value over schedules for an algorithm A, thus obtaining the CostI(A).
Next, we exchange the order of the sum over the schedule and the sums over the jobs.
We use the fact

∑
s∈SN Pr (A picks s ∈ SN ) = 1 to drop the sum over schedules from the

left-hand sum. Also, note that
∑
s∈SN Pr (A picks s ∈ SN ) δ(j → k in s) = Pr (Aj→k(I)).

Then we obtain that

CostI(A) =
∑
j

wjE(Pj) +

N−1∑
j=1

N∑
k=j+1

(
Pr (Aj→k(I))wkE(Pj) + Pr (Ak→j(I))wjE(Pk)

)
.

=
∑
j

wjE(Pj) +

N−1∑
j=1

N∑
k=j+1

(
Pr
(
Aj→k(I{j,k})

)
wkE(Pj) + Pr

(
Ak→j(I{j,k})

)
wjE(Pk)

)
,

where I{j,k} denotes the problem instance consisting of only jobs j, k. In the last step we
have used the IIA property which yields

Pr (Aj→k(I)) = Pr (Aj→k)

= Pr
(
Aj→k(I{j,k})

)
.

Note that this hinges on the fact that I is closed; otherwise the problem instance I{j,k},
consisting of only jobs j and k, might not be in the problem space I. Since j, k ∈ I ∈ I,
they are legal jobs. Therefore, we indeed have that I{j,k} ∈ I, which allows us to apply
the IIA property.
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Lemma 3.5 allows us to write the cost-function CostI(A) in terms of the probabilities
of the order of jobs in problem instances with N = 2. The use of this lemma will be
demonstrated in the proof of Theorem 3.7.
Before we move on to this theorem, we require one last lemma, which shows that the
uniformly random algorithm R is IIA on any problem space I ⊂ Iall.

Lemma 3.6. Let I ⊂ Iall be a problem space. Consider the uniformly random algorithm
R, which returns the uniform distribution over all schedules s ∈ SN for any problem
instance I ∈ I. Then R is IIA on I.

Proof. Let I, I ′ ∈ I such that there exist jobs j, k for which j, k ∈ I ∩ I ′. That is to
say, I and I ′ are two problem instances that have the same weights and processing time
distributions for jobs j and k, but potentially differing parameters for other jobs. Then,
since the pairwise order of any two jobs under R trivially has probability 1

2 , we have that
Pr(Rj→k(I)) = 1

2 = Pr(Rj→k(I ′)) = Pr(Rj→k). We conclude that R is IIA on I.

Having prepared the necessary mathematical ingredients, we can now finally move on to
the main theorem of this section.

Theorem 3.7. Let I ⊂ Iall be a closed problem space. Let N ≥ 2, and denote with IN
the space of problem instances in I consisting of N jobs, i.e., IN := {I ∈ I| |I| = N}.
Let A,B be algorithms that are well-defined on all of I, and IIA on I. Then we have the
equivalence

A ≤I2 B ⇐⇒ A ≤IN B.

Or in words, for A to perform as well as B on IN , it is sufficient and necessary that A
performs as well as B on I2.

Proof. =⇒: Suppose that A ≤I2 B. Consider a problem instance IN ∈ IN . Then we can
invoke Lemma 3.5 to write

CostIN (A) =
∑
j

wjE(Pj)+

N−1∑
j=1

N∑
k=j+1

Pr
(
Aj→k(I{j,k})

)
wkE(Pj)+Pr

(
Ak→j(I{j,k})

)
wjE(Pk).

(3.1)
From our assumption that A ≤I2 B, we have that for any problem instance I2 ∈ I2,
CostI2(A) ≤ CostI2(B). Writing this out, we get the inequality

Pr (A1→2(I2))w2E(P1) + Pr (A2→1(I2))w1E(P2) ≤ Pr (B1→2(I2))w2E(P1) + Pr (B2→1(I2))w1E(P2),

where the inequality was achieved by subtracting
∑
j wjE(Pj) from CostI2(A) and CostI2(B).

Since j, k ∈ IN ∈ I are legal jobs, and I is closed, we have that the problem instance
I{j,k} is an element of I. In particular, since it contains only two jobs, we have that
I{j,k} ∈ I2. Thus, we can apply the above inequality to each term in the right-hand sum
in Equation 3.1 to get
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∀I2 ∈ I2 : ∀j, k ∈ I2 :
Pr (Aj→k(I2)) ≥ Pr (Bj→k(I2))

∀IN ∈ IN : ∀j, k ∈ IN :
Pr (Aj→k(IN )) ≥ Pr (Bj→k(IN ))

A ≤I2 B A ≤IN B

Legend:

IIA

Closed under deletion

Closed under insertion

Figure 1: This diagram breaks down the statements in the proof of Theorem 3.7 into
their separate steps. Each blue box contains a statement. The arrows between the
boxes represent the implications between these statements. The colored dots next to the
arrows indicate which assumptions are necessary for the implication to hold. Which color
corresponds to which assumption is described in the legend, in the middle of the figure.

CostIN (A) ≤
∑
j

wjE(Pj) +

N−1∑
j=1

N∑
k=j+1

Pr
(
Bj→k(I{j,k})

)
wkE(Pj) + Pr

(
Bk→j(I{j,k})

)
wjE(Pk)

= CostIN (B).

Here the final equality follows from again applying Lemma 3.5, now on CostIN (B). Since
we showed that CostIN (A) ≤ CostIN (B) for general IN ∈ IN , we conclude that indeed
A ≤IN B.

⇐=: Suppose thatA �I2 B. Then there exists a problem instance I2 ∈ I2 s.t. CostI2(A) >
CostI2(B).
Denote with 1, 2 the jobs that are in I2. Define IN as the problem instance consisting of
a single copy of job 1, and N − 1 copies of job 2. Since 1, 2 ∈ I2 ∈ I are legal jobs, and
I is closed, we have that the problem instance IN is an element of I. In particular, since
it contains N jobs, we have that IN ∈ IN .
We can invoke Lemma 3.5, and use that CostI2(A) > CostI2(B). Then the subsequent
steps are analogous to the proof in the other direction, and are therefore omitted. The
end result is that CostIN (A) > CostIN (B). From this we conclude that A �IN B, which
concludes the proof.

In Figure 1, we see the proof of Theorem 3.7 broken down into smaller steps. The boxes
correspond to statements, and the arrows between them correspond to the implications
between statements. This diagram illustrates that some implications do not require the
full set of assumptions that were made in Theorem 3.7. For example, for the implication
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A ≤I2 B =⇒ A ≤IN B we do not require the problem space I to be closed under
insertion.

3.5 Quantitative algorithm comparison using the Relative Opti-
mality Gap

So far most of methods introduced allow for a statement of the form “under specific cir-
cumstances, some algorithm A is better than R”. However, what we are lacking is an
understanding of how much better than R an algorithm performs. This need for a more
quantitative comparison is what motivates the content of this section.

Consider a problem space I, and a problem instance I ∈ I. Denote the lowest achievable
cost as L := arg mins (CostI(s)), and the highest achievable cost asH := arg maxs (CostI(s)).
For any algorithm A, we then have that L ≤ CostI(A) ≤ H, by definition of L and H.

The first quantitative comparison that might come to mind, is bounding CostI(A) by
a constant times the optimal cost. I.e., one might consider trying to prove a result like
CostI(A) ≤ 2L, which would make A a 2-approximation algorithm. However, the problem
is that a result of this form could be extremely weak. This is easy to realize by observing
the fact that it might be the case that H < 2L. In such cases, results of the type just
mentioned are even weaker than the tautology CostI(A) ≤ H.
If we want to make a meaningful statement about the performance of an algorithm,
and avoid the issue presented above, we have to consider the cost-function value of an
algorithm relative to not only L, but to both L and H.

Definition 3.8. The Relative Optimality Gap (ROG) of an algorithm A on a problem
instance I ∈ I is defined as

ROGI(A) :=

{
CostI(A)−L

H−L when H 6= L,

0 when H = L.

Note that this means that we have 0 ≤ ROGI(A) ≤ 1. The equality ROGI(A) = 0 holds
if and only if A always picks an optimal schedule s with probability 1. The equality
ROGI(A) = 1 holds if and only if A always picks a worst possible schedule s with
probability 1, and H 6= L.
We also generalize this definition to problem spaces, instead of problem instances. The
Relative Optimality Gap of an algorithm A on a problem space I is defined as

ROGI(A) := sup
I∈I

(ROGI(A)) .

The value ROGI(A) is essentially a linear re-scaling of CostI(A) to the interval [0, 1].
As it turns out, the concept of the Relative Optimality Gap leans itself very naturally
to comparing other algorithms to R. This will become clear from the following few results.

Lemma 3.9. Consider a problem space I, and a problem instance I ∈ I. Then either
H = L, or ROGI(R) = 1

2 .
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Proof. Suppose H 6= L. Then we have that

ROGI(R) =
CostI(R)− L

H − L
.

Suppose w.l.o.g. that the jobs in I are indexed such that j < k =⇒ wj
E(Pj) ≥

wk
E(Pk) . That is

to say, the optimal cost L is achieved by scheduling in order of the indices, and the worst
cost H is achieved by scheduling in the reverse order. (This assumption is only necessary
to improve readability of the expressions below.)
Then it follows that

CostI(R)− L =

 N∑
j=1

wjE(Pj)− wjE(Pj)

+

N−1∑
j=1

N∑
k=j+1

1

2
wkE(Pj) +

1

2
wjE(Pk)− wkE(Pj)


=

N−1∑
j=1

N∑
k=j+1

1

2
wjE(Pk)− 1

2
wkE(Pj)

=
1

2

N−1∑
j=1

N∑
k=j+1

wjE(Pk)− wkE(Pj)

=
1

2
(H − L) .

Plugging this back into the formula for ROGI(R), we reconfirm that ROGI(R) = 1
2 .

The above Lemma shows that by re-scaling cost to lie in the interval [0, 1], the algorithm
R yields an expected cost halfway between L and H, as one would expect. ROGI(R) = 0
if and only if all schedules achieve the same cost, e.g. when all jobs are identical copies
of one another. These observations naturally lead to the following result.

Theorem 3.10. Let I be a problem space, and consider an algorithm A. Then it follows
that

ROGI(A) ≤ 1

2
⇐⇒ A ≤I R.

Or in words, showing that an algorithm has a Relative Optimality Gap of 1
2 or less is

equivalent to showing it performs at least as well as R.

Proof. =⇒: Suppose ROGI(A) ≤ 1
2 . Let I ∈ I be a problem instance. Then there are

two possible cases.
Case 1: H = L. Since L ≤ CostI(A) ≤ H, and L ≤ CostI(R) ≤ H, it follows that
H = L = CostI(A) = CostI(R).
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Case 2: H 6= L. Applying Lemma 3.9, we see that ROGI(A) ≤ ROGI(A) ≤ 1
2 =

ROGI(R). By filling in the formula for ROG, this means that also CostI(A) ≤ CostI(R).

From these cases together, we conclude that CostI(A) ≤ CostI(R) for any problem in-
stance I ∈ I, and thus that A ≤I R.

⇐=: Suppose that A ≤I R. Let I ∈ I be a problem instance. Then CostI(A) ≤ CostI(R).
There are two cases to consider.
Case 1: H = L. Then ROGI(A) = 0 ≤ 1

2 .

Case 2: H 6= L. Then ROGI(A) = CostI(A)−L
H−L ≤ CostI(R)−L

H−L = 1
2 , where the last equality

follows from Lemma 3.9.

N.B.: An important point to note here is that the above result is true for R, but not for
general algorithms A,B. In other words, it is not true that ROGI(A) ≤ ROGI(B) ⇐⇒
A ≤I B. Consider the following counter-example. Suppose we have a problem space I,
and algorithms A,B s.t. ROGI(A) = 1

4 and ROGI(B) = 1
3 , so ROGI(A) < ROGI(B).

However, the ROG on the problem space I is defined as the supremum over the ROG
values on the problem instances I ∈ I. Therefore, there might well exist a problem in-
stance I ∈ I with ROGI(A) = 1

4 >
1
5 = ROGI(B). Then CostI(A) > CostI(B) on that

problem instance, and thus A �I B.

Besides providing us with an alternative method of proving A ≤I R, Theorem 3.10 also
gives us a strong intuition about what the Relative Optimality Gap means. It can be
looked at as comparing an algorithm A to an algorithm Rγ . Here, Rγ is an algorithm
where each pair has a probability γ of being scheduled in the correct order3. For γ = 1

2 ,
Rγ is equivalent to R, the uniformly random algorithm. But as γ increases, ROGI(Rγ)
decreases, and the algorithm performs better. The statement ROGI(A) ≤ 1

3 boils down
to the statement “the algorithm A performs at least as well as the algorithm that picks
each pairwise order correctly with a probability 2

3 for each pair”. This perspective on the
Relative Optimality Gap will be formalized by Theorem 3.12. In order to simplify the
proof of this theorem, we will first introduce a Lemma 3.11, which allows us to express
the formula for the Relative Optimality Gap in a simpler way.

Lemma 3.11. Consider the ROG of an algorithm A on a problem instance I ∈ I.
Assume w.l.o.g. that the jobs are indexed such that j < k implies

wj
E(Pj) ≥

wk
E(Pk) . Define

the extra contribution to the cost of a pair of jobs j < k ∈ I, when scheduled in the
incorrect order, as

3This property alone is not enough to define Rγ uniquely. For example, the algorithm that picks
an optimal schedule with probability γ, and the reverse schedule all other times, also has this property.
If we want to properly define Rγ as a generalization of R, we would do something along the following
lines. For each schedule s, up to normalization, define the probability of R picking s as Pr (Rγ picks s) ∼
γ#correct pairs(s)(1 − γ)#incorrect pairs(s). That is to say, the probability of a given schedule should be
proportional to γ to the power of the number of correctly ordered pairs, times (1 − γ) to the power
of the number of incorrectly ordered pairs in that schedule. To make this definition work, one would
need to fix the normalization, and make sure the definition holds up when some jobs have equal priority
wj

E(Pj)
= wk

E(Pk)
. This is tedious, and slightly besides the point here, so we will not work it out further.
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Djk := wjE(Pk)− wkE(Pj).

Then we can write the ROG of A on I as

ROGI(A) =

{∑
j<k Pr (Ak→j(I))

Djk∑
j′<k′ Dj′k′

when H 6= L,

0 when H = L.

In words, the contribution of each pair to the ROG is given by the probability that they
are scheduled in the wrong order, multiplied by the normalized extra cost incurred by
scheduling in the pairwise incorrect order.

Proof. We have from the definition of the ROG that

ROGI(A) :=

{
CostI(A)−L

H−L when H 6= L,

0 when H = L.

When H = L, the proof is trivial. Therefore, assume H 6= L. Then the quantities in the
formula for the ROG can be expressed as

L =

N∑
j=1

wjE(Pj) +

N−1∑
j=1

N∑
k=j+1

wkE(Pj)

H =

N∑
j=1

wjE(Pj) +

N−1∑
j=1

N∑
k=j+1

wjE(Pk)

CostI(A) =

N∑
j=1

wjE(Pj) +

N−1∑
j=1

N∑
k=j+1

Pr (Aj→k(I))wkE(Pj) + Pr (Ak→j(I))wjE(Pk).

Therefore, we can write the numerator in the expression for the ROG as

CostI(A)− L =

N−1∑
j=1

N∑
k=j+1

Pr (Aj→k(I))wkE(Pj) + Pr (Ak→j(I))wjE(Pk)− wkE(Pj)

=

N−1∑
j=1

N∑
k=j+1

(Pr (Aj→k(I))− 1)wkE(Pj) + Pr (Ak→j(I))wjE(Pk)

=

N−1∑
j=1

N∑
k=j+1

Pr (Ak→j(I)) (−wkE(Pj) + wjE(Pk))

=

N−1∑
j=1

N∑
k=j+1

Pr (Ak→j(I))Djk,
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where in the third line we used that Pr (Aj→k(I)) + Pr (Ak→j(I)) = 1.
For the denominator in the expression for the ROG, we can write

H − L =

N−1∑
j=1

N∑
k=j+1

wjE(Pk)− wkE(Pj)

=

N−1∑
j=1

N∑
k=j+1

Djk.

Combining the formula for the numerator and the denominator, we reconfirm the desired
expression,

ROGI(A) =
∑
j<k

Pr (Ak→j(I))
Djk∑

j′<k′ Dj′k′
.

Theorem 3.12. Let I be a problem space, and I ∈ I a problem instance. Consider an
algorithm A such that for each pair of jobs j, k ∈ I, we have that

wj
E(Pj)

>
wk
E(Pk)

=⇒ Pr (Aj→k(I)) ≥ κ,

for some real number 0 ≤ κ ≤ 1. In other words, the probability that A schedules a pair
in the optimal order is at least κ for each pair of jobs. Then it follows that

ROGI(A) ≤ 1− κ.

Proof. Assume w.l.o.g. that the jobs in I are indexed such that j < k =⇒ wj
E(Pj) ≥

wk
E(Pk) .

If H = L, we have that ROGI(A) = 0 ≤ 1 − κ, trivially proving the desired inequality.
For the rest of the proof, we assume that H 6= L.
Using Lemma 3.11, we can then express the ROG as

ROGI(A) =
∑
j<k

Pr (Ak→j(I))
Djk∑

j′<k′ Dj′k′
.

Our assumption that A schedules in the pairwise correct order with at least probability
κ is equivalent to assuming the probability of scheduling in the pairwise incorrect order
is at most 1− κ. That is to say,
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wj
E(Pj)

>
wk
E(Pk)

=⇒ Pr (Ak→j) ≤ 1− κ.

This means that on each term in the expression for the ROG, we have the inequality

Pr (Ak→j(I))
Djk∑

j′<k′ Dj′k′
≤ (1− κ)

Djk∑
j′<k′ Dj′k′

.

Note that this inequality still holds for pairs with
wj
Pj

= wk
Pk

. In such cases, Djk = 0, so

the order of the pair is irrelevant and does not affect the cost.
Plugging this inequality into the formula for ROGI(A), we conclude that

ROGI(A) ≤
∑
j<k

(1− κ)
Djk∑

j′<k′ Dj′k′

= (1− κ)
∑
j<k

Djk∑
j′<k′ Dj′k′

= 1− κ.

Corollary 3.13. Theorem 3.12 can be seen as an extension of our previous results,
though only in one direction. Previously, we proved Theorem 3.7, which states that under
certain assumption, A ≤I2 B ⇐⇒ A ≤IN B. We can combine this with Theorem 3.10,
which states that ROGI(A) ≤ 1

2 ⇐⇒ A ≤I R. Together, we get that under the proper
assumptions,

ROGI2(A) ≤ 1

2
⇐⇒ ROGIN (A) ≤ 1

2
(3.2)

The implication from left to right is analogous to what Theorem 3.12 is stating if we fill
in a value of κ = 1

2 .

Note that Theorem 3.12 does not require that A is IIA. This is because the assumption

made in Theorem 3.12, that Pr
(
Aj→k(I)| wjE(Pj) >

wk
E(Pk)

)
≥ κ, concerns the probability of

the pairwise order of jobs j, k on the problem instance I, and the problem instance I is of

size N . If instead we started with the assumption that Pr
(
Aj→k(Ijk)| wjE(Pj) >

wk
E(Pk)

)
≥ κ,

where Ijk is the problem instance consisting of only jobs j, k, then we would need the IIA
property. Namely, then we could use IIA to argue that Pr (Aj→k(Ijk)) = Pr (Aj→k) =
Pr (Aj→k(I)), and then continue the proof from there.
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4 Application: Analysis of Well-behaved Families of
Distributions

In Section 3.4 and Section 3.5, we proved several theorems that allow us to compare the
performance of algorithms on the single-sample single-machine stochastic job schedul-
ing problem. Our next goal is to apply these theorems in answering our main research
question. Namely, we want to explore what choices of the problem space I result in
SWOPS ≤I R. That is to say, for which problem spaces does SWOPS perform at least as
well as R? The following Lemma will help us answer this question.

Lemma 4.1. Consider the SWOPS algorithm, which schedules jobs j in descending order
of value of the fraction

wj
pj

, where wj is the weight and pj is the sampled processing time.

In case of ties, it decides the ties uniformly at random. Then SWOPS is IIA on any problem
space I ⊂ Iall.

Proof. Let I ⊂ Iall. The probability of the pairwise order of two jobs under SWOPS is only
dependent on their relative values of

wj
pj

. Changing the parameters of other jobs does not

affect these values. Therefore, SWOPS is IIA on I.

By Lemma 3.6 and Lemma 4.1, we know that SWOPS and R are IIA on any problem space
I ⊂ Iall. Assume for the time being that I is a closed problem space. Then it follows by
Theorem 3.7 that the statement SWOPS ≤I R is equivalent to the statement SWOPS ≤I2 R.
Here I2 is defined as the problem space I2 := {I ∈ I| |I| = 2}, i.e. all problem instances
in I containing only two jobs.
In the following three sections, Section 4.1, Section 4.2, and Section 4.3, we will use this
result. By making several assumptions about I, we will give sufficient conditions on I
such that SWOPS ≤I2 R holds, and by extension that SWOPS ≤I R.
In order to show results about the probability of the pairwise order of jobs, we will need
the following lemma.

Lemma 4.2. Let I2 ∈ Iall be a problem instance with N = 2 jobs 1, 2. Assume their
processing time distributions have probability density functions (PDFs) f1(x) and f2(x)
respectively. Then the probability that SWOPS schedules job 1 before job 2 is given by the
expression

Pr (SWOPS1→2(I2)) =

∫ ∞
0

dy f2(y)

∫ w1
w2
y

0

dx f1(x).

Proof. f1(x) and f2(x) are two independent PDFs. It follows that the probability of
sampling P1 to be in the interval [a, b] and P2 in the interval [c, d] is given by

Pr (a ≤ p1 ≤ b, c ≤ p2 ≤ d) =

∫ d

c

dy f2(y)

∫ b

a

dx f1(x).

By definition, SWOPS will schedule job 1 before job 2 if and only if the samples p1 ∼ P1

and p2 ∼ P2 satisfy the inequality
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w1

p1
≥ w2

p2

⇐⇒ p1 ≤
w1

w2
p2.

This corresponds with having the samples in the intervals 0 ≤ p2 ≤ ∞ and 0 ≤ p1 ≤ w1

w2
p2.

Plugging these into our integral bounds gives the desired expression,

Pr (SWOPS1→2(I2)) =

∫ ∞
0

dy f2(y)

∫ w1
w2
y

0

dx f1(x).

Note that whenever we apply this lemma, we are always implicitly assuming that each
distribution we consider has a corresponding probability density function (PDF). This
means that our proofs are technically not valid for distributions without PDFs, such as
finitely discrete distributions. This is a shortcoming that can be fixed, and will also be
discussed in Section 5.2.

4.1 Symmetric processing time distributions

In this section, we will first motivate why one might expect the SWOPS algorithm to per-
form well when all processing time distributions of jobs are symmetric. Then we will
formally define what we mean with symmetric distributions, and prove that SWOPS per-
forms at least as well as R in such cases.

We already know that when all samples are exactly equal to the expected processing times,
SWOPS achieves an optimal cost, as SWOPS then just boils down to the same algorithm
applied in the Rothkopf [3] paper, which schedules jobs in non-decreasing order of

wj
E(Pj) .

However, in Section 3.3, we saw that there are distributions where with high probability,
we sample a processing time that is very different from the expected processing time.
We could leverage this fact to construct an example where SWOPS performed significantly
worse than R.
This is where the assumption of symmetry comes in. If the distributions are symmetric,
for every time we sample significantly lower than the expected processing time, there is
equal probability of sampling an equal amount higher than the expected processing time.
In expectation, these effects balance out. Suppose the sampled processing times pj , pk
for jobs j, k follow the inequality pj < pk. In fact, when the distributions are symmetric,
this knowledge still makes it more probable that for the expected processing times, we
will also have that E(Pj) < E(Pk), even if pj , pk are very different from E(Pj) and E(Pk).

Definition 4.3. Let P be a distribution over R≥0 with expected value E := E(P ) and
probability density function f(x). We say that P is a symmetric distribution if and only
if the following two conditions hold:
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1. ∀0 ≤ x ≤ E, we have that f(E + x) = f(E − x), and

2. ∀x > E , we have that f(E + x) = 0.

An equivalent way of thinking about this is by extending the probability density function
f(x) to all of R, by defining it to be zero for all x < 0 and all x > 2E. Then the symmetry
of P is the same as requiring that f(x) is symmetric around E on all of R.

Theorem 4.4. Define Is ⊂ Iall as

Is := {I ∈ Iall|∀j ∈ I, Pj is symmetric}.

Then it holds that

SWOPS ≤Is R.

Proof. Consider a problem instance I2 ∈ Is,2 consisting of jobs 1, 2 with arbitrary weights
w1, w2 ∈ R>0, and symmetric processing time distributions P1, P2. We denote the ex-
pected processing times with the shorthand E1 := E(P1) and E2 := E(P2). Assume
without loss of generality that w1

E1
≥ w2

E2
, or equivalently w1E2 ≥ w2E1. Our strategy

will be to show that on such a problem instance, Pr (SWOPS1→2(I2)) ≥ Pr (SWOPS2→1(I2)).
That is to say, the probability of scheduling in the correct order is at least as large as the
probability of scheduling in the incorrect order. From there, the desired result follows by
Theorem 3.7.

Using Lemma 4.2, we can express Pr (SWOPS1→2(I2)) in integral form as

Pr (SWOPS1→2(I2)) =

∫ ∞
0

dy f2(y)

∫ w1
w2
y

0

dx f1(x).

Next, we make the substitution x′ = w2(x−E1). Noting that this means that dx = 1
w2
dx′

and x = E1 + x′

w2
, this yields the expression

Pr (SWOPS1→2(I2)) =
1

w2

∫ ∞
0

dy f2(y)

∫ w1y−w2E1

−w2E1

dx′ f1(E1 +
x′

w2
).

Analogously, we make the substition y′ = w1(y − E2), which yields

Pr (SWOPS1→2(I2)) =
1

w1w2

∫ ∞
−w1E2

dy′ f2(E2 +
y′

w1
)

∫ y′+w1E2−w2E1

−w2E1

dx′ f1(E1 +
x′

w2
).

From the symmetry of P2, it follows that f2(E2 + y′

w1
) = 0 for y′ > w1E2. Thus, we can

change the upper boundary of the left-hand integral to w1E2, since this only excludes a
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x

y

T12

T21

w1E2

−w1E2

w2E1−w2E1

Figure 2: This figure shows two triangles representing the integral domains in the expres-
sion for the probabilities of SWOPS scheduling in each pairwise order. Triangle T12, in blue,
corresponds to the integral domain in the expression for Pr (SWOPS1→2(I2)). Triangle T21,
in green, corresponds to the integral domain in the expression for Pr (SWOPS2→1(I2)).

part of the domain where the integrand is zero. Relabeling x′ as x and y′ as y for ease of
notation, we are left with the formula

Pr (SWOPS1→2(I2)) =
1

w1w2

∫ w1E2

−w1E2

dy f2(E2+
y

w1
)

∫ y+w1E2−w2E1

−w2E1

dx f1(E1+
x

w2
). (4.1)

Analogously, we can derive a similar formula for Pr (SWOPS2→1(I2)),

Pr (SWOPS2→1(I2)) =
1

w1w2

∫ w2E1

−w2E1

dx f1(E1+
x

w2
)

∫ x+w2E1−w1E2

−w1E2

dy f2(E2+
y

w1
). (4.2)

These final two expressions can be interpreted as surface integrals in R2, with Cartesian
coordinates x and y. The integration domain in both cases is an isosceles right-angled
triangle.
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x

y

T12

T21

w1E2

−w1E2

w2E1−w2E1

Figure 3: This figure shows two triangles representing the integral domains in the expres-
sion for the probabilities of SWOPS scheduling in each pairwise order. Mirroring either
triangle through either axis does not change the values of the integrals. By mirroring
T21 once in each axis, it aligns with T12. We see that the diagonal strip where the tri-
angles do not overlap corresponds to the difference in the integral domains, proving that
Pr (SWOPS1→2(I2)) ≥ Pr (SWOPS2→1(I2)).

These triangles are shown in Figure 2. We denote the triangle corresponding to Pr (SWOPS1→2(I2))
with T12, and analogously for T21. Starting at the bottom left and going counter-
clockwise, the triangle T12 has corners with coordinates (−w2E1,−w1E2), (2w1E2 −
w2E1, w1E2), (−w2E1, w1E2) respectively. Similarly, the triangle T21 has corners with
coordinates (−w2E1,−w1E2), (w2E1,−w1E2), (w2E1, 2w2E1 − w1E2).
The symmetry properties of P1 and P2 can be interpreted as meaning that the integrals
over the triangles remain the same after reflection through either of the coordinate axes.
Mirroring the triangle T21 corresponding to Pr (SWOPS2→1(I2)) twice, once in the x-axis,
and once in the y-axis, perfectly aligns its right-angle corner with the right-angle corner of
the triangle T12 corresponding to Pr (SWOPS1→2(I2)). This is illustrated in Figure 3. The
assumption that w1E2 ≥ w2E1 corresponds to the fact that in the figure, triangle T21 has
shorter side-lengths than triangle T12. This means the domains of the two integrals differ
precisely by the diagonal strip seen in the figure, and since the integrand is non-negative
we see that Pr (SWOPS1→2(I2)) must be the greater of the two. A more formal version of
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this mirroring process is done in the Appendix, Section B.

4.2 Translated processing time distributions

In this section, we will first motivate why one might expect the SWOPS algorithm to
perform well when all processing time distributions are translated versions of the same
underlying distribution. Then we will formally define what we mean with these trans-
lated distributions, and prove that SWOPS performs at least as well as R in these cases,
assuming all weights are identical as well. Finally, we show that the assumption of equal
weights is necessary by providing a counter-example in the case of unequal weights.

As also mentioned at the start of Section 4.1, the problem we face when using SWOPS is that
potentially, with high probability the sampled processing times will be very different from
the expected processing times. Then our inaccurate information about the processing
times might lead SWOPS to make bad scheduling decisions.
This is remedied by the assumption that all jobs have the same processing time distri-
butions around potentially different means. Suppose that we sample job j, k to have
processing times pj < pk. If we know the distributions are the same up to a constant
shift, this knowledge means it is still more probable that E(Pj) < E(Pk), rather than the
other way around. Therefore, if the weights don’t interfere with this, we can still expect
SWOPS to perform at least as well as R.
With this motivation, we will next make this result more precise and rigorous.

Definition 4.5 (Ig−t). Let g be the PDF of a processing time distribution over R≥0.
Extend its definition to negative numbers by stating that g(x) := 0 ∀x < 0. Define
Ig−t ⊂ Iall as

Ig−t := {I ∈ Iall|∀j ∈ I, Pj has a PDF faj (x) := g(x− aj), where aj ∈ R≥0}.

This is the set of problem instances where all processing time distributions are translated
versions of the same underlying distribution given by g(x). The translation distance for
job j is given by aj . For a problem instance in this space, one can think of it as the case
where all jobs have the same underlying processing time distribution, but centered around
different means. Note that the expected processing time is given by E(Pj) = E(g(x))+aj .

Theorem 4.6. Let g be the PDF of a processing time distribution over R≥0. Let I ⊂ Iall
be the problem space I := {I ∈ Ig−t | ∀j, k ∈ I, wj = wk}. That is, we consider the
problem space where all jobs have equal weights, and their processing time distributions
are identical up to having different means.
Then it holds that

SWOPS ≤I R.

Proof. Our strategy will be to show that SWOPS ≤I2 R. It can easily be verified that I
is closed under deletion of legal jobs. From Lemma 3.6 and Lemma 4.1 we know that
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SWOPS and R are IIA. By applying Theorem 3.7, we then have that for any N > 2,
SWOPS ≤I2 R =⇒ SWOPS ≤IN R, and we are done. Note that I is not closed under
insertion, but since we only require the implication in one direction for this proof, this is
not a problem. See also Figure 1 for why closedness under insertion is not required.

Consider a two-job problem instance I2 ∈ I2. Without loss of generality, it consists of
jobs 1, 2 with w1 = w2, and processing time distributions given by the PDFs f1 = g(x)
and f2 = g(x − a) respectively. Here a ≥ 0 is some constant extra processing time that
job 2 incurs compared to job 1. Note that E(P2) = a+ E(P1).
Then we can write Pr (SWOPS1→2(I2)) and Pr (SWOPS2→1(I2)) as integral expressions.

Pr (SWOPS1→2(I2)) =

∫ ∞
0

dy g(y − a)

∫ w1
w2
y

0

dx g(x)

=

∫ ∞
−a

dy′ g(y′)

∫ y′+a

0

dx g(x)

=

∫ ∞
0

dy′ g(y′)

∫ y′+a

0

dx g(x),

where first we have made the substitution y′ = y − a, and then we changed the left-
hand integral boundary by using g(y′) := 0 ∀y′ < 0. Going through the same steps for
Pr (SWOPS2→1(I2)) yields the expression

Pr (SWOPS2→1(I2)) =

∫ ∞
0

dy g(y)

∫ w1
w2
y

0

dx g(x− a)

=

∫ ∞
0

dy g(y)

∫ y−a

−a
dx′ g(x′)

=

∫ ∞
0

dy g(y)

∫ y−a

0

dx′ g(x′).

Consider the difference between these two expressions, Pr (SWOPS1→2(I2))−Pr (SWOPS2→1(I2)).
Then we have that

Pr (SWOPS1→2(I2))− Pr (SWOPS2→1(I2)) =

(∫ ∞
0

dy g(y)

∫ y+a

0

dx g(x)

)
−
(∫ ∞

0

dy g(y)

∫ y−a

0

dx g(x)

)
=

∫ ∞
0

dy g(y)

(∫ y+a

0

dx g(x)−
∫ y−a

0

dx g(x)

)
=

∫ ∞
0

dy g(y)

∫ y+a

y−a
dx g(x)

≥ 0.

We see that SWOPS schedules job 1 before job 2 with at least as high probability as
scheduling job 2 before job 1. Job 2 is identical to job 1, except it incurs an extra
constant processing time of a ≥ 0. Therefore, in terms of the cost-function, it is better or
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equally good to schedule job 1 before job 2. We conclude that CostI2(SWOPS) ≤ CostI2(R).
Since this holds for general I2 ∈ I2, we conclude that indeed SWOPS ≤I2 R.

Note that the assumption of all weights being equal is necessary here. This can be seen
by considering the following counterexample.
Consider the problem instance I ∈ Ig−t defined by N = 2, w1 = 1, and w2 = 2. The
processing time distributions are given by

P1 =

{
a, with probability 1− 1

M

M2, with probability 1
M

P2 =

{
2a+ ε, with probability 1− 1

M

M2 + a+ ε, with probability 1
M .

One can easily verify that the PDF of P2 is obtained by translating the PDF of P1 to the
right by a+ ε.
We will now calculate the relevant terms in the cost-function to determine the optimal
schedule. We have that w2E(P1) = 2M + 2a− 2a

M , and w1E(P2) = M + 2a− a
M + ε. By

assuming M � a, M � 1 and M � ε, we can estimate these as w2E(P1) = 2M + o(M)
and w1E(P2) = M+o(M). The terms differ by roughly a factor 2. From this we conclude
that the ideal schedule puts job 2 before job 1, as this incurs the smaller of the two cost
terms, w1E(P2) ≈M instead of w2E(P1) ≈ 2M .
However, with probability (1 − 1

M )2, the SWOPS algorithm will sample p1 = a, and p2 =
2a+ε. Then we have that w2

p2
= 2

2a+ε <
1
a = w1

p1
. So with probability close to 1, SWOPS will

schedule job 1 before job 2. This means it will achieve a cost-function value significantly
higher than that achieved by R.

4.3 Scaled processing time distributions

In Section 4.2, we saw that for processing time distributions that are identical up to a
constant shift SWOPS performs at least as well as R, assuming identical weights. This
begs the question whether we can also show something similar for the case where all
distributions are identical up to a linear scaling factor.
In this section we consider this question. First we will make a more precise definition
of this scaling property. Then we prove that when all processing time distributions are
scaled versions of the same underlying distribution, it follows that SWOPS performs at least
as well as R.

Definition 4.7. Let g(x) be a PDF over R≥0 with an expected value of 1. Define
Ig−s ⊂ Iall as follows.

Ig−s := {I ∈ Iall | ∀j ∈ I, Pj has a PDF fλj (x) := λjg(λjx), for some λj ∈ R>0}.
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That is to say, Ig−s is the set of problem instances where all processing time distributions
are linearly scaled versions of the same underlying distribution given by g(x). Note that
this includes as a special case exponentially distributed processing times with different
rates λj .

Lemma 4.8. Let Ig ∈ Ig−s be a problem instance. Consider job j ∈ I. Then the
expected processing time E(Pj) = 1

λj
.

Proof.

E(Pj) =

∫ ∞
0

dx xfλj (x)

= λj

∫ ∞
0

dx xg(λjx)

= λj

∫ ∞
0

dx′

λj

x′

λj
g(x′)

=
1

λj

∫ ∞
0

dx′ x′g(x′)

=
1

λj
.

In the last step of the proof we used that g(x) has expectation value 1.

Theorem 4.9. Let g(x) be a PDF over R≥0 with an expected value of 1. Consider Ig−s
as defined above. Then the SWOPS algorithm performs at least as well as R on Ig−s. That
is to say, SWOPS ≤Ig−s R.

Proof. By Lemma 3.6, R is IIA on Ig−s. Similarly, by Lemma 4.1, the SWOPS algorithm
is IIA on Ig−s.

Denote Ig→s,N := {I ∈ Ig−s| |I| = N}, i.e., the space of problem instances in Ig−s
consisting of N jobs.
Suppose we were able to show that SWOPS ≤Ig→s,2 R, i.e., that SWOPS performs as well as R
for problem instances with only two jobs. Then by the application of Theorem 3.7, it fol-
lows that for any N ≥ 2, SWOPS ≤Ig→s,N R. Note that we can write Ig−s =

⋃
N≥2 Ig→s,N .

Thus we then also have that SWOPS ≤Ig−s R, the desired result. We conclude that it is
sufficient to prove that SWOPS ≤Ig→s,2 R.

Let I2 ∈ Ig→s,2 be a problem instance consisting of jobs 1 and 2. Assume without loss
of generality that w1

E(P1)
≥ w2

E(P2)
. Applying Lemma 4.8, which states that E(Pj) = 1

λj
, we

see that this is equivalent to w1λ1 ≥ w2λ2.

We can write the probability of SWOPS scheduling in the order 1 before 2 as
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Pr (SWOPS1→2(I2)) =

∫ ∞
0

dy fλ2
(y)

∫ w1
w2
y

0

dx fλ1
(x)

= λ1λ2

∫ ∞
0

dy g(λ2y)

∫ w1
w2
y

0

dx g(λ1x)

=

∫ ∞
0

dy′ g(y′)

∫ w1λ1
w2λ2

y′

0

dx′ g(x′),

where the last step was done by making substitutions y′ = λ2y and x′ = λ1x. Analogously,
we can write the probability for scheduling in the reverse order as

Pr (SWOPS2→1(I2)) =

∫ ∞
0

dy′ g(y′)

∫ w2λ2
w1λ1

y′

0

dx′ g(x′).

We will rewrite x′ = x and y′ = y for ease of notation. Consider the difference Pr (SWOPS1→2(I2))−
Pr (SWOPS2→1(I2)). Then we have that

Pr (SWOPS1→2(I2))− Pr (SWOPS2→1(I2)) =

∫ ∞
0

dy g(y)

[∫ w1λ1
w2λ2

y

0

dx g(x)−
∫ w2λ2

w1λ1
y

0

dx g(x)

]

=

∫ ∞
0

dy g(y)

∫ w1λ1
w2λ2

y

w2λ2
w1λ1

y

dx g(x).

The integrand is non-negative everywhere. Also, the lower integral boundaries are less
than the upper integral boundaries, since we have that w1λ1 ≥ w2λ2. Therefore we
conclude that Pr (SWOPS1→2(I2)) − Pr (SWOPS2→1(I2)) ≥ 0, i.e. Pr (SWOPS1→2(I2)) ≥
Pr (SWOPS2→1(I2)). In other words, SWOPS will schedule job 1 before job 2 more likely
than the other way around. Because SWOPS schedules these two jobs in the correct order
more likely than in the wrong order, we have that CostI2(SWOPS) ≤ CostI2(R). Specif-
ically, when w1

E(Pλ1 )
6= w2

E(Pλ2 )
we even have that CostI2(SWOPS) < CostI2(R). Since this

holds for any I2 ∈ Ig→s,2, we conclude that SWOPS ≤Ig→s,2 R, concluding the proof.

4.4 Exponential processing time distributions with α-far priori-
ties

So far, we’ve only been able to show that for some subclasses I of Iall, we have that
SWOPS ≤I R. Or equivalently, as shown in Theorem 3.10, that ROGI(SWOPS) ≤ 1

2 . In
this section we will try to explore a set of assumptions that allows us to prove a stronger
result, using the Relative Optimality Gap outlined in Section 3.5. The goal is to prove a
result of the form ROGI(SWOPS) ≤ C(I), where 0 ≤ C(I) < 1

2 is some constant depend-
ing only on the choice of I.
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Define Ie := {I ∈ Iall | ∀j ∈ I, Pj has a PDF fj(x) := λje
−λjx for some λj > 0}. That is

to say, Ie is the space of problem instances where all jobs have exponentially distributed
processing times. Note that we have that Ie = Ig−s for the choice g(x) = e−x, so Ie
is just a special case. It then already follows from Section 4.3 that SWOPS ≤Ie R, or
equivalently that ROGIe(SWOPS) ≤ 1

2 . On Ie however, we can derive an explicit formula
for the probability of pairwise order under a schedule picked by SWOPS, which also leads
to an improved result. This explicit formula is derived in the following lemma.

Lemma 4.10. Let I ∈ Ie be a problem instance with N ≥ 2 jobs. Consider jobs j, k ∈ I.
Then it follows that

Pr (SWOPSj→k(I)) =
πj

πj + πk
,

where πj = wjλj =
wj

E(Pj) is the priority of job j.

Proof. Since I ∈ Ie, there exists a value λj > 0 such that Pj has a PDF fj(x) = λje
−λjx,

and idem for job k. From Lemma 4.1 we know that SWOPS is IIA on Ie. This means that
instead of using the full problem instance I, we can consider the problem instance Ijk
consisting of only jobs j, k. Then we can write the probability for the pairwise order as

Pr (SWOPSj→k(I)) = Pr (SWOPSj→k(Ijk))

=

∫ ∞
0

dy fk(y)

∫ wj
wk

y

0

dx fj(x)

=

∫ ∞
0

dy λke
−λky

∫ wj
wk

y

0

dx λje
−λjx

=

∫ ∞
0

dy′ e−y
′
∫ wj

λkwk
y′

0

dx λje
−λjx

=

∫ ∞
0

dy′ e−y
′
∫ λjwj

λkwk
y′

0

dx′ e−x
′
,

where in the last two steps, we used the substitutions y′ = λky and x′ = λjx. Explicitly
evaluating this integral yields the formula
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Pr (SWOPSj→k(Ijk)) =

∫ ∞
0

dy′ e−y
′
[
−e−x

′
]x′= λjwj

λkwk
y′

x′=0

=

∫ ∞
0

dy′ e−y
′
[
−e−

λjwj
λkwk

y′
+ 1

]

=

[(
λjwj
λkwk

+ 1

)−1
e
−
(
λjwj
λkwk

+1
)
y′ − e−y

′

]y′=∞
y′=0

=

[
0−

((
λjwj
λkwk

+ 1

)−1
− 1

)]

= 1−
(
λjwj + λkwk

λkwk

)−1
=

λjwj
λjwj + λkwk

=
πj

πj + πk
.

One of the things we see from this lemma is that SWOPS schedules jobs in the pairwise
correct order with a high probability when their priorities are far apart. That is to say,
when πj � πk, we have that Pr (SWOPSj→k(I)) ≈ 1. This motivates the idea of consider-
ing a problem space where the priorities of jobs are far apart, which leads to an improved
ROG-bound.

Definition 4.11 (α-far, α-close). Let α > 1, and let I ∈ Iall be some problem instance.
Consider two distinct jobs j, k ∈ I. We say that j, k are α-far if and only if at least one
of the following holds

max{πj
πk
,
πk
πj
} = max{wjE(Pk)

wkE(Pj)
,
wkE(Pj)

wjE(Pk)
} ≥ α if E(Pj) 6= 0 and E(Pk) 6= 0,

OR

E(Pj) = 0 and E(Pk) 6= 0,

OR

E(Pj) 6= 0 and E(Pk) = 0,

where πj :=
wj

E(Pj) denotes the priority of a job j. In words, two jobs j, k are α-far if their

priorities are at least a factor α apart. The second and third case in the case distinction
are necessary to avoid problems with dividing by an expected processing time of zero. If
j, k are not α-far, we say that j, k are α-close.

Given some α > 1, define the problem space Iα-far := {I ∈ Iall|∀j 6= k ∈ I, j, k are α-far}.
That is to say, Iα-far is the space of problem instances where the priorities of any two
jobs lie at least a factor α apart.
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Consider the problem space Ie,α−far = Ie∩Iα-far. This is the problem space for which we
will prove a quantitative performance result using the Relative Optimality Gap. Consider
the following theorem.

Theorem 4.12. Let α > 1, and consider the problem space Ie,α-far as defined above.
Then it holds that

ROGIe,α-far
(SWOPS) ≤ 1

α+ 1
.

Proof. Let I ∈ Ie,α-far, and j, k ∈ I. Assume w.l.o.g. that
wj

E(Pj) ≥
wk

E(Pk) . Our goal is

to prove that Pr

(
SWOPSj→k(I)| wj

E(Pj) >
wk

E(Pk)

)
≥ α

α+1 , i.e. to show the probability of

scheduling correctly is relatively large. Then the desired result will follow directly from
Theorem 3.12. Using Lemma 4.10, we have an explicit formula for Pr (SWOPSj→k(I)).
Namely,

Pr (SWOPSj→k(I)) =
πj

πj + πk
.

Since jobs j, k ∈ Ie,α-far are α-far, we know that πj ≥ απk. Therefore it follows that

Pr (SWOPSj→k(Ijk)) ≥ απk
απk + πk

=
α

α+ 1
.

Note that πk can never be equal to zero, since wk > 0, so the above formula doesn’t break
down.
Since we picked j, k as arbitrary jobs, it follows that Pr (SWOPSj→k(I)) ≥ α

α+1 for any pair
of jobs in I. Thus we can apply Theorem 3.12 with κ = α

α+1 to state that

ROGI(SWOPS) ≤ 1− κ

= 1− α

α+ 1

=
1

α+ 1
.

Since we showed that this holds for arbitrary I ∈ Ie,α-far, we conclude that ROGIe,α-far
(SWOPS) =

sup
I∈Ie,α-far

(ROGI(SWOPS)) ≤ 1
α+1 .
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4.5 Exponential processing time distributions with any priorities

In the previous section, we showed that for jobs with exponentially distributed processing
times, the Relative Optimality Gap of SWOPS can be upper-bounded by 1

α+1 , assuming all
jobs have priorities that are at least a factor α apart. This last assumption, that the jobs
have very different priorities, is very restrictive. In this section we will explore whether
we can relax this assumption. To do this, we will walk through the intuition and moti-
vation of what might happen if the priorities of some jobs are less than a factor α apart.
Afterwards, in Theorem 4.14 we will make a more precise statement in this direction.

Suppose we consider some problem instance I ∈ Ie and a value α > 1 such that some
pairs of jobs in I are α-far, and some are α-close. Then intuitively, from Section 4.4 we
know that SWOPS is relatively likely to schedule the α-far pairs in the pairwise correct
order. This means that the α-far pairs contribute to SWOPS performing better than R.
On the other hand, for the α-close pairs, we know that

wj
EPj and wk

EPk are relatively close

together. This means that the value of the extra incurred cost for scheduling in the
incorrect pairwise order, wjE(Pk)− wkE(Pj), will be relatively small.
Combining these two arguments, it seems that even when some jobs are α-close, we should
still be able to show that SWOPS is quantitatively better than R. This statement is made
more precise in Theorem 4.14 below. Before we start the theorem, we first need a final
piece of notation.

Definition 4.13 (D,Dα−far, Dα−close). Let α > 1, and let I ∈ Iall be some problem
instance. For ease of notation, assume w.l.o.g. that the jobs are indexed in order of high
to low priority, that is to say, j < k implies

wj
E(Pj) ≥

wk
E(Pk) . On this problem instance,

consider the highest possible cost H and the lowest possible cost L. Then D is defined
as D := H − L, the highest cost minus the lowest cost. Writing this out, we have that

D :=

N−1∑
j=1

N∑
k=j+1

wjE(Pk)− wkE(Pj).

Furthermore, we define Dα−far to be the difference between the highest cost and the
lowest cost due to the contribution from all α-far pairs of jobs. Concretely, we have that

Dα−far :=

N−1∑
j=1

N∑
k=j+1

δ(j, k are α-far) (wjE(Pk)− wkE(Pj)) .

Here, δ denotes the Kronecker-delta function which is 1 when j, k are α-far, and 0 when
they are not. Analogously, we define Dα−close as

Dα−close :=

N−1∑
j=1

N∑
k=j+1

δ(j, k are α-close) (wjE(Pk)− wkE(Pj)) .

Note that we have that H − L = D = Dα−far +Dα−close, by definition.
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Theorem 4.14. Let α > 1, and let I ∈ Ie be a problem instance. Then it follows that

ROGI(SWOPS) ≤ 1

α+ 1

Dα−far

Dα−far +Dα−close
+

1

2

Dα−close

Dα−far +Dα−close
.

Proof. For ease of notation, assume w.l.o.g. that the jobs are indexed in order of high to
low priority, that is to say, j < k implies

wj
E(Pj) ≥

wk
E(Pk) . If H = L then ROGI(SWOPS) = 0,

and there is nothing to prove. Therefore, from now on we assume that H 6= L. Then

we have that ROGI(SWOPS) := CostI(SWOPS)−L
H−L . We will write out the numerator of this

expression to achieve the desired inequality.

CostI(SWOPS)− L =
N−1∑
j=1

N∑
k=j+1

Pr (SWOPSj→k(I))wkE(Pj) + Pr (SWOPSk→j(I))wjE(Pk)− wkE(Pj)

=

N−1∑
j=1

N∑
k=j+1

(Pr (SWOPSj→k(I))− 1)wkE(Pj) + Pr (SWOPSk→j(I))wjE(Pk)

=

N−1∑
j=1

N∑
k=j+1

Pr (SWOPSk→j(I)) (−wkE(Pj) + wjE(Pk)) ,

where in the last step we used that Pr (SWOPSk→j(I)) + Pr (SWOPSj→k(I)) = 1. From
Lemma 4.10 we know that for α-far pairs of jobs with exponentially distributed processing
times, the probability of scheduling in the correct order Pr (SWOPSj→k(I)) ≥ α

α+1 . It
follows that for such pairs of jobs the probability of scheduling in the incorrect order
Pr (SWOPSk→j(I)) ≤ 1

α+1 . Furthermore, for α-close jobs with exponentially distributed

processing times, we know that Pr (SWOPSk→j(I)) ≤ 1
2 . This can be seen by using Lemma

4.10 and filling in π1 = π2, or alternatively by using the results from Sections 4.3 and
Theorem 3.10.
Applying these inequalities to the expression for CostI(SWOPS)− L, we obtain that
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CostI(SWOPS)− L =

N−1∑
j=1

N∑
k=j+1

Pr (SWOPSk→j(I)) (−wkE(Pj) + wjE(Pk))

=

N−1∑
j=1

N∑
k=j+1

δ(j, k are α-far)Pr (SWOPSk→j(I)) (−wkE(Pj) + wjE(Pk)) +

N−1∑
j=1

N∑
k=j+1

δ(j, k are α-close)Pr (SWOPSk→j(I)) (−wkE(Pj) + wjE(Pk))

≤
N−1∑
j=1

N∑
k=j+1

δ(j, k are α-far)
1

α+ 1
(−wkE(Pj) + wjE(Pk)) +

N−1∑
j=1

N∑
k=j+1

δ(j, k are α-close)
1

2
(−wkE(Pj) + wjE(Pk))

=
1

α+ 1
Dα−far +

1

2
Dα−close.

Plugging this into the formula for ROGI(SWOPS), we conclude that

ROGI(SWOPS) ≤
(

1

α+ 1
Dα−far +

1

2
Dα−close

)
/(H − L)

=
1

α+ 1

Dα−far

Dα−far +Dα−close
+

1

2

Dα−close

Dα−far +Dα−close
.

This result can be seen as an interpolation between the result of Theorem 4.12, which
shows a ROG-bound of 1

α+1 when all jobs are α-far, and the result of Theorem 4.9, which

is equivalent to a ROG-bound of 1
2 .

On any particular problem instance I, this bound holds for any choice of α. By choosing
the right value of α, the hope is that we can obtain a bound as tight as possible. There
are several conflicting considerations to take into account when choosing α. On the one
hand, if we pick α very large, potentially there will be very few jobs that are still α-far.
Then it might be the case that Dα−far � Dα−close. If that happens, the right-hand term
in the ROG bound will dominate, and we end up with a ROG-bound close to 1

2 . On the
other hand, if we pick α very small, close to 1, then 1

α+1 will be close to 1
2 . Then we also

end up with a bound not much better than 1
2 .

What the best choice for α is depends on the problem instance. It depends on the jobs,
their priorities, and how far these lie apart. Since the priorities are given by the weights
and the expected processing times of jobs, and the processing time distributions are only
accessible through a single sample, the above bound is hard to apply in practice.

To give more intuition, next we will show two examples. One where the above bound
yields a strong result, and one where it does not.
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1 α α2
π

J J ′ J ′′

Figure 4: This figure shows a number line for the values of the priorities πj =
wj

E(Pj) of

jobs. The jobs are indicated with dots at their corresponding priority value. We see that
the assumptions in Corollary 4.15 are such that the jobs are contained in “piles”. All jobs
within a pile have the same priority, and are α-far from the jobs in other piles.

Corollary 4.15. Consider a problem instance I ∈ Ie. Suppose we collect jobs j into sets
J , such that all jobs within a set J have equal priorities πj =

wj
E(Pj) . Furthermore suppose

that there are at least two such distinct sets, and that the priorities for different sets are
at least a factor α apart. That is to say, if j ∈ J and j′ ∈ J ′ 6= J , then j and j′ are
α-far. Then

ROGI(SWOPS) ≤ 1

α+ 1
.

Proof. Consider Figure 4. It shows a number line, with dots representing each job. The
dots are placed along the number line at the value corresponding to their priority. We
see that our assumptions boil down to the fact that the jobs are arranged in “piles”, and
that each pair of jobs from different piles is at least a factor α apart.
Consider Dα−close, the contribution to the cost from the pairs of jobs that are α-close to
one another. This is given by the expression

Dα−close :=

N−1∑
j=1

N∑
k=j+1

δ(j, k are α-close) (wjE(Pk)− wkE(Pj))

= 0.

The equality to zero follows from the fact that whenever j, k are α-close, then πj = πk,
which yields wjE(Pk)− wkE(Pj) = 0.
In other words, the order of the α-close jobs doesn’t contribute to the cost-function at
all. Plugging this into the result of Theorem 4.14, we obtain the desired result,

ROGI(SWOPS) ≤ 1

α+ 1
.
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Based on this previous example, we see that in some cases, the knowledge that only some
of the jobs are α-far can still be leveraged to prove a good bound on the ROG of SWOPS.
However, this doesn’t work well in general. In the following corollary, we provide an
extreme counter-example.

Corollary 4.16. Consider a problem instance I ∈ Ie. Suppose that we know that for
each pair of jobs j, k except one, j, k are α-far for some α > 1. Then the ROG-bound
obtained in Theorem 4.14, and the ROG itself, can still be arbitrarily close to 1

2 .

Proof. Our strategy will be to sketch a concrete problem instance that constitutes a
counter-example. The extension to a more general counter-example is left up to the
reader.

To start with, note that the magnitude of the weight and expected processing time of the
jobs within a given pair influences the extent to which they contribute to the cost-function.
If both jobs j, k have large weights and expected processing times, wjE(Pk) − wkE(Pj)
may be large, even if πj and πk are close together.
This motivates the idea of a “heavy pair” counter-example, where the single α-close pair
of jobs has extremely large weights and expected processing times. Let α > 1, e.g.
α = 2. Consider a problem instance with N > 2, where all pairs of jobs are α-far, except
for the pair of jobs 1, 2. Here we will consider N = 100, but other values work just
as well. Consider the case where jobs 1, 2 have extremely large values for the weight
and expected processing time. Here we will take w1 = 0.99 · 109, λ1 = 0.99 · 10−9 and
w2 = 109, λ2 = 10−9. Suppose furthermore that each job beyond 2 has weight and
expected processing time of at most a single order of magnitude. For convenience, here
we will use wj = 1 and E(Pj)

−1 = λj = 2j−1 for 2 < j ≤ N .
In this case, almost all of the contribution to the cost comes from the pair of jobs 1, 2.
Since the priorities of jobs 1, 2 are close together, SWOPS will schedule this pair in the
wrong order with probability almost 1

2 . Though it will schedule each other pair of jobs
in the correct order with a relatively high probability of 1

α+1 , this will have little impact

on the overall cost. Therefore the overall ROGI(SWOPS) will be close to 1
2 .

This is also reflected in the bound derived in Theorem 4.14. For the specific values
mentioned above, we can verify that the values of Dα−close and Dα−far are given by

Dα−close ≈ 2.01 · 1016

Dα−far ≈ 1.95 · 1011.

Plugging these values into the formula from Theorem 4.14, we obtain the bound

ROGI(SWOPS) ≤ 1

α+ 1

Dα−far

Dα−far +Dα−close
+

1

2

Dα−close

Dα−far +Dα−close

≈ 0.49999838318.

As one can see, we need to a large number of digits to even see that the bound is not
equal to 1

2 . The actual ROG for this scenario is given by
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ROGI(SWOPS) ≈ 0.49497025226.

The code used to calculate these values can be found in Appendix Section C. One should
note that this example can be trivially modified to give an even worse ROG and ROG-
bound, simply by increasing the weights and expected processing times of jobs 1, 2 by an
identical constant factor.

One should be careful on how to interpret the above example. The lesson to be learned
from it is that the information that almost all jobs are α-far is not sufficient to guarantee
a good ROG-bound. This isn’t necessarily caused by the formula of our bound not being
tight enough; in the above example we see the actual ROG is also close to 1

2 . Rather,
the actual value of the ROG can become arbitrarily close to 1

2 , even when there is only a
single pair of jobs that is α-close.
In the last example, we saw that we could make this happen by introducing a large
discrepancy in the order of magnitude of the parameters for different jobs. One could
imagine that if we were to bound such discrepancies, perhaps we can recover a better
bound on ROGI(SWOPS). An attempt at this is made in Appendix Section D.

We have considered the case where our assumptions are that jobs have exponentially
distributed processing times, and almost all jobs are α-far. Overall, our conclusion must
be that with only these assumptions, we cannot guarantee SWOPS performs significantly
better than R.

5 Conclusions

In this section we will first summarize and discuss the main results from Sections 3 and
4. Afterwards, we will list some potential improvements, and ideas for topics to study in
the future.

5.1 Discussion

First, we made the stochastic single-machine scheduling problem with sampled processing
times more rigorous by defining a cost-function on algorithms,

CostI(A) :=
∑
s∈SN Pr (A picks s)Ep∼P

(∑
j wjCj(s)

)
. We introduced the partial order

≤I , so we could make meaningful statements about whether an algorithm performs at
least as well as another.
Then we simplified the problem by noting that the cost of an algorithm only depends
on the pairwise ordering of each pair of jobs. This idea yielded Theorem 3.7, where we
showed that under several simple assumptions, the question of whether an algorithm A
outperforms another algorithm B can be answered by considering instances with only two
jobs.



5 CONCLUSIONS 41

Another contribution is the introduction of the concept of the Relative Optimality Gap.
We showed that bounding the ROG of an algorithm A generalizes the concept of com-
paring A to R. This also allowed us to compare algorithms in a more quantitative sense,
by showing ROG bounds strictly lower than 1

2 . In particular, when A schedules in the
pairwise correct order with probability at least κ, we showed that we can guarantee a
ROG-bound of 1− κ.

With these tools, we managed to show for several cases that SWOPS performs at least
as well as the algorithm R that schedules jobs uniformly at random. Specifically we
considered the cases where the processing time distributions are either symmetric, or
translated or scaled copies of the same underlying distribution. We managed to explain
intuitively why SWOPS performs well in these cases.
Additionally, we considered the well-behaved case of exponential processing times. We
showed that when all the jobs have priorities that are a large factor apart, the SWOPS

algorithm performs considerably better than R. We also explored the possibility of prov-
ing a similar ROG-bound when only some subset of pairs of jobs have α-far priorities.
However, we ran into the problem that the derived bounds depend on job parameters to
such an extent that improved results require additional strong assumptions on the input
data, which contradicts the overall scope of the research question.

An interesting perspective on these results is as an indication of the failure modes of
SWOPS, which is arguably the only reasonable algorithm in the setting that we study.
When jobs have very asymmetric processing time distributions, SWOPS can perform poorly,
even compared to R. Similarly when the processing time distributions of different jobs
have a very different shape, SWOPS might not perform well. These are also properties we
saw in the counter-example outlined in Section 3.3. One could take this to mean that
under such circumstances, the practical approach of pretending we can apply the law of
large numbers to estimate the expected processing times might fail dramatically when
the number of samples is insufficient.

Overall, we managed to explore a new problem, develop some novel methods, and ob-
tain original results. We built a lot of intuition about what aspects of the problem are
important. However, there is certainly still a lot to study. We touch on this in the next
section.

5.2 Future research directions

There are several ideas for directions in which to take this research. Below we discuss a
number of these, in no particular order.

We have shown in Section 4 that we can find restrictions on the space of job scheduling
problems such that SWOPS performs at least as well as R. For example, when processing
time distributions are symmetric or when they are scaled or translated versions of the
same underlying distribution. Are these the only such restrictions, or do there exist more?
Can we find some more general, easy, and intuitive rule to tell whether SWOPS performs
at least as well as R given a problem space I?
A logical next question to ask is whether we can still prove partial results when these
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conditions only hold in approximation. That is to say, if all processing time distributions
are nearly symmetric, can we still prove a performance bound on SWOPS? What about if
they are nearly but not quite copies of the same underlying distribution, up to scaling or
translation?

Another thing to note is that the proofs from Section 4 make use of Lemma 4.2 to write
down the probability of the pairwise order of jobs in a closed form. Technically, this
lemma only works for distributions that have a well-defined probability density function.
When working with finitely discrete distributions and delta-peaks, the proofs would have
to be adapted to sums instead of integrals. It is conceivable that the proofs would look
approximately the same.

In Section 4.4 we show that SWOPS has a ROG-bound strictly less than 1
2 on the space

of problem instances with exponentially distributed processing times and α-far jobs. Are
there more choices of problem spaces with such a result? Perhaps one with more natural
assumptions?
In Section 4.5 we attempt to prove a similar ROG-bound in the case where not all jobs
are α-far. Eventually, we run into the problem that the bound we derive depends on
parameters that are in principle unknown to us. Is there some alternative approach here
that does yield useful results? What additional, minimal assumptions could we make
about the problem space in order to still obtain a usable bound?

Lastly, so far we have restricted ourselves to considering the setting where the processing
time distributions are only sampled once. If we reach a good understanding of this limited
scenario, it would be compelling to also consider the more general case, where multiple
samples are allowed. The natural extension would be to first consider the case with
exactly two samples per distribution.
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A Interpreting the cost-function as expected regret

In Section 3.2, we define the cost-function as

Cost(A) :=
∑
s∈SN

Pr (A picks s)E

∑
j

wjCj(s)

 .

One way of interpreting the setting where we minimize this cost-function is as being
equivalent to minimizing the “expected regret”. Here the regret is the difference in cost
compared to the offline optimal solution that one could obtain if one had known in ad-
vance the realized processing times. In this appendix we will first explain what we mean
with this statement. Then we will briefly discuss why this perspective is useful, and what
insights it can give.

Given a problem instance I ∈ I, a schedule s, and realizations of the processing times pj ,
we define the regret as

RegretI(s, p = (p1, . . . , pN )) =

∑
j

wjCj(s, p)

− min
s∗∈SN

∑
j

wjCj(s
∗, p)

 .

In other words, the regret is the difference between the obtained Smith [2] cost, minus
the cost we could have obtained optimally if we knew all the parameter realizations
beforehand. Note that Cj(s, p) simply denotes the completion time of job j under schedule
s and realizations of the processing times p = (p1, . . . , pN ).
If we apply the expectation operator with regards to the processing time distributions Pj
to this expression, the right-hand term becomes a constant with respect to the choice of
s.
When trying to find the argument that minimizes a function, we can always drop any
constant terms. From this, we see that

argmin
s∈SN

(
E
p∼P

(RegretI(s, {pj}))
)

= argmin
s∈SN

 E
p∼P

∑
j

wjCj(s, {pj})


= argmin

s∈SN

∑
j

wj E
p∼P

(Cj(s, {pj}))

 .

Or in words, the schedule that minimizes the expected regret is the same as the schedule
that minimizes the expected cost as defined in Rothkopf [3].
Additionally taking the expected value with regards to the schedule picked by an algo-
rithm A, we can argue that
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argmin
s∈SN

(CostI(A)) = argmin
A

E
s∼A

∑
j

wj E
p∼P

(Cj(s, {pj}))


= argmin

A
E
s∼A

(
E
p∼P

(RegretI(s, {pj}))
)
.

That is to say, minimizing the cost of an algorithm A is the same as minimizing the
expected regret incurred by that algorithm.

This perspective can help us understand what is happening when an algorithm has a
high cost. Consider the example outlined in Section 3.3, where w1 = w2 = 1 and the
processing time distributions are given as

P1 =

{
0 with probability 1− 1

M

M2 with probability 1
M

P2 = ε with probability 1.

In Section 3.3, we showed that for this problem instance, SWOPS performs very poorly.
We can now explain why this happens, using the concept of regret.
With overwhelmingly high probability, SWOPS will schedule job 1 before job 2. In most
cases, namely with probability (1 − 1

M ), the processing times will be realized as p1 = 0
and p2 = ε, meaning the regret will be 0. However, with probability 1

M , the pro-
cessing time of job 1 will be realized as p1 = M2. The regret in this case will be
w2p1 − w1p2 = M2 − ε ≈ M2 � 1. This regret is extremely high. Even though it
only occurs with low probability, it still makes the expected regret when scheduling job
1 before job 2 significantly higher than when scheduling in the reverse order.

Another useful insight from looking at the cost-function in this way is that it gives us
an intuition for some other choices for a cost-function. The cost-function is arguably
a design-choice, and is dependent on what our goal is. Instead of minimizing expected
regret, we could for example also try to minimize the probability of having non-zero
regret. A fun exercise is to convince oneself that under such a cost-function, the SWOPS

algorithm actually performs extremely well on the problem instance described above.
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B A formal proof of SWOPS ≤Isymmetric R
This proof continues from Equations 4.1 and 4.2 in Theorem 4.4. These two equations
are copied below. Here we will do a formal proof, rather than a visual one.

Pr (SWOPS1→2(I2)) =
1

w1w2

∫ w1E2

−w1E2

dy f2(E2+
y

w1
)

∫ y+w1E2−w2E1

−w2E1

dx f1(E1+
x

w2
). (B.1)

Analogously, for Pr (SWOPS2→1(I2)), we have the expression

Pr (SWOPS2→1(I2)) =
1

w1w2

∫ w2E1

−w2E1

dx f1(E1+
x

w2
)

∫ x+w2E1−w1E2

−w1E2

dy f2(E2+
y

w1
). (B.2)

Since the integrand in this last expression is a product of probability density functions, it
is certainly absolutely integrable. This means we can apply Fubini’s theorem to exchange
the order of integration, and express Pr (SWOPS2→1(I2)) as

Pr (SWOPS2→1(I2)) =
1

w1w2

∫ −w1E2+2w2E1

−w1E2

dy f2(E2 +
y

w1
)

∫ w2E1

y+w1E2−w2E1

dx f1(E1 +
x

w2
).

Next, we make the substitution x′ = −x. By using the fact that f1 is symmetric, i.e.
f1(E1 − x′

w2
) = f1(E1 + x′

w2
), we get the expression

Pr (SWOPS2→1(I2)) =
1

w1w2

∫ −w1E2+2w2E1

−w1E2

dy f2(E2 +
y

w1
)

∫ −y−w1E2+w2E1

−w2E1

dx′ f1(E1 +
x′

w2
).

Here we got rid of a minus sign by swapping the lower and upper bound of the right-hand
integral. Similarly substituting y′ = −y gives us that

Pr (SWOPS2→1(I2)) =
1

w1w2

∫ w1E2

w1E2−2w2E1

dy′ f2(E2 +
y′

w1
)

∫ y′−w1E2+w2E1

−w2E1

dx′ f1(E1 +
x′

w2
).

We now compare this to the expression for Pr (SWOPS1→2(I2)) in 4.1. We see that the two
integral expressions differ only in their integration boundaries. Next, we try to match
up the integration boundaries in the expression for Pr (SWOPS2→1(I2)) with those for
Pr (SWOPS1→2(I2)). Starting with the boundaries on the right-hand integral, we have that
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Pr (SWOPS2→1(I2)) =
1

w1w2

∫ w1E2

w1E2−2w2E1

dy′ f2(E2 +
y′

w1
)[∫ y′+w1E2−w2E1

−w2E1

dx′ f1(E1 +
x′

w2
)−

∫ y′+w1E2−w2E1

y′−w1E2+w2E1

dx′ f1(E1 +
x′

w2
)

]

= −int1 +

[
1

w1w2

∫ w1E2

w1E2−2w2E1

dy′ f2(E2 +
y′

w1
)

∫ y′+w1E2−w2E1

−w2E1

dx′ f1(E1 +
x′

w2
)

]
,

where int1 :=
1

w1w2

∫ w1E2

w1E2−2w2E1

dy′ f2(E2 +
y′

w1
)

∫ y′+w1E2−w2E1

y′−w1E2+w2E1

dx′ f1(E1 +
x′

w2
).

Analogously, splitting the left-hand integral, we have that

Pr (SWOPS2→1(I2)) = −int1 +
1

w1w2

[∫ w1E2

w1E2−2w2E1

dy′ f2(E2 +
y′

w1
)

∫ y′+w1E2−w2E1

−w2E1

dx′ f1(E1 +
x′

w2
)

]

= −int1 +
1

w1w2

[∫ w1E2

−w1E2

dy′ f2(E2 +
y′

w1
)−

∫ w1E2−2w2E1

−w1E2

dy′ f2(E2 +
y′

w1
)

]
∫ y′+w1E2−w2E1

−w2E1

dx′ f1(E1 +
x′

w2
)

= −int1− int2 +

[
1

w1w2

∫ w1E2

−w1E2

dy′ f2(E2 +
y′

w1
)

∫ y′+w1E2−w2E1

−w2E1

dx′ f1(E1 +
x′

w2
)

]
,

where int2 :=

∫ w1E2−2w2E1

−w1E2

dy′ f2(E2 +
y′

w1
)

∫ y′+w1E2−w2E1

−w2E1

dx′ f1(E1 +
x′

w2
).

The right-hand integral in the above expression is identical to the formula for Pr (SWOPS1→2(I2))
in Equation 4.1. Subtracting Pr (SWOPS2→1(I2)) from Pr (SWOPS1→2(I2)), we obtain that

Pr (SWOPS1→2(I2))− Pr (SWOPS2→1(I2)) = int1 + int2

=
1

w1w2

∫ w1E2

w1E2−2w2E1

dy′ f2(E2 +
y′

w1
)

∫ y′+w1E2−w2E1

y′−w1E2+w2E1

dx′ f1(E1 +
x′

w2
)

+

∫ w1E2−2w2E1

−w1E2

dy′ f2(E2 +
y′

w1
)

∫ y′+w1E2−w2E1

−w2E1

dx′ f1(E1 +
x′

w2
)

≥ 0,

where the last inequality follows from applying the assumption w1E2 ≥ w2E1 to the inte-
gral boundaries, and also using that the integrands are strictly non-negative everywhere.
We conclude that indeed Pr (SWOPS1→2(I2)) ≥ Pr (SWOPS2→1(I2)), which finishes the
proof.
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C Code for calculating ROGI(SWOPS) for exponential
processing times

import numpy as np

N = 100
alpha = 2
# w e i g h t s and lambdas f o r one heavy p a i r

wl = np . z e r o s ( (N, 2 ) )
#w0 i s
wl [ 0 , 0 ] = 0 .99 e9
#lambda0 i s
wl [ 0 , 1 ] = 0 .99 e=9
#w1 i s
wl [ 1 , 0 ] = 1e9
#Lambda1 i s
wl [ 1 , 1 ] = 1e=9
#r e s t i s
idx = 2
while idx < N:

wl [ idx , 0 ] = 1
wl [ idx , 1 ] = 2*wl [ idx =1 ,1]
i f idx==2:

wl [ idx , 1 ] = 2
idx += 1

# C a l c u l a t e D close , D far
D close = 0
D far = 0
ROG = 0
H minus L = 0
for j in range (0 ,N=1):

for k in range ( j ,N) :
# wj l j / wk l k
p r i o r i t y f a c t o r = ( wl [ j , 0 ] * wl [ j , 1 ] ) / ( wl [ k , 0 ] * wl [ k , 1 ] )

# i f j o b s j , k alpha=f a r
i f p r i o r i t y f a c t o r >= alpha or p r i o r i t y f a c t o r <= alpha **=1:

# add c o n t r i b u t i o n | ( wj / l k ) = (wk / l j ) | to D far
D far += abs ( wl [ j , 0 ] / wl [ k , 1 ] = wl [ k , 0 ] / wl [ j , 1 ] )
# i f j o b s j , k alpha=c l o s e

else :
# add c o n t r i b u t i o n | ( wj / l k ) = (wk / l j ) | to D c lose
D close += abs ( wl [ j , 0 ] / wl [ k , 1 ] = wl [ k , 0 ] / wl [ j , 1 ] )
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# add c o n t r i b u t i o n | ( wj / l k ) = (wk / l j ) | to D=H=L
H minus L += abs ( wl [ j , 0 ] / wl [ k , 1 ] = wl [ k , 0 ] / wl [ j , 1 ] )

# c a l c u l a t i o n r e a l ROG
p i j = wl [ j , 0 ] * wl [ j , 1 ]
p i k = wl [ k , 0 ] * wl [ k , 1 ]
# add c o n t r i b u t i o n | ( wj / l k ) = (wk / l j ) |
# times p r o b a b i l i t y o f s c h e d u l i n g in i n c o r r e c t order
# p i j /( p j + p i k )
ROG += ( p i j /( p i j + p i k ) ) *\

abs ( wl [ j , 0 ] / wl [ k , 1 ] = wl [ k , 0 ] / wl [ j , 1 ] )

# Normalize ROG, so i t l i e s in [ 0 , 1 ]
ROG = ROG/H minus L

# C a l c u l a t e v a l u e o f ROG=bound
ROG bound = (1/( alpha +1))*( D far /( D c lo se+D far ) ) + (1/2)* ( D c lo se /( D c lo se+D far ) )

print ( ” D c lo se i s : ” , ’ { : . 1 0E} ’ . format ( D c lo se ) )
print ( ” D far i s : ” , ’ { : . 1 0E} ’ . format ( D far ) )
print ( ”ROG bound i s : ” , ’ { : . 1 0E} ’ . format (ROG bound ) )
print ( ”ROG i s : ” , ’ { : . 1 0E} ’ . format (ROG) )

D Exponential processing times with any priorities,
and bounded weights and rates

Theorem D.1. Consider the setting of Theorem 4.14. Additionally assume that we know
a lower and upper bound on the weights, wmin ≤ wj ≤ wmax∀j ∈ I. Similarly, assume
that we know a lower and upper bound on the expected processing times, Pmin ≤ E(Pj) ≤
Pmax∀j ∈ I. Then it follows that

ROGI(SWOPS) <
1

α+ 1

#far

#far + #close
(
wmax
wmin

Pmax
Pmin

) +
1

2

#close

#far
(
wmin
wmax

Pmin
Pmax

)
+ #close

.

Proof. For α-close pairs of jobs j, k, we have that

wj
E(Pj)

< α
wk
E(Pk)

⇐⇒ wjE(Pk) < αwkE(Pj)

⇐⇒ wjE(Pk)− wkE(Pj) < (α− 1)wkE(Pj) ≤ (α− 1)wmaxPmax.



D EXPONENTIAL PROCESSING TIMES WITH ANY PRIORITIES,
AND BOUNDED WEIGHTS AND RATES 49

Analogously, we can show that for α-far pairs of jobs, wjE(Pk) − wkE(Pj) ≥ (α −
1)wminPmin.
Applying this inequality to each of the terms in the double sum expression for Dα−far
and Dα−close, we obtain that

Dα−close < #close(α− 1)wmaxPmax

Dα−far ≥ #far(α− 1)wminPmin,

where #close and #far stand for the number of α-close and the number of α-far pairs of
jobs respectively. In the result of Theorem 4.14 we had a term Dα−close

Dα−far+Dα−close
. Assume

for a moment that Dα−close 6= 0. Then applying the above inequalities to this term yields
the expression

Dα−close

Dα−far +Dα−close
=

1
Dα−far
Dα−close

+ 1

<
1

#far(α−1)wminPmin
#close(α−1)wmaxPmax + 1

=
#close

#far
(
wmin
wmax

Pmin
Pmax

)
+ #close

.

If we did have Dα−close = 0, this inequality would still hold trivially. Thus, it holds in
general. Consider the result of Theorem 4.14

ROGI(SWOPS) ≤ 1

α+ 1

Dα−far

Dα−far +Dα−close
+

1

2

Dα−close

Dα−far +Dα−close

Since
Dα−far

Dα−far+Dα−close
+ Dα−close

Dα−far+Dα−close
= 1, and 1

α+1 <
1
2 , we see that for fixed α the

upper bound on ROGI(SWOPS) is maximal when Dα−close
Dα−far+Dα−close

is maximal. Applying

the upper bound we derived on Dα−close
Dα−far+Dα−close

, we obtain that

ROGI(SWOPS) <
1

α+ 1

#far

#far + #close
(
wmax
wmin

Pmax
Pmin

) +
1

2

#close

#far
(
wmin
wmax

Pmin
Pmax

)
+ #close

.

Suppose we know that a number of pairs of jobs #far is α-far for some α > 1, and we

somehow have access to a bound Pmax
Pmin

=
max
j
λj

min
k
λk
≤ C for some constant C. Then Theorem
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D.1 gives us a ROG-bound on SWOPS strictly better than 1
2 . However, this estimated

bound is very rough, and not useful in practice.
For example, consider the case where at least half the jobs are 2-far, and we know that
wmax
wmin

= Pmax
Pmin

= 10. These are already strong assumptions. Normally there is no reason

we would have any knowledge about Pmax
Pmin

. If we knew the expected processing times,
we would use the Rothkopf [3] algorithm after all, not the SWOPS algorithm. Moreover,
all expected processing times lying within a single order of magnitude of one another is
a bold assumption to make; in practice this might not hold.
Even under these strong assumptions, the bound derived above evaluates to

ROGI(SWOPS) <
1

3

N/2

N/2 +N/2 (10 ∗ 10)
+

1

2

N/2

N/2 (1/10 ∗ 1/10) +N/2

=
1

3

1

101
+

1

2

100

101
=

151

303
≈ 0.4983,

which is barely better than the bound of 1
2 we already had.
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