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Abstract

Suspensions of charged colloidal particles are complex systems of mesoscopic
colloidal particles in an electrolyte solution composed of microscopic water
molecules and ions. An accurate description of these systems is vital for predicting
their properties and the stability of the suspension. Direct computer simulations
can provide us with accurate predictions, but are too computationally expensive
for large systems due to the huge amount of microscopic water molecules and ions.
Direct simulation of the entire system is also inefficient, as our interest lies
primarily in the behavior of the mesoscopic colloids. We employ machine learning
methods to learn effective many-body interactions for a colloid-only system from
direct simulations of the full system. The accuracy of this machine learning
approach is compared to established effective interactions such as
Poisson-Boltzmann and DLVO theory, and its efficiency against the direct
simulation of the full colloidal suspension.
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Chapter 1

Introduction

Colloidal suspensions are systems of mesoscopic colloidal particles suspended in a solvent. The
typical size of these colloids is of the order of 10-1000 nm, meaning that they are orders of
magnitude larger than the solvent molecules, but still small enough to display Brownian motion [1,
2] due to thermal fluctuation of the solvent. The magnitude of these thermal forces at these
particle scales is large enough to overcome gravitational effects on individual colloids, which would
result in sedimentation. Ordinarily, the free colloids in a solvent tend to aggregate over time due to
attractive interactions, such as the Van der Waals interaction [3, 4]. These systems are called
unstable as the aggregation increases the effective particle sizes that shift the balance between the
thermal forces and sedimentation forces towards the latter. This causes the colloids to eventually
precipitate out of the solvent. To stabilize a colloidal suspension, one thus needs a longer-range
repulsive interaction between the colloids to overcome the attractive interactions. Examples of
such repulsive interactions are polymer chain interactions and electric double-layer forces
corresponding to so-called sterically [5] and charge [6] stabilized colloidal suspensions, respectively.

The charge of the colloids originates from ionizable chemical groups on the surface of the
colloids [7]. When submerged in a polar liquid, these groups release ions into the solvent, while the
colloid itself gains an equal and opposite surface charge. The ions released by the surface groups of
the colloids are called counterions, as they have an opposite charge to the colloids. All salt ions
that also have an opposite charge to the colloids are called counterions as well. Any ions with the
same polarity as the colloids are called coions. The balance between the thermal motion, the
dispersion of the counterions, and the Coulomb attraction to the colloids results in a diffuse layer
of counterions around the colloids, which we call an electric double-layer. These double-layers give
rise to effective repulsive interactions between the colloids that can counteract attractive effects,
such as the Van der Waals interaction. This allows these colloidal particles to remain in suspension
where they would otherwise tend to coagulate and precipitate out of solution.
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CHAPTER 1. INTRODUCTION

Already more than 70 years ago Derjaguin, Landau, Verwey, and Overbeek [8, 9] showed that
one can treat many charge-stabilized colloidal suspensions using a screened Coulomb or otherwise
known as a Yukawa pair potential with an approximate range equal to the Debye screening length
κ−1. This is the well-known DLVO theory that is one of the cornerstones of colloid science. Such a
system is often denoted as a Yukawa system and its electrostatic interactions are purely repulsive.
This approach works well for systems with low colloid density and high salt concentration,
corresponding to a shorter screening length (as we will see in subsection 2.2.1). The application of
this model can be extended to higher densities and concentrations by renormalizing the charges of
the colloids and the screening length of the medium, as effective colloid charges of dense systems
become lower [10].

At the end of the last century, however, there were several pieces of experimental evidence that
the DLVO theory does not hold up well in various cases. For high-density systems, the measured
phase diagram does not match up to the predicted phase diagram of a corresponding Yukawa
system [11, 12]. Furthermore, there have been additional experimental observations of clustering
[13], gas-liquid phase transition [14, 15] which a Yukawa system does not show, and also computer
simulations [16, 17] implying the existence of attractive electrostatic forces. These findings all
contradict the DLVO theory, whose electrostatic force is purely repulsive.

Efforts to correct or extend the DLVO theory mainly fall into two categories: (i) incorporating
ion-ion correlations into the pair potential, and (ii) considering many-body interactions between
the colloids. Many-body terms can be accounted for by including an additional volume term
[18–21] that is density-dependent and takes into account the relative proximity of the particles, or
by explicitly calculating higher-order corrections to the Yukawa pair potential [22]. Many-body
interactions between charged colloids have also been experimentally measured [23].

Many-body interactions become relevant when inter-particle distances become comparable to or
smaller than the screening length of the solution. In this regime, we expect overlaps between
multiple double-layers to become relevant, which results in higher-order corrections to the Yukawa
pair interaction. Such overlaps are, for example, also important in colloid-polymer mixtures, where
the excluded volume of the colloids results in an entropic attractive force between the colloids.
This excluded volume is dependent on the overlaps of the exclusion zones of all the colloidal
particles. Recently, machine learning methods have been used to accurately determine the
many-body terms for the excluded volume [24]. Such a machine learning approach may also be
applied to a charged colloidal suspension to determine the many-body electrostatic interaction.
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CHAPTER 1. INTRODUCTION

Simulations of charged colloidal suspensions usually make use of the primitive model, where the
solvent is treated as a continuous medium and colloids and ions are treated as hard-sphere
particles with long-range Coulomb interactions. The challenge in the simulation of these systems is
twofold: (i) the number of particles increases rapidly with the charge asymmetry between colloid
and ion, and (ii) the different components of the system have very different relevant time- and
length scales. An increase in particle number due to charge asymmetry increases the computation
time due to the sheer increase of particles to loop over. Due to the nature of the electric
double-layers, one also expects an increase in counterion buildup near the colloids which also
increases the number of interactions between particles to consider, which has a large impact on
computational times. As we are mostly interested in the properties of the colloidal particles, it is
preferable to run simulations on time and length scale appropriate to the mesoscopic colloids.
Explicit simulation of the microscopic ions, however, requires that we run the simulation in their,
much smaller, time and length scales. This discrepancy requires much longer simulation times to
obtain results relevant for the colloidal particles.

In this thesis, we aim to speed up simulations of charged colloidal suspensions by integrating
out the ions in the solvent, which would drastically reduce the total number of particles in the
system and allow us to simulate on time scales more relevant to the colloidal particles. In contrast
to the theoretical approaches based on DLVO theory, we will make use of empirical machine
learning methods. These methods have already been proven to work effectively in colloid-polymer
mixtures [24] and we will now test their use on the description of charged colloidal suspensions.

The remainder of this thesis is structured as follows. In chapter 2 we will give a brief overview
of the theoretical background on charged colloidal suspensions and the theories to describe them.
In chapter 3 we will discuss the methods used to construct effective interactions for charged
colloidal suspension using Machine Learning. In chapter 4 we will discuss the resulting models and
compare their efficacy to conventional models. In chapter 5 we will summarize our results and its
contributions to the field in addition to outlining future extensions of the methods presented in
this thesis.

3



Chapter 2

Theory

2.1 Charged Colloidal Suspensions

Suspensions of charged colloidal particles are complex systems of large charged particles in a
electrolyte. The charge of these large colloidal particles comes from ionic groups on the surface of
the particle. These charged groups form when ions dissociate from an initially charge-neutral
surface of the colloid, resulting in a charged ion in the solvent and an oppositely charged group on
the surface of the colloid. The ions that are released from the colloid’s surface are called
counterions, as they balance the charge of the colloids, leaving the system charge neutral. This
solvent may or may not also include ions from a dissolved salt.

The entire system of a charged colloidal suspension now consists of charged colloidal particles,
counterions with opposite charges originating from the colloid’s surface and counterions are coions
originating from a dissolved salt. Of course, all of these charged particles are surrounded by a sea
of solvent particles.

Treating all particles in this system explicitly in all their degrees of freedom would be
unfeasible and in addition highly unnecessary to give an accurate description of the physics of the
system. For this reason, we usually make some reasonable assumptions to simplify the system and
greatly decrease the number of degrees of freedom.

2.1.1 Primitive Models

In order to effectively describe the behavior of ions in a solution, one often introduces some
simplification to make the result easier to compute and in a sense more general. A common
approximation leads to the Primitive Model (PM).

4



2.1. CHARGED COLLOIDAL SUSPENSIONS CHAPTER 2. THEORY

The PM greatly reduces the complexity of the system by reducing all the individual solvent
molecules into a continuous medium. The ions in the system are treated as charged hard-sphere
particles that interact via a Coulomb pair potential. The effect of the solvent is then taken into
account via its dielectric constant ϵ, that scales the Coulomb interaction strength between the
particles. Often though a more intuitive quantity for the strength of the Coulomb interaction is the
Bjerrum-length

λB =
e2

4πϵkBT
, (2.1)

where e denotes the proton charge, ϵ the dielectric constant of the medium and kB is the Boltzmann
constant and T the absolute temperature.

The Bjerrum Length represents the distance at which the Coulomb interaction energy of
oppositely charged monovalent ions is equal to the thermal energy kBT of the system. For water at
room temperature the Bjerrum length is approximately λB ≈ 0.71 nm.

A given PM of N ion species with hard-sphere radii ai and valencies zi, hence charges qi = zie, for
all species i = 1, . . . , N in a solvent with Bjerrum length λB is then described by the pair potentials
between species i and j with distance r between the two particle centers

βV PM
ij (r) =

{
∞ if r < (ai + aj);

λB
zizj
r

if r ≥ (ai + aj).
(2.2)

The PM is used to describe very general systems of charged particles in a solution. It admits size
asymmetric and charge asymmetric systems with many distinct species of ion. However, a common
implementation of the PM is for simple salt solutions. Common salt solutions like table salt in
water are charge symmetric meaning they have equal but opposite valency z+ = −z−, a so-called
1:1 electrolyte, and their radii are comparable a+ ≈ a−.

Restricted Primitive Model

So for describing these salt solutions one often uses an even more simplified version of the PM,
namely the Restricted Primitive Model (RPM). In the RPM, we only consider two ion species
(+/-) of equal radius a ≡ a+ = a−, but with opposite valency z± = ±1 . The RPM describes a 1:1
electrolyte, ensuring that the system is charge neutral.

To describe this binary system, we have the simplified pair potential between species i and j
with distance r between the two particle centers

βV RPM
ij (r) =

{
∞ if r < a;

λB
zizj
r

if r ≥ a.
(2.3)

In Figure 2.1 we schematically visualize the full atomic model, the primitive model and the
restrictive primitive model of a salt solution.
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2.1. CHARGED COLLOIDAL SUSPENSIONS CHAPTER 2. THEORY

Colloidal Primitive Model

For charged colloidal suspensions, the RPM is unfortunately too restrictive, but the simplifications
made in this model are still applicable to all ions in a charged colloidal suspension. This version of
the PM is called the Colloidal Primitive Model (CPM). Charged colloidal suspensions consist of 4
types of particles: Colloids and their counterions plus the two ion species (+/-) from the salt. The
main differences between the RPM and the charged colloidal suspensions are the asymmetries in
the system between colloids and ions. The colloids are larger and carry more charge. The size
discrepancy between the ions and the colloids is accounted for by allowing particles of two distinct
sizes: macroions, the colloids, with size aM and microions, counterions and salt ions, with size
aµ < aM . We assume these macroions to have negative charge qM = −Ze and microions with unit
charges qµ = ±e. The corresponding macroion and microions valencies are then Z and ±1,
respectively. The charged macroions supply the system with counterions that counter the
macroions charge, such that the system is charge neutral. Let NM be the number of macroions in
the system, their negative charges are then countered by Nc = ZNM counterions, microions with
positive charge e. In addition to these ions there are Ns salt pairs present in the solution giving a
total of N+ = Ns + ZNM positive ions and N− = Ns negative ions.

The interaction in the CPM can be described by the pair potential between species i and j with
distance r between the two particle centers

βV CPM
ij (r) =

{
∞ if r < aij ;

λB
qiqj
r

if r ≥ aij .
(2.4)

In this potential qi denotes the charge of particle i in units of e and aij is the notation for the
arithmetic mean of the radii of particles i and j as given by aij =

1
2 (ai + aj) in which ai, aj denotes

the individual radii of particles i and j respectively.

ϵ ϵ

−

+

−

+

−

+

(a) (b) (c)

Figure 2.1: Schematic representation of electrolyte models for NaCl solution
in water (not to scale). Here we show (a) the full atomic model of hydrated ions
in bulk water, (b) the primitive model representing the ions with an effective
hydrated hard-sphere radius and the water as a medium with dielectric constant
ϵ, and (c) the restricted primitive model, where additionally the salt ion radii
are equal.
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2.2. EFFECTIVE INTERACTIONS CHAPTER 2. THEORY

2.2 Effective interactions

As we recall from statistical mechanics, the equilibrium properties of a thermodynamic system are
largely determined by the free energy of the system. In the case of a canonical ensemble consisting
of N identical particles in a volume V at temperature T the Helmholtz free energy F equals

F (N,V, T ) = −kBT lnZ(N,V, T ), (2.5)

with the canonical partition function Z in terms of the Hamiltonian H and all N particle positions
r⃗N and particle momenta p⃗N given by

Z(N,V, T ) =
1

N !h3N

∫
dr⃗Ndp⃗Ne−βH ≡ tr

[
e−βH

]
. (2.6)

In Eq. (2.6) we defined β ≡ 1/kBT to be the inverse temperature, h is the Planck constant, and
tr[.] denotes the classical canonical trace defined by the phase-space integral over the particle
degrees of freedom in the same equation.

The Hamiltonian determines the dynamics of a particular configuration of the system and is split
up into a kinetic energy part K and potential energy U as

H(r⃗N , p⃗N ) = K(p⃗N ) + U(r⃗N ). (2.7)

For all classical systems the kinetic energy will be given by

K(p⃗N ) =

N∑
i

p2i
2m

, (2.8)

where m is the particle mass of all N identical particles. The potential energy, however, is
dependent on the system in question and can consists of pair interactions, such as Lennard-Jones
or Coulomb interaction and/or external interactions, such as an electric field, to name a few
examples.

The description above holds for one-component systems, but charged colloidal suspensions are
systems with multiple distinct components, namely macroions NM and microions Nµ. The partition
function of such a system then becomes

Z(NM , Nµ, V, T ) = trM (
[
trµ
[
e−βH

]]
. (2.9)

In Eq. (2.9) we have taken the canonical trace over the macroions and microions separately. The
key step to defining an effective interaction and reducing the multi-component system back into a
one-component system of only macroions is to perform the canonical trace over the microions and
integrate out the microion degrees of freedom. This results in

Z(NM , Nµ, V, T ) = trM
[
e−βHeff

]
, (2.10)

where we have defined an effective Hamiltonian Heff in which the microions have been integrated
out into their effective contributions.

7



2.2. EFFECTIVE INTERACTIONS CHAPTER 2. THEORY

In the context of the CPM defined in subsection 2.1.1, we know the Hamiltonian H as given by
the kinetic energy in Eq. (2.8) and the potential energy as the sum of pair potentials in Eq. (2.4) over
all particle pairs. We can derive what the effective Hamiltonian Heff of the one-component system
of only colloidal particles would equate to. The CPM is formulated in terms of pair interactions Vij
between species i and j given by Eq. (2.4). This give us the option to split up the total Hamiltonian
into multiple parts: Macroion-macroion HM , macroion-microion HMµ and microion-microion Hµ

parts as

H = HM +HMµ +Hµ; (2.11)

HM = KM +

NM∑
i,j|i<j

VMM (|Ri −Rj |); (2.12)

HMµ =

NM∑
i

Nµ∑
j

VMµ(|R⃗i − r⃗j |); (2.13)

Hµ = Kµ +

Nµ∑
i,j|i<j

Vµµ(|ri − rj |). (2.14)

This split-up Hamiltonian gives us the opportunity to more explicitly define the effective Hamiltonian
Heff ≡ HM + Fµ with

Fµ ≡ −kBT ln trµ

[
e−β(Hµ+HMµ)

]
. (2.15)

The effective Hamiltonian consists of the macroion energy HM and the effective contribution from
the microions Fµ. Notice that this definition of Fµ describes the free energy of the microions in the
external field defined by the macroions.

Note that the same procedure can be used when the microions are treated grand canonically by
replacing the partition function of Eq.(2.9) with its semi grand canonical equivalent and substituting
the canonical trace over the microion degrees of freedom trµ[.] by the grand canonical trace Trµ[.]
defined by the grand canonical partition function Z. A semi grand canonical system with NM
identical macroions in a volume V at temperature T in contact with a microion reservoir at chemical
potential µ is described by grand canonical partition function

Z(NM , µ, V, T ) =
1

NM !h3NM

∫
dr⃗NMdp⃗NM

∞∑
Ns=0

eβµNµ

Nµ!h3Nµ

∫
dr⃗Nµdp⃗Nµe−βH (2.16)

≡ trM
[
Trµ

[
e−βH

]]
, (2.17)

where Ns is the number of salt pairs in the system such that the total number of microions Nµ is
given by Nµ = 2Ns + ZNM . For such a system we would then define an effective Hamiltonian as
Heff ≡ HM +Ωµ with

Ωµ ≡ −kBT lnTrµ

[
e−β(Hµ+HMµ)

]
. (2.18)

This equation now describes the grand potential of the microions in the external field defined by the
macroions and Trµ[.] is the grand canonical trace over the microion degrees of freedom.

8
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2.2.1 Poisson Boltzmann Theory

At the start of the 20th century, Gouy and Chapman [25, 26] both independently formulated a
description of the ion concentration around an electrode as a diffuse layer of ions. For this description,
they used the Poisson equation as an expression for the electrostatic potential ψ dependent on the
monovalent ion concentrations ρ± of ions with charges ±e in a medium of dielectric constant ϵ

∇2ψ(r⃗) = −4πe

ϵ
(ρ+(r⃗)− ρ−(r⃗)) . (2.19)

The Poisson equation describes not only the electrostatic potential in ionic solutions, but in all
electrostatic systems. In this context it is equivalent to Coulomb’s Law and by extension Gauss’
law. Furthermore, they argued that in a mean-field approximation the average ion concentration
would be distributed like a Boltzmann distribution as

ρ±(r⃗) = ρse
∓βeψ(r⃗), (2.20)

where ρs is the bulk ion concentration of a connected salt reservoir and β ≡ 1/kBT is the inverse
thermal energy. Eqs. (2.19) and (2.20) combined give the Poisson-Boltzmann (PB) equation as a
mean-field description of ion concentrations in electrostatic liquids:

∇2ψ =
4πeρs
ϵ

sinh(βeψ). (2.21)

Most often the PB equation is stated in terms of dimensionless potential ϕ = βeψ and inverse
screening length

κ =
√

8πλBρs (2.22)

∇2ϕ = κ2 sinh(ϕ). (2.23)

The PB equation is a second-order non-linear differential equation, for which analytical solutions
do not always exist. For this reason, the PB equation is often linearized by assuming sinh(ϕ) ≈ ϕ,
which is a reasonable approximation when ϕ is small. The linearized PB equation reads

∇2ϕ = κ2ϕ. (2.24)

The particular solution of the linear PB equation is of course dependent on the boundary
conditions of the problem in question. Therefore, when solving this second-order differential
equation, we will need two additional boundary conditions (actually six if we count all three
dimensions separately).

One common boundary condition is to set the gradient of the potential at charged surfaces
proportional to surface charge density σ as n̂ · ∇⃗ϕ|surface = 4πλBσ with n̂ being the surface normal.
The other remaining boundary condition is usually dependent on the boundary of the system
itself. For example, in infinite systems with localized charges one often requires the potential to
vanish far from any charges in the system ϕ(∞) = 0. This implies that the ion concentrations far
away returns to equilibrium, ρ±(∞) = ρs.

9



2.2. EFFECTIVE INTERACTIONS CHAPTER 2. THEORY

2.2.2 Density Functional Theory

Density Functional Theory (DFT) is, exactly as the name implies, a method in which one describes
quantities as a functional of particle density. A functional F is a function that takes another function
as its input. In the case of a DFT for a one-component system this input function is a density function
ρ(r⃗). We denote a functional and its input as F [ρ(r⃗)]. The advantage that functionals give in this
situation is the ability to take functional derivatives to determine certain equilibrium conditions. In
particular, we know that an equilibrium density function ρeq exists that minimizes the free energy
functional and the equilibrium free energy Feq equals the free energy of the equilibrium density
function:

δF [ρ]

δρ

∣∣∣∣
ρ=ρeq

= 0, F [ρeq] = Feq. (2.25)

In the case of a charged colloidal suspension, the relevant density distributions are those of the
microions ρ±(r⃗), as the effective interactions between macroions are dependent on these unknown
functions. Other useful derived descriptors in this system are the total microion charge density
function qµ(r⃗) = (ρ+(r⃗) − ρ−(r⃗)) in units of e and total microion number density function
nµ(r⃗) = (ρ+(r⃗) + ρ−(r⃗)).

Using the quantities ρ±(r⃗), qµ(r⃗), nµ(r⃗) we can express the components of the grand potential
Ωµ = U − TS − µ+N+ − µ−N−. This is the grand potential of the microions in an external field
described by the macroions and in contact with a salt reservoir at salt density ρs just like in Eq.
(2.18). This can be described as a functional of the ion density functions Ωµ[ρ±] by its components

U [ρ±] = Uµ[ρ±] + UMµ[ρ±] (2.26)

=
e2

2ϵ

∫
dr⃗ dr⃗ ′ qµ(r⃗)qµ(r⃗

′)

|r⃗ − r⃗ ′|
+

∫
dr⃗ [qµ(r⃗)V (r⃗) + nµ(r⃗)W (r⃗)] , (2.27)

where the first term Uµ[ρ±] represents Coulombic microion-microion interactions and the second term
UMµ[ρ±] the macroion-microion interactions, where V (r⃗) and W (r⃗) represent the multi-centered
Coulomb and hard-sphere interactions of the macroions respectively. Notice that we left out any
microion-microion correlations, as we assume them to be point-like for the rest of this derivation.
The next component of the microions grand potential is the entropic term of an ideal ionic gas with
thermal wavelength Λ = h/

√
2πmkBT given by

TS[ρ±] = −kBT
∑
±

∫
dr⃗ ρ±(r⃗)

[
ln
(
ρ±(r⃗)Λ

3
)
− 1
]
. (2.28)

Lastly, we have the chemical potential contributions of both species

µ±N±[ρ±] = µ±

∫
dr⃗ ρ±(r⃗), (2.29)

where chemical potentials of these species may be defined as µ± ≡ kBT ln(ρsΛ
3) with a given

reservoir microion concentration ρs. We can combine Eqs. (2.28) and (2.29) using the definition of
the chemical potentials to find the ideal contribution Ωid to the grand potential

βΩid[ρ±] =
∑
±

∫
dr⃗ ρ±(r⃗)

[
ln
ρ±(r⃗)

ρs
− 1

]
. (2.30)

10
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This gives us a total grand potential

βΩµ[ρ±] = βΩid[ρ±] + 2πλB

∫
dr⃗ dr⃗ ′ qµ(r⃗)qµ(r⃗

′)

|r⃗ − r⃗ ′|
+

∫
dr⃗ [qµ(r⃗)βV (r⃗) + nµ(r⃗)βW (r⃗)] . (2.31)

We may find an expression for the equilibrium profiles of ρ±(r⃗) by considering the functional
derivative of the grand potential βΩµ[ρ±] with respect to these functions. In equilibrium we would
have that these ion profiles minimize the grand potential and their functional derivatives thus vanish
as

δΩµ[ρ±(r⃗)]

δρ±(r⃗)
= 0. (2.32)

Substituting Eq. (2.31) into this functional derivative leads to

ln
ρ±(r⃗)

ρs
± ϕ(r⃗) + βW (r⃗) = 0, (2.33)

where we define the dimensionless potential

ϕ(r⃗) ≡ λB

∫
dr⃗ ′ qµ(r⃗

′)

|r⃗ − r⃗ ′|
+ βV (r⃗). (2.34)

In the region of the system outside the hard-sphere of the macroions, we have that βW (r⃗) ≡ 0.
In this case, Eq. (2.33) reduces to exactly the Boltzmann Eq. (2.20). The corresponding version of
the Poisson Eq. (2.19) is then

∇2ϕ(r⃗) = λB

∫
dr⃗ ′∇2 qµ(r⃗

′)

|r⃗ − r⃗ ′|
+ β∇2V (r⃗) (2.35)

= −4πλB

∫
dr⃗ ′δ(|r⃗ − r⃗ ′|)qµ(r⃗ ′) +

NM∑
i

∇2v(R⃗i − r⃗) (2.36)

= −4πλBqµ(r⃗)−
ZλB
a2

NM∑
i

δ(|R⃗i − r⃗| − a). (2.37)

Here we used the multi-centered nature of the electrostatic potential V (r⃗) =
∑
i v(r⃗ − R⃗i). The

multi-centered electrostatic macroion potential v(r⃗) is defined by

βv(r⃗) =


−ZλB
a

if |r⃗| < a;

−ZλB
|r⃗|

if |r⃗| > a.

(2.38)

The corresponding charge distribution according to Gauss’ Law is

β∇2v(R⃗i − r⃗) =
−ZλB
a2

δ(|R⃗i − r⃗| − a). (2.39)

Now combining this Poisson Eq. (2.37) with the Boltzmann Eq. (2.33) gives us the PB from this
DFT:

11



2.3. COMPUTER SIMULATIONS CHAPTER 2. THEORY

∇2ϕ(r⃗) = κ2 sinhϕ(r⃗)− ZλB
a2

NM∑
i

δ(|R⃗i − r⃗| − a). (2.40)

Unfortunately, Eq. (2.40) has no analytic solutions. We must make some approximations to
come to a solution that approximates the equation. Working out the approximate solutions to Eq.
(2.40) will be too involved for the scope of the thesis. We will give an overview of the procedure
one would follow to obtain an effective macroion potential from DFT.

First, one would make approximation to the initial density functional by expanding the ideal-gas
contributions βΩid[ρ±] about the mean ion densities ρ± =

∫
dr⃗ρ±(r⃗)/V up to quadratic order. Then

the equilibrium conditions according to Eq. (2.32) will become linear in ρ± − ρ±.
Secondly, the hard-sphere exclusion of the colloidal particles makes the problem difficult to

solve. Replacing with a pseudo-hard-sphere potential with finite strength βw0 instead of ∞ for
r < a. We can later choose w0 such that ρ±(r) = 0 for r < a. These assumptions make it possible
to solve a version of PB Eq. (2.40). [19, 21, 27]

After finding our equilibrium profiles ρeq± (r⃗) as solution of the PB equation, we can express the
equilibrium density functional βΩeq(ρ±) by entering said equilibrium profiles ρeq± (r⃗). Now
βΩeq(ρeq± ) defines the microion induced effective potential as defined in Eq. (2.18).

The method described above gives an effective pair potential, namely the DLVO potential, as a
result. The DLVO pair potential is given by the equation

βVDLVO(r) = Z2λB

(
eκa

1 + κa

)2
e−κr

r
, (2.41)

where Z is the macroion charge in units of e, λB is the Bjerrum length, κ is the inverse Debye
screening length and a is the macroion radius. The DLVO pair potential is a special case of a
general class of pair interactions, Yukawa potentials

βVYuk(r) = C
e−κr

r
. (2.42)

The Yukawa potential only has two parameters: C the energy scale and κ the inverse screening
length.

2.3 Computer Simulations

Computer simulations provide a useful tool for exploring model systems. They allow us to set
parameters in the model very precisely and measure quantities with very high accuracy. In this
way computer simulations allow us to test our models against experiments or test theoretical
simplifications against their full description counterparts. In this thesis we will use computer
simulation in the opposite way, by simulating a full description system we aim to find a simplified
effective description using the measurement from these simulations.

12
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Computer simulations can be run at many scales, ranging from the atomic scale to molecule
scale to macro-molecules and beyond. When simulating large molecular systems, it is often
inefficient and unnecessary to describe the system in terms of individual atoms. This would lead to
insurmountable complexity and thus computation times. A common approach is to coarse-grain
the system: reduce certain elements to simplified effective descriptions. For charged colloidal
suspensions, we employ coarse-graining to reduce the medium to a dielectric and the particles to
spherical approximations, just like in the PM described in subsection 2.1.1.

For a more in depth exposition of the techniques and theory behind computer simulations, the
book by Frenkel and Smit [28] is strongly recommended as additional reading beyond the summary
below.

2.3.1 Molecular Dynamics Simulation

In Molecular Dynamics (MD) simulation one uses Newton’s second Law, F⃗ = ma⃗, force F⃗ equals
mass m times acceleration a⃗, to propagate a system in time and in this way simulate the physical
behavior of the system in question as it would behave in an experiment. A basic MD program goes
through a cycle of computing the forces on all particles in the current configuration and then
performing time integration to generate the next configuration.

Force computation

Calculating the forces of a given configuration is in principle relatively straightforward. Let us
assume all the forces on the particles can be approximated by pair interactions, then we loop over
all the pairs and sum the corresponding forces, giving us the net force on each particle. This does
work, but is not very efficient and more importantly does not scale well with system size. The
amount of times the pair interactions would have to be evaluated is of quadratic order O(N2) in
the number of particles in the system N .

One way to improve upon this is not to consider all particle pairs, but only the necessary or
relevant pairs. As many types of interactions, such as Van der Waals or Lennard-Jones interaction,
are only relevant on short ranges, one can choose a suitable cutoff range rc. Particle pairs further
apart than this cutoff range are approximated to not interact, and their interactions do not have to
be directly evaluated. This reduces the amount of interactions to be computed to all particles
within a fixed volume of around each particle. This scales only with the amount of particles in the
system, thus O(N).

13
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Of course, we have now only shifted the problem to determining which atoms are within
interaction range of each other, for which we still have to compute O(N2) distances. Another trick
to avoid this is using neighbor lists. These are lists that keep track of what particles are near one
another. An example of such a method would be using cell lists, which divides up the total system
into boxes, or cells. These boxes have side lengths l larger than the cutoff range rc. We can easily
determine to which box each particle belongs using O(N) operations. Because the boxes are such
that l > rc we know for sure that only particles in neighboring boxes can interact, otherwise there
would be at least one box in between making their separation at least as large as l and thus
beyond the interaction range rc. In total, this would make the evaluation of all interactions with a
limited range scale as O(N).

There are also particle interactions, such as Coulombic interactions, that are relevant on long
ranges, and cutting them off at a certain radius could significantly change the physics of the
system. Luckily, there still are some methods to improve upon a brute force O(N2) computation of
pair interactions. One improvement comes in the form of long-range solvers. Long-range solvers
often translate the system to reciprocal space using a Fourier transform and compute the forces on
all particles in reciprocal space. This translation makes the range of the interaction essentially
infinite. An example of such a long-range solver is the Particle-Particle Particle-Mesh (PPPM or
P3M) algorithm [29] often used for Coulombic interactions. This algorithm improves on the direct
computation of all interactions by reducing the scaling to O(N logN).

Time integration

Now, knowing the forces on all the particles, it is time to use those to propagate the system in
time. Given the current position of a particle r⃗(t) and the force f⃗(t) on that particle at time t we
would like to know the position at some later time t +∆t. There are many integration schemes to
propagate the system in time, and one simple yet accurate example is Verlet integration [30].

For Verlet integration we do require an additional position of the particle at the previous time
step t−∆t. The next position according to Verlet integration is then given by

r⃗(t+∆t) = 2r⃗(t)− r⃗(t−∆t) +
f⃗(t)

m
∆t2. (2.43)

To run an actual simulation using this integration scheme, we need two starting positions r⃗(t0),
r⃗(t0 + dt) instead of one. The second position is usually not explicitly given but instead, an initial
velocity v⃗(t0) is given to compute r⃗(t0 +∆t) as

r⃗(t0 +∆t) = r⃗(t0) + v⃗(t0)∆t+
f⃗(t0)

2m
∆t2. (2.44)

A derived integration scheme is Velocity Verlet integration [31]. This integration scheme does
not require two previous positions, but instead keeps track of particle velocity. This integration
scheme uses the following equations to compute the next particle position and velocity:
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r⃗(t+∆t) = r⃗(t) + v⃗(t)∆t+
f⃗(t)

2m
∆t2, (2.45)

v⃗(t+∆t) = v⃗(t) +
f⃗(t) + f⃗(t+∆t)

2m
∆t. (2.46)

Just like the regular Verlet algorithm, it has an error of order O(∆t4) and uses similar amounts of
computational resources. In Figure 2.2 we show a visualization of a time step in this integration
scheme.

Velocity Verlet integration is often used in MD as it provides good accuracy with an error on
the order of O(∆t4). Furthermore, it is numerically stable, respecting the preservation of energy,
and, lastly, it is computationally inexpensive.
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Figure 2.2: Schematic visualization of a single time step in the velocity Verlet
algorithm given by Eqs. (2.45) and (2.46). In this figure, velocities v and forces
F are represented by the integrated displacement equivalents v∆t and 1

2mF∆t
2,

respectively.

Thermostat scheme

The force calculation and time integration are in principle sufficient to perform MD simulation.
However, due to the nature of Newton’s equations, simulations using only time integration are
energy preserving. This corresponds to a simulation of a microcanonical ensemble (NV E), while
temperature conserving ensembles like the canonical ensemble (NV T ) are more common in physical
systems.
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In order to simulate a canonical ensemble, we need a thermostat that ensures that the velocities
of the atoms in the system are distributed according to the Maxwell-Boltzmann velocity distribution
for that given temperature. One simple approach is to simulate actual collisions with a heat bath
in which we randomly select particles each time step to undergo a collision with the heat bath,
setting their velocity randomly according to the Maxwell-Boltzmann distribution. This approach is
the so-called Andersen thermostat [32]. This thermostat, unfortunately, gives unphysical simulation
results. It affects the dynamics due to sudden changes in velocity, which influences the velocity auto-
correlation and thus diffusion of the particles. Another thermostat that does not rely on stochastic
methods is the Nosé-Hoover thermostat [33]. This thermostat modifies the equations of motion by
introducing a thermodynamic friction coefficient ξ and its effective ’mass’ Q. Considering a system
of N particles with positions r⃗i, momenta p⃗i and masses mi for i = 1, . . . , N these equations of
motions for a canonical ensemble become

˙⃗ri = p⃗i/mi, (2.47)

˙⃗pi = f⃗i − ξp⃗i, (2.48)

ξ̇ =
1

Q

(∑
i

˙⃗p2

mi
− 3NkBT

)
. (2.49)

Where f⃗i denotes the force on particle i.

The Nosé-Hoover thermostat generates a canonical distribution much like the Andersen
thermostat in most cases without the disturbances in the particle’s velocities that the Andersen
thermostat brings along. Yet the Nosé-Hoover thermostat also has shortcomings. It fails to
produce canonical distributions, and instead more alike microcanonical distributions, when there
are multiple conserved quantities in the system. An extension to the Nosé-Hoover thermostat is a
Nosé-Hoover Chain [34] in which we have a chain of M friction coefficients ξ1, . . . ξM . Only the first
of these coefficients, ξ1, is coupled to the momenta of the particles and the rest are coupled to each
other in a chain-like fashion. This added chain expands the number of conservation laws a given
system can have for which the Nosé-Hoover thermostat can reproduce a canonical distribution.

Molecular dynamics code

For an efficient and fast implementation of all these algorithms used for MD simulation, we will use
the open-source LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) molecular
dynamics code [35]. LAMMPS provides various other optimizations to the algorithms described
before, such as system partitioning and force lookup tables, along with excellent parallel
performance. LAMMPS also includes many built-in options to simulate common systems and
allows for simulations on various scales: From atomic scale to continuum scale. In addition to any
built-in options, LAMMPS comes with many prepackaged extensions for Monte Carlo methods,
Brownian Dynamics, Long-range solvers and GPU acceleration just to name a few.
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2.3.2 Grand Canonical Monte Carlo simulation

A limitation of MD simulations is the inability to make discrete changes in your simulation. For
example, there is no continuous parameter for the number of particles to change over time, so it is
not straightforward to use only MD to simulate a Grand Canonical ensemble. While there are
methods similar to the Nosé-Hoover thermostat for dynamically changing the particle number [36],
these are involved methods and hard to implement.

This is where Monte Carlo (MC) methods enter the picture. MC methods are stochastic
algorithms that use randomness to sample an entire configuration space according to a certain
distribution. In the context of simulating a thermodynamic ensemble, MC simulations perform
random walks in the parameter space of the system, randomly displacing particles,
incrementing/decrementing system volume, and/or inserting/removing particles. Each step of the
random walk is either accepted or rejected according to a criterion that ensures that all the
samples generated by the random walk are distributed according to the ensemble distribution.

For Grand Canonical Monte Carlo (GCMC) simulation one performs particle exchange moves,
these moves either attempt to insert or remove a particle at random. For an insertion move, a particle
will be added to the system in a random location, and for a removal move, a random particle will be
removed from the system. These moves are accepted with probabilities Pinsert and Pinsert according
to the Metropolis method [37]

Pinsert(N → N + 1) = min

[
1,

V

Λ3(N + 1)
eβ(µ−U(N+1)+U(N))

]
, (2.50)

Premove(N → N − 1) = min

[
1,

Λ3N

V
e−β(µ+U(N−1)−U(N))

]
. (2.51)

In these equations N is the number of particles, V is the system volume, Λ is the thermal
wavelength of the particle, β the inverse temperature, µ the chemical potential of a virtual
reservoir and U is the system energy as function of the particle configuration.

In the metropolis method, one always accepts a move that reduces the energy of the system
and accepts moves that increase the energy of the system with a probability that decreases
exponentially with said increase in energy. The metropolis method ensures that the underlying
distribution of states generated by the MC simulation is equal to the distribution of the
thermodynamic system.

The chemical potential µ of a given system is kept fixed for GCMC simulations and determines
the equilibrium particle number of the system.
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Chapter 3

Method

3.1 Machine Learning Model

Finding an effective interaction for our system of charged colloids using a Machine Learning (ML)
model requires us to fit a spatial description (e.g., positions, orientations, etc.) of the system to
some descriptor of the physics of our system (e.g., energy or forces).

The full physical descriptions of our system consist of colloid or macroion positions
R⃗NM = {R⃗i} for i = 1, . . . , NM together with all microion positions r⃗Nµ = {r⃗j} for
j = 1, . . . , Nµ = 2Ns + ZNM .

The CPM, detailed in subsection 2.1.1, can then be used to determine the physics by using the
pair potentials to compute a total system energy or the forces on each particle. The CPM can be
seen as functions U and F that map all 3Ntot particle coordinates to the system energy U and 3Ntot

forces F⃗ Ntot = {F⃗i} for i = 1, . . . , Ntot, where Ntot = NM +Nµ is the total number of particles in
the system, hence:

Primitive Model : R⃗NM , r⃗Nµ → U, F⃗ Ntot .

The goal now is to replace this computationally expensive function with an easy-to-compute
function for an effective interaction, as defined in section 2.2, that only relies on the macroions
positions R⃗NM as an input while still accurately describing the physics of the macroions in the full
system. This is where a machine learning model is used to find functions for estimated system energy
Û and the corresponding macroion forces F⃗ NM :

Machine Learning Model : R⃗NM → Û , F⃗ NM .

The machine learning model that we will use will focus on determining the forces on the
macroions depending on the macroion positions. To get the model to ’learn’ the patterns and
relations between the positions and their corresponding forces, we need training data. This
training data consists of input and output pairs {R⃗NM , F⃗NM } that are the result of explicit
calculation of the CPM.
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We could then use a machine learning algorithm to find a model that maps bare particle
position to particle forces. However, this approach is not ideal as the input to the model is
dependent on every individual particle position and thus dependent on the global properties of the
system. This means that the approach is not suitable for scaling up the system in terms of size nor
particle number. In addition, from a theoretical standpoint, we expect the interaction to be of a
limited range due to screening effects [9]. A better approach would then be to use a local
description of each particle’s environment and use this description as input for the machine
learning model. A commonly used implementation of these kinds of local descriptors are Symmetry
Functions (SFs) [38] as will be discussed in subsection 3.1.1.

As a machine learning method we use linear regression subsection 3.1.2 to iteratively select
from a large pool of SFs to find the ones that best describe the forces in the training data.

3.1.1 Symmetry Functions

Recall that our machine learning model is essentially a function that transforms macroion input
configurations R⃗NM into system energy U and macroion forces F⃗ NM .

Training a ML model directly on the input configurations is not practical as training on these
raw configurations would provide only very specific information and thus require many distinct
configurations to be able to interpolate between configuration. If we instead utilize the internal
symmetries of the system we can use our data much more efficiently.

Additionally, training a model on a global description of the system, where the input is every
particle position in space R⃗NM , would not allow us to easily change the size of the system in terms
of the number of particles and the volume/density as the machine learning model would need to
have been trained on these systems. Instead, we want to train on a local description of the
structure around the particles.

In order for a local description to be as useful as possible, it must obey the symmetries that are
inherent to the system. In the case of a suspension of identical spherical colloids, this implies that
the local description must be symmetric under (i) translations of all particles, (ii) rotations of the
system and (iii) permutations of identical particles. Furthermore, we require that (iv) this
descriptor is local, meaning that a particle’s local description is only affected by other particles
within a certain range. These four properties are visualized in the figure below. In this figure, the
symmetries (i) through (iii) are presented by two system equal under the corresponding
transformation. The locality (iv) is visualized by spheres of influence around particles that
determine which particles affect each other.
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Symmetry Functions (SFs) provide such a way to transform our input data, which is a global

description of all the particle positions R⃗NM , into a more appropriate set of local descriptors. For
SFs this set {GNM

k } for k = 1, . . . , D would consist of D values of distinct symmetry functions
computed for all NM macroions individually.

The role of SFs within the entire ML approach is displayed in the figure below, where SFs are used
to translate the global description R⃗NM to a set of local descriptors {GNM

k }, which is consequently

used for linear regression to fit the particle forces F⃗ NM .

Symmetry

Functions

Linear

Regression

R⃗NM {GNM } F⃗NM

For our machine learning model we will use two families of SFs, namely radial SFs and angular
SFs as they were described in great detail by Behler [38]. The radial SFs, as the name implies,
describe spherically symmetric relations between particles and only depend on inter-particle
distances. The angular SFs do not only depend on the distances between pairs of particles, but
also on the angles between triplets.

SFs are scalar functions meant to describe interaction energies, meaning that they are not directly
suitable to fit to particle forces, as these are vectors. However, the gradients with respect to particle
position are vectors that can be fitted using linear regression, such that the force on a particle i
equals the gradient of a linear combination of SFs. We can approximate the system energy U of the
CPM with an estimate Û given a weighted sum of SFs as

Û =

D∑
k=1

wk

NM∑
j=1

Gk(j)

 . (3.1)

Here wk is the weight of the kth SF and Gk(j) is the value of the kth SF for particle j in a given

configuration. From this energy the corresponding force ⟨F⃗i⟩ on particle i is easily obtained by

taking the gradient ∇⃗i with respect to the position R⃗i of particle i as
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⟨F⃗i⟩ ≡ −∇⃗iÛ (3.2)

= −
D∑
k=1

wk∇⃗i

NM∑
j=1

Gk(j)


=

D∑
k=1

wk

−∇⃗iGk(i)−
NM∑
j ̸=i

∇⃗iGk(j)

 .
Here we expressed the forces in terms of SF gradients by substituting Eq. (3.1) for Û . We separated
the SF value for i itself from the other particles, as the expression for this gradient may differ. This
immediately displays the benefit of using a linear machine learning method, as the system energy
can still be recovered by undoing the gradient, which is just equal to the linear combination of the
original SFs.

Cutoff function

To ensure that the SFs are local descriptions of a particle’s surroundings, they make use of a cut-off
function. This cut-off function smoothly reduces the effect of particles at larger distances from each
other and eliminates any effect on the SFs by particles beyond the cut-off radius rcut. The chosen
cut-off function is in the form of

fc(r) =

{
tanh3(1− r/rcut) if r ≤ rcut,

0 if r > rcut.
(3.3)

as used before by Campos-Villalobos et al. [24], Behler [38], and Singraber, Behler, and Dellago [39].

Radial symmetry function

The family of radial SFs G2(i) is a parametrized function to describe the local environment of
particle i in terms of inter-particle distances. This type of SF is in essence a Gaussian shifted from
the center of the particle as given by

G2(i) =
∑
j

e−η(Rij−Rs)
2

fc(Rij). (3.4)

Here Rij = |R⃗i − R⃗j | is the distance between particles i and j. The parameters of these SFs are η,
determining the radial width of the Gaussian, and Rs which sets the distance between the particle
center and the peak of the Gaussian. In Figure 3.1 we display several normalized radial SFs with a
range of parameter values for η and Rs.

The gradients of the radial SF, that can be used to describe forces, can be straightforwardly
calculated using repeated use of the chain rule for derivation. The gradient does take a different
form if the gradient is taken with respect to the particle for which the SF is computed ∇⃗iG

2(i) or

with respect to a different particle ∇⃗iG
2(j) where j ̸= i. These are given by

∇⃗iG
2(i) =

∑
j|j ̸=i

e−η(Rij−Rs)
2

[f ′c(Rij)− 2η(Rij −Rs)fc(Rij)]
R⃗ij
Rij

, (3.5)
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∇⃗iG
2(j) = e−η(Rij−Rs)

2

[f ′c(Rij)− 2η(Rij −Rs)fc(Rij)]
R⃗ij
Rij

. (3.6)

Here we use the convention that R⃗ij = R⃗i − R⃗j , Rij = |R⃗ij | and f ′c is shorthand for the radial

derivative
dfc
dr

of th cutoff function fc.
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Figure 3.1: Normalized versions of radial symmetry functions with cutoff
radius Rcut = 2.5 for a particle i with one neighbour j at distance Rij . (a)
Various values for Gaussian width η at Rs = 0. (b) Various values for Gaussian
shift Rs at η = 1.0.

Angular symmetry functions

The family of angular SFs G3(i) used both inter-particle distances and angles to give a description of
a particle’s environment. This type of SF is similar to the radial SF, but with an additional angular
term as given by

G3(i) = 21−ξ
∑
j,k ̸=i

(1 + λ cos θijk)
ξe−η(R

2
ij+R

2
ik+R

2
jk)fc(Rij)fc(Rik)fc(Rjk). (3.7)

Here Rij = |R⃗i − R⃗j | denotes the distance between particles i and j, θijk is the angle at particle i

between R⃗ij and R⃗ij such that cos θijk =
R⃗ij ·R⃗ik

|R⃗ij ||R⃗ij |
. The Angular SF is parameterized by λ, ξ, η.

The parameter λ equals ±1 and determines the parity of the angle term, this affects the position of
the peak in the angular term of the SF. For λ = 1 the angular is maximal at θijk = 0◦, and for
λ = 0 the angular is maximal at θijk = 180◦. Next, ξ determines the peak width of the angular
term, while η determines the width of the Gaussian term just like for the radial SF. In Figure 3.2
we visualize the shapes of several parameter choices for the family of angular SFs.

Computation of the gradient is still a straightforward application of the chain rule, although
more involved than for the radial SF. The gradient with respect to the particle concerning the SF
∇⃗iG

3(i) is given by Eq. (3.8) and the other gradients ∇⃗jG
3(i) such that i ̸= j are given by Eq.

(3.9).
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∇⃗iG
3(i) = 21−ξ

∑
j,k|j ̸=i,k ̸=i,j<k

ωijk

[
(ϕijk − 2η + χij)R⃗ij + (ϕikj − 2η + χik)R⃗ik

]
(3.8)

∇⃗iG
3(j) = 21−ξ

∑
k|k ̸=i,k ̸=j

ωjik

[
(ϕjik − 2η + χij)R⃗ij + (ψjik − 2η + χik)R⃗ik

]
(3.9)

Here we used the following four equations as abbreviations:

ωijk = (1 + λ cos θijk)
ξe−η(R

2
ij+R

2
ik+R

2
jk)fc(Rij)fc(Rik)fc(Rjk), (3.10)

ψijk = − 1

RijRik

λξ

1 + λ cos(θijk)
, (3.11)

ϕijk =
1

Rij

[
1

Rik
− 1

Rij
cos(θijk)

]
λξ

1 + λ cos(θijk)
, (3.12)

χij =
1

Rijfc(Rij)
f ′c(Rij). (3.13)
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Figure 3.2: Normalized versions of angular symmetry functions with cutoff
radius Rcut = 2.5 for particle i with two neighbours j and k. Particle i is fixed
at origin and the first neighbour j is fixed at (0, 2). The value of G3(i) at (x, y)
corresponds to the configuration where particle k is fixed at (x, y). (a) Standard
parameter values. (b) Greater η with ξ = λ = 1. (c) Greater ξ with η = λ = 1.
(d) Opposite λ with η = ξ = 1 .

3.1.2 Linear Regression

The final step in obtaining our machine learning model is fitting the model to the training data.
For this fitting procedure, we use linear regression to construct a predictive model for the microion-
averaged forces ⟨F⃗ ⟩NM as a linear combination of SFs gradients ∇⃗iGk(i) and ∇⃗iGk(j) with weights
wk as

⟨F⃗i⟩ =
D∑
k=1

wk

−∇⃗iGk(i)−
NM∑
j ̸=i

∇⃗iGk(j)

 .
Combining the radial and angular SFs we have a pool of NSF SFs to build our model. From this
pool we will progressively find optimal sets of D < NSF SFs in such a way that each added SF adds
the most information to the previous set.
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This pool of SFs consist of various parameter combinations for both radial and angular SFs
described in subsection 3.1.1. For each parameter p we choose a set of Np values {pi} for
i = 1, . . . , Np. The total number of parameter combinations for the radial SFs would then be
Nη · NRs

and the amount of angular SFs equals Nη · Nξ · Nλ for a total of
NSF = Nη ·NRs

+Nη ·Nξ ·Nλ distinct SFs. The cutoff radius is set to the same value Rcut for all
SFs.

To ensure that the next chosen SF adds the most information, we compute the Root Mean
Squared Error (RMSE) of the model, that quantifies its absolute error. A lower RMSE corresponds
to a better model and a RMSE = 0 would indicate a perfect model. Given a certain subset of all
SFs, we then compute the RMSE for each remaining SF that is still in the pool. In principle, all
SFs should add some information and thus decrease the RMSE, but only the SF that decreases
RMSE the most is added to the set of selected SFs.

To determine the RMSE we first need to fit the set of SFs to the forces using the normal equation
for linear regression. The normal equation finds weights w for the SFs by projecting the target forces
y onto the space spanned all the SFs. This normal equation reads

w = (XTX)−1XT y. (3.14)

Here y is the column vector of all N = 3NM · NC force components, X is a N × D matrix with
the N gradient components of D SFs as its columns. The normal equation ensures that w is the
column vector of D weights wk for the SFs Gk with k = 1, . . . , D that minimizes the Sum of Square
Residuals (SSR),

SSR = |y −Xw|2. (3.15)

The RMSE in turn is related to the SSR as

RMSE =

√
SSR

N
(3.16)

=

√
|y −Xw|2

N
. (3.17)

Here N = 3NM ·NC is the total number of force components and y, X and w are as defined before.

Notice that the version of the normal equation in Eq. (3.14) does not exactly describe
conventional linear regression, as we omitted a column of only ones in X. This column represents
an added constant term, so without it we only fit scaling parameters for the SFs. This ensures that
the forces that we will fit using this method do not acquire a constant shift and are zero in the
large separation limit.
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3.2 Computer Simulation

3.2.1 System Parameters

The specific system from which we will collect training data for our machine learning models is
based on a system described in a paper by Royall et al. [40]. This paper describes experimental
systems, ensuring that the parameters used in our simulations are in the realm of physical systems.

The computer simulation that we use to simulate these systems are MD simulation, described
in subsection 2.3.1, as they are fast and resource efficient. Unfortunately, MD simulate cannot
actually simulate a CPM, as this model includes a Hard-Sphere (HS) potential. The problem here
is that MD simulations require forces to be finite to perform the time integration and the HS
potential is either zero or infinite, which is not allowed. The solution is to replace the HS potential
by a softer short-range repulsive force.

The chosen potential to replace the HS potentials is the Weeks Chandler Andersen (WCA)
potential [41], which is essentially a Lennard-Jones potential cut-off and shifted to 0 at its minimum
as defined by

VWCA(r) =

4 ϵWCA

[(σij
r

)12
−
(σij
r

)6]
+ ϵWCA if r < 21/6σij ;

0 if r ≥ 21/6σij .
(3.18)

The WCA potential has two parameters: ϵWCA as the strength of the interaction and σij as the
interaction distance between particles i and j. We set this distance as the sum of the particle radii
ai and aj , thus σij = ai + aj , just like for a HS potential.

The Coulomb forces on all particle in the CPM are calculated by using a combination of exact
evaluation up to a cutoff radius rcut = 5a, with a the macroion radius, and a long-range solver as
described in subsection 2.3.1. The particular long-range solver used is the particle-particle
particle-mesh (PPPM) solver [29]. These two computations of the forces are combined to compute
the Coulombic forces.

In Table 3.1 we detail the system parameters that will be used for all simulation throughout
this thesis. As seen in this table, the ratio between Bjerrum length λB and the ion radius aµ is
roughly 1:5 which indicates that the coupling between microions of opposite charge is relatively
weak, and thus we should not expect to see significant ion pair formation.
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Macroion radius a 1.0

Microion radius aµ/a 0.05

Macroion valency Z 90

Microion valency z ±1

Bjerrum Length λB/a 0.0098

Soft sphere strength βϵWCA 10

Table 3.1: Parameters used in all MD simulations of the CPM in terms of
dimensionless quantities.

3.2.2 Single Density Canonical Ensemble

One set of training data that we use to train a machine learning model on, is obtained from MD
simulations of a charged colloidal suspension in a canonical (NVT) ensemble with fixed particle
numbers, fixed system volume/density and fixed temperature.

The system density of this system is set by the macroion packing fraction equal to
η = 4

3π a
3NM/V = 0.187. The microion concentration for this system is determined by the relation

between ion concentration and reservoir inverse screening length κa =
√
8π (λB/a) (ρsa

3). This
relation is defined in Eq. (2.22) in which the salt density ρs = Ns/V only depends on the number
of ion pairs from an external reservoir Ns. For this system we set the inverse screening length as
κa = 0.83.

For this system we use MD simulations to obtain NC = 200 configurations of NM = 32
macroions each with Ns = 2026 cation-anion pairs added for a total of Nµ = 6932 microions in the
system. For each macroion configuration, NS = 10000 samples of microion configuration were
generated also using MD simulations for the purposes of determining the mean macroion forces for
each configuration, as will be described in subsection 3.2.4.

3.2.3 Multi Density Hybrid Ensemble

A variation on the before mentioned ensemble using a fixed microion concentration would be to
treat the microions grand canonically as if the system was connected to a salt reservoir by means
of a semipermeable membrane. In simulations, this is done using Grand Canonical Monte Carlo
(GCMC) methods, detailed in subsection 2.3.2, where ion pairs are exchanged between the
simulated system and a virtual salt reservoir.

While these GCMC simulations better mimic the real physical systems, that are often
connected to a salt bath, they also have their downsides. GCMC simulations are much more
computationally intensive than MD simulations and on top of that these simulations are mostly
sequential and normally cannot benefit from parallel computing as is the case for MD simulations.
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One method to improve the efficiency of simulations of a Grand Canonical system is to combine
MD simulations and GCMC simulations by utilizing the MD algorithm for performing time steps
and employing a GCMC algorithm only for insertion and deletion of particles in the system.
Typically, particle exchange moves are performed between a larger number of MD time steps,
effectively alternating between MD and GCMC simulations.

In addition to being more physically accurate, the use of Grand Canonical methods to
determine the microion concentration in the system allows us to extend our system to various
densities much better. The resulting microions concentration in a given system is dependent on the
packing fraction of the colloidal particles, the screening effect of the ions on the colloid charge, and
the interaction between the microions from the reservoir and from the macroions. Predicting the
microion concentration in a given system ab initio is complex. Measuring the microion
concentration of a system simulation using GCMC methods, however, is trivial.

In hybrid MD and GCMC form the simulation times of grand canonical simulation can be
improved, yet still these simulations are orders of magnitude slower than MD simulations by
themselves. This makes GCMC method still unfeasible for simulating the hundreds of
configurations for our training data. In order to bring the simulation times down but still use
grand canonical methods to determine the microion concentration of our system, we split up the
data generation into a grand canonical part for determining average microion concentrations and a
canonical part for generating the training data given these microion concentrations. For the first
part we use hybrid GCMC methods, and for the latter we can restrict ourselves to more efficient
MD simulations.

In the following subsections, we will go through the individual steps that will eventually lead to
the training data for a system across multiple densities.

Screening: κa → Chemical potential: µ → Salt concentrations: ρs → Forces: ⟨F⃗ ⟩NM

The first step in the process would be to establish the relation between microion concentration
and chemical potential in a salt reservoir. The next step is to determine the average ion
concentrations for colloidal suspension at varying densities and screening lengths. In subsection
subsection 3.2.4 we will cover the calculation of the mean forces of different colloid configurations
similarly to the single density case.

Screening Length and Chemical Potential

The relation between the screening length and the chemical potential of the salt reservoir is important
for determining the parameters we need to set for simulations of the full colloidal system. Both the
inverse screening length κ and the chemical potential of the microions µs are related to the mean
salt concentration ρs of the system. The inverse screening length by its definition κ2 ≡ 8πλBρs with
ρs being the ion concentration of a connected salt reservoir. In the ideal gas limit, one can determine
the relation between chemical potential and concentration to be µs = kBT ln(ρsΛ

3), where λ is the
thermal wavelength of the particles. This gives us the relation for κ as a function of µ:

κa =

√
8π
λB
a

( a
Λ

)3
eβµs/2. (3.19)

28



3.2. COMPUTER SIMULATION CHAPTER 3. METHOD

In the CPM, however, we describe microions as hard-sphere particles with electrostatic interaction,
this means they do not behave in an ideal manner. For this reason, we run GCMC simulations of a
salt reservoir at various chemical potentials to verify the validity of this relation.

The GCMC simulation uses the same ion and solvent system parameters of the CPM as the full
system with colloids, as in subsection 3.2.1. The system size is set to a cube of volume (2a)3. The
microions in a GCMC simulation have to be added and deleted as anion-cation pairs in order to
keep the overall system charge neutral. Additionally, these pair must form a fixed structure with
fixed distance between the two microions for the GCMC implementation used in this thesis. This
fixed distance d between the microions does affect the equilibrium microion concentration as in the
presence of macroions microion pairs with large inter-particle distance d are hard to fit in. For this
reason, the inter-particle distance is set to d = 0.2a as it is small enough to not interfere with
placement and does not place the microions within the range of the WCA potential between them.

The chemical potential of the reservoir is varied from βµ ∈ {1/12, 1/6, . . . , 4} in steps of
∆µ = 1/12 defined in units of kBT per particle, where we have set Λ/a = 1 without loss of
generality as this parameter effectively only shift µs by a constant value. The mean salt
concentration was averaged over 500 measurements taken with 100 insertion/removal attempts
between each measurement. These were then used to compute the corresponding inverse screening
lengths κ according to Eq. (2.22) This relation between inverse screening length κ and chemical
potential µ is presented in Figure 3.3

For all averaged salt concentrations ρs the corresponding inverse screening length κ was
computed. These inverse screening lengths were plotted against their input chemical potentials and
a generalized form of Eq. (3.19), namely κ(µ) = A exp(Bµ), was fit to the data with fit parameters
A and B. The measurements and the resulting fit are in excellent agreement with the ideal gas
approximation for most values of the chemical potential. At low chemical potential and thus lower
density, we see some deviation. This is most likely due to limited system size in combination with
the limitation of the particular GCMC method which requires at least one salt pair to be present
in the system.

For the next steps, all we have to do is invert the relation we found such that we have a function
µ(κ) for the chemical potential given a particular inverse screening length.
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Figure 3.3: The inverse screening length κ =
√
8πλBρs, computed from

density ρs, as a function of salt reservoir chemical potential µs. Measurement
from GCMC simulation of this relation are presented as dots. The solid
lines represent fits of the form κ(µ)a = A exp(Bβµ) was performed to the
measurements.

Ion Concentration in Charged Colloidal Suspensions

Now that we can determine the chemical potential of a given reservoir for it to be at a certain
inverse screening length κ or salt concentration ρs, we are able to set the right parameters and
compute average salt concentrations in charged colloidal suspensions. To do this we need to run
very costly GCMC simulations. For this reason, we introduce some initialization steps before
starting the actual GCMC run from which we measure the salt concentration.

The first step is to generate a valid configuration of only colloids and their associated
counterions, no additional salt ions included yet. This system is then brought to an equilibrated
state during a canonical NV T MD simulation. After this equilibration step of the colloid
configuration, we introduce the salt ions to the system by first performing 15000 insertion/removal
attempts at once to get the salt concentration in the system to approximately the equilibrium
level. After this second initialization step, we run a GCMC/MD hybrid simulation which
periodically performs 100 insertion/removal attempts and lets the system equilibrate between these
sets of insertion/removal attempts. The salt concentration is averaged over 100 of these cycles.

A naive model for the average ion concentration in the system would be to dismiss any
electrostatic effects and assume the number of ions to be proportional to the free volume in the
system. This would be the volume not occupied by the colloids Vf = V (1 − η) and then the
average number of salt ions would be equal to Ns = ρsV (1 − η), where η is the colloid packing
fraction, V is the system volume and ρs is the mean salt concentration of the reservoir. A slight
correction would be to consider that not only the colloids exclude volume, but also their
accompanying counterions. A general approach to consider discrepancies between the effective
occupied volume of the colloidal particles and their packing fraction would be to include a scalar
correction to the packing fraction. The model for the average number of ions would then be of the
form Ns(η) = A(1−Bη), where A and B are fit parameters.
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As we can see in figure Figure 3.4, the naive model does not accurately describe the
measurements. From this we conclude that the electrostatic effects that we ignored in the naive
model are important. Instead of using such a model for determining the average salt concentration
in CPM, we use the measurements of these average themselves.

For this system we perform MD simulations of three distinct macroion packing fractions η ∈
{0.187, 0.374, 0.561}. For each packing fraction we generate 100 configurations for a total of NC =
300 macroion configuration of NM = 32 macroions each. The number of cation-anion pairs added
to each configuration is determined by the nearest integer value of the measured average number
of salt pairs reported in Table 3.2. For each configuration the mean forces on each macroion was
averaged over NS = 5000 microion configurations. More details of this process are discussed in
subsection 3.2.4. This entire process was done for two distinct inverse screening lengths κa ∈ 0.25, 0.5
resulting is two separate sets of training data for the training of two separate models.

Packing Fraction Inverse Screening Length

η κa = 0.25 κa = 0.5 κa = 1.0

0.187 101.39± 1.2 450.1± 2.2 1875± 3

0.374 25.5± 0.5 115.0± 1.2 473.9± 2.1

0.561 5.02± 0.22 20.4± 0.5 83.2± 1.0

Table 3.2: The average number of salt pairs Ns at different macroion packing
fractions η and chemical potential of salt reservoir µs corresponding to inverse
screening lengths κa measured via GCMC simulations.
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Figure 3.4: The average number of salt pairs Ns at different macroion packing
fractions η and chemical potential of salt reservoir µs corresponding to inverse
screening lengths κa measured via GCMC simulations. A fit was performed of
the form Ns(η) = A(1−Bη) for each value of κa.
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3.2.4 Training Data

The set of training data for fitting the machine learning model consists of NC configurations of
NM colloidal particles, resulting in a total of NM ·NC position and force vector pairs or 3NM ·NC
distinct scalar pairs.

The positions of the colloids R⃗NM in these NC configurations were extracted from direct
simulations of the CPM. Each configuration is in equilibrium. Obtaining accurate values for the
forces on each particle F⃗ NM for each of the NC configurations requires an additional step, as the
forces are sensitive to specific microion arrangements r⃗Nµ and tend to fluctuate a lot. To remedy

this, the forces F⃗ NM were averaged over NS distinct microion arrangements r⃗
Nµ

i for i = 1, . . . , NS
resulting is a microion-averaged force per particle. This average was taken by performing
additional MD simulations of each of the NC configurations in which only the microion dynamics
are computed while the colloids are kept fixed in configuration R⃗NM as

⟨F⃗ ⟩NM =
1

NS

NS∑
i=1

F⃗ NM
n . (3.20)

Here ⟨F⃗ ⟩NM represents the microion-averaged forces on the colloids in positional configuration

R⃗NM . Furthermore, F⃗ NM
n are the individually computed forces per particle in configuration of

macroion positions R⃗NM and microion positions r⃗
Nµ
n for n = 1, . . . , NS .

The resulting set of positions and microion-averaged force vectors for each particle
{R⃗NM , ⟨F⃗ ⟩NM }NC will be split into a 80%-20% training-validation setup.

Force auto-correlation

When computing the mean forces in the CPM for a given configuration we have to make sure we
sample independent and thus uncorrelated microion configurations.

To quantify the correlation of these configurations, we instead look at the resulting forces in
these configurations. Essentially, we only need these forces to be uncorrelated for the sampling
to be efficient. The exact configurations of the microions do not matter. Computing the force
autocorrelation RFF (∆t) of the forces across a range of time step separations ∆t can tell us about
the correlation between the sampled configuration. The force autocorrelation is defined as

RFF (∆t) =
1

NS −∆t

tNS
−∆t∑

t=t0

F⃗ (t) · F⃗ (t+∆t)

|F⃗ (t)|2
, (3.21)

where ∆t is the time separation in number of time steps, NS is the total number of samples, t0 is
the time of the first sample and tNS

corresponds to the last sample, F⃗ (t) is the force at time step t.

In Figure 3.5 and Figure 3.6 we show the autocorrelation functions for all systems treated in
this thesis. In these figures, we see that almost all samples separated by at least 100 time steps are
practically uncorrelated. For the single density system we do see that subsequent sample that are
separated by 50 time steps are somewhat correlated and thus not independent.
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We also see that all autocorrelations do not tend to 0 as the time step separations increases. This
is to be expected as the forces mostly have non-zero mean and fluctuate around this mean. The
mean shift present in all forces is of course correlated to itself, and thus all samples are expected to
have some correlation greater than 0.
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Figure 3.5: Force autocorrelation averaged over all NC configurations and
NM macroions as function of time step separation. System at packing fraction
η = 0.187 and with inverse screening length κa = 0.83.
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Figure 3.6: Force autocorrelation averaged over all NC configurations and
NM macroions as function of time step separation for each packing fractions
η ∈ {0.187, 0.374, 0.561} separately for two different inverse screening lengths
κa.

Fluctuation of the forces

Not only the mean of the forces is relevant, it is also relevant to know how much the individual forces
fluctuate around this mean. The amount of fluctuation is captured by the Standard Deviation (SD)
of the forces over the samples. The SD over the sample is calculated according to
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SD =
1

NS − 1

NS∑
i=0

(Fi − ⟨Fi⟩)2 (3.22)

Where NS is the sample size, Fi is one component (x, y or z) of the force on a specific macroion
and ⟨Fi⟩ is the average of this force as computed by Eq. (3.20).

In Table 3.3 we report the average SD of the forces. We can take the averages over the 3
components of the forces, as all three directional components have near identical SD for each
macroion in all configuration. The SDs in this table define an effective deviation sphere of the
forces with the reported SD as its radius.

Screening Length Macroion packing fraction

κa η = 0.187 η = 0.374 η = 0.561

κa = 0.83 55.9 - -

κa = 0.5 42.03 66.5 104.2

κa = 0.25 38.47 65.0 102.9

Table 3.3: The average standard deviations of the forces in units of kBT/2a
averaged of all NC configuration, NM macroions and 3 components.
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Chapter 4

Results

4.1 Yukawa pair interactions

4.1.1 Two-body interactions

From our MD simulations we can measure the effective interactions between macroions. Before we
get to complex many-body systems, it is always good practice to start with a simplified setup and
check that we find agreement with established results.

The simplest non-trivial macroion interaction in a charged colloidal suspension is an interaction
between two macroions. We can measure the interaction of these two macroions by measuring two
forces between them at fixed distances.

We fix two macroions with radius a at a distance r ∈ [2a, 5a] then we use MD to simulate the
microions around these macroions en measure the resulting forces on the two macroions. The
microions concentration corresponded to an inverse screening length κa = 0.83. These forces are
measures for and averaged over NS = 5000 distinct microions configurations. Because of the
symmetry of the system, we know that the true mean force vectors of the interaction have to be
aligned with their separation vector. For this reason we only consider the projected forces along
the line going through the macroion centers given by

⟨F ⟩ = 1

NS

NS∑
i=1

1

2
(F⃗ 1
n − F⃗ 2

n) · R⃗12, (4.1)

where F⃗ 1
n and F⃗ 2

n are the forces on the two particles for a microion configuration r⃗
Nµ
n for

n = 1, . . . , NS and R⃗12 = R⃗1 − R⃗2 is the separation vector between the two particles. We also have
to take into account the macroion-macroion WCA interaction between the two macroions at short
distances by subtracting it from the mean force measurements of the CPM.
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The relation between distance and the mean force between the two macroions is shown in
Figure 4.1. In this figure, we see that fitting forces according to a Yukawa potential from Eq.
(2.42) yields good agreement with the MD measurements. Especially beyond the range of the
WCA potential r/a > 27/6 the prediction is very good. At shorter distances we observe an
additional attractive interaction that deviates from the Yukawa interaction. This attraction might
be due to a depletion force caused by the reduced exclusion of microions when the macroions are
close [42]. However, relative to the WCA force itself this attraction is orders of magnitude smaller,
which makes the macroions still purely repulsive at this range.
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Figure 4.1: The force magnitude between two macroions measured as function
of inter-particle distance. Forces were fit using Yukawa pair interaction defined
in Eq. (2.42).

4.1.2 Many-body interactions

Single Density

The question now is if such a pair interaction extrapolates to systems with more particles. Let us
consider a system of NM = 32 macroions at a packing fraction of η = 0.187 and ion concentration
corresponding to an inverse screening length of κa = 0.83 as detailed in subsection 3.2.2. We can
repeat the same process, by computing the mean forces on the macroions in fixed configurations.
There is no single parameter to exhaust all possible configurations of 32 macroions. So instead, we
use random sample of macroions configurations to represent the full possibility space. These
macroion configurations were picked randomly according to the equilibrium distribution of system
(macroions and microion) configurations.

The mean forces were computed from NS = 5000 distinct and uncorrelated microion
configurations as described in subsection 3.2.4. The resulting forces can then be fit with a Yukawa
pair interaction using the method of non-linear least squares. In Figure 4.2 we show the actual
mean forces in the CPM compared to the prediction made by the fitted Yukawa pair interaction.
The computed macroion-macroion WCA potential was also subtracted from the mean force
measurements of the CPM for these many-body systems. Even for these larger systems the
predictions of the Yukawa model are good. Some of the larger magnitude forces get
underestimated, but most forces are well approximated, except for some outliers that mostly get
overestimated.
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Figure 4.2: The individual force components of each particle in each
configuration as measured in the CPM and as predicted by a Yukawa pair
interaction plot against each other. System at packing fraction η = 0.187 and
with inverse screening length κa = 0.83.

Multi Density

The same method applied in the previous section on single density configurations may be applied
to configurations at multiple densities η ∈ {0.187, 0.374, 0.561} and for weaker screening
κa ∈ {0.25, 0.5} as described in subsection 3.2.3 then we notice a different result. In Figure 4.3 we
compare the predictions of a Yukawa interaction with the mean forces measured in the CPM. The
Yukawa pair interaction still performs well when the forces are small, but is not able to reproduce
the larger forces measured in the CPM. Note that the accuracy of the Yukawa interaction does not
depend strongly on the individual densities of the system.

A Yukawa pair interaction describes the two-body and many-body coulomb interactions screened
by microion. Given strong microion screening two-body forces are reproduced very well and at low
densities many-body interactions are also predicted with fair accuracy. Attempts to extend this
description using a Yukawa pair interaction to a system across a range of densities and with weaker
microion screening fail. We see that there is no particular density at which it performs as well
as for a single density, so it is likely that the Yukawa pair potential does not scale well to multiple
densities at once. Another possibility is that the weaker screening is not well-captured by the Yukawa
interaction. However, as the performance between the two inverse screening lengths presented in
Figure 4.3 is approximately identical, this seems unlikely.
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Figure 4.3: The individual force components of each particle in each
configuration as measured in the CPM and as predicted by a Yukawa pair
interaction plot against each other. Systems are shown at packing fractions
η ∈ {0.187, 0.374, 0.561} for two different inverse screening lengths κa.

4.2 Machine Learning Potentials

To address the shortcoming of a Yukawa interaction based description for many-body systems
across a density range, we employ a Machine Learning (ML) model based on linear regression of
Symmetry Functions (SFs) described in section 3.1.

First we will check if a ML approach is viable for predicting many-body interactions at a single
macroion density as was done with the Yukawa model in section 4.1.2. If that succeeds, we will
also see if a ML potential does extend to multiple densities, also as in section 4.1.2.

The pool of SFs used to fit was constructed from all parameter combination of
η ∈ {1/512, 1/256, ..., 16, 32} separated by powers of two, Rs ∈ {0.1, 0.2, ..., 0.8, 0.9} in steps of 0.1,
ξ ∈ {1, 2, 4, 8} and λ ∈ {1,−1} for a total of NSF = 288 SFs in the pool. The cutoff radius for all
SFs was set to Rcut = 5a. The fitting procedure and SF selection scheme is detailed in section 3.1.

4.2.1 Performance

Single Density

The mean forces that we attempt to predict are measured from MD simulation of the CPM as
described in chapter 3 at a fixed macroion packing fraction η = 0.178 and with inverse screening
length of κa = 0.83 as detailed in subsection 3.2.2.
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In Figure 4.4a we report the performance of the ML potential for the first 50 SFs that are
selected. We observe that both the Yukawa potential and the ML potential perform similarly, but
the ML potential outperforms the Yukawa potential by a small but significant margin. Only a
handful of SF D = 4 are needed for the ML to become more accurate than the Yukawa predictions,
and beyond D = 18 SF we see no significant performance improvement of the ML model.

In Figure 4.4b we see the predictions made by the ML potential at optimal number of SFs
D = 18. These predictions are compared with the predictions from the Yukawa model. Comparing
the two, one sees that the ML model produces much fewer and slightly less severe outliers. A subtle
difference that one might spot is that the Yukawa model tends to underestimate large forces while
the ML model tends to overestimate larger forces.
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(a) The Performance of the ML model as
dependent on the number of SFs used to describe
the interaction. The optimal number of SFs was
determined to be D = 18.
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(b) The individual force components of each
particle in each configuration as measured in the
CPM plot against predicted forces by a Yukawa
pair interaction and a ML model with D = 18
SFs each other.

Figure 4.4: (a) Performance and (b) predictions of a ML model compared to
the Yukawa model for a system at packing fraction η = 0.187 and with inverse
screening length κa = 0.83.

Multi Density

We have confirmed that ML potentials, trained on a single macroion density, do have predictive
power for charged colloidal suspensions and provide better predictions of forces. Now we move on
to apply the same technique to learn the interactions for multiple distinct macroion densities at
once.

Again we use the mean forces measured from MD simulation of a CPM at multiple densities
η ∈ {0.187, 0.374, 0.561} and reservoir inverse screening lengths κa ∈ {0.25, 0.5} as detailed in
subsection 3.2.3.
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In Figure 4.5 we show the performance progression of the ML potential for both inverse
lengths. We observe that the ML potentials both perform much better than the Yukawa model.
Just a single SF is already enough to provide a better prediction for the mean forces of the CPM.
The performance of the ML potentials at the two inverse screening lengths is near identical. The
optimal number of SFs is determined by the last significant decrease in model error. The optimal
number of SFs are D = 21 and D = 20 for κa = 0.25 and κa = 0.5 respectively.

In Figure 4.6 we set out predictions made with the optimal number of SFs for each inverse
screening length against the true mean forces of the CPM. As expected also these predictions by
the two ML potentials perform similar between the inverse screening lengths and compared to the
predictions Yukawa predictions the ML potentials provide good predictions for both small magnitude
forces and large magnitude forces. Still though, it seems that the ML models have the tendency to
overestimate forces that are larger in the CPM.
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Figure 4.5: The performance of the ML model as dependent on the number
of SFs used to describe the interaction for a system at packing fractions η ∈
{0.187, 0.374, 0.561} for two different inverse screening lengths κa. The optimal
number of SFs D was determined for each inverse screening length.
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(a) κa = 0.25, D = 21
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(b) κa = 0.5, D = 20

Figure 4.6: The individual force components of each particle in each
configuration as measured in the CPM plot against predicted forces by a
Yukawa pair interaction and a ML model for a system at packing fractions
η ∈ {0.187, 0.374, 0.561} for two different inverse screening lengths κa. The
optimal number of SFs D was used for each inverse screening length.

4.2.2 Magnitude and alignment comparison

For further insights in the performance of the ML model we shall compare the predicted force
vectors. Previously in subsection 4.2.1 we compared individual coordinate components of the
forces. While this gives a good feeling for the overall accuracy of the model, it is not coordinate
independent and so does not use the symmetries of the system.

We will compare the ML models to the true mean forces of the CPM by using the force
magnitude ratio and angle deviation with the CPM force. The magnitude ratio |F⃗ |/|F⃗CPM | is a
measure of the accuracy of the scale of the forces, ideally the forces of the model are equal in
magnitude to the CPM force and the ratio thus equal to 1. The force alignment
F⃗ · F⃗CPM/|F⃗ ||F⃗CPM | determines the alignment between the model force and the mean force of the
CPM, when the forces are perfectly aligned this value equals 1, when perpendicular 0 and when
perfectly anti-aligned -1.

In Figure 4.7, Figure 4.8 and Figure 4.9 we present the distributions of magnitude ratios and
force alignments for the single density η = 0.187 with κa = 0.83 and the multi density
η ∈ {0.187, 0.374, 0.561} at κa ∈ {0.25, 0.5} configurations respectively.

From Figure 4.7a we see that the ML potential produces forces that are more skewed towards
the large magnitude end, while the Yukawa model does the opposite. Comparing the two, the
Yukawa model predicts many more forces that are much smaller than the true force, while
prediction of the ML model have a higher fraction of overestimated forces compared to the Yukawa
model. Neither of them has an advantage when it comes to the variance of the magnitude ratios.
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Figure 4.7b shows us that there is a slight but no significant difference in the distribution of
force alignment between the Yukawa model and the ML model.

In Figure 4.8 we see that for the multi density configuration the skew of the magnitude ratios
for the Yukawa model is even larger. A significant portion of the forces predicted by this model are
an order of magnitude too small. Again, we also see that the ML model is skewed towards forces
that are too large.

Figure 4.9 tells a different story than for the single density configurations. The force alignment
of the ML model is much better than the alignment of the Yukawa model. The forces of the
Yukawa model are much more randomly oriented for multi density configuration than for single
density configurations, while for the ML model this is the other way around. A higher portion of
forces is aligned to the CPM force for the multi density configuration.

The predicting of the Yukawa model, when dealing with multiple densities, are worse both is
terms of magnitude of the forces and direction of the forces. The ML model on the other hand
performs comparably in terms of magnitude prediction for multi density configuration and even
becomes more accurate in predicting the direction of the forces in that case.
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(a) Magnitude ratio distribution.

0.5 0.6 0.7 0.8 0.9 1.0

Force alignment ~F · ~FPM/(FFPM)

10-2

10-1

100

101

P
ro

b
a
b
il
it
y
 d

en
si

ty

Yukawa

Machine learning

(b) Force alignment distribution.

Figure 4.7: The distributions of (a) magnitude ratio and (b) force alignment
of predicted forces from the Yukawa model and ML model relative to the forces
in the CPM. This system has macroion packing fraction η = 0.187 and inverse
screening length κa = 0.83.
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Figure 4.8: The distributions of magnitude ratio of predicted forces from the
Yukawa model and ML model relative to the forces in the CPM. This system
has macroion packing fractions η ∈ {0.187, 0.374, 0.561} and for two inverse
screening lengths κa.
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Figure 4.9: The distributions of angle alignment of predicted forces from the
Yukawa model and ML model relative to the forces in the CPM. This system
has macroion packing fractions η ∈ {0.187, 0.374, 0.561} and for two inverse
screening lengths κa.

4.2.3 Performance Dependence

When inspecting the performance progression in Figure 4.4a and Figure 4.5 one observes that
beyond a certain number of SFs used to describe the potential the performance of the ML model
hardly improves. It seems that there is a set limit to the performance of the ML model. In this
section, we discuss some parameters that may influence the performance ceiling.
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Averaging Sample Size

One of those parameters would be the sample size NS of the microion configurations over the mean
force is calculated according to subsection 3.2.4. As the saying goes: garbage in, garbage out. So we
should not expect to learn the mean forces of the CPM any better than we have approximated them.
The Standard Error of the Mean (SEM) of the forces is a measure of the error of a computed mean
and the underlying true mean of the sample. It is related to the standard deviation of the forces
over all configurations. These Standard Deviations (SD) of the forces are reported in Table 3.3 and
the SEM is related to the SD and the sample size Ns by

SEM =
SD√
Ns

. (4.2)

This means we can reduce this error by increasing the sample size and potentially get better
performance.

In Figure 4.10a we show the dependence of the performance on the sample size Ns and we see
that the performance increases as a function of Ns, however as it only decreases with the square
root of the sample the performance gains become smaller and smaller. In Figure 4.10b we instead
show the performance as a function of the SEM. From this figure we see that the performance is
indeed strongly related to the SEM, and this dependence becomes stronger as the SEM decreases.

Strictly speaking, Eq. (4.2) is incorrect for the single density data that we use for this
discussion as these configurations are not entirely uncorrelated, meaning that there is some
duplicate information. This equation holds under the assumption that all sample are uncorrelated,
when they are correlated the SEM decreases even slower as a function of Ns.
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Figure 4.10: Root-mean-square error of the ML model as function of (a) the
force averaging sample size Ns of microion configurations and (b) standard error
of the force mean. The ML model uses D = 8 SFs.
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Cutoff radius

There are other factors that could influence the performance of the ML model besides the sample
size, such as the cutoff radius Rcut of the SFs. For the cutoff radius we do not expect the performance
to increase indefinitely as it increases. As the effective interactions between the macroions should be
of finite range, or at least they should decay very rapidly with distance, it should only be a matter
of picking a large enough cutoff radius Rcut.

Symmetry function pool

Another factor concerning the SFs is the set of parameters that determines the pool from which the
SFs are selected. Logically, one should expect better performance when the SFs in the pool better
represent the interaction. Although this probably only holds for a small number D of selected SFs.
As more SFs are selected, difference between SFs may also be used to represent the data. With
only a couple of SFs the possible combination become numerous very quickly and even initially
unrepresentative SFs may become valuable for describing the interaction. When picking parameters
for the pool of SFs we should ensure that at least the right length scales of the parameters are
present amidst the parameter values.

4.3 Result Validation

4.3.1 Radial distribution functions

We have used testing data to verify the accuracy of our trained ML potentials. Good performance
of the ML model on the testing data does not ensure however that the resulting ML potential
accurately describes the original system.

We use the ML potentials with the optimal number of SFs to perform Monte Carlo (MC)
simulations of the one-component macroion system. From these MC simulations we compute the
macroion-macroion Radial Distribution Functions (RDFs) and compare those with the RDFs
computed from MD simulation of the full CPM. All RDFs are computed from 1000 configuration
of 358 macroions at packing fraction η = 0.187. As the ML potentials do not learn the direct WCA
interactions between macroions, we have the possibility to substitute the WCA potential with
another repulsive potential such as a Hard-Sphere (HS) potential.

Single Density

First, we will check the validity of the ML potential trained on configuration of a single density as
described in subsection 3.2.2. This ML model was trained of configurations with packing fraction
η = 0.187 at inverse screening lengths κa = 0.83. The optimal number of SFs was determined in
subsection 4.2.1 and the corresponding set of SFs was used to compute the RDFs of the same
system at density η = 0.187 and κa = 0.3. The MC simulation was performed with a WCA
potential as short range repulsion.
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In Figure 4.11 we show the RDF computed by the CPM and with the ML model. It is clear to
see that the ML model is not able to reproduce the result from the full CPM. Although the ML
potential has many repulsive components in the set of SFs there is a strong attraction between the
macroions. This attraction causes clustering of the particles, which in turn slows down the
equilibration of the system.

This unstable behavior is likely to be caused by a lack of data. As the ML model was only
trained on a single low macroion density, the model was only fit on inter-particle distances that are
relatively large. The ML potential had no examples of forces for particles close together, and thus
has to extrapolate to these distances. Clearly this extrapolation was not successful and resulted in
a strong short range attraction.
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Figure 4.11: Macroion-macroion radial distribution function GMM (r) of a
system at packing fraction η = 0.187 and inverse screening length κa = 0.83
computed with the CPM and using a ML model described in section 4.2.1.

Multi Density

Next we will check the validity of the ML potential trained on configuration of multiple densities
as described in subsection 3.2.3. Recall that the ML model was trained on multi density
configurations at macroion packing fraction η ∈ {0.187, 0.374, 0.561} and inverse screening lengths
κa ∈ {0.25, 0.5}. The optimal sets of SFs defined in subsection 4.2.1 were used to compute the
RDFs of a system at density η = 0.187 for both inverse screening lengths. In these MC simulations
we use both the WCA and HS potential as short-range repulsion.

In Figure 4.12 we compare RDFs from different simulations and potentials. The RDFs for the
ML potentials are close to the true RDF of the full CPM, although the peak height are less
pronounced and the peak positions are slightly shifted. The first peak is shifted toward the center
of the macroion, while all other peaks are shifted away from the macroion.
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For the RDF corresponding to the ML potentials with a HS repulsion we observe an additional
small peak near the macroion surface. This peak might be due to a depletion effect, similar to the
attraction found in subsection 4.1.1. Although in this case it might also be a lack of training data
with particle very close together, meaning that the ML potential is not trained on this short range
in the interaction. As we see, using the WCA potential this peak disappears, which implies that the
effect is weaker than the WCA interaction itself.
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Figure 4.12: Macroion-macroion radial distribution functions gMM (r) for
system at packing fractions η ∈ {0.187, 0.374, 0.561} for two distinct inverse
screening lengths. Computed from configuration from a MD simulation of the
CPM and MC simulations of the ML models described in section 4.2.1.

4.3.2 Computation times

The goal of finding an effective macroion interaction to describe charged colloidal suspension is not
only for them to be accurate but also computationally efficient.

To compare the computational costs of the full CPM as a baseline versus the ML models from
section 4.2 we compute the total amount of core-time (time × number of cores) each model would
take to run to generate the 1000 configurations for the RDFs from subsection 4.3.1. This means we
are comparing the computing times of a MD simulation of the CPM and a MC simulation of the
ML model. The total computation times of each model are reported in Table 4.1. We see that all
ML models were faster than the MD methods, but the speedup varies.

For the single density simulation the MC simulation were significantly faster than the MD
simulations, however we should add some nuance here. As we saw in subsection 4.3.1 the ML
potential obtained from the single density configuration did not reproduce a physical result. This
ML potential resulted in heavy clustering, which greatly reduces the possible moves the MC could
undertake each step. For an accurate RDF of this system we would then need to perform more MC
moves, which would increase the computational times. Furthermore, the MD simulation of the
CPM in this case was performed on different hardware than the MD simulation for the multi
density configurations. This hardware is less efficient in parallel computing, on the more efficient
hardware we could expect a 2− 3× speedup.
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For the multi density simulation, we see that the MC methods are still significantly faster than
the MD simulations. We also see that the scaling with screening is not as pronounced for the ML
model as for the CPM. Stronger screening in the CPM model means more microions which
increases computational times, while for the ML model it resulted only in one extra SF added in
the optimal set. We expect the ML model to become even more efficient for a system with stronger
screening. For weak screening the lower limit would be κa = 0, meaning not additional microions
are present beyond the counterions balancing the macroion charges. This scenario is already very
close to κa = 0.25 in terms of particles number and would never result in a speedup of more than
7.6 times for the molecular dynamics simulation of the CPM. So even if we assume that the ML
model does not become faster as well for κa = 0, the ML model will be faster than the CPM
simulation. Extending this reasoning, we can state that a ML model will always be faster
computationally than a full CPM simulation for any inverse screening length at macroion packing
fraction η = 0.187.

Nonetheless, there might be situations in which ML models might not outperform a MD
simulation of the CPM. The computing times of the ML models depend not only on the number of
SFs in the model, but also on the cutoff radius, which is set to Rcut = 2.5 for these models.
Increasing this cutoff radius quickly increases the number of interactions that need to be taken into
account, and thus increases run times. The same hold for higher densities, which also increases the
number of interactions to consider.

Another note to consider is that the matchup of MC simulations and MD simulation is inherently
unfair to the MC simulations. MD are often more efficient and can utilize multiple core. MC
simulations are not as efficient, because they require tuning of the step parameters and do not lend
themselves well for parallel computing. This means that if we would implement the ML model into
a MD simulation, this would result in even faster computation. For the MD engine LAMMPS used
in this thesis it would be possible to implement these ML model by converting them into tabulated
pair and three-body interactions using the table and threebody/table Pair Styles, respectively.
The tabulation would come with the benefit that the computation times become independent of the
number of SFs as the values in the table are all precomputed.

system ML Monte Carlo CPM Molecular dynamics speedup

single: κa = 0.83 24.3 ch 7058 ch 290 ×
multi: κa = 0.5 66.5 ch 689.9 ch 10.4 ×
multi: κa = 0.25 60.0 ch 457.9 ch 7.6 ×

Table 4.1: Computation times for RDFs of a system at packing fraction η =
0.187 for several screening lengths in core-hours (ch).
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Chapter 5

Conclusion and Outlook

5.1 Summary and Conclusion

The goal of this thesis was to use Machine Learning (ML) to find an effective interaction to
describe the many-body interactions between charged colloidal particles in an electrolyte. Such a
description of a one-component colloidal system could allow for much faster yet accurate
simulations of these charged colloidal suspensions.

Charged colloidal suspensions are systems of large charged colloidal particles in a salt solution.
We can describe this system using the Primitive Model (PM) in which we treat all ions as charged
hard spheres interacting via a Coulomb interaction in a dielectric medium. Poisson-Boltzmann
theory predicts the formation of electric double-layers around the colloidal particles in a charged
colloidal suspension. The interactions between these double-layers determine the phase properties
of the system. The DLVO theory describes the effective interactions due to the electric
double-layers between two colloidal particles as a screened Coulomb or Yukawa potential. This
theory breaks down when overlaps between more than two electric double-layers become relevant.
This is the case for high colloid densities, high colloid charge and low salt concentrations in the
electrolyte, as they result in double-layer sizes larger than the distances between the colloids.

In this thesis, we present a ML approach to learn the effective many-body interactions between
colloidal particles that the DLVO theory fails to describe. This ML method relies on linear
regression using Symmetry Functions (SFs). These SFs are families of functions that can be used
to model the interaction between spherical particles. The ML model was trained on explicit
Molecular Dynamics (MD) simulations of the PM by fitting SFs to the measured mean forces on
the colloids using linear regression.

The simulated system has a charge ratio of 90:1 and size ratio 20:1 between colloids and salt
ions. The medium was modeled with a Bjerrum length to colloid size ratio λB/a = 0.0098. The
hard-sphere interaction of the model were approximated using a WCA potential with a strength of
βϵWCA = 10. This system was simulation at colloids packing fractions η ∈ {0.187, 0.374, 0.561} and
salt concentrations corresponding to inverse screening lengths κa ∈ {0.25, 0.5, 0.83}.
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Our results confirm that a conventional approach based on the DLVO theory describes charged
colloidal suspensions at low densities and strong screening. However, a single Yukawa pair
potential is not able to describe the interaction of the system at various colloid densities.

Our ML approach was able to find a model that described the effective interactions using a
single potential. When trained on configurations across a range of colloid densities, we were able to
validate the correctness of these ML potentials by reproducing radial distribution functions of the
PM with a Monte Carlo (MC) implementation of the ML model. ML models trained on
configurations at only a single density were not able to extrapolate and did not give physical
simulation results. The question remains if these ML models can extrapolate and interpolate
beyond the colloid densities they were trained on.

Furthermore, it has been shown that the ML models are computationally more favorable
compared to the full PM simulations of charged colloidal suspensions. The computation advantage
of the ML model over the PM may be further increased by utilizing a MD implementation of these
ML potentials instead of the MC implementation presented in this thesis.

In conclusion, we have presented a procedure for obtaining an effective one-component
description of colloidal particles in a charged colloidal suspension using machine learning. These
machine learning models enable us to accurately and cheaply reproduce simulations of a
many-component PM description of the charged colloidal suspension.

5.2 Discussion and Outlook

Before we present an overview of suggested research directions, we first reflect on the methods used
in this thesis and point out any known shortcomings and possible improvements.

In section 3.2.4 we alluded to the fact that the fluctuations of the forces are important in
addition to the mean of the forces, as they are used to quantify the error or uncertainty in the
mean forces. In Figure 4.10b we also saw that this error has a pronounced effect on the
performance of a ML model. Table 3.3 shows that the fluctuations in turn depend on the macroion
packing fraction η, meaning that ML models trained on multiple densities have input forces with
varying uncertainty, so-called heteroscedasticity. In this thesis, we have not dealt with this issue.
One possible solution would be to equalize the uncertainties by varying the force sample size NS
for different densities. Another would be to account for this during Linear Regression by
implementing Weighted Linear Regression. This last approach is considerably easier and more
general.

In addition to implementing Weighted Linear Regression in our ML method, we may also
employ k-fold cross-validation to get a more complete picture of the performance of a ML model
on the input data. k-fold cross-validation uses all input data as both training and testing data in k
batches, as opposed to the 80%-20% data split. This utilizes the input data more efficiently at the
cost of a longer computing time for performing the ML fit.
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In subsection 4.1.1 and subsection 4.3.1 we mentioned the possibility of a significant depletion
force on the macroions caused by the excluded volume of the macroions in the presence of the
finite-sized microions. In order to check if this is indeed the case, additional research is required
into the depletion effect for this specific implementation of the WCA potential. In which one would
determine the range and the magnitude of the depletion effect and check if it fits our results. In
physical systems such a depletion effect would be much weaker as the size ratio between macroions
and microions is at least an order of magnitude smaller for the simulations in this thesis compared
to real charged colloidal suspensions

In subsection 4.3.2 we already alluded to the possibility of a MD implementation of the ML
models presented in this thesis. In the same section, we briefly discuss the method of
implementation. It is difficult to predict beforehand how much of a speed differential this would
imply for simulating with the ML potentials, but it is certainly worth exploring.

In section 3.2 we describe a method for generating training data used for training a ML model.
In Figure 4.10b we have also found that the performance of this model is strongly dependent on
the error of the mean forces. Using the method described in section 3.2 of this thesis, it becomes
unpractical to reduce this error, as this would require a quadratic increase in force sample size NS .
Another method that does not suffer from this dependence of a sample size would be to compute
the forces using numerical DFT methods. These methods are very computationally expensive but
give very accurate results.

In subsection 4.1.2 we present the prediction of a Yukawa model for both configuration at a
single density and at multiple densities at once. Unfortunately, due to the altering of 2 parameters
at once, namely macroion packing fractions η and inverse screening length κa, between these
systems we cannot determine what causes the Yukawa description to fail for multiple densities. In
the same section, we do discuss that the introduction of multiple densities is the likely cause. One
could check this by performing fits of a Yukawa interaction on the separate densities of from the
multi density configurations. If the multiple densities do not turn out to be the cause, then we
would investigate the effect of the inverse screening length κa further.

In section 4.3 we present RDFs computed using the ML models we obtained from training data
of CPM simulations. This RDF was computed for macroion packing fraction η = 0.187 that was
also used as training data for the model. In other words the ML model was explicitly trained on
similar configurations and to further validate the ML models we would like to check if it can
interpolate and extrapolate to packing fractions η it was not trained on.

In subsection 3.2.3 we pointed out that in the particular implementation of the GCMC
simulation cation-anion pairs had to be inserted with fixed distance d between them. This is not
an ideal implementation as it introduced another parameter d that influences the final microion
concentrations. Preferably, one should try a method that allows for microion pairs to be inserted
randomly. For example, using a custom MC simulation, although that would come ate the cost of
even longer computation times.
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The parameters set in section 4.2 are an attempt to create a diverse set of SFs that cover the
possible interaction that arise in charged colloidal suspension. Of course there is always room for
improvement and finding a parameter set for η,Rs, ξ and λ that is small but still performs well
when fitting the data is no easy task. Employing more parameters also does not imply better
performance, experimentation of different parameter sets proved the contrary. It would be
beneficial for these kinds of ML models to investigate the performance dependent on the input
parameters and come up with some method for constructing high-performing parameters sets.

Besides experimenting with those parameters, it would be useful to investigate the performance
dependence on the cutoff radius Rcut. As this parameter also has a large impact on computation
times as discussed in subsection 4.3.2, finding an efficient yet performant cutoff radius for these
ML models would certainly increase their value.

Beyond these possible improvements on and additions to the methods used in this thesis, we
will also give an outlook on extensions and other application of this ML method for finding
effective interactions.

This thesis functions somewhat like a proof of concept for using ML methods to find effective
interaction for charged colloidal suspensions. The systems we used to show this were still on the
conservative side. To explore the boundaries of this method, we would have to consider systems
with higher macroion valence Z with respect to the Bjerrum length λB/a and also a wider range of
inverse screening lengths κa.

As we have shown, spherical charged colloids can be described using ML potentials. We could
repeat the same procedure with some alterations for aspherical charged colloids, such as rod-like,
ellipsoid or disc particles. The current families of SF used in this thesis are not suitable to deal with
aspherical particles, as they were designed for spherically symmetric particles. These break some
symmetries of the system of spherical particles, namely rotation invariant and particle exchange
invariant. Different families of SF that respect the intrinsic symmetries of the systems should be
used to find a ML model for aspherical charged colloids
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Chimiques des Pays-Bas 55.12 (1936). eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/recl.19360551206, pp. 1015–1026. issn:
0165-0513. doi: 10.1002/recl.19360551206.

[7] Thomas W. Healy and Lee R. White. “Ionizable surface group models of aqueous interfaces”.
en. In: Advances in Colloid and Interface Science 9.4 (June 1978), pp. 303–345. issn: 0001-
8686. doi: 10.1016/0001-8686(78)85002-7.

[8] B Derjaguin and L Landau. “Theory of the stability of strongly charged lyophobic sols and
of the adhesion of strongly charged particles in solutions of electrolytes”. en. In: Progress in
Surface Science 43.1 (May 1993), pp. 30–59. issn: 0079-6816. doi: 10.1016/0079-6816(93)
90013-L.

[9] E. J. W. Verwey. “Theory of the Stability of Lyophobic Colloids.” In: The Journal of
Physical and Colloid Chemistry 51.3 (Mar. 1947), pp. 631–636. issn: 0092-7023. doi:
10.1021/j150453a001.

[10] S. Alexander et al. “Charge renormalization, osmotic pressure, and bulk modulus of colloidal
crystals: Theory”. In: The Journal of Chemical Physics 80.11 (June 1984). Publisher: American
Institute of Physics, pp. 5776–5781. issn: 0021-9606. doi: 10.1063/1.446600.

I

https://doi.org/10.1080/14786442808674769
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1039/tf937330008b
https://doi.org/10.1016/S0031-8914(37)80203-7
https://doi.org/10.1016/S0031-8914(37)80203-7
https://doi.org/10.1016/0021-9797(77)90150-3
https://doi.org/10.1002/recl.19360551206
https://doi.org/10.1016/0001-8686(78)85002-7
https://doi.org/10.1016/0079-6816(93)90013-L
https://doi.org/10.1016/0079-6816(93)90013-L
https://doi.org/10.1021/j150453a001
https://doi.org/10.1063/1.446600


BIBLIOGRAPHY BIBLIOGRAPHY

[11] Mark. O. Robbins, Kurt Kremer, and Gary S. Grest. “Phase diagram and dynamics of Yukawa
systems”. In: The Journal of Chemical Physics 88.5 (Mar. 1988). Publisher: American Institute
of Physics, pp. 3286–3312. issn: 0021-9606. doi: 10.1063/1.453924.

[12] E. B. Sirota et al. “Complete phase diagram of a charged colloidal system: A synchro- tron x-
ray scattering study”. In: Physical Review Letters 62.13 (1989). Publisher: American Physical
Society, pp. 1524–1527. doi: 10.1103/PhysRevLett.62.1524.

[13] B. V. R. Tata et al. “Amorphous Clustering in Highly Charged Dilute
Poly(chlorostyrene-styrene sulfonate) Colloids”. In: Physical Review Letters 78.13 (Mar.
1997). Publisher: American Physical Society, pp. 2660–2663. doi:
10.1103/PhysRevLett.78.2660.

[14] B. V. R. Tata, M. Rajalakshmi, and Akhilesh K. Arora. “Vapor-liquid condensation in charged
colloidal suspensions”. In: Physical Review Letters 69.26 (Dec. 1992). Publisher: American
Physical Society, pp. 3778–3781. doi: 10.1103/PhysRevLett.69.3778.

[15] B. V. R. Tata, M. Rajalakshmi, and Akhilesh K. Arora. “Vapor-Liquid Condensation in
Charged Colloidal Suspensions”. In: Physical Review Letters 70.18 (May 1993). Publisher:
American Physical Society, pp. 2823–2823. doi: 10.1103/PhysRevLett.70.2823.

[16] Per Linse and Vladimir Lobaskin. “Electrostatic Attraction and Phase Separation in
Solutions of Like-Charged Colloidal Particles”. In: Physical Review Letters 83.20 (Nov.
1999), pp. 4208–4211. doi: 10.1103/PhysRevLett.83.4208.

[17] Per Linse and Vladimir Lobaskin. “Electrostatic attraction and phase separation in solutions
of like-charged colloidal particles”. In: The Journal of Chemical Physics 112.8 (Feb. 2000).
Publisher: American Institute of Physics, pp. 3917–3927. issn: 0021-9606. doi: 10.1063/1.
480943.

[18] Bryan Beresford-Smith, Derek Y. C Chan, and D. John Mitchell. “The electrostatic interaction
in colloidal systems with low added electrolyte”. en. In: Journal of Colloid and Interface
Science 105.1 (May 1985), pp. 216–234. issn: 0021-9797. doi: 10.1016/0021-9797(85)90362-
5.

[19] René van Roij and Jean-Pierre Hansen. “Van der Waals–Like Instability in Suspensions of
Mutually Repelling Charged Colloids”. In: Physical Review Letters 79.16 (Oct. 1997).
Publisher: American Physical Society, pp. 3082–3085. doi: 10.1103/PhysRevLett.79.3082.
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