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"Seek, and ye shall find" - Matthew 7:7



Abstract

The exponential growth of code repositories has posed significant challenges for
developers in efficiently and effectively searching for relevant code snippets. Tradi-
tional keyword-based code search engines often struggle to provide accurate results
due to the ambiguity inherent in programming language keywords and the semantic
gap between the developer’s search intent and the code syntax.

To address this challenge, this study proposes a novel approach—an advanced
semantic code search engine—that harnesses intent modelling and vector embed-
ding techniques to enhance the relevance of search results. Our methodology utilizes
machine learning models to extract the developer’s search intent from their query,
thereby capturing the underlying meaning of their search. Furthermore, the code
snippets are represented using vector embeddings, which capture the semantic con-
text and relationships between different pieces of code. This allows for a more nuanced
understanding of the code snippets’ meanings and functionalities.

The proposed system ranks the code snippets based on their semantic similar-
ity with the user’s search intent. This ranking approach facilitates the delivery of
more accurate and relevant search results, providing developers with a more targeted
and practical search experience. Moreover, the improved relevance of the search re-
sults guides users in the right direction for future searches, fostering an iterative and
progressive learning process.

The findings of this research demonstrate the effectiveness of leveraging intent
modelling and vector embedding techniques in enhancing the search capabilities of
code repositories. By bridging the gap between the developer’s search intent and
the code syntax, the proposed semantic code search engine offers a valuable tool for
developers to locate and utilize relevant code snippets effectively.

Keywords: Code search, semantic search, intent modelling, vector embeddings,
search intent, machine learning, iterative learning
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Chapter 1

Introduction

The primary objective of this study is to explore the application of user intent mod-
elling to enhance the performance and effectiveness of semantic code search engines.
This initial chapter will present an extensive examination of relevant background
information, followed by a comprehensive drawing of the problem statement. Fur-
thermore, the study aims to establish clearly defined study objectives and research
questions, ensuring a systematic and focused approach to investigating the subject
matter. Different research methods will be employed to accomplish these objectives,
which will be elaborated upon in detail. Lastly, the scientific significance of this study
will be illustrated, elucidating its potential contributions to the existing knowledge
in the semantic code search engines field.

1.1 Background
In the current landscape of our modern world, the significance of software has wit-
nessed a steady rise, serving as an instrumental solution to a diverse range of everyday
challenges and predicaments encountered by individuals [81]. It greatly impacts vari-
ous facets of our lives, finding integration in an assortment of contemporary household
appliances such as washing machines, climate control systems, and security frame-
works. Consequently, all software is inherently driven by programming code, which
resides within designated software repositories, serving as repositories for these es-
sential code snippets [40]. These online software repositories harbour extensive code
lines, encapsulating the intricacies of countless software programs [12]. As the size of
these repositories continues to expand exponentially, locating specific code segments
that software developers seek becomes increasingly challenging. Consequently, devel-
opers frequently rely on search engines to find reusable code snippets or use them
as reference points for enhancing their existing code [124]. These codes, created and
shared by developers from diverse backgrounds, are subject to licensing regulations
that dictate how much they can be reused, thereby underscoring the importance
of proper code attribution. However, with recent advancements in code generation
techniques [116], the attribution of code ownership has somewhat been neglected, pri-
oritizing rapid progress within the field. Traditional code search engines address this
concern by providing information regarding the source and license of the methods,
thereby instilling a sense of trust in users regarding the origin of the code snippet
[60].

Nonetheless, conventional search engines such as Google have failed to adequately
meet the distinct requirements of developers, prompting the emergence of specialized
code search engines like Koders [115]. The rationale behind this shift was driven by
the realization that ordinary web search engines did not yield optimal results, necessi-
tating search engines tailored explicitly to cater to the needs of developers. However,
despite the intent to fulfil this demand, specialized code search engines have not been
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widely embraced and have exhibited a propensity only to provide valuable outcomes
for queries with high specificity [8]. It has been observed that many developers still
prefer to rely on regular web search engines instead of utilizing the aforementioned
specialized code search engines [105]. Nevertheless, the advent of advanced Natural
Language Processing (NLP) and Machine Learning (ML) techniques has ushered in
a new era of code search known as Semantic Code Search, which has gained consider-
able traction in recent times [96, 17]. Leveraging the potential of these cutting-edge
technologies, specialized code search engines now have an unprecedented opportunity
to enhance their functionalities and align more effectively with users’ ever-evolving
needs and expectations.

1.2 Problem statement
In the contemporary landscape, an array of semantic code snippet search engines have
emerged, showcasing notable contenders such as CodeSearchNet, Scotch, and Code-
Matcher [56, 25, 76]. Recent studies in code search primarily revolve around utilising
novel machine learning models [56, 11]. State-of-the-art applications actively engage
in competitions such as CodeSearchNet and benchmark their models against others,
thereby evaluating their performance using benchmark sets like CodexGlue [56, 79].
Through these endeavours, researchers strive to refine existing algorithms and en-
hance the ranking results for end users. Nevertheless, despite these advancements,
current semantic search engines have not yet achieved flawless modelling between in-
put queries and the subsequent code ranking they provide [18, 147, 19]. Consequently,
developers often find themselves repeatedly reformulating their questions [19], instead
of actually finding the code that matches their intent. This leads us to the following
concise problem statement:

The current problem in semantic code search is the lack of accurate
intent understanding, resulting in suboptimal code snippet rankings and
a time-consuming search process for developers, highlighting the need for
implementing intent modelling to enhance the overall search experience
and address the significant challenge of efficiently retrieving relevant code.

1.3 Objectives and research questions
To address the limitations presented in the problem statement, a recent study by
Al-Hossami [52] proposed adopting a dialogue system to improve ranking outcomes.
By effectively modelling user intent within the query, it is envisaged that excessive
query reformulation may no longer be necessary to optimize ranking results [19].
The core objective of this study is to enhance the user experience in code search
by implementing a dialogue system that effectively captures and models user search
intent instead of focusing solely on refining machine learning algorithms as pursued in
the existing literature. By implementing various Natural Language Processing (NLP)
and Machine Learning (ML) techniques described in subsequent chapters, we aim to
integrate them harmoniously within a code search engine, laying the groundwork for
future research endeavours within this domain.

The primary objective of this study is to delve into the inner workings of seman-
tic code search engines and explore avenues for enhancing the end-user experience
through user intent modelling. To achieve this, an application will be designed and
developed, which, based on user input, will present a ranked list of software snippets.
This user input can take the form of a "conversation" with a conversational AI system,
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as described in Al-Hossami et al. [52]. Subsequently, the user input will be mapped
to determine the code query employed for searching the code database.

The scientific contribution of this research encompasses the outcomes derived from
a systematic literature study on the fundamental components of a code search engine,
in conjunction with the design and prototyping of a code search engine incorporating
user intent modelling. This code search engine can be evaluated continuously and
improved by applying reinforcement learning techniques, explicitly employing human
feedback [92]. To simulate this process, an experiment will be detailed in Chapter 3.
By integrating a dialogue system within the design framework, this study will pave
the way for exploring the amalgamation of semantic code search with user intent and
entity modelling.

To address the issues outlined in Section 1.2 and accomplish the study’s objectives,
the following research questions have been formulated: The main research question

(MRQ) is ’How can code search engines understand software developers’ intentions?’
The MRQ is divided into four research questions to structure the thesis. These four

research questions are as follows:

(RQ1) What are the essential components for a code search engine?

(RQ2) How can software developers’ search intent be modelled to support them
with the code search process?

(RQ3) Which components should be employed in a code search engine?

(RQ4) How can the code search engine be evaluated?

The study employs a range of methods to address each of the research questions
posed. Table 1.1 provides an overview of the methods chosen to answer each research
question. A brief overview of these methods will be presented in the subsequent
section, with comprehensive details provided in Chapter 3.

Table 1.1: Research questions and their proposed methods. Sys-
tematic Literature Review (SLR), Design Science (DS), Technology

Acceptance Model 2 (TAM2)

Research Questions SLR DS Experiment/TAM2
RQ1 What are the essential compo-
nents for a code search engine?

x

RQ2 How can software developers’
search intent be modelled to support
them with the code search process?

x

RQ3 Which components should be
employed in a code search engine?

x x

RQ4 How can the code search en-
gine be evaluated?

x x
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1.4 Research Methods
The methodology employed in this study is detailed extensively in Chapter 3. This
section provides a summary of the scientific methods used.

To address the first, second, and third research questions, a Systematic Literature
Review (SLR) was conducted. The SLR is comprehensively described in Chapter 2
and serves as a foundational method to investigate and synthesize existing knowledge
in the field.

The Design Science approach addressed the fourth and final research question.
This involved creating a software artifact that serves as a solution to the research
problem. The design process, illustrated in Figure 1.1, integrates insights from the
literature study, providing the scientific foundation for the software artifact’s con-
ceptual framework. The subsequent steps involve conducting an experiment and
administering a TAM2 (Technology Acceptance Model 2) questionnaire to evaluate
the effectiveness and usability of the proposed software artifact.

Combining these methods (SLR, Design Science, experiment, and TAM2 ques-
tionnaire) collectively addresses the research questions and establishes a framework
for answering the main research question and achieving the study’s objectives.

1.4.1 Development Process

Additionally, guide the development process of the software artifact in design science
research; a framework was adopted from the work of Farshidi [33, 9, 34] to show the
iterative refinement based on literature and artifact evaluation on the software arti-
fact. This approach aids in making informed decisions throughout the design process
of the intent-enhanced code search engine. The software artifact’s capabilities and ar-
eas for improvement are validated through the experiment and TAM2 questionnaire,
ensuring that the proposed solution effectively fulfils its intended purpose. Chapter 2
will explain how the SLR forms the basis of the knowledge acquisition used to create
design decisions that improve the software artifact. It will also act as the Descrip-
tion and Explanation for all of the concepts used in the software artifact and where
they came from. Chapter 4 will show the results of the experiment and evaluation of
the software artifact in context to fulfil the validation of the Intent-Enhanced Code
Search Engine.

1.5 Significance
The significance of this research project lies in its potential to contribute to the
advancement of more efficient and effective code search engines. Furthermore, by
providing a comprehensive guide and prototype for creating a semantic code search
engine, along with guidelines for enhancements in various areas and showcasing eval-
uation methods, this research project empowers other scientists in the community to
further explore and expand upon the field of semantic code search.

Through the application of intent modelling techniques, this project aims to
demonstrate the efficacy and feasibility of innovating with different strategies in se-
mantic code search. Additionally, it highlights the potential for further improvement
in capturing the intent of software developers, thus enhancing the precision and rel-
evance of search results in code search engines.

The practices elucidated in this thesis also hold potential for broader applications,
extending beyond code search engines. They can be leveraged in generative AI sys-
tems and the development of enhanced machine learning models, paving the way for
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The Intent-Enhanced Code Search Engine Development Process in Design 
Science Research

Problem Investigation

Tacit knowledge
 - Observations
 - Opinions 
 - Prejudices
 - Ideas
 - etc.

Problem definition
 - Developers 
 - Code Search
 - Limited intent 
understanding
 - Query 
reformulation

Knowledge acquisition
 - TAM2 Questionnaire
 - Experiment Survey 
 - Literature study
 - SLR Analysis

Description Explanation Validation

Design Science Research Knowledge Base

Design
Decisions

Intent-Enhance Code 
Search Engine

Design
Rationales

DR
T
   

T
   

       IECSE n-1

n
T
   

IECSEn

Figure 1.1: The design process of the intent-enhanced code search
engine. Framework adopted from [33]

advancements in various domains. This research project aims to foster continuous
progress and innovation in semantic code search and its related disciplines by sharing
these findings.

1.6 Concept Explanations
This section defines concepts used to answer the main research question and the
research questions used to structure it. It explains each concept in an easy-to-
understand manner for clarity.

• Search Engine: The original Google paper [13] defined the anatomy of a
search engine, including components like a crawler, indexer, searcher, sorter,
and PageRank, enabling users to search the World Wide Web.

• Code Search Engine: Code search engines return relevant code snippets
based on user queries [84].

• User Intent Modelling: User intent can vary even with similar queries.
Large-scale log analysis of user behaviour patterns is one technique to model
user intent [123]. Other techniques will be discussed in Chapter 3.

• Indexing: Indexing creates an index that points to the actual data storage
where the code snippets are stored.

• Code Input Encoder: This method encodes a code snippet into a vector
or another representation, making it easier to handle by computing engines or
algorithms. Indexing code snippets in vector space provides various benefits, as
explained in Chapter 3.
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• Code Input Decoder: An encoded code snippet in vector space is not intu-
itively readable for humans, so it needs to be decoded back to its original form
for human understanding.

• Abstract Syntax Tree (AST): An AST is a tree representation of code
snippets’ abstract syntactical text features. It shows the abstract syntax of a
code snippet while abstracting away specific implementation details [67, 89].

• Control Flow Graph (CFG): A CFG is a graph-based representation of
all paths that might be traversed through a program or method. It provides
structural and semantic information about the code [131].

• Call Graph: A call graph represents code functions and their calls to one
another.

• Querying: Querying is the process of asking a question or sending a command
to the search engine to retrieve ranked results. Queries can be in the form of
text input strings or even code snippets [64].

• Conversational AI: Conversational AI refers to artificial intelligence pro-
grammed to engage in conversations and achieve specific goals.

• Replacement Queries: Replacement queries are used in conversational AI
and involve replacing specific parts of the textual user query to improve result
matching. For example, "Singleton Java" may be reformulated as "Singleton
Design Pattern Java" to improve ranking results [128, 1].

• Convolutional Neural Network (CNN): A CNN is a deep learning algo-
rithm that uses convolutional neural layers [68]. It is commonly used in image
recognition tasks but can also be applied to code search [129]. Attention mech-
anisms are often added to CNN models to improve performance [87, 4]. In code
search, it trains on natural language code snippets and input queries.

• Recurrent Neural Network (RNN): RNNs differ from traditional feed-
forward neural networks by having feedback loops [46]. This allows the mod-
elling of interactions between words in input queries or code snippets using
techniques like Bi-Directional Long Short-term Memory networks [51, 144].

• Graph Neural Network (GNN): GNNs are neural networks designed for
graph data structures like ASTs, CFGs, and call graphs [135, 157]. They capture
dependencies and relationships between code elements. Different categories of
GNNs include convolutional GNNs, recurrent GNNs, graph autoencoders, and
spatial-temporal GNNs [135, 157].

• Feed-Forward Neural Network (FFNN): FFNNs are simpler forms of neu-
ral networks compared to RNNs [86]. They are based on the structure of a real
brain using neurons. FFNNs are supervised learning techniques that train the
network based on desired outputs from user queries.

• Reinforcement Learning: RL is a machine learning paradigm where an agent
learns behaviour through trial-and-error interactions with an environment [62].
In a code search engine context, RL maps to a developer interacting with the
engine to retrieve a code snippet matching their intentions.

• Ranking: Ranking involves structuring documents that match the user query
to present the most relevant ones [13].
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• Multi-Feature Ranking: Multi-Feature Ranking utilizes multiple searching,
indexing, and querying features to rank results. Techniques like CRaDLe,
PSCS, CommitBert, and CodeMatcher incorporate syntax and semantic in-
formation to improve ranking [43, 117, 61, 76].

• Best Match 25 (BM25): BM25 is an algorithm that calculates the relevance
of documents to a given search query [107]. Equation 1.1 shows the BM25
scoring function.

score(D, Q) =
n∑

i=1
IDF(qi) · f(qi, D) · (k1 + 1)

f(qi, D) + k1 · (1 − b + b · |D|
avgdl )

(1.1)

• Cosine Similarity: Cosine similarity measures the similarity or difference
between two vector embeddings, such as query and code snippet embeddings [17,
90]. Equation 1.2 shows the cosine similarity calculation between two vectors.

cosine_similarity(A, B) =

n∑
i=1

AiBi√
n∑

i=1
A2

i

√
n∑

i=1
B2

i

(1.2)

These definitions and concepts will be used throughout the study to analyze and
develop techniques for improving code search engines. In addition, they provide
a foundation for understanding the components, algorithms, and methodologies in-
volved in code search and retrieval.

1.7 Conceptual Framework

Based on earlier studies and a publication [95], a conceptual framework for a code
search engine was created. Figure 1.2 shows the proposed conceptual framework
which formed the basis for the rest of the study.
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Figure 1.2: Conceptual framework of the code search engine
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Chapter 2

Literature Review

This section presents the findings obtained from the systematic literature review
(SLR) conducted as an integral part of this research. Following the SLR framework
proposed by Kitchenham (2007) [66], a comprehensive collection of relevant schol-
arly works was gathered, forming an extensive framework that encompasses existing
knowledge in the area of semantic code search. This framework is essential for un-
derstanding the scientific landscape and informing the design decisions discussed in
Chapter 3.

2.1 Methodology for Conducting the Systematic Litera-
ture Review

This section outlines the methodology employed for the SLR, explaining the rationale
behind the different phases selected based on Kitchenham’s literature review process
in 2004 [65]. The SLR aimed to answer the following research questions:

(RQ1) What are the essential components for a code search engine?
(RQ2) How can software developers’ search intent be modelled to support them

with the code search process?
(RQ3) Which components should be employed in a code search engine?
To address these research questions, it was necessary to establish a comprehen-

sive knowledge base, which motivated the execution of the literature study. Each
subsection below describes the reproducible steps taken during a specific phase of the
literature study. The search phase details the search terms used and the databases
considered. The screening phase presents the criteria and procedures used for se-
lecting relevant papers. The component analysis involves extracting data from the
screened studies to acquire the knowledge required to answer the research questions.
Finally, the extracted data is synthesized by organizing it into components and se-
lecting the final set of studies that form the knowledge base for this thesis. The
table below illustrates the alignment between the features of an SLR as described by
Kitchenham (2004) [65] and the corresponding phases performed in this SLR.

Table 2.1: SLR Mapping

Feature SLR Phase
Identification of research Searching
Selection of primary studies Screening
Study quality assessment Screening
Data extraction and Monitoring Component Analysis
Data Synthesis, Configuration and Final
Studies
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Figure 2.1: Analyzed literature per year of publication

2022202120202019201820172016
0

10

20

30

40

50

60

Year

(p
re

-)
Pu

bl
ic

at
io

ns

2.2 SLR Results

2.2.1 Searching

The searching phase represents the initial stage of the SLR, where various repositories
were explored to identify relevant literature.

Figure 2.1 illustrates the distribution of analyzed literature based on the year of
publication.

The majority of the papers identified were published after 2017, as the field of se-
mantic code search has witnessed significant growth in recent years. Papers published
earlier than 2017 were obtained through snowballing, where they were referenced in
more recent publications, serving as a foundation for the current literature.

The following table provides documentation of the search process and the various
data sources utilized:

With few exceptions, the majority of papers proceeded to the screening phase.
The papers excluded from screening primarily focused on automatic code generation
and the creation of code snippets from scratch. Although these papers mentioned
code snippets, their main emphasis was not aligned with the research objective. The
resulting papers from the searching phase are accessible on Mendeley Data, as indi-
cated in Appendix A.

2.2.2 Screening

The screening phase encompassed the evaluation of the majority of papers identified
during the searching phase. The primary objective of this phase was to gain a com-
prehensive understanding of the research field’s development and assess the potential
for addressing the research questions through the available literature. A significant
portion of the papers, particularly recent ones, focused on the application of machine
learning techniques to code search. For instance, one notable example is Trans3
[132], which leverages transformer algorithms to enhance indexing and code search.
Another example is Cosea [129], which employs layer-wise attention mechanisms in
convolutional neural networks to improve search outcomes.
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Table 2.2: Search process documentation

Data Source Documentation
Google Scholar Google Scholar was utilized to search for high-quality papers and

distinguish them from grey literature. The search period spanned
from 2017 to 2022, and keywords such as Code Search, Semantic
Code Search, User Intent Search, Code Indexing, Code Ranking,
and Code Querying were employed. Snowballing was performed
to identify relevant foundational papers. The consultation of this
data source took place between April 2022 and November 2022.

Scopus Scopus was consulted to identify additional high-quality published
papers based on the data collected from search engine queries.
The search period ranged from 2015 to 2022, and the same key-
words used in Google Scholar were reused. The data source was
consulted between April 2022 and November 2022.

ACM Digital Li-
brary

ACM Digital Library was consulted to discover technical papers
with concrete implementations in the field of computer science.
The search period covered 2015 to 2022, and the keywords from
Scopus were reused. However, the search also incorporated spe-
cific terms related to neural networking and machine learning
techniques to obtain more targeted results. The data source was
consulted between April 2022 and November 2022.

Certain papers did not proceed to the component analysis phase. The inclu-
sion criteria for this phase required that the papers primarily revolve around code
search and provide a thorough analysis of both the positive and negative aspects
of the specific algorithm, along with potential future research directions. Given the
recent publication of many papers and their extension of earlier studies, the quality
assessment of papers did not heavily rely on citations as a metric.

During the screening phase, some papers were excluded from the analysis. These
papers often presented code implementations in domains such as science or chemistry,
which deviated from the focus on code search. Additionally, literature proposing
datasets, machine learning corpora, or other methods that could be beneficial for a
code search engine but did not incorporate component features were left unconsidered
during the component analysis. For instance, Codexglue [79] introduced a benchmark
for evaluation purposes but did not address code snippet ranking or indexing. While
these papers passed the screening phase due to their potential contribution to the
engineering cycle and software artifact development, they were left out during the
component analysis.

Furthermore, this phase laid the foundation for the qualitative analysis of differ-
ent components and the papers themselves. Abstract takeaways were generated for
all the screened papers, with some extracted directly from the paper abstracts and
others developed during the screening process. These abstracts, combined with a
thorough reading of the final selected studies, will facilitate a qualitative analysis of
the configured code search engine examples. Further details on this analysis can be
found in Section 2.2.4.

2.2.3 Component analysis

The component analysis is the major deliverable of the SLR and contains the setup
for the engineering and design cycle. The Artifact Design will be based on the re-
quirement analysis from the pipeline. What techniques are used in state-of-the-art
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algorithms and methods to determine the direction in which this research will con-
tribute? This way, the resulting list of components and the configurations created
from it provide a solid quantitative knowledge base to answer the first three research
questions. Figure 2.2 shows a table with the results of this component analysis. It
shows the frequency of components and different potential combinations of existing
techniques used in the literature.

Machine Translation

In
de
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ng Machine Translation 103 Code Representation

Code Representation 70 78 Text-Based

Q
ue

rin
g

Text-Based 80 56 122 Code Based

Code Based 78 61 90 97 Conversational AI/Dialogue System

Conversational AI/Dialogue System 22 12 46 26 47 Replacement Queries

Replacement Queries 2 1 15 3 9 15 Multi-Feature Ranking

R
an

ki
ng Multi-Feature Ranking 46 32 61 46 29 6 69 Similarity Function Ranking

Similarity Function Ranking 45 34 66 51 31 9 40 74 Neural Network Approaches

Se
ar

ch
in

g Neural Network Approaches 63 41 66 51 26 8 40 42 82 Reinforcement Learning

Reinforcement Learning 7 5 18 8 13 5 11 12 15 18 Textual Conversation

In
te

nt
 m

od
el

in
g Textual Conversation 0 0 6 0 5 3 5 3 4 3 6 Interaction (event oriented)

Interaction (event oriented) 0 0 18 1 12 10 9 12 10 6 0 22 Multiple Choice

Multiple Choice 0 0 2 0 2 0 1 2 2 1 0 0 2 Quantitative Method

Ev
al

ua
tio

n

Quantitative Method 76 57 88 70 34 13 53 57 65 13 4 16 2 112 Qualitative Method

Qualitative Method 9 8 9 9 2 2 7 5 6 1 0 0 0 6 10

Figure 2.2: shows SLR results in a table abstraction

The list of components was chosen by an initial analysis and read of high-quality
papers like CodeSearchNet [56] and When deep learning met code corpus[17]. These
papers depict a state of semantic code search engines and their most-used components.
The latter study also cites some recent publications which use techniques and set the
standard for semantic code search like NCS [111], CODEnn [58], and SCS [55].

Figure 2.2 shows many clusters of text and code-based querying in combination
with machine translation, neural network approaches, and multi-feature ranking.
These clusters may be used in the decision-making progress on the architecture of
a code search engine. An example and the analysis for this paper will be shown in
section 2.2.5.

The following tables show the mapping of components depicted in Figure 2.2 to the
different techniques used in different papers. This analysis is part of the component
analysis as it shows what different techniques are used in what papers, which can
later be used for reference. Furthermore, it shows the qualitative (dis-)advantages of
using the said technique in an actual research implementation

Table 2.3: Techniques and their (dis-)advantages

Technique(s) Description (Dis-)advantages Sources
Indexing

Continued on next page
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Table 2.3 – continued from previous page
Technique(s) Description (Dis-)advantages Sources
Code
Input
en-
coder/de-
coder

Many authors [138] [2] [129]
use some kind of code input
encoder/decoder mechanism to
store code snippets in vector
space. This allows for effi-
cient searching using the dif-
ferent techniques mentioned be-
low. Many different data stores
that index worldwide code snip-
pets from sources like GitHub
or StackOverflow exist [137] [19]
[146] these use a combination of
NLP techniques that extract se-
mantic meaning from the code
snippets and stores this.

Advantages: Because source code is so
widely available the NLP algorithms can
be trained on a very large dataset to im-
prove results in storing the semantic mean-
ing [146], [19], [132]. Furthermore, using
these techniques allow for other relevant fea-
tures to be added like code clone detec-
tion [131] and bug localization [45]. Disad-
vantages: Using an encoder to index the
code snippets is only useful if the data it
is trained on is useful. Garbage in means
garbage out, this also applies to the query
used to match the vector space, if it is of low
quality then the results will not be of high
quality. ([146], [2], [143])

[138]
[2]
[129]
[137]
[19]
[146]
[131]
[132]
[45]

Abstract
Syn-
tax
Tree

Many studies propose the use of
an Abstract Syntax Tree along
with code representation learn-
ing in their deep learning mod-
els [22] [133]. Other highly
cited search engines like Facoy
[64] generate ASTs and use their
nodes to create an index point-
ing at the original code snippet
based on the search terms used.

Advantages: Broadly used method of de-
picting syntax of code snippets as it is
used in over a third of the analyzed liter-
ature. Furthermore, it is being extended in
recent studies also to add semantic value
to the indexing. [22] [131] Disadvan-
tages: Without AST-position and with-
out AST-Mask-Self-attention, the perfor-
mance of pre-trained indexing may decline
[73]. Furthermore, AST-based approaches
can not fully leverage structural-semantic
information of code snippets if used in its
basic form or without semantic upgrades.
[131]

[22]
[133]
[64]
[131]
[73]

Control/Data
Flow
Graph

Control and Data Flow Graphs
are a graph representation of a
system that may be incorporated
into a semantic matrix [153] to
store the semantic and syntac-
tic meaning of code. Control
flow captures the dependence be-
tween code blocks, and data flow
captures the flow of data along
program operations. [153] Flow
graphs may be used in conjunc-
tion with AST [131] and, because
of its graph nature, lends itself
well to a graph neural network
approach. [148]

Advantages: The Flow Graph techniques
lend themselves well to depicting code se-
mantics when compared to AST. They also
combine very well with graph algorithms
and deep learning techniques. [148] Disad-
vantages: In their base form, control and
data flow graph need to be used together,
or higher-level inter-procedural control flow
graphs may have to be implemented to im-
prove baseline performance [97].

[153]
[131]
[148]
[97]
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Table 2.4: Querying techniques and their (dis-)advantages

Technique(s) Description (Dis-)advantages Sources
Querying
Text
Input
Query

Text input query is a basic
query box where a user types
a string to retrieve code snip-
pets that syntactically and se-
mantically match the textual in-
put string. [80] [96] [129]. On top
of this basic textual implemen-
tation, many studies implement
things like categories, program-
ming languages, API and other
improvements to a baseline tex-
tual input string. [31] [130] [149]

Advantages: Text input query can be ex-
tended upon with topics and additional fil-
ters [149]. Furthermore, NLP techniques
can be used to extract entities and encode
the search query to find the nearest neigh-
bours in vector space. [71] Queries can also
be reformulated to provide better results
in the code ranking [19]. Disadvantages:
Textual input query is highly dependent on
the user’s way of typing strings, which is of-
ten not fine-tuned to work with the indexed
code snippets. [71] Query reformulation [19]
and conversational AI [52] may complement
text input query in this manner.

[80]
[96]
[129]
[31]
[130]
[149]
[19]
[52]
[71]

Code
Input
Query

Code input query uses literal
code snippets to search for other
code snippets [64]. Implemen-
tations for this technique could
be a code-to-code search engine
like Facoy [64] or translating a
user query into a snippet which
is then encoded to look for code
clones or similarities. [80] [6] [57]

Advantages: Code input query is more ac-
curate at finding clones or similarities be-
cause the user is using a code snippet of
its own. Therefore the query matches the
indexed database better, regardless of the
language used [83]. Disadvantages: A
user could not be native in writing code and
wants to search for code based on natural
language. Therefore NLP transformers to
code snippets may have to exist to bridge
the gap between the NLP user query and the
to-be-encoded code snippet. [6] [57] [11].

[6]
[57]
[11]
[83]
[80]
[64]

Conversational
AI

To bridge the gap between user
textual input query and the
ranking, we believe a conversa-
tional agent may provide valu-
able results. Using interaction-
based user intent modelling the
actual user intent may be con-
sidered when querying the code-
base index [52] [1] [19]. These
concepts will be discussed in the
User Intent section.

Advantages: As there exists a seman-
tic gap between a user’s query inten-
tion and input query [19] a conversational
AI may be able to close that gap by
searching for the user intent in different
ways.Disadvantages: Interacting with a
conversational AI to achieve personal search
may not be beneficial to the user experience
of the system. Furthermore, many addi-
tional techniques may have to be utilized
to improve intent modelling performance,
like, for example, knowledge injection, en-
tity linking, sentiment detection and sen-
tence completion [103]

[52]
[1]
[19]
[103]

Replacement
queries

A technique that works in con-
junction with a conversational
AI and text input query is the
use of replacement queries [128]
[1]. This technique replaces spe-
cific parts of the textual user
query to match the results bet-
ter. A user may query: ’Single-
ton Java’, which may then be re-
formulated to ’Singleton Design
Pattern Java’ to improve ranking
results possibly.

Advantages: Improves query results [128]
while not interfering with the user as much
as a conversational AI. Disadvantages: Is
still heavily reliant on the original input
query by the user; if there is nothing there
to match, then the system can not provide
a good replacement. [21]

[128]
[1]
[21]
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Table 2.5: Ranking techniques and their (dis-)advantages

Technique(s) Description (Dis-)advantages Sources
Ranking
Multi-
Feature
Rank-
ing

Multi-Feature Ranking is rank-
ing based on multiple search-
ing/indexing/querying features.
One new approach is CRaDLe
[43], which highlights depen-
dency relations and learns a uni-
fied vector representation for a
code and description pair. In
this way, a code snippet’s syn-
tax and semantics can be used
for ranking. Other examples
are PSCS [117], CommitBert [61]
and CodeMatcher [76].

Advantages: Combining multiple code
features when ranking may greatly improve
the state-of-the-art in terms of score [43].
Furthermore, it is very interesting for us-
ing in a user/query intent-based code search
engine [50] Disadvantages: To use multi-
feature ranking, the multiple features must
be widely available and of high quality in
the indexed dataset. This is an extensive
amount of work and may require additional
techniques to create on a large scale [114]

[43]
[117]
[61]
[76]
[50]
[114]

BM25 An algorithm to calculate the rel-
evance of documents to a given
search query. It is short for
Okapi BM25, where BM means
Best Matching. [107]. It has
been extended with multiple new
features to improve its workings
[120] [107]. It is still used in
modern code searches. Still, it
is often improved upon with ad-
ditional techniques [77] [52]

Advantages: BM25 is a well-established
method of determining a ranking of docu-
ments, in this regard, code snippets [107].
Disadvantages: To reach state-of-the-art
performance or compete with neural simi-
larity functions, it needs to be extended [77]
[52].

[107]
[107]
[77]
[52]

Cosine
Sim-
ilar-
ity

Cosine similarity is a function
based on the cosine in math. It
measures the similarity or differ-
ence between two vector embed-
dings - one of the query and one
of the code snippet -. [17] [90]

Advantages: Cosine similarity is a rela-
tively easy similarity metric and works in
collaboration with many algorithms. Dis-
advantages: Cosine similarity calculation
is heavily dependent on both the encoding
algorithms [17] as well as the user input
query [90].

[17]
[90]

Custom
Simi-
larity
Func-
tion

Many custom search engines use
their own custom similarity func-
tion based on for example Jac-
card similarity or Mean Recipro-
cal Rank. [140] [111]

Advantages: A custom similarity function
is often tailored very well to its implementa-
tion purpose and is used in conjunction with
advanced neural code search [111]. They are
also useful in a user intent model with an-
notated code snippets to measure the sim-
ilarity between code and query intent [50].
Disadvantages: As there are no possibil-
ities of annotating each query-snippet pair
with intent there are additional techniques
necessary to attain useful results [114].

[140]
[111]
[50]
[50]
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Table 2.6: Searching techniques and their (dis-)advantages

Technique(s) Description (Dis-)advantages Sources
Searching
CNN A convolutional neural network

is a deep learning algorithm that
uses convolutional neural layers
[68]. The name convolutional
comes from a linear mathemat-
ical operation between matrixes
called convolution [3]. Besides
these convolutional layers, it has
a non-linearity layer, a pool-
ing layer, and a fully-connected
layer [3]. It is mainly used in
image recognition [68] but can
also be implemented in differ-
ent areas such as code search
[129]. As an addition to the
base convolutional neural net-
work, attention mechanisms were
introduced to reduce computa-
tion time and improve perfor-
mance [87]. These attention
mechanisms add a so-called at-
tention layer to the model, which
allows it to find important fea-
tures more easily [4]. In code
search, it is used to train on nat-
ural language code snippets and
input queries [129].

Advantages: Convolutional models are
a natural choice for learning translation-
invariant features with a small number of
parameters [4]. Furthermore, they can
be used for sentence classification [152] to
model user intent and combine that with the
existing search for code snippets. Disad-
vantages: A standalone convolutional ar-
chitecture is computationally expensive and
requires attention layers or other additions
to stay efficient [87]. Some of these advanced
deep learning models can also take a week
to train [136] and require much tuning to
provide useful results.

[68]
[3]
[129]
[87]
[4]
[152]
[136]

RNN The recurrent neural network
differs from a traditional feed-
forward neural network in that
it has at least one feedback loop
[46]. This means that at least one
of the network’s neurons has its
output fed back into the input of
an earlier neuron. This enables
the modelling of Bi-Directional
Long Short-term Memory net-
works [51], to model interactions
between words of either the input
query or the code snippets them-
selves [144].

Advantages: RNN architecture enables
several code summarization tasks to bridge
the gap between semantic user intent and
code snippet semantics [144]. Furthermore,
it works with pre-trained code models like
CodeBERT [36] and is often used in the
CodeSearchNet Challenge [56]. Disadvan-
tages: It has difficulties capturing long-
range dependencies which may occur in code
[50]. This is why it is used in more recent
studies in conjunction with a transformer-
based architecture [50], [94] [82].

[46]
[51]
[144]
[36]
[56]
[94]
[82]

GNN Many relationships among data
can be represented in terms of
graphs, which model a set of
objects (nodes) and their re-
lationships (edges) [112] [155].
[112] proposed a new neural net-
work model called Graph Neu-
ral Network (GNN) that extends
existing neural network meth-
ods for processing data repre-
sented in graphs [112]. They
have as a group been categorized
into different categories of graph
neural networks, being convolu-
tional graph neural networks, re-
current graph neural networks,
graph autoencoders and spatial-
temporal graph neural networks
[135]. These networks combine
the advantages of using graph
neural networks with the advan-
tages of both recurrent and con-
volutional neural networks to im-
prove quality [157].

Advantages: A graph representation cap-
tures several mechanics of code snippets
that other indexing methods or neural net-
works cannot capture [136]. Examples of
these are using the full AST graph and other
code features modelled as a graph as input
for training [23] or using graph representa-
tions to generate documentation automat-
ically, and therefore semantics from code
snippets [78]. Disadvantages: The use
of a graph neural network requires the in-
put data to be in a graph form. This re-
quires the use or creation of graph embed-
dings [108] or pre-trained graph models like
GraphCodeBert [44] or flow graph building
like deGraphCS [148].

[112]
[155]
[135]
[157]
[157]
[23]
[78]
[108]
[44]
[148]

Continued on next page
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Table 2.6 – continued from previous page
Technique(s) Description (Dis-)advantages Sources
FFNN Feedforward neural networks are

a simpler form of neural networks
compared to recurrent neural
networks [86]. They were one of
the first forms of Artificial neu-
ral networks (ANNs) based on
the structure of a real brain, us-
ing neurons [121]. Each of these
neurons can receive input signals,
process them and send an output
signal to the next layer or single
neuron [121]. It is a supervised
learning technique in which the
network is trained based on the
desired output from a given user
query, and the weights of differ-
ent neurons are trained [121].

Advantages: Simple and easy to under-
stand and train compared to other models
[46]. It can be extended using multiple lay-
ers or networks and is always one-directional
[46]. Disadvantages: Most newer neural
network models improve upon the flaws and
simplicity of FFNNs [86] [87]. Therefore the
state-of-the-art has moved past most simple
FFNN models. [46]

[86]
[121]
[46]
[87]

Reinforcement
Learn-
ing

Reinforcement Learning is the
problem an agent faces that must
learn behaviour through trial-
and-error interactions with a dy-
namic environment [62]. It
is also one of three main ma-
chine learning paradigms: su-
pervised, unsupervised, and re-
inforcement learning [70]. Rein-
forcement learning problems al-
ways involve interaction between
an active decision-making agent
and its environment to reach a
certain goal [119]. For a code
search engine, this maps to a de-
veloper interacting with a code
search engine to retrieve a code
snippet that matches the devel-
oper’s intentions.

Advantages: Reinforcement learning im-
proves over time based on interaction with
the system, making it a useful technique to
use in conjunction with user intent mod-
elling (interaction-based) as the quality of
the system improves over time based on user
feedback [72]. Furthermore, reinforcement
learning could bridge the semantic gap be-
tween a user query and the code search it-
self, as shown in QueCos [128]. Most code
search applications do not consider this in
improving their algorithms [128]. In addi-
tion, RL may also be used in conjunction
with neural network algorithms for auto-
matic code summarization [127]. Disad-
vantages: As user queries are often short
and ambiguous [141], a personal search pro-
cess may have to be implemented to improve
the system’s results [141].

[62]
[70]
[119]
[72]
[128]
[141]
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Since User Intent is a fundamental aspect of this study, it has its own dedicated
research question, and as a result, the User Intent techniques table differs from the
others. Initially, the table was organized into three domains of user intent modelling:

• Textual Conversation - Textual conversation with an AI serves as one approach
to capturing user intent within an information system. In this method, a search
engine can model a user’s intent based on the formulation of a query string,
utilizing various taxonomies [59, 16]. Subsequently, the system can respond
by seeking clarification or providing an appropriate answer based on the user’s
phase in the personal search process [139].

• Interaction (event-oriented) - These user intent modelling techniques rely on
user interaction data instead of engaging in textual conversation [102]. Statisti-
cal approaches such as Markov Models [110] or Matrix Factorization [48] can be
particularly beneficial in this context. This approach holds promise, especially
in exploratory search domains [109], where users may not have a clear idea of
what they are searching for. Considering the nature of a code search engine,
where developers often encounter situations where they lack precise knowledge
of their desired outcome [104], this attribute becomes highly valuable.

• Multiple Choice - Multiple-choice intent modelling systems present the user with
various potential results, from which they can select one or multiple options that
align with their intent. Based on this user behaviour, the system models the
user’s intent, enabling more exploratory search capabilities [109]. Moreover,
it facilitates the use of hidden semantic information to construct supervised
signals for intent feature learning [150].

These domains served as a foundation for identifying relevant algorithms, meth-
ods, or techniques to be applied to the code search domain. Table 2.7 presents the
outcomes of employing this approach.

Table 2.7: User Intent techniques and their (dis-)advantages

Technique(s) Description (Dis-)advantages Sources
User Intent
Textual Conversa-
tion
Utterance/Dialogue
Classification

Many different statistical tech-
niques exist for Utterance/-
Dialogue classification. Sup-
port Vector Machines or Hid-
den Markov Models are used for
many classifications in the field
[118] [100]. These classify a
user’s text input into different
categories and respond accord-
ingly, increasing the probability
of matching the ranked docu-
ment to the user’s intent.

Advantages: By classifying the
queries, they can be responded to
and improved for document re-
trieval [118]. By satisfying an
information need before the ac-
tual ranking of results, many
users may already be satisfied or
pushed in a different direction
than expected [63]. Disadvan-
tages: With trying to classify
the utterance or dialogue come
unique challenges because of the
complexity and diversity of hu-
man information-seeking conver-
sations [100].

[118]
[100]
[63]

Continued on next page
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Table 2.7 – continued from previous page
Technique(s) Description (Dis-)advantages Sources

Conversational
Search

In the conversational search sys-
tem, the user is unsure exactly
what kind of code snippet they
are looking for. Oddy [91] was
one of the first to explore this
concept by retrieving informa-
tion for the user through dia-
logues without having the user
formulate a query [100]. Qu et al.
[100] focus primarily on predict-
ing user intent in an information-
seeking setting. The natural lan-
guage dialogue this form of user
intent modelling brings could
also be highly beneficial in a code
search setting since the user does
not need to provide a query at
all but is given code based on
just a natural language descrip-
tion of the user’s intent. With
recent progress in machine learn-
ing algorithms, this approach be-
comes increasingly more promis-
ing in user intent modelling [101].

Advantages: When users are
unfamiliar with the domain they
are searching and would rely
on effective interactions with
the search engine, conversa-
tional search is incredibly ef-
fective [100]. Disadvantages:
With the user never actually typ-
ing a query, there may be much
slack in getting the final code
snippet. Even though user intent
will be aligned with the final re-
sult, it may not be fast enough
for the developer. Furthermore,
the system may not be able to in-
corporate prior knowledge about
the corpus of code snippets in a
practical scenario [101]

[91]
[100]
[101]

Multi-turn Question
Answering

Is a system where the user asks
questions and is then constantly
given an answer or return ques-
tion based on the nature of that
question [145].

Advantages: Many QA sites
like Stackoverflow or Pastebin on
source code exist, which allows
for these ready-to-use question
and answer databases to be used
[53] [29] [38] [143]. Disadvan-
tages: It is practically impossi-
ble to store all the knowledge in
a neural network to achieve de-
sired precision and coverage in
real-world QA [145]. In the field
of just source code, this problem
is not infinitely large, which is
why it may be possible. Espe-
cially with mining of QA pairs
from StackOverflow [38] [143]

[145]
[53]
[29]
[38]
[143]

Term Dependency
Modelling

Sometimes also depicted in liter-
ature as term proximity or term
frequency [47], term dependency
modelling is a method of collect-
ing intent by retrieving informa-
tion from the query based on
terms used [113]. Older papers
proposed using Markov Random
Fields to model this term depen-
dency and probability [85]. Later
research started considering the
independency of terms used and
moved to include phrases on top
of single terms to see terms in
a more user-intent context [113].
These phrase-based approaches
extend upon earlier single-term
studies.

Advantages: Possibility to add
to existing models and easier to
understand than applying neu-
ral networks [113]. Disadvan-
tages: Do not have the possibil-
ities neural networks have when
storing semantic values. How-
ever, it could be extended by us-
ing the semantic model presented
in [113]

[47]
[85]
[113]

Interaction (event
oriented)

Continued on next page
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Table 2.7 – continued from previous page
Technique(s) Description (Dis-)advantages Sources

Attribute Aggregation Is the process of aggregating the
attributes of the document (se-
mantic or syntactical code snip-
pet features) to the personal
query attributes [10]. This could
be modelled in a query docu-
ment graph, which is close to
the equivalent of a query snippet
model in code search [143].

Advantages: Attribute aggre-
gation is comprehensive and can
be improved upon by considering
many specific features from the
documents [10]. Examples in-
clude using CTR, Access Counts,
Cursor tracking, or even touch
gestures as part of the user query
attribution [106] [10] Disadvan-
tages: It is highly dependant on
the quality of the indexed doc-
uments, in this case, code snip-
pets, as well as how to query
input is facilitated for its func-
tionality [10]. Dialogue classifi-
cation could be combined with
this attribute aggregation to im-
prove matching results.

[143]
[10]
[106]

Deep Learning Tech-
niques

Many deep learning techniques
exist to model the interaction be-
tween the user and the search
engine. Some examples are
Multilayer Perceptron, Autoen-
coder, CNN, RNN, and Atten-
tional Models [151]. These op-
tions are discussed in further de-
tail in Zhang et al. paper on deep
learning-based recommender sys-
tems [151]. The neural networks
that are relevant and overlapping
with code search are described in
their respective section in Table
2.6.

Advantages: Deep learning
techniques are more recent and
state-of-the-art when compared
to relatively older machine learn-
ing techniques. In general, they
achieve a very high-level accu-
racy when compared to older
machine learning models [151]
[141] [88][39] Disadvantages:
As with many deep learning
techniques transparency of how
the algorithm work is essen-
tial. Furthermore, implementing
these systems is resource-heavy
and requires mathematical opti-
mization to become practically
viable [86][121].

[151]
[141]
[88]
[39]
[86]
[121]

Multiple Choice
Deep Aligned Cluster-
ing

While many models label intent
based on extracted intent fea-
tures for a single case, Deep
Aligned Clustering leverages the
prior knowledge of known in-
tents [150]. Combining BERT
[28], knowledge transfers from
known intents with limited la-
belled data and an alignment
strategy to provide signals for
learning clustering-friendly rep-
resentations [150].

Advantages: Deep Aligned
Clustering successfully transfers
the prior knowledge of limited
known intents and estimates the
number of intents by eliminating
low-confidence clusters [150]. Us-
ing these clustering techniques,
it is way faster at discovering
the approximate intent of a user
when compared to other meth-
ods. Disadvantages: Learned
features of this method are much
more biased towards labelled
data and require the prior knowl-
edge of known intents to be of
high quality. Otherwise, the per-
formance of the algorithm drops
dramatically [150]

[150]
[28]



Chapter 2. Literature Review 21

2.2.4 Decision Making

This section outlines the decision-making process for constructing an example code
search engine configuration based on the findings of the conducted SLR. The process
involves quantitative and qualitative analyses, which will be further explained in
Section 2.2.5 and Section 2.2.6, respectively.

2.2.5 Quantitative Analysis

Figure 2.2 presents a table displaying the extracted components from the analyzed
papers. By examining the numbers within each cell, one can determine the frequency
of occurrence for each component in the literature study. Additionally, the table
illustrates how often components are mentioned together. For instance, Machine
Translation is mentioned in 103 of the analyzed papers, and in 78 of those instances,
it is combined with a Code Based querying mechanism.

Based on the insights provided in Figure 2.2, the components can be combined in
various configurations to evaluate their effectiveness when applied together. For in-
stance, if one chooses to incorporate Neural Network Approaches in their code search
engine, one can observe that 66 papers describe this combination with a text-based
user input query. At the same time, 55 articles mention its combination with code-
based querying. This quantitative analysis guides the development of a configuration
based on the number of components, partially addressing the first research question:
"What are the essential components for a code search engine?".

Figure 2.3 showcases this thesis’s chosen combination of techniques. As depicted,
all the techniques are prominently mentioned in most analyzed studies. Although the
interaction-based intent modelling technique appears less frequently than the other
techniques, it is still derived from 22 of the 30 intent modelling papers in the literature
study. It is worth noting that the absence of papers mentioning the combination of
machine translation and interaction is because the 30 analyzed papers did not discuss
code search engine indexing methods, indicating a gap between code search and user
intent studies. The specific applications of these techniques will be elaborated on in
Section 2.2.6 during the qualitative analysis.

Components Techniques Machine Translation

Indexing Machine Translation 103 Text-Based

Quering Text-Based 80 122 Multi-Feature Ranking

Ranking Multi-Feature Ranking 46 32 69 Neural Network Approaches

Searching Neural Network Approaches 63 66 40 82 Interaction (event oriented)

Intent Modelling Interaction (event oriented) 0 18 9 10 22 Quantitative Method

Evaluation Quantitative Method 76 88 53 65 16 112

Figure 2.3: shows the design for code search engine based on com-
ponent analysis

2.2.6 Qualitative Analysis

This section describes the qualitative analysis and decision-making for the final de-
sign of the code search engine. Based on the qualitative analysis performed in table
2.3, 2.4, 2.5, 2.6 and 2.7 a set of applications were considered to incorporate in the
practical design for the code search engine.
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Based on the (dis-)advantages of several studied techniques, many different choices re-
garding the component configuration of the code search engine may be made. Figure
2.2.6 depicts the choices made for this thesis’ design based on these (dis-)advantages.
Other configurations could also be chosen based on the analyzed methods from the
literature.

Components Techniques Selected methods
Indexing Machine Translation Code Input Encoder/Decoder Abstract Syntax Tree
Quering Text-Based Conversational AI

Ranking Multi-Feature Ranking Intent Based Ranking

Searching Neural Network Approaches Graph Neural Network Reinforcement Learning

Intent Modelling Interaction (event oriented) Conversational Search Attribute Aggregation

Evaluation Qualitative Method Technology Acceptance Model

Figure 2.4: shows chosen methods based on qualitative analysis of
code search components

The rationale behind selecting these methods is as follows:
The combination of Code Input Encoder/Decoder with AST (Abstract Syntax

Tree) was chosen for the indexing component. This approach enables a semantic
and syntactic representation of indexed code snippets [131] [22]. Additionally, this
combination lends itself well to graph representation, allowing for using a graph neural
network in the search process.

Conversational AI was chosen for the querying component, utilizing an interaction-
based intent modelling technique. By incorporating elements from conversational AI,
the aim is to enhance exploratory search capabilities [30]. Furthermore, attribute
aggregation [10] was selected to assign an intent score to user interactions with the
system, providing a more comprehensive understanding of user intent.

The searching component will employ a graph neural network (GNN) architecture
to search through semantically extended ASTs (Abstract Syntax Trees) [22] [131]
for relevant code snippets. These snippets will then be ranked using multi-feature-
ranking techniques such as CRaDLe or CodeMatcher, depending on which algorithm
performs best within the chosen configuration.

Since a Conversational AI approach is used, combined with intent modelling,
reinforcement learning is also selected. This combination addresses a major drawback
in reinforcement learning for code search engines, as user queries are no longer short
and ambiguous [141]. Instead, they are supported by an intent model, providing more
context and guidance.

Based on the studies conducted in the literature and the information presented in
the tables above, the final code search engine will be developed using these selected
techniques.

2.2.7 Final Design

Based on analyzing qualitative and quantitative metrics, an example configuration
has been created with its respective reasoning. They are all based on applying some
user intent analysis or improving upon the query/ranking relationship, as this thesis’s
leading research goal. The following table shows the different configurations with ref-
erences to their respective reasoning. The decision-making for a final search engine
based on the literature study has two sides, quantitative and qualitative. Firstly, a
quantitative analysis was performed to see the broad spectrum of code search engines
and their components available in the literature, as seen in figure 2.2. Secondly, based
on qualitative data from the papers, this component analysis was specified for the
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different applications as they were being used in the literature. This concludes in a
final search engine design based on figure 2.4. The extensive design and architecture
will be described in the final thesis document. Furthermore, this design will be im-
plemented in a real-life software artifact to evaluate the system and therefore answer
the last research question: "How can the code search engine be evaluated?"

Figure 2.5 shows the practical choices regarding the final design regarding prac-
tical applications used in the code search engine. These practical applications were
taken from the literature and will be implemented in the final software artifact. The
practical applications are based on the methods and techniques depicted in figure 2.3
and figure 2.4. Chapter 3 will go into further detail on how these literature study
findings were adopted in the design science software artifact.

Components Techniques Selected applications
Indexing Machine Translation CodeBert
Quering Text-Based RASA AI

Ranking Multi-Feature Ranking kNN with weighed intent query

Searching Neural Network Approaches CodeBert

Intent Modelling Interaction (event oriented) DIETClassifier

Figure 2.5: shows chosen applications based on qualitative analysis
of code search components

2.2.8 Research Directions

The summarized results above provide an overview of the current research trends in
the field of Code Search. Notable contributions, such as CodeSearchNet by Husain
et al. [56], has elevated the standard of code search by leveraging machine learning
techniques for semantic code retrieval instead of relying solely on keyword-based
search. Furthermore, researchers have made significant efforts to create datasets,
such as PyTorrent [7], Codexglue [79], and Staqc [143], to facilitate future research
and benchmark the performance of code search engines.

A significant focus of the literature is finding optimal ways to encode and de-
code code snippets to capture the developer’s intention accurately. Many researchers
have explored approaches that combine or generate code snippets with comments or
annotations, integrating syntax and semantic descriptions in vector space [142, 50,
82]. Various machine-learning techniques have also been investigated and proposed
to effectively transform code snippets into vector representations. Several approaches
utilize pre-trained models to incorporate new code snippets into the existing vec-
tor space of code snippet models, such as GraphCodeBert [44], CodeBert [36], and
ProphetNet-x [98]. The VRE search engine [154] offers an advanced interface for
searching research assets within the Virtual Research Environment (VRE) commu-
nity, employing information retrieval and extraction techniques, including textual
content analysis, topical coding, pattern clustering, and topic models [35]. Addition-
ally, there is research focused on enhancing code snippet indexing using advanced
neural networking and encoding techniques, exemplified by Code2Vec [6], Code2Seq
[5], and deGraphCS [148].
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2.2.9 Gap Analysis

A gap exists in considering the importance of user queries in achieving accurate
rankings. While research emphasizes improving code encoding techniques, inadequate
query formulation and translation to vector space often lead to inaccurate results that
do not align with the user’s intent. A Neural Code Search (NCS) study by Sachdev
et al. [111] found that in nearly a quarter of cases, the query itself was the obstacle in
obtaining the desired answers. Query alternation, as demonstrated in code-to-code
search engines like FaCoY [64], has been employed to address this issue. However,
the utilization of replacement queries or conversational AI techniques is infrequent,
with less than half of the studies in the SLR incorporating them. We believe that by
leveraging an interaction-based dialogue system, users can refine their queries through
an interactive conversation, thereby improving the quality and precision of the vector-
encoded question. When the query is more specific and well-defined in vector space,
similarity functions have a better chance of ranking similar code snippets higher,
ultimately enhancing the code search experience.

2.2.10 User Intent Modelling

This section contains findings on User Intent Modelling and its appliance to the code
search field. Many papers on user intent have been studied to answer the second
research question. This study aims to validate whether these modern user intent
modelling techniques hold in a code search environment. This is why generic user
intent modelling literature on search engines and recommender systems was used for
the literature study—treating a code search engine as a recommender system for code
snippets. Table 2.7 shows some techniques used to model user intent in recommender
systems; these techniques will be used in the software artifact design for this thesis.
By incorporating these user intent modelling techniques into the software artifact
design, the thesis aims to develop a code search engine that effectively captures and
understands user intent in the code search process. The goal is to provide relevant
and accurate code snippet recommendations to improve the code search experience
for developers.

2.2.11 Final Studies

In conclusion, the performed systematic literature review (SLR) has provided com-
prehensive insights and addressed the research questions in the context of user intent
modelling for code search. The selected studies for the master thesis have contributed
to answering the research questions as follows:

2.2.12 RQ1: Analysis of Search Engine Categories

This research question is answered based on the different categories studied for search
engines during the SLR. Each category from the component analysis was utilized, and
relevant literature was explored. Many code search engines investigated in this SLR
incorporated one or more components from the different categories, as depicted in
Figure 2.2. Di Grazia et al. [41] recently published a comprehensive analysis of 109
code search articles, highlighting various techniques for indexing, querying, searching,
and ranking the search results. This observation confirms the widespread use of these
categories in various code search engine studies. The implementation details of these
categories are described in the following sections.
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Indexing

Effective indexing of code snippets in a code search engine requires consideration of
both semantic and syntactic aspects. Several studies, such as [138] and [6], have pre-
sented different approaches to representing code features using vector representations.
An encoder system combined with an abstract syntax tree (AST) is commonly em-
ployed, where the AST captures the syntax of a code snippet, and the semantics are
captured using natural language processing (NLP) encodings. Various code snippet
encodings have been proposed, including pre-trained embeddings such as CodeBert
[36] or GraphCodeBert [44], as well as other techniques [75, 138]. Additionally, stor-
age improvements like deep hashing [42] have been explored to enhance the speed of
the code search engine.

Querying

Querying is a prominent aspect of this research, particularly in dialogue systems and
user intent modelling. The literature reveals room for improvement in this area [52].
Most studies mention text and code-based input queries in conjunction with each
other. A possible approach is to combine textual search queries, similar to those
provided by Google, with code input involving variables and methods. Replacement
queries were scarcely mentioned in the literature, while dialogue systems to improve
the querying process are gaining popularity. This thesis aims to contribute to ad-
vancements in this area.

Searching

Modern code search engines extensively employ advanced neural networking and ma-
chine learning techniques to enhance the search process. Many research papers focus
on improving existing search algorithms by utilizing approaches such as graph neural
networks [131], self-attention mechanisms [32], and enhanced vector indexing [5, 6].
Searching techniques go hand in hand with indexing approaches, as the quality of
the indexed data structure directly impacts the performance of deep code search [17].
Refactoring the input can also improve search, emphasizing the need for cohesive col-
laboration among all components in a code search engine to provide optimal results
[41].

Ranking

Ranking schemas have been introduced by Niu et al. [90] to rank code examples based
on user queries. The proposed ranking algorithms are closely tied to the nature of the
query and the underlying search mechanism. Users can even train ranking algorithms
to improve the quality of the ranking itself. Furthermore, the transparency of the
algorithm’s base functionality is becoming increasingly important, emphasizing the
need for an interpretable approach rather than a black-box solution [125].

User Intent

User intent modelling has been incorporated into this study’s code search engine com-
ponent list. Validating the applicability of existing user intent modelling techniques in
a code search engine and improving the overall user experience is one of the research
goals of this study.
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2.2.13 RQ2: User Intent Modelling Techniques

Various techniques exist to assist users in finding items of interest, traditionally based
on past observed behaviour and presenting a ranked list of suggestions [59]. How-
ever, more recent approaches leverage advanced transformer neural networks [139]
to model intent in conversational systems. Although these approaches have been
successful in conversational programming scenarios, which emphasize AI code gen-
eration, they may not be directly suitable for a code search engine focused on code
snippet recommendation. As highlighted in a recent paper by Al-Hossami et al. [52],
analyzing modern AI algorithms such as GPT-2 and GPT-3, there is a need to adapt
these techniques for code search engines. To apply machine learning intent modelling
frameworks, RASA AI’s DietClassifier [15] will be utilized in this thesis.

2.2.14 RQ3: Configuration of Components

Quantitative and qualitative analyses were conducted in the decision-making process
to answer the third research question. Various code search engines, including FaCoY
[64] and those participating in CodeSearchNet [56], employ different combinations of
the analyzed components to improve evaluation metrics such as precision and recall.
This thesis aims to answer the third research question by implementing a configuration
of components and evaluating its performance in a real-life scenario, explicitly inves-
tigating whether user intent modelling enhances the code search experience. Figure
2.3 and Figure 2.4 provide an abstract overview of how these components can be com-
bined. This SLR aims to guide future researchers in constructing their configurations
based on the findings in the literature. Figure 2.6 shows the conceptual model for the
intent-enhanced code search engine based on the knowledge base from the literature
study. Chapter 3 goes into a further explanation on the practical implementation of
the software artifact based on this conceptual framework.

Overall, this SLR has explored user intent modelling techniques, validated their
applicability in a code search environment, and provided insights into the configu-
ration of components for an improved code search engine. The selected studies and
findings advance the code search field and offer a foundation for further research.
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Chapter 3

Research Method

This chapter provides a comprehensive overview of the research methodology em-
ployed in this study, which is divided into two main sections. Firstly, we discuss
the design science methodology proposed by Hevner [49] and Wieringa [134] and its
application within the context of this thesis. Secondly, we describe the experimental
design and procedure.

3.1 Design Science Methodology
In this section, we elucidate the design science methodology adopted for this study,
encompassing the iterative design process and the evaluation criteria. The research
adhered to the design science research guidelines, following the subsequent steps:

1. Identification of User Needs and Requirements: We initiated the research by
identifying the specific needs and requirements of the users. This step aligned
the design science research with the environment by conducting a stakeholder
analysis proposed by Wieringa [134]. For this study, we focused on regular
operators, commonly known as end users, who possess a high level of specificity
in their code search queries [8].

2. Design and Development: The design cycle played a pivotal role in creating the
code search engine software artifact. Initially, we developed a simple minimum
viable product (MVP) prototype, which was then iteratively evaluated and
enhanced. This approach aligns with the design cycle proposed by Hevner
[49]. The design prototype was implemented using Python, Vue, and several
frameworks. The complete source code of the software artifact is available on
GitHub for reuse and future studies [40].

3. Evaluation of the Prototype: The evaluation of the prototype primarily involved
internal discussions, but we also considered peer reviews from colleagues and
other business informatics students. Domain experts played a crucial role in
the evaluation process. The experiment, described in Section 3.2, provides an
example of how the prototype could be assessed during field testing to align
with the current environmental requirements. The evaluation encompassed ex-
perienced as well as less experienced coders to ascertain the value added by
the intent-enhanced code search engine. This experiment served to validate the
adequacy of the established requirements and identify areas where the software
artifact could be further improved.

4. Iterative Refinement: During the development of the software artifact, various
methods of iterative refinement were employed. Given the evolving nature of
the knowledge base on semantic code search, we emphasized the modularity
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of different components of the search engine. This modular design allows for
the seamless integration of new ranking, searching, or indexing algorithms cre-
ated by the scientific community. Moreover, we considered the application of
reinforcement learning principles to enhance the existing machine learning al-
gorithms utilized in the prototype. Specifically, we explored the utilization of
human-in-the-loop reinforcement learning, also known as Reinforcement Learn-
ing Human Feedback (RLHF) [92].

3.1.1 Engineering Cycle

To implement the design science methodology effectively, we initially employed the
engineering cycle [134]. This cycle entails the following steps [134]:

• Implementation Evaluation = Problem Investigation: This step involves under-
standing the problem within its context, which was facilitated by the Systematic
Literature Review (SLR) conducted in this study. It also encompasses model-
ing stakeholders, causes, and effects and their contributions to the established
goals.

• Artifact Design: In this step, we mapped the requirements of the software
artifact within its context. The design choices were based on the goals identified
in the previous step and drew from earlier literature, as presented in Chapter
4.

• Artifact Validation: This step involved validating whether the software artifact,
within its context, fulfilled the established requirements. It also assessed the
artifact’s usability in different contexts and examined potential trade-offs result-
ing from design choices, such as compatibility with various operating systems
or software developer preferences.

• Artifact Implementation: The final step of the engineering cycle encompassed
the deployment of the software artifact in its problem context, allowing stake-
holders to utilize it effectively. In this case, it entailed the concrete implemen-
tation and adjustment of the application in the real world.

These steps are not necessarily performed sequentially and can be interchanged
as needed.

3.1.2 Design Cycle

We arrived at the design cycle by excluding the Artifact Implementation step from
the engineering cycle. This cycle comprises all the steps within the engineering cycle
except for the implementation itself. The design cycle can also be applied to existing
systems in the literature. A gap analysis can be conducted to evaluate these existing
systems using our newly identified requirements and design, thereby enhancing the
final artifact’s scientific value. Unlike evaluation, validation is performed before the
implementation of an artifact and while it remains within a real-world context.

3.1.3 Empirical Cycle

In addition to the design cycle, we employed the empirical process to acquire knowl-
edge regarding our design within its context. This process aimed to answer knowl-
edge questions arising from our system’s implementation. These knowledge questions,
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along with the research and knowledge goals, evolved through iterations of the de-
sign/engineering cycle. The empirical cycle encompasses the following steps:

• Research Problem Analysis: This step involves defining the research questions
and conceptual framework within the research’s context. It also determines the
target population for the study, as research outcomes may vary based on the
population used. In our case, distinctions may exist between scientific software
engineers and developers in the field regarding their utilization of the artifact.

• Research and Inference Design: This step entails designing the research itself,
specifying the objects of study and the characteristics of the created artifact.
It also outlines how results will be measured for given tasks. For example, the
ranking capability could be evaluated by analyzing the accuracy of the system’s
responses to a set of queries.

• Design Validation: In this step, we validate the choices made in the research
design, analyzing whether the research would be effective and identifying the
contexts in which it may be more or less useful.

• Research Execution: This step involves implementing the designed research to
observe and analyze the results within the designated context. It investigates
whether the results align with the initial hypotheses and identifies potential
reasons for any deviations.

• Data Analysis: In this final step, we evaluate the results and apply statistical
analysis to the acquired data. This analysis enables us to interpret the results,
make explanations and generalizations, and provide answers to the research
questions. If the results are unsatisfactory, additional analysis is required to
address the research problem.

The empirical cycle is reiterated in conjunction with the design cycle, allowing
for the emergence of new research problems and knowledge questions, which can be
addressed in subsequent cycles.

3.2 Experiment Setup
This section describes the experiment setup, including the study design, participants,
and data collection methods. The following steps were taken:

1. Dataset creation for Baseline and Intent modelling search

2. Participant recruitment and assignment of questions and instructions

3. Experiment Design and Procedure

4. Data collection and analysis

5. Technology Acceptance Model 2

These steps will be elaborated on further in the following subsections. The main
goal of the experiment is to answer the fourth research question How can the code
search engine be evaluated? and thereby contribute to answering the main research
question How can code search engines understand software developers’ intentions?.
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3.2.1 Dataset creation

The StackOverflow-Question-Code-Dataset (StaQC) [143] along with CosQA [54]
were used as an evaluation dataset for both the baseline semantic search engine as well
as for the intent evaluation. StaQC contains 148417 Python question-code pairs. Of
which 85,294 single-code answer posts were used to train the vector embedding ma-
chine learning algorithm. These 85,294 were indexed into an elastic search database
using CodeBert [36] along with the 20.000 code snippets in CosQA. The CodeBert
pre-trained model was finetuned by a user named hamzab on the natural language
code search task on Huggingface.

3.2.2 Recruitment of participants

For the recruitment of participants, several inclusion criteria were taken into con-
sideration. The participants should be in the intended use category for the search
engine.

• Participants should have at least two years of experience with coding, prefer-
ably in Python, to assess both the queries and returned code snippets by both
systems.

• Participants should be at least 18 years old.

• Participants should work on code at least weekly to ensure they know about
recent developments and regularly use code in practice.

• Participants should acknowledge they search for code whenever they are coding
in one way or another, either through Google, ChatGPT, StackOverflow or
other tools.

After meeting these requirements, the participants are asked to fill out a consent form
to have their data anonymously used in the analysis. Both in storing their conver-
sation data in the MongoDB system and analysing their answers in the technology
acceptance model 2 questionnaire.

3.2.3 Experiment design and procedure

This section describes the experiment that will be performed based on the creation
of the software artifact. The experiment is an example of how the software artifact
could be evaluated in practice and how it could be improved to improve the scientific
knowledge base it is based on. The following subsections will describe all experiment
elements, the detailed design, the choice of queries and the practical procedure.

Experiment Design

The experiment will be conducted using a within-subjects experiment design, where
all participants use both a baseline semantic code search engine and the intent-
enhanced code search engine. The participants will receive a list of queries based
on different categories as described in 3.2.3. They will then use these queries in both
search engines and assess the results by giving qualitative feedback for each query. Af-
ter this iterative process, the participant is asked to complete the TAM2 questionnaire
to evaluate the intent-enhanced code search engine. The combined analysis of the ex-
periment as well as the questionnaire, will be the evaluation of the intent-enhanced
code search engine.

https://huggingface.co/hamzab/codebert_code_search
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Query Selection

The pros and cons of using pre-determined queries and task-based interaction were
weighed to assess the usefulness of the intent-based search engine compared to the
baseline. As both seem like viable options to evaluate the use of a code search engine
in practice, the research objective has to be central in the choice for the experiment.
As the research objective is to evaluate the use of intent and entity modelling on the
semantic code experience of software engineers, the logical choice seemed to isolate
the intent/entity variables as much as possible in the study. Using a programming
task-oriented experiment could result in the users randomly looking for things in their
own different way, therefore introducing much noise to the evaluation process. This
is the main reason the choice was made to present the user with a list of queries
they can reference to search for results in both search engines. Simultaneously the
users should not just all use the same possibly biased list of queries, which is why
based on these categories and example queries, the users will be allowed to imagine
three queries based on their own experience. The users then evaluate the results and
provide feedback on whether they are satisfactory to their query. This allows the
software artifact to apply reinforcement learning and improve its effects in the long
term for these types of queries. The following queries were selected and categorized
based on the kind of operations the query is asking for:

1. Category 1: Data Conversion

• Convert int to string
• String to date
• Convert a date string into yyyymmdd
• Serialize/Deserialize JSON
• Convert string to number

2. Category 2: Data Manipulation

• Sort string list
• Deducting the median from each column
• Get unique elements
• Filter array
• Group by count

3. Category 3: Data Storage and Retrieval

• Save list to file
• Connect to SQL
• Read text file line by line
• Extracting data from a text file
• How to read .csv file in an efficient way?

4. Category 4: Network Communication and Security

• AES encryption
• Custom HTTP error response
• Sending binary data over a serial connection
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• How to get HTML of website
• Get current IP address

The categories were chosen based on a semantic cluster analysis and topic mod-
elling to see the most occurring keywords in each cluster. This process will be ex-
plained in the following subsection.

3.2.4 Cluster Analysis

As the code snippet dataset after indexing consists of vectors with 768 dimensions, it is
possible to create a clustering based on the semantic vector representation of the code
snippets. One of the most well-known and used algorithms to do this unsupervised
is k-means clustering [74]. However, as there are more than 100.000 code snippet ex-
amples in the experiment dataset, all with their 768-dimension vector representation,
it would require out-of-this-world computational power. Therefore dimensionality re-
duction methods were considered. By reducing the number of dimensions to the top
x dimensions that capture the most semantic meaning, it is possible to create clusters
based on these dimensions. Using the dimensionality reduction technique Principal
Components Analysis (PCA) [93], the number of dimensions for each item was re-
duced from 768 dimensions to only the first three dimensions to create a 3d visual of
the clusters.
First, the elbow method was used to determine the optimal number of k clusters [24]
for the k-means algorithm. Then based on this optimal number, k-means clustering
was applied. When all clusters were created, the highest frequency of words for each
cluster was determined. Based on these words and snippets, the above categories
were defined for use in the experiment. No matter the input dataset, combining these
technologies allows for the unsupervised cluster analysis of the index.

Experiment Procedure

The following list shows the procedure performed for each participant within the
experiment. They will be done in private one-to-one sessions to avoid bias from
multiple users using the system simultaneously and talking to one another about it.
Or, if one-to-one is not an option and the participants are together, they are not
allowed to communicate about their usage of the code search engines.

1. Ask participants to fill out the consent form in Appendix C.

2. Ask participants for demographic data: age, gender, job type and years of
programming experience.

3. 1-2m explain the purpose of the study and show the first search engine.

4. Give the participant a list of queries and categories on which to base their
queries on. And allow the users to call their queries and play with the search
engine to their liking.

5. Show the second search engine and repeat the previous step with the same
queries.

6. Gather qualitative user feedback on interacting with both of the systems. For
each of the queries. In the intent modelling search engine, users can provide
feedback within the system for each retrieved code snippet.
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7. 5-10m Have the user fill in the TAM2 questionnaire and explain questions that
the user does not understand.

8. Finish up by thanking the participant for their time and effort.

3.2.5 Data collection and analysis

Data will be collected by surveying the relevance of every item for the baseline com-
pared to the intent-based bot. They will assess relevance based on a 7-point Likert
scale distribution. The conversations will be stored in a MongoDB database and a
local JSON file alongside this relevance evaluation. The structure of the MongoDB
contains the conversation data, including the queries the user said, the proposed ac-
tion based on the intent calculation, and the reply the chatbot gave based on the
user’s query. The following statistical measures will be used to measure the results
from the experiment data.

Descriptive Analytics

Descriptive statistics are the numerical and graphical techniques used to organise,
present and analyse data [37]. They are a relatively easy way to describe the results
of the presented survey, such as the mean, median and mode of the answers given to
the questions. Moreover, the frequency of feedback keywords can also be described
to show users’ general qualitative feedback while using both search engines.

Factor Analysis

Factor analysis is a technique used to reduce a large number of variables into fewer
numbers of factors. In this study, factor analysis will primarily decrease the number
of factors used in the TAM2 model only to include the variables with the maximum
common variance. This allows for a more straightforward analysis of the results.
Instead of analysing the results of all questions separately, it is possible to cluster
the statements to the fundamental concepts of the TAM2 model and report on the
relationships between them.

Chronbach’s Alpha

To address the reliability of the study, which is the degree of probability one would
obtain the same result if the study were carried out again under the same circum-
stances as it was done now, Cronbach’s alpha was used. A measurement instrument
is concerned with the extent to which an instrument - in this case, the experiment
survey and TAM2 questionnaire - measures what it intends to measure [122]. Cron-
bach’s alpha describes how much each measured item is correlated with every other
item measured, therefore measuring the extent to which high responses go with highs
and low responses go with lows across all items [69]. When combining this with factor
analysis, it is possible to create a reliability measure for each of the different aspects
of the TAM2 questionnaire and the reliability of the experiment survey for each ques-
tion. A Cronbach’s Alpha value of 0.8 is considered highly reliable, which is why that
value will be used as a benchmark for measuring the reliability of this study for each
of the instruments.
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3.2.6 Technology Acceptance Model 2

The Technology Acceptance Model (TAM) is a widely used theory in the field of
computer science research that was first proposed by Davis[26]. The original TAM
proposed that users’ acceptance of new technology is primarily determined by per-
ceived usefulness (PU) and perceived ease of use(EU). Perceived usefulness refers to
the degree to which a user believes that using the technology will improve their per-
formance, while perceived ease of use refers to the degree to which a user believes
that using the technology will be effortless [26]. The TAM has been extensively used
and validated in various studies. Still, it has also been criticized for its limitations,
such as its inability to account for social influence and contextual factors. In re-
sponse to these criticisms, Venkatesh and Davis proposed an extension of the TAM
called TAM2 [126], which incorporates additional factors that influence technology
acceptance, such as social influence, cognitive instrumental processes, and affective
instrumental processes. The TAM2 proposes that users’ acceptance of technology
is influenced by its perceived usefulness, ease of use, and external variables, such as
social norms, subjective norms, image, and job relevance [126].

In this study, TAM2 was used to evaluate the acceptance of the intent-based
search engine. Appendix B contains the Google form used to evaluate the intent
modelling system of which the results will be used for the final evaluation. The
following list shows the different categories of the TAM2 model along with their
evaluation questions for the intent-modelled code search engine. For each question,
there is a 7-point Likert scale for the participants to fill in with the following values
regarding their degree of agreement or disagreement: extremely likely (1), quite likely
(2), slightly likely 3), neither (4), slightly unlikely (5), quite unlikely (6), extremely
unlikely (7).

Before the main TAM questions are asked, the TAM2 model also assesses the
influence of two more processes, Social Influence and Cognitive instrumental [126].
To assess these processes in the current setting, several starting questions will be
asked each participant before filling out the questionnaire. Assessing the voluntari-
ness (V), experience(E), subjective norm(SN), image (I), job relevance (JR), output
quality(OQ) and result in demonstrability(RD). The following lists show the questions
for the TAM2 questionnaire.

1. Social influence

• SN: To what extent do you feel compelled to respond to the following
questions in a specific manner?

• V: To what extent do you perceive the adoption of this system as volun-
tary?

• I: How likely will you be judged by other coders for using a code search
engine in this manner?

• E: What is your experience in searching for code in search engines?

2. Cognitive instrumental

• JR: Do you think the search engine is relevant for your job?
• OQ: How well does the search engine perform the tasks that match your

job relevance?
• RD: Are you able to see and understand the results from using intent

modelling in a search engine?
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• Perceived Ease of Use (EU)

– EU1: An intent-based code search engine would be easy to learn and use.
– EU2: The search engine would not require extensive training to use effec-

tively.
– EU3: It would be easy to remember how to use the search engine.
– EU4: Using the search engine would be effortless.
– EU5: It would be easy to become skilful at using the intent-based search

engine.

• Perceived Usefulness (PU)

– PU1: An intent-based code search engine would improve the efficiency and
effectiveness of code searches.

– PU2: It would increase the accuracy of search results.
– PU3: It would improve searching for alternatives when the code is unavail-

ablez.
– PU4: It would save time when searching for code.
– PU5: Using the search engine would be valuable to completing coding

tasks.
– PU6: Using the search engine would make it easier to do my job.
– PU7: I would find the search engine useful in my job.

• Self-predicted future use/Intention to use (IU)

– IU1: I predict that I would regularly use an intent-based code search engine
in the future.

– IU2: I would prefer using the intent-based code search engine over a base-
line code search engine for searching code.

The participants of the experiment will assess these questions after they have used
the baseline code search engine as well as the intent-enhanced code search engine.

3.2.7 Experiment Summary

The experiment is conducted in practice by following the following steps.

1. Objective

• The experiment objective is to evaluate the use of intent and entity mod-
elling on software engineers’ semantic code search experience. Further-
more, feedback from the software engineers is gathered to improve the
software artifact to contribute to the broad scientific knowledge base.

2. Participants

• The participants in the study have experience with using search engines
and programming code as described in section 3.2.2.

• The participants in the study will have to sign the consent statement pre-
sented in Appendix C in their preferred language. These statements ex-
plain to the participants the implications of participating in the study, as
well as what steps are performed in the study.
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• The participants will be asked about their age, gender, job type and years
of experience in programming.

3. Design and procedure

• The experiment is a within-subjects design, each participant uses the base-
line flask search engine and the intent modelling-based search engine.

• The order in which the participants use either the baseline or the intent
first is randomized 50/50 to avoid potential order bias effects.

• The order in which the participants use either the baseline or the intent
first is randomized 50/50 to avoid potential order bias effects.

• The participants receive a set of predetermined queries from CodeSearch-
Net [56] and CodexGlue [79] for benchmarking and evaluation purposes.

• For each of the queries asked the user will be asked to evaluate the perfor-
mance of both search engines and give feedback on how performance may
be improved.

• After using both search engines the participants are asked to fill in a 7-
point Likert scale TAM2 questionnaire to evaluate the acceptance of the
innovation in the code search field. This 7-point TAM2 questionnaire will
first be explained, with all questions and metrics using the same text to
decrease bias in reporting on the questionnaire.

4. Data Analysis

• Data is collected using the saved conversations in the MongoDB, in the
local JSON data dump and retrieved from the answers to the TAM2 ques-
tionnaire and additional feedback.

• The 7-point Likert scale TAM2 results will be analysed using descriptive
statistics per question, and factor analysis for each category of TAM2 ques-
tions. Furthermore, Cronbach’s alpha, a measure of internal consistency
reliability will be used to assess the extent to which the items in the scale
are measuring the same construct [20].

• User feedback from the questionnaire and conversation data from Mon-
goDB and local JSON will be used to improve the intent and entity clas-
sifiers. User annotations can also be used to improve the training process
for the intent-based search engine.

• User feedback will be thematically analyzed to identify common themes
and suggestions for improvement of the software artifact.

5. Conclusion

• Based on the analysed data it is possible to conclude the evaluation of
the intent-based search engine. Showing the major perceived differences
by adding intent modelling features to the search experience. Therefore
concluding this study.

• Feedback analysis may show areas of future improvement and other ways
the software artifact may iteratively improve itself in context.



38

Chapter 4

Results

In this chapter, we present the results of implementing the software artifact, high-
lighting the changes made and the impact of user feedback during the evaluation
process. The chapter is structured into several parts, each focusing on the software
artifact’s development and validation. Firstly, we discuss the software artifact created
based on the problem investigation conducted in Chapter 2, which was informed by a
comprehensive literature study. Next, we delve into the impact and contributions of
the software artifact, followed by an exploration of the validation process. Through-
out the development of the artifact, we followed the MCDM framework guidelines,
as outlined in Section 1.4.1, ensuring that the software artifact aligned with the re-
quirements obtained from evaluations and the scientific knowledge base established
through the SLR.

4.1 Design Science
The following section depicts the results of the implementation of the artifact, what
changes were made and how the user feedback during the evaluation changed the
artifact in context. The section is split into different parts, explaining the software
artifact created from the problem investigation in the form of the literature study
shown in Chapter 2, the impact and contributions, and the validation. Following
the MCDM framework guidelines described in section 1.4.1, the software artifact was
created based on the requirements acquired from the evaluations and the scientific
knowledge base built in the SLR.

4.2 Software Artifact Development
The development of the software artifact prototype was primarily driven by the the-
oretical framework created during the SLR. In this section, we provide an overview
of the software artifact prototype, emphasizing its development process and the theo-
retical framework derived from the SLR. We explain the rationale behind the choices
made for different techniques and components, which were extensively discussed in
Chapter 2. Specifically, we elaborate on the design choices related to qualitative
decision-making methods discussed in Section 2.2.6 and quantitative decision-making
methods explored in Section 2.2.5. By referring to the literature study, we demon-
strate how the software artifact aligns with the findings and recommendations derived
from previous research.
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4.2.1 Overview of the Software Artifact Prototype

This subsection presents a comprehensive overview of the software artifact prototype,
focusing on its main features, functionalities, and approach to addressing the iden-
tified problem. Additionally, we emphasize any unique or innovative aspects of the
artifact that distinguish it from existing solutions.

The artifact was systematically developed through coding in Python, Vue, Mon-
goDB, and the setup of ElasticSearch using Docker. We carefully considered the
requirements gathered from evaluations and insights from the literature study con-
ducted in Chapter 2 during the development process.

The software artifact prototype consists of several key components: indexing,
querying, ranking, searching, and user intent modelling. Each component was metic-
ulously designed to fulfil specific tasks and work harmoniously within the system.
Moreover, the artifact incorporates modularity, allowing each component to be easily
reused in different settings or implementations. Table 4.1 presents the concrete imple-
mentations of the theoretical framework described in the systematic literature review
(SLR) for each code search engine created. The table highlights that both code search
engines employ the same code indexing, retrieval, and ranking techniques. However,
the intent-enhanced code search engine stands out by utilizing intent modelling tech-
niques to enhance the overall code search experience.

Table 4.1: Comparison of Practices in Baseline and Intent-Enhanced
Code Search Engines

Components Baseline Code Search Engine Intent-Enhanced
Code Search En-
gine

Indexing CodeBert ElasticSearch CodeBert Elastic-
Search

Querying Text-based Input bar Conversational Agent
Ranking Multi-Feature Ranking Multi-Feature Rank-

ing (Intent Aware)
Searching CodeBert CodeBert

User Intent Modeling None Intent Classification
and Multiple Choice
Reinforcement learn-
ing

The baseline code search engine was created by using the Python Flask package.
This framework combines a backend connection to the ElasticSearch indexing and a
Google-like input query bar. The front end for the Flask application was written using
pure HTML. Figure 4.1 shows the Baseline code search engine with a participants’
query. Figure 4.2 shows the intent-enhanced code search engine and its recent search
feature, multiple choice and entity recognition. These are some of the intent modelling
features that can be seen from the application’s front end. The actual weighing
algorithm layer between RASA AI and ElasticSearch can be seen in the Python code
on GitHub.

4.2.2 Impact and Contributions

The software artifact prototype created during this study establishes a basis for other
researchers of code search to work from. While the initial idea was to apply these
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Figure 4.1: Example of the Baseline Code Search Engine with a
participants’ query

Figure 4.2: Example of the Intent-Enhanced Code Search Engine
with a participants’ query

new techniques to an existing open-source, easy-to-use code search engine, these were
not found during writing, resulting in a long development process. This was done to
ensure scientific reproducibility, so other machine learning models and intent mod-
elling techniques could easily be applied. The following areas of impact have been
considered while implementing the code search engine:

1. Enhanced Code Search Capability: The software artifact prototype that
combines semantic code search methods with user intent modelling improves the
code search capability beyond traditional keyword-based searches. The system
provides more accurate and relevant search results by understanding the context
and intent behind code queries. This enhancement saves developers time and
effort, accelerating the software development process.

2. Improved Code Reusability and Knowledge Sharing: The integration of
semantic code search and user intent modelling promotes better code reusability
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and knowledge sharing. Developers can express their intentions or requirements
naturally, allowing the system to retrieve relevant code snippets or modules.
This fosters code reuse and collaboration and reduce redundant code develop-
ment, contributing to shared code repositories and collective learning. While
systems like ChatGPT generate code with no license or credit, with a search
engine, developers can be rewarded for their contributions and adequately cited.

3. Self Learning and improving per use case: To manually annotate and
train the results, users can leverage a powerful tool called Prodigy. Prodi.gy is
a versatile annotation tool designed to facilitate the manual annotation process
and assist in training machine learning models. It offers a user-friendly interface
and various features that streamline the annotation workflow. In intent mod-
elling, the users can review the classifications the intent-enhanced code search
engine makes, thereby improving the algorithms.

4. Advancement in Natural Language Processing (NLP) Techniques:
The development of this software artifact prototype pushes the boundaries of
NLP techniques, particularly in code understanding and retrieval. Integrating
semantic code search methods with user intent modelling requires sophisticated
NLP algorithms that bridge the gap between human language and programming
code. These advancements contribute to the broader field of NLP, expanding
its applicability beyond traditional language processing tasks.

5. Usability and User Experience Enhancements: The prototype’s easy-
to-understand modular system ensures usability for developers of all experience
levels. The user-friendly interface and user intent modelling reduce the cognitive
burden and enhance the overall user experience. These aspects contribute to
human-computer interaction research, providing insights into designing intuitive
and efficient tools that effectively cater to user needs. Other methods of user-
intent-based user experience could also be studied in the future.

The following sections will describe the evaluation and validation of the devel-
oped software artifact in the form of an experiment comparing the baseline with
the intent-enhanced code search engine and providing a questionnaire on using the
intent-enhanced code search engine.

4.3 Experiment
The experiment was conducted over two weeks, evaluating two search engines in a
real-world environment with over 20 participants who all code, search for code and
evaluate code weekly. The following sections describe the experiment’s results and
answer the final and main research questions.

4.3.1 Quantitative results

To understand the experiment results, several exploratory quantitative analyses have
been done. The following figures show the demographic data of the participants. The
goal during participant selection was to mitigate as much sample bias as possible by
selecting a diverse range of participants in age, gender, job type, organization and
years of coding experience. Besides the participant quantitative data, the answers
were also analysed based on the code search engine used in the experiment. The
following sections describe the participant demographics in more detail, along with

https://prodi.gy/
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the comparison between the baseline and the intent-enhanced search engine in the
cases where it did or did not provide the users with valuable answers to their questions.

Participant Demographics

This section shows and analyzes the different demographic of the participants to
ensure the experiment is diverse. While the sample is relatively small, some general-
izability can still be attained from the results. Figure 4.3 shows the reported gender
of the participants, which shows most participants were men, but as there are only six
countries in the world where women make up more than 30 per cent of tertiary grad-
uates in information and communication technologies [27], the 25 per cent considered
in this study seems reasonable for the computer science field.

Figure 4.3: Participant reported gender

Figure 4.4 shows a big diversity in the job type of the participants, mainly con-
sisting of backend and frontend developers. During the study, it was surprising to
find how many people from different fields than pure backend development write code
weekly for their jobs and how this affects the type of queries they generate.

Figure 4.5 shows that many users were not willing to give the organization or
field at which they work for such an experiment, it also shows that there is a large
diversity of different organizations within the participant group and more than just
one organization was considered.

Figure 4.6 shows the overall coding experience of the participants. It shows that
most participants have 1-6 years of coding experience, with some outliers of 6-10+
years, regarded as senior developers. This ensures that the study is not performed
with just junior developers, possibly skewing the results, but that it is also validated
with more senior participants.

Answer Comparison

For the quantitative analysis of the answers, the participants were asked to rank and
evaluate each answers the search engine provided. Half of the participants started
using the baseline code search engine, while the other half started with the intent-
enhanced code search engine. Figure 4.7 compares the user evaluation of the code
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Figure 4.4: Participant reported job type

Figure 4.5: Participant reported organization or field of work

search engines whenever they provide a helpful answer. It shows that whenever
the code search engines provided a beneficial result at what place in the ranking
that answer was. On average, the intent-enhanced search engine ranked the helpful
answers higher than the baseline and provided valuable answers to more participants.
This can be seen by examining the bar charts; when all answers are answered, the bars
should consist of 3 different colours, which is more frequent in the intent-enhanced
code search engine. Furthermore, when the bar charts are lower, the answers were
found earlier in the provided results, meaning a lower bar chart with different colours
is considered a good result. In some cases, like with Participant 18, they found their
answers better and quicker in the baseline version of the search engine, the reasons
for which will be analysed in section 4.3.2.
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Figure 4.6: Participant reported years of experience
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Figure 4.7: Comparison of correct answer Metrics between the Base-
line Code Search Engine and the Intent-Enhanced Code Search Engine.
Showing that the participants on average rated the intent-enhanced re-
sults as being correct or relevant earlier, while also retrieving valuable

answers more frequently overall.

To determine whether the quantitative difference in the answers of both search en-
gines is statistically significant for the different systems and queries, a (Multivariate)
Analysis Of Variance ((M)ANOVA) along with a paired t-test has been performed.
The (M)ANOVA was done to see the statistical significance of the questions and
the difference in results based on the code search engine used. Table 4.2 shows the
(M)ANOVA results for both the Code Search Engine used and the queries the users
put in. Showing a significant difference in the code search engine used (p = 0.00308)
and no significant difference in the queries used or in the interaction between the
queries and the user code search engine. This test gives some insight into a statistical
difference in the ranking for both search engines. However, this is based on only 20
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participants, and 37 out of 120 results did not end up as a successful search, which is
why they were not considered for this analysis. Moreover, the paired t-test between
the systems for each query did not provide significant results, which could be due to
the inconsistent differences between the systems across all queries. However, the over-
all variation between the systems is still significant, which (M)ANOVA accounts for.
As (M)ANOVA has some assumptions on the dataset before use, like independence,
normality and homogeneity, which were all considered during the experiment.

Table 4.2: (M)ANOVA Results

Factor Df Sum Sq Mean Sq F value Pr(>F)
Code Search Engine 1 55.5 55.46 9.338 0.00308 **
Queries 2 6.1 3.07 0.517 0.59831
CSE:Queries 2 0.7 0.35 0.058 0.94349
Residuals 77 457.4 5.94

No Answer Comparison

In 37 out of 120 queries fired at both systems, the search engine did not provide
significant results to the participants. In these cases, the reasons for not providing
significant results were compared for both types of code search engines. Figure 4.8
shows the number of times the baseline search engine could not retrieve any beneficial
results compared to the intent-enhanced code search engine. It also shows the totals
and differences based on which search engine was used first. The left-side chart shows
the baseline results based on users who used the baseline first and the intent enhanced
first, in which no significant differences can be found. The right-side chart shows the
intent-enhanced results based on users who used the baseline and the intent-enhanced
first. The users who used the baseline first and then switched to the intent-enhanced
version were perhaps slightly easier on the performance of the intent-enhanced code
search engine because they were used to the answers the baseline provided earlier.

Figure 4.9 compares the reasoning for users to reject the answers the code search
engine provided. These reasons are explained in further detail in the qualitative
analysis. Still, this quantitative analysis shows that, generally, when users rejected
answers for the baseline search engine, they were more likely to blame this on the
search engine itself. At the same time, with the intent-enhanced system, they were
more likely to blame this on the knowledge base. Primarily when the users first used
one code search engine and got the results they were looking for, whereafter they
used the other search engine, they were more likely to blame it on the search engine
performance, seeing that it should be in the knowledge base.

4.3.2 Qualitative results

Besides quantitatively analysing the experiment’s results, qualitative analysis was per-
formed to map the differences between the search engines. This qualitative analysis
also leads to a broader understanding of the quantitative analysis and why partic-
ipants evaluated results in a specific manner. Whenever a code search engine re-
sponded helpfully, the participant was asked to elaborate on why they thought these
answers were helpful. Whenever the code search engine did not provide beneficial re-
sults, the participants were also asked why they thought the results were insufficient.
Figure 4.9 shows the participants’ answers to the close-ended questions regarding the
code search engine’s inability to provide an answer. Section 4.3.2 analyses the further
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Figure 4.9: Comparison of no correct answer responses by the par-
ticipants

reasoning of the users as to why they thought the answers were not helpful. Besides
the actual answers, the questions or user stories that the participants chose could
significantly impact their satisfaction with using the system. The full NVIVO [99]
project, along with all of the codings, source data, and mappings, can be found in
Appendix A.
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Participant Queries

As described in section 3.2.3, each participant was allowed the creative freedom to
design their queries so that the results would be helpful to them in a real-world
scenario. The participants were guided in their query creation by offering several
categories extracted from the knowledge base. NVIVO [99] was used to perform a
coding and qualitative analysis of the queries generated by the participants. The
following list shows the different codings applied to the user queries, which were
manually applied to each user story based on their contents. The first four are taken
from the categories defined in chapter 3, with the addition of Job-Related search
and Random Search. The Job-Related search coding was assigned when a user story
resembled some specific task the participant would do in their job. At the same time,
random searches are classified as searches that do not match any job relevance.

• Category 1: Data Conversion

• Category 2: Data Manipulation

• Category 3: Data Storage and Retrieval

• Category 4: Network Communication and Security

• Job-Related Search

• Random Search

Figure 4.10 shows a generic overview word cloud of all the words used in querying
the code search engines. Stop words like how, can, I, do etc. were left out of the
visualisation.

Figure 4.10: Word frequency in user stories of the participants

Table 4.3 shows the NVIVO [99] codes and the number of references for each code.
Some queries fit multiple codes, such as ’How can I connect a WordPress website with
an external SQL database?’, which fits Category 3 and 4 and is a Job-Related search
query. SQL is a method of storing and retrieving data, but since the query mentions
’external’, it is also considered part of network communication coding.

44 out of 60 queries were considered job-relevant; the following subsections will
analyse the relationship between query type and the possible negative or positive
result.
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Table 4.3: NVIVO Codes and References

Code References
Category 1: Data Conversion 9
Category 2: Data Manipulation 22
Category 3: Data Storage and Retrieval 28
Category 4: Network Communication and Security 18
Job Related Search 44
Random Search 4

NVIVO [99] allows for creating visualizations based on participant attributes, like
gender, years of experience or frontend developer. However, with the relatively small
sample size of each participant attribute, it could not find any relevant differences
between these groups.

Answer Explanation

To analyse the results qualitatively, whenever the search engine provided an answer,
relevant coding was created for every time the participant thought the answers were
correct and elaborated on them. Thirty-two elaborations were given with an answer
for the baseline code search engine, while 45 were given with the intent-enhanced
code search engine. These elaborations were coded and classified as either positive
or negative, as some say they are somewhat satisfied with the results but expected
more. Some other participants commented negatively, although they found the result
satisfactory enough: "It was the only answer with authentication, but not at all
related to my question.". Table 4.4 shows the different codings, with a classification
of them being successful or unsuccessful, along with some examples provided by the
participants.

Code Classification Description
Data Extraction Successful Discussing the extraction of

data from various sources
Solution Creation Successful Exploring the creation or

implementation of a solution
Package/Framework Mentioned Successful Mentioning or referring to

specific packages or frame-
works

Lack of Relevance Unsuccessful Expressing the absence of
relevant or helpful informa-
tion

Partial Answer Successful Responses that partially ad-
dress the question or provide
incomplete information

Positive Feedback Successful Expressing positive senti-
ments or satisfaction with
the provided results

Negative Feedback Unsuccessful Expressing dissatisfaction
or disappointment with the
search results

Table 4.4: Classification of Codes
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Code Baseline Intent Enhanced
Data Extraction 1, 3, 5, 9, 32

Solution Creation 2, 7, 10, 14, 30 9
Package/Framework Mentioned 4, 11, 16, 20, 23, 24 3, 22, 41

Lack of Relevance 12, 13, 15, 22, 26, 29 4, 11, 14, 15, 19, 21, 23,
26, 29, 31, 33, 34, 35,
39, 42

Partial Answer 2, 5, 8, 10, 12, 17, 22,
24, 25, 27, 28, 30, 32,
36, 37, 38, 40, 41, 43,
44, 45

Positive Feedback 1, 7, 13, 24, 26 1, 7, 13, 16, 18
Negative Feedback 4, 23

Table 4.5: Coded Query Indices, actual queries can be found in
Appendix A

Table 4.5 shows the different query indices and their categorization based on
the codings. These queries were assigned to a specific coding for each code search
engine. As seen in the table, the intent-enhanced search engine showed better results
regarding partial answers or answers that were ’closely related’ to the answer they
sought. Many participants also indicated that while the answers were not perfect, they
had the sense that they gave them some indication of where to look next or directions
for query reformulation. The following queries taken from the intent-enhanced code
search engine elaborations show this effect:

• ’They weren’t exact matches but they both gave me a right indication where I
could move on from, they both needed some extra details to be exactly what I
need, but the basis was what I was looking for.’

• ’This answer came closest to answering the main question. Same topic, different
threshold’

• ’the answer shows an example of coping a file from a networkpath to a local path
but can be used to do the otherway around’

Overall, when the query was concise and precise, the baseline code search engine
outperformed the intent-enhanced code search engine. However, when a participant
expanded their query or had a job-relevant vague query, the intent-enhanced code
search engine seemed to support them in searching.

The following section describes the qualitative results for when the participants
did not retrieve a helpful result from the code search engines.

No Answer Explanation

In some cases, the code search engine did not provide a helpful answer to the partici-
pants. In this case, the participant was asked to describe why they felt the code search
engine did not retrieve any relevant results. Most cases are visualized for each code
search engine in section 4.3.1. However, some participants also elaborated on their
specific cases when the code search engine did not provide beneficial results. These
cases were grouped and analyzed to see the most common problems when the code
search engine did not retrieve any relevant results for the participant. The baseline
code search engine had 19 cases, summarized below and compared to the 9 cases in



Chapter 4. Results 50

Category Baseline Intent
Fully Not Helpful 1,3,4,5,6,9,10,12,14,15,16,17,18 1,2,3,4,6,8
Partially Not Helpful 2,7,8,11,13,19 5,7,9

Table 4.6: Categorizations for why the code search engines did not
provide beneficial results.

the Intent-Enhanced code search engine. When the participants classified the results
as unsatisfactory, their queries were classified into two categories. The first category
describes those cases where the participants say there is no relevant item. In contrast,
the second category classifies all elaborations where the participant found one part of
the answer satisfactory but overall was dissatisfied with the results. Table 4.6 shows
these different categories and how many elaborations per code search engine were
classified.

This shows that for each code search engine, about fifty per cent of the results
marked as insufficient could have been marked as sufficient by any other participant
with the same query, as this came down to personal experience and possible random
variance of the participant with this exact query.

User Experience Feedback

During the experiment, all participants were also asked to give generic user experience
feedback on the search engine they were using. This feedback was considered dur-
ing the experiment and led to intermittent changes to the software artifact. Thereby
functioning as field testing for the relevance cycle proposed by Hevner [49]. The base-
line user experience feedback consisted primarily of participants finding the baseline
engine too basic, there were no numbers to show the index of the questions, the page
was too long, and they thought the boxes were not big enough to hold all of the code.
Some participants also provided some general feedback on the results from the code
search engine, saying the search engine returned very specific results while they were
looking for general ones and giving general negative feedback on the code search en-
gine. This feedback was considered by widening the general area of the code snippets
and adding score indicators and numbers to the question for easy referencing in the
survey. Overall, the UX feedback on the intent-enhanced code search engine was more
positive. Some participants mentioned the index missing, the scores not adding value,
and the entity recognition not adding value to the front end. Furthermore, multiple
participants said the syntax highlighting of the code snippets sometimes made the
code snippets very hard to read. This, along with the indexing and some bug fixes
regarding entity recognition, was addressed halfway through the experiment.

Summary of the responses

This section presents a broad summary of the participants’ responses when using both
code search engines. All participants are anonymized and for traceability marked
with a unique number. Some examples from the baseline code search engine’s results
include:

• Positive

– P4: This answer is not complete but pushed me towards the genshi package,
which I am going to try out.

– P11: Answer 1 seems to do the job
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– P12: this is what i want
– P14: For me the important part was about grouping the arrays, this answer

helps me with that part of the question.

• Negative

– P1: The program language was not even considered. Besides that, there
was nothing te be found about converting to a date type.

– P7: None of the results above were able to answer my question. Some
did contain some information about the panda library however none said
anything about sorting.

– P10: None of these results were on databases or creating new tables. Some
showed some things about keys of dictionaries though.

– P20: None of the answers mentioned anything about permissions or user
groups

And for the intent-enhanced code search engine:

• Positive

– P4: The first answer shows how to load a json using simplejson and then
render an html template with the data.

– P5: the answer shows an example of coping a file from a networkpath to a
local path but can be used to do the otherway around

– P6: I was looking for the code to solve my issue, and this query give me mul-
tiple variants for python, which is completely acceptable cause the frame-
work wasn’t specified

– P9: This search engine gave me a lot of code on tuples, which is a higher
level triplet.

• Negative

– P1: None of the results answered my question. I could got some informa-
tion out of it regarding how to connect to a SQL database.

– P7: None of the answers contain the pytorch library hence all are not
satisfactory.

– P11: Well, it’s maybe the best answer, though I expected a trunc(date) -
trunc(current date) in number of days as the answer.

– P19: The search engine didn’t seem to take bubblesort into account, there-
fore all of the returned options are not particularly helpful. However, the
first option at least suggests splitting up the data, which resembles a sorting
algorithm somewhat.

4.3.3 TAM2 Analysis

To analyse the TAM2 results, several different steps have been performed. Starting
with data preparation to ensure the data is clean and ready for analysis. Then some
descriptive statistics were created to give a broad understanding of the results. Lastly,
both reliability and factors were analysed to see if the results of the TAM [26] match
those of this study’s analysis.
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Data Preparation

For the analysis to be reliable, the raw questionnaire data first had to be cleaned.
The primary dataset was split into four parts, one for each primary identifier of the
TAM2 model; Subjective Norm, Ease of Use, Perceived Usefulness and Intention to
Use. Then, the actual questions were stripped to ensure a clean table for analysis in
R. The SN, V and I questions were reversed as their scaling was considered positive
towards seven instead of negative like the other questions. Then, the results were
exported into .csv format and imported into R for the statistical analyses of the
following sections.

Descriptive Statistics

The first analysis phase comes in the form of basic descriptive statistics on the results
of the different questions. One can achieve a basic image of the results and their
meaning in the study context by describing them. Figure 4.11 shows the different
responses the participants gave to each of the TAM2 questions. Overall the scores
are pretty positive, with a few outliers that will be explored later. Table 4.7 shows
the mean, median, mode, standard deviation (SD) and total range for each question.
It shows that the ease of use was generally perceived to be better than the perceived
usefulness, especially regarding job relevance and effectiveness. Many participants
could not see and understand the use of intent modelling in the intent-enhanced code
search engine, depicted by the extensive range in the RD question. And while some
participants thought they would find the code search engine relevant to their job,
the range of it and their experience in using code search engines was also extensive.
Overall, the participants would prefer using the Intent-Enhanced code search engine
over the baseline they used, regardless of which code search engine they used first
during the experiment. Not all participants would actually regularly use the code
search engine in the future. As we later analyse during the factor analysis, these
two questions are part of later factors, which explains the difference in the type of
question.
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Figure 4.11: Heatmap of Likert Scale responses of the TAM2 Ques-
tionnaire
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Table 4.7: Descriptive Statistics TAM2

Question Mean Median Mode SD Range

SN 2.55 2 1 1.74 5
V 2.5 1.5 1 1.88 5
I 2 1 1 1.38 4
E 2.3 1.5 1 1.81 6

JR 2.8 2.5 1 1.58 5
OQ 3.85 3.5 3 1.57 4
RD 3.35 3 4 1.88 6
EU1 1.9 2 1 1.12 4
EU2 1.7 1 1 1.22 4
EU3 1.5 1 1 0.69 2
EU4 2.15 2 1 1.09 4
EU5 2.1 2 1 1.03 3
PU1 2.25 2 2 1.03 3
PU2 2.2 2 2 1.06 3
PU3 1.75 1 1 1.12 4
PU4 2.7 3 3 1.42 4
PU5 2.75 2 2 1.56 5
PU6 3 3 2 1.49 5
PU7 3 2.5 1 1.81 5
IU1 2.55 3 3 1.20 5
IU2 1.8 1 1 1.24 3

To see which questions correlated with one another, a correlation matrix was cre-
ated using R. Figure 4.12 shows the correlation between the answers for each of the
questions proposed in the TAM2 questionnaire. It shows a strong correlation between
the first two Ease of Use questions EU1, and EU2 and between those and PU3. It also
shows a strong correlation between the two PU questions on job relevancy, PU6 and
PU7. These strong correlations are later represented together in the factor loadings
for the factor analysis. Remarkably, the participant’s experience and the other theo-
retical extension [126] TAM2 questions do not have any strong correlations with the
later questions. This also explains the low reliability of factor analyses compared to
the base TAM. Exceptions to this rule are the JR and OQ, which shows a relationship
in the job relevance questions, and RD questions, which show a mildly strong corre-
lation between recognizing the intent modelling and EU5, and PU3. Showing that
participants who recognized the intent modelling felt that it would be easy to become
skilful at using the search engine, as well as making it easier to improve searching for
alternatives when the code is not available.

Reliability Analysis

To ensure the questionnaire has a high level of reliability, Cronbach’s Alpha, the most
widely used objective measure of reliability [122], was used. It was developed by Lee
Cronbach in 1951 to measure the internal consistency of a test or scale and is expressed
as a number between 0 and 1 [122]. All different measures of the TAM2 [126] were
analysed for internal consistency and reliability. Generally, a value of 0.8 or higher
indicates a reliable action [20]. Table 4.8 shows the Cronbach’s Alpha results for the
total questionnaire and the internal reliability of all individual items. It also shows
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Figure 4.12: Correlation Matrix of all questions used in the ques-
tionnaire

the reliability of the questionnaire for each item dropped. Overall Cronbach’s Alpha
value is 0.89, indicating that the questionnaire has good internal consistency and
reliability. All items with a minus sign after their measure name display a negative
correlation with the other variables, which is logical because of the reverse scale of
these items.

Factor Analysis

Factor analysis is a method used to identify underlying factors of the questions asked
in the questionnaire. TAM2 inherently hypothesises that Ease of Use and Perceived
Usability are factors and that they correlate with the eventual self-predicted future
usage. This seems like a logical conclusion. However, the factor analysis is an ex-
ploratory technique and may provide different results from the hypothesis. This may
lead to discoveries beyond this questionnaire’s initial scope of TAM.

R was used to perform factor analysis in different ways. Using the Psych pack-
age in R, choosing the number of factors and the rotation function to calculate the
different factor loadings is possible. To give a broad exploratory view of the data,
it was analysed using multiple rotation functions, including the widely used varimax
function and the Promax function, to see if correlations between discovered factors
impact the overall analysis. Table 4.9 show the Factor Analysis results based on
the number of factors determined with Kaiser’s criterion. Kaiser’s criterion suggests
retaining factors with eigenvalues greater than 1, which is why an analysis with ten
factors was done to see which factors hold to this criterion. Figure 4.13 shows the
eigenvalues for each of the factors determined from the factor analysis. It shows that
6 is the maximum amount of factors with an eigenvalue of 1 or higher, which is why
6 factors were considered relevant for the final full analysis.

Usually, with the TAM2, the underlying concepts explored by the factor analysis
are expected to match the TAM2 concepts [126]. However, the factor analysis for
this questionnaire showed more possible factors underlying the data. This is probably
through the addition of several questions on job relevance, which seem to fit a different
aspect than the previously intended factor from the TAM2 model. Furthermore, most
concepts introduced in the theoretical extension were only used by a single question
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Table 4.8: Cronbach’s Alpha Analysis Results

Measure Raw Alpha Std. Alpha G6(smc) Avg_r
TAM2 0.89 0.91 0.99 0.33
95% Confidence Boundaries
Feldt 0.81 0.89 0.95
Duhachek 0.82 0.89 0.96
Reliability if an Item is Dropped
SN- 0.89 0.91 1.00 0.35
V- 0.90 0.92 1.00 0.36
I 0.90 0.92 0.99 0.35
E 0.90 0.92 0.99 0.36
JR 0.88 0.91 0.99 0.33
OQ 0.88 0.90 0.99 0.32
RD 0.88 0.91 0.99 0.32
EU1 0.88 0.90 0.99 0.32
EU2 0.89 0.91 0.99 0.32
EU3 0.89 0.90 0.99 0.32
EU4 0.88 0.90 0.99 0.32
EU5 0.89 0.91 0.99 0.33
PU1 0.88 0.90 0.99 0.31
PU2 0.88 0.90 0.99 0.31
PU3 0.89 0.91 0.99 0.33
PU4 0.88 0.90 0.99 0.32
PU5 0.88 0.90 0.99 0.32
PU6 0.88 0.90 0.99 0.32
PU7 0.88 0.90 0.99 0.32
IU1 0.89 0.91 0.99 0.33
IU2 0.89 0.91 0.99 0.33
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Figure 4.13: Scree Plot showing eigenvalues for each factor in de-
scending order, for all questions

for each idea; this could hinder the factor analysis and explain the negative Tucker-
Lewis Index (TLI) of -0.851 and high Root Mean Square Error of Approximation
(RMSEA) of 0.351.

Another dataset, consisting of only the Ease of Use, Perceived Usefulness and
Intention to Use, was used to compare the initial results to validate whether the
first seven questions negatively impacted the factor analysis reliability. This shows a
different picture for the analysis as the TLI of 0.854 for factoring reliability went from
negative to positive, offering drastically increased reliability for the original TAM [26]
questions. The RMSEA also shrank to 0.078, which describes a better fit. Figure 4.14
shows the Scree Plot generated from the factor analysis on the original TAM data,
depicting only three factors to have eigenvalues more significant than one. Therefore
Table 4.10 shows the factor analysis results using only three factors with the reduced
dataset. The following list shows the different extracted factors and their questions,
which, as shown in the table, do not entirely match the TAM components. This could
be due to the small sample size or questions not fitting the components well enough.

• PA1 - Accurate, Ease of Use and Job Relevance -> Intention to use

– PU2: It would increase the accuracy of search results.
– PU6: Using the search engine would make it easier to do my job.
– PU7: I would find the search engine useful in my job.
– IU1: I predict that I will regularly use an intent-based code search engine

in the future.

• PA2 - Easy to learn, alternative searching -> Preference over alternative

– EU1: An intent-based code search engine would be easy to learn and use.
– EU2: The search engine would not require extensive training to use effec-

tively.
– PU3: It would improve searching for alternatives when the code is unavail-

able.
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Table 4.9: Factor Analysis Results TAM2

Item PA1 PA3 PA5 PA2 PA4 PA6
SN 0.03 -0.16 -0.17 0.66 -0.08 0.26
V 0.13 -0.06 0.05 0.88 0.04 0.05
I 0.02 -0.05 0.00 -0.08 0.91 0.09
E 0.14 0.07 0.01 0.30 0.02 0.55
JR -0.08 0.65 0.46 0.11 0.31 0.50
OQ 0.44 0.36 0.30 0.29 0.64 -0.24
RD 0.41 0.24 0.69 0.35 0.03 -0.06
EU1 0.83 0.24 0.17 0.04 0.09 0.05
EU2 0.87 0.09 0.27 0.03 -0.12 0.09
EU3 0.36 0.16 0.57 -0.33 0.30 -0.10
EU4 0.49 0.27 0.51 -0.15 -0.11 -0.07
EU5 0.23 0.11 0.82 -0.05 0.00 0.34
PU1 0.42 0.47 0.25 -0.41 0.46 0.08
PU2 0.65 0.68 0.11 -0.07 0.00 0.00
PU3 0.84 0.08 0.12 0.14 0.16 -0.11
PU4 0.37 0.40 0.34 -0.42 0.08 -0.12
PU5 0.13 0.35 0.66 -0.33 0.22 -0.29
PU6 0.05 0.88 0.32 -0.17 0.06 -0.21
PU7 0.16 0.83 0.35 -0.09 0.05 0.05
IU1 0.17 0.91 -0.07 -0.07 -0.04 0.17
IU2 0.83 -0.02 0.12 0.00 0.17 0.24
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Figure 4.14: Scree Plot showing eigenvalues for each factor in de-
scending order, original TAM

– IU2: I would prefer using the intent-based code search engine over a base-
line code search engine for searching code.

• PA3 - Learning and usage curve, time improvement and efficiency -> Actual
coding task completion

– EU3: It would be easy to remember how to use the search engine.
– EU4: Using the search engine would be effortless.
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Table 4.10: Factor Analysis Results Original TAM

Item PA1 PA2 PA3
EU1 0.25 0.82 0.24
EU2 0.12 0.86 0.27
EU3 0.13 0.29 0.75
EU4 0.24 0.42 0.58
EU5 0.10 0.28 0.58
PU1 0.47 0.34 0.53
PU2 0.71 0.59 0.22
PU3 0.10 0.80 0.16
PU4 0.41 0.26 0.55
PU5 0.29 0.01 0.90
PU6 0.83 -0.03 0.45
PU7 0.78 0.12 0.41
IU1 0.93 0.12 0.02
IU2 0.01 0.85 0.17

– EU5: It would be easy to become skilful at using the intent-based search
engine.

– PU1: An intent-based code search engine would improve the efficiency and
effectiveness of code searches.

– PU4: It would save time when searching for code.
– PU5: Using the search engine would be valuable to completing coding

tasks.

The above-determined factors show a relationship between the questions that are
part of the factor. In general, these factors indicate a grouping between their items.
For example, when participants find the Intent-Enhanced code search engine accurate
and valuable in their job, their overall intention to use the search engine, regardless of
alternatives, would increase. Likewise, when they found the code search engine easy
to learn, and they provided them with suitable options compared to the baseline, they
preferred it over the baseline. IU2 had a very low loading with the first determined
factor, depicting a more subordinate relationship with the questions from that factor.
The third and final factor groups the questions by efficiency and completing specific
code tasks together.

Figure 4.15 summarises all statistical analyses performed with the TAM2 results.

4.3.4 Limitations

Factor analysis improves its quality when more input data is available. In this case,
the total number of questions equals the number of participants, so a complete variable
analysis could not be performed. When the same experiment was served with a sample
size of at least 50, the factor analysis may have shown the loadings more closely to the
actual TAM components. Furthermore, the reliability measures of the factor analysis
were considered flawed when all questions were analyzed. This is why the regular
TAM model was chosen for the final analysis. Some bias may also exist in the general
use of the code search engines, whenever participants know someone is watching them
and possibly judging their behaviour in using software, they make different decisions
and may evaluate their use differently. Nonetheless, the answers the participants gave
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Descriptive Statistics Factor Analysis Summary of Responses
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Easy to Learn EU1 1.9 1.12 0.88 0.25 0.82 0.24 45% 35% 10% 5% 5% 0% 0%
Require Training EU2 1.7 1.22 0.89 0.12 0.86 0.27 60% 30% 10% 0% 0% 0% 0%
Easy to Remember EU3 1.5 0.69 0.89 0.13 0.29 0.75 60% 30% 10% 0% 0% 0% 0%
Effortless EU4 2.15 1.09 0.88 0.24 0.42 0.58 35% 25% 35% 5% 0% 0% 0%
Easy to become Skillful EU5 2.1 1.03 0.89 0.1 0.28 0.58 35% 30% 25% 10% 0% 0% 0%
Efficiency PU1 2.25 1.03 0.88 0.47 0.34 0.53 25% 40% 20% 15% 0% 0% 0%
Accuracy PU2 2.2 1.06 0.88 0.71 0.59 0.22 30% 35% 20% 15% 0% 0% 0%
Searching for Alternatives PU3 1.75 1.12 0.89 0.1 0.8 0.16 60% 15% 20% 5% 0% 0% 0%
Save Time PU4 2.7 1.42 0.88 0.41 0.26 0.55 30% 10% 35% 10% 15% 0% 0%
Complete Tasks PU5 2.75 1.56 0.88 0.29 0.01 0.9 20% 40% 10% 10% 15% 5% 0%
Easier job PU6 3 1.49 0.88 0.83 -0.03 0.45 15% 30% 20% 15% 15% 5% 0%
Job relevance PU7 3 1.81 0.88 0.78 0.12 0.41 25% 25% 15% 10% 10% 15% 0%
Use Search Engine IU1 2.55 1.2 0.89 0.93 0.12 0.02 20% 25% 45% 5% 5% 0% 0%
Prefer Search Engine IU2 1.8 1.24 0.89 0.01 0.85 0.17 65% 10% 5% 20% 0% 0% 0%

Figure 4.15: A summary table showing the descriptive statistics,
factor analysis and a summary of all TAM2 responses

during the evaluation seem genuine and the participants were not holding back on
any criticism if it was due.

4.3.5 RQ4 How can the code search engine be evaluated?
Two different systems were considered to evaluate the improvements of an intent-
enhanced code search engine compared to a baseline copy. This evaluation was done
with 20 participants with experience in coding and searching for code. The assessment
consisted of an experiment where the results of both search engines were evaluated,
along with a TAM2 questionnaire to assess the acceptance of the intent-enhanced
code search engine. This shows multiple different ways in which one may evaluate
a code search engine and its possible enhancements. Therefore answering the fourth
and last research question: How can the code search engine be evaluated?. Section
4.3.1 and the team 4.3.2 show different quantitative and qualitative analysis methods
that have and can be applied to the experiment and TAM2 results. It offered a
significant difference between the baseline and intent-enhanced code search engines
and the overall technology acceptance of the intent-enhanced code search engine based
on the questionnaire. Showing three different factors that diverted from the usual
TAM, but showed underlying relationships between the answers to the questions. It
showed that different people use and expect different types of code search experiences,
along with areas of improvement.
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Chapter 5

Discussion

This chapter comprehensively evaluates the study’s implications in the scientific field
of semantic code search. It critically examines the methodology and validity of the
results, considering potential threats to validity. Additionally, the limitations of the
study are discussed. Subsequently, the practical implications of the findings are ex-
plored, and possible directions for future research are suggested. Furthermore, the
chapter addresses the practical developments and impacts of the study, considering
the current global attention to ChatGPT and Large Language Models (LLMs).

5.1 Threats to Validity
Threats to validity are significant considerations in any research study. In this section,
we assess the threats to construct, internal, external, and conclusion validity that may
impact the findings of this study.

5.1.1 Construct Validity

Construct validity pertains to selecting appropriate operational measures for the con-
cepts under study in the Systematic Literature Review (SLR). Several threats to
construct validity need to be addressed. Firstly, choosing databases and venues could
introduce limitations if they do not comprehensively cover the relevant literature.
To mitigate this, Chapter 3 explicitly specifies the databases and outlets utilized,
ensuring a broad scope of literature is considered. Additionally, the inclusion and
exclusion criteria for each phase of the SLR are clearly defined in the respective sub-
sections, minimizing the risk of inappropriate selections. Finally, expert evaluation,
as mentioned in [156], is crucial to validate the expertise of the surveyed software en-
gineers. The TAM2 questionnaire, including skill-related questions, aids in ensuring
the validity of the selected software engineers for the survey.

5.1.2 Internal Validity

Internal validity threats primarily pertain to the user evaluation conducted in this
study. It is crucial to address sample size considerations to ensure the validity of the
results. Surveying a small number of software engineers from the same company, who
share similar gender and age characteristics, may introduce a significant sample bias.
To mitigate this, a well-spread and representative sample size should be obtained
during the user experience survey. It is essential to avoid cultural bias by including
participants from diverse organizations. For example, software engineers working pri-
marily with C++ may not perceive Python code snippets as applicable. Additionally,
efforts should be made to minimize potential subjective quality assessments during
user analysis.
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5.1.3 External Validity

External validity concerns the generalizability of the study’s findings. Given the
specificity of the research domain, which focuses on the state of the art in code
search, the generalizability of the results is limited to a certain extent. Mapping a
large set of literature to extract key components aims to generalize the findings of
each study to their central concepts. However, there is a risk of overgeneralizing
specific techniques or implementation details that may not be universally applicable.

5.1.4 Conclusion Validity

Conclusion validity focuses on the accuracy and consistency of the study’s conclusions.
To ensure reproducibility, each step of the SLR is thoroughly described to enable
other researchers to achieve the same results. The software repository used in the
study will be made publicly available, facilitating the replication of the TAM2 survey
with different samples or modifying the system through repository forking. All steps
of the SLR are stored in Mendeley data for easy referencing and result validation.
While there is a potential for bias in study selection, this has been mitigated through
peer reviewing with fellow students in the SearchSeco research group and during the
Master of Business Informatics Colloquium course.

5.1.5 Study Limitations

Despite the efforts to maintain scientific validity, potential biases can still influence
the study’s results. For example, the experiments were conducted by participants
within the writer’s network, which introduces the possibility of sample bias. Most
participants were selected from second-line networks rather than direct colleagues to
mitigate this. Furthermore, diverse participants from different ages, backgrounds,
and genders were included to ensure sample diversity.

5.1.6 Ethical Considerations

In addition to the validity threats and limitations discussed above, it is essential to
consider the ethical implications of the design science approach and the experiment
conducted. The utilization of ChatGPT and Large Language Models (LLMs) has
garnered global attention due to their potential impact on society. Therefore, ethical
concerns regarding privacy, data security, biases, and algorithmic fairness should be
carefully addressed in the design and deployment of such systems. Furthermore, clear
guidelines and policies should be established to ensure these technologies’ responsible
and ethical use, considering the potential risks and consequences they may introduce.

5.1.7 TAM2 Questionnaire

To enhance the scientific rigour of the study, the Technology Acceptance Model 2
(TAM2) questionnaire was employed to assess users’ acceptance and perceptions of the
artifact. This questionnaire provides valuable insights into users’ attitudes, perceived
usefulness, ease of use, and other factors contributing to adopting the semantic code
search system. Furthermore, by considering users’ perspectives, the study gains a
deeper understanding of the practical implications and potential impact of the artifact
in real-world scenarios.



Chapter 5. Discussion 62

5.1.8 Ecosystem/organizational indexing

The software artifact provides classes to index any unstructured data (code/docstring
pairs) into a database using any pre-trained model. These indexing methods could
be applied to different datasets than the ones considered in this work: CosQA [54]
and StaQC [143]. At a bigger scale, the entire CodeSearchNet codebase could be
indexed, along with private or organizational repositories, allowing the search engine
to perform on organization codebases. The whole process can be hosted on-premises,
ensuring the organization’s hold of its data and understanding how the model works
to fine-tune and improve it.

5.1.9 Improvements in ML models

Like presented in the CodeSearchNet [56] challenge, multiple opportunities exist to
evaluate, benchmark and improve the existing machine-learning models in this space.
Aside from improvements in precision, recall, accuracy and F1 score, the software
artifact presented in this work also allows user testing using different models by
configuring the models used for indexing and embedding the user input. One could
also implement large language models like GPT-3.5 [14] and onwards to see the results
of applying LLMs in a semantic code search environment.

5.1.10 Intent modelling improvements

Another area for future research is combining (more) advanced user intent modelling
methods to the semantic search space. This thesis primarily focussed on basic intent
modelling and providing a baseline for measuring improvements in this field. More
advanced intent modelling techniques may be applied and evaluated using the sys-
tem. By training Rasa’s DIET classifier with a human-in-the-loop approach using
Reinforcement Learning with Human Feedback (RLHF) [158], the semantic search
engine could use reinforcement learning to improve results based on human feedback.

5.2 Practical Implications and Developments
The past year has seen many extensive NLP and AI developments. Generative AI
in the form of advanced Generative Pre-training Transformer (GPT) using Large
Language Models (LLMs) have taken the world by storm because of their capabil-
ities. Furthermore, extensive machine learning capabilities previously reserved for
researchers with the significant computing power available have become more ac-
cessible through large corporations like Amazon, Microsoft and Google, providing
consumers access to these hardware components. These developments can drastically
change the field of search engines since instead of searching for items, one could re-
generate them each time. This sparks an ethical discussion on power usage, data
privacy and closed-sourcing solutions. This study aims to steer away from this by
improving the searching algorithms used on smaller-scale datasets, open-sourcing the
workings of the algorithms and prototype, as well as allowing the possibility of hosting
everything on-premise to keep data privacy at the enterprise level.
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Chapter 6

Conclusion

This chapter finalises the work that has been done during this master’s thesis and
shows the overall conclusion of the study. The research questions will be answered,
and all research objectives and goals will be assessed.

6.1 What are the essential components for a code search
engine?

From an extensive systematic literature study, this thesis concludes that four critical
categories of components to a (code) search engine exist. Being an Indexing compo-
nent, a querying component, a ranking component and a searching component. We
found that these components are strongly related, and while some methods may be
modular, they often depend on implementing another component.

6.1.1 Indexing

This component ensures the input data is explicitly indexed so it is queryable, rank-
able and searchable. This thesis describes several methods of achieving this in chapter
2.

6.1.2 Querying

This component ensures the end user has an interface to interact with the search
engine. A user may query and retrieve indexed code by typing a textual query, code
query, or other means. Chapter 2 depicts different possibilities of querying a code
search engine and their respective attributes.

6.1.3 Searching

Once the code snippets are indexed by the indexing component and a user wants to
search using the querying component, the searching component searches the index
based on the user input. Many ways to handle modern vector search are described
in detail in the SLR analysis of chapter 2.

6.1.4 Ranking

A ranking component handles the ranking of the indexed code snippets based on the
similarity between them and what a user is looking for. Several ranking algorithms
are based on the indexing, searching and querying components. For example, older
ranking algorithms often use frequency analysis of words in a document, while newer
algorithms focus on the semantics of the words used rather than word occurrence.
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6.2 How can software developers’ search intent be mod-
elled to support them with the code search process?

Several different intent modelling techniques and their appliance in existing literature
were analysed to answer this second research question. In addition, other intent
modelling techniques - primarily based on machine learning classifiers - were evaluated
in creating the software artifact. The final software artifact used the user interaction
with the system to define different search intents and will improve based on user
behaviour. As the user intent is personal, users could either like or dislike code
snippets presented by the search algorithm, creating a personalised search experience
for the end users.

6.3 Which components should be employed in a code
search engine?

Research questions one and two form the basis to answer the third research question.
The evaluated components and the concrete implementation of the research prototype
together show which components should and can be employed together in a code
search engine. For the intent-enhanced code search engines, the following components
were used together to create the best code search experience based on recent research.
These components and their respective reasoning can be seen in figure 2.3 and in figure
2.4.

1. Indexing - CodeBert was used to index the code snippets as it is a pre-trained
codee input encoder/decoder and can be extended in the future using Abstract
Syntax Tree or other methods.

2. Querying - RASA AI was used as a framework for easily creating task-based
conversational AI, allowing flexibility in generating user intent or sending a
query to the search algorithm.

3. Searching/Ranking - Reinforcement learning and Cosine similarity were used to
search the indexed code snippets using an encoded query and the encoded code
snippets.

4. Intent modelling - The intent modelling components used in the code search en-
gine were a combination of RASA’s DIETClassifier machine learning algorithm
along with a multiple choice modelling system, allowing the user to pick the
best answers from a set of 10 results, which in time trains the algorithm based
on the human feedback given.

6.4 How can the code search engine be evaluated?
The final research question is answered by creating the research prototype and eval-
uating it during the experiment in this thesis, showing an evaluation method along
with how end users interacted with an intent-enhanced code search engine. This
study combined three areas for the evaluation, the Design Science relevance cycle, an
Experiment and a TAM2-based questionnaire.
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6.4.1 Design Science

Applying the relevance cycle while evaluating the different code search engines and
applying feedback attained from the users, both code search engines were constantly
improving. The intent-enhanced code search engine is self-learning through the feed-
back given by the user. This self-learning behaviour improved the personal code
search experience of the user, showing better alternatives and adopting the search
process to the user’s needs. This allows the intent-enhanced code search engine to
constantly evaluate its results based on human feedback and create its dataset of
different users and their intention. On a large scale, this may show promising results
in mapping user intent in code search.

6.4.2 Experiment

The experiment was analysed both quantitatively and qualitatively. Using different
techniques described in Chapter 4. The intent-enhanced code search engine outper-
formed the baseline code search engine regarding results. While the baseline code
search engine was sometimes able to instantly come up with the specific solution to
a problem described by the user, when the queries became more complex and did
not have a single answer, the intent-enhanced code search engine tended to assist the
participant in finding the right direction or scope.

6.4.3 TAM2

Besides evaluating both code search engines, the participants also answered questions
from a TAM2 questionnaire. It showed overall positive results, with the intention of
actual use of the code search engine being steered primarily by the job relevance
depicted by participants. The TAM2 results show that the participants found the
intent-enhanced code search engine easy to use and learn, and the results provided
strong alternatives to what they were looking for. Many participants mentioned that
after finetuning and indexing their specific codebase, they would consider using the
code search engine in their weekly routine.

6.5 How can code search engines understand software
developers’ intentions?

The main objective of this study was to gain insight into the workings of semantic
code search engines and evaluate how the end-user experience could be improved by
applying intent modelling to this process. Using many different techniques described
in Chapter 2 and 3, two semantic code search engines were created, one applying
intent modelling techniques and one without using them. By evaluating the intent
modelling in the code search engine, we get a broad image of the improvements intent
modelling brings, but also into the research gaps still existent. Unfortunately, there
is no uniform answer to the main research question, as all software developers, user
stories, and cases differ. However, this study showed the successful implementation of
intent modelling techniques within semantic code search and showed what elements
improved the user experiences and possible adoption of such a system. The near
future might have Large Language Models predict user intent on a per-use case basis,
and the recent rise of AI systems may be able to brute force itself into understanding
human intent at any time. While software developers’ intentions are not yet fully
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mapped when using search engines, this study takes an exploratory leap in semantic
code search and intent modelling, showing a good baseline for future studies.

6.6 Future Research Directions
The findings of this study pave the way for future research in the field of semantic
code search. Several potential research directions can be explored based on the iden-
tified limitations and areas for improvement. For example, further investigations can
focus on refining the search algorithms, enhancing the recommendation accuracy, and
expanding the scope of languages and code repositories covered. Additionally, explor-
ing the integration of machine learning techniques, natural language processing, or
other advanced technologies can contribute to developing more efficient and effective
code search systems.
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Appendix A

SLR Data

All data for the literature study, the raw experiment, and TAM2 data, as well as
github repository used in this thesis, can be found at Zenodo:
https://zenodo.org/record/8038948 https://zenodo.org/record/8038520

https://zenodo.org/record/8038948
https://zenodo.org/record/8038520
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Appendix B

User Experience Evaluation

This appendix contains the setup for the user experience evaluation.
Three separate Google Forms were used during the evaluation of the intent-enhanced
search engine. Two were used to survey the feedback users had on the results provided
by the search engines, and to avoid bias one was for the users using the baseline first,
while the second one was filled in by users who used the intent-enhanced system
first. The form itself does not say whether it is used for the baseline first or the
intent-enhanced system first, to not create possible bias.

Baseline First

Intent First

The third Google Form was used to gather qualitative feedback using the TAM2
model: TAM2

The Baseline Endpoint was used by calling a Flask endpoint at port 8080 and the
Intent Enhanced chatbot was used by calling a custom VueJS application running
on port 5173. These search engines are both called an ElasticSearch index instance
running at the machine at port 9200. To conveniently call these different endpoints
Teamviewer or a reverse proxy was used, to ensure a secure connection to the appli-
cations.

https://docs.google.com/forms/d/e/1FAIpQLScdNusY7Da26ODfuAEXewztH6ILcYmaHW8ROl3c08Oh3zIjjg/viewform
https://docs.google.com/forms/d/e/1FAIpQLScntQcRYIzYZo0hpFpPITeeBAnSWWo-kPcc1FEcuzi0x2MXpA/viewform
https://docs.google.com/forms/d/e/1FAIpQLSf8xssLXlnDnyNZu7G5k0hf6gyNDMKdWUtdWbQsf0E2fKMxUQ/viewform
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Appendix C

User Consent Form

This appendix shows the participant consent form to be signed by the participants
in the experiment. It contains both an English version as well as a Dutch version for
the primarily Dutch participants.

C.1 English

Information for subjects invited to participate in (social) scientific research
A study on using user intent modelling to improve semantic code search

results 31-03-2023, Utrecht
Dear Sir, Madam,
Introduction
Through this letter, we would like to invite you to participate in the research

project A study on using user intent modelling to improve semantic code
search results. The purpose of this study is to assess the extended value of applying
user intent modelling to the semantic search process of code snippets.

Design/execution of the study The study will be executed by having the
participant use both a baseline semantic search engine along with Snippetsage, our
user intent extended model of the semantic search engine. A set of queries is given to
each participant and the participant is then asked to assess the answers in terms of
relevance for each answer. After several queries and their answers have been evaluated
the participant is asked to fill out a questionnaire on their usage and predicted future
use of the system. General feedback is also asked and highly appreciated for the
study.

Background of the study This study uses two semantic code search applica-
tions, both using the same programmed backend but with the main difference being
one application calls the algorithm while the other uses intent modelling to improve
the results based on the user intent. Different machine learning algorithms are used
to embed the query string into vector space to improve search results, the main goal
of the research is to assess to what extent user intent modelling can improve the
search process and results.

What is expected of you as a participant The participant is expected to join
a 15/30-minute experiment in using both a regular semantic code search engine given
a set of queries as well as in our created intent extended search engine. After this,
we ask you to fill in a questionnaire to assess the quality and possible improvements
of the system.

Confidentiality of data processing None of your personal data aside from
your first name will be stored for credibility and future reference of the study. Other
data that is stored consists of the anonymized answers to the questionnaire, along
with anonymized conversation data with the conversational agent. Any possible con-
nections to your real-life identity will be destroyed before any publication.
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Voluntary participation Participation in this study is voluntary. You can end
your participation in the study at any time, without any explanation and without any
negative consequences. If you end your participation, we will use the data collected
up to that point, unless you explicitly inform us otherwise.

Independent contact and complaints officer If you have an official complaint
about the study, you can send an email to the complaints officer at klachtenfunctionaris-
fetcsocwet@uu.nl.

If, after reading this information letter, you decide to take part in the research, I
would kindly ask you to sign the attached reply slip and hand it to the researcher(s).

With kind regards,
Chris Pfaff,
Master Student Business Informatics
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Consent statement: I hereby declare that I have read the information letter
about the thesis A study on using user intent modelling to improve semantic code
search results and agree to participate in the study.

First Name <Do not include any further identifying information, such as a subject
number or other codes, date of birth, etc.>

Date:
Signature:
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C.2 Dutch

Informatie voor deelnemers uitgenodigd om deel te nemen aan (sociaal) wetenschap-
pelijk onderzoek Een studie over het gebruik van gebruikersintentie-modellering
om de resultaten van semantische code-zoekopdrachten te verbeteren 31-
03-2023, Utrecht Geachte heer, mevrouw, Inleiding Via deze brief willen wij u
uitnodigen om deel te nemen aan het onderzoeksproject "Een studie over het
gebruik van gebruikersintentie-modellering om de resultaten van seman-
tische code-zoekopdrachten te verbeteren". Het doel van deze studie is om de
toegevoegde waarde te beoordelen van het toepassen van gebruikersintentie-modellering
op het semantische zoekproces van codefragmenten.

Ontwerp/uitvoering van de studie De studie zal worden uitgevoerd door de
deelnemer zowel een basislijn semantische zoekmachine als Snippetsage te laten ge-
bruiken, ons gebruikersintentie-uitgebreide model van de semantische zoekmachine.
Aan elke deelnemer wordt een set zoekopdrachten gegeven en vervolgens wordt de
deelnemer gevraagd om de antwoorden te beoordelen in termen van relevantie voor
elk antwoord. Nadat verschillende zoekopdrachten en hun antwoorden zijn geëval-
ueerd, wordt de deelnemer gevraagd om een vragenlijst in te vullen over hun gebruik
en voorspelde toekomstige gebruik van het systeem. Algemene feedback wordt ook
gevraagd en zeer op prijs gesteld voor de studie.

Achtergrond van de studie Deze studie maakt gebruik van twee semantische
code-zoektoepassingen, beide met dezelfde geprogrammeerde backend, maar met als
belangrijkste verschil dat de ene toepassing het algoritme oproept terwijl de andere
gebruikersintentie-modellering gebruikt om de resultaten te verbeteren op basis van
de gebruikersintentie. Verschillende machine learning-algoritmen worden gebruikt
om de zoekopdrachtstring in vectorruimte in te sluiten om zoekresultaten te ver-
beteren, het belangrijkste doel van het onderzoek is om te beoordelen in hoeverre
gebruikersintentie-modellering het zoekproces en de resultaten kan verbeteren.

Wat er van u wordt verwacht als deelnemer Van de deelnemer wordt
verwacht dat hij deelneemt aan een experiment van 15/30 minuten waarin zowel een
reguliere semantische code-zoekmachine wordt gebruikt voor een set zoekopdrachten
als onze gecreëerde intentie-uitgebreide zoekmachine. Daarna vragen wij u om een
vragenlijst in te vullen om de kwaliteit en mogelijke verbeteringen van het systeem
te beoordelen.

Vertrouwelijkheid van gegevensverwerking Geen van uw persoonlijke gegevens,
behalve uw voornaam, wordt opgeslagen voor geloofwaardigheid en toekomstige ref-
erentie van het onderzoek. Andere opgeslagen gegevens bestaan uit geanonimiseerde
antwoorden op de vragenlijst, samen met geanonimiseerde gespreksgegevens met de
gespreksagent. Eventuele mogelijke verbanden met uw echte identiteit zullen worden
vernietigd voordat er enige publicatie plaatsvindt.

Vrijwillige deelname Deelname aan dit onderzoek is vrijwillig. U kunt op elk
moment uw deelname aan het onderzoek beëindigen, zonder enige uitleg en zonder
enige negatieve gevolgen. Als u uw deelname beëindigt, zullen we de tot dat moment
verzamelde gegevens gebruiken, tenzij u ons expliciet informeert dat u niet wilt dat
we uw gegevens gebruiken.

Onafhankelijke contactpersoon en klachtenfunctionaris Als u een officiële
klacht heeft over het onderzoek, kunt u een e-mail sturen naar de klachtenfunctionaris
op klachtenfunctionaris-fetcsocwet@uu.nl. Als u na het lezen van deze informatiebrief
besluit om deel te nemen aan het onderzoek, wil ik u vriendelijk verzoeken om het
bijgevoegde antwoordformulier te ondertekenen en aan de onderzoeker(s) te over-
handigen. Met vriendelijke groet, Chris Pfaff, Masterstudent Bedrijfsinformatica
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Toestemmingsverklaring: Hierbij verklaar ik dat ik de informatiebrief over
de scriptie Een studie naar het gebruik van gebruikersintentie-modellering om de
resultaten van semantisch code-zoeken te verbeteren heb gelezen en akkoord ga om
deel te nemen aan het onderzoek. Voornaam <Voeg geen verdere identificerende
informatie toe, zoals een subjectnummer of andere codes, geboortedatum, etc.>

Datum:
Handtekening:
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Appendix D

Code

This Appendix shows R, Python and other codes used during the creation of the
software artifact and during quantitative and qualitative analysis.

D.1 R Code for Statistical Analysis

D.1.1 R Code for Quantitative Analysis

The following code snippets show the ANOVA and T-Tests performed to do the
quantitative analysis depicted in Chapter 4.

1 #Read CSV Data into dataframe
2 data <- read.csv(" ExperimentAnova .csv")
3

4 #Split query results per search engine
5 baseline _ queries <- paste0 (" baseline _query", 1:3)
6 intent _ queries <- paste0 (" intent _query", 1:3)
7

8 # Create seperate dataframes for the baseline and intent -
enhanced results

9 baseline <- data[, baseline _ queries ]
10 intent <- data[, intent _ queries ]
11

12 #Split the independent variables in the seperate queries
and the code search engine system used

13 queries <- rep(c(" query1 ", " query2 ", " query3 "), each =
nrow(data))

14

15 system <- rep(c(" Baseline ", " Intent "), each = nrow(data) *
3)

16

17 # Combine the dataframes again
18 combined _data <- data.frame(system , queries , performance =

c(as. matrix ( baseline ), as. matrix ( intent )))
19

20 #Use the Psych package to do the ANOVA analysis
21 result <- aov( performance ~ system * queries , data =

combined _data)
22

23 anova_ summary <- summary ( result )
24 print(anova_ summary )
25
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26 #Do a sampled T-test for all three different queries (
replaced baseline _ queryX and intent _ queryX )

27 result _ttest <- t.test(data$ baseline _queryX , data$ intent _
queryX , paired = TRUE , na. action = na.omit)

28

29 print( result _ttest)

D.1.2 R Code for TAM2 Factor Analysis and Cronbach’s Alpha cal-
culations

The following code snippets show the Factor Analysis and Cronbach’s Alpha calcu-
lations used for the quantitative analysis of the TAM2 questionnaire described in
Chapter 4.

1 TAM2Data <- read.csv(" TAM2Short .csv")
2

3 # Descriptive Statistics
4 likert _long <- melt( TAM2Data )
5

6 likert _freq <- likert _long %>%
7 group_by(variable , value) %>%
8 summarise ( Frequency = n())
9

10 likert _perc <- likert _freq %>%
11 group_by( variable ) %>%
12 mutate ( Percentage = Frequency / sum( Frequency ) * 100)

%>%
13 mutate (Label = paste0 (Frequency , " (", round(Percentage ,

2), "%)"))
14

15 mean_vals <- TAM2Data %>%
16 summarise ( across ( everything (), mean , na.rm = TRUE))
17

18 median _vals <- TAM2Data %>%
19 summarise ( across ( everything (), median , na.rm = TRUE))
20

21 mode_vals <- TAM2Data %>%
22 summarise ( across ( everything (), function (x) {
23 unique _val <- unique (x)
24 unique _val[which.max( tabulate (match(x, unique _val)))]
25 }))
26

27 sd_vals <- TAM2Data %>%
28 summarise ( across ( everything (), sd , na.rm = TRUE))
29

30 range_vals <- TAM2Data %>%
31 summarise ( across ( everything (), function (x) diff(range(x,

na.rm = TRUE))))
32

33 stats_df <- bind_rows(mean_vals , median _vals , mode_vals ,
sd_vals , range_vals)
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34 rownames (stats_df) <- c("Mean", " Median ", "Mode", "SD", "
Range")

35

36 likert _ colors <- c("# AFE1AF ", "# AFE1AF ", "# AFE1AF ", "#
FFC300 ", "# FF5733 ", "# FF5733 ", "# FF5733 ")

37

38 likert _perc$value <- factor ( likert _perc$value)
39

40 heatmap _plot <- ggplot ( likert _perc , aes(x = value , y =
variable , fill = value)) +

41 geom_tile(color = "white", width = 0.9, height = 0.9) +
42 scale_fill_ manual ( values = likert _colors , drop = FALSE)

+
43 labs(x = " Likert Scale Level", y = " Question ") +
44 ggtitle (" Heatmap of Likert Scale Responses ") +
45 theme_ minimal () +
46 theme(axis.text.x = element _text(angle = 0, vjust = 0.5)

,
47 plot.title = element _text(hjust = 0.5) ,
48 legend . position = "none")
49

50 heatmap _plot <- heatmap _plot +
51 geom_text(aes(label = Label), size = 3, color = "black")
52

53 heatmap _plot <- heatmap _plot + scale_y_ discrete ( limits =rev
)

54

55 heatmap _plot
56

57 # Create correlation matrix for TAM2 data
58 correlation _ matrix <- cor( TAM2Data )
59 corrplot :: corrplot ( correlation _ matrix )
60

61 # Cronbach Alpha results
62 alpha_ result <- psych :: alpha(TAM2Data , check.keys=TRUE)
63

64 print(alpha_ result )
65

66 # Principal analysis for factor determination using
Eigenvalues

67

68 principal _ analysis <- principal (TAM2Data , nfactors = 10,
rotate = "none")

69

70 eigenvalues <- principal _ analysis $ values
71

72 par(mar = c(5, 5, 4, 2) + 0.1)
73

74 # Plot the scree plot
75 plot (1: length ( eigenvalues ), eigenvalues , type = "b",
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76 main = "Scree Plot", xlab = " Factor ", ylab = "
Eigenvalue ")

77

78 abline (h = 1, col = "red")
79

80 text (1: length ( eigenvalues ), eigenvalues , labels = 1: length
( eigenvalues ), pos = 4)

81

82

83 #Try various different rotation methods and explore the
different results of all analyses .

84 pa <- fa(r = TAM2Data ,
85 nfactors = 3,
86 rotate = " varimax ",
87 fm = "pa"
88 )
89

90 papro <- fa(r = TAM2Data ,
91 nfactors = 3,
92 rotate = " promax ",
93 fm = "pa")
94

95 ml <- fa(r = TAM2Data ,
96 nfactors = 3,
97 rotate = " varimax ",
98 fm = "ml")
99

100 pa
101

102 papro
103

104 ml

D.2 Software Artifact Code
The code used for the creation of both software artifacts is publicly available at Github
under the MIT License.

https://docs.google.com/forms/d/e/1FAIpQLScdNusY7Da26ODfuAEXewztH6ILcYmaHW8ROl3c08Oh3zIjjg/viewform
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