
UTRECHT UNIVERSITY

MASTER THESIS

Simplifying the Complex: Strategies to
reduce existing API Complexity using CPS

techniques

Author:
Thomas NOLST TRENITÉ

Under supervision of:
Prof. Thomas KOSCH

Dr. Harry HALADJIAN

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in

Human Computer Interaction (HCI-5330963)
Department of Computing Science

June 14, 2023

http://www.university.com
http://
https://
https://
http://researchgroup.university.com
http://department.university.com

1

Abstract

Software development plays a crucial role in driving technological advancements
and fostering innovation across industries. However, the ever-increasing complex-
ity in software systems poses significant challenges. This research aims to explore
the origins of software complexity and develop strategies to mitigate it. Specifically,
it investigates software complexity through the lens of Complex Problem Solving
(CPS) and Software Comprehension, areas that have received limited attention thus
far. The study focuses on API integration, a common area of software development,
and examines two strategies (strategy A and B). These strategies incorporate the CPS
techniques decomposition and Lean Thinking to address different dimensions of com-
plexity inherent in API software. In a user study (N=30), participants had to retrieve
data from an API platform and use it to build small conceptual prototype appli-
cations. Metrics related to time, successfulness in task and (perceived) effective-
ness were utilized to assess the impact of the strategies on reducing interface and
system complexity. The findings reveal how strategy A significantly reduces task
completion times and the time required for the initial API call. Moreover, strategy
A demonstrates superior performance compared to the baseline in metrics related
to complexity. This highlights the effectiveness of concepts from Lean Thinking in
reducing software complexity. Strategy B shows promising results in supporting
developers’ individual completion of API integration tasks and facilitating software
comprehension by providing tailored learning materials suitable for common-sense
learners. On the whole, developers expressed high levels of satisfaction with the
effectiveness of both strategies in achieving their respective goals. This research
establishes a foundation for enhanced interaction with complex software systems,
opening avenues for future studies to explore more effective support strategies. The
outcomes contribute to the advancement of software development practices and of-
fer valuable insights for improving ease of use and reducing complexity in software
systems.

2

Table of contents

1 Introduction 5

2 Related work 7
2.1 Complex Problem Solving (CPS) . 7

2.1.1 Problem Solving . 7
2.1.2 Problem Complexity . 7
2.1.3 Dealing with Complex Software Problems 8
2.1.4 Learning to Solve Complex Problems 9
2.1.5 Differences in Learning Styles . 9

2.2 Software Comprehension . 10
2.2.1 Mental models / process . 10
2.2.2 Facilitating Software Comprehension 11

2.3 Use Case: API Integration . 11
2.3.1 Technical Background . 11

2.4 Unaddressed Solution Opportunities . 14
2.4.1 Solution Opportunities for APIs 14

3 Understand 16
3.1 Preliminary Interviews . 16

3.1.1 Unacquainted group . 17
3.1.2 API-Familiar group . 18
3.1.3 Lacks of existing support . 20

4 Explore 21
4.1 Mapping Developer Needs . 21

4.1.1 Brainstorm session 1 . 21
4.1.2 Brainstorm session 2 . 21

4.2 Strategy filtering . 21
4.2.1 DVF Framework . 22
4.2.2 Supplementary Filters . 22
4.2.3 Strategy A . 22
4.2.4 Transition of Strategy B . 22

4.3 Prototyping . 22
4.3.1 Prioritizing characteristics . 22
4.3.2 MidFi Prototyping . 22
4.3.3 HiFi Prototyping . 23

5 Materialize 24
5.1 Data and Analysis . 24
5.2 Hypotheses . 26
5.3 Study Design . 27

5.3.1 Pilot . 27
5.3.2 Participants . 28
5.3.3 Methodology . 28

Table of contents 3

5.4 Results . 31
5.4.1 Quantitative . 31
5.4.2 Qualitative . 32

6 Discussion 34
6.1 The Interplay of Time and Support in Programming Tasks 34
6.2 Key Factors Affecting Comprehension: An Overview of Influential

Elements . 35
6.2.1 Learning effects and Task difficulty influence comprehension

effects . 35
6.2.2 Learning styles and over-reliance affect comprehension 36
6.2.3 Inconvenience issue leads to inconsistent comprehension ratings 36
6.2.4 How Strategy A facilitates Information Foraging Process 37

6.3 Coping with Complexity . 37
6.3.1 Strategy A increases overall confidence and ease of use 38
6.3.2 Subtasks help developers create main goal and pathways to-

wards solution . 38
6.4 Limitations, Constraints and Future Work 38

7 Conclusion and Outlook 41

Bibliography 42

A Example response GET Request 45

B Working example in Strategy B 47

C Strategy B in full screen 48

D Developer Journey 49

E Consent Form 50

F Questionnaires 52

G Bar Charts 60

H Interview Scripts 61

4

Acronyms

API Application Programming Interface.

CES Customer Effort Score.
CPS Complex Problem Solving.

DevOps Development Operations.
DevX Developer Experience.

HCI Human Computer Interaction.
HTTP Hypertext Transfer Protocol.

IFT Information Foraging Theory.

JSON Javascript Object Notation.

MidFi Middle-Fidelity.

SDK Software Development Kit.
SRE Site Reliability Engineer.

UI User Interface.

5

1 Introduction

Software development has become an integral part of contemporary daily life, pow-
ering almost every large, complex system used in industries such as healthcare, fi-
nance and automotive. As software continues to play a crucial role in daily opera-
tions, the importance of being able to interact and understand software has become
paramount. However, as software systems significantly increase in scale and size, so
does the complexity involved. While the success rate of software projects depends on
a range of aspects like time constraints or available resources, it is evidently influ-
enced by the underlying, but often unnecessary complexity developers face while
interacting with software systems (Raman, 1998, Schefer-Wenzl and Miladinovic,
2019). Although some complexity in software systems is considered essential, re-
ducing avoidable complexity has become a critical issue, as it can avoid potential
re-engineering efforts and reduce maintenance costs (Delange et al., 2015).

While there is a small amount of literature focusing on reducing software complex-
ity (e.g., through model-based engineering) (Delange et al., 2015), limited research
has yet considered the perspective of complex problem solving techniques. As such,
this approach shows promise as an area for research (Schefer-Wenzl and Miladi-
novic, 2019). However, little is known about how complexity-reducing techniques
can be effectively integrated through strategies present in the software development
process, and what factors contribute to their effectiveness.

Against this background, the present research has put forward the following re-
search question:

“How can complex problem-solving techniques be successfully integrated into strategies for
reducing software complexity, and what factors contribute to their effectiveness?”

To be able to answer the research question, this research will describe the state of af-
fairs through the use case of Application Programming Interface (API) integration.
APIs are an essential component of modern software systems as they allow develop-
ers to access and use real-time data gathered by organizations to build new software
applications. Although APIs offer packaged, reusable code functionalities to ease or
enable the software development process, developers often experience complexity
when interacting with this software, which makes APIs suited as a use case (Storey,
Fracchia, and Müller, 1999). Additionally, existing techniques for complex problem
solving have yet to be deployed for similar use cases. This research differentiates
between interface complexity and system complexity, where interface complexity refers
to complexity regarding overall ease of use and design of the User Interface (UI), and
system complexity refers to the difficulty that arises when developers try to integrate
and combine various pieces of data from APIs into their own software applications.

In order to delve into the relationship between software complexity and failure, this
research paper performs a deep dive into problem solving and the software compre-
hension process. Through this approach, a distinction can be made between regular
and complex problems. Additionally, the approach facilitates the discovery of how
complexity affects the comprehension process of developers solving software related
problems, such as integrating API data. The underlying premise behind this inquiry

Chapter 1. Introduction 6

is that by implementing support strategies to reduce complexity, a disruption within
the software comprehension process can be restored, leading to an improved likeli-
hood of successful outcomes.

The present study will employ a mixed-method approach to investigate the effec-
tiveness of two proposed support strategies in reducing interface and system com-
plexity. The methods will include both quantitative and qualitative data collection
techniques, such as metrics based on time, task success, and perceived experience,
as well as quotes and observations of general developer behavior. Results will be
analyzed for significance using statistical analysis and visualizations.

This paper is structured as follows. Chapter 2 presents a comprehensive review of
existing literature on complex problem solving (techniques), (early-phase) software
comprehension, and the use case of APIs. Following the Design Process by Gib-
bons (Gibbons, 2016), this research will go through 3 iterative phases (see image 2.3).
Chapter 3, the Understand phase, will involve conducting field research to validate
and add findings from literature. By undertaking this approach, the aim is to gain
a deeper understanding of how developers currently seek information, face com-
plexity obstacles and learn to work with APIs, as research on these topics is limited
(Gao et al., 2020). This aim will be accomplished by applying the Information Forag-
ing Theory (IFT) (Pirolli and Card, 1999) to capture and declare developer behavior.
Chapter 4 will cover the Explore phase, where highly effective support strategies
for developers will be developed by uncovering not only developers’ needs and
preferences, but also how effective support should be represented, supported by
brainstorming sessions with topic experts. Middle-Fidelity and High-Fidelity proto-
types will be developed and iterated on through stakeholder feedback. Chapter 5,
Materialize, will cover research hypotheses, data analysis, study design setup, and
insightful results from end-user testing. Finally, Chapter 6 will provide a discussion
of the study’s most notable findings, limitations and recommendations for future
work. The research will conclude by drawing conclusions and addressing the initial
research question.

Contribution statement

The present research will contribute to the field of human-computer interaction (HCI)
by gaining insights into how techniques for Complex Problem Solving can be im-
plemented in strategies to reduce software complexity. The findings will provide in-
sights into the early software comprehension process and assist developers in coping
with software complexity.

Through answering the research question, this work makes three main contribu-
tions:

1. A new perspective on how CPS techniques can be used effectively in strategies
to reduce software complexity.

2. A deeper understanding of the use case of APIs in software development and
the challenges developers face in the process of integrating them.

3. Inclusive insights on the early software comprehension process for developers
getting acquainted with an API, with specific emphasis on API learning.

7

2 Related work

Studying the scoped topics below has been the result of a detailed problem investi-
gation carried out within the company TomTom (TomTom, 2022) beforehand. Since
unnecessary complexity is currently a relevant issue for TomTom’s future opera-
tions and performance, this research began by investigating the root cause of the
problem. Thus, a deep dive has been made into literature mainly using Google
Scholar (Google, 2022) and Scopus (Co, 2022) which are the most widely used lit-
erature search engine and research database respectively (LLC, 2022b, LLC, 2022a).
Using keywords such as API’s, Developer Experience, Learning and Support Strategies
has made it possible to revert back to the problem origin and to interpret it from
different perspectives.

Based on the literature review, three topics have emerged related to the origin of the
problem: Complex Problem Solving, software comprehension and facets of learning. Their
relevance to the problem will be clarified by investigating them separately. There-
after an argumentation is provided for connecting these topics together, highlighting
the clear gap this research fills and distinguishing it from existing research. The up-
coming sections will highlight the most relevant findings from literature, serving as
a base for this research.

2.1 Complex Problem Solving (CPS)

2.1.1 Problem Solving

The cognitive process of human problem solving is identified as one of the main ba-
sic life functions within the brain (Wang and Chiew, 2010). Commonly accepted is
the fact that the human brain makes approximately 35000 decisions per day, most of
which are related to solving distinct problems (Lamata, Pelta, and Verdegay, 2021).
Problems consist of three main elements: givens (available information), goals (de-
sired termination state of solution) and operations (actions executed to achieve so-
lution goals) (Elis Ormrod, 1999, Wang and Chiew, 2010).

Problem solving has become a main topic of interest in the last couple of years. As
industries are showing a strong shift towards software development, there is an ex-
ponentially increasing need for developers with problem solving skills. Software
developers solve problems by repeatedly formulating (on-demand) goals and ob-
jectives as they seek and find new information needed to accomplish their tasks
(Bradley, Fritz, and Holmes, 2022). They seek this information through various use-
ful information sources such as technical documentations and -blogs, which account
for roughly 1

3 rd of the time spent on a problem (Li et al., 2013).

2.1.2 Problem Complexity

Most problems humans come across are well-defined, meaning that a goal definition
can be extracted easily and it is clear how to progress towards this goal to reach a
solution (Wang and Chiew, 2010). However, finding a solution to a problem might
not even exist within the solver’s solution space and this could be attributed to the

Chapter 2. Related work 8

fact that the problem is ill-defined, or complex. In contrast to well-defined prob-
lems, complex problems have no clear goal definition and make it unclear how to
allow progress towards a solution (Schefer-Wenzl and Miladinovic, 2019, Dörner
and Funke, 2017, Foshay and Kirkley, 2003). Consequently, complex problems are in
direct relation with failure and lack of progression which can lead to several effects
such as trying to escape the situation or violation of rules (Dörner, 1980). Because of
these effects, it becomes clear why the ability to succeed in complex problem solving
is one of the most requested professional skills from employers (Schefer-Wenzl and
Miladinovic, 2020 Sánchez Carracedo et al., 2018).

The field of CPS offers many possible research directions. The current study is
scoped down to software developers trying to solve complex software problems.

2.1.3 Dealing with Complex Software Problems

Dealing with complex software problems can be very hard as developers struggle
to extract clear goals and pathways, as discussed in subsection 2.1.2. Since there
are many ways to possibly deal with such problems, the upcoming subsections will
highlight two of the most prominent techniques for dealing with complex problems.
Note that general problem-solving techniques are not discussed in this work, be-
cause these do not focus on creating more comprehensible goals and can therefore
not be compared to techniques for CPS. However, this does not imply that sim-
ilarities in solution approaches are non-existent between general problem-solving
techniques and techniques for CPS.

Decomposition

Seen as a cornerstone for computational thinking, the most basic technique for tack-
ling complex problems is decomposition. Decomposition, breaking down the complex
problem into a set of smaller subproblems, has been proposed by a vast amount of
research studies (Gick, 1986, Saenz and De Russis, 2022, Rijke et al., 2018). This
process can repeat itself until the problem solver’s scope is limited enough and has
an understanding of the problem and a solid solution focus (Robins, Rountree, and
Rountree, 2003). In the context of problem solving, novices may find the recursive
process of extracting subproblems challenging and applying them even more diffi-
cult. In contrast, experts apply (recursive) decomposition with more ease, perform
generation and evaluation of alternative solutions and are able to apply a known
solution to newly found subproblems (Gick, 1986).

Value concept (from Lean Thinking)

Lean Thinking, commonly used in regular process development cycles in the man-
ufacturing industry, emphasizes the importance of identifying and delivering the
highest value to users while eliminating waste (Thangarajoo and Smith, 2015). This
is achieved by focusing on user demand instead of adopting every possible feature
users may want into their system, a practice that can result in unnecessarily complex
software. Hence, Raman, 1998 argues how Lean Thinking can be applied to software
development. Additionally, this way of dealing with complex problems has proven
effective in a variety of industries, reducing cost, improving quality and increasing
customer satisfaction.

Chapter 2. Related work 9

Lean Thinking consists of several concepts, including the key concept ‘value’ and its
derivative, the ‘value stream’.1 Value can be defined as anything that is perceived as
value by the customer. First and foremost is to understand clearly what the user
needs and what they consider as value. Next, the value stream comprises the set
of actions required to bring value to the user. Every piece of value that is included
in the stream helps eliminate existing activities that do not contribute any value,
strengthening the value stream. In this paper, these two concepts will be applied in
practice.

2.1.4 Learning to Solve Complex Problems

The importance of teaching and learning CPS is made clear by the quickly rising
amount of technical courses offered to students in their curricula. Research con-
ducted by Schefer-Wenzl and Miladinovic, 2019 utilized Bloom’s Taxonomy (Bloom,
College, and Examiners, 1964) to visualize specific levels of knowledge. For each
level, authors defined clear tasks for students to fulfil. Tasks on each level are
then addressed by using course methods such as gamification, videos, learning di-
aries and anchored instructions. The final learning stage concerns the application of
knowledge into a real software integration project.

Further research done by Foshay and Kirkley, 2003 has suggested the use of 17 prin-
ciples focusing on teaching problem solving, of which two are relevant for CPS.
One, ’encouraging learners to use knowledge in defining a goal’ has been applied by the
research from Schefer-Wenzl and Miladinovic, 2019, further confirming its validity.
Another principle supports the use of inductive teaching strategies to tackle com-
plex problems as these ’encourage synthesis of mental models’. Although this teaching
method could support CPS, there is no recent research putting this into practice.
Due to the general shortage in the available amount of research on posing methods
or concepts for teaching and learning CPS (Schefer-Wenzl and Miladinovic, 2019 Van
Deursen et al., 2003), it is encouraged to adopt educational approaches into solutions
aimed at addressing complex problems.

2.1.5 Differences in Learning Styles

The concept of learning styles, although according to Mian et al., 2022 appears to
have become fragmented in literature over the past decade, remains significant to
consider as individuals tend to differ in their approach to learning something new.
In the context of solving complex software problems, it is crucial to keep in mind that
developers may differ in their preferred learning approach. For instance, Coffield
et al., 2004 describes how the 4MAT model is widely adopted to improve teaching
methods. This model identifies different types of learners, including imaginative,
analytic, common-sense and dynamic learners. Other studies however describe four
general dimensions using the Index of Learning Styles (ILS), with each dimension
having two opposing categories (Felder, Soloman, et al., 2000). Moreover, there exist
several learning strategies that can be utilized to control the memory process and
gain concentration (Mian et al., 2022), which appear to be consistent with character-
istics of learning styles discussed in Coffield et al., 2004. Additionally, Mian et al.,
2022 argues that incorporating different evaluation methods, such as rating scales
and questionnaires, can provide learners with valuable insights into their own learn-
ing styles and problem-solving approaches.

1Readers interested in learning more can refer to the source for a more comprehensive overview.

Chapter 2. Related work 10

2.2 Software Comprehension

As been made clear in the preceding section, there exists a clear need, especially
by developers, to find support in solving complex software problems. As software
complexity increases and goals are harder to define, developers try to create more
manageable structures for themselves in order to better comprehend the process.
Research conducted by Klemola and Rilling, 2002 has highlighted that assessing the
comprehension efforts of a software developer helps in determining effective sup-
port approaches, such as a methodology or tool. Software comprehension can be
described as “a process whereby a software practitioner understands a software artefact
using both knowledge of the domain and/or semantic and syntactic knowledge, to build a
mental model of its relation to the situation” (O’brien, 2003).

For this reason, the upcoming subsections aim to understand these efforts by un-
veiling the software comprehension process, approaches, and known mechanisms
to facilitate it.

2.2.1 Mental models / process

In order to understand software related concepts, developers make use of cogni-
tive processes and information structures to form a so-called mental model (Seel, Al-
Diban, and Blumschein, 2000, Storey, Fracchia, and Müller, 1999). In the context of
software development, a mental model refers to the developer’s mental represen-
tation of the software to be understood. In general, the more developed a mental
model is, the better understanding an individual will have of a task or problem and
therefore the solution towards it. A developer constructs various mental models
(e.g., domain, program) and is able to switch between these during the comprehen-
sion process (Storey, Fracchia, and Müller, 1999).

In order to better understand the software comprehension process (see figure 2.1),
the knowledge-based understanding model is widely accepted and frequently used (O’brien,
2003, Storey, Fracchia, and Müller, 1999, Letovsky, 1987). The model consists of three
interdependent components: (1) knowledge base, (2) mental model and (3) assimilation
process. The software comprehension process is a cycle starting at the knowledge
base, which consists of concepts such as domain knowledge, plans and goals. The
knowledge base then stimulates the assimilation process, which is a process that
helps to construct the mental model by processing the acquired knowledge. Al-
though this theory is still agreed upon, recent research conducted by Kadar et al.,
2021 added a sub-component of knowledge base, namely external representation. This
sub-component covers all materials supporting programmers in their software com-
prehension process (e.g., developer documentation, source code, tutorials).

FIGURE 2.1: Software comprehension process

Chapter 2. Related work 11

With this information in mind, the origin of the described need can now be bet-
ter narrated: developers are trying to solve a complex problem, but very often fail
because they cannot specify program goals needed to map to the relevant parts of
the solution implementation (a disruption of the assimilation process). As a con-
sequence, the mental model cannot evolve properly and becomes underdeveloped,
resulting in a lack of global understanding of the program, indirectly causing failure
when dealing with complex problems.

2.2.2 Facilitating Software Comprehension

Based on the approaches above, there exist a variety of support mechanisms to fa-
cilitate the comprehension process. The most known technique, reverse engineering
(Storey, Fracchia, and Müller, 1999), is a technique assisting the developer in creating
high-level abstractions from source code which is typically done by deconstructing
individual components. While many reverse engineering tools exist, the practice of
reverse engineering is often associated with malicious purposes and is known for
being time-consuming (Klemola and Rilling, 2002). These factors can significantly
impact solution quality, particularly when solving complex problems.

More assistance techniques are rising in usage and education, such as systematic code
reading or technologies for visualizing software in a certain way (Hebig et al., 2020).
However, dedicated research has not yet provided a definitive answer regarding the
most efficient techniques for facilitating software comprehension, particularly for
novices. An appropriate starting point would be to develop comprehension tech-
niques that lay essence on providing the right information at the right time, as re-
cent research found that this helps novices "answer comprehension questions with sig-
nificantly more accuracy, in less time" (Adeli et al., 2020).

2.3 Use Case: API Integration

Developers frequently encounter failure when attempting to solve complex prob-
lems during the software development process. This observation is justifiable, given
that "the majority of software engineering and integration problems is of complex nature"
(Schefer-Wenzl and Miladinovic, 2019). One of the most common use cases regard-
ing software integration is undertaking the process of integrating an API (Jonnada
and Joy, 2019). In order to provide a comprehensive understanding of what APIs
are and why they are relevant to employ for a case study, the upcoming subsection
will present a technical background on APIs.

2.3.1 Technical Background

APIs, short for Application Programming Interfaces, are sets of protocols, routines,
and tools for building software applications. They serve as an intermediary ser-
vice between different software applications, allowing them to communicate and
exchange data. Think of APIs as a messenger that helps different software appli-
cations talk to each other by sharing data, just like how a waiter communicates the
ordered food to the kitchen, and also delivers the food to customers.

The present research focuses specifically on Web APIs, serving as a bridge between
different software services offered by companies over the web in exchange for com-
pensation. Web APIs enable developers to access and retrieve data that companies
make publicly available, allowing them to develop custom software solutions. For

Chapter 2. Related work 12

instance, APIs can be used when building a webshop that needs to connect to a pay-
ment gateway to enable customers to pay for their orders securely. Another example
is the Twitter Search API allowing developers to provide methods for developers to
interact with Twitter Search and trends data (Twitter, 2023b). Commonly, use cases
for APIs include application integrations, but also web apps, dashboards or mobile
applications (Postman, 2020).

Adoption

According to a report from ProgrammableWeb.com, the number of web APIs has in-
creased substantially over the last 10-15 years (elaborated by Vaccari et al., 2021, see
figure 2.2). The report reveals that in 2022, the number of web APIs was estimated
to be around 24,000 and this number continues to change. A reason for the rapid
growth in API use is the constantly increasing demand for data, with organizations
being supported in creating new APIs. As a result, the market for publicly offered
software has been expanding. (Myers and Stylos, 2020).

FIGURE 2.2: Adoption of web APIs since 2005 (cumulative) (Vaccari
et al., 2021)

Design

The way an API is designed highly impacts its performance. A good API design
requires a lot of expertise, research and resources to implement and is thus of high
value to be considered early in the process, before development commences (Post-
man, 2020). It is about choosing what information to display and what not to dis-
play, as some information might not be needed to be understood for good use of

Chapter 2. Related work 13

the service. There exist metrics for measuring API usability such as functional ef-
ficiency, overall correctness and learnability for novices (Myers and Stylos, 2020).
When designing APIs, it is common practice to measure derivatives of these metrics
by applying heuristic evaluation guidelines defined by large consulting firms such
as the Nielsen Norman Group (Nielsen, 1994).

Documentation

To assist developers in being able to understand how communication with APIs
work, companies typically offer Developer Documentation. This documentation type
consists of every possible resource developers might need in order to be able to work
with an API. Think of video tutorials, reference documentation, code samples and
forums. In order to provide a web API of high quality, a company needs to offer
developer documentation that is clear, comprehensive and easy to understand.

Communication

APIs communicate using different types of standard HTTP requests such as GET
and POST. A GET Request is used to retrieve data from a server. When a devel-
oper makes a GET request to an API, it sends a request to the server, asking for
specific data such as products or a user profile. The server usually responds with
the requested data in a specific format, such as JSON (JavaScript Object Notation).
Furthermore, a developer can create POST requests, allowing for the submission of
data to a server in order to create a specific resource such as performing an order to
create a new user account. While other types of API requests are covered in greater
detail in existing literature, the present research will provide an example of a GET
request.

Suppose a developer wants to employ the Twitter API to integrate Twitter data into
his own application (Twitter, 2023a). He likes to obtain a list of the most trending
topics at the moment. By making a GET Request, the developer is able to receive
this data. The base of the GET Request would be:

GET https://api.twitter.com/1.1/trends/place.json

This request will return a collection of trend objects, however they will be empty as
no specific id is specified. Therefore, the request can be updated by adding certain
parameters, which are additional pieces of information. In this use case, the param-
eter id represents the location from where to return trending information. Suppose
id 1 represents global trending topics. In that case, the request would take the fol-
lowing form:

GET https://api.twitter.com/1.1/trends/place.json?id=1

The server will now respond with the corresponding data the developer asked for,
in the form of a JSON object containing the trend-objects that the developer is after.
A sample response is included in Appendix A.

To conclude

APIs play a vital part of modern software development. Without the use of APIs,
applications and systems could not work together seamlessly. However, APIs can
become complex due to the infinite amount of use cases, overloads of information

Chapter 2. Related work 14

and evolving standards. Therefore, it is of high essence to find solutions to reduce
this complexity, keeping APIs powerful and easy to use.

2.4 Unaddressed Solution Opportunities

A recap on complex problem solving, software comprehension and APIs had re-
sulted in various directions to perform scientific research on, some of which still not
considered yet. Even though there is a reasonable understanding on how to deal
with complex software problems, application of techniques seems to be scarce. Al-
though software comprehension is closely related to CPS, studies still display a rel-
atively small focus on this topic (Van Deursen et al., 2003, Hebig et al., 2020) which
is unjustified as this topic is key to program understanding and creating high-level
solutions. Recently developed techniques, such as linkable annotations (Adeli et
al., 2020), can provide valuable insights for facilitating the comprehension process.
However, these techniques may lack contextual information, making it difficult to
capture the broader context in which software elements operate. This context is cru-
cial for fully comprehending the software system as a whole.

While it is desirable to conduct additional research on facilitating software compre-
hension, there is greater value in taking a broader perspective and focusing on a
specific phase of software comprehension. Forming a correctly developed mental
model starts at the early phase of the software comprehension process, where the
developer has not yet extracted any value out of the system. As empirical research
on this phase is still underrepresented (Hebig et al., 2020), this study will put em-
phasis on facilitating the early comprehension phase. Theories on early information
seeking by developers can help acquire insights within this specific area. Moreover, a
review of existing literature revealed a gap in empirical research concerning the CPS
perspective on facilitating the (early) software comprehension process. Addressing
this research gap can lead to the establishment of highly effective technology.

2.4.1 Solution Opportunities for APIs

In the absence of adequate support, developers are required to identify and put to-
gether the necessary knowledge to achieve a well-functioning assimilation process.

The process, especially for complex problems like API integration, can be exces-
sively time-consuming and result in failures and reduced performance. Concentrat-
ing on early comprehension, an optimal solution would denote a developer’s ability
to comprehend and integrate certain parts of a complex API by making use of exis-
tent support. This may entail the development of a small conceptual prototype or
working through a ’getting started’ project to ensure effortless integration at a later
comprehension phase.

In the upcoming chapters 3 to 5, the design process towards developing support
strategies for developers in reducing software complexity will be presented. This
process follows the stages of understanding the problem, exploring potential solu-
tions, and materializing the final solution, as proposed by Gibbons (Gibbons, 2016)

Chapter 2. Related work 15

FIGURE 2.3: Design Process by Gibbons (Gibbons, 2016)

16

3 Understand

The related work and technical background presented the latest research findings
regarding problem complexity, software comprehension and their implications for
APIs. The Understand phase consists of two components, namely Emphasize and
Define, which aim to gain a practical understanding of how the theories presented
in Chapter 2 are manifested. Moreover, this chapter will derive an understanding
of developers’ needs for adequate support. Through interviews that observe devel-
opers’ behaviors, these observations will be refined into specific research objectives
that should be taken into account during the later stages of the design process.

3.1 Preliminary Interviews

Preliminary interviews were performed with two groups of stakeholders. The first
group concerned API-familiar software engineers working at TomTom. This group
is familiar with the APIs as they possess a deeper level of knowledge and experi-
ence by simply using TomTom APIs in their daily work, therefore having a better
understanding of its practices and overall design. The second group consisted of
TomTom personnel who possess technical knowledge related to APIs, either due to
their background or job titles indirectly associated with APIs. This group, in this
research referred to as API-unacquainted, are individuals who are either unfamiliar
with the TomTom APIs or have not built acquaintance yet. Consequently, they lack
basic awareness of how the API services offered by TomTom function. Reaching ac-
quaintance can be achieved through activities such as reading the documentation or
learning about the features, design and structures in any other way.

The primary goal for these interviews was to confirm complexity related bottlenecks
experienced by developers when interacting with APIs to build software. By using
this approach, solutions to problems can be discovered that are supported by con-
cepts from existing literature.

The interviews were conducted following a structured script that included a set of
predefined questions and prompts to guide the conversation (see Appendix H). Each
interview lasted approximately 40 minutes and was audio-recorded for later refer-
ence. Detailed notes were taken during the interviews to capture key points and
observations. The recorded interviews were transcribed verbatim to ensure accu-
racy in data analysis and interpretation.

Conducting interviews with appropriate stakeholders using the think-aloud method
led to increased clarity on various topics, including API usability issues, learning
and integration. The think-aloud method involves participants verbalizing their
thoughts while performing a task, providing insights into their cognitive processes.
To maintain a clear research focus, only insights are discussed that fall within the de-
fined scope. For instance, these include the most important information sources for
developers in the software comprehension process and how API complexity affects
a developer’s mental model. Subsequently, similar insights were clustered using
affinity mapping. Affinity mapping is a technique used to categorize and organize

Chapter 3. Understand 17

ideas or information into meaningful clusters, leading to the identification of dis-
tinct, newly discovered themes. In the upcoming section, these insights and their
corresponding themes will be explored in greater depth.

3.1.1 Unacquainted group

The unacquainted group consisted of a DevOps manager, a Site Reliability Engi-
neer (SRE) and a newly joined Apigee1 expert. These interviews were focused on
foraging behaviour of (un)acquainted developers interacting with the TomTom Web
APIs. The APIs covered in these sessions were Traffic, Map Display and Routing and
respectively provide developers with access to real-time traffic information, maps,
directions and route optimizations.

Among the insights, the following were most notable for the scope of this research:

• Unacquainted developers looking to work with a new API often think use-case
first. With a particular use case in mind, developers strategically navigate to
the locations they perceive as potential sources of assistance. Their thoughts
and feelings are centered around a use case that suits their specific purpose.

• Unacquainted developers are taking their time to comprehend the informa-
tion presented to them and are actively seeking clarification by asking ques-
tions about any aspects that appear unclear. As such, findings from the liter-
ature study on software comprehension can be confirmed: in order to form a
mental model of a software related concept, developers are using information
structures and are actively seeking cues to feed their domain knowledge and
assimilation process.

• Developers find value in both a getting started overview and specific infor-
mation within the developer documentation. Related work (section 2.4) has
demonstrated how these insights can be declared by means of theories on early
information seeking by API-unacquainted developers. The following text will
delve into one of the most well-established and supported theories in this re-
gard.

IFT Applied to TomTom APIs

To further explore the perceived value of different information sources by API-unacquainted
developers, the lens of Information Foraging Theory (IFT2) can be applied (Pirolli
and Card, 1999). This theoretical framework clarifies how developers actively seek
out information and adapt their search strategies based on the expected utility of
information they encounter, which is crucial to predict what information an unac-
quainted developer would need and when. These insights can be used to develop
support strategies that provide the right information at the right time.

Insights reveal that, in foraging terms, the most ‘profitable’ sources of information
contain a get started overview, examples (formats, use cases), input parameters, and end
points3 (often curl or URL commands). Despite developers having different informa-
tion needs and interests changing over time, generally speaking these are the most

1Apigee is a platform for developing and managing APIs
2IFT has been used in related developer studies (Fleming et al., 2013, Sedhain and Kuttal, 2022,
Lawrance et al., 2010) and is officially accepted as a valid and useful theory in the field of HCI and
psychology (Olson and Olson, 2003).

3When an API interacts with another system, the touchpoints of this communication are considered
endpoints.

Chapter 3. Understand 18

important information sources developers need when trying to implement the API
data into their application. Repetitive pathways taken by developers in their infor-
mation foraging process also substantiate these findings.

As predicted by IFT, switching between the profitable sources is done rapidly to
minimize search time, but often look at the same source more than once to try and
achieve an efficient rate of gain. According to the unacquainted group, finding the
information needed for a successful integration is not the challenge in common API
developer documentations. Instead, it’s more about the time it takes to find this in-
formation, mainly due to a high foraging cost (information overload and complex-
ity), leading to a suffering rate of gain. The results give rise to a research objective
focused on simplifying foraging API information:

Research objective 1
Evidence-based practice must react accordingly to the current foraging behavior
of developers interacting with unfamiliar APIs by reducing existing foraging costs
through the rebuilding of the value stream and delivering the most profitable infor-
mation sources (value) at the right time.

3.1.2 API-Familiar group

In-person interviews were held with five TomTom developers who had an average
of 9 years of programming experience with various TomTom APIs. Each developer
had built familiarity with diverse APIs such as Map Display, Reverse Geocoding, Rout-
ing and Waypoint optimization. These interviews provided further insights into the
variations in complexity levels across different API domains. The script of this in-
terview can be found in Appendix H. Below, a summary is presented of the most
valuable insights obtained.

• Familiarity and Acquaintance - Becoming acquainted with an API (i.e., form-
ing a basic awareness of what it does and how it works) can be reached in a
relatively short timeframe of one hour or less (depending on the developer’s
previous experience). However, reaching familiarity (i.e., a deeper level of un-
derstanding) can be seen as more of a constant, ongoing process. The speed
to getting familiar can vary depending on the complexity of the API and the
developer’s level of expertise. According to reports from developers in the
API-familiar group, reaching familiarity with a new set of APIs typically takes
between one to three months.

• Comprehension - API-familiar developers tend to adopt a top-down approach
when reading the content of the Developer Documentation. A top-down ap-
proach involves scanning the documentation, incorporating example requests
or code fragments into their application, and executing them. If necessary,
they revisit the documentation to refine their solution. This iterative process
enables them to update their mental model. Interestingly, the API-unfamiliar
group showed similar behavior, suggesting a comparable approach to advanc-
ing their understanding. This can be attributed to their existing knowledge of
APIs in general.

• Complexity - Complexity in APIs can manifest in two different forms, which
arise at different stages of the developer’s interaction with APIs. To visualize
the findings related to the nature of complexity in software development, a De-
veloper Journey was created and can be found in Appendix D.1. The journey
provides a broader context for the study, outlining how developers typically
Discover, Evaluate and Register (for) the API system, before progressing through

Chapter 3. Understand 19

FIGURE 3.1: Two phases of the Developer Journey hold different com-
plexity types

the Getting started and Implementation phases shown in Figure 3.1. These latter
two stages are the focus of this research since it was found that two types of
complexity emerge here and will now be differentiated.

On the one hand, developers are constantly dealing with interface complexity
in their getting started phase. This type of complexity refers to how difficult
it is for a developer to understand existing content from the API, such as its
structures, methods and parameters. In practice, developers are mainly faced
with interface complexity when having to deal with an overload of parameters
and unclear documentation, leading to errors and inefficiencies.

On the other hand, system complexity, which relates to the interconnections be-
tween API information leading to composition issues, seems to be present once
developers take the data from the API and implement it into their own pro-
totypes. To integrate an API into a new or existing application, developers
frequently compose APIs by combining parameters, functions, requests, and
URLs, which are necessary to retrieve the desired data. This composition of-
ten involves incorporating existing code from SDKs4 or other APIs. As an ex-
ample, consider a developer tasked with creating a Taxi Cars Dispatcher app
using the services from TomTom. In order to build this application, a devel-
oper would need to know how to create a TomTom map, create and customize
markers using the SDK, how to work with the Routing API to calculate the
shortest route and how to draw the route from the taxi to the location of the
passenger. Hence, it is not surprising that combining multiple API elements to
solve a problem is seen as one of the main barriers to API learning (Kelleher
and Brachman, 2023).

4An SDK, or Software Development Kit, is a set of tools and resources that enables developers to create
applications and interact with APIs more easily by providing pre-built functions and interfaces.

Chapter 3. Understand 20

3.1.3 Lacks of existing support

In line with the insights presented above, it is crucial for organizations providing
API services to acknowledge the importance of providing adequate support to de-
velopers in their processes. While tutorials seem to be the ‘golden standard’ for aid-
ing developers in their early comprehension process, they may fall short in reducing
software complexity, as they often adopt a passive approach to learning instead of
actively engaging developers in working with complex software.

Research objective 2
To empower developers in effectively engaging with complex software, it is crucial
to offer support that considers the learning curve and provides a holistic under-
standing of the software. This support should not be constrained in silos for devel-
opers to make sense of independently, but should actively guide them through the
learning process to facilitate a well-functioning software comprehension process.

21

4 Explore

The primary goals of the Explore phase are to investigate the needs of developers
working with complex software and explore ideas that can address those needs iden-
tified in the Understand phase. The Explore phase consists of two steps: Ideate and
Prototype. During this phase, brainstorming sessions with stakeholders will be con-
ducted to generate a wide range of ideas, which will then be filtered to ensure that
the tested solutions in the Prototype step are realistic, feasible and of the highest im-
pact for solving the challenge at hand.

4.1 Mapping Developer Needs

Although a part of the interviews in the previous chapter (Understand) have been
conducted with a developer group familiar with TomTom APIs, the upcoming phases
will prioritize the unacquainted group of developers. The needs of this group are
more severe and therefore a larger potential could be unlocked.

To identify the specific requirements that future solutions must meet, brainstorm
sessions were held with internal stakeholders such as API Architects and Product
Managers from the Developer Experience (DevX) department. Involving these stake-
holders in the ideation process will not only lead to solution-approaches that are
more interdisciplinary and up-to-date with the latest knowledge in the API and De-
veloper Experience fields, but also ensure that the approaches are feasible implemen-
tation wise. One example is API architects who have a realistic view on limitations
that may affect developers and think of solution-approaches that fit in the current
API design. On the other hand, DevX experts will think of solution approaches that
keep in mind the already available tools and resources and difficulties that arise in
those particular efforts. This knowledge contributes to a greater solution scope and
therefore increases the chances of finding effective ways to manage API Complexity.

4.1.1 Brainstorm session 1

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

4.1.2 Brainstorm session 2

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

4.2 Strategy filtering

Chapter 4. Explore 22

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

4.2.1 DVF Framework

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

4.2.2 Supplementary Filters

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

4.2.3 Strategy A

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

4.2.4 Transition of Strategy B

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

4.3 Prototyping

4.3.1 Prioritizing characteristics

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

4.3.2 MidFi Prototyping

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

Chapter 4. Explore 23

MidFi prototype evaluation

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

4.3.3 HiFi Prototyping

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

Technology - Strategy A

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

Technology - Strategy B

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

Piloting

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

24

5 Materialize

The Materialize phase marks the final stage of the design process and fulfills the
objective of this study to identify effective support strategies for reducing API com-
plexity. To comply with this objective, testing with the initial target audience of end-
users will be covered in the current phase. However, it is crucial to acknowledge
that the successful implementation of the identified support strategies is dependent
on various external factors beyond the scope of this research. Since this research
was conducted at TomTom, the implementation of these strategies is dependent on
the company’s available resources and decision-making processes. Thus, this study
does not aim to provide definitive insights into the level of implementation of these
strategies in the end-product. Nevertheless, plausible hypotheses based on the cur-
rent understanding will be formulated and tested with the target audience through
a usability study in the current phase.

5.1 Data and Analysis

This study utilizes several key metrics or variables to effectively determine study
outcomes. A clear distinction has been made between independent, dependent, and
confounding variables. The screen recordings enable the accurate collection and fill-
ing in of these metrics by tracking relevant data points.

Task Difficulty & Support Strategy

To observe the effect of the dependent variables, two main independent variables
were identified, also known as the predictor variables. As previously mentioned, the
tasks given to participants will be manipulated by increasing their difficulty, making
task difficulty an independent variable. Additionally, the specific support strategy
provided to participants will be varied, making it another independent variable.

Several dependent variables were defined and observed or measured in response to
changes in the independent variables. This will enable the establishment of cause-
and-effect relationships between both variables. The dependent variables contain
three overarching themes: time, Successfulness in Task and (perceived) Experience. Rea-
soning for these variables will be provided shortly, and their contribution to the
value of this research will be argued for.

Task Completion Time

Measuring the time to complete a task appears to be a viable approach in evaluating
the effectiveness of support strategies. It helps determine if developers can achieve
greater accuracy and efficiency in task completion, as discussed in Section 2.2.2. This
is particularly relevant when integrating API data into an application, as this process
often requires a significant duration. Furthermore, it provides an indication of the
overall usability of the strategies and how they perform in that regard. If developers
can work easily with the strategies, task completion times may improve compared

Chapter 5. Materialize 25

to baseline, thus helping to prove that the support strategy improves overall user
experience for developers.

Time to First Successful API Call

Secondly, the Time to First Successful API Call, also known as time to ‘Hello world’,
was considered. This metric facilitates the measurement of how quickly developers
are able to find the right information at the right time and get started with help of
strategy A. A faster initial API call serves as a reliable measure of developers’ ability
to quickly start and can indicate the increased effectiveness of strategy A in reducing
interface complexity.

Number of requests (attempts) developers make until they achieve a successful
call - number of reach outs to external sources

To account for differences in comprehension time and preferred learning styles, a
complementary metric to the Time to First Successful API Call was used, namely the
number of requests (attempts) developers make until they achieve a successful call. Utiliz-
ing this approach allows for evaluation of the effectiveness of strategy A in assisting
developers to make the correct call in fewer attempts, even if the Time to First Suc-
cessful API Call exceeds the average. Another crucial variable considered is the
number of reach outs to external sources made by developers. Although reaching out to
external sources for help is a common practice among developers, this metric helps
to clarify whether (for example) strategy B offers the right sort of descriptions to sat-
isfy developers’ information needs, as well as identify opportunities for improving
the existing work.

Task Success - Customer Effort Score

In the present study, one of the most prominent metrics measured is Task Success.
This metric requires additional context to ensure proper understanding. While com-
pleting tasks, participants were observed by an expert in the field, who understands
how to solve the tasks at hand. When a participant got stuck or was lost in a task, the
expert could steer the participant in the right direction by providing subtle nudges. It
should be noted that these nudges are only provided in situations where the expert
expects a developer to be unable to complete a task or when a significant amount of
time has elapsed without any progress. By providing nudges, the expert never fully
reveals the exact next step for a developer or provides developers with any concrete
instructions on how to proceed, therefore causing as less influence as possible on
final outcomes.

Task Success is measured using a 0 - 0.5 - 1 scale, where a score of 1 indicates success-
ful completion of the task with little difficulty and without any use of nudges, 0.5
indicates successful completion through using a few nudges, and 0 indicates wrong-
ful completion or an incompleteness of the task even when nudges are provided.
The Task Success metric provides valuable insights into the amount of assistance
needed to complete tasks with and without the use of proposed support strategies,
which can be calculated and compared directly.

In addition to these themes, two ratings-based variables were incorporated - the Cus-
tomer Effort Score (CES) and Self-estimated REST API usage score, both of which have
been discussed earlier. CES, as defined by Qualtrics, 2021 and Clark and Bryan,
2013, reflects the customer’s perception of the amount of time and energy that they

Chapter 5. Materialize 26

have to spend to get an issue resolved, a request fulfilled, a product purchased/re-
turned or a question answered. This study applies CES by using it to measure the
effort-related aspect of working with complex APIs and investigate the effect of the
support strategies on perceived effort.

Self-estimated REST API usage score

Alongside CES, the Self-estimated REST API usage score has also been included to
overlook the distribution of experience between participants. This metric is essential
as it helps to determine the degree to which API experience affects overall perfor-
mance, and whether the support strategies have led to an improvement in overall
performance or only benefited more experienced participants.

Programming Experience - state of Developer Portal

Finally, two confounding variables were identified. Although not the primary focus
of this study, it is imperative to acknowledge their potential impact on the outcomes
to ensure a thorough analysis of this study’s results. Two confounding variables
that could impact the study outcomes are varying levels of experience in programming,
specifically in JavaScript, and the current state of the Developer Portal including its
documentation.

5.2 Hypotheses

This study aims to investigate if CPS techniques can be successfully integrated in
strategies for reducing interface and system complexity in software. To test these
research questions, hypotheses were formulated. First, two general null hypotheses
were created to test the absence of an effect:

H0- 1 The integration of Lean Thinking through strategy A does not result in a significant
reduction in interface complexity compared to when no support is provided.

H0- 2 The integration of decomposition through strategy B does not result in a significant
reduction in system complexity compared to when no support is provided.

Next, to evaluate the effectiveness of both strategies and to test expected effects of
various factors on their effectiveness, a set of general hypotheses was formulated.
These hypotheses are based on the metrics defined in section 5.1 and have been clus-
tered into previously mentioned themes: Time, Successfulness in task, and (Perceived)
Experience.

H1 - Hypotheses Concerning Time

H1.1 Strategy B significantly reduces task completion times compared to baseline
during API data retrieval and integration

H1.2 Strategy A significantly reduces task completion times compared to baseline
during API data retrieval.

H1.3 Strategy A significantly reduces time to first successful API call compared to
baseline during data retrieval.

Chapter 5. Materialize 27

H2 - Hypotheses Concerning Task Successfulness

H2.1 Strategy B will increase task success scores compared to the Baseline.

H2.2 Strategy B will significantly reduce the number of reachouts to external sources
compared to the Baseline.

H2.3 Strategy A will significantly reduce the number of erroneous requests made by
developers before achieving a successful call compared to the baseline.

H2.4 Strategy B will significantly reduce the number of erroneous requests made by
developers before achieving a successful call compared to the baseline.

H2.5 Strategy B will show a consistent increase in comprehension ratings over tasks
compared to the baseline

H2.6 Strategy A will show a consistent increase in comprehension ratings over tasks
compared to the baseline

H3 - Hypotheses Concerning Perceived Experience

H3.1 Strategy A will lead to less required effort to make the right call using the Tom-
Tom documentation compared to the Baseline.

H3.2 Strategy B will lead to less required effort to build a working prototype using
the data from the API compared to the Baseline.

H3.3 Strategy A will lead to increased confidence and perceived ease of use com-
pared to the Baseline.

H3.4 Strategy B will lead to increased confidence and perceived ease of use com-
pared to the Baseline.

H3.5 Strategy A will lead to increased perceived effectiveness in finding the right
information at the right time compared to the Baseline.

H3.6 Strategy B will lead to increased perceived effectiveness in building a working
prototype compared to the Baseline.

5.3 Study Design

A qualitative study was run in which developers’ behaviour and measurements
were collected while using APIs with which they had neither built acquaintance
nor familiarity. The present study employs a between-subject design, where perfor-
mance of the baseline (BL) is compared to Strategy A (SA) and Strategy B (SB), and
participant groups will test each task while being randomly assigned and exposed
to one of these conditions. The setup of this study will now be discussed in detail
below.

5.3.1 Pilot

In total, six participants were recruited (two per condition), with ages ranging from
18 to 32 years old (M = 25.6, SD = 4.24). The pilot was used to make final modifica-
tions on the template code and instructions.

Chapter 5. Materialize 28

5.3.2 Participants

A total of 31 participants were included in the study, with eleven assigned to the
baseline condition, nine in the SB condition, and eleven in the SA condition. For
the baseline and SB condition, this was achieved through convenience and snowball
sampling in combination with sending invitations through a mailing list of a cod-
ing school. For the SA condition, participants were recruited through UserTesting
(UserTesting, 2022). The baseline condition had ages ranging from 18 to 30+ (M =
26), strategy B had ages ranging from 18 to 30 (M = 25) and an average age of 31 was
found for the participants using strategy A.

Most of the 20 participants in the baseline and SB conditions were students (N=9) or
full-time workers (N=8), while the minority of participants worked part-time (N=3).
Contrary, all eleven participants in the SA condition were pursuing full-time posi-
tions. As for education levels, the baseline condition had participants with predom-
inantly high school education, followed by bachelor’s and master’s degrees. In the
SB condition, most participants had a bachelor’s degree, followed by high school
and master’s degrees. In the SA condition, most participants had a master’s degree,
followed by a bachelor’s degree and high school education.

To meet the study’s target audience, participants were required to have a neutral
to strongly positive experience with using a REST API and have little to no prior
experience using the TomTom APIs. Additionally, they were required to be currently
pursuing or recently completed a degree in Computer Science or another field where
programming is a common practice. The mean programming experience was 7 years
for baseline and Strategy A (Med = 6 and 7, respectively) and 6 years for Strategy B
(Med = 5).

Participants were requested to provide self-estimates of their programming experi-
ence and REST API experience on a Likert scale ranging from 1 to 51. The mean self-
estimated programming experience scores were 3 for the baseline condition (Med =
3), 3 for the SB condition (Med = 3), and 4 for the SA condition (Med = 4). The self-
estimated scores for REST API experience were comparable across all conditions.

5.3.3 Methodology

Materials

After recruiting participants who met the criteria for the target audience, each ses-
sion started by preparing the according environments and setting up questionnaires.
In order to commence with a session, participants needed a laptop or got one pro-
vided by TomTom. On this laptop, a folder was included which contained the fol-
lowing materials for the test session:

• An API key
• A Visual Studio Code2 environment where the tasks could be located via sep-

arate folders. For each task, a local server was set up before the testing took
place.

• A document containing individual links to all questionnaires.
• A task instruction file
• A link to the Developer Portal of TomTom

11 = no experience, 5 = highly experienced
2Visual Studio Code is a text editor and development environment.

Chapter 5. Materialize 29

Procedure & Tasks

First, participants were presented with a consent form (see Appendix E), which they
were required to read and sign. In accordance with the protocol, participants were
compensated with a 15,- bol.com gift card for their time and effort. Following agree-
ment to the written consent form, each participant was requested to fill in an in-
troductory demographic survey (Q0) (see Appendices F.1 and F.2). As discussed
previously, this survey answered questions concerning age, level of education, em-
ployment status, amount of programming years, self-estimated programming expe-
rience and self-estimated REST API experience.

Next, participants were informed that they would be experimenting with the Tom-
Tom APIs by (a) retrieving data and (b) utilizing it to develop their own conceptual
prototype application. Participants were instructed to complete as many of the three
tasks as they could and complete tasks using their natural approach. As developers
normally do not think out loud during programming, the Think Aloud method was
discarded. The test setup ensured that participants were in a distraction-free envi-
ronment to perform the tasks to ensure the accuracy of findings. Participants were
also made aware of the option to reach out to external sources, such as the internet,
if they preferred.

To be able to make a thorough analysis of participants’ behaviour and to effectively
measure data, screen recording software was used to record the screens of partici-
pants during the session.

As previously mentioned, participants were observed by an expert in the field dur-
ing task completion. Consequently, when participants encountered significant ob-
stacles or became disoriented, the expert occasionally offered nudges which could
impact the Task Success Score. In addition to providing nudges when necessary, the
expert was also available for technical questions or clarifications related to instruc-
tions. These technical questions and clarifications were not considered as nudges in
the analysis of this study.

As part of this study, participants were asked to complete a set of API-programming
tasks within a one-hour timeframe. This approach was based on the findings of Gao
et al., 2020, which suggest that including tasks can boost API learning. This is par-
ticularly relevant, as increased knowledge about the API should lead to improved
comprehension of its features and functionality.

According to Kelleher and Brachman, 2023, tasks should be involved around com-
bining multiple API elements to solve a problem. Therefore, tasks in the experiment
have been set up in such a way that it requires a participant to use the Developer
Portal (and thus strategy A) to request data from an API connected to a use case, and
then use the front-end environment (and thus strategy B) to integrate data by display-
ing it onto the map. According to Holmqvist and Jungermann, 2021, dividing tasks
per use case help to define a clear goal definition which is needed to enhance the
software comprehension process. To accurately measure comprehension effects by
applying learned concepts on the way, tasks were created purposefully to increase in
difficulty and divided into subtasks (a to c) (Holmqvist and Jungermann, 2021). This
approach ensured that participants completed the full hour and provided maximum
insights for this part of the study.

To maintain realistic usage scenarios and comply to the inheritance of storytelling
principles defined in subsection 4.1.1, participants were provided with a storyline in

Chapter 5. Materialize 30

which they were planning a day out in Amsterdam and wanted to be well-prepared
by accessing real-time data on locations, traffic, and routes. Therefore, the following
tasks were set up:

• In Task 1 participants were requested to display a marker on the map using
the coordinates of Amsterdam, retrieved through the Developer Portal.

• Task 2 posed a higher level of difficulty by requiring participants to extract
real-time data on traffic incidents from the API and display an instance of a
closed road on a map by adding a marker to it. This task increased the level
of difficulty by (a) providing a less complete template, (b) enforcing more de-
tailed JavaScript knowledge and (c) having to work with more specific param-
eters in the Developer Documentation.

• In Task 3, participants were instructed to visualize a route from point A to B.
This task not only required participants to work with complex JavaScript logic
but also interact with the Routing API. As the preliminary interviews pointed
out, the Routing API was considered the most complex API due to its extensive
interface complexity and information overload. For these reasons, this task
was designed to be the most challenging of all.

After participants completed a task, their perceived effort was assessed to determine
the Customer Effort Score (CES) in this study. In Q1 to Q3 (see Appendices F.3 to
F.6), which consisted of the same set of questions, participants were asked to rate
the difficulty or ease of performing a specific action. In the SA condition, the action
involved making the correct API call using the TomTom documentation, while for
the SB condition, the action was to build a functional prototype using the data from
the API. It should be noted that, in compliance with research guidelines established
by TomTom, the Likert Scale used in this survey ranged from 1-7, with 1 indicating
Very difficult and 7 indicating Very easy.

Additionally, after task completion, in Q1 to Q3 participants were requested to rate
their level of agreement on the following statements to assess their comprehension:
"The environment provided me with the right information to make the API call” (SA) and
"The environment helped me accomplish the programming task" (SB).

After the one hour timeframe finished, participants were debriefed and kindly re-
quested to fill in Q4 (see Appendices F.7 to ??), where a request was made to reflect
on the overall complexity and effectiveness of the strategies.

• The complexity of the task was measured by asking participants how confident
they felt in using the platform and tools effectively, as well as assessing their
perceived difficulty in understanding the API system as a whole.

• Based on the assigned condition, participants were asked for their opinion on
the effectiveness of a specific strategy in accomplishing a particular goal. For
SA, the goal was to ’find the right information at the right time’, while for SB
the goal was to ’build a working prototype’. For this study, it is crucial to not
only obtain a qualitative understanding of the effectiveness of the strategy, but
also the rationale behind the given ratings. Since all questions for participants
so far were based on a rating scale of 1-5 or 1-7, a follow-up question was
included to ask for clarification on participants’ rating of effectiveness.

At the end of the experiment, participants were given the opportunity to provide
their general feedback, such as justification for their behavior or any noteworthy
observations during the experiment, whether positive or negative.

Chapter 5. Materialize 31

5.4 Results

5.4.1 Quantitative

In this section, results of the data collection will be presented and analyzed. Next
to means (M) and standard deviations (SD), data was tested on normality using
the Shapiro-Wilk test and significance level of 0.05 before any statistical testing was
performed.

To determine the most suited method(s) for statistical analysis, it is essential to be re-
minded of the exact stage in the Developer Journey where the strategies are present.
The Developer Journey shows that both strategies, although complementary, suit
different purposes and solve different types of API complexity. Therefore, strategy A
and strategy B are not being compared to each other. To compare both strategies sep-
arately to the baseline condition, a two-sample independent T-test will be employed,
which is suited for time-related data. However, this method cannot be applied to
data such as Likert scales as they are often ordinal. That is, while values have a nat-
ural order, the differences between the values may not be equal. Consequently, to
apply statistical tests to the interval data, the Mann-Whitney U test will be utilized
to compare mean interval values of both conditions compared to the baseline. This
statistical test is commonly used to compare differences between two independent
samples and is therefore appropriate for non-parametric data.

This analysis will now focus on the results derived from the independent metrics on
the basis of Bar Charts. It should be noted that due to an insufficient amount of data
points for Task 3 in conditions SB and BL, findings on Task 3 will occasionally be
excluded from any further analysis.

Task Completion Time

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

Time to First Successful API Call

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

Number of erroneous requests (attempts) developers make until they achieve a
successful call

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

Number of reach outs to external sources

Chapter 5. Materialize 32

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

Task Success Score

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

Customer Effort Score

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

Comprehension

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

Complexity

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

Support Effectiveness

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

5.4.2 Qualitative

Although used metrics allow for a thorough analysis of quantitative data, earlier
conducted phases in this study have led to support strategies substantiated by var-
ious qualitative inputs. As mentioned previously, it is of importance not only to
qualitatively understand strategy effectiveness, but also reasoning behind develop-
ers’ actions during the sessions to further support these measures. Consequently,
quantitative Developer behaviour was measured during and after conducting end
user testing sessions. This measurement involved keeping track of their foraging be-
haviour, comments, and support calls. Additionally, short follow-up conversations
were conducted right after each session to address general feedback and opinions

Chapter 5. Materialize 33

on both support strategies. Topics that contribute most value to the existing findings
in this study will now be addressed.

Foraging Behaviour

Outcomes of held experiments show consequent findings with literature from the re-
lated work section. When learning to work with and build acquaintance with a new
API, developers in this study consistently showed a process of bottom-up compre-
hension. This is done by inspecting small building blocks of information in the API
design to gradually build up to a comprehensive understanding. Additionally, it
was found that creating well-designed tasks provides valuable direction and steer-
ing to simulate the comprehension process, as they drive developers to seek prof-
itable information sources and experiment with different integrational logic APIs
offer. Moreover, it was discovered that proficient REST API developers show the
perception that they already possess the necessary knowledge to locate the required
information, occasionally leading to them spending more time looking for the right
location of the information. After a sufficient amount of time had elapsed, develop-
ers were rapid in adjusting their approach to locate the right information.

Demand Characteristics

End user testing sessions have shown how developers tend to perceive tasks as easy
when nudges are applied by an expert in the session. This phenomenon is known
as Demand characteristics (part of ‘moderator effects’) and may influence the partic-
ipants’ behaviour and responses. Referring back to this study, it could be the case
that nudges might have influenced developers’ perceived effort in completing tasks,
measured by the CES. This experiment has tried to minimize the influence demand
characteristics have on affecting study outcomes by providing subtle nudges that
were nonspecific and handed out only in certain circumstances, as can be read in
section 5.3.3.

Preferred Learning Style

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

Lacks in current API Design

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

34

6 Discussion

Results from this study reveal the overall effectiveness of support strategies in solv-
ing different types of complexity in software systems, applied to the context of API
integration. The following section will interpret the study results through literature
and the main research question, to assess if initial hypotheses can be confirmed or
remain unproven. It is worth mentioning that the focus will be on the most impact-
ful results and corresponding hypotheses, as these are most relevant to this research.
This approach aims to provide a clear and comprehensive discussion.

6.1 The Interplay of Time and Support in Programming Tasks

Task Completion Times for the SB condition were consequently higher compared
to when no support was provided. Although no statistical difference between Task
Completion Times for BL (baseline) and SB (strategy B) was found (hence not con-
firming H1.1), a comparison with Task Success Scores reveals an interesting insight.
It is relevant to mention that, although it is beneficial for a developer to be able to
integrate data into his own application quickly, strategy B was not designed to in-
crease the integration time. Instead, its purpose is to assure developers are able to
individually work through the complexity by going through a step-by-step process
to complete the task at hand. The latter was measured using the Task Success Score,
which makes it meaningful to compare results from both these metrics. One note-
worthy finding is that although strategy B showed longer task completion times, the
Task Success Scores consistently showed a corresponding increase. This means that
although (on average) developers take a few minutes longer to complete a task using
strategy B, fewer nudges are needed to successfully complete the task at hand using
a natural approach. Although statistical testing could not prove any significance
between conditions, a moderate effect size indicates how these findings are fairly
reliable and show support for H2.1. Moreover, quantitative feedback from develop-
ers highlighted how strategy B can support developers in gaining clearance for the
next step when needed, possibly explaining the increase in success scores between
BL and SB.

Further analysis revealed a significant difference between Task Completion Times
for strategy A and Baseline. Strategy A, initially designed to provide developers with
the right information at the right time, demonstrated its value by reducing task com-
pletion times by an average of 63.7% across all three tasks. Even though strategy A
was tested through a clickable prototype, the extent of its impact was substantial
and participants did not differ much in terms of skill and experience, which further
increases the reliability of this finding. The analysis presented above confirms the
validity of H1.2. A reasonably coherent decrease in Time to First Successful API Call
between strategy A and Baseline was also found and proved to be statistically signif-
icant, thus providing further support for the confirmation of H1.3. The reliability of
this insight is further enhanced by the inclusion of qualitative data: a notable rating
of 4.7 out of 5 in terms of perceived effectiveness indicates a high level of developer
satisfaction with the strategy.

Chapter 6. Discussion 35

Based on the analysis, it is evident that by only displaying specific information that
is most needed in their ‘getting started’ phase (in Lean Thinking known as value),
strategy A can be considered very effective in reducing existing interface complex-
ity. Additionally, these findings dictate how strategy A can be a robust strategy for
helping novices in their early phase answer comprehension questions with signifi-
cantly more accuracy, in less time. The upcoming subsection will examine whether
the direct comprehension ratings align with these findings.

6.2 Key Factors Affecting Comprehension: An Overview of
Influential Elements

Theory from the literature review has illustrated how adequate support can help
developers in their early comprehension process by empowering the assimilation
process to form a well-developed mental model of unfamiliar, complex software
(Kadar et al., 2021, Adeli et al., 2020). This section will interpret results focused on
software comprehension to find out if proposed support strategies are effective in
providing needed comprehension assistance for developers.

6.2.1 Learning effects and Task difficulty influence comprehension ef-
fects

When no support is provided, developers tend to exhibit higher levels of agreement
on the API environment providing the data needed for completing the task at hand
between Task 1 and Task 2. Learning effects could be the main reason for this: al-
though the API for Task 1 and 2 varied, the data retrieval method was consistent.
By identifying patterns and commonalities in Task 1, developers can update their
mental model with more knowledge about where to make the API call. These in-
formed decisions result in developers becoming more efficient in their search for
information in Task 2, hence declaring the increase in comprehension effects.

Although Q1 showed increased ratings in the baseline condition, the comprehension
ratings for Q2 slightly decreased. This observation can be further explained by the
expertise reversal effect (Kalyuga, 2007). A study by Gupta and Zheng, 2020 found
that novices lacked the adequate mental model to comprehend the complex content
in their learning materials when attempting to solve a task for the first time. There-
fore, additional support was provided through text explanations to aid comprehen-
sion. However, as novices gained more knowledge, the additional text information
became unnecessary for their learning, which demonstrates the expertise reversal
effect. This effect may have contributed to the lower comprehension ratings shown
in the results, as developers may tend to rely more on open-ended problem solving
approaches rather than a step-by-step approach to solving a problem.

Moreover, individual differences in programming or JavaScript experience may have
played a role in these findings as developers who had less experience in these areas
tended to struggle more when working on tasks with increased difficulty. Accord-
ing to Klemola and Rilling, 2002, developers with less general programming expe-
rience and domain expertise may have slower comprehension, which could have
contributed to the decrease in comprehension ratings observed between tasks.

Chapter 6. Discussion 36

6.2.2 Learning styles and over-reliance affect comprehension

Contrary to H2.5, the analysis of strategy B condition revealed a significant and there-
fore conspicuous decrease in comprehension ratings from Task 1 to Task 2 compared
to the baseline. This finding suggests that developers faced greater challenges as task
difficulty increased. While there are factors that could lead to an increase in compre-
hension, such as identifying commonalities in used code templates or using generic
examples to acquire contextual knowledge, it is important to consider the substan-
tial decrease in comprehension effects. This decrease could potentially be attributed
to an over-reliance on support.

Especially when still API-unfamiliar, developers might have become overly depen-
dent on the support provided in Task 1. When developers have to deal with in-
creased task difficulty in Task 2, they rely on strategy B to find answers. However,
strategy B requires developers to apply their knowledge and skills in a flexible way
by using generic explanations and -examples. Although this was not particularly
challenging in Task 1, qualitative inquiries highlight instances where developers
experienced confusion in Task 2. This confusion arose when strategy B presented
generic examples instead of functional ones, and it can be attributed to a devel-
oper’s preferred way of learning. As sources from related work predicted (Coffield
et al., 2004, Mian et al., 2022), these findings show how learning styles can indeed
vary among developers and that strategy B might not always offer the most suitable
learning style for purely practical (by Coffield et al., 2004 defined as common-sense)
learners, occasionally leading to decreased comprehension effects over tasks.

Although the data did not align with the anticipated results for H2.5, strategy B was
rated 3.7 out of 5 and received overall positive feedback. For developers trying to
understand basic principles and concepts of unknown software systems, strategy B
has shown promise as a strategy. By offering theory and examples that focus on core
concepts and functionality, strategy B strikes a balance between providing a pathway
and goal to developers in their early comprehension phase, while trying to keep de-
velopers encouraged to actively engage in the process of comprehending software.
Nevertheless, future research is needed to determine the effects of functional exam-
ples on developers’ reliance on support and comprehension processes.

6.2.3 Inconvenience issue leads to inconsistent comprehension ratings

Comprehension ratings have shown to fluctuate between tasks completed in the SA
condition. Further examination revealed how developers faced an inconvenience
issue while completing Task 2 in the Figma prototype, which is likely the reason
for the analyzed inconsistency. Although this study found a statistically significant
decrease in comprehension ratings in Task 2 between BL and SA, the reliability of
this is up for debate. Additionally, it is challenging to determine whether compre-
hension ratings would be more consistent if a fully functional prototype of strategy
A would have been set up, however analysis still showed an increase in compre-
hension ratings from Task 1 to Task 3, indicating that strategy A might contribute to
increased software comprehension effects for developers retrieving data from com-
plex APIs. However, comprehension ratings for Task 1 and 3 between BL and SA
did not indicate a significant difference, presenting inconsistencies with H2.6.

Chapter 6. Discussion 37

6.2.4 How Strategy A facilitates Information Foraging Process

A substantial increase in comprehension ratings between Task 1 and Task 3 was ob-
served. Additionally, the analysis of developer behavior from recordings revealed
that developers naturally search for information sources that provide them with the
most value in completing the task at hand. For this, they are using their existing
knowledge on APIs gathered through general experience, enriched by tasks com-
pleted earlier in the session.

Upon task completion, most developers reach out to the same location in the de-
veloper documentation for the new task and proceed with the same steps towards
solution as in the task before, only to deviate when not being able to find the data re-
quired for the new task. This foraging behaviour is in line with insights from IFT that
argue: when the value of the information is right, users stick to that information to
further enhance their comprehension process (Lawrance et al., 2010). If they are not
finding valuable information in a particular section of the environment, they may
switch to a different source within the environment in search of better information
scent (Fleming et al., 2013).

Consequently, these results elicit the importance of dealing with existing interface
complexity, especially within the Developer Documentation as this is where API
Calls can often be made. Strategy A has shown to facilitate developers in finding
the most profitable information sources with more accuracy, in less time. By inher-
iting value and value stream as concepts from Lean Thinking, strategy A is able to
answer comprehension questions with more accuracy by saving valuable time for
developers (Adeli et al., 2020).

Overall, it remains difficult to determine whether proposed support strategies con-
tribute to a restored software comprehension process. Initial interviews conducted
with API-familiar developers have revealed that becoming familiar with an API can
take several weeks or even months, depending on personal expertise and the level
of complexity involved. This observation is supported by the literature, which in-
dicates that developing a fully coherent mental model is a time-consuming effort
(O’brien, 2003) and that several months may pass before direct changes can be ob-
served (Seel, Al-Diban, and Blumschein, 2000).

The present research has focused solely on the direct effects of comprehension, and
these may not be sufficient to draw conclusions on the overall impact of support
strategies on the software comprehension process. Although the support strategies
developed in this study aim to assist developers in enhancing their software compre-
hension processes, future research should consider measuring long-term compre-
hension effects when interacting with complexity in APIs to ensure the most reliable
findings (Balijepally, Nerur, and Mahapatra, 2015).

6.3 Coping with Complexity

As shown by literature, coping with increased complexity in software systems such
as APIs can be challenging. This subsection will analyze the results regarding com-
plexity, as measured by confidence levels and perceived ease of use, by revisiting
literature-defined techniques for Complex Problem Solving (CPS). The aim is to de-
termine the effectiveness of the CPS techniques embedded in strategy A and strategy
B in reducing complexity.

Chapter 6. Discussion 38

6.3.1 Strategy A increases overall confidence and ease of use

Analysis shows how strategy A outperforms the baseline in terms of confidence and
perceived ease of use by developers. A significant difference was found between SA
and BL for overall confidence, where strategy A leads to more overall confidence in
using the system compared to when no support is provided. It can be argued that
this is because of self-efficacy (Bouffard-Bouchard, 1990, Moores and Chang, 2009):
When support is provided by means of strategy A, developers may feel more con-
fident in using the system and achieving their goals overall as they have access to
resources which they know helps them overcome interface complexity they other-
wise would have to deal with. This increased sense of self-efficacy is likely the reason
for the increase in confidence. In direct relationship with the measured confidence
level, a significant difference was found between SA and BL for perceived ease of
use. This significant difference serves as an additional layer of confidence in stating
that strategy A is effective in reducing existing interface complexity. The findings
above provide support for H3.3.

More research is needed to find out if (more concepts from) Lean Thinking can be
applied to more strategies and use cases for reducing (interface) complexity. How-
ever, with respect to API integration, implementing concepts from Lean Thinking in
a strategy has proven to be very effective for reducing interface complexity.

6.3.2 Subtasks help developers create main goal and pathways towards
solution

Our analysis did not reveal significant differences between strategy B and baseline
for both confidence and perceived ease of use, thus not confirming H3.4. There-
fore, it can not be conclusively stated that inheriting decomposition in a strategy
leads to a decrease in system complexity. Nevertheless, findings suggest that strat-
egy B appears promising in guiding developers to establish a clear goal definition,
as evidenced by slightly increased confidence levels and qualitative feedback. This
confirms findings by Holmqvist and Jungermann, 2021. The way in which strategy B
is structured, with its use of subtasks, suggests a positive outlook towards facilitat-
ing a valid assimilation process for developers. By visualizing a pathway towards
a goal, strategy B is able to assist in the assimilation process within early software
comprehension. These findings are consistent with theories presented by Foshay
and Kirkley, 2003 and Schefer-Wenzl and Miladinovic, 2019.

Overall, analyzing the results has demonstrated how strategy A outperforms the
baseline significantly with respect to time, ease of use, and confidence levels. There-
fore, H0-1 was rejected. While strategy B exhibited higher task success scores moti-
vated by effect size and qualitative feedback, this study did not find any statistically
significant differences between its performance and that of the baseline. As a result,
H0-2 could not be rejected.

6.4 Limitations, Constraints and Future Work

This study poses limitations that may have affected the outcomes of the study design
approach as well as the generalizability of results.

First, this study has been limited to the utilization of Web APIs with code templates
being built using JavaScript. As a result, results obtained from this study may not

Chapter 6. Discussion 39

be applicable to other API types and programming languages on which they are
developed, highlighting the need for further research to explore the applicability
of findings in different contexts. Additionally, despite efforts to screen participants
with experience in (API) programming and familiarity with JavaScript, individual
differences in expertise levels among developers were still plausible, potentially im-
pacting the study results.

Based on preliminary interviews, this study has categorized API complexity into
interface and system complexity, both found present in different stages of the Devel-
oper Journey. While the presence of both complexity types was evident in end user
testing sessions, preliminary interviews were limited in depth and size and may
not have captured the full range of complexities involved in working with APIs in
real-world settings. More comprehensive research is needed to fully capture and
account for all possible types of complexity developers encounter when interacting
with complex APIs.

The study’s design poses two main limitations. First, the Hawthorne effect (Sedg-
wick and Greenwood, 2015) could have influenced participants’ behaviour and per-
formance as they completed programming tasks in the presence of a topic expert,
which would have potentially led to inaccurate results. Although participants were
assured confidentiality and comparisons between participants were not disclosed,
the impact of the Hawthorne effect on the study results cannot be entirely ruled
out. Secondly, demand characteristics may have affected study outcome validity as
task success occasionally relied on subtle nudges. While the study design accounted
for this through the Task Success Score, the subjectivity of what counts as a ‘subtle
nudge’ could differ from person to person, which could introduce study result bias.
Although nudges were necessary to accurately measure support strategy impact,
they were not predetermined but instead given at repetitive moments. Hence, their
potential impact on success scores cannot be ruled out completely. We encourage
future work to investigate alternative ways of measuring the impact of nudges and
reducing their potential influence on success scores.

One main constraint of this study is the use of a clickable prototype of strategy A.
Due to a lack of available resources, a fully functional version of the developer por-
tal could not be developed. Although extensive work has been put into creating
interaction flows within the clickable prototype, it still did not include all necessary
features of a 1:1 copy, interfering with the validity of results related to time or usabil-
ity. Future work should put more time and effort into developing a fully functional
prototype. A second constraint of this study relates to the limited sample size. Due
to the difficulty of finding participants suited for this study, the amount of data col-
lected for each condition was relatively small. As a result of the small sample size,
participants were not screened on learning style which has been shown to impact the
perceived effectiveness of support strategies. Future work should aim to increase the
sample size to improve the validity and reliability of the study results.

The limited timeframe of this research project has been a notable constraint. While it
is possible that immediate comprehension effects are stimulated by proposed strate-
gies, fully developing a mental model of software takes more time than the duration
of conducted tests allow. Therefore, a follow-up longitudinal study measuring com-
prehension over 1-3 months is needed to accurately assess the impact of proposed
support strategies in enhancing software comprehension.

Chapter 6. Discussion 40

In conclusion, future work should aim to discover more effective strategies to ad-
dress the complexity in software systems beyond those examined in this study. Find-
ings of this study have revealed how incorporating CPS techniques in support strate-
gies is a viable method to develop such strategies. Considering the vast amount of
CPS techniques still untapped, there is significant potential for further exploration.
Moreover, the study only examined support strategies in the context of API inte-
gration, and further research is needed to determine their effectiveness in other do-
mains.

To further increase the potential of strategy B, future work could also point directions
towards exploring machine learning and AI techniques for automating the step-by-
step process to decompose complexity in software systems.

In summary, this study has produced promising findings regarding the effective-
ness of applying techniques from Complex Problem Solving in strategies to reduce
software complexity. Moreover, it has identified influential factors to consider for
future explorations. Keeping the limitations in mind, there is ample room for fur-
ther investigation in the field of Developer Experience, offering valuable prospects
for optimizing the utilization of APIs and other complex software on a global scale.

41

7 Conclusion and Outlook

This study has looked into the performance of two distinct support strategies in
reducing existing software complexity, applied in the context of API integration. By
following a structured design process supported by related work, strategy A and
strategy B were evaluated on various performance metrics.

The present research found that strategy A significantly reduces task completion
times and time to first successful API call. Strategy B has shown to reduce the amount
of assistance developers need from a topic expert in completing tasks. Although no
(positive) significant differences were found between Strategy B and baseline, qual-
itative inquiries show positive feedback towards decomposing a complex problem
into subtasks to create a pathway towards a solution for developers.

While the definitive impact of this approach on the software comprehension process
should be measured in a longitudinal study, results indicate promising opportunities
for improving short-term comprehension effects.

To conclude, decomposition and Lean Thinking are two techniques for CPS that can
successfully be inherited in strategies for reducing software complexity (in the con-
text of API integration). However, this area of research is still in its infancy as there is
still a great deal of work to be done to uncover more effective developer support for
complex software problems. As we continue to navigate the challenges of increas-
ingly complex software systems, the demand for new approaches has never been
more pressing. This research marks the first steps towards that goal.

42

Bibliography

Adeli, Marjan et al. (2020). “Supporting code comprehension via annotations: Right
information at the right time and place”. In: 2020 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). IEEE, pp. 1–10.

Balijepally, VenuGopal, Sridhar Nerur, and RadhaKanta Mahapatra (2015). “Task
mental model and software developers’ performance: An experimental investiga-
tion”. In: Communications of the Association for Information Systems 36.1, p. 4.

Bloom, Benjamin Samuel, Committee of College, and University Examiners (1964).
Taxonomy of educational objectives. Vol. 2. Longmans, Green New York.

Bouffard-Bouchard, Therese (1990). “Influence of self-efficacy on performance in a
cognitive task”. In: The journal of social Psychology 130.3, pp. 353–363.

Bradley, Nick C, Thomas Fritz, and Reid Holmes (2022). “Sources of software devel-
opment task friction”. In: Empirical Software Engineering 27.7, pp. 1–34.

Clark, Moira and Andrew Bryan (2013). “Customer effort: help or hype?” In: Henley
Business school.

Co, Elsevier (2022). Scopus. https://www.scopus.com.
Coffield, Frank et al. (2004). “Learning styles and pedagogy in post-16 learning: A

systematic and critical review”. In.
Delange, Julien et al. (2015). “Evaluating and mitigating the impact of complexity in

software models”. In.
Dörner, Dietrich (1980). “On the difficulties people have in dealing with complexity”.

In: Simulation & Games 11.1, pp. 87–106.
Dörner, Dietrich and Joachim Funke (2017). “Complex problem solving: What it is

and what it is not”. In: Frontiers in psychology 8, p. 1153.
Elis Ormrod, Jeanne (1999). Human Learning.(3e edition). Upper Saddle River (NJ): Mer-

rill.
Felder, Richard M, Barbara A Soloman, et al. (2000). Learning styles and strategies.
Fleming, Scott D et al. (2013). “An information foraging theory perspective on tools

for debugging, refactoring, and reuse tasks”. In: ACM Transactions on Software En-
gineering and Methodology (TOSEM) 22.2, pp. 1–41.

Foshay, Rob and Jamie Kirkley (2003). “Principles for teaching problem solving”. In:
Technical paper 4.1, pp. 1–16.

Gao, Gao et al. (2020). “Exploring programmers’ api learning processes: Collecting
web resources as external memory”. In: 2020 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, pp. 1–10.

Gibbons, Sarah (2016). Design Thinking 101Google Scholar. https://www.nngroup.
com/articles/design-thinking/.

Gick, Mary L (1986). “Problem-solving strategies”. In: Educational psychologist 21.1-2,
pp. 99–120.

Google (2022). Google Scholar. https://scholar.google.nl.
Gupta, Udita and Robert Z Zheng (2020). “Cognitive Load in Solving Mathemat-

ics Problems: Validating the Role of Motivation and the Interaction among Prior
Knowledge, Worked Examples, and Task Difficulty.” In: European Journal of STEM
Education 5.1, p. 5.

https://www.scopus.com
https://www.nngroup.com/articles/design-thinking/
https://www.nngroup.com/articles/design-thinking/
https://scholar.google.nl

Bibliography 43

Hebig, Regina et al. (2020). “How do Students Experience and Judge Software Com-
prehension Techniques?” In: Proceedings of the 28th International Conference on Pro-
gram Comprehension, pp. 425–435.

Holmqvist, Axel and David Jungermann (2021). “Optimizing the usability of REST
API reference documentation”. In.

Jonnada, Srikanth and Jothis K Joy (2019). “Measure your API complexity and relia-
bility”. In: 2019 IEEE 17th International Conference on Software Engineering Research,
Management and Applications (SERA). IEEE, pp. 104–109.

Kadar, Rozita et al. (2021). “Program Comprehension Technique in Teaching and
Leaning: A Cognitive Perspective”. In.

Kalyuga, Slava (2007). “Expertise reversal effect and its implications for learner-
tailored instruction”. In: Educational psychology review 19, pp. 509–539.

Kelleher, Caitlin and Michelle Brachman (2023). “A sensemaking analysis of API
learning using React”. In: Journal of Computer Languages 74, p. 101189.

Klemola, Tuomas and Juergen Rilling (2002). “Modeling comprehension processes in
software development”. In: Proceedings First IEEE International Conference on Cog-
nitive Informatics. IEEE, pp. 329–336.

Lamata, Maria T, David A Pelta, and José Luis Verdegay (2021). “The role of the
context in decision and optimization problems”. In: Fuzzy Approaches for Soft Com-
puting and Approximate Reasoning: Theories and Applications. Springer, pp. 75–84.

Lawrance, Joseph et al. (2010). “How programmers debug, revisited: An information
foraging theory perspective”. In: IEEE Transactions on Software Engineering 39.2,
pp. 197–215.

Letovsky, Stanley (1987). “Cognitive processes in program comprehension”. In: Jour-
nal of Systems and software 7.4, pp. 325–339.

Li, Hongwei et al. (2013). “What help do developers seek, when and how?” In: 2013
20th working conference on reverse engineering (WCRE). IEEE, pp. 142–151.

LLC, Paperpile (2022a). The top list of academic research databases. https://paperpile.
com/g/academic-search-engines/.

– (2022b). The top list of academic search engines. https://paperpile.com/g/academic-
search-engines/.

Mian, Imdad Ahmad et al. (2022). “A comprehensive skills analysis of novice soft-
ware developers working in the professional software development industry”. In:
Complexity 2022.

Moores, Trevor T and Jerry Cha-Jan Chang (2009). “Self-efficacy, overconfidence, and
the negative effect on subsequent performance: A field study”. In: Information &
Management 46.2, pp. 69–76.

Myers, Brad A and Jeffrey Stylos (2020). Improving API Usability. https://www.cs.
cmu.edu/~NatProg/papers/p62-myers-CACM-API_Usability.pdf/.

Nielsen, Jakob (1994). 10 Usability Heuristics for User Interface Design. https://www.
nngroup.com/articles/ten-usability-heuristics/.

Olson, Gary M and Judith S Olson (2003). “Psychological aspects of the Human use
of Computing”. In: Annu. Rev. Psychol 54, pp. 491–516.

O’brien, Michael P (2003). “Software comprehension–a review & research direction”.
In: Department of Computer Science & Information Systems University of Limerick, Ire-
land, Technical Report.

Pirolli, Peter and Stuart Card (1999). “Information foraging.” In: Psychological review
106.4, p. 643.

Postman (2020). 2020 State of the API Report. https://www.postman.com/state-of-
api-2020/.

https://paperpile.com/g/academic-search-engines/
https://paperpile.com/g/academic-search-engines/
https://paperpile.com/g/academic-search-engines/
https://paperpile.com/g/academic-search-engines/
https://www.cs.cmu.edu/~NatProg/papers/p62-myers-CACM-API_Usability.pdf/
https://www.cs.cmu.edu/~NatProg/papers/p62-myers-CACM-API_Usability.pdf/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.postman.com/state-of-api-2020/
https://www.postman.com/state-of-api-2020/

Bibliography 44

Qualtrics (2021). What is customer effort score (CES) how do I measure it? https://

www.qualtrics.com/uk/experience-management/customer/customer-effort-

score/?rid=ip&prevsite=en&newsite=uk&geo=NL&geomatch=uk.
Raman, Sowmyan (1998). “Lean software development: is it feasible?” In: 17th dasc.

aiaa/ieee/sae. digital avionics systems conference. proceedings (cat. no. 98ch36267). Vol. 1.
IEEE, pp. C13–1.

Rijke, Wouter J et al. (2018). “Computational thinking in primary school: An exam-
ination of abstraction and decomposition in different age groups”. In: Informatics
in education 17.1, pp. 77–92.

Robins, Anthony, Janet Rountree, and Nathan Rountree (2003). “Learning and teach-
ing programming: A review and discussion”. In: Computer science education 13.2,
pp. 137–172.

Saenz, Juan Pablo and Luigi De Russis (2022). “On How Novices Approach Pro-
gramming Exercises Before and During Coding”. In: CHI Conference on Human
Factors in Computing Systems Extended Abstracts, pp. 1–6.

Sánchez Carracedo, Fermín et al. (2018). “Competency maps: an effective model to
integrate professional competencies across a STEM curriculum”. In: Journal of Sci-
ence Education and Technology 27.5, pp. 448–468.

Schefer-Wenzl, Sigrid and Igor Miladinovic (2019). “Developing Complex Problem-
Solving Skills: An Engineering Perspective.” In: International Journal of Advanced
Corporate Learning 12.3.

– (2020). “Developing 21st century skills in engineering studies with E-learning”.
In: Int. Conf. E-Learn. Workplace. Vol. 2020, pp. 1–3.

Sedgwick, Philip and Nan Greenwood (2015). “Understanding the Hawthorne ef-
fect”. In: Bmj 351.

Sedhain, Abim and Sandeep Kaur Kuttal (2022). “Information Seeking Behavior for
Bugs on GitHub: An Information Foraging Perspective”. In: 2022 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, pp. 1–3.

Seel, Norbert M, Sabine Al-Diban, and Patrick Blumschein (2000). “Mental models &
instructional planning”. In: Integrated and holistic perspectives on learning, instruction
and technology: Understanding complexity, pp. 129–158.

Storey, M-AD, F David Fracchia, and Hausi A Müller (1999). “Cognitive design
elements to support the construction of a mental model during software explo-
ration”. In: Journal of Systems and Software 44.3, pp. 171–185.

Thangarajoo, Yagulawathi and A Smith (2015). “Lean thinking: An overview”. In:
Industrial Engineering & Management 4.2, pp. 2169–0316.

TomTom (2022). TomTom | Home. https://www.tomtom.com.
Twitter (2023a). Get trends near a location. https://developer.twitter.com/en/
docs/twitter- api/v1/trends/trends- for- location/api- reference/get-

trends-place.
– (2023b). Search Tweets: Standard v1.1. https://developer.twitter.com/en/docs/
twitter-api/v1/tweets/search/api-reference/get-search-tweets.

UserTesting (2022). Hear what your audience is saying and see what they mean. https:
//www.usertesting.com/.

Vaccari, Lorenzino et al. (2021). “APIs for EU Governments: A Landscape Analysis
on Policy Instruments, Standards, Strategies and Best Practices”. In: Data 6.6, p. 59.

Van Deursen, Arie et al. (2003). “Experiences in teaching software evolution and
program comprehension”. In: 11th IEEE International Workshop on Program Com-
prehension, 2003. IEEE, pp. 283–284.

Wang, Yingxu and Vincent Chiew (2010). “On the cognitive process of human prob-
lem solving”. In: Cognitive systems research 11.1, pp. 81–92.

https://www.qualtrics.com/uk/experience-management/customer/customer-effort-score/?rid=ip&prevsite=en&newsite=uk&geo=NL&geomatch=uk
https://www.qualtrics.com/uk/experience-management/customer/customer-effort-score/?rid=ip&prevsite=en&newsite=uk&geo=NL&geomatch=uk
https://www.qualtrics.com/uk/experience-management/customer/customer-effort-score/?rid=ip&prevsite=en&newsite=uk&geo=NL&geomatch=uk
https://www.tomtom.com
https://developer.twitter.com/en/docs/twitter-api/v1/trends/trends-for-location/api-reference/get-trends-place
https://developer.twitter.com/en/docs/twitter-api/v1/trends/trends-for-location/api-reference/get-trends-place
https://developer.twitter.com/en/docs/twitter-api/v1/trends/trends-for-location/api-reference/get-trends-place
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/api-reference/get-search-tweets
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/api-reference/get-search-tweets
https://www.usertesting.com/
https://www.usertesting.com/

45

Appendix A: Example response GET Request

1 [

2 {

3 "trends": [

4 {

5 "name": "#GiftAGamer",

6 "url": "http://twitter.com/search?q=%23GiftAGamer",

7 "promoted_content": null,

8 "query": "%23GiftAGamer",

9 "tweet_volume": null

10 },

11 {

12 "name": "#AskCuppyAnything",

13 "url": "http://twitter.com/search?q=%23AskCuppyAnything",

14 "promoted_content": null,

15 "query": "%23AskCuppyAnything",

16 "tweet_volume": 14504

17 },

18 {

19 "name": "#givethanks",

20 "url": "http://twitter.com/search?q=%23givethanks",

21 "promoted_content": null,

22 "query": "%23givethanks",

23 "tweet_volume": null

24 },

25],

26 "as_of": "2020-11-20T19:37:52Z",

27 "created_at": "2020-11-19T14:15:43Z",

28 "locations": [

29 {

30 "name": "Worldwide",

31 "woeid": 1

32 }

33]

34 }

35]

Appendix A. Example response GET Request 46

§

47

Appendix B: Working example in Strategy B

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

48

Appendix C: Strategy B in full screen

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

49

Appendix D: Developer Journey

FIGURE D.1: Developer Journey

50

Appendix E: Consent Form

Informed Consent of Participation

You are invited to participate in the user study about solving complex software problems. Initiated

and conducted by Thomas Nolst Trenité. The research is supervised by Prof. Thomas Kosch. Please

note:

● Your participation is entirely voluntary and can be withdrawn at any time

● The user study will last approximately 60 minutes

● We will record personal demographics (age, degree, etc.)

● We will record the screen and activities on this device that are necessary for the study and

take notes afterwards.

● All records and data will be subject to standard data use policies

● All records and subject-related data will be anonymized

● Repeated participation in the study is not permitted

The alternative to participation in this study is to choose not to participate. If you have any questions

or complaints about the whole informed consent process of this research study or your rights as a

human research subject, please contact Prof. Thomas Kosch (E-Mail: thomaskosch90@gmail.com).

You should carefully read the information below. Please take the time you need to read the consent

form.

1. Purpose of this Research

The purpose of this research is to measure the effectiveness of proposed support strategies in

solving complex software problems. Your participation will help us achieve this goal. The study is not

a test of your skills and focuses more on completing the purpose above. The results of this

research may be presented at scientific or professional meetings or published in scientific

proceedings and journals.

2. Participation and Compensation

Your participation in this user study is completely voluntary. You will be one of approximately 30

people being tested for this research. You will receive a 15,- bol.com voucher as compensation for

your participation. You may withdraw and discontinue participation at any time without penalty or

losing the compensation. If you decline to participate or withdraw from the user study, no one will be

informed. You can deny answering questions if you feel uncomfortable in any way. The investigator

may withdraw you from this research if continued participation will not meet the study goals or

affect your well-being.

3. Procedure

After confirming the informed consent the procedure is as follows:

1. You will fill in a questionnaire on demographic data and your estimated programming

experience

Appendix E. Consent Form 51

2. I will start recording the screen and you will be reading the instructions and looking at the

content of the folder provided to you at your desktop.

3. You will be completing three tasks where in between you will need to fill in a questionnaire.

For completing the tasks you will be getting an API key, instructions and template code.

4. If you are done with the tasks or manage to complete a part of them, I will stop the recording

and you will need to fill in a final questionnaire on the experience you’ve had

5. The session is ended and you will receive compensation.

The complete procedure of this user study will last approximately 60 minutes.

4. Risks and Benefits

There are no risks associated with this user study. Discomforts or inconveniences will be minor and

are not likely to happen. If any discomforts become a problem, you may discontinue your

participation. In order to minimize any risk of infection, hygiene regulations of the University Utrecht

apply and must be followed. Any violations of the hygiene regulations or house rules of this

institution can mean immediate termination of the study. If you get injured as a direct result of

participation in this research, please reach out to the principal investigator. Enrolled students are

automatically insured against the consequences of accidents through statutory accident insurance

and with private liability insurance in case of any damages. The confirmation of participation in this

study can be obtained directly from the researchers.

5. Data Protection and Confidentiality

We are planning to publish our results from this and other sessions in scientific articles or other

media. These publications will neither include your name nor cannot be associated with your

identity. Any demographic information will be published anonymized and in aggregated form.

Contact details (such as e-mails) can be used to track potential infection chains or to send you further

details about the research. Your contact details will not be passed on to other third parties. Any data

or information obtained in this user study will be treated confidentially, will be saved encrypted, and

cannot be viewed by anyone outside this research project unless we have you sign a separate

permission form allowing us to use them. All data you provide in this user study will be subject of the

General Data Protection Regulation (GDPR) of the European Union (EU) and treated in compliance

with the GDPR. Subsequent uses of records and data will be subject to standard data use policies,

which protect the full anonymity of the participating individuals. Faculty and administrators from the

campus will not have access to raw data or transcripts. This precaution will prevent your individual

comments from having any negative repercussions. Access to the raw interview transcript and

transcribed observation protocol will be limited to the authors of this research, academic colleagues,

and researchers with whom he might collaborate as part of the research process. Any interview

content or direct quotations from the interview that are made available through academic

publications or other academic outlets will be anonymized so that you cannot be identified. During

the study, we log experimental data, record the screen and/or activities on this device, and take

notes at the end of the user study. Raw data and material will be retained securely and in compliance

with the GDPR, for no longer than necessary or if you contact the researchers to destroy or delete

them immediately. As with any publication or online-related activity, the risk of a breach of

52

Appendix F: Questionnaires

14-05-2023 16:37 Questionnaire 0 | Introductive questions

https://docs.google.com/forms/d/16lABg9RAnh3X9-AEDJv1R1NinCriwtTSIzEsbmYzf3Y/edit 1/4

1.

Markeer slechts één ovaal.

< 18

18 - 25

25 - 30

> 30

2.

Markeer slechts één ovaal.

Anders:

High School

Bachelor's Degree

Master's Degree

Ph.D. or higher

Prefer not to say

Questionnaire 0 | Introductive questions
Determines participants' self estimated API usage and keeps track of demographic data

What is your age?

What is the highest degree or level of education you have completed?

FIGURE F.1: Questionnaire 0

Appendix F. Questionnaires 53

14-05-2023 16:37 Questionnaire 0 | Introductive questions

https://docs.google.com/forms/d/16lABg9RAnh3X9-AEDJv1R1NinCriwtTSIzEsbmYzf3Y/edit 2/4

3.

Markeer slechts één ovaal.

Employed full-time (40+ hours a week)

Employed part-time (less than 40 hours a week)

Unemployed (currently looking for work)

Student

Retired

Self-employed

4.

5.

Markeer slechts één ovaal.

No experience

1

2

3

4

5

Highly experienced

What is your current employment status?

For how many years have you been programming?

On a scale from 1 to 5, how do you estimate your programming experience?

FIGURE F.2: Questionnaire 0

Appendix F. Questionnaires 54

14-05-2023 16:58 Questionnaire 1 - Task 1

https://docs.google.com/forms/d/1EARqDb53ZVEk2-WqwG6tBjFIDl7nilJGC6IBHhtVBok/edit 1/5

1.

Markeer slechts één ovaal.

Very di�cult

1

2

3

4

5

6

7

Very easy

Questionnaire 1 - Task 1

Overall, how difficult or easy was it to make the right API call using the TomTom
documentation?

FIGURE F.3: Questionnaire 1-3

Appendix F. Questionnaires 55

14-05-2023 16:58 Questionnaire 1 - Task 1

https://docs.google.com/forms/d/1EARqDb53ZVEk2-WqwG6tBjFIDl7nilJGC6IBHhtVBok/edit 2/5

2.

Markeer slechts één ovaal.

Very di�cult

1

2

3

4

5

6

7

Very easy

Overall, how difficult or easy was it to build a working prototype using the data from
the API?

FIGURE F.4: Questionnaire 1-3

Appendix F. Questionnaires 56

14-05-2023 16:58 Questionnaire 1 - Task 1

https://docs.google.com/forms/d/1EARqDb53ZVEk2-WqwG6tBjFIDl7nilJGC6IBHhtVBok/edit 3/5

3.

Markeer slechts één ovaal.

Strongly disagree

1

2

3

4

5

Strongly agree

Rate your level of agreement to the following statement: "The environment provided
me with the right information to make the API call"

FIGURE F.5: Questionnaire 1-3

Appendix F. Questionnaires 57

14-05-2023 16:58 Questionnaire 1 - Task 1

https://docs.google.com/forms/d/1EARqDb53ZVEk2-WqwG6tBjFIDl7nilJGC6IBHhtVBok/edit 4/5

4.

Markeer slechts één ovaal.

Strongly disagree

1

2

3

4

5

Strongly agree

Deze content is niet gemaakt of goedgekeurd door Google.

Rate your level of agreement to the following statement: "The environment helped
me accomplish the programming task"

 Formulieren

FIGURE F.6: Questionnaire 1-3

Appendix F. Questionnaires 58

14-05-2023 17:05 Questionnaire 4 - Tasks finished

https://docs.google.com/forms/d/1ei8qdLgweeV3Zds_iwWhERLndHcYGo17Lwt-q87KB7w/edit 1/6

1.

Markeer slechts één ovaal.

Not at all con�dent

1

2

3

4

5

Very con�dent

Questionnaire 4 - Tasks finished
Some questions to round up the study, get general opinions and highlights

How confident do you feel in using the platform and tool(s) effectively?

FIGURE F.7: Questionnaire 4

Appendix F. Questionnaires 59

CONFIDENTIAL: The remaining content from Questionnaire 4 includes

confidential information belonging to TomTom, and as such, it cannot

be disclosed or shown to the public. This information is

proprietary and protected under non-disclosure agreements.

60

Appendix G: Bar Charts

CONFIDENTIAL: This content includes confidential information belonging

to TomTom, and as such, it cannot be disclosed or shown to the

public. This information is proprietary and protected under non-

disclosure agreements.

61

Appendix H: Interview Scripts

 Interview Script (acquainted)

 Intro

 Thanks for participating in this interview! Today I want to chat a bit about what work you do using

 the TomTom API in general and hear more about how you use the API. There are no right or wrong

 answers to any of my questions. This is meant to be a free conversation where you’re the expert and

 I’m learning from you.

 Before we start, do you mind if I record this session? The recording won’t be shared externally – it’s

 only for my internal notes.

 Background Questions

 1) What is your name and age?

 2) How many years of (API) programming experience do you have?

 3) Can you confirm that you are familiar with the TomTom API? As in: you are familiar with the

 overall architecture and some details of the system. You know our different API offerings and

 what they can do.

 a) How long did the process take for you to become familiar with the general

 architecture and details (like functions and data requests) of the system?

 4) Outside of TomTom: What API’s have you used before? Would you consider your API

 experience as Little, Average, Advanced, or Expert?

 Questions related to the TomTom API

 5) Can you please tell me a little bit about your role and what work you do regarding the

 TomTom API services?

 a) What API’s do you use?

 b) How frequently do you use them?

 6) Could you provide me with an example use case of where one of the API’s would come into

 play in a personal project or application build.

 7) How do you use the API design documentation to better comprehend how to build

 applications?

 8) What parts of the API do you currently struggle with?

 Information relevance

 9) If you use our documentation to get the relevant information you need to build an

 application..What parts are relevant to you and which are not?

 10) Do you have any expectations for certain elements (such as code fragments) to exist in this

 page?

 Within my thesis I’m investigating where complexity plays a role in the current API services. We can

 describe complexity as how easy or difficult it is to use a particular API based on the public functions

 and data of this API.

 Questions w/ regards to complexity

 11) How do you come across system or interface complexity when working with the APIs?

 ○ Could you also provide a detailed example of when you experienced this?

FIGURE H.1: Script for interviewing API-familiar developers

Appendix H. Interview Scripts 62

 ○ But you do have some experience with the API. Just out of curiosity : Do you have a

 method to still be able to deal with complexity when working with our API’s and if

 so, what method(s) do you use?

 ○ What tools would you mostly use when trying to integrate an API that can help you

 with making things easier to comprehend?

 By improving the API design through support strategies, we will then try to simplify this

 complexity and make it more comprehensible.

 12) Do you feel like there exists enough support for you to try and understand these functions

 and data requests better to help dealing with complexity?

 Questions to round up

 13) Is there anything you would like to add to what you’ve already said?

 14) Do you perhaps have any contacts for me to reach out to that are familiar with API’s but not

 with the TomTom API in specific?

 15) In a few months, we will be testing the opposed supportive strategies with internal

 developers as well in a small pilot study. Would you be willing to participate?

 Thank you so much for making the time to have this talk with me. Your answers were really valuable

 for this research. Would you add anything to the current existing questions? Maybe something you

 think would be really interesting to ask other developers?

FIGURE H.2: Script for interviewing API-familiar developers

Appendix H. Interview Scripts 63

 Interview Script (NOT acquainted)

 INTRODUCE SELF!

 Intro

 Thanks for participating in this interview! Today I want to chat a bit about what work you do using

 the TomTom API in general and hear more about how you use the API. There are no right or wrong

 answers to any of my questions. This is meant to be a free conversation where you’re the expert and

 I’m learning from you.

 Before we start, do you mind if I record this session? The recording won’t be shared externally – it’s

 only for my internal notes.

 Background Questions

 1) What is your name and age?

 2) How many years of programming experience do you have?

 3) What API’s have you used before? What would you say your API experience is?

 4) Can you confirm that you are NOT familiar with the TomTom API? (not familiar with the

 overall functions, data and architecture).

 I would like to know more about how developers like you explore the offering of our API’s. Therefore,

 5) What API have you used recently? How do you normally navigate through this API structure

 and what information do you use in that process? What is your experience with this?

 Discovery Browsing

 6) Free exploring (15m): Could you navigate through the TomTom API offering for me and see if

 there is anything interesting for you to find? You don’t have to look for something specific,

 just see what’s out there. Also, if something interests you, feel free to stay there as long as

 you prefer. For me, it would help if you think out loud when you are going through this

 because what you say, do, think and feel is very important for our research.

 a) Take ubereats example

 7) What is different in your information finding process compared to what you are used to? Are

 there similarities?

 8) Did you experience comprehension of the TomTom API? Did you find it difficult or easy?

 Why?

 a) What can be improved?

 b) Do you have an example API you have used before that you found easy to

 comprehend?

 c) Vague question: How do you usually understand code you are not familiar with?

 Recall

 9) How likely is it that the pages you discovered will provide an answer to your questions?

 a) How long is it going to take to get the answer if you go to that page?

FIGURE H.3: Script for interviewing API-unacquainted developers

Appendix H. Interview Scripts 64

 Questions to round up

 10) Is there anything you would like to add to what you’ve already said?

 11) Would you add anything to the current existing questions? Maybe something you think

 would be really interesting to ask other participants?

 Thank you for making the time to have this session with me. Your answers were really valuable for

 this research.

FIGURE H.4: Script for interviewing API-unacquainted developers

	Introduction
	Related work
	Complex Problem Solving (cps)
	Problem Solving
	Problem Complexity
	Dealing with Complex Software Problems
	Learning to Solve Complex Problems
	Differences in Learning Styles

	Software Comprehension
	Mental models / process
	Facilitating Software Comprehension

	Use Case: API Integration
	Technical Background

	Unaddressed Solution Opportunities
	Solution Opportunities for APIs

	Understand
	Preliminary Interviews
	Unacquainted group
	API-Familiar group
	Lacks of existing support

	Explore
	Mapping Developer Needs
	Brainstorm session 1
	Brainstorm session 2

	Strategy filtering
	DVF Framework
	Supplementary Filters
	Strategy A
	Transition of Strategy B

	Prototyping
	Prioritizing characteristics
	midfi Prototyping
	HiFi Prototyping

	Materialize
	Data and Analysis
	Hypotheses
	Study Design
	Pilot
	Participants
	Methodology

	Results
	Quantitative
	Qualitative

	Discussion
	The Interplay of Time and Support in Programming Tasks
	Key Factors Affecting Comprehension: An Overview of Influential Elements
	Learning effects and Task difficulty influence comprehension effects
	Learning styles and over-reliance affect comprehension
	Inconvenience issue leads to inconsistent comprehension ratings
	How Strategy A facilitates Information Foraging Process

	Coping with Complexity
	Strategy A increases overall confidence and ease of use
	Subtasks help developers create main goal and pathways towards solution

	Limitations, Constraints and Future Work

	Conclusion and Outlook
	Bibliography
	Example response GET Request
	Working example in Strategy B
	Strategy B in full screen
	Developer Journey
	Consent Form
	Questionnaires
	Bar Charts
	Interview Scripts

