
# Supplementary

Materials

- Culture medium (RPMI-1640, Gibco, with 2% FBS and 1% of L-glutamine, 1% penicillin and streptomycin)
- Wash medium (RPMI-1640 with 2% FBS and 1% of L-glutamine, 1% penicillin and streptomycin, Gibco)
- Freezing medium (RPMI-1640, Gibco, with 10% FBS and 1% of L-glutamine, 1% penicillin, streptomycin and 10% DMSO )
- Round-bottom 96-wells plates (sterile, non-treated, Nunc, Thermo Fisher Scientific)
- GolgiStop (BD Biosciences, )
- PBS (Gibco)
- FACS buffer (PBS, 0,1% NaN3, 2% FBS)
- Mouse and Rat serum
- Live/Dead cell viability dye (efluor506)
- Brilliant Stain buffer (Invitrogen Thermo Fisher Scientific)
- Rainbow calibration particles (Brand)
- For all staining antibodies used see in supplementary table X
- Fixation and Permeabilization kit (Fix/Perm, Perm buffer, Invitrogen Thermo Fisher Scientific)
  - Fixation and Permeabilization reagent (Fixation/Permeabilization concentrate and diluent in ratio 1:3)
  - Perm buffer (Permeabilization buffer and demi water in ratio 1:10)



Supplementary data

**Figure 1.** In all boxplots, the medians with interquartile range is shown. CD4+ and CD8+ T cells as a part of all lymphocytes (live CD3+) were measured before treatment (baseline)(Timepoint = 1), after the first (Timepoint = 2) and second cycle of treatment (Timepoint = 3) or when toxicity occurred (Timepoint = 3). Also stratified per treatment (anti-PD1 or anti-PD1 + anti-CTLA-4 treatment)

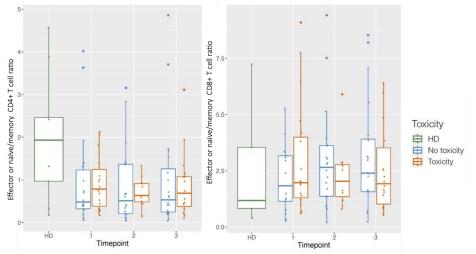



Figure 2. Effector or naïve or naïve / memory ratio (CD45RO- /CD45RO+) of CD4 and CD8+ T cells.

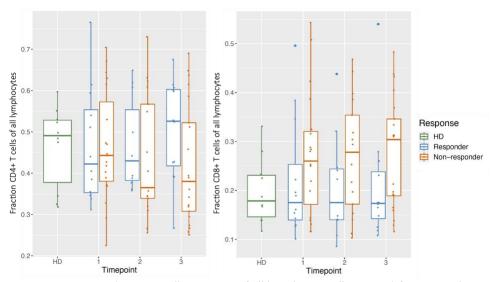
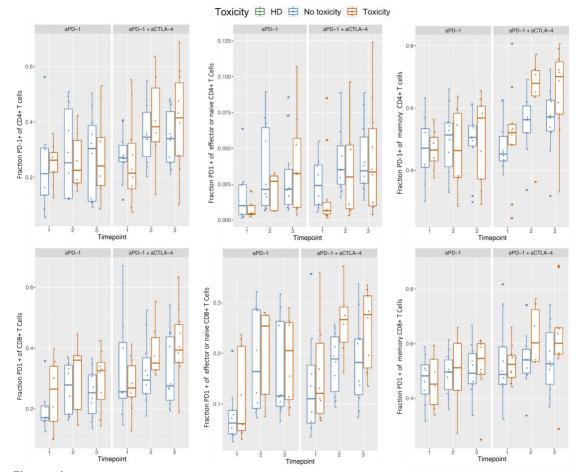




Figure 3. B. CD4+ and CD8+ T cells as a part of all lymphocytes (live CD3+) for responders and non-responders.



**Figure 4.** Fractions PD-1+ of CD4+ and CD8+ T cells, also within effector or naïve (CD45RO-) and memory (CD45RO+) subsets for patients with and without toxicity measured at all time points, stratified per treatment type.

#### Statistics

Examples in R studio

Mixed ANOVA, Repeated measures ANOVA, Wilcoxon-rank test Panel 2 Toxicity VS no Toxicity on multiple timepoints P 2 PD1pos of CD4mem (PD1+ fraction of memory CD4+ T cells) #Mixed ANOVA > mixed anova P 2 PD1pos of CD4mem <- aov ez(id = "P UNI", dv = "P 2 PD1pos of CD4mem", data = subset(Panel2 possiblevals, c(P tox != "HD" & P time != 2)), between= "P tox", within = "P time", na.rm=TRUE) Output > mixed\_anova\_P\_2\_PD1pos\_of\_CD4mem Anova Table (Type 3 tests) Response: P\_2\_PD1pos\_of\_CD4mem Effect df MSE F ges p.value P\_tox 1, 36 0.02 0.98 .019 .329 P\_time 1, 36 0.01 10.87 \*\* .080 .002 .380 3 P\_tox:P\_time 1, 36 0.01 0.79 .006 Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '+' 0.1 ' ' 1

#Repeated-measures anova to check in which group the significant effect for time is

> repeated\_measures\_mixed\_anova\_P\_2\_PD1pos\_of\_CD4mem <subset(Panel2\_possiblevals, c(P\_tox != "HD" & P\_time != 2)) %>%
group\_by(P\_tox) %>%
anova\_test(dv = P\_2\_PD1pos\_of\_CD4mem, wid = P\_UNI, within = P\_time) %>%
get\_anova\_table() %>%
adjust\_pvalue(method = "bonferroni")

#### Output

| > | > repeated_measures_mixed_anova_P_2_PD1pos_of_CD4mem |             |             |             |             |             |             |             |             |  |  |  |
|---|------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--|--|--|
| # | A tibble: 2                                          | × 9         |             |             |             |             |             |             |             |  |  |  |
|   | P_tox                                                | Effect      | DFn         | DFd         | F           | р           | `p<.05`     | ges         | p.adj       |  |  |  |
|   | <chr></chr>                                          | <chr></chr> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <chr></chr> | <db1></db1> | <dbl></dbl> |  |  |  |
| 1 | No toxicity                                          | P_time      | 1           | 18          | 3.02        | 0.099       |             | 0.062       | 0.198       |  |  |  |
| 2 | Toxicity                                             | P_time      | 1           | 18          | 8.43        | 0.009       | "*"         | 0.098       | 0.018       |  |  |  |

#Effect in time is within the toxicity group. Wilcoxon-rank test was done to see where the difference is.

### #Make a subset with wanted variables

> Susbset\_P\_2\_PD1pos\_of\_CD4mem <- subset(Panel2\_possiblevals,c(P\_tox != "HD")) %>% select(P\_2\_PD1pos\_of\_CD4mem, P\_tox, P\_time, P\_UNI)

#### # Subset wide instead of long

> Susbset\_P\_2\_PD1pos\_of\_CD4mem\_wide <-Susbset\_P\_2\_PD1pos\_of\_CD4mem %>% pivot\_wider(names\_from = "P\_time", names\_prefix= "PD1\_CD4mem\_", values\_from = P\_2\_PD1pos\_of\_CD4mem, values\_fill = NA)

#Calculate change scores

- > Susbset\_P\_2\_PD1pos\_of\_CD4mem\_wide\$change12 <-Susbset\_P\_2\_PD1pos\_of\_CD4mem\_wide\$PD1\_CD4mem\_2-Susbset\_P\_2\_PD1pos\_of\_CD4mem\_wide\$PD1\_CD4mem\_1
- > Susbset\_P\_2\_PD1pos\_of\_CD4mem\_wide\$change13 <-Susbset\_P\_2\_PD1pos\_of\_CD4mem\_wide\$PD1\_CD4mem\_3-Susbset\_P\_2\_PD1pos\_of\_CD4mem\_wide\$PD1\_CD4mem\_1
- > Susbset\_P\_2\_PD1pos\_of\_CD4mem\_wide\$change23 <-Susbset\_P\_2\_PD1pos\_of\_CD4mem\_wide\$PD1\_CD4mem\_3-Susbset\_P\_2\_PD1pos\_of\_CD4mem\_wide\$PD1\_CD4mem\_2

## # Perform Wilcoxon-rank tests

- > wilcox.test(change12 ~ P\_tox, data = Susbset\_P\_2\_PD1pos\_of\_CD4mem\_wide, paired = FALSE, alternative = "two.sided")
- > wilcox.test(change13 ~ P\_tox, data = Susbset\_P\_2\_PD1pos\_of\_CD4mem\_wide, paired = FALSE, alternative = "two.sided")
- > wilcox.test(change23 ~ P\_tox, data = Susbset\_P\_2\_PD1pos\_of\_CD4mem\_wide, paired = FALSE, alternative = "two.sided")

#### Output

```
> wilcox.test(change12 ~ P_tox,
+ data = Susbset_P_2_PD1pos_of_CD4mem_wide,
+ paired = FALSE,
+ alternative = "two.sided")
```

Wilcoxon rank sum exact test

data: change12 by P\_tox W = 99, p-value = 0.5621 alternative hypothesis: true location shift is not equal to 0

- data = Susbset\_P\_2\_PD1pos\_of\_CD4mem\_wide, naired = EALSE
- paired = FALSE, alternative = "two.sided")

Wilcoxon rank sum test with continuity correction

data: change13 by P\_tox W = 157.5, p-value = 0.5112 alternative hypothesis: true location shift is not equal to 0

> wilcox.test(change23 ~ P\_tox, + data = Susbset\_P\_2\_PD1pos\_of\_CD4mem\_wide, + paired = FALSE, + alternative = "two.sided")

Wilcoxon rank sum test with continuity correction

data: change23 by P\_tox W = 101.5, p-value = 0.4834 alternative hypothesis: true location shift is not equal to 0

No significant differences

#### Mixed ANOVA, Repeated measures ANOVA, Wilcoxon-rank test

Panel 2 Toxicity VS no Toxicity on multiple timepoints P\_2\_PD1pos\_of\_CD8 (PD1+ fraction of CD8+ T cells) #Mixed ANOVA

Output

Anova Table (Type 3 tests)

#Repeated-measures anova to check in which group the significant effect for time is

- > Repeated\_measures <- subset(Panel2\_possiblevals, c(P\_tox != "HD" & P\_time != 2))
  %>%
  group\_by(P\_tox) %>%
  anova\_test(dv = P\_2\_PD1pos\_of\_CD8, wid = P\_UNI, within = P\_time) %>%
  get\_anova\_table() %>%
  adjust\_pvalue(method = "bonferroni")
  - > Repeated\_measures

 Output

 # A tibble: 2 × 9

 P\_tox
 Effect
 DFn
 DFd
 F
 p`p<.05'</td>
 ges p.adj

 <fct><chr><dbl><dbl><dbl><dbl><dbl><dbl><chr><</td>
 <dbl><cbl><chr><dbl><dbl><cbl><chr>
 <dbl><chr</td>
 <dbl><dbl><cbl><chr</td>

 No toxicity
 P\_time
 1
 18
 8.66
 0.099
 "\*"
 0.149
 0.018

#Effect is in toxicity in time to wilcox test to see where the difference is

> Susbset\_P\_2\_PD1pos\_of\_CD8 <- subset(Panel2\_possiblevals,c(P\_tox != "HD")) %>% select(P\_2\_PD1pos\_of\_CD8, P\_tox, P\_time, P\_UNI)

#### # Subset wide instead of long

> Susbset\_P\_2\_PD1pos\_of\_CD8\_wide <-Susbset\_P\_2\_PD1pos\_of\_CD8 %>% pivot\_wider(names\_from = "P\_time", names\_prefix= "CD8pos\_", values\_from = P\_2\_PD1pos\_of\_CD8, values\_fill = NA)

### #Calculate change scores

> Susbset\_P\_2\_PD1pos\_of\_CD8\_wide\$change12 Susbset\_P\_2\_PD1pos\_of\_CD8\_wide\$CD8pos\_2-Susbset\_P\_2\_PD1pos\_of\_CD8\_wide\$CD8pos\_1 <-

<-

<-

- > Susbset\_P\_2\_PD1pos\_of\_CD8\_wide\$change13 Susbset\_P\_2\_PD1pos\_of\_CD8\_wide\$CD8pos\_3-Susbset\_P\_2\_PD1pos\_of\_CD8\_wide\$CD8pos\_1
- > Susbset\_P\_2\_PD1pos\_of\_CD8\_wide\$change23 Susbset\_P\_2\_PD1pos\_of\_CD8\_wide\$CD8pos\_3-Susbset\_P\_2\_PD1pos\_of\_CD8\_wide\$CD8pos\_2

## # Wilcoxon-rank test

> wilcox.test(change12 ~ P\_tox, data = Susbset\_P\_2\_PD1pos\_of\_CD8\_wide, paired = FALSE, alternative = "two.sided")

## Output

Wilcoxon rank sum exact test

data: change12 by P\_tox W = 63, p-value = 0.0392 alternative hypothesis: true location shift is not equal to 0

> wilcox.test(change13 ~ P\_tox, data = Susbset\_P\_2\_PD1pos\_of\_CD8\_wide, paired = FALSE, alternative = "two.sided")

## Output

Wilcoxon rank sum exact test

data: change13 by P\_tox
W = 104, p-value = 0.02527
alternative hypothesis: true location shift is not equal to 0

Significant differences were found between baseline and on-treatment samples for PD-1 expression in CD8+ T cells between patients with and without toxicity. This was left out of the results because differences in PD-1 staining and gating in FlowJo might have caused discrepancies between baseline and on-treatment values, therefore we cannot assure this result to be reliable.

## Wilcoxon-rank test at one timepoint

Panel 2 Response and toxicity

Wilcoxon-rank test between groups with Response\_Tox variable ('Healthy donor', 'Non-responders with toxicity', 'Non-responders without toxicity', 'Responders with toxicity' and 'Responders without toxicity') for CD4+/CD8+ T cell ratio at baseline

#subset with Response\_Tox variable with CD4+/CD8+ T cell ratio at baseline

- > subset\_responder\_tox\_BASE <- Panel2\_possiblevals %>% select(P\_UNI, Response\_Tox, ratio\_CD4\_CD8, P\_time)
- > subset\_responder\_tox\_BASE\$P\_time[subset\_responder\_tox\_BASE\$P\_time == 2] <-NA
- > subset\_responder\_tox\_BASE\$P\_time[subset\_responder\_tox\_BASE\$P\_time == 3] <-NA
- > subset\_responder\_tox\_BASE <- na.omit(subset\_responder\_tox\_BASE)</pre>

### #Perform Wilcoxon-rank test

| Output > WIL_cox_ratio( # A tibble: 10 x | 04_CD8_response_tox             |                          |             |             |             |             |             |              |
|------------------------------------------|---------------------------------|--------------------------|-------------|-------------|-------------|-------------|-------------|--------------|
| .y.                                      | group1                          | group2                   | n1          | n2          | statistic   | р           | p.adj       | p.adj.signif |
| * < <i>chr&gt;</i>                       | <chr></chr>                     | <chr></chr>              | <int></int> | <int></int> | <db1></db1> | <db1></db1> | <db1></db1> | <chr></chr>  |
| 1 ratio_CD4_CD8                          | HD                              | Non-responders with toxi | 5           | 10          | 32          | 0.44        | 1           | ns           |
| 2 ratio_CD4_CD8                          | HD                              | Non-responders without t | 5           | 8           | 21          | 0.943       | 1           | ns           |
| 3 ratio_CD4_CD8                          | HD                              | Responders with toxicity | 5           | 6           | 16          | 0.931       | 1           | ns           |
| 4 ratio_CD4_CD8                          | HD                              | Responders without toxic | 5           | 6           | 12          | 0.662       | 1           | ns           |
| 5 ratio_CD4_CD8                          | Non-responders with toxicity    | Non-responders without t | 10          | 8           | 36          | 0.762       | 1           | ns           |
| 6 ratio_CD4_CD8                          | Non-responders with toxicity    | Responders with toxicity | 10          | 6           | 25          | 0.635       | 1           | ns           |
| 7 ratio_CD4_CD8                          | Non-responders with toxicity    | Responders without toxic | 10          | 6           | 20          | 0.313       | 1           | ns           |
| <pre>8 ratio_CD4_CD8</pre>               | Non-responders without toxicity | Responders with toxicity | 8           | 6           | 23          | 0.95        | 1           | ns           |
| 9 ratio_CD4_CD8                          | Non-responders without toxicity | Responders without toxic | 8           | 6           | 17          | 0.414       | 1           | ns           |
| 10 ratio_CD4_CD8                         | Responders with toxicity        | Responders without toxic | 6           | 6           | 13          | 0.485       | 1           | ns           |

No significant difference between groups at baseline.

This analysis was performed at all timepoints but no significant differences were found.