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Abstract

Ever since the existence of a time crystal was theorised by Frank Wilczek in 2012,
physicists have proposed several possible realisations. Some of these have been exper-
imentally realised, such as excited state time crystals and Floquet (or driven) time
crystals. Yet another possible realisation is offered in Ref. [1]. It shows that the cou-
pling of a particle to a reservoir of two-level systems can lead under certain conditions
to a long term oscillation of the particle. This thesis revisits this research from a time
crystal perspective and aims to understand the parameters controlling the time crys-
talline phase. The particle-bath system is essentially a modified Caldeira-Leggett model
and can be solved analytically. By examining the position of the particle and the pole
structure of its Laplace transform, we can conclude that a time crystal phase is indeed
present. The parameters that govern this phase are the damping constant, the temper-
ature, and the long term properties of the bath. Depending on these parameters, we
observe either persistent or decaying oscillations. Investigating the pole structure, we
find properties that describe a phase transition between these two phases.
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1 Time Crystals

When atoms form an ordered pattern in space we call that a crystal. Crystals are fairly
common in our everyday life, we find them for example in our kitchen as sugar and salt, but
they are also abundant in nature in the form of diamonds and other gems and minerals. The
formation of a crystal relies on the self-organising properties of the atoms it is made of. The
attractive or repulsive interactions between these atoms causes them to arrange themselves
in a regular pattern (see Figure 1.1). This process occurs on the quantum mechanical level
and is related to the spontaneous breaking of translation symmetry in space. Spontaneous
symmetry breaking is a process that happens when nature makes a choice. Suppose you
want to study a system that is described by symmetrical equations. Then, there would ex-
ist multiple solutions, or states, of that system, each equally likely to occur. However, by
performing the measurement, the system gets an infinitesimally small nudge that causes it
to randomly choose one of these solutions, which then spontaneously breaks the symme-
try. Noether’s theorem tells us that each symmetry of a system corresponds to a conserved
quantity. When this symmetry is broken, spontaneously or otherwise, the quantity is no
longer conserved. For ‘normal’ crystals, or space crystals, the spatial translation symmetry
is (partially) broken. The conserved quantity that is associated with this type of symmetry
is linear momentum. Full spatial translation symmetry would mean that any translation in
space would not change the system. However, in an ordered pattern, only translations along
certain axes or distances leave the crystal unchanged. Therefore, we can say that in a space
crystal, the linear momentum of the particles is not conserved.

Figure 1.1: A two-dimensional representation of a crystal in space.

American physicist Frank Wilczek considered this description of space crystals and wondered
whether a similar breaking of translation symmetry could not also happen in time. He asked
the question whether atoms could self-organise in time and then undergo a periodic motion,
or in other words, could form a ‘time crystal’ [2]. When he put forth this claim in 2012, it was
met with some scepticism by the community. In Wilczek’s description of time crystals, the
time translation symmetry of an isolated system is spontaneously broken, which according
to Noether’s theorem would imply that the energy of such a system would not be conserved.
Some physicists proved that Wilczek’s formulation of the problem would be impossible to
realise experimentally, such as Bruno et al.[3], whereas others proposed different ways in
which time crystals might be realised.
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Before we go into detail about Wilczek’s idea, we must ask ourselves how we can ‘detect’ a
time crystal. In other words, what is the relevant quantity that we can measure? To detect
a crystal in space, we look at the probability density of particles, which gives us information
on where and when particles are located. If this probability density changes periodically
in space at a certain point in time (i.e. the time of measuring), there is a space crystal.
Now, when we reverse the roles of space and time, we find that a time crystal is formed
when the probability density changes periodically in time at a given position in space. We
can also write down a more mathematical formulation of this. A system is described by
a Hamiltonian H. Its evolution in time is given by the time translation operator, which
operates on the eigenstates ψ of the system: T ψ = e−iEtψ. For general time-independent
systems, this operator commutes with the Hamiltonian and therefore the probability density
does not change in time: |ψ(t)|2 = |ψ(0)|2. However, if a system breaks time translation
symmetry, we will see that this no longer holds and the probability density does depend on
time.

Wilczek’s original idea

Frank Wilczek considered a system of N bosonic particles on a superconducting ring of unit
length, through which a magnetic flux is threaded [2]. Such a system is also known as an
Aharanov-Bohm ring. The mass of the particles and ℏ are set equal to unity and the bosons
interact according to the attractive local potential V (x) = g0δ(x), such that the Hamiltonian
of this system is given by [4]

H =
N∑
i=1

(pi − α)2

2
+ g0

N∑
i<j

δ(xi − xj), (1.1)

where xi and pi are the particle positions and momenta, and g0 < 0 is the strength of the
attractive potential between the particles. α is a parameter that is connected to the magnetic
flux through the ring.

Let us first consider what happens when there is only one particle with charge q on the ring
in the presence of a flux 2πα/q. The Hamiltonian of this simple system is given by

H =
1

2
(p− α)2, (1.2)

where p = ϕ̇ + α is the angular momentum and ϕ is the angular coordinate of the particle.
When we apply periodic boundary conditions, the momentum is quantised and we find that
the probability current

∂En

∂pn
= 2πn− α, (1.3)

where En = (pn − α)2/2 are the energy eigenvalues and n is an integer eigenvalue of the
quantised momentum operator pn. For certain (non-integer) values of α, we can find a state
that minimises the energy and yet still leaves a non-zero probability current. In other words,
we can get a moving particle along a ring in the ground state of the system. However, the
single-particle probability density is still time-independent and does not exhibit a periodicity.
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What we need is to expand our system and take a large number of interacting particles such
that the ground state becomes more robust for a possible experimental realisation. Thus,
switching to the many-body system, we arrive at the Hamiltonian given in Equation (1.1).

This system is invariant under continuous time and space translations, which means that
the probability density of the eigenstates is also invariant under these translations. For a
time crystal however, this probability would have to exhibit discrete periodic behaviour in
time. Wilczek claimed that there exists a possibility that both symmetries are spontaneously
broken and a time crystal can be formed in the ground state.

That the spatial translation symmetry breaks is a well-known phenomenon and can easily be
explained. If we assume the magnetic flux to be zero and perform a mean field approximation,
reducing the many-body system to a single particle with an effective interaction potential,
we find that all bosons occupy the same single-particle state ϕ. In other words, they form
a Bose-Einstein condensate. The many-body ground state, although initially spatially sym-
metrical, is strongly vulnerable to any perturbation and its symmetry can be broken by the
measurement of even a single particle. The ‘lump of charge’, as Wilczek calls it [2], that is
then formed can also be described by the bright soliton solution.

Wilczek predicted that for a non-zero α, a type of magnetic flux through the ring would be
created and therefore the bright soliton would feel a torque, analogous to Faraday’s law of
induction, causing it to move along the ring similar to the single particle case. Then, for
certain values of α, the localised particle density will also move periodically around the ring,
breaking time translation symmetry and forming a time crystal in the ground state of the
system.

No-go theorem

However, this claim was quickly disputed by other physicists, such as Bruno [3]. He argued
that the solution offered by Wilczek in Ref. [2] is in fact not the ground state of the system,
and effectively showed that another state existed with a lower energy than Wilczek’s solution
[3]. This can easily be seen by considering the Hamiltonian in its center of mass coordinate
frame [4]

H =
(P −Nα)2

2N
+ relative degrees of freedom, (1.4)

where P is the total momentum, which in an eigenstate of the system is given by Pn = 2πn,
with n an integer value. The ground state is obtained by minimising the kinetic energy of
the center of mass degree of freedom. However, in the limit N → ∞, its probability flux,
given by

∂H

∂Pn

= 2π
n

N
− α, (1.5)

vanishes, because it is always possible to choose n such that 2πn/N is arbitrarily close to α.
Therefore, even for α ̸= 0, the probability current vanishes and the state exhibits no motion.
Other versions of Wilczek’s original idea were also proven to be impossible to realise and
indicate that a many-body system prepared in the ground state does not exhibit spontaneous
breaking of time translation symmetry.
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Other realisations of time crystals

Nevertheless, Wilczek’s idea brought forth inspiration for many other physicists. Perhaps
a time crystal could be realised, but based on different underlying principles. Wilczek’s
original idea mentions several prerequisites for what would constitute a time crystal. It must
be a many-body system that exhibits spontaneous breaking of continuous time translation
symmetry in the ground state. In addition to this, it must be experimentally realisable.

Although his original model proved not to be experimentally realisable, it did inspire other
physicists to propose modified versions. We will discuss several of them below, including
excited state time crystals, Floquet time crystals and dissipative time crystals.

Excited State Time Crystals

After it was established that the spontaneous symmetry breaking of the continuous time
translation symmetry into a discrete time translation symmetry of a system prepared in the
ground state could not be observed, the question was put forth whether this could happen
when the system is prepared in an excited state. After all, eigenstates of a time-independent
Hamiltonian H are also eigenstates of the time translation operator T = e−iHt. It turns out
that the answer to this question is yes.

We can consider once again the Hamiltonian for Wilczek’s system in Equation (1.1). The
probability current ∂H/∂Pn vanishes for any value of α for a system prepared in the ground
state, as we saw above. However, for a system prepared in an excited state, with total
momentum PN = 2πN , we find that the current is given by

∂H

∂PN

= 2π − α. (1.6)

Then, for α ̸= 2π, the probability current does not vanish and the state exhibits periodic
motion around the ring with a period T = (2π − α)−1.

Thus, if it is possible to prepare a system in the excited state corresponding to PN = 2πN ,
an experimentally stable time crystal can be realised. To do this, one must take a ground
state prepared with PN = 2πN and α = 2π. Then, once the flux is switched off (α = 0), this
state will automatically become an excited state of the system. This theory is described by
Syrwid et al. and the simulations they performed indeed shows a periodic behaviour in time
of the probability density that remains stable in the limit N →∞ [5]. However, these types
of time crystals have not yet been experimentally realised. It seems that ultra-cold atom
gasses may be an ideal basis for experimental realisation, as they allow for the creation and
control of many-body systems prepared in an excited state [4].

Floquet Time Crystals

Another type of time crystal that was proposed are so-called Floquet time crystals. The idea
behind these is that the Hamiltonian of the system is dependent on time, i.e. H = H(t).
Such systems break continuous time translation symmetry and their energy is not conserved.
However, it is possible to realise time periodic systems H(t + T ) = H(t), which are driven
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by an external periodic force. Their stationary states are known as Floquet eigenstates
|un(t+T )⟩ = |un(t)⟩ and exhibit properties analogous to the Bloch states that are often used
to describe periodic systems in space. Analogous to the Bloch theorem, these eigenstates can
be used to write down the Schrödinger equation for the Floquet Hamiltonian HF

HF |un(t)⟩ = [H(t)− i∂t]|un(t)⟩ = En|un(t)⟩, (1.7)

where |un(t)⟩ must fulfill periodic boundary conditions in time. The time evolution of a
Floquet state contains a time-dependent phase e−iEnt|un(t)⟩, which can be shown to be an
eigenstate of the time translation operator T

T |un(0)⟩ = e−iEnT |un(T )⟩ = e−iEnT |un(0)⟩. (1.8)

Therefore, the probability density for detecting a particle or many particles at a fixed point
in space, is periodic in time when the system is prepared in a Floquet eigenstate. It has also
been shown that this process can occur spontaneously and that a periodically driven system
can start to evolve with a period that differs from the original drive periodicity. This is known
as a Floquet time crystal. Because they break the discrete time translation symmetry, they
are also known as discrete time crystals.

There are several ways in which Floquet time crystals can be realised. In Ref. [6], it is
shown that a system of ultra-cold atoms bouncing on an oscillating atom mirror will produce
a time crystal. Their simulations show that the time evolution of the system has a period
that is twice as long as the period of the many-body Floquet Hamiltonian. Although the
experimental set-up which recreates this model has been outlined and researched [7], [8], it
has not yet been done.

Another possible set-up which produces a Floquet time crystal that has been experimentally
verified is a system of periodically driven spin systems. These one-dimensional spin chains
are driven to flip periodically. However, the time evolution of these systems show that they
not only localise in space, but also start to oscillate with a period that is twice as long as
the driving period. The theory for these systems was first described in Refs. [9] and [10] and
eventually realised experimentally in Refs. [11] and [12].

Dissipative Time Crystals

Statistical physics is usually a powerful tool in studying the behaviour of many-body sys-
tems from their microscopic principles. If a system has relaxed to a steady state, statistical
physics can be used to derive its classical thermodynamic properties, such as temperature
and pressure. However, not all systems reach this statistical equilibrium. Time crystals
in particular are characterised by their non-stationary dynamics and therefore require an
alternative physical approach.

Relaxation to a stationary state occurs in isolated systems according to the eigenstate ther-
malization process (ETH) [13]. In a generic many-body system, there is enough destructive
interference to quickly destroy any coherent motion and relax the system [13]. In open quan-
tum systems, similar relaxation processes can occur, but on a longer time scale due to the
interactions with the environment [13]. However, some open quantum systems do not relax
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and instead exhibit non-stationary dynamics in the long-time limit. These open systems,
which under closed conditions would normally thermalise according to the ETH, are known
as dissipative time crystals. Specifically, they are defined as a quantum system coupled to a
noise inducing environment, which exhibits periodic motion in some observable at late time
for generic initial conditions [13]. This periodic motion is usually a form of persistent oscil-
lations. In this choice of environment, they differ from discrete, or Floquet, time crystals,
which require an external time-dependent driving. It also makes them more appealing for
experimental realisation, since quantum systems in practical settings are always subject to
some external environment. Whereas this external noise is usually a destructive force for
quantum behaviour, in the case of dissipative time crystals it is a necessary condition to
induce the persistent oscillations.

Generally, the study of dissipative time crystals requires a quantum system that is weakly
coupled to a noisy environment with Markovian interactions [13]. The resulting behaviour is
captured by the Lindblad master equation which describes the evolution of the system with
Hamiltonian H,

ρ̇(t) = Lρ = −i[H, ρ] +
∑
µ

(2LµρL
†
µ − L†

µLµρ− ρL†
µLµ), (1.9)

where L is the Liouville superoperator. The coupling to the environment is described by the
set of Lindblad jump operators {Lµ}. These operators are for example particle creation/an-
nihilation operators and number operators. Carefully selecting which operators to include
allows for a model that describes the interactions between the system and the environment
without knowledge of the underlying mechanics. In the long-time regime, the study of dis-
sipative time crystals focuses mainly on the study of the (purely imaginary) eigenvalues of
L [13]. We can easily show this when we consider a time-independent Hamiltonian of our
system. In this case, the Liouville superoperator is also time-independent, resulting in the
following expression for the dynamics of the system

ρ(t) = exp{[L(t− t0)]ρ(t0)}. (1.10)

From this, we can easily see that persistent oscillations will only occur when the eigenvalues
of L are purely imaginary. However, finding the full eigenvalue spectrum for many-body
systems is currently both analytically and computationally very complex. Nevertheless, it
has been shown [13] that purely imaginary eigenvalues arise from the presence of dark states
and strong dynamical symmetries, which can lead to time crystalline behaviour. Dark states
are eigenstates of the closed system Hamiltonian which cannot be accessed by the external
noise of the environment.

Dynamical localisation of dissipative systems

Although the Lindblad formalism outlined in the previous section is useful in the study of
dissipative time crystals, it does come with limitations. The Caldeira-Leggett formalism,
developed in 1983 by Amir Caldeira and Sir Anthony James Leggett, describes a (quantum)
particle that is coupled to a bath [14]. It is more generic than the Lindblad formalism, as
it also accounts for memory (non-Markovian) effects. In this thesis, we will look at such a
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dissipative system using the Caldeira-Leggett model. The motivation for this choice stems
from a study in 2007 [1], which shows the behaviour of a particle coupled to a thermal
reservoir of two-level systems (TLSs). Surprisingly, deep in the sub-ohmic regime (s ≪ 1),
the particle position q exhibits a behaviour close to what nowadays we would call a time
crystal (see Figure 1.2). Under certain conditions, the particle exhibits long-term oscillations
in time. Naturally, as the concept had not yet been established at the time, the article does
not argue that a time crystal is formed. Instead, it concludes that the oscillatory behaviour
arises from “the non-Markovian character of the dissipative process, which [...] is provided
by inelastic scattering of the particle of interest by the TLSs” [1]. However, in light of the
new research on time crystals, it is interesting to revisit the system and analyse it from this
new perspective. Can we determine whether the dynamical behaviour is due to the breaking
of time translation invariance and how robust is it to the change of parameters?

(a) (b)

(c)

Figure 1.2: Time dependence of the particle center of mass in dimensionless units for (a) s =
0, and (b) s = 0.5, and different values T of temperature. The continuous line corresponds to
T = 0.0001, while the dash-dotted, dotted, dashed and double-dotted lines are for T = 0.01,
T = 0.1, T = 0.2 and T = 0.5, respectively. (c) Time dependence of the particle center
of mass for T = 0.001 and different values of s. The continuous line corresponds to s = 0,
while the dotted and dashed lines are for s = 0.5 and s = 1, respectively. In all cases Ω = 1,
γ = 0.3 and the initial velocity was taken equal to 1. Figures taken from Ref. [1].
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Relevance

Obviously, one might wonder whether the theory and subsequent realisation of time crystals
is a useful concept. Once time crystals can be formed, will they become as useful and
ubiquitous as the ordinary space crystals that abound the world around us?

For a relatively new field in physics, these questions are difficult to answer. Much research
needs to be done to reveal the various realisations of time crystals and their properties,
whether they are designed experimentally or discovered to exist in nature. However, according
to Wilczek [15], it seems that one of the possible applications for time crystals is in high-
precision clocks. Currently, the most accurate clocks are based on the resonance frequency of
atoms. Although they are accurate, they are also vulnerable to instability in the long term.
A clock based on the principle of time crystals could prove to be more stable and rigid and
therefore lend itself to be an excellent replacement for GPS [15].

Another area in which time crystals could become quite useful is quantum simulators [10],
[4]. These are devices that use quantum effects to answer questions about systems that
cannot be solved efficiently by classical computers. Current quantum simulators are used to
better understand low-temperature physics and many-body systems, which are difficult to
efficiently solve due to the complex quantum mechanical effects that are at play. By tuning
several parameters, the simulated systems can be completely controlled. Time crystals could
offer an additional degree of freedom, time, to control the simulation, which could make them
more versatile than the current quantum simulators [4].

Structure of thesis

In this thesis we will focus mainly on a specific type of dissipative time crystal, one where we
couple a quantum system to a bath consisting of two-level systems. We start in Chapter 2 with
classical dissipative systems, introducing the Langevin equation and Brownian dynamics. We
then transition from the classical case to a quantum mechanical description, motivated by
a short overview of Josephson Junctions and SQUIDs. Chapter 3 introduces the Caldeira-
Leggett model that describes quantum dissipative systems. In Chapter 4, we replace the
generic bath of the Caldeira-Leggett model with a bath consisting of two-level systems.
Using this bath will result in time-crystalline behaviour, which we then model and analyse
in Chapters 5 and 6.



PART I

THEORETICAL MODEL
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2 Quantum Brownian Motion

The goal of this thesis is to understand and analyse the dynamics of a dissipative quantum
system coupled to a thermal bath of two-level systems. However, before we get to that point,
we will first lay some groundwork. In this chapter, we aim to provide a short introduction
to dissipative systems and some tools we will later require. Starting from perhaps the most
well-known example of classical dissipation, Brownian motion, we then provide a link through
Josephson Junctions and SQUIDs, to its quantum mechanical equivalent.

2.1 Classical Brownian Motion and the Langevin Equation

A dissipative, or open, system is connected to its environment such that energy and matter
can be exchanged freely between the two. As a result, the system does not reach an equi-
librium, or steady state. The dynamics of such systems require the use of non-equilibrium
physics. Perhaps the simplest example of an open system is Brownian motion. It was first
described in 1827 by botanist Robert Brown, who studied the motion of pollen immersed in
water. These particles seemed to perform a random walk, moved by the influence of the water
molecules. More precisely, the theory of Brownian motion describes the random motion that
small particles in a viscous fluid exhibit due to collisions with the fluid molecules, which are
caused by thermal fluctuations of the fluid.

A Langevin equation can be used to describe the time evolution of a Brownian particle. For
a classical system, Newton’s equation of motion for a particle with mass M and position q is

Mq̈(t) = Ftot(t), (2.1)

where Ftot(t) is the total force on the particle at time t. The exact expression of this force
is usually difficult to derive. Instead, it can be separated into two parts, a friction term
proportional to the velocity of the particle, and a random force field that represents the
thermal fluctuations of the fluid. The result is a stochastic differential equation, known as
the Langevin equation

Mq̈ + ηq̇ + V ′(q) = f(t) (2.2)

where η is the dissipation constant, or friction coefficient, V (q) is an external potential, and
f(t) is the random force field. The fluctuating force obeys a Gaussian probability distribution
with correlation function

⟨f(t)⟩ = 0, ⟨f(t)f(t′)⟩ = 2ηkBTδ(t− t′), (2.3)

where kB is Boltzmann’s constant and T is temperature.

2.2 SQUIDs

So far, we have only talked about the classical example of Brownian motion, historically
and physically. There are, however, also systems whose dynamics obey a similar equation,
but which exist in the quantum mechanical regime. An example of this is the magnetic
flux in the interior of superconducting micro-circuits observed at T0 ≲ 1K [16], [17]. These
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types of systems are called Superconducting QUantum Interference Devices, or SQUIDs.
They generally consist of a superconducting ring closed by a weak contact, the Josephson
junction. In this low temperature regime, it should be possible to observe quantum effects
on a macroscopic scale. To illustrate the workings of a SQUID, we will give a brief overview
here. For a more detailed explanation of SQUIDs and Josephson junctions, see Appendix A.

(a) (b)

(c)

Figure 2.1: A ring in a magnetic field: (a) in the normal state; (b) in the superconducting
state; (c) after the external magnetic field has been turned off. Figures extracted from Ref.
[18].

The first step to creating a SQUID is by placing a closed, superconducting ring inside a
magnetic field, see Figure 2.1. At high temperatures, the ring is in a normal state and
inside, around and through this ring runs the magnetic flux, ϕ (Figure 2.1(a)). When the
temperature of the ring is brought down with liquid helium, e.g. T → 0K, the material
becomes superconducting and expels the flux through the ring (Figure 2.1(b)). In addition,
the flux trapped inside the superconducting ring is quantized, i.e. an integer number of the
flux quantum ϕ0 = hc/2e. If we then turn off the magnetic field outside the ring, the flux
inside the ring is trapped (Figure (c)). We can create a “little door” using a small point
of non-superconducting material, also known as a Josephson junction. Through this door,
the flux can escape through a process known as quantum tunnelling. Each time that a flux
quantum escapes the ring, a current can be measured. Combining the results derived in
Appendix A, we can write down the full flux quantization for SQUID rings

ϕ+
ϕ0

2π
φ̄ = nϕ0, (2.4)

where n is an integer and φ̄ = φ1−φ2 is the phase difference from both sides of the junction.

The total flux ϕ can also be calculated using the current

ϕ = ϕx + L · i, (2.5)

where ϕx is the flux created by the external magnetic field, L is the self-inductance and i the
total current. In the resistively shunted junction (RSJ) model, additional resistive effects due
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to an alternating current are included. The current is composed of three parts: the Josephson
current iS, the normal current iN , and the polarization current iC . The Josephson current is
created by the Cooper pairs that tunnel through the junction. Therefore, it is dependent on
the phase difference across the junction, φ̄, and the critical current i0:

iS = i0 sin φ̄.

The normal current originates from the two-fluid model and obeys Ohm’s law

iN =
V

R
,

where V and R are the voltage across the junction and the normal resistance, respectively.
Lastly, there is the polarization current, which appears due to the finite capacitance (C) of
the junction

iC = CV̇ .

Bringing these elements together, we can write down the full expression for the current

i = iS + iN + iC

= i0 sin φ̄+
V

R
+ CV̇ , (2.6)

where i0 is the critical current, φ̄ the phase difference across the junction, V the voltage
across the junction, R the normal resistance, and C the capacitance. Substituting Eq. (2.6)
into Eq. (2.5) and using V = −ϕ̇ and φ̄ = 2π(n− ϕ/ϕ0), gives the following relation

ϕx − ϕ
L

= i0 sin

(
2πϕ

ϕ0

)
+
ϕ̇

R
+ Cϕ̈, (2.7)

which we can rewrite into an equation of motion for a particle with coordinate ϕ.

Cϕ̈+
ϕ̇

R
+ U ′(ϕ) = 0, with (2.8)

U(ϕ) =
(ϕx − ϕ)2

2L
− ϕ0i0

2π
cos

(
2πϕ

ϕ0

)
. (2.9)

In order to properly take the thermodynamical properties of the system into account, we
must include a fluctuating current If (t) on the right-hand side of Eq.(2.8), with the following
correlation functions

⟨If (t)⟩ = 0 ⟨If (t)If (t′)⟩ = 2
kBT

R
δ(t− t′). (2.10)

Comparing Eq.(2.8) to Eq.(2.2), we find that in the case of a SQUID, the capacitance C of
the ring has the same function as the mass M of a Brownian particle, and the resistance R
is inversely related to the dissipation constant η.

In conclusion, we have seen in the example of the SQUID, a device that behaves according
to the same principles as the classical Brownian motion, but instead operates at such low
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temperatures that quantum effects should and do appear. The current that is created in
the ring is the result of a quantum of flux escaping, or tunnelling, through the Josephson
junction. This is a quantum mechanical process. However, the Langevin equation describing
the behaviour of the flux does not allow for a direct quantum mechanical description. Due
to the presence of a dissipative term in the Langevin equation, it is impossible to create
a Lagrangian or Hamiltonian for this system. Therefore, it cannot be quantized using the
procedure of second quantisation that is commonly used for closed systems.

The solution to this problem is to couple the system of interest to a heat reservoir, and then
quantize the composite system. The difficulty that arises from this method is that we need
to know how the reservoir behaves and interacts with our system of interest. This method is
explained in Chapter 3 and calculated for a well-known bath of harmonic oscillators.
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3 Caldeira-Leggett Model

As physicists measured the flux flow ϕ through the Josephson junction in the SQUIDs, they
observed quantum mechanics at work on a macroscopic scale. Microscopic (or quantum)
tunnelling describes the process of electrons crossing a potential barrier that has a higher
energy than the kinetic energy of the particle. Classically, a particle would not be able to go
from one side of the barrier to the other, but due to the Heisenberg uncertainty principle,
quantum effects allow the electron to ‘tunnel’ through. With the development of Josephson
junctions, this phenomenon could be observed on a macroscopic scale: a current of particles
flowing through a ring without generating a voltage. For SQUIDs, the macroscopic variable
tunnelling through the junction is the magnetic flux. This flux behaved according to the
Langevin equation for Brownian motion, as we have seen in Section 2.2. However, in order
to describe the quantum mechanical effects of this dissipative system, a new theoretical
framework was needed.

The Caldeira-Leggett model, developed by Amir Caldeira and Sir Anthony James Leggett in
1983, offers a solution to this quantisation problem. In the simplest case, a dissipative system
is coupled to a reservoir. This composite system can then be considered closed, without any
dissipation occurring. In the semi-classical limit, the system obeys the Langevin equation for
Brownian motion. However, the coupling of the system of interest to the bath causes each
particle in the reservoir to be slightly perturbed. This perturbation contains the quantum
mechanical information that we are interested in. We can represent this perturbation using
a set of independent harmonic oscillators. This choice is especially useful, because harmonic
oscillators are one of the few systems that can be solved analytically. This forms the basis
for the Caldeira-Leggett model [14].

3.1 Model

The Caldeira-Leggett model is described by

L = LS + LI + LR + LCT , (3.1)

where

LS =
1

2
Mq̇2 − V (q) (3.2)

LI = −
∑
k

Ckqkq (3.3)

LR =
∑
k

1

2
mkq̇k

2 −
∑
k

1

2
mkω

2
kqk (3.4)

LCT = −
∑
k

1

2

C2
k

mkω2
k

q2, (3.5)

are the Lagrangians of the system of interest, interactions, reservoir and counter-term, re-
spectively. M and q are the mass and coordinate of the particle, and V (q) is an external
potential. The reservoir consists of a set of non-interacting harmonic oscillators with mass
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mk, coordinate qk and natural frequency ωk. Ck is the coupling constant between the system
and the reservoir.

In order to check that this system reduces to the Langevin equation in the classical limit,
we can calculate the Euler-Lagrange equations of motion for q(t) and qk(t), the variables for
our system of interest and the heat bath, respectively. It turns out that the Euler-Lagrange
equations are coupled to each other. In order to ‘decouple’ them, we perform a Laplace
transformation to express q̃k in terms of q̇k(0), qk(0) and q̃. This both ‘cancels’ the counter-
term from the Lagrangian and provides us with a force f(t) that depends on q̇k(0) and qk(0).
Using the convolution theorem and a spectral function, we can rewrite the q̃ term into a
dissipative term ηq̇. This results in the Langevin equation for classical Brownian motion.

Calculating the Euler-Lagrange Equations

The action for the Caldeira Leggett model is given by

S[q, qk] =

∫
L dq dqk, (3.6)

with L given in Equation (3.1). Varying the action with respect to the parameters of the sys-
tem, q, and the environment, qk, we can calculate their respective Euler-Lagrange equations.
We find

Mq̈ = −V ′(q)−
∑
k

Ckqk −
∑
k

C2
k

mkω2
k

q, (3.7)

and
mkq̈k = −mkω

2
kqk − Ckq. (3.8)

We see that the equation for the system of interest, i.e. Equation (3.7), still depends on the
parameters of the environment, qk, and vice versa. In order to decouple these equations, we
perform a Laplace transformation. The Laplace transformation is defined as

L {f(t)} = F (s) =

∫ ∞

0

f(t)e−st dt, (3.9)

where s = σ + iω. Its inverse is defined as

f(t) = L −1{F (s)}(t) = − 1

2πi
lim
T→∞

∫ γ+iT

γ−iT

estF (s) ds. (3.10)

From partial integration of Equation (3.9), it follows that

L {f ′(t)} = sF (s)− f(0−) (3.11)

L {f ′(t)} = s2F (s)− sf(0−)− f ′(0). (3.12)

Using these relations, we can now rewrite Equation (3.8) so that it reads

q̃k(s) =
q̇k(0)

s2 + ω2
k

+
sqk(0)

s2 + ω2
k

− Ckq̃(s)

mk(s2 + ω2
k)
. (3.13)
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Taking the inverse Laplace transformation of this expression, we can then replace the second
term on the right hand side of Equation (3.7)

Mq̈ + V ′(q) +
∑
k

C2
k

mkω2
k

q = − 1

2πi
lim
T→∞

∫ γ+iT

γ−iT

∑
k

Ck

(
q̇k(0)

s2 + ω2
k

+
sqk(0)

s2 + ω2
k

)
est ds

+
1

2πi
lim
T→∞

∫ γ+iT

γ−iT

∑
k

C2
k

mk

q̃(s)

(s2 + ω2
k)
est ds. (3.14)

Using that 1/(s2 + ω2
k) = (1/ω2

k)[1− s2/(s2 + ω2
k)], we can rewrite the last term on the RHS

so that it partly cancels out the counter-term on the LHS. We are left with

Mq̈ + V ′(q) +
∑
k

C2
k

mkω2
k

1

2πi
lim
T→∞

∫ γ+iT

γ−iT

s2q̃(s)

(s2 + ω2
k)
est ds =

− 1

2πi
lim
T→∞

∫ γ+iT

γ−iT

∑
k

Ck

(
q̇k(0)

s2 + ω2
k

+
sqk(0)

s2 + ω2
k

)
est ds. (3.15)

We have now almost arrived at an expression for the dynamics of the system, which only
depends on the system variable q. We will make use of the convolution theorem in order to
rewrite the term containing the Laplace function q̃(s). The convolution theorem for inverse
Laplace functions is given by

L −1{F (s)G(s)} = f(t) ∗ g(t) =
∫ t

0

f(t′)g(t− t′) dt′. (3.16)

Applying this to the q̃(s)-term, we find that

1

2πi

∑
k

C2
k

mkω2
k

lim
T→∞

∫ γ+iT

γ−iT

s2q̃(s)

(s2 + ω2
k)
est ds =

d

dt

1

2πi

∑
k

C2
k

mkω2
k

lim
T→∞

∫ γ+iT

γ−iT

s

(s2 + ω2
k)
q̃(s)est ds

=
d

dt

∑
k

C2
k

mkω2
k

∫ t

0

cosωk(t− t′)q(t′) dt′

=
d

dt

2

π

∫ t

0

∫ ∞

0

J(ω)

ω
cosω(t− t′)q(t′) dω dt′,

(3.17)

where in the last line we have introduced the spectral function

J(ω) =
π

2

∑
k

C2
k

mkωk

δ(ω − ωk) =

{
ηω ω < Ω

0 ω > Ω
, (3.18)

where Ω is a high-frequency cutoff value.

The spectral density function describes the bath in a well-known limit. It is officially defined
as the imaginary part of the Fourier transformation of the retarded dynamical susceptibility
of the bath of oscillators

J(ω) = Im {F⟨−iθ(t− t′)[F (t), F (t′)]⟩} , (3.19)
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where F (t) is the force of the particle on the thermal bath, θ(t) is the Heaviside step function,
and F denotes the Fourier transformation.

Using the assumption in Equation(3.18) for the spectral function, and taking the limit Ω→
∞, we can write

d

dt

2

π

∫ t

0

lim
Ω→∞

∫ Ω

0

η cosω(t− t′)q(t′) dω dt′ =
d

dt
2

∫ t

0

ηδ(t− t′)q(t′) dt′

= ηq̇. (3.20)

Substituting this expression back into Equation (3.15), we find

Mq̈ + ηq̇ + V ′(q) = f(t), (3.21)

i.e. we have arrived at the Langevin equation for classical Brownian motion Equation (2.2),
where we have interpreted the RHS of Equation (3.15) as a fluctuating force f(t). Assuming
the bath is in thermodynamic equilibrium, we can use the equipartition theorem to check
that this force obeys the same correlation function for white noise. Starting from

⟨qk(0)⟩ = ⟨q̇k(0)⟩ = ⟨q̇k(0)qk′(0)⟩ = 0

⟨q̇k(0)q̇k′(0)⟩ =
kBT

mk

δk,k′

⟨qk(0)qk′(0)⟩ =
kbT

mkω2
k

δk,k′ , (3.22)

we indeed find
⟨f(t)⟩ = 0, ⟨f(t)f(t′)⟩ = 2ηkBTδ(t− t′). (3.23)

3.2 Dynamical Reduced Density Operator

Now that we know that the Caldeira-Leggett model produces the classical Brownian motion,
we can use it to extract the quantum mechanics of our system of interest from the composite
system. This can be done by taking the partial trace of the density operator with respect to
the variables of the system of interest, giving the dynamical reduced density operator. The
function that describes its time evolution is called the influence functional.

We will start by giving a general approach to calculating the dynamical reduced density
operator, before applying it to our model.

General Approach

Suppose we have a generic Hamiltonian of a system with coordinates (q, p) in contact with a
heat reservoir consisting of oscillators with coordinates (qk, pk)

H = HS(q, p) +HI(q, qk) +HR(qk, pk) +HCT , (3.24)

where HS is the Hamiltonian of our system of interest, HI of the interactions, HR of the
reservoir, and HCT of the counter-term. The total density operator ρ̂(t) can be expressed in
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terms of the system coordinates (x, y) and the reservoir coordinates (R,Q), which correspond
to a forward and backward in time travelling path. Also, the reservoir coordinates are vectors
R = (R1, . . . , RN), where Rk is the value of qk. The total density operator is given by

ρ̂(x,R, y,Q, t) =

∫∫∫∫
dx′ dy′ dR′ dQ′K(x,R, t;x′,R′, 0)K∗(y,Q, t; y′,Q′, 0)×ρ̂(x′,R′, y′,Q′, 0),

(3.25)
where

K(x,R, t;x′,R′, 0) = ⟨x,R|e−
i
ℏHt|x′,R′⟩ (3.26)

is the quantum mechanical propagator of the composite system, and K∗(y,Q, t; y′,Q′, 0) its
time reversed counterpart. The density

ρ̂(x′,R′, y′,Q′, 0) = ⟨x′,R′|ρ̂0|y′,Q′⟩ (3.27)

is the coordinate representation of the initial state.

In order to extract the dynamics of the system, we must take a partial trace of Equation
(3.25) with respect to the variables of the reservoir: ρ̂S(t) = TrR ρ̂(t). This means that we
must set R = Q and integrate over it. If the density of the initial state can be separated
into a part belonging to the system and a part belonging to the reservoir, i.e.

ρ̂(x′,R′, y′,Q′, 0) = ρ̂(x′, y′, 0)× ρ̂(R′,Q′, 0), (3.28)

we can write down the dynamical reduced density operator of the system

ρ̃(x, y, t) =

∫∫
dx′ dy′J(x, y, t;x′, y′, 0)ρ̂(x′, y′, 0), (3.29)

where J is its so-called “superpropagator” and is given by

J(x, y, t;x′, y′, 0) =

∫∫∫
dR dR′ dQ′K(x,R, t;x′,R′, 0)K∗(y,Q, t; y′,Q′, 0)× ρ̂(R′,Q′, 0).

(3.30)
Because the reservoir consists of N oscillators, the most efficient method for calculating the
propagator K is by writing them in the Feynman representation of functional integrals. The
propagator then reads

K(x,R, t;x′,R′, 0) =

∫ x

x′

∫ R

R′
Dx(t′)DR(t′) exp

{
i

ℏ
S[x(t′),R(t′)]

}
, (3.31)

where x(0) = x′, x(t) = x, R(0) = R′, R(t) = R, and

S[x(t′),R(t′)] =

∫ t

0

dt′L
[
x(t′),R(t′), ẋ(t′), Ṙ(t′)

]
(3.32)

is the action of the system plus the reservoir. Plugging this expression and its time reversed
counterpart into Equation (3.30), we find

J(x, y, t;x′, y′, 0) =

∫ x

x′

∫ y

y′
Dx(t′)Dy(t′) exp

{
i

ℏ

(
S̃0[x(t

′)]− S̃0[y(t
′)]
)}
×F [x(t′), y(t′)],

(3.33)
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where S̃0 is the combined action of the isolated system S0 and the counter-term SCT , and

F [x(t′), y(t′)] =
∫

dR′ dQ′ dR ρR(R
′,Q′, 0)

∫ R

R′

∫ R

Q′
DR(t′)DR(t′)

× exp

{
i

ℏ

(
SI [x(t

′),R(t′)]− SI [y(t
′),Q(t′)] + SR[R(t′)]− SR[Q(t′)]

)}
, (3.34)

is the influence functional. It is the average of the product of two time evolutions over the
initial state of the environment. For the case of the Caldeira-Leggett model, in which the
reservoir consists of harmonic oscillators, we can explicitly calculate the influence functional.

Influence Functional for Caldeira-Leggett Model

To calculate the influence functional F [x, y], we recognize that Equation (3.34) is actually
a set of integrals of the density matrix of the environment, ρR(R

′,Q′, 0), multiplied by the
propagator of the forced harmonic oscillator and its time-reversed counterpart, with respect to
the coordinates of the environment, R′, Q′ and R. The expression for the kth environmental
oscillator acted by a force Ckx(t) is

K
(k)
RI =

√
mkωk

2πiℏ sinωk(t)
exp

[
i

ℏ
S[xcl(t)]

]
, (3.35)

with

S[xcl(t)] =
mkωk

2 sinωkT
×

{
(R2

k +R′2
k ) cosωkT − 2RkR

′
k

+ 2

∫ t

0

dr
f(r)

mkωk

[R′
k sinωk(t− r) +Rk sinωkr]

− 2

∫ t

0

∫ r

0

dr ds
f(r)f(s)

m2
kω

2
k

sinωk(t− r) sinωks

}
. (3.36)

The normalized density operator reads

ρR(R
′
k, Q

′
k, 0) =

√
mkωk(cosh ℏβωk − 1)

πℏ sinh ℏβωk

exp

{
− mkωk

2ℏ sinh ℏβωk

[
(R′2

k +Q′2
k ) cosh ℏβωk − 2R′

KQ
′
k

]}
.

(3.37)
The explicit calculations for the expressions of the action and normalized density operator
are given in Appendix B and C, respectively.

We can therefore rewrite the influence functional, so that we get

F [x, y] =
∏
k

F (k)[x, y], (3.38)

with

F (k)[x, y] =

∫
dR′

k dQ
′
k dRk ρR(R

′
k, Q

′
k, 0)×K

(k)
RI (Rk, t, R

′
k, 0)×K

(k)∗
RI (Rk, t, Q

′
k, 0). (3.39)
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Using the expressions for the density matrix Equation (3.36) and the propagator Equation
(3.35), the influence functional becomes

F (k)[x, y] =

∫
dR′

k dQ
′
k dRk ACC

∗ exp

{
−1

ℏ
B
[
(R′2

k −Q′2
k ) cosh ℏβωk − 2R′

kQ
′
k

]}
× exp

{
i

ℏ
D
[
(R′2

k −Q′2
k ) cosωkt+ 2RkQ

′
k − 2RkR

′
k

+ 2RkE

∫ t

0

dr [x(r)− y(r)] sinωkr

+ 2R′
kE

∫ t

0

dr x(r) sinωk(t− r)

− 2Q′
kE

∫ t

0

dr y(r) sinωk(t− r)

−E2

∫ t

0

∫ r

0

dr ds y(r)y(s) sinωk(t− r) sinωks

]}
,

(3.40)

with constants

A =

√
mkωk(cosh ℏβω − 1)

πℏ sinh ℏβω
, B =

mkωk

2 sinh ℏωk

kBT

, C =

√
mkωk

2πiℏ sinωkT
,

D =
mkωk

2 sinωkT
, E =

Ck

mkωk

. (3.41)

In order to solve Equation (3.40), we must perform three integrations. We will use the
method of “completing the square” for each variable, to create a simple Gaussian integral
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that can readily be integrated. We arrive at the following expression

F (k)[x, y] =

√
π3ℏ3
κλµ

ACC∗ exp

{
− 1

ℏ

[
2iDE2

∫ t

0

∫ r

0

dr ds sinωk(t− r) sinωks[x(r)x(s)− y(r)y(s)]

+
D2E2

κ

∫ t

0

∫ t

0

dr ds sinωk(t− r) sinωk(t− s)[y(r)y(s)]

+
D2E2

λ

∫ t

0

∫ t

0

dr ds sinωk(t− r) sinωk(t− s)
[
x(r)− B

κ
y(r)

] [
x(s)− B

κ
y(s)

]
+
D4E2

λ2µ

∫ t

0

∫ t

0

dr ds sinωk(t− r) sinωk(t− s)[y(r)y(s)]

+
D4E2

λ2µ

(
B

κ
− 1

)2 ∫ t

0

∫ t

0

dr ds sinωk(t− r) sinωk(t− s)
[
x(r)− B

κ
y(r)

] [
x(s)− B

l
y(s)

]
+
D4E2

κλµ

(
B

κ
− 1

)∫ t

0

∫ t

0

dr ds sinωk(t− r) sinωk(t− s)

×
(
y(r)

[
x(s)− B

κ
y(s)

]
+

[
x(r)− B

κ
y(r)

]
y(s)

)
+
D2E2

µ

∫ t

0

∫ t

0

dr ds sinωkr sinωks[x(r)− y(r)][x(s)− y(s)]

−iD
3E2

κµ

∫ t

0

∫ t

0

dr ds

(
sinωkr sinωk(t− s)[x(r)− y(r)]y(s)

+ sinωk(t− r) sinωks y(r)[x(s)− y(s)]
)

+i
D3E2

λµ

(
B

κ
− 1

)∫ t

0

∫ t

0

dr ds

(
sinωkr sinωk(t− s) [x(r)− y(r)]

[
x(s)− B

κ
y(s)

]
+sinωk(t− r) sinωks

[
x(r)− B

κ
y(r)

]
[x(s)− y(s)]

)]}
,

(3.42)

where the constants resulting from the Gaussian integration are given by

κ = B cosh ℏβωk+iD cosωkt, λ = B cosh ℏβωk−iD cosωkt−
B2

κ
, µ = D2

(
1

κ
+

1

λ
(
B

κ
− 1)2

)
.

(3.43)
This long and seemingly complicated expression can be reduced to a real and an imaginary
part. Using the fact that κλµ = 2BD2(cosh ℏβωk − 1), we find that the prefactors all cancel
and we are left with

F [x, y] = exp

{
− i
ℏ

∫ t

0

∫ r

0

dr ds[x(r)− y(r)]αI [x(s) + y(s)]

}
× exp

{
−1

ℏ

∫ t

0

∫ r

0

dr ds[x(r)− y(r)]αR[x(s)− y(s)]
}
, (3.44)
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where

αI = −
∑
k

C2
k

2mkωk

sinωk(r − s) (3.45)

αR =
∑
k

C2
k

2mkωk

coth
ℏβωk

2
cosωk(r − s). (3.46)

We can rewrite the expressions for αI and αR using the spectral function (3.18). This gives

αI = η
d

d(r − s)
δ(r − s) (3.47)

αR =
η

π

∫ Ω

0

dω ω coth
ℏω

2kBT
cosω(r − s). (3.48)

We can now further evaluate the imaginary part of the influence functional (3.44), using
partial integration∫ t

0

∫ r

0

dr ds[x(r)− y(r)]η d

d(r − s)
δ(r − s)[x(s) + y(s)] =

− η
∫ t

0

dr[x2(r)− y2(r)]δ(0) + η

2

∫ t

0

dr[x(r)ẋ(r) + x(r)ẏ(r)− y(r)ẋ(r)− y(r)ẏ(r)]. (3.49)

We can approximate δ(0) by Ω/π, for which we do not have to take the limit Ω → ∞ [14],
and define the relaxation constant

γ ≡ η

2M
(3.50)

and the frequency shift

(∆ω)2 ≡ 4γω

π
. (3.51)

Using these definitions, we finally find an expression for the superpropagator (3.33)

J(x, y, t;x′, y′, 0) =

∫ x

x′

∫ y

y′
Dx(t′)Dy(t′) exp i

ℏ

{
S0[x(t

′)]− S0[y(t
′)]

−Mγ

∫ t

0

dr[x(r)ẋ(r) + x(r)ẏ(r)− y(r)ẋ(r)− y(r)ẏ(r)]
}

× exp

{
−2Mγ

πℏ

∫ Ω

0

dω ω coth
ℏω

2kBT

∫ t

0

∫ r

0

dr ds[x(r)− y(r)] cosω(r − s)[x(s)− y(s)]
}
,

(3.52)

where the extra harmonic term deriving from the integration by parts cancels against the
counter-term in the combined action S̃0. We can substitute this equation back into Equation
(3.29) to find the full expression for the dynamical reduced density operator ρ̂. This density
operator then allows us to calculate the average value of any quantum mechanical observable,
using ⟨A⟩ = Tr[ρ̂A].
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So, to summarise, the development of SQUIDs created a need for a quantum mechanical
description of systems described by the Langevin equation for Brownian motion. Due to the
dissipative term, this system cannot be canonically quantized. However, by coupling the open
system of interest to a reservoir, the quantum mechanical dynamics of the full composite
system can be determined. Finally, the dynamics of the reservoir can be integrated out,
resulting in the dynamical reduced density operator that describes the system of interest.
The Caldeira-Leggett model uses this method and couples a system to a bath of harmonic
oscillators to allow for a fully analytical solution.
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4 Two-Level Systems

The Caldeira-Leggett model can be used to describe the quantum mechanical behaviour of
open systems. This method couples the system of interest to a thermal bath to create a closed
composite system. Subsequently extracting the behaviour of the heat bath will give you the
quantum mechanical behaviour of the system of interest. Once the thermal bath is coupled,
each particle in it will be perturbed by the system of interest. However, this is also where
we find some disadvantages to the Caldeira-Leggett model. Because the system couples to
all the harmonic oscillators, we cannot fine-tune the interactions between the system and the
bath.

This is where “two-level systems” (TLSs) come into play [19]. Whereas the quantum har-
monic oscillator has an infinite number of energy levels, the TLS only has two. It can therefore
also be seen as a “truncated harmonic oscillator”, as it displays the same behaviour in the
very low temperature limit (T → 0). In this limit, we recover the Caldeira-Leggett model.
However, at intermediate temperatures they are very different, which is precisely why they
are so useful. We will see that in this model, where we couple the system to a bath of TLSs,
we can use the temperature as a variable to select which frequencies of the bath are relevant.

4.1 Model

The model of a particle coupled to a bath of TLSs is established in two papers by A. Villares
Ferrer et al. In the first paper, the system is used to compute the optimal conductivity and
the direct current resistivity induced by the reservoir [20]. The second paper looks at the
dynamical equations of the coupled particle [1]. It is this particular work that forms the
basis for this thesis. The results published in the article show that a particle coupled to a
reservoir of TLSs becomes “dynamically localised”. This means that at low temperatures
and in the sub-ohmic regime, the position of the particle oscillates as a function of time.
Using the framework of time crystals, we can now revisit this model and question whether
this composite system is a time crystal.

Following the calculations outlined in Ref. [20] and [1] we now derive the theoretical model
for a particle coupled to a bath of TLSs. In order to describe it, we will once again calculate
the reduced density operator and the spectral function. We shall start by writing down the
Hamiltonian for this closed system

H = H0 +HR +HI , (4.1)

where

H0 =
p̂2

2M
+ exE, (4.2)

HR =
N∑
k=1

ℏωk

2
σz
k, and (4.3)

HI = −
N∑
k=1

xJkσ
x
k , (4.4)
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are the Hamiltonians of the particle in an external electric field, the thermal reservoir of
TLSs, and the interaction between the two, respectively. Here, we denote with σj

k the Pauli
matrices in k-space. The interaction strength is determined by the coupling constant Jk.

Influence Functional for TLS

To calculate the reduced density operator, we need to perform the trace over the reservoir
degrees of freedom

ρ(x, y, t) = TrR[⟨x|ρ(t)|y⟩]
= TrR[⟨x|e−iHt/ℏρ(0)eiHt/ℏ|y⟩]. (4.5)

As before, we can assume that the heat bath and the system are initially not in contact with
each other, and therefore we can write ρ(0) = ρS(0) × ρR(0). This gives us the following
expression for the reduced density operator

ρ(x, y, t) =

∫∫
dx′dy′ρS(x

′, y′, 0)J(x, y, t, x′, y′, 0), (4.6)

where the superpropagator J(x, y, t, x′, y′, 0) is given by

J(x, y, t, x′, y′, 0) =

∫ x

x′
Dx(t′)

∫ y

y′
Dy(t′) exp

{
i

ℏ
(S0[x]− S0[y])

}
×F [x, y], (4.7)

with

S0[z] =

∫ t

0

L dt =

∫ t

0

[
1

2
Mż2(t′) + ez(t′)E(t′)

]
dt′, (4.8)

and F [x, y] is the influence functional.

For this model, the interaction Hamiltonian HI is time-dependent, which means that we must
pay special attention to its time evolution. We can rewrite the influence functional in terms
of the unitary time evolution operator U [x] and its conjugate U †[y]. The time evolution is
taken over the interval t ∈ [0, t]. We find

F [x, y] = TrR
[
ρR(0)U

†[y]U [x]
]
. (4.9)

The time evolution operator can be separated into the evolution operators for the interaction
Hamiltonian and the reservoir Hamiltonian, such that

U [x] = UR[x]UI [x]

= e−iHrt/ℏ←−T exp

{
− i
ℏ

∫ t

0

H̃I(x(τ)) dτ

}
, (4.10)

where
←−
T is the chronological time ordering operator and

H̃I(x(t)) = exp{iHRt/ℏ}HI(x(t)) exp{−iHRt/ℏ} is the interaction Hamiltonian in the inter-
action picture. The expression for U †[y] is constructed in a similar way

U †[y] = U †
I [y]U

†
R[y]

=
−→
T exp

{
+
i

ℏ

∫ t

0

H̃I(y(τ)) dτ

}
e+iHrt/ℏ, (4.11)
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although here we find the anti-chronological time ordering operator
−→
T .

Substituting this result into Equation (4.9), we find

F [x, y] = TrR

[
ρR(0)

(
−→
T exp

{
i

ℏ

∫ t

0

H̃I(yτ ) dτ

})(
←−
T exp

{
− i
ℏ

∫ t

0

H̃I(xτ ) dτ

})]
(4.12)

= TrR[ρR(0)Ay′y(0, t)Axx′(t, 0)]. (4.13)

where we write xτ ≡ x(τ) and yτ ≡ y(τ)for the sake of brevity. Using the expansion of the
exponential ex =

∑∞
n=0

xn

n!
= 1 +

∑∞
n=0

xn

n!
, we can expand the terms Axx′ and Ay′y up to

second order in the interaction strength Jk

Ay′y(0, t) = 1 +
∞∑
n=1

1

n!

(
i

ℏ

)n ∫ t

0

dt1

∫ t

0

dt2 . . .

∫ t

0

dtn
−→
T [H̃I(y(t1))H̃I(y(t2)) · · · H̃I(y(tn))]

≈ 1 +
i

ℏ

∫ t

0

dτH̃I(yτ )−
1

ℏ2

∫ t

0

dτ

∫ τ

0

dσH̃I(yσ)H̃I(yτ ), and similarly (4.14)

Axx′(t, 0) ≈ 1− i

ℏ

∫ t

0

dτH̃I(xτ )−
1

ℏ2

∫ t

0

dτ

∫ τ

0

dσH̃I(xτ )H̃I(xσ). (4.15)

The product of these expressions is given by

Ay′yAxx′ ≈ 1 +
i

ℏ

[∫ t

0

dτH̃I(yτ )−
∫ t

0

dτH̃I(xτ )

]
− 1

ℏ2

∫ t

0

dτ

∫ τ

0

dσ
[
H̃I(yσ)H̃I(yτ ) + H̃I(xτ )H̃I(xσ)− H̃I(yτ )H̃I(xσ)− H̃I(yσ)H̃I(xτ )

]
,

(4.16)

where the linear terms will vanish once we take the trace over the reservoir parameters,
because HI is proportional to the Pauli matrix σx which has no diagonal elements.

Substituting this into the influence functional, we find

F [x, y] = 1− 1

ℏ2

∫ t

0

dτ

∫ τ

0

dσ

[
⟨H̃I(yσ)H̃I(yτ )⟩+ ⟨H̃I(xτ )H̃I(xσ)⟩

−⟨H̃I(yτ )H̃I(xσ)⟩ − ⟨H̃I(yσ)H̃I(xτ )⟩
]
, (4.17)

where we define the average ⟨A⟩ = Tr[ρR(0)A] = Tr[(1/Z) exp{−βHR}A]. The partition
function is given by

Z = Tr[e−βHR ] =
N∏
k=1

2 cosh

(
ℏωk

2kBT

)
. (4.18)

For our purposes, we will decompose this average using the commutative properties of the
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Pauli matrices to write

⟨A⟩ = Tr

[
1

Z1

e−
ℏω1
2kT

σz
1 ⊗ . . .⊗ 1

Zk

e−
ℏωk
2kT

σz
kAk ⊗ . . .⊗

N

ZN

e−
ℏωN
2kT

σz
N

]
= Tr

[
1

Z1

e−
ℏω1
2kT

σz
1

]
· . . . · Tr

[
1

Zk

e−
ℏωk
2kT

σz
kAk

]
· . . . · Tr

[
1

ZN

e−
ℏωN
2kT

σz
N

]
= Tr

[
1

Zk

e−
ℏωk
2kT

σz
kAk

]
. (4.19)

Each average in the influence functional, such as ⟨H̃I(xτ )H̃I(xσ)⟩, is proportional to the
product of two Pauli matrices σx

k and σx
q . However, for all k ̸= q the trace vanishes, so we

only need to consider the case where k = q. To illustrate how these averages are calculated,
we will explicitly consider the term

⟨H̃I(xτ )H̃I(xσ)⟩ = Tr

[
1

Zk

e−
ℏωk
2kT

σz
kH̃I(xτ )H̃I(xσ)

]
, (4.20)

with

H̃I(xτ ) = exp

{
i

ℏ
HRτ

}
HI exp

{
− i
ℏ
HRτ

}
= exp

{
i
∑
q

ωq

2
τσz

q

}(
−
∑
k

xτJkσ
x
k

)
exp

{
−i
∑
q′

ωq′

2
τσz

q′

}
=
∑
k

exp
{
i
ωk

2
τσz

k

}
(−xτJkσx

k) exp
{
−iωk

2
τσz

k

}
. (4.21)

Using the expansion exp{±iσjθ/2} = 1 cos (θ/2)± iσj sin (θ/2), we find

H̃I(xτ ) = −
∑
k

xτJk (σ
x
k cosωkτ − σy

k sinωkτ) (4.22)

and similarly

H̃I(xσ) = −
∑
k

xσJk (σ
x
k cosωkσ − σy

k sinωkσ) . (4.23)

Substituting these expressions into Equation (4.20), and using

1

Zk

exp{−βHR} =
1

2

[
1− σz

k tanh

(
ℏωk

2kBT

)]
,

we find

⟨H̃I(xτ )H̃I(xσ)⟩ = Tr

{
1

2

[
1− σz

k tanh

(
ℏωk

2kBT

)]∑
k

xτxσJ
2
k

[
1 cosωk(τ − σ)

+ iσz
k sinωk(τ − σ)

]}
. (4.24)
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Now, we can evaluate the trace, using that Tr[σj] = 0, Tr[1] = 2, and Tr[σiσj] = 2δij with
i, j = x, y, z. This results in

⟨H̃I(xτ )H̃I(xσ)⟩ =
∑
k

xτxσJ
2
k

{
cosωk(τ − σ)− i tanh

(
ℏωk

2kBT

)
sinωk(τ − σ)

}
. (4.25)

Repeating these calculations for the other averages, we find that the influence functional is
given by

F [x, y] = 1− 1

ℏ2

∫ t

0

dτ

∫ τ

0

dσ
∑
k

J2
k

{
f(x, y) cosωk(τ − σ)− ig(x, y) tanh

(
ℏωk

2kBT

)
sinωk(τ − σ)

}
,

(4.26)
with

f(x, y) = xτxσ − yσxτ − yτxσ + yσyτ (4.27)

g(x, y) = xτxσ + yσxτ − yτxσ − yσyτ . (4.28)

This equation deviates from Ref. [20], which has opposite signs for the second and third
terms in Equation (4.28).

We can rewrite Equations (4.27) and (4.28) in terms of the particle center of mass q and the
relative coordinate ξ, using x = q + ξ/2 and y = q − ξ/2. Therefore, f(x, y) = ξ(τ)ξ(σ) and
g(x, y) = 2q(σ)ξ(τ) and the influence functional becomes

F [q, ξ] = 1− 1

ℏ2

∫ t

0

dτ

∫ τ

0

dσ
∑
k

J2
k

{
ξ(τ)ξ(σ) cosωk(τ − σ)

− 2iq(σ)ξ(τ) tanh

(
ℏωk

2kBT

)
sinωk(τ − σ)

}
. (4.29)

Due to the sign difference in the equation for g(x, y), we find a similar sign difference from
Ref. [20] in Equation (4.29).

Spectral function

In order to evaluate the influence functional, we must have enough knowledge of the system
to perform the summation over k. This is usually not the case. However, we can calculate
the spectral density function using the definition given in Equation (3.18). The force of the
particle on the bath of two-level systems is given by F (t) =

∑
k Jkσ

x
k(t). We will start by
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calculating the commutation relation

[F (t), F (t′)] =

[∑
k

Jkσ
x
k(t),

∑
q

Jqσ
x
q (t

′)

]

=

[∑
k

Jk e
i
ωk
2
σz
kt σx

k e
−i

ωk
2
σz
kt,
∑
q

Jq e
i
ωq
2
σz
q t

′
σx
q e

−i
ωq
2
σz
q t

′

]
,

=
∑
k,q

JkJq

{[
σx
k , σ

x
q

]
cos (ωkt) cos (ωqt

′) +
[
σy
k , σ

y
q

]
sin (ωkt) sin (ωqt

′)

−
[
σx
k , σ

y
q

]
cos (ωkt) sin (ωqt

′)−
[
σy
k , σ

x
q

]
sin (ωkt) cos (ωqt

′)

}
. (4.30)

Similar to the calculation of the influence functional, when we will take the trace over this
expression all terms with k ̸= q will vanish. This leaves only the case k = q, for which we
can calculate the average, taking the trace over the parameters of the bath

⟨[F (t), F (t′)]⟩ = Tr

[
1

Zk

e
− ℏωk

2kBT

∑
k

2iJ2
kσ

z
k sinωk(t− t′)

]

=
∑
k

2iJ2
k tanh

(
ℏωk

2kBT

)
sinωk(t− t′). (4.31)

Inserting this into the spectral density function (3.18), we can write

J(ω, T ) = Im

{
−
∫ ∞

∞
dt e−iωtθ(t− t′)

∑
k

2J2
k tanh

(
ℏωk

2kBT

)
sin [ωk(t− t′)]

}
. (4.32)

We can use the convolution theorem to calculate the Fourier transform

f(t)g(t) =
1

2π
(f̂ ∗ ĝ)(ω) (4.33)

with

f(t) = θ(t) f̂(ω) = π

(
1

iπω
+ δ(ω)

)
(4.34)

g(t) = sinωkt ĝ(ω) = −iπ
(
δ(ω − ωk)− δ(ω + ωk)

)
. (4.35)

This gives∫ ∞

∞
dt e−iωtθ(t−t′) sinωk(t− t′) =

1

2

(
1

ω + ωk

− 1

ω − ωk

)
+i
π

2

[
δ(ω+ωk)−δ(ω−ωk)

]
. (4.36)

Taking only positive frequencies into account and using the imaginary part of the Fourier
transform, we find the final expression for the spectral density function

J(ω, T ) =
∑
k

πJ2
k tanh

(
ℏωk

2kBT

)
δ(ω − ωk). (4.37)
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This is an important result as we can now see the temperature dependence of our system. The
hyperbolic tangent has two limits: for a small argument, it will vanish (limx→0 tanh (x)→ 0);
for a large argument, its value will approach 1 (limx→∞ tanh(x) → 1). Therefore, we can
see that depending on the argument of the hyperbolic tangent, different frequencies will be
selected. If ℏωk << kBT , the hyperbolic tangent vanishes and all TLSs with these frequencies
will not be selected. However, for ℏωk >> kBT , the frequencies are relevant and we recover
the Caldeira-Leggett model. The temperature can now act as a tuning parameter allowing
us to control which bath frequencies to include. This is where the TLS has a clear advantage
over the Caldeira-Leggett model.

We can now rewrite the influence functional, by substituting Equation (4.37) into Equa-
tion (4.29) and re-exponentiating the expression

F [q, ξ] = 1− 1

ℏ2

∫ t

0

dτ

∫ τ

0

dσ

∫ ∞

0

dω
J(ω)

π

[
coth

(
ℏω

2kBT

)
ξ(τ)ξ(σ) cosω(τ − σ)

− 2iq(σ)ξ(τ) sinω(τ − σ)
]

≈ exp

{
− 1

ℏ2

∫ t

0

dτ

∫ τ

0

dσ

∫ ∞

0

dω
J(ω)

π

[
coth

(
ℏω

2kBT

)
ξ(τ)ξ(σ) cosω(τ − σ)

− 2iq(σ)ξ(τ) sinω(τ − σ)
]}

.

(4.38)

This allows us to find an expression for the superpropagator in terms of the particle center
of mass coordinate q and the relative coordinate ξ. First, we will substitute Equation (4.38)
into Equation (4.7) and perform the same change of variables as we did for the influence
functional

J =

∫
Dq(t′)

∫
Dξ(t′) exp

{
i

ℏ
(S0[q + ξ/2]− S0[q − ξ/2])

}
×F [q, ξ]

=

∫
Dq(t′)

∫
Dξ(t′) exp

{
i

ℏ
Seff [q, ξ]

}
exp

{
−1

ℏ
ϕ[ξ]

}
. (4.39)

The effective action in the imaginary part of the exponent is given by

Seff =

∫ t

0

dτ

[
Mq̇(τ)ξ̇(τ) + eE(τ)ξ(τ) +

∫ τ

0

dσΛ1(τ − σ)q(σ)ξ(τ)
]

(4.40)

with

Λ1(τ − σ) =
2

πℏ

∫ ∞

0

dω J(ω, T ) sinω(τ − σ).

In the real part, the functional ϕ has the form

ϕ[ξ] =

∫ t

0

dτ

∫ τ

0

dσΦ(τ − σ)ξ(τ)ξ(σ), (4.41)
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with

Φ(τ − σ) = 1

πℏ

∫ ∞

0

dω J(ω, T ) coth

(
ℏω
2kbT

)
cosω(τ − σ).

Equations of motion

From the effective action we can derive the equations of motion for q and ξ. Varying the
action gives us the equations of motion

δSeff

δξ(α)
=

∫ t

0

dτ

[
−Mq̈(τ) + eE(τ) +

∫ τ

0

dσΛ1(τ − σ)q(σ)
]
δ(τ − α)

= −Mq̈(α) + eE(α) +

∫ α

0

dσΛ1(α− σ)q(σ), (4.42)

and

δSeff

δq(α)
=

∫ t

0

dτ

[
−Mξ̈(τ)δ(τ − α) +

∫ τ

0

dσΛ1(τ − σ)δ(σ − α)ξ(τ)
]

= −Mξ̈(α) +

∫ t

0

dτΛ1(τ − α)ξ(τ). (4.43)

Setting
δSeff

δξ(α)
= 0 and

δSeff

δq(α)
= 0, integrating the last term by parts and changing the variables

α→ t and σ → τ , we find

Mq̈(t) +

∫ t

0

dτΛ(t− τ)q̇(τ) = eE(t), (4.44)

Mξ̈(t)−
∫ t

0

dτΛ(t− τ)ξ̇(τ) = 0, (4.45)

where we assume that boundary terms vanish and Λ is the primitive of Λ1 with respect to σ,

Λ(t− τ) = 2

πℏ

∫ ∞

0

dω
J(ω, T )

ω
cosω(t− τ). (4.46)

The spectral density function J(ω, T ) is given in terms of microscopic quantities by Equa-
tion (4.37). However, we need to rewrite this function in terms of macroscopic quantities to
be able to study the behaviour of the system in experiments. An assumption for the spectral
function that keeps the temperature dependent behaviour intact, is proposed in [1]. Here we
have added a factor ℏπ/2 for consistency.

J(ω, T ) =
ℏη
2

(
ω

ωc

)s

tanh

(
ℏω

2kBT

)
θ(Ω− ω), (4.47)

where η is the coupling strength between the particle and the bath, ωc is a characteristic fre-
quency that allows for a dimensionless coupling strength, s determines the long-time damping
properties of the bath, and Ω is a cut-off value for the frequencies. Substituting this spectral
density into the equations of motion, we find



4 TWO-LEVEL SYSTEMS 32

q̈(t) +
2γ

π

∫ t

0

dτΓ(t− τ)q̇(τ) = eE(t)

M
, (4.48)

ξ̈(t)− 2γ

π

∫ t

0

dτΓ(t− τ)ξ̇(τ) = 0, (4.49)

where γ = η/2M is the damping constant, and

Γ(t) =

∫ Ω

0

dω
ωs−1

ωs
c

tanh

(
ℏω

2kBT

)
cos(ωt). (4.50)

To solve these equations, we can perform a Laplace transformation, which gives

q̄(z) =
q(0)[z + 2γ

π
Γ(z)] + q̇(0) + e

M
E(z)

z2 + 2γ
π
zΓ(z)

(4.51)

ξ̄(z) =
ξ(0)[z − 2γ

π
Γ(z)] + ξ̇(0)

z2 − 2γ
π
zΓ(z)

. (4.52)

From here on, we assume that the external electric field E(t) is set to zero, for ease of
calculations. Assuming q(0) = 0 and q̇(0) = v0, we have

q̄(z) =
v0

z2 + 2γ
π
zΓ(z)

(4.53)

ξ̄(z) =
ξ(0)[z − 2γ

π
Γ(z)] + ξ̇(0)

z2 − 2γ
π
zΓ(z)

, (4.54)

where Γ(z) is the Laplace transform of Γ(t). In order to calculate this function we use that
tanh

(
πx
2

)
= 4x

π

∑∞
n=1

1
(2n−1)2+x2 and L{cos(ωt)} = z

z2+ω2 . This gives

Γ(z) =
4kBTz

ℏ

∞∑
n=1

∫ Ω

0

dω
(ω/ωc)

s

(λ2n + ω2)(z2 + ω2)︸ ︷︷ ︸
I(n,Ω)

, (4.55)

where λn = (2n−1)πkBT/ℏ. The integral I(n,Ω) can be rewritten by separating the fraction

and using the integral expression
∫ Ω

0
dω ωs−2

ω2+α2 = Ωs−1

α2

∑∞
m=0

(−1)m

2m+s−1

(
Ω
α

)2m
. This gives

I(n,Ω) =
1

z2 + λ2n

[
z2
∫ Ω

0

dω
ωs−2

z2 + ω2
− λ2n

∫ Ω

0

dω
ωs−2

λ2n + ω2

]
=

Ωs+1

λ2n − z2
∞∑

m=1

(−1)m−1

2m+ s− 1

[
1

z2

(
Ω

z

)2m−2

− 1

λ2n

(
Ω

λn

)2m−2
]

(4.56)
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We can now use the hypergeometric function to find a more compact notation of this function.
Inserting

2F1(a; b; c;x) =
∞∑
n=0

(a)n(b)n

(c)n
xn

n!
(4.57)

F (s,−Ω2

α2
) ≡ 2F1(1,

1 + s

2
,
3 + s

2
,−Ω2

α2
) =

∞∑
n=1

s+ 1

2n+ s− 1
(−1)n−1

(
Ω

α

)2n−2

(4.58)

into our expression for I(n,Ω), we find that the Laplace transform Γ(z) can be written as

Γ(z) =
4kBTz

ℏωs
c(s+ 1)

∞∑
n=1

Ωs+1

λ2n − z2

[
1

z2
F (s,−Ω2

z2
)− 1

λ2n
F (s,−Ω2

λ2n
)

]
. (4.59)

4.2 Sub-Ohmic regime

High-T limit

Now we can study the dynamics of the particle centre of mass coordinate q. We first look
at the sub-ohmic regime (s < 1) in the high-temperature limit. We find that for s = 0, the
Laplace transform of the damping function reads

Γ(z) =
∞∑
n=1

4kBTz

ℏ(λ2n − z2)

[
1

z
arctan

(
Ω

z

)
− 1

λn
arctan

(
Ω

λn

)]
. (4.60)

Then, taking the cut-off frequency Ω→∞, we know that limΩ→∞
1
α
arctan

(
Ω
α

)
− 1

β
arctan

(
Ω
β

)
=

π
2

[√
1
α2 −

√
1
β2

]
. Then, for T →∞, we find that the high-temperature limit of the damping

function is given by

lim
T→∞

∞∑
n=1

4kBTz

ℏ(λ2n − z2)
π

2

[√
1

z2
−

√
1

λ2n

]
=

2ℏz
√

1
z2

πTkB

∞∑
n=1

1

(2n− 1)2
+O( 1

T
)2

≈ πℏ
4kBT

. (4.61)

We can then use this expression to easily solve the inverse Laplace transform to find

q(t) =
v0

ℏγ/2kBT
(1− e−ℏγt/2kBT ). (4.62)

We notice that the position of the particle is now explicitly dependent on T , as it is usually the
case in classical systems. We essentially recover the Caldeira-Leggett model for a harmonic
oscillator bath, though with an ohmic (s = 1) temperature dependent damping constant. We
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can investigate this further by looking at the damping function Γ(t) for the case that s = 0
and ℏω ≪ kBT ,

Γ(t− τ) =
∫ ∞

0

(
ω

ωc

)s ℏ
2kBT

cosω(t− τ)

=
ℏπ

2kBT
δ(t− τ). (4.63)

This instantaneous function shows that the dissipation process is Markovian, i.e. the future
of the system does not depend on its past, as is also the case for Brownian motion. Physically,
the high-T limit corresponds to a weak interaction between the particle and the bath. Because
most of the TLSs are occupied, the bath behaves like harmonic oscillators causing no or little
damping on the particle.

Low-T limit

In the low temperature limit, on the other hand, it is not possible to create a Markovian
damping function. In this limit, limx→∞ tanh(x) = 1, the damping function Γ(t) becomes

Γ(t− τ) =
∫ ∞

o

dω
1

ω
cosω(t− τ). (4.64)

Looking at our equations of motion, we can say that the damping function acts as a kind
of friction force on the particle. For a bath of TLSs, we have already seen that this force is
temperature dependent, but in the low-T limit, it also becomes dependent on the previous
velocities of the particle, each with different weights given by the damping function.

From Equation (4.64), we can see that the cosine oscillates rapidly, except when ω ≪ (t−τ)−1.
In that case, the cosine becomes 1 and the damping function is independent of time.

In order to study the dynamics of the particle, we can perform numerical calculations to
approximate the results. For the case where s = 0, the solution to Equation (4.59) can be
calculated analytically. However, for other values of s, this calculation proves to be more
involved and requires a numerical approach in which we terminate the infinite sum. In the
next part, we will give the numerical results of the equation of motion q(t).



PART II

NUMERICAL RESULTS
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5 Time Crystalline Behaviour

In this section, we will calculate and analyse our results of the equation of motion for the
particle q(t). Based on the previous research by Ref [1], we expect to find oscillations in q(t)
under certain conditions. If we can find a characteristic frequency that is not related to any
driving of the system, then this implies that the continuous time-translation symmetry is
reduced to a discrete time-translation symmetry. Therefore, these oscillations point to the
possibility of a time crystal. By quantifying the regime in which these oscillations occur,
we can establish the conditions under which a time crystal in a particle-TLS bath system is
formed. In our analysis, we focus on the influence of three parameters on this function: the
damping constant γ, the temperature T and the number s which determines the long time
damping properties of the bath. In this section, we will provide a qualitative look at the time
crystalline regime. The results are obtained numerically. In Section 6, we will analyse the
poles of the inverse Laplace transform (Equation (5.6)) for a more quantified understanding
of the behaviour.

5.1 Dimensionless parameters

We start by redefining some of our parameters to make them dimensionless. Currently, the
dimensions of our parameters are as follows:

[z] = s−1, [Ω] = s−1, [λn] =

[
(2n− 1)π

kBT

ℏ

]
= s−1, [η] = kgs−2, [γ] =

[ η

2M

]
= s−2, [v0] = ms−1.

(5.1)

We can make these parameters dimensionless using powers of the cut-off frequency Ω, which
allows us to write

z̃ =
z

Ω
, T̃ =

kB
ℏΩ

T, λ̃n =
λn
Ω
, γ̃ =

γ

Ω2
, ṽ0 =

v0
ΩLs

. (5.2)

From these parameters, we can also define a time scale, ts
1, and a length scale, Ls. From

dimensional analysis, we can derive the following scales up to a constant coefficient,

ts ∝
1
√
γ

(5.3)

Ls ∝

√
ℏΩ
η

=

√
ℏΩ
2Mγ

. (5.4)

We now set ℏ = 1, M = 1, and Ω = 1, such that both our units of length and time are
defined in terms of 1/

√
γ.

1For the time scale, Verstraten et al. [21] also suggests ts = 1/
√
2γ. Although their time scale is derived

through a fractional derivative approach to the Langevin equation and hence depends on s, it provided a
good basis.
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5.2 Results for q(t)

In this section, we show our results for the dynamics of the particle, q(t). For convenience, we
will restate here the dimensionless versions of the equations which need to be solved. From
the equation of motion,

q̈(t) +
2γ̃

π

∫ t

0

dτΓ(t− τ)q̇(τ) = 0, (5.5)

we start with a Laplace transformation

q̄(z̃) =
ṽ0[

z̃2 + 2γ̃
π
z̃Γ(z̃)

] , (5.6)

where

Γ(z̃) =
4T̃ z̃

ωs
c(s+ 1)

∞∑
n=1

1

λ̃2n − z̃2

[
1

z̃2
F

(
s,− 1

z̃2

)
− 1

λ̃2n
F

(
s,− 1

λ̃2n

)]
. (5.7)

The sum over the hypergeometric functions in Equation (5.7) is solved numerically. The
dynamics of the particle as a function of time, q(t), are found by simply performing the
inverse Laplace transformation of Equation (5.6).

Checks

We start by performing several checks on the system. Because the hypergeometric functions
for the case s = 0 are quite simple, we can use this case to test some of the aspects of our
calculation. A typical result is shown in Figure 5.1. This figure is obtained at s = 0, γ̃ = 0.3
and varying temperatures. We can observe the same oscillatory behaviour as Villares Ferrer
et al. did in Ref. [1]. At low temperatures, we see that the oscillations persist for a relatively
long time, whereas for high temperatures, i.e. T̃ = 0.01 and above, this behaviour is damped
more quickly.

Figure 5.1: The dynamical behaviour of the particle with center of mass coordinate q as a
function of time for the case s = 0. The other parameters are set as γ̃ = 0.3, ṽ0 = 1, n = 100.
The temperature is varied in the range T̃ = 10−4, 10−2, 0.1, 0.2, 0.5. The time has been
rescaled.



5 TIME CRYSTALLINE BEHAVIOUR 38

The most important factor to determine before we do an analysis of our results, is the
effect of terminating the infinite sum in Equation (5.7) after a certain number of terms
n. Figures 5.2(a) and 5.2(b) show the influence of this parameter on the behaviour of the
dynamical function q(t). We can numerically determine the amplitude and period using the
first maximum and minimum of the function. Although this is only a rough approximation
of the amplitude and period, it gives an indication of how they are affected by the number
of terms n. We notice that both the amplitude and the period of the oscillations become
smaller as we increase the number of terms included in the sum. However, this decrease
does seem to stabilise. Unfortunately, as is the nature of most numerical calculations, the
more terms included in the calculation, the longer the computation time becomes. For the
calculations of the dynamical function q(t), we have chosen n = 100 as an appropriate cut-off
value for the number of terms included in the sum in order to limit the computation time.
For calculations regarding the poles of Equation (5.6), we have taken n = 500 as a cut-off
value for better precision as the computation time is much lower (see Section 6). Notice that
the period and amplitude, shown in Figure 5.2(b), does not change much for n > 300.

(a) (b)

Figure 5.2: The dependence of the simulation results on the number of terms included in the
sum. (a) Position as a function of time for γ̃ = 0.3, ṽ0 = 1 and T̃ = 10−4. The number of
terms in the sum is varied, with n = 10 (orange) and n = 50 (purple). (b) The amplitude
(blue) and the period (yellow) of the graph as a function of the number of terms n.

Another check that we can perform on our calculations is to check whether our suggestion for
the characteristic time scale ts is correct. This check is shown in Figure 5.3. After performing
the calculations for various values of the damping constant γ, we find that this parameter
influences both the amplitude and period of the oscillations. However, rescaling the time by
a factor of ts = 1/

√
2γ gives a perfectly aligned period for each curve.
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(a) (b)

Figure 5.3: (a) The position of the particle as a function of time for ṽ0 = 1 and T̃ = 10−4.
The parameter γ̃ is varied for γ̃ = 0.1, 0.3, 0.5, and 0.7. (b) The same graph, but for a
rescaling of the time such that t→ t/ts = t

√
2γ.

Results

Below, we show the results for q(t) for several combinations of parameters T̃ and s. We keep
one of these parameters constant, while varying the other over a range of values in order to
provide a qualitative idea of the dependence. The damping constant γ̃ has a more subtle
effect on the oscillations and will therefore be analysed in further depth in Section 6.

We start by fixing the temperature and varying s. The results are shown in Figures 5.4 –
5.8. We find that the position of the particle is oscillating in time, at least for some values
of s. If we focus on the low temperature behaviour in Figure 5.4, we see oscillations in q(t)
for nearly all values of s, except s = 1. We also notice that the period and amplitude of
the oscillations decreases with s. Furthermore, by increasing s, the oscillations are more
damped. We see that for s = 0 (blue curve), there is a strong periodic structure over a long
time. However, for s = 0.5 (purple curve), the amplitude after a single period has already
significantly decreased. If we then increase the temperature, we find that this damping effect
is exacerbated. Whereas for s = 0 (blue curve) the oscillations are present for temperatures
in the range T̃ = 10−4–10−2 (see Figures 5.4– 5.6), they quickly dampen for s = 0.1 (red
curve) and s = 0.2 (yellow curve) when the temperature is increased to T̃ = 10−3 (Figure
5.5). The more we increase the temperature, the further we have to look in the sub-ohmic
regime to find oscillations. At T̃ = 101, none of the curves exhibit any oscillatory behaviour
at all (see Figure 5.8).

We also notice that for high values of s and intermediate T , the curve shows an increase
and then freezes, as is common in glass phases. This can be seen for example in Figures 5.6
and 5.7.
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Figure 5.4: The position of the particle as a function of the rescaled time with parameters
T̃ = 10−4, γ̃ = 0.3 and ṽ0 = 1.0. The value of s is varied for each curve: s = 0.0, 0.1, 0.2, 0.5
and 1.0.

Figure 5.5: The position of the particle as a function of the rescaled time with parameters
T̃ = 10−3, γ̃ = 0.3 and ṽ0 = 1.0. The value of s is varied for each curve: s = 0.0, 0.1, 0.2, 0.5
and 1.0.
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Figure 5.6: The position of the particle as a function of the rescaled time with parameters
T̃ = 10−2, γ̃ = 0.3 and ṽ0 = 1.0. The value of s is varied for each curve: s = 0.0, 0.1, 0.2, 0.5
and 1.0.

Figure 5.7: The position of the particle as a function of the rescaled time with parameters
T̃ = 10−1, γ̃ = 0.3 and ṽ0 = 1.0. The value of s is varied for each curve: s = 0.0, 0.1, 0.2, 0.5
and 1.0.
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Figure 5.8: The position of the particle as a function of the rescaled time with parameters
T̃ = 101, γ̃ = 0.3 and ṽ0 = 1.0. The value of s is varied for each curve: s = 0.0, 0.1, 0.2, 0.5
and 1.0.

We can also vary the temperature, while keeping s fixed. The results for s = 0 and s = 0.5
are shown in Figures 5.9 and 5.10, respectively. We see that for s = 0, the oscillations
are fairly robust for low temperatures T̃ = 10−4 and 10−3. If the temperature is increased
further, the oscillations are damped until they are no longer visible. For s = 0.5, we see that
the oscillations are damped for every value of T̃ .

Figure 5.9: The position of the particle as a function of the rescaled time with parameters
s = 0, γ̃ = 0.3 and ṽ0 = 1.0. The temperature is varied for each curve in the range:
T̃ = 10−4–102.
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Figure 5.10: The position of the particle as a function of the rescaled time with parameters
s = 0.5, γ̃ = 0.3 and ṽ0 = 1.0. The temperature is varied for each curve in the range:
T̃ = 10−4–102.

To summarise our results, we found that there are oscillations on q(t). For small T̃ and
s, these are persistent oscillations with a period determined by γ̃ that is proportional to
the coupling of the particle to the reservoir. This characteristic period is not related to
any timescale of the coupling, showing that there is a spontaneous symmetry breaking of
continuous time-translation invariance. Therefore, the particle presents a time crystal phase.
For high T̃ and s, the oscillations are damped and the particle is localised for long times.
This seems to indicate that there are phase transitions associated to T̃ and s. In the following
Chapter we address this issue considering the pole structure of q̃ as function of T̃ and s.
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6 Investigating the Poles

In order to understand the oscillatory behaviour exhibited by the equation of motion for
the particle center of mass q(t) (Equation (5.5)), we study the behaviour of the poles of
its Laplace transform q̄(z̃) (Equation (5.6)). Essentially, we analyse the function in the
frequency domain, with z̃ representing the Laplace transformed time variable. The poles of
q̄(z̃) correspond to peaks in frequency. We find that there are in general two major peaks
that we can distinguish on the imaginary axis, a peak at z̃ = 0, i.e. the “zero peak”,
and a peak that travels along the axis, i.e. the “non-zero peak” (see Figure 6.1).2 As in
the presence of the peak, q(t) can be approximated by exp (z̃pt). The peak for a finite
imaginary value is related to oscillations with frequency z̃p, while the zero peak characterises
non-oscillatory/localised behaviour. Therefore, a stronger non-zero peaks indicates that the
(continuous) time translation symmetry is broken and that the system is in a time crystalline
phase. Analysing the behaviour of the peaks as a function of the parameters of our system
allows us to quantify the time crystal regime.

Figure 6.1: An example of the two peaks on the imaginary axis in the frequency domain.
For each value of γ̃ = 0.3, 0.6, 1.3, there exists a central peak at z̃ = 0 and a second peak
at z̃ ̸= 0. This second, non-zero peak, is mirrored on both sides of the central peak and its
position, amplitude, and width are dependent on the value of γ̃. Here, T̃ = 10−4 and s = 0.1
are fixed.

In this section, we will first discuss the results for the zero peak, followed by the results for
the non-zero peak. We analyse the peaks as a function of the three dimensionless parameters:
the damping constant γ̃, the temperature T̃ , and s. For all figures, we have used that ṽ0 = 1,
Ω = 1, and n = 500.

2A third peak can be found just after z̃ = 1, (at z̃ = 1, the inverse Laplace function is always zero), but
this peak is usually very small, unless the position of the non-zero peak coincides with it. Due to its often
negligible size, it proved difficult to study mathematically and because it might be just a numerical instability
we have chosen not to further investigate this peak.
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6.1 Zero peak

In most cases, the zero peak is a very high and narrow, almost delta-like, peak centred at
z̃ = 0. Therefore, it was not possible to accurately determine the width of this peak, but only
its amplitude. The amplitude was calculated at a value of z̃ close to z̃ = 0, as the function
is not clearly defined at z̃ = 0. The amplitude of the zero peak represents the statics of the
system, i.e. it gives us the general qualitative behaviour of its dependence on our chosen
parameters.

The results for the amplitude of the zero peak, Az=0, are shown in Figure 6.2. We find
that the amplitude is inversely proportional to the damping constant γ̃ (see Figure 6.2(a)).
This figure also shows that Az=0 increases as T̃ and s increase. From Figure 6.2(b), we find
that Az=0 is directly proportional to T̃ , although for high values of s and low values of γ̃
(i.e. s = 0.5 and γ̃ = 0.01) the amplitude seems to reach a stationary value. Finally, from
Figure 6.2(c) we find that there is a clear phase transition signalled by a change of Az=0

around s = 1. In the sub-ohmic regime (s < 1), the amplitude is qualitatively similar for all
parameters, except for a slight variation depending on T̃ and s. However, as we switch to
a super-ohmic regime (s > 1), the graphs converge to a maximum value and the behaviour
becomes universal for all parameters.
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Figure 6.2: The amplitude of the zero peak as a function of (a) the damping constant γ̃ for
T̃ = 10−4, 10−3, 10−2 and s = 0, 0.1, 0.5, (b) the temperature T̃ for γ̃ = 0.01, 0.1, 0.3, 1.0 and
s = 0, 0.5, and (c) s for γ̃ = 0.01, 0.3, 5.0 and T̃ = 10−4, 10−3. The amplitude of the zero
peak is inversely proportional to γ̃ and proportional to T̃ . There is a phase transition for
s = 1.
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6.2 Non-zero peak

The study of the non-zero peak includes more aspects than that of the zero peak. We look
not only at the amplitude of this peak, but also at its width and its position. To do so, we
fit the data to a Lorentzian of the form

fL = Anzp/[(z − znzp)2 + σ2
nzp], (6.1)

where Anzp is the amplitude, σnzp the width, and znzp the position of the non-zero peak. In
addition, the ratio of the amplitude to the width is also calculated.

Each of these aspects gives us information about the behaviour of the system and the time
crystalline phase. Firstly, the position of the non-zero peak corresponds to the period of the
oscillations that we see in the solutions for q(t). If there is no secondary peak, then there
are no oscillations. The amplitude then gives us an idea of the intensity of this effect, while
the width corresponds to the losses of the system. A small, broad peak signifies a less stable
regime than a high, narrow one. Combining them, the ratio of the amplitude and width
represents the robustness of this phase.

Although this method does provide us with a general idea of the behaviour of the non-zero
peak, it does not allow for a direct comparison with the zero peak due to the different cal-
culation methods. Therefore, we have also calculated the absolute amplitude at the position
of the non-zero peak and calculated the ratio of this to the amplitude of the zero peak. This
should also give us an indication of the robustness of the time crystalline regime. If the
non-zero peak is much smaller than the zero peak, the system may not be robust enough to
realise.

We start by discussing the results for the influence of the damping constant γ̃ on the behaviour
of the non-zero peak.

Dependence on γ̃

Figure 6.3 shows the position of the non-zero peak as a function of the damping constant,
γ̃. We examine it at three values of s = 0, 0.1 and 0.5. We should note, however, that for
s = 0.5, the fit used to identify the non-zero peak did not give consistent results for high
temperatures, i.e. T̃ = 10−3 − 10−2. In these cases, the non-zero peak would sometimes be
confused with the zero peak due to their close proximity. Therefore, the results for these
values should be taken with a grain of salt. We nevertheless wish to include them here to
provide a perspective of the behaviour at the boundaries of our time crystalline regime.

We find that in general, the position behaves according to a power law: znzp ∝ γ̃α. However,
we see that in some cases there is a ‘kink’ in the curve at a critical value γ̃c. This ‘kink’
becomes more pronounced as T̃ or s is increased, as can be seen in Figure 6.3(b). For s = 0.5,
it is even visible at T̃ = 10−4 (see Figure 6.4(d)). Furthermore, we find that its position is
dependent on the value of s. Whereas it lies around γ̃c = 0.2 for s = 0, it moves to γ̃c = 0.3
for s = 0.1, and γ̃c = 1 for s = 0.5.

In Figure 6.4, we analyse the values of the power law exponent before and after this transition.
We find that for γ̃ > γ̃c the exponent is equal to α ≈ 0.5, regardless of the value of s or T ,
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consistent with the results found in Chapter 5. When no ‘kink’ is visible, the curve seems to
follow this power law exponent for all values of γ̃. However, if there is a ‘kink’, we find that
for γ̃ < γ̃c the value of α is larger than 0.5. The change in slope depends on both T̃ and s.
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Figure 6.3: The position of the non-zero peak as a function of the damping constant γ̃, for (a)
s = 0, (b) s = 0.1 and (c) s = 0.5. The temperature is varied over a range of T̃ = 10−4−10−2.
For s = 0.5, the results for the non-zero peak are less reliable at T̃ = 10−3 and 10−2.
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Figure 6.4: The position of the non-zero peak as a function of the damping constant γ̃ for
(a) s = 0 and T̃ = 10−2, (b) s = 0.1 and T̃ = 10−2, (c) s = 0.1 and T̃ = 10−4, and (d) s = 0.5
and T̃ = 10−4. Each line is fitted around the break with two fits. Where the fit for values
of γ̃ > γ̃c is given by ∝ γ̃0.5 (black line), the fit for γ̃ < γ̃c is of varying proportionality (red
line).
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Figure 6.5: The amplitude of the non-zero peak as a function of the damping constant γ̃.
In (a) all graphs are shown together for better understanding of the overall behaviour. The
results are also shown separately for (b) s = 0, (c) s = 0.1, and (d) s = 0.5. For each s,
the temperature is varied over T̃ = 10−4, 10−3, 10−2. The results show that there exists a
critical value of γ̃, around which the amplitude has a discontinuity. This γ̃c depends strongly
on s and slightly on T̃ . For s = 0, 0.1, 0.5, we find that γ̃c = 0.2, γ̃c = 0.3, and γ̃c = 1.0,
respectively.

The amplitude of the non-zero peak will determine whether the oscillations are more impor-
tant in the behaviour of the particle than the localisation, which is associated to the zero
peak amplitude. Therefore, it acts as a natural order parameter for the time crystalline phase
in analogy to the spectral function in charge-density waves [22]. The results for the ampli-
tude of the non-zero peak are shown in Figure 6.5. We find that in general, after the phase
transition, the amplitude as a function of γ̃ is decreasing as γ̃ increases (see Figure 6.5(a)).
However, analysing the results separately for each value of s, we can see more clearly that
the behaviour can be divided into two regimes. This transition occurs at the same values of
γ̃ as before, i.e. γ̃c = 0.2, γ̃c = 0.3, and γ̃c = 1.0 for s = 0, 0.1 and, 0.5, respectively. The
height of the amplitude before this transition is determined by the temperature. For high T̃ ,
we can see that the amplitude is increasing with γ̃, whereas for low T̃ , it decreases. At the
critical point, Anzp shows a sudden decrease. After this abrupt drop, the amplitude increases
slightly and all curves converge on a decreasing line. Notice that the stability of the curve
also changes. Before the drop, Anzp changes smoothly with γ̃, while after it oscillates. This
could be indicative of a change from a ballistic to a diffusive regime.
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Figure 6.6: The width of the non-zero peak as a function of the damping constant γ̃. In (a) all
graphs are shown together for better understanding of the overall behaviour. The results are
also shown separately for (b) s = 0, (c) s = 0.1, and (d) s = 0.5. For each s, the temperature
is varied over T̃ = 10−4, 10−3, 10−2. The plots indicate a similar discontinuity as for the
amplitude of the non-zero peak. Similarly, the critical value is found for s = 0, 0.1, 0.5, at
γ̃c = 0.2, γ̃c = 0.3, and γ̃c = 1.0, respectively. Before the critical point, the width behaves
according to a power law, which depends strongly on s and weakly on T̃ .

The width of the non-zero peak, σnzp supports our previous findings, as a similar shift in be-
haviour is visible around γ̃c (see Figure 6.6). Before the phase transition, the width increases
according to a power law ∝ γ̃β, where β depends strongly on the value of s. We also find that
for low temperatures, T̃ = 10−4, the width does not follow this power law, but instead has a
less pronounced increase. At the phase transition, the width of the non-zero peak becomes
narrower, after which it slowly stabilises for all curves.
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Figure 6.7: The ratio of the amplitude and width of the non-zero peak as a function of γ̃.
In (a) all graphs are shown together for better understanding of the overall behaviour. The
results are also shown separately for (b) s = 0, (c) s = 0.1, and (d) s = 0.5. For each s, the
temperature is varied over T̃ = 10−4, 10−3, 10−2. Although a similar discontinuity is visible
around the critical value of γ̃c = 0.2, γ̃c = 0.3, and γ̃c = 1.0, for s = 0, 0.1, 0.5 respectively,
the overall behaviour of the ratio goes according to a power law that depends strongly on s
and weakly on T̃ .

Due to the nature of the Lorentzian fit used in the calculations, we also look at the ratio
between Anzp and σnzp (see Figure 6.7). This quantity is basically the figure of merit that
quantifies the ratio between oscillations and damping in oscillatory systems. Generally speak-
ing, this ratio is high for sharp peaks, and low for broad peaks. The ratio of the amplitude to
the width of the non-zero peaks is shown in Figure 6.7. The ratio follows a power law ∝ γ̃δ,
with δ = 0.49, 0.48, and, 0.65 for s = 0, 0.1, and 0.5, respectively. We notice that before the
critical point the curves are separated by temperature, whereas after the critical point they
oscillate, although they still follow a similar trajectory. This can be explained again by the
fact that γ̃ < γ̃c is the ballistic regime, and γ̃ > γ̃c is the diffusive regime.
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Figure 6.8: The ratio of the amplitude of the non-zero peak to the amplitude of the zero
peak as a function of γ̃ for (a) s = 0 and s = 0.1 and for (b) s = 0.5.

The ratio of the absolute amplitudes of the non-zero peak to the zero peak is shown in
Figure 6.8. The ratio seems to be constant, except for small dips that occur at the same
critical values. For example, looking at the curves obtained for T̃ = 10−2, we see a dip at
γ̃c = 0.2, 0.3 and 1.0 for s = 0, 0.1 and 0.5, respectively. In general, the amplitude of the
zero peak is larger than that of the non-zero peak, regardless of the value of γ̃.
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Dependence on T̃

Let us now look more closely at the temperature dependence of the behaviour of the peaks.
We will start by examining the position of the non-zero peak, z̃nzp, as a function of temper-
ature (see Figure 6.10).

We find that generally z̃nzp is larger for smaller values of s and for larger values of γ̃. It slowly
decreases with temperature, until a certain critical temperature, T̃c, is reached, after which
z̃nzp goes to zero. Due to the nature of our calculations, once the non-zero peak has become
so small, or has vanished completely, the Lorentzian fit used to calculate its characteristics
instead picks up the characteristics of the zero peak.

T̃c depends on both s and γ̃. For s = 0, this point lies around T̃c = 0.05, and a larger value of
γ̃ increases the critical temperature slightly. However, for s = 0.5 it occurs at a much lower
temperature in the region T̃ = 10−3 − 10−2, and a larger value of γ̃ decreases the critical
temperature.

It is important to remember in the discussion of the amplitude, width, and their ratio, that
the behaviour of the curves after this critical point is most likely only due to the presence of
the zero peak, as the non-zero peak is no longer visible after this point.
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Figure 6.10: The position of the non-zero peak as a function of T̃ , shown in a log-linear scale
for s = 0 and s = 0.5, and γ̃ = 0.01, 0.1, and 0.3. The position of the non-zero peak depends
strongly on both γ̃ and s. For s = 0, the non-zero peak vanishes at temperatures above
T̃ > 10−1, whereas for s = 0.5 it vanishes at temperatures above T̃ = 10−2.
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Figure 6.11: The amplitude of the non-zero peak as a function of T̃ for (a) s = 0, and (b)
s = 0.5. γ̃ = 0.01, 0.1, and 0.3. It should be noted that the results show only the behaviour
of the non-zero peak for temperatures below T̃ = 10−1 and T̃ = 10−2 for s = 0 and s = 0.5,
respectively.

Figure 6.11 shows the amplitude of the non-zero peak, Anzp as a function of T̃ as determined
by the Lorentzian fit. For s = 0 (see Figure 6.11(a)), we find that the amplitude increases for
low values of γ̃ with T̃ , up until T̃c. However, for γ̃ = 0.3 the amplitude shows a very different
type of behaviour, it decreases with temperature. From our analysis of the γ̃-dependence of
the non-zero peak, we may remember that there is a phase transition at γ̃c = 0.2 and for s = 0.
Here, we see that for values γ̃ < γ̃c, the amplitude increases with T̃ , but for values γ̃ > γ̃c,
it decreases. As the critical temperature is reached, the amplitude reaches a maximum, and
starts to decrease. After this point, there is an inflection point at T̃ ≈ 2 ·10−1 as the non-zero
peak is no longer present.

Figure 6.11(b) shows the amplitudes for s = 0.5. The behaviour is the same as for low values
of s, but now the critical value γ̃c is equal to 1, and thus the curve at γ̃ = 0.3 is also in
line with the others. However, the inflection point (at which the non-zero peak disappears)
occurs earlier, around T̃ = 3 · 10−2.
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Figure 6.12: The width of the non-zero peak as a function of T̃ for (a) s = 0, and (b)
s = 0.5. It should be noted that the results show only the behaviour of the non-zero peak
for temperatures below T̃ = 10−1 and T̃ = 10−2 for s = 0 and s = 0.5, respectively.

The width of the non-zero peak shows a similar temperature dependence as the amplitude
(see Figure 6.12). For s = 0 and γ̃ < γ̃c = 0.2, the width of the non-zero peak slowly
increases until the critical temperature is reached. For values above the critical damping
constant γ̃ > γ̃c, the width of the peak fluctuates around a much smaller value. After the
critical temperature is reached all curves converge on a decreasing path of equal slope. For
s = 0.5, the values of γ̃ used in the plots are smaller than the critical damping constant
and the width of the non-zero peak only shows a slight increase with temperature until the
critical temperature is reached.
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Figure 6.13: The ratio of the amplitude and the width of the non-zero peak as a function of
T̃ for (a) s = 0, and (b) s = 0.5. It should be noted that the results show only the behaviour
of the non-zero peak for temperatures below T̃ = 10−1 and T̃ = 10−2 for s = 0 and s = 0.5,
respectively. Before this point, the ratio shows a slight, but stable increase.

Figure 6.13 shows the ratio of the amplitude to the width of the non-zero peak as a function
of temperature. For both s = 0 and s = 0.5, the curves show a gradual positive slope, which
becomes steeper after the critical temperature. As we have noted before, the amplitude and
width of the curve at γ̃ > γ̃c fluctuate much more, resulting in a rather odd curve for the
ratio of s = 0 and γ̃ = 0.3. However, it generally follows the same curve as the other two
values for s = 0 (see Figure 6.13(a)).
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Figure 6.14: The ratio of the amplitude of the non-zero peak to the amplitude of the zero
peak as a function of T̃ .

The ratio of the absolute amplitudes of the non-zero to the zero peak (see Figure 6.14)
also reveals a critical temperature. Before the phase transition, the ratio of the amplitudes
decreases (i.e. the zero peak becomes larger than the non-zero peak as the temperature
increases) until it hits the critical temperature. We know that the non-zero peak after this
point does not exist, and the fit picks up the behaviour of the zero peak. This is reflected
by the fact that the ratio of the two amplitudes calculated goes to 1. These features explain
why the oscillations that we observed in the previous chapter exist for small temperatures
and the effect of temperature is to destroy them. This is analogous to the “melting” of the
time crystalline phase reported in Ref. [23].
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Dependence on s
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Figure 6.15: The position of the non-zero peak as a function of s, shown in both a (a) linear
scale and a (b) logarithmic scale, for T̃ = 10−4, 10−3 and 10−2, and γ̃ = 0.01, 0.3, and 5.0.
The position of the non-zero peak depends strongly on γ̃ and slightly on T̃ . (a) and (b) show
that the non-zero peak vanishes at s = 1 for all chosen values of γ̃ and T̃ , after which only
the behaviour of the zero peak is picked up.

Finally, we look at the s-dependence of the behaviour of the non-zero peak. As before,
we start by examining its position as a function of s (see Figure 6.15). We see that the
position of the non-zero peak is higher for larger values of the damping constant γ̃, as also
previously established. Increasing the temperature by a factor of 10 only has a small effect
on the position of the peak, in comparison to the lower temperature. We also note that there
appears to be a phase transition around sc = 1. At this point, the position goes to zero, i.e.
the Lorentzian fit used in the calculation identifies only the zero peak. In the log-log plot (see
Figure 6.15(b)), it can be clearly seen that this phase transition occurs for all parameters at
roughly the same point, where there is a steep drop-off from the original curve.
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Figure 6.16: The amplitude of the non-zero peak as a function of s, for T̃ = 10−4, and 10−3,
and γ̃ = 0.01, 0.3, and 5.0. The amplitude for γ̃ = 0.3 is much smaller than for γ̃ = 0.01 and
γ̃ = 5.0. After s = 1, the results show the behaviour of the zero peak as the non-zero peak
has vanished.

The amplitude of the non-zero peak (see Figure 6.16) increases slightly with s, until the
phase transition occurs at s = 1. After this point, the non-zero peak is no longer visible
as we concluded from Figure 6.15. The results at s > 1 are, in fact, showing the behaviour
of the zero peak, which indeed reaches a constant amplitude, similar to what we saw in
Figure 6.2(c). The difference in absolute value of the amplitudes in both figures can be
explained by the different calculation methods used for the zero and the non-zero peak.
Interesting to note is that before the critical sc = 1, the amplitude of the non-zero peak is
lower for the curves at γ̃ = 0.3 (red and green) than for γ̃ = 5.0 (purple and brown) for the
values s < 0.2. Remembering that there is a critical damping constant γ̃c that shifts from
γ̃c = 0.2 to γ̃c = 1 as s increases, we can conclude that the curves at γ̃ = 0.3 fall precisely
at this phase transition. We saw in Figure 6.5 that at this transition the amplitude of the
non-zero peak has a sharp decrease. As s > 0.2, the critical damping constant increases, such
that the red and green curves now have γ̃ > γ̃c. As we saw in Chapter 4, the parameter s
controls the dependence of the spectral function in frequency and marks the different regimes
of diffusion. For s < 1, there is a sub-ohmic regime, s = 1 is ohmic, and s > 1 is super-ohmic.
Therefore, the universality of the phase transition in s seems to indicate that this change of
regime drastically affects the time crystalline behaviour.



6 INVESTIGATING THE POLES 61

T
˜
=10-3, γ̃=0.01

T
˜
=10-4, γ̃=0.01

T
˜
=10-3, γ̃=0.3

T
˜
=10-4, γ̃=0.3

T
˜
=10-3, γ̃=5.0

T
˜
=10-4, γ̃=5.0

0.001 0.010 0.100 1 10 100
10-5

10-4

0.001

0.010

0.100

1

10

s

σ
nz
p

Figure 6.17: The width of the non-zero peak as a function of s, for T̃ = 10−4, and 10−3,
and γ̃ = 0.01, 0.3, and 5.0. The width for γ̃ = 0.3 is much smaller than for γ̃ = 0.01 and
γ̃ = 5.0. After s = 1, the results show the behaviour of the zero peak, as the non-zero peak
has vanished.

The results for the width of the non-zero peak as a function of s are shown in Figure 6.17.
The width is fairly constant until the phase transition, after which it shows a gradual decrease
to a lower constant. Although the curves for different damping constants were separated by
damping constant before the transition, they come together after it. In addition, the curves
at γ̃ = 0.3 (red and green) are again affected by the critical region of the damping constant,
as they are lower than the curves at γ̃ = 5.0 (brown and purple).
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Figure 6.18: The ratio of the amplitude and the width of the non-zero peak as a function of
s, for T̃ = 10−4 and 10−3, and γ̃ = 0.01, 0.3, and 5.0. The ratio quantitatively depends on γ̃,
but the qualitative behaviour is generic. After s = 1, the results show the behaviour of the
zero peak, as the non-zero peak has vanished.

Using these results, we can compute the ratio of the amplitude and width (see Figure 6.18).
We see that this ratio is constant before the phase transition, and increases afterwards to
a higher constant value. The curves are clustered by the value of damping constant before
sc = 1, but converge to a universal curve once this critical point is reached.
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Figure 6.19: The ratio of the amplitudes of the non-zero peak and the zero peak as a function
of s.

The ratio of the absolute amplitudes of the non-zero to the zero peak is shown in Figure 6.19.
In the sub-ohmic regime (s < 1), the curves are clustered by the value of T̃ regardless of γ̃.
The erratic behaviour at s = 1 signals the phase transition. At this point, the non-zero peak
disappears and the Lorentzian fit has trouble identifying the correct amplitude. As we go
further into the super-ohmic regime (s > 1), the ratios converge to the same curve, which
behaves exactly as the zero peak.
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7 Conclusion

In this thesis, we have looked at a particle-bath system from a time crystalline perspective.
In analogy to the Caldeira-Leggett model, explained in Section 4, we have taken a particle
and coupled it to a thermal reservoir. However, instead of harmonic oscillators, we used a
bath consisting of two-level systems, which only have two energy levels available. As a result
of this change, we have seen that the spectral function, which controls the influence of the
reservoir in the system, now depends on temperature, such that the dynamical behaviour of
the system is more sensitive to it.

We have calculated the equations of motion for the particle and solved them numerically to
determine its behaviour. As expected from the literature [1], the particle exhibits oscilla-
tory motion in the sub-ohmic regime. Ref. [1] showed that this system exhibits persistent
oscillatory motion in the sub-ohmic regime that resembles time crystalline behaviour. The
main goal of this thesis has been to determine which parameters govern the limits of this
time crystalline regime. We have analysed the position of the particle center of mass, q(t),
in both the time and the frequency domain, focusing our attention on three parameters: the
damping constant γ, the temperature T , and s, a real number determining the long time
properties of the bath.

A qualitative analysis of the dynamical equation for the particle indicates that both temper-
ature and s play a large role in determining the time crystal regime. At low temperatures
(T̃ = 10−4), oscillations occur at all values of s ≤ 1, although they are more damped for
higher values of s. When T is increased by a factor 10, the oscillations become increasingly
damped for all values of s ≤ 1 except for s = 0, which appears more robust to temperature
changes. However, if T is increased further, all oscillations eventually disappear and the
particle position becomes constant, reminiscent of a glass phase. Moreover, by increasing s
or T , the amplitude and period of the oscillations also increases.

We also investigated the behaviour of the poles of the Laplace transform q̄(z) in the frequency
domain as a function of γ, T , and s. We found that the time crystalline regime is characterised
by the appearance of a second “non-zero” peak in the frequency domain. The position of
this peak on the imaginary axis corresponds directly to the period of the oscillations of the
particle, i.e. the characteristic frequency. Its amplitude and width, on the other hand, inform
us about the robustness of the oscillations.

We found that while s and T mainly determine whether the system forms a time crystal, the
value of γ determines more strongly its characteristic frequency.

The parameter that poses the biggest restriction on the boundaries of the time crystal regime
is s. For 0 ≤ s ≤ 1, a time crystal can be formed, although it seems to be more robust at
low temperatures and small values of γ. At s = 1, a phase transition occurs after which the
non-zero peak, and thus the time crystal, disappears. T also plays a role in determining the
boundaries of the time crystal regime. When s is small, e.g. s = 0, the critical temperature
below which the system forms a time crystal is T̃c = 10−1. However, as s is increased, Tc
decreases. For example, for s = 0.5 the critical temperature can be as low as 10−3. While γ
does not significantly influence the limits of the time crystal phase, it does play a large role
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in the characteristic frequency of the oscillations of the particle. This frequency increases
according to a power law γα. However, there seems to be a critical value γc, which depends
on s and T , which indicates a transition between two phases with slightly different behaviour.

In conclusion, a time crystal can only form in the sub-ohmic regime. Moreover, the further
we increase s, the more we have to lower the temperature to preserve the time crystal phase.
Finally, the characteristic frequency of the oscillations is largely determined by γ.

Outlook

There are several options to continue this research. It may be interesting, for example,
to further investigate the robustness of the time crystal regime. One could switch on an
oscillating electric field and analyse how the system behaves accordingly. It is also possible
to test the systems robustness to a change of initial conditions, out of the criteria to establish
a time crystal phase.

Another possibility is to look at the equation of motion of the relative coordinate ξ(t) to get
a more complete picture of the behaviour of the system coupled to the bath.

Typical values of the constants can be estimated to see whether this model can be realised in
a realistic experimental setup and the time crystalline phase observed. Further, the effects
and interplay of an interacting reservoir can be interesting to investigate. A final extension
would be to use an effective Hamiltonian language, dealing with non-Hermitian Hamiltonians
[24], and see whether these results can be obtained in this language and how it connects with
the imaginary time crystals observed in such systems [25].
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A SQUIDs and Josephson Junctions

In superconductors, electrons can condense into a ‘macroscopic quantum state’, which can
be described with a single wave function ψ, depending on the density of quasi-particles in
the macroscopic state ns and a common phase φ

ψ =
√
nse

iφ. (A.1)

The electric current density J for particles in a vector potential A can be calculated using

J =
e∗ℏ
2im∗ [ψ

∗∇ψ − ψ∇ψ∗]− e∗2A

m∗c
ψ∗ψ

Eq. (A.1)
=

nse
∗

m∗

(
ℏ∇φ− e∗

c
A

)
, (A.2)

where e∗ is the electric charge and m∗ is the mass of the condensate. Another formula for
the current density is J = nse

∗v, which in combination with Eq. (A.2) gives us ℏ∇φ =
m∗v + e∗/cA. We can integrate this expression over the endpoints 1 and 2 of the system to
find ∫ 2

1

(
m∗v +

e∗

c
A

)
· dr =

∫ 2

1

ℏ∇φ · dr = ℏ(φ2 − φ1). (A.3)

By setting ψ1 = ψ2, we effectively create a superconducting ring. The phase difference
between the wave functions of the endpoints must therefore become an integer multiple of
2π. We can rewrite Eq. (A.3) to find an expression for the total magnetic flux through a
superconducting ring∮ (

m∗v +
e∗

c
A

)
· dr = e∗

c

∮
(ΛJ+A) · dr = 2πℏn, (A.4)

with Λ = m∗c/e∗2ns and n an integer. For e∗ = 2e, we find∮
(ΛJ+A) · dr = 2πℏc

2e
n ≡ nϕ0, (A.5)

where ϕ0 = hc/2e. For a simply connected ring J and A are continuous, which means that
the integral on the left hand side of Eq. (A.5) will be zero. However, this is not the case for
thick rings. When we choose an integration path in the centre of the ring, where the current
J is zero, we find that the magnetic flux through the ring is quantized in units of ϕ0 = hc/2e.
So the total magnetic flux through a ring is given by

ϕ = nϕ0, (A.6)

where n is an integer number.

Instead of using a normal superconducting ring, one can also create a SQUID (Supercon-
duction QUantum Interference Device) ring, which is closed by a Josephson junction. This
junction consists of two superconductors separated by a non-superconducting material of
thickness d. When d is small enough for the superconducting wave functions to overlap, the
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Schrödinger equations become coupled. This is the defining feature of the Josephson junc-
tion. Due to this coupling, the current through the junction becomes dependent on the phase
difference between the superconductors. As a result, a constant current, up to a critical value
j0, can develop without generating a voltage. In other words, electrons can tunnel through
the junction without any resistance. This is called the Josephson effect.

The quantisation of the magnetic flux through a SQUID ring is also dependent on this phase
difference φ̄. To show this, we calculate the current density of the ring as before, but we
change the boundaries of our integral to explicitly include the Josephson junction. We start
by rewriting the integral over the current density from Eq. (A.2), using c = e∗ϕ0/2πℏ∫ 2

1

J · dr =
∫ 2

1

nse
∗

m∗

(
ℏ∇φ− e∗

c
A

)
· dr

=
nse

∗ℏ
m∗

∫ 2

1

∇φ · dr− nse
∗ℏ

m∗
2π

ϕ0

∫ 2

1

A · dr. (A.7)

The left hand side of this equation is zero for a path that lies deep within the ring. The
integral in the second term on the right hand side is the total magnetic flux, ϕ, through
the ring, when we integrate over a closed loop (2 = 1). This approximation is valid for a
continuous vector potential A. For the first term on the right hand side we can rewrite the
integral over the path through the ring to an integral over a closed ring minus the integral
over the junction. This gives∫ 2

1

∇φ · dr =
∮
∇φ · dr−

∫ 1

2

∇φ · dr

= 2πn− (φ1 − φ2)

= 2πn− φ̄, (A.8)

where we define the phase difference φ̄ ≡ φ1 − φ2.

Combining these results, we can now write down the quantization for SQUID rings

ϕ+
ϕ0

2π
φ̄ = nϕ0. (A.9)
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B Solving the Forced Harmonic Oscillator Path Inte-

gral

We have a harmonic oscillator driven by a time-dependent force f(t). The action describing
this system is given by

S[x(t)] =

∫
L(x(t), ẋ(t)) dt =

∫
m

2
ẋ2(t)− mω2

2
x(t)2 + f(t)x(t) dt. (B.1)

Varying the action with respect to x(t) gives us the equation of motion

mẍ+mω2x = f(t). (B.2)

We want to find an expression for the action in terms of the beginning and end points of the
system. We will start with an integration by parts of Eq. (B.1)

S =
m

2
xẋ|tbta −

∫ tb

ta

x

2
[ mẍ+mω2x︸ ︷︷ ︸
=f(t), using Eq. (B.2)

−2f(t)] dt

=
m

2

(
xẋ|tbta +

∫ tb

ta

f(t)

m
x dt

)
. (B.3)

For the harmonic oscillator, we assume that x(t) is of the form

x(t) = A(t)eiωt +B(t)e−iωt. (B.4)

Calculating the derivatives ẋ(t) and ẍ(t), and using the equation of motion, we can write
down expressions for A(t) and B(t).

A(t) =
Aa + Ab

2
+

1

2

∫ t

ta

f(s)

2imω
e−iωs ds− 1

2

∫ tb

t

f(s)

2imω
e−iωs ds (B.5)

B(t) =
Ba +Bb

2
− 1

2

∫ t

ta

f(s)

2imω
e−iωs ds+

1

2

∫ tb

t

f(s)

2imω
e−iωs ds, (B.6)

where Aa = A(ta) and Ab = A(tb) (and similarly for Ba and Bb) are expressed at the
boundaries. From now on, we will also drop the explicit time dependency for clarity, i.e.
A(t) = A and B(t) = B. Using these expressions, we can rewrite the terms in Eq. (B.3)

xẋ|tbta = iω
(
A2

be
2iωtb −B2

b e
−2iωtb − A2

ae
2iωta +B2

ae
2iωta

)
(B.7)∫ tb

ta

f(t)

m
x dt =

∫ tb

ta

f(t)

2m

(
Aae

iωt + Abe
iωt +Bae

−iωt +Bbe
−iωt
)
dt

+

∫ tb

ta

∫ t

ta

f(t)f(s)

2m2ω
sinω(t− s) ds dt−

∫ tb

ta

∫ tb

t

f(t)f(s)

2m2ω
sinω(t− s) ds dt.

(B.8)
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Multiplying both terms by 1 = sinω(tb−ta)
sinωT

, the action becomes

S[x] =
mω

2 sinωT
×
{
1

2

[
A2

b

(
eiω(3tb−ta) − eiω(tb+ta)

)
+ A2

a

(
e−iω(tb−3ta) − eiω(tb+ta)

)
+B2

b

(
e−iω(3tb−ta) − e−iω(tb+ta)

)
+B2

a

(
eiω(tb−3ta) − e−iω(tb+ta)

)]
(B.9)

+

∫ tb

ta

f(t)

4imω

[
(Aa + Ab)

(
eiω(tb−ta+t) − e−iω(tb−ta−t)

)
+(Ba +Bb)

(
eiω(tb−ta−t) − e−iω(tb−ta+t)

)]
dt (B.10)

+

∫ tb

ta

∫ t

ta

f(t)f(s)

2m2ω2
sinω(t− s) sinω(tb − ta) ds dt

−
∫ tb

ta

∫ tb

t

f(t)f(s)

2m2ω2
sinω(t− s) sinω(tb − ta) ds dt

}
. (B.11)

This expression looks very complex, but it can be rewritten into a simpler form using some
useful trigonomic identities. We start by rewriting Eq. (B.10), using(

eiω(tb−ta+t) − e−iω(tb−ta−t)
)
= 2i

(
eiωta sinω(tb − t) + eiωtb sinω(t− ta)

)
,(

eiω(tb−ta−t) − e−iω(tb−ta+t)
)
= 2i

(
e−iωta sinω(tb − t) + e−iωtb sinω(t− ta)

)
.

Furthermore, we can use the expressions for xa = x(ta) and xb = x(tb) calculated from Eq.
(B.4) in combination with Eq. (B.5) and Eq. (B.6) to find

Abe
iωta +Bbe

−iωta = xa −
∫ tb

ta

f(t)

mω
sinω(t− ta) dt

Aae
iωtb +Bae

−iωtb = xb −
∫ tb

ta

f(t)

mω
sinω(tb − t) dt.

Substituting these expressions back into Eq. (B.10) gives

Eq.(B.10) =

∫ tb

ta

f(t)

2mω
[2xa sinω(tb − t) + 2xb sinω(t− ta)] dt

−
∫ tb

ta

∫ tb

ta

f(t)f(s)

2m2ω2
[sinω(tb − t) sinω(s− ta) + sinω(tb − s) sinω(t− ta)] dt.

(B.12)

In order to rewrite Eq. (B.11), we will need the following trigonomic identity

sin(a− b) sin(c− d) = sin(a− c) sin(b− d)− sin(a− d) sin(b− c). (B.13)

Using this relation, we get

Eq.(B.11) =

∫ tb

ta

∫ t

ta

f(t)f(s)

2m2ω2
[sinω(t− ta) sinω(tb − s)− sinω(tb − t) sinω(s− ta)] ds dt

−
∫ tb

ta

∫ tb

t

f(t)f(s)

2m2ω2
[sinω(t− ta) sinω(tb − s)− sinω(tb − t) sinω(s− ta)] ds dt.

(B.14)
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All the double integrals in Eq. (B.12) and Eq. (B.14) can be combined using simple substi-
tution methods until we arrive at the following expression

− 2

∫ tb

ta

∫ tb

t

f(t)f(s)

m2ω2
sinω(tb − t) sinω(s− ta) ds dt. (B.15)

All that remains is to rewrite Eq. (B.9). It can be checked that it is equal to

Eq.(B.9) = (x2b +x
2
a) cosωT −2xbxa+

∫ tb

ta

f(t)

mω
[xa sinω(tb − t) + xb sinω(t− ta)] dt. (B.16)

Therefore, we can write down the final expression for the action of a forced harmonic oscillator

S[x] =
mω

2 sinωT
×

{
(x2b + x2a) cosωT − 2xbxa

+ 2

∫ tb

ta

f(t)

mω
[xa sinω(tb − t) + xb sinω(t− ta)] dt

− 2

∫ tb

ta

∫ tb

t

f(t)f(s)

m2ω2
sinω(tb − t) sinω(s− ta) ds dt

}
. (B.17)

The propagator, or kernel, of the forced harmonic oscillator is given by the path integral

K = N
∫ xb

xa

Dx(t) exp
{
i

ℏ
S[xcl(t)]

}
, (B.18)

where xa = x(ta) and xb = x(tb), and N a normalisation constant. To calculate the kernel for
the quantum mechanical forced harmonic oscillator, we can perform a perturbative expansion
around the classical path, xcl(t). We take

x(t) = xcl(t) + ξ(t), with ξ(ta) = ξ(tb) = 0. (B.19)

The kernel then becomes

K = N exp

{
i

ℏ
S[xcl(t)]

}∫ ξb=0

ξa=0

Dξ(t) exp
{
i

ℏ
S[ξ(t)]

}
, (B.20)

with S[ξ(t)] = m/2
∫
[ξ̇2 − ω2ξ2] dt = m/2

∫
ξ[−∂2t − ω2ξ] dt, the action of an unforced har-

monic oscillator.

We would like to calculate the path integral over the quantum fluctuations, so therefore we
must calculate the action for the harmonic oscillator. We assume the usual wave function for
the harmonic oscillator, and make a Fourier expansion.

ξ(t) =
∞∑
k=1

akϕk(t) (B.21)

ϕk(t) =

√
2

(tb − ta
sin

(
kπ(t− ta)
tb − ta

)
, (B.22)
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where ϕ(ta) = ϕ(tb) = 0. This assumption allows us to write down the eigenstates, λk, for
the harmonic oscillator

L(t)ϕk(t) = λkϕk(t), with λk =

(
kπ

tb − ta

)2

− ω2. (B.23)

Substituting Eq. (B.21) into the action, we find that S[ξ] = m/2
∑

k λka
2
k, which reduces the

path integral Eq. (B.20) to a product of Gaussian integrals, which can easily be evaluated

K = N exp

{
i

ℏ
S[xcl(t)]

}∫ ξb=0

ξa=0

D[ak, ϕk] exp

{
im

2ℏ
∑
k

λka
2
k

}

= N ∗ exp

{
i

ℏ
S[xcl(t)]

}(
Πk

m

2πiℏ
λk

)−1

=
N ∗
√
M

√
ω(tb − ta)

sinω(tb − ta)
exp

{
i

ℏ
S[xcl(t)]

}
, (B.24)

where N ∗ has absorbed the normalisation constant from the path integral and where we have

made use of the Fourier series for sine functions, Πk

(
1−

(
x
kπ

)2)
= sinx

x
, in the last line. All

that is left for us to do is to find the prefactor N ∗/
√
M, which can be found by calculating

the propagator for the free particle. Using the Hamiltonian for a free particle, H = p2/2m,
we find the following propagator

Kf = ⟨xb|e
i
ℏH(tb−ta)|xa⟩

=

√
m

2πiℏ(tb − ta)
exp

{
i

ℏ
m(xb − xa)2

2(tb − ta)

}
. (B.25)

From this, we infer that N ∗/
√
M =

√
m

2πiℏ(tb−ta)
, which gives us our final expression for the

propagator of the forced harmonic oscillator

K =

√
mω

2πiℏ sinω(tb − ta)
exp

{
i

ℏ
S[xcl(t)]

}
. (B.26)
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C Density Operator

We will also need to calculate the expression for the density operator of the environment,
ρ(x, x′). For thermodynamic systems, the density matrix can be calculated using the partition
function, Z. It is given by

ρ(x, x′) =
1

Z
⟨x| exp(−βH)|x′⟩, with Z =

∫
dx⟨x|exp(−βH)|x⟩. (C.1)

Because the heat bath in the Caldeira-Leggett model consists of harmonic oscillators, we use
the following Hamiltonian

H =
p2

2m
+
mω2

2
x2. (C.2)

Using the Wick rotation β = 1/kBT = τ/ℏ, we can now recognize Eq. (C.1) as the Euclidean
propagator of the harmonic oscillator, which we can easily write down

⟨x| exp
(
−1

ℏ
Hτ

)
|x′⟩ =

√
mω

2πℏ sinhωτ
exp

{
−1

ℏ
mω

2 sinhωτ

[
(x2 + x′2) coshωτ − 2xx′

]}
.

(C.3)
The partition function reduces to Z = (2 cosh ℏβω−2)−1/2, which leaves us with the following
expression for the density operator

ρ(x, x′) =

√
mω(cosh ℏβω − 1)

πℏ sinh ℏβω
exp

{
− mω

2ℏ sinh ℏβω
[
(x2 + x′2) cosh ℏβω − 2xx′

]}
. (C.4)



REFERENCES I

References

[1] A. V. Ferrer and C. M. Smith, Dynamical localization of a particle coupled to a two-level
system thermal reservoir, Phys. Rev. B 76, 214303 (2007).

[2] F. Wilczek, Quantum time crystals, Phys. Rev. Lett. 109, 160401 (2012).

[3] P. Bruno, Comment on “quantum time crystals”, Phys. Rev. Lett. 110, 118901 (2013).

[4] K. Sacha and J. Zakrzewski, Time crystals: a review, Rep. Prog. Phys. 81, 016401
(2017).

[5] A. Syrwid, J. Zakrzewski, and K. Sacha, Time crystal behavior of excited eigenstates,
Phys. Rev. Lett. 119, 250602 (2017).

[6] K. Sacha, Modeling spontaneous breaking of time-translation symmetry, Phys. Rev. A
91, 033617 (2015).

[7] K. Giergiel, A. Kosior, P. Hannaford, and K. Sacha, Time crystals: Analysis of experi-
mental conditions, Phys. Rev. A 98, 013613 (2018).

[8] K. Giergiel, T. Tran, A. Zaheer, A. Singh, A. Sidorov, K. Sacha, and P. Hannaford,
Creating big time crystals with ultracold atoms, New Journal of Physics 22, 085004
(2020).

[9] D. V. Else, B. Bauer, and C. Nayak, Floquet time crystals, Phys. Rev. Lett. 117, 090402
(2016).

[10] V. Khemani, A. Lazarides, R. Moessner, and S. L. Sondhi, Phase structure of driven
quantum systems, Phys. Rev. Lett. 116, 250401 (2016).

[11] S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F. Jelezko, S. Onoda,
H. Sumiya, V. Khemani, C. V. Keyserlingk, N. Y. Yao, E. Demler, and M. D. Lukin,
Observation of discrete time-crystalline order in a disordered dipolar many-body system,
Nature 543, 221 (2017).

[12] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I. D.
Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao, and C. Monroe, Observation of a
discrete time crystal, Nature 543, 217 (2017).
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