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Abstract

This thesis project concerns the mathematical analysis of surgical data. In total knee arthoplasty (TKA)
surgery a robotic-arm assisted surgery (RAS) system is used to guide the surgeon during the procedure. The
use of smart instruments in an operating theatre is still akin to black box thinking. The bigger picture in
truth is much more intricate than this. A multifaceted and multidisciplined approach is therefore necessary
for a more proactive approach within healthcare. To meet this aim we examine smart tools that can support
surgeons in their decision making process. We also investigate previous attempts at using smart analytics
in surgery for finding learning curves. Together with reviewing mathematical methods that are useful for
the clients task in hand, we apply Bayesian change point detection methods to provide valuable insights for
the development of new surgical technologies and devices. By understanding the challenges that surgeons
face during the learning process, we can better assess the proficiency of surgeons. The work accumulates
with a discussion on which technology is best suited to go hand in hand with data science for postoperative
analysis of surgical procedures. The Masters thesis project is completed as part of an internship with a Dutch
healthcare software as a service (SaaS) provider.
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Introduction

Most surgical fields are traditionally very analog. The use of robotic surgery in arthroplasty has gained
popularity in recent years due to its potential to improve surgical accuracy and precision. While the benefits
of robotic surgery in arthroplasty are clear, there is a learning curve associated with this technology that
surgeons must overcome to achieve the desired results. In this thesis, we will explore the learning curve
associated with using robotic surgery in arthroplasty, and discuss the implications of these developments
for patient care and surgical practice.

In cases of end-stage arthritis, surgery can offer a good solution and in many cases a total knee replacement
(TKR) is performed. There exist three main categories of surgical robots: passive, semi-active and active
robots. In this thesis, we focus on a semi-active Stryker Mako robot in orthopedics. Within the setting of
the TKR surgical theatre, the semi-active robot can be seen as a smart-instrument. To make better use of
the available smart features that come with this technology, all new data must primarily be understood.

The execution and performance of the surgeon are difficult to measure. With the introduction of surgical
robots, digital solutions enter this world. One of the key challenges associated with the learning curve of
robotic surgery in arthroplasty is the need for specialised training. Surgeons must undergo training in the
use of the robotic system to gain proficiency in its use. This training can be time consuming and costly,
requiring the surgeons to take time away from their regular clinical duties. The major skepticism around
the introduction of surgical robots is the high costs associated with it and the lack of proof in the added
value it provides.

Another challenge associated with the learning curve of robotic surgery in arthroplasty is the need to adapt
to the unique features of the robotic system. While traditional arthroplasty procedures rely on the surgeons
tactile feedback to guide the surgery, robotic systems rely on visual feedback and computerised control. This
shift in approach can be challenging for surgeons who are accustomed to traditional surgical techniques and
require time and practice to adapt to the new approach. The knee is also a complex anatomic structure.
This results in a lot of compromises having to be made during surgery. To better understand this it is good
to start with the anatomy and biomechanics of the knee joint, before proceeding to establish a link between
this type of surgery and data science.

Knee replacement surgery

The knee is made up of the femur (thigh bone), tibia (shin bone) and patella (kneecap). The two connecting
tissues in the knee are the articular cartilage, the smooth cartilage covering the end of bones which facilitates
transmission of loads and prevents the bones from rubbing together for easier movement, and the meniscus,
the soft cartilage between the femur and tibia that serves as a cushion and helps absorb shock during motion.
Figure 1 illustrates how the knee joint is formed. Gradual mechanical wear damages and thins out the
cartilage, resulting in osteoarthritis (OA) of the knee. The result is restricted motion in the joint of the
patient. In such aforementioned cases, total knee arthoplasty (TKA) surgery is performed to relieve pain,
restore the alignment and function of the knee.

The Mako robotic-arm assisted surgery (RAS) is a technology developed for knee replacement surgery.
Computed tomography (CT) scans of the damaged knee are taken to construct a 3D virtual model of
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(a) Anterior (front view) knee joint. (b) Posterior (rear view) knee joint.

(c) Medial (internal view) knee joint. (d) Lateral (external view) knee joint.

Figure 1: Anatomy of human right knee joint. Image taken from [1]. Cartilage in the knee provides protective
cushioning between the femur and tibia bones. In the event of worn cartilage, arthroplasty surgery replaces
the damaged area with artificial prosthesis components.

the patients anatomy, enabling the surgeon to create a personalised surgical plan for every patient. The
pre-surgical plan will in turn be used intraoperatively to help guide the surgeon in performing the joint
replacement procedure, thus allowing for more accurate alignment of the implant. At the start of the surgery
the virtual world of the Mako robot has to be connected to the real world, being that of the patient. This
is done by placing metal arrays (pins equipped with sensors) into the femur and tibia bones, equipped with
haptic technology to communicate with the robotic arm on the precise positioning of the joint.

During surgery the Mako robot arm, operated by the surgeon, holds the surgical instrument. Coupled with
limiting saw blade action outside of the haptic boundary, the robotic arm guides the surgeon to cut less (less
soft tissue damage and greater bone preservation as compared to manual surgery [2]) for more precise bone
removal of the damaged area, in which error in cutting is minimised to under 1 millimetre.
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Collaboration of this sort between robots and humans can expand human capabilities. Orthopedic surgeons
using the Mako RAS system are fast transforming the field of knee replacement surgery. In his noted book
on mankind [3, p. 404], Yuval Noah-Harari depicts how new technology intertwines with human evolution:

Nearly all of us are bionic these days, since our natural senses and functions are supplemented
by devices such as eyeglasses, pacemakers, orthotics, and even computers and mobile phones.

In a way, the Mako robot-arm acts as a sort of extension of the surgeons arm, whilst transforming orthopedist
into bionic orthopedic surgeons of the future.

Despite the aforementioned challenges in execution, performance and training, the benefits of robotic
surgery in arthroplasty make it a valuable tool for surgeons. With increased precision and accuracy, robotic
surgery can help reduce complications and improve patient outcomes. Surgeons currently adopting the
Mako system are both able to achieve lower short term pain scores in patients and more precise bone
cuts compared with conventional TKA surgery [4, 5, 6]. However, it is essential that surgeons undergo
proper training and take the time necessary to become proficient in its use to ensure its safe and effective
implementation. For a more extensive comparison of robot assisted and conventional TKA surgery we refer
the reader to [7].

Surgical data science

With this technology expected to increase in popularity worldwide [8, 9, 10], there is a growing need of
learning how to maximise the effective use of this novel approach. But this is no easy feat to achieve in
the medical domain. Obstacles stem from the high volume and velocity with which data is created [11],
multiple stakeholders being involved, complexity of applications and nuanced tasks being tackled using
limited resources.

Surgical data science aims to improve the quality of interventional healthcare and its value through the
capture, organisation, analysis and modelling of data [12]. It encompasses all clinical disciplines in which
patient care requires intervention to manipulate anatomical structures with a diagnostic, prognostic or
therapeutic goal, such as surgery. By using tools that smoothly integrate into the clinical workflow, there
exist a strong potential to complement human cognition. In Figure 2, this idea of technological evolution
in surgical processes is outlined. More than ever before, data science is needed to untap the potential of
knowledge amidst a torrent of new data sources.

The reality is that daily tasks in industry are fast becoming more and more data intensive, forming a
non-reversible trend. Those who gain the most insight from the data will improve performance, whilst
those who do not will lag behind. It is unsurprising to see healthcare administrators beginning to incorporate
business analytics (BA) to help with decision making needs and to stand out among the industry [13]. Smaller
speciality clinics that are not tied to larger healthcare trusts are the most suited to adapt this change. This is
because they are more nimble than their large counterparts, with less bureaucratic red tape and more room
to be innovative.

The clinic whom we are partnering understands the importance of integrating decision support systems
into the patient care pathway. What we are therefore proposing is to answer the question regarding what
happens during surgery, followed by why it happens, all in order to facilitate surgeons with targeted feedback.
This would in-turn help arthoplasty surgery become more transparent and less of a black box. The word
transparency in this setting is meant in a threefold sense of the word: with surgeons to test whether different
conclusions are reached elsewhere, with patients in order to manage expectations, and with data scientists
to assess which technology is most suited to support the surgical practice.
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Figure 2: The evolutionary stage of surgical practice has entered into the digital revolution. Image taken
from [12]. As more and more digital tools are introduced in surgical settings, the operating surgeon must
learn to adapt by becoming more transparent in the digital age.

Marginal gains in surgery

The purpose of small yet significant improvements is to bring monumental changes in results. To accomplish
these goals of converting large streams of surgical data into valuable insights, the use of business analytics
(BA) is key [11]. Figure 3 depicts the three main characteristics of analytics. This tool is used as a guiding
principle to help organisations select the correct analytics capabilities with respect to their operations
maturity. With the clinics objective being the enrichment of patient care pathways, progressing surgical
analytics up a level is the next phase.

Figure 3: Taxonomy of business analytics (BA) processes leveraged across a hierarchical trajectory. Image
taken from [11].
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How to marry existing with prospective analytics can be answered by taking a leaf out of a professional
cycling book. Sir Dave Brailsford, the mythological manager of Team Sky who dominated professional
cycling for the best part of a decade, was one of the instrumental figures in seeing the first Briton being
crowned Tour de France champion. A feat that was followed by a further five wins shared among two more
British riders.

In many ways, their success is owned largely to the strategy of marginal gains [14, 15]. By looking at the
data to see what was happening, to steadily changing their approach and by testing what would happen,
the team was finally able to arrive at a decision centric approach and to answer what should be done about
this. Evidence of these gains can be witnessed anywhere from using lighter materials in the production of
helmets, to personalised nutrition plans for each rider, and even the team cars delivering vital hydration to
riders after a long climb but not before so to make the bike lighter and thus the climb easier.

Team Sky were able to capitalise on this success due to the high volume of training and race data being
collected and analysed using wearable technology placed on the bikes and riders. Another reason is the
ability of the team to look beyond the world of cycling and to technical developments in other fields.
An example of such an event was the challenge of solving in-race communication when racing takes place
through the mountains. Cross-pollination of ideas eventually took root through the use of military terms as
they also communicate in difficult terrains [16].

When looking at the surgical profession, we see many similarities in using data collected with RAS. To
draw a parallel, the wearable technology for surgeons is in the form of a Mako robotic arm. This data can
reveal, to give an example, the size of an implant required to satisfy correct anatomical alignment of the
knee joint. This is akin to riders knowing which strategy to follow depending on which stage in a race they
find themselves in. By giving surgeons supportive tools with which to explain to a patient why one strategy
is preferred over another, positive change can be brought to the patient care pathway.

In order to build supportive surgical tools with the notion of marginal gains in mind, we must begin work
on building a foundation for understanding robotic surgery in arthroplasty. For this reason and with this
thesis, inroads in using descriptive and diagnostic analytics are made first. Key challenges associated with
this technology are recognised through analysis of the learning curve in robotic surgery, which in turn will
help the clinic in producing targeted feedback to surgeons on their progress and areas of improvement.
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Chapter 1

Project aim

With the introduction of surgical robots a tsunami of data is brought to the operating theatre. A question
that arises is how to deal with the flow of new data? The assumption is that once we start to see which
actions are being taken by surgeons and when, we would be better placed to answer the question on what
might happen. The focus of this project is on increasing transparency in the understanding between the
orthopedics profession and the data science industry. We believe that stronger collaboration between both
disciplines can lead to better results. Concurrently, we strive to avoid automation of arthoplasty surgery that
can otherwise exasperate a culture of blame. This otherwise threatens the efficacy and safety of implementing
predictive technologies in healthcare [17].

In order to continuously improve surgical quality, it is important to have concrete metrics to compare
individual surgeon performance. For this reason we perform data science modelling that assists orthopedic
surgeons and in turn improves the quality of interventional healthcare. The perioperative data collected
during TKA is applied to model the surgical skill curves of surgeons in operating the Mako Stryker RAS
system. From there, we extend the learning process to where the various learning phases may lie with the
help of data science. Finally, we provide depth to the learning step through analysis of a golden standard as a
measure for future surgeons in training.

1.1 Problem setup

In this thesis we started a journey to bridge the world of arthoplasty surgery and data scientists. The client
is an orthopaedic clinic based in the Netherlands, specialising in treatment of hip and knee osteoarthritis.
Owing to their relatively smaller size compared to large hospitals, the clinic thrives by operating efficiently
and investing into small improvements that then lead to big results. The clinic was therefore very enthusiastic
about the possibility of meaningfully unpacking data from the Mako robot collected during RAS. We help
the clinic to analyse surgical performance data produced with the Mako RAS system. This was the start of
a longer road with which that clinic aims to bring small improvements to surgeons in using the RAS, that
in turn could bring monumental changes in the results of a patient care pathway.

The clinic performs total hip, unicompartmental knee and TKA. We concentrate on the latter because
it encompasses over sixty percent of surgeries performed at the clinic. Under the current schedule three
surgery days are penciled in per week, with eight surgeries being performed on each of those days. There are
three orthopaedic surgeons working in the clinic, all with differing levels of experience. Our findings are
based on the most experienced senior surgeon who reaches expert levels in operating the Mako RAS system.
This will act as the benchmark category for any future assessment of other surgeons.

In TKA surgery, surgical time can be particularly useful for assessing the proficiency of surgeons performing
procedures. Robotic assisted surgery can provide additional metrics and precision during the procedure,
making surgical time not the sole factor used to evaluate the success of a knee surgery. Other metrics can
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help assess the accuracy of the surgical procedure and the positioning of the implants. These can include but
are not limited to: accuracy of implant placement to measure the implants position relative to the patients
anatomy, range of motion to assess the degree of movement that the patient has in their knee joint before
and after surgery, and ligament balance to measure the tension in the ligaments around the knee joint.

Surgical time is commonly used as a metric for assessing the performance of surgery and surgeons because
it is easily measured and provides a simple way to compare the efficiency of different surgical techniques
and approaches. Our proposal to the clinic is thus to bridge the understanding between data science and
surgery in creating smart decision support tools for the surgeons. We achieve this by applying mathematical
tools to data science models for the purposes of bringing transparency and explainability to the surgical
time data. Collaboratively, we have come up with four clinical questions that help to match beliefs based
on orthopedics intuition. We then assess which data scientific technology is more suited to go hand in hand
with TKA surgery through evaluation of surgical times.

1.2 Background and related work

In traditional medicine the operation room is more or less a black box. Conventional analytics within
healthcare have tended to focus on randomised control trials (RCT) to measure effectiveness. Other reactive
decision support systems may report on the infection rate or a surgical error. The bigger picture in truth is
much more intricate than this. A multifaceted and multidisciplined approach is therefore necessary for a
more proactive approach within healthcare. Incorporating lessons from aviation [18, 19, 20] and data driven
sports [17, 21], such as cycling and Formula 1, can be helpful to better understand the potential offered by
RAS.

Success in sports is best characterised by winning a championship, but standardising success in healthcare
is not as straightforward [21]. Not only must black box analysis be conducted to understand why a surgical
error took place but if we want to also understand which of these features are most prevalent, or influential
in other such surgeries, then this is the difficulty we encounter. To aid in our developmental process, we
conceptualise the following example: suppose that a reactive model is very good at identifying errors in
surgery. The model would notify a member of the clinical team to act upon accordingly in order to fix the
error postoperatively. But this would constitute as having lost the race in the Tour de France. Instead, our
model should also assist the surgeon in understanding how this mistake can be avoided intraoperatively.
This is equivalent to recommending the optimal race strategy to a cyclist in order to maintain a winning
position.

How could the explainability part of what is happening during surgical procedures be incorporated inside
decision support models to aid surgeons? To answer this question we investigate previous attempts at using
smart analytics in surgery, together with reviewing mathematical methods that are useful for our task in
hand and how these relate to the work produced for this project.

1.2.1 Knowledge engineering in arthoplasty

The challenges in evaluating surgical skills of trainee surgeons stem from a lack of accurate evaluation
metrics, reliable task repetition to verify performance and financial implications of training new surgeons.
But at the same time the global market for orthopedic surgical robots expected to grow at 20.75% compounded
annual growth rate (CAGR) by 2030 [22], a unique opportunity presents itself whereby surgical variables
are recorded using a computer.

Simulation based assessment tools under robot-human collaboration had been extensively studied. Using
a purpose built robot, participants haptic skills levels were assessed with Bayesian estimation in laboratory
settings [23]. Its findings had shown the greatest decrease in positional distance from the target for low-skilled
participants, thus benefiting trainees the most. Knot tying and peg transfer tasks for dexterity assessment of
medical students had used assemble at-home surgical box kit. Mobile phone recordings of imitated surgical
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sub-tasks had shown training can aid minimally invasive surgery (MIS) skills [24].

Segmentation of surgical tasks using time and motion study was used to evaluate robotic MIS skills [25].
Albeit a simplistic definition of motion systems had been used, stark distinctions could be seen between
novice and expert skill levels. Much attention has also been paid to analysing surgical time series data
in using the da Vinci surgical system [26]. Multivariate time series had been leveraged to provide novice
surgeons with feedback on their progress and improve their knowledge. This work provided a foundation
for developing ideas around comparative and objective evaluation tools for the purpose of surgical skill
feedback. However, an issue exists around which form this feedback will take on. Recorded surgical videos
of experts and novices may be out of sync with each other and comparison between different trials very
difficult if not impossible.

In deep learning, convolutional neural network (CNN) model had been trained to classify a participants
surgical skill level during knot tying exercises and achieved very high accuracy [27, 28]. An evaluation
algorithm to study trajectories of instrument tip in laparoscopic surgery compared similarity between trajectories
with dynamic time-warping (DTW) [29]. However, whilst these methods are able to objectively evaluate
and provide trainees with skills feedback, the exercises lack real world case validation.

1.2.2 Mathematical application

The clinic wanted to find out how the performance of the house surgeons rivals that of others operating
the Mako RAS system. Prior work concentrated with testing of an offline model using classical statistical
techniques [30]. This method focused on a single change point inside a learning curve using cumulative
summation (CUSUM) analysis that helps detect variation in the trend. CUSUM is a sequential analysis
technique that records a running total of deviations between the time series observed values and the target
values. An inflection point is observed when a transition between the inexperienced and proficient phases takes
place.

With CUSUM analysis a learning curve had been found for surgical time in Kayani et al. [30], Tay et
al. [31] and Vermue et al. [32] but not for either component alignment or ligament balancing. We intend on
determining a learning curve for the clinic house surgeons and to assess whether their performance matches
the findings in the paper. What makes the learning curves in this thesis unique is the surgeon performed the
surgeries before and after the start of the Coronavirus (Covid - 19) pandemic.

As it stands the field of orthopedic surgery is set on its way by using classical statistical techniques in
analysing surgeons performance. The CUSUM method is useful for detecting one change point but is unable
to generalise to many changepoints or to multivariate data. Furthermore, these findings were based on small
data sets. The data we work with is at least threefold larger and can therefore provide more answers in
determining whether learning curves exist for surgical tasks.

With the onset of data science many more solutions become available to make use of two such methods
involving the use of Bayesian statistics to analyse offline data as presented by Fearnhead [33, 34] and for
online data by Adams et al. [35]. Both these methods are handy for segmenting of time series data into
multiple segments. It also becomes possible to work with multivariate time series data by updating the
BOCD model parameters as shown recently in Wang et al. [36]. This method adapted for surgical tasks
can prove useful for assessing the various surgical steps simultaneously. With that we can extend the work
further and to build a more complete picture of learning to perform robotic surgery instead of taking each
step as a standalone task.

To make the online method work successfully, previous work by Sholihat et al. [37] had also focused on
choosing the best hyperparameter settings. However, the questions surrounding whether the offline and
online methods are prone to deterioration in their performance when outliers are present is unanswered.
Because complications in surgery exist, these reflect anomalous points on time series data. We therefore
extend the work of this thesis to analyse the important question on how both methods perform with
anomalous data points.
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1.3 Studied questions

To help the clinic in beginning to understand and extract meaning from the data it was important to firstly
explain which mathematical tools are most suited for which surgical tasks. The purpose of such analysis is
to bring efficiency to the clinic. If the knowledge of a learning curve is available, then the expert surgeon
can spend less time on being in the operative room training the trainees. Instead, the expert surgeon can
perform other tasks, such as screening of potential patients, or assist with patient pathway care.

This thesis therefore inspects past attempts of uncovering learning curves using classical statistics [30, 31,
32]. Whilst the aim being to also grow surgical supportive tools, a comparison using Bayesian inference
on streaming data is then made. Ultimately, there is greater benefit of analysing the data as soon as it
becomes available in a surgical setting. Once we uncover answers around the issues of how do the surgeons
learn, particularly since TKR lacks a true gold standard, we make recommendations to the clinic on how to
perform the analysis for all surgical steps in conjunction.

The thesis theme and project questions are summarised as follows:

How do surgeons learn?

Across time

Q .1

Learning
curve

Q .2

Proficiency
development

Gold standard

Q .3

Training
threshold

Anomalous data

Q .4

Robust method
selection

Question 1: Where is the learning curve?

The clinic wanted us to find the learning curves for the three surgeons performing various surgical tasks.
A learning curve is associated with the integration of new techniques. It is therefore important for surgeons
who are incorporating these techniques into their surgery to understand what the reported learning curve
might mean for them and their patients. After speaking with the surgeons, we understood that the two most
difficult skills to hone when training in using the Mako robot are the registration of bone time and ligament
balancing time. Therefore, we will test to identify where the learning curve for these two tasks could lie.

In order to uncover the learning curves we will use cumulative summation (CUSUM) analyses to find
the flexion points within learning curves. A second comparative method will make use of Bayesian online
change point detection [35]. Given the streaming nature of the surgical data, akin to constant inflow of
stock market data, we in essence want to assess learning curves on an online model. The comparison of past
work done by [30, 31, 32] with offline models will assist in helping to answer the question on which methods
suits best to model the surgical skill curves of a surgeon. Our aim is to fit a model that is robust against
overfitting.
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Question 2: Do surgeons improve over time?

Skill acquisition is the art of improving performance with time because individuals are able to advance
their skills from initial learning to improved proficiency. The assumption here is that this also applies to
a surgeon who is constantly learning to hone their skills in using the new Mako technology. We will test
whether this assumption holds for the time it takes to perform the total surgery, implant planning, ligament
balancing, bone registration, total bone cutting and total bone sawing time.

To answer whether surgeons show an improvement in their skill set we opt for comparison between
Bayesian offline and online testing. Posterior densities provide us with much more convenient mathematical
concepts to grasp than with classical statistics, an advantage of using Bayesian statistics inside of an online
algorithm intended for use with streaming data which we aim to leverage.

Question 3: Does a gold standard for surgery exist?

The clinic were curious for us to uncover where the gold standard may exist. By answering this question we
aim to improve the workflow of orthopaedic surgeons in RAS via knowledge utilisation of their performance
data. Comparisons can then be made between their recent completed surgery and the gold standard that
should help steer the surgeon in the more appropriate direction. We expect the biggest difference to exist
during the early training stages but this should not be perceived as negative because it can indicate progress.
Due to the complexity and multitude of tasks in surgery, we want to highlight which skills a trainee surgeon
has honed and which skills they must still improve on.

Bayesian parameter estimation from the findings of the previous two questions can be leveraged to answer
whether a surgeon meets the gold standard. We thus propose to answer this question using univariate
Bayesian analysis of surgeons improving across different tasks with time. We then fit a multivariate Bayesian
model that assesses overall surgery performance using perioperative and intraoperative recorded surgical
steps. The Bayesian approach is most suiting in this setting because the clinic receives streaming data as
output from each surgery that requires analysing as a whole to reach a gold standard.

Question 4: How to evaluate surgical performance alongside outliers?

The surgeons had explained that one goal of TKA is the balanced tension within the knee throughout
range of motions. Depending on the severity of each patients case, the intraoperative surgical procedure
time can therefore fluctuate. This can bring distortions to the time series of the overall surgery and on a
specific task level. It is therefore important to understand which method is more robust to outliers and
is able to discover learning phase correctly. We intend on evaluating both the offline and online methods
across a set of experiments to see how each method fares in terms of precision accuracy.

1.4 Data

The surgical data set currently contains 446 patients and encompasses a period of surgeries spanning three
years. To help the clinic in beginning to understand and extract meaning from the data, it is important to
firstly uncover answers around the issues of how do the surgeons learn. Using time series data is straightforward
because it provides detailed understanding of how various aspects of a surgery change over time. In addition,
time series data can be used to monitor and improve various aspects of the surgical process itself. For
instance, surgeons and healthcare professionals can use time series data to track changes in surgical duration,
complications and patient satisfaction over time.

In answering questions 1− 3 we will be using the time log data of tasks performed perioperatively. These
are recorded in minutes and are reported as real numbers. The six instances of these fields include in the
analysis are total surgery time, implant planning time, ligament balancing time, bone registration time,
bone saw time and bone cut time. For question 4 we will be using a synthetically constructed data. The
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Figure 1.1: Tibial component resection depth for surgeries completed by Surgeon 1 analysed against the
recommended Mako RAS settings as found in [38].

characteristics of this data match that of the real world surgical data, only with the ground truth in terms
of the location of changepoints and anomalies known to us prior.

While time series data can be a useful tool for analysing surgeries, there are also some potential downsides
to consider. Time series data can be complex and difficult to interpret, especially for those without specialised
statistical training. This can make it challenging for healthcare professionals to draw meaningful conclusions
from the data and make informed decisions about patient care. While time series data can provide insights
into how various aspects of a surgery change over time, it may not capture all of the relevant variables that
contribute to surgical outcomes. For example, the data may not capture the patients overall health status or
the surgeons skill level, which can also play a significant role in surgical outcomes.

A good indication of how a surgeon is performing, whilst also simultaneously allowing for intraprofessional
comparison between surgeons in other clinics, is an accuracy metric as shown in Figure 1.1. Here we plot the
distribution of bone resection depth values against the recommended setting to use with the Mako RAS.

Figure 1.2: Burr time efficiency computed as the bone sawing time out of the bone cutting time.
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This however does not show how progress over time. It also fails to take into account patients different
anatomical structures or human instinct, which can explain values outside of the prescribed range.

In many contexts, being fast is often associated with being efficient and productive. This is particularly
true in the workplace, where employees are often evaluated based on how quickly they can complete tasks
or meet deadlines. Similarly in competitive sports, being fast is often associated with being a top performer.
Efficiency data can therefore provide a detailed and nuanced understanding of the surgical process. We
illustrate in Figure 1.2 the percentage of time the burr blade is actively on. Overall the trend is upward and
efficiency is on the rise. But a decrease in efficiency for the year 2021 does not tell us anything about the
total time the burr was in operation.

It is important therefore to recognise the limitations of standalone data types and to use it in conjunction
with other types of data that require a clinical judgment. This also requires more complex models that
are outside the scope of this thesis. Instead, we attempt to incorporate incremental changes in arthoplasty
surgery by borrowing from the sporting worlds marginal gains theory. This pushes us to use a universally
accepted metric for changes over time.
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Chapter 2

Mathematical methods

With this chapter we provide an overview of Bayesian statistical methods used through this project. The
work presented here is a summary of the introductory methods which can be found in most introduction to
statistics text books. For the purpose of this chapter we extensively relied on Pattern Recognition and Machine
Learning by Bishop [39].

2.1 Bayesian statistics

Probability theory provides a consistent framework for the quantification and manipulation of uncertainty [39].
The frequentist statistical approach conducts an experiment to infer the probability of an uncertain event A
taking place by drawing conclusions based on previous observations. It asks what would happen if an
experiment was repeated many times and thus determines the properties of an underlying distribution via
the observed data. A frequentist view is thus based on the estimation for probability of an event occurring
from a random sample. Conversely, Bayesian statistical approach is based on some limited knowledge which
is constantly updated when new observations are incorporated inside the model. It answers what is the
probability that an event will take place given the previously observed data. It is considered to be a more
robust method as it is less prone to errors [40].

The two fundamental rules of probability theory are the sum rule and product rule:

P(A) =
n∑
j

P(A,Cj) (2.1)

P(A,C) = P(C|A)P(A) (2.2)

We are able to make use of the marginalisation technique in Equation 2.1 to sum over every possible
parameter value of a random variable A that has a joint distribution with some other random variable
C . Probability P(A) is thus also known as the marginal probability because it is obtained by marginalising
out other variable C . Equation 2.2 is the joint probability of two events occurring as a fraction of all possible
outcomes and takes inside of it the conditional probability of an event C given A. Owing to the symmetry
property P(A,C) = P(C,A) we arrive at a solution to a conditional probability using Bayes’ theorem.

Theorem 1 (Bayes’ rule). The probability of an event A occurring, given that event C has subsequently occurred, is

P(A|C) =
P(C|A)P(A)

P(C)
(2.3)

The Bayesian statistical approach on the probability of event A taking place is thus dependent on some
belief measure around event C , assuming that this event is known to us. The denominator inside Bayes’
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theorem may also be expressed as:

P(C) =
n∑
j

P(C|Aj)P(Aj) (2.4)

Or equivalently with the symbol ¬ being used to denote an event not taking place:

P(C) = P(C|A)P(A) + P(C|¬A)P(¬A) (2.5)

It is viewed as a normalising constant which ensures that the sum of the conditional probability over the
sum of all values of C is equal to one. Additionally, it is possible to forego the denominator completely by
marginalising over a third random variable B as such:

P(A|C) =
P(A,C)

P(C)
(2.6)

=

∑n
j P(A,Bj , C)

P(C)

=

∑n
j P(A|Bj , C)P(Bj |C)P(C)

P(C)

=
n∑
j

P(A|Bj , C)P(Bj |C)

This notation will be helpful when we attempt to understand how Bayesian algorithms, in particular
BOCD, marginalise over the observed data to predict the next data point.

2.2 Bayesian inference

Using the newly established notions we traverse the landscape to show how to use Bayes’ theorem in making
Bayesian inference. The Bayesian approach differs from the frequentist method for inference in its use of
a prior distribution P(θ) to express the uncertainty present before seeing the data [41]. We therefore do not
assume the model parameters θ to be fixed and are interested in quantifying the uncertainty around these
parameters. This is done via specifying the probability at each value that the parameters can take up. The
goal of a Bayesian inference process is to then allow the uncertainty remaining after observing the data x to
be expressed in the derivation of the posterior distribution:

P(θ|x) = P(x|θ)P(θ)
P(x)

(2.7)

This method clearly incorporates previously attained knowledge of the parameter values. We can forego
the normalising constant in Equation 2.7 and write using proportionality:

P(θ|x) ∝ P(x|θ)P(θ) (2.8)

The posterior is then simply represented as the probability likelihood that under some model parameters
θ we would observe the data x, multiplied with the prior containing some preexisting knowledge about the
parameter values.

2.2.1 Likelihood function

The interpretation for the likelihood in Bayesian inference is to uncover the underlying probability model
(UPM) that gives the highest probability of seeing the data. It borrows itself from the frequentist approach
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of maximum likelihood estimation (MLE) for estimating some variable. In the frequentist setting, the MLE
of the parameter we want to infer:

θMLE = argmax
θ

P(x|θ) (2.9)

= argmax
θ

∏
i

P(xi|θ)

Taking the product of infinitely many probabilities rapidly brings the MLE towards zero. This is why we
prefer to maximise the log function instead:

θMLE = argmax
θ

logP(x|θ) (2.10)

= argmax
θ

log
∏
i

P(xi|θ)

= argmax
θ

∑
i

logP(xi|θ)

To solve for this suppose then that our data is drawn from a Gaussian distribution with parameters θ =
[µ, σ]. The likelihood term is:

P(x|µ, σ) =
∏
i

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)
(2.11)

Maximising the log of the likelihood function:

logP(x|µ, σ) = log

(∏
i

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

))
(2.12)

= log

 1(√
2πσ2

)n exp

(
− 1

2σ2

∑
i

(xi − µ)2
)

= log
((

2πσ2
)−n

2

)
+ log

(
exp

(
− 1

2σ2

∑
i

(xi − µ)2
))

= −n

2
log
(
2πσ2

)
− 1

2σ2

∑
i

(xi − µ)2

= −n

2
log (2π)− n

2
log
(
σ2
)
− 1

2σ2

∑
i

(xi − µ)2

Taking the derivative with respect to model parameters to find the MLE of the mean:

∂

∂µ
logP(x|µ, σ) = ∂

∂µ

(
−n

2
log (2π)− n

2
log
(
σ2
)
− 1

2σ2

∑
i

(xi − µ)2
)

(2.13)

0 =
1

σ2

∑
i

(xi − µ)

µ̂ML =
1

n

∑
i

xi

Because by equating the first order derivative to zero one can find the extremum point. Similarly the MLE
of the variance:

∂

∂σ2
logP(x|µ, σ) = ∂

∂σ2

(
−n

2
log (2π)− n

2
log
(
σ2
)
− 1

2σ2

∑
i

(xi − µ)2
)

(2.14)
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0 = − n

2σ2
+

1

2σ4

∑
i

(xi − µ)2

σ̂2
ML =

1

n

∑
i

(xi − µ)2

Thus we obtain the sample mean mean µ̂ML and sample variance σ̂2
ML.

2.2.2 Maximum a posteriori probability

Now we are ready to draw parallels between the MLE and maximum a priori (MAP) estimation. This
method selects the most likely set of parameters for the posterior distribution P(θ|x) conditional on the
data. MAP is preferred under scenarios where we possess some prior knowledgeP(θ) and want to incorporate
this into the model by weighing the likelihood function. We also assume here that the variance parameter σ2

is known and try to estimate via maximising the unknown population mean µ. It is a reasonable assumption
to make that our mean is from a univariate Normal distribution because it is often the case that our variance
is within some range but the mean is unknown.

We proceed by taking Equation 2.8 and want to solve for the MAP of the posterior distribution:

P(µ|x) ∝ P(x|µ)P(µ) (2.15)

Note how once again because the denominator P(x) does not depend on the parameter µ, we omit it and
instead maximise the numerator. Observing the likelihood function is simply Equation 2.11 and consulting
Bishop [39, p.97-98], we see that the likelihood function takes the form of the exponential of a quadratic
form in µ. If we multiply this likelihood by another Gaussian process, we will obtain another Gaussian.
This is true since each Gaussian can be written as an exponential multiplied with a quadratic, the product
of which is another exponential of a quadratic form. We therefore take the natural conjugate prior to have the
same form as the likelihood:

P(µ) =
1√
2πσ2

0

exp

(
− 1

2σ2
0

(µ− µ0)
2

)
(2.16)

Whereµ0, σ
2
0 are parameters of the prior distribution. For detailed explanation and derivation see Appendix A.

Here we show how to derive the MAP estimator for the parameter mean µ. Multiplying the likelihood with
the prior to obtain the posterior:

P(µ|x) = 1(√
2πσ2

)n exp

(
− 1

2σ2

∑
i

(xi − µ)2
)

· 1√
2πσ2

0

exp

(
− 1

2σ2
0

(µ− µ0)
2

)
(2.17)

We can then take the logarithm:

logP(µ|x) = −n log
(√

2πσ2
)
− 1

2σ2

∑
i

(xi − µ)2 − log

(√
2πσ2

0

)
− 1

2σ2
0

(µ− µ0)
2 (2.18)

Then differentiate with respect to parameter µ which we want to maximise:

∂

∂µ
logP(µ|x) = ∂

∂µ

(
−n log

(√
2πσ2

)
− 1

2σ2

∑
i

(xi − µ)2 − log

(√
2πσ2

0

)
− 1

2σ2
0

(µ− µ0)
2

)
(2.19)

Setting this equal to zero and solving:

0 =
1

σ2

∑
i

(xi − µ)− 1

σ2
0

(µ− µ0) (2.20)
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1

σ2
0

µ− 1

σ2
0

µ0 =
1

σ2

∑
i

xi −
1

σ2
nµ

1

σ2
0µ

+
1

σ2
nµ =

1

σ2

∑
i

xi +
1

σ2
0

µ0

1

σ2σ2
0

µ
(
σ2 + nσ2

0

)
=

1

σ2σ2
0

(
σ2
0

∑
i

xi + σ2µ0

)

The MAP estimator is therefore solved with:

µMAP =
σ2µ0 + nσ2

0µ̂ML

σ2 + nσ2
0

(2.21)

µMAP = σ2
MAP

(
µ0

σ2
0

+
nµ̂ML

σ2

)

Where σ2
MAP equals:

σ2
MAP =

1
1

σ2
0+σ2

(2.22)

It is important to point out that with no observed data points, Equation 2.21 reduces to the posterior mean
µ0. But as we gather more data so that n → ∞, the variance σ2

MAP goes to zero and the MAP estimator
becomes the MLE µ̂ML:

µMAP =
σ2µ0

σ2 + nσ2
0

+
nσ2

0µ̂ML

σ2 + nσ2
0

(2.23)

=
σ2µ0

σ2 + nσ2
0

+
µ̂ML

1 + σ2

nσ2
0

=

�
�

�
�
�>
0

σ2µ0

σ2 + nσ2
0

+
µ̂ML

1 +
�
�
��7
0

σ2

nσ2
0

2.2.3 Prior predictive distribution

The focus so far has been on inferring unknown model parameters θ. When we address the prior predictive,
we are in the business of predicting future observable data values. The prior predictive distribution is used
to predict future observation xnew, given some predefined hyperparameters α, without seeing the data
firsthand and by marginalising over the conditional probabilities:

P(xnew|α) =
∫

P(xnew|θ)P(θ|α) dθ (2.24)

It is therefore used in assessing how well the prior distribution P(θ|α) captures our beliefs which are
embedded inside hyperparameters α.

2.2.4 Posterior predictive distribution

The posterior predictive distribution follows the sum rule by marginalising over the model parameters θ and
leaves us with simply the predictive density of a new data point xnew given the observed data x:
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P(xnew|x) =
∫

P(xnew|θ)P(θ|x) dθ (2.25)

We also want to avoid performing painstaking integration in Equation 2.25. The idea is to instead leverage
conjugacy and pick a conjugate prior with the same functional form as the posterior:

P(xnew|x, α) =
∫

P(xnew|θ)P(θ|x, α) dθ (2.26)

=

∫
P(xnew|θ)P(θ|β) dθ

= P(xnew|β)

For some new hyperparameter β. This allows us to deduce the posterior predictive conjugate model
without integration.

2.2.5 The exponential family

The business of Bayesian inference is in correctly and efficiently deducing properties regarding a probability
distribution by computing the posterior distribution in Equation 2.8. Fortunately, distributions belonging
to the exponential family (EF) possess many useful qualities that help achieve exactly this. To model the
probability distribution P(x) of an n variables x = {x1, ..., xn}, the EF are written in the following form:

P(x|η) = h(x)g(η) exp
[
ηTu(x)

]
(2.27)

The non-negative function h(x) by construction determines the support on x and therefore does not
depend on natural parameters η. The function g(η) is a normalising function for the distribution and the
sufficient statistic u(x) is a function that depends only on x. The EF set of parametric distributions therefore
incorporates Gaussian, Poisson and Binomial distributions, just to name a few. But does not include, for
instance, the Uniform distribution.

Members of the EF allow for convenient computation of the expectation and variance for a distribution.
The identical form of our EF also eliminates the need for us to pick one distribution over another and to
watch our model crumble into impracticality due to skewness of the data or values being continuous when we
needed them to be discrete. As we shall see later, the use of EF is beneficial to us because it incorporates the
sufficient statistic. Thus allowing to fit the model by maximising for the parameters as all the information
is contained only in u(x). Hence there is no need to store all the data, but rather only the values contained
inside the sufficient statistic. EF distributions also make use of the conjugate prior which makes our lives
simpler when iteratively updating and computing for the closed form posterior predictive distribution.

Bishop [39, p.113-117] provides several example use cases on EF distributions. We wish to instead show how
to cast the Normal distribution with known variance σ2

0 into the EF form because it will be more relevant
to our case on hand.

Example 1. Let x be a random variable such that x ∼ N (µ, σ2
0). Then the probability model belonging to

an EF is written:

P(x|η(θ)) = h(x)g(η(θ)) exp
[
η(θ)T · u(x)

]
(2.28)

Note however that only one parameter is unknown, hence η ceases being a vector valued function:

P(x|η) = h(x) · g(η) exp [η · u(x)] (2.29)
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Now taking the standard form of a Normal distribution we bring it to the EF form:

P(x|η) = 1√
2πσ2

0

· exp
[
− 1

2σ2
0

(x− µ)2
]

(2.30)

=
1√
2πσ2

0

· exp
[
− 1

2σ2
0

x2 +
µ

σ2
0

x− µ2

2σ2
0

]
Because the left term is not dependent on the random variable x we take it outside:

P(x|η) = 1√
2πσ2

0

· exp
[
− 1

2σ2
0

x2
]
· exp

[
µ

σ2
0

x− µ2

2σ2
0

]
(2.31)

By taking the log-normaliser relation g(η) = exp [−A(η)] we arrive at an equivalent form for the EF:

P(x|η) = h(y) · exp [η · u(x)−A(η)] (2.32)

We can immediately see that terms which do not depend on µ go inside h(x) and u(x) is a sufficient
statistic for η. Bunching these terms into their respective EF counterparts we obtain:

h(x) =
1√
2πσ2

0

· exp
[
− 1

2σ2
0

x2
]

(2.33)

u(x) = x

η(µ) =
µ

σ2
0

A(η) =
µ2

2σ2
0

Or equivalently:

g(η) = exp [−A(η)] = exp

[
− µ2

2σ2
0

]
(2.34)

At this point we also wish to explain why the natural parameter η(θ) is named as such. This parameter
refers to the set of all η(θ) which belong to the natural parameter space. Then from Example 1 above and
observing that η(µ) = µ

σ2
0

can take any real value, the natural parameter space is simply (−∞,∞).

Sufficient statistics

A sufficient statistic of a sample summarises all the required information about some parameter. This
means that no matter how much more data we throw at the sufficient statistic, we gain no more information
to do with the unknown model parameters θ. Fisher first introduced the notion of sufficiency [42] that
dealt with the matter of providing a precise form of a distribution from a randomly drawn sample. The
independence between u(x) and θ was proven by Pitman soon after [43].

In Bayesian statistics we can characterise this notion of independence as follows:

P(θ|u(x),x) = P(θ|u(x)) (2.35)

This characterises to us what is essential in the data and what we can disregard. We can therefore extend
Example 1 to show how the sufficient statistic works in practice. The benefit of EF, as we will see, is that
the MLE depends on the data only through

∑
i u(xi) [39, p.117]. It is no accident therefore that this is the

sufficient statistic for the Normal distribution.
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Example 2. Considering a set of data x = {x1, ..., xn} where xi ∼ N (µ, σ2
0), the likelihood function is:

P(x|η) =
∏
i

h(xi) · g(η)n exp

[
ηT
∑
i

u(xi)

]
(2.36)

Where we have simply rewritten the vector parametrisation form. Then taking the logarithm:

logP(x|η) =
∑
i

log (h(xi)) + n · log (g(η)) + η ·
∑
i

u(xi) (2.37)

Recall that we wish to differentiate with respect to η in order to maximise this value as we had done earlier:

∂

∂η
logP(x|η) = ∂

∂η

(∑
i

log (h(xi)) + n · log (g(η)) + η ·
∑
i

u(xi)

)
(2.38)

Setting this equal to zero and solving:

0 = n · log (g(ηML)) +
∑
i

u(xi) (2.39)

− log (g(ηML)) =
1

n

∑
i

u(xi)

A(ηML) =
1

n

∑
i

u(xi)

This result is useful to us because we see that the MLE is the optimal estimator since the natural parameter
ηML only depends on the data contained inside the set of sufficient statistics

∑
i u(xi). Once again we are

able to store only the data that is required given a finite number of sufficient statistics.

Hence sufficiency allows for u(x) to be a sufficient statistic for θ since there is no more information
regarding θ beyond what is already expressed in u(x).

Conjugate priors

Under Bayesian inference the Bayes’ Rule from Theorem 1 is adapted to compute the posterior distribution
of the parameters θ conditional on the data x. A prior is termed a conjugate prior if it is from the same
distribution family as the posterior for some corresponding likelihood. This means the posterior distribution
has the same functional form as the prior and hands us the advantage of obtaining the MAP function using a
made simple derivation. This is exactly how we obtained a closed form solution for the posterior parameters
in Equation 2.22 - 2.23.

In the event that no closed form solution exists, conjugate priors allow for sequential learning on the
posterior. This allows us to skip for each time step t the computationally expensive multiplication of the
likelihood function with the prior inside of Equation 2.25. Instead we can update the parameters to model
the posterior probability distribution. What more, once we have calculated posterior for some time step t,
it directly becomes the prior at the next time step t+1. In summary, conjugate priors sequentially lead us to
the best possible parameters θ that maximise the posterior and allow its estimated distribution to approach
its true value. Recall that we derived the MAP estimator in Equation 2.17. All that remains is to show with
Figure 2.1 how the posterior distribution is updated at each time step t.

Notice how the posterior distribution squeezes around the true value of the mean. The y - axis is being
stretched as a result of the distribution peak growing taller because we allow the model to be led by the data
at each time step. As more and more data is fed into the sequential updating of our model, the confidence

20



Figure 2.1: Bayesian estimation of the mean of a Gaussian distribution. In this example we use a strong prior
with P(µ) ∼ N (4, 1) to approximate for the posterior distribution mean, depending on some seen data x.
At each time step t the prior is multiplied with the likelihood function to obtain the posterior distribution
at time t. The posterior is then sequentially fed into an updated prior at time t + 1. We then repeat the
process of multiplication with the likelihood to obtain posterior at t+ 1, and so on.

interval also narrows. This provides us with an easy way of interpreting how the parameter values of the
prior change with Bayesian updating. Because we now understand what conjugacy provides us with, we can
write a conjugate prior of an EF to be of the following form [39, p.117]:

P (η|χ, ν) = f (χ, ν) · g(η)ν exp
[
νηT · χ

]
(2.40)

Where χ, ν are hyperparameters belonging to an EF form.

Then we can multiply the conjugate prior P(η|χ, ν) with the likelihood P(x|η) in order to obtain and
verify that the posterior distribution has the same functional form as the conjugate prior:

P(η|x,χ, η) = P(x|η) · P(η|χ, ν) (2.41)
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=

(∏
i

h(xi) · g(η)n exp

[
ηT
∑
i

u(xi)

])
·
(
f (χ, ν) · g(η)ν exp

[
νηT · χ

])
=
∏
i

h(xi) · f (χ, ν) · g(η)n+ν exp

[
ηT
∑
i

u(xi) + ηTνχ

]

Because the first two terms are constant with respect to η, the posterior is proportional to the following:

P(η|x,χ, η) ∝ g(η)n+ν exp

[
ηT
∑
i

u(xi) + ηTνχ

]
(2.42)

It therefore holds that the posterior has the same functional form as the prior, just as we had set out to do
in the beginning with Equation 2.8, only instead with parameters:

νposterior = n+ νprior (2.43)

χposterior =
∑
i

u(xi) + νprior · χprior

Where we interpret νprior as the number of observations inside the prior which have the value of the
sufficient statistic u(x) given by χ. Finally, to be able to arrive sequentially at some optimal parameters
which maximise the posterior as shown in Figure 2.1 all that we do is update the hyperparameters at each
time step t as follows:

νt =

{
νprior if t = 0

νt−1 + 1 if t > 0
(2.44)

χt =

{
νprior · χprior if t = 0

χt−1 + u(xt−1) if t > 0

2.3 Summary of recursive Bayesian estimation

After discussing in length the many benefits of EF models, the key take away points for use with Bayesian
inference and its recursive reconciliation of new data are summarised as follows:

1. EF models allow for inference with a finite number of sufficient statistics, as was shown using
∑

i u(xi).

2. EF models allow for incremental calculation as new data arrives.

3. Conjugate EF representation allows for EF distribution overη that can be summarised with hyperparameters
belonging to the same distribution.

4. Inferring the parameter vector η associated with the run length rt is then made simpler using the
methods discussed in Section 2.2.
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Chapter 3

Change point detection

In this chapter we discuss the CUSUM algorithm used for the analysis of trend detection in learning curves.
As a contrasting methodology to the one currently used in industry, we introduce two change point detection
algorithms called offline BCD [33] and BOCD [35]. Interested readers should refer to the original papers
whilst the discussion points presented here are merely used in explaining reasoning behind the methods used
by the authors. We do this by making the connection between the methodology for change point detection
and the partitioning of data sequences by computing their posterior distribution over run lengths, which is
helped by using the Bayesian methods outlined in Chapter 2.

Change detection for time series data deals with detecting whether a change point has occurred or not.
Transition between phases over time of the underlying process can be detected, such as using mean or
variance shifts, that can in turn be related to the start of a new phase. Before applying to surgical data,
with this chapter we explore the capabilities and limitations of the three aforementioned methods. In many
industries offline BCD and BOCD are used in order to alert, for instance, fund managers when sudden or
relevant movements occur in the market. We extend the work on CUSUM learning curves through further
examination of multivariate data also using both Bayesian methods.

With the RAS system data belonging to a streaming nature reminiscent of an online model, our intuition
tells us that there may exist more than one learning curve belonging to each separate partition of the data.
By identifying changes in underlying surgical tasks, supervising surgical skills progression can be performed
in real time. We are interested in being able to detect the time at which a new phase start because it may
be indicative of a surgeon becoming more proficient in a RAS task. Furthermore, we inspect whether the
streaming data of an online nature is necessary or whether we can rely on offline batch computation instead.
Our analyses of a toy data set show that Bayesian online method is preferred.

3.1 Cumulative sum analysis

CUSUM records the running difference between the samples from a process xt for t = 1, ..., n and the
average x̄ = 1

n

∑n
t=1 xt:

CUSUM =

{
S0 = 0

St = St−1 + (xt − x̄)
(3.1)

Segments of the plotted chart with a downward slope signal improvement in skills, as this indicates where
the values are below the average. This algorithm is of an offline nature and is run only once all the time series
data had been measured and its recursive workflow is shown in Algorithm 1. Mathematically speaking the
inflection point of a learning curve is described as being a cubic polynomial attaining its global maximum
point. It may also be the case that the inflection point is observed at a global minima. In that instance,
the learning curve is concave upward past the inflection point, i.e. time series is at a phase which is above
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the process mean and the CUSUM is increasing. These instances can occur when there is no learning curve
observed or when the global maxima is observed elsewhere outside the range of studied data points.

Algorithm 1: Cumulative sum analysis
1: Initalise score with mean value:

S0 = 0

x̄ =
1

n

n∑
t=1

xt

2: Observe a new datum xt.
3: Compute and update score:

St = St−1 + (xt − x̄)

4: Return to Step 2.

3.1.1 Synthetic data example

Using T = 1000 randomly generated data points we show the output of using the CUSUM method in
Figure 3.1 and show the limitations of using this method for the learning curves used by [30] in Figures 3.2, 3.3.
Let us therefore suppose that there exist some task which requires many hours to hone the skills of, for
instance, learning a foreign language [44]. There is an initial period of steady improvement in someones
language skills, followed by a period of limited progress caused due to confusion of learning new conjugation
of verbs, before the person is finally able to write a short essay in that language.

Figure 3.1: CUSUM analysis for T = 1000 randomly generated data points. The inflection point is marked
with a dashed red line and is depicted on its global maximum point t = 679.

Within surgery setting similar rules are applied. For a newly graduated medical student who had never
before performed surgery in a real life setting, progression can be expected to be slow at the start and
hence the learning curve would be on the rise. This is due to using the new Mako machinery requires a
lot of guidance from the head surgeon. After a little while the surgeon will be expected to perform surgery
independently but this may result in longer surgery times due to the meticulousness factor of wanting to
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avoid mistakes. Finally however, the surgeon would had performed enough surgeries to gain confidence and
see their learning curve slope downward. We plot this hypothetical scenario with all three discussed phases
in Figure 3.1.

3.1.2 Caveats for interpretation

Three main issues arise when it comes to using the CUSUM method for the analysis of a surgeons skills
in using the Mako RAS system. Firstly, the number of cases a surgeons attends to will affect where and if
a learning curve is to be found. Secondly, any previous training, be it in conventional surgery or with another
robot, will affect the learning curve and thus prevents straightforward comparison between surgeons. Thirdly,
the basic assumption here is that only two learning phases exist for surgical competence. There are copious
real world examples where this is incorrect. Think back to the language example given earlier or to a judoka
athlete obtaining different belts. These are particularly problematic from a business stand point for a clinic
that wants to incorporate operating theater time inside a business plan. A clinic would be much better
placed if it did not expect each surgeon to attend to the same number of cases but instead had a robust way
of monitoring their individual progress.

Figure 3.2: CUSUM analysis for the first period Tt=1:500 = 500 of randomly generated data points. The
inflection point is marked with a dashed red line and is depicted on its global minima point t = 219.

Observe how the case level is a major factor in Figures 3.1 - 3.3 where the data is all drawn from the same
pool of hypothetical cases but display drastically different results if taken independently of each other. For
an insufficient number of cases a learning curve is not found in Figure 3.2 as the inflection point is a global
minima because the trend is still rising. This can be attributed to the surgeon still learning and having an
insufficient number of cases to show for. However, if we take the same number of cases but for a senior
surgeon who had already completed their initial training phase then the learning curve in Figure 3.3 looks
completely different with an inflection point found to be in a global maxima.

Clearly then stating that no learning curve exists for some surgical task based only on what we had observed
in Figure 3.2 would be inaccurate. Similarly, stating that surgeon A is faster than surgeon B in learning how
to operate the MAKO RAS robot does not paint the complete picture. Instead, we should take into account
the surgeons level of expertise and only then assess the skills of surgeons accordingly. Furthermore, assuming
that a surgeon had reached their pinnacle of competence in operating the MAKO robot through traditional
observation of a learning curve is a hasty conclusion because it detracts from the idea that medicine is a
constantly evolving field. Until a golden standard in surgery is found, it is more reasonable to assume that
there exist extra room for improvement with additional cases.
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Figure 3.3: CUSUM analysis for the second period Tt=501:1000 = 500 of randomly generated data points.
The inflection point is marked with a dashed red line and is depicted on its global maximum point t = 723.

3.2 Offline change point detection

The second offline algorithm that we examine is the one by Fearnhead [33, 34] which we will refer to as the
offline BCD. This algorithm again requires for all the time series data to first be recorded and aims to sample
from the posterior distribution of change point locations. Recursions inside this algorithm borrow heavily
from the Forward-Backward algorithm, otherwise known as Baum-Welch [45], which updates the parameters
inside of a hidden Markov model (HMM) using expectation maximisation (EM). The Forward-Backward
algorithm computes the probability of being in a particular state at a given time, given a sequence of
observations. This probability is computed using a combination of forward and backward messages, which
leverages dynamic programming to be recursively computed.

In the context of the Forward-Backward algorithm, the EM approach consists of two steps: the E-step
and the M-step [39, p.607-625]. In the E-step, the sufficient statistics of the hidden variables are computed,
given the current estimate of the parameters. In the M-step, the parameters are updated to maximise the
expected likelihood of the observed data, based on the expected sufficient statistics computed in the E-step.
The EM algorithm can then be used to estimate the transition probabilities and emission probabilities of
the HMM, based on the observed sequences and the probabilities computed using the Forward-Backward
algorithm. In the context of surgical procedure and for each surgical task we take the observed time. We
then compute the transitions between phases by modelling the probabilities of moving from one phase to
the next. Monitoring the probabilities of each unobserved hidden state over time, it becomes possible to
predict when a change point in the procedure is likely to occur, indicating a transition to a new phase of the
surgery.

Fearnhead introduced slight variation for the offline BCD by computing from the end of a sequence of
observations and making use of dynamic programming to update the parameters in the opposite direction.
To best quote Fearnhead [34]:

The assumption of independence between segments ensures the necessary Markov property
that is required for Forward-Backward type recursions. For a data set consisting of observations
at discrete times 1, ..., n the recursions are based on calculating the probability of the data from
time t to time n, given a changepoint at time t, in terms of the equivalent probabilities at times
t+ 1, ..., n. Once these probabilities have been calculated for all time instances, it is possible
to directly simulate from the posterior distribution of the time of the first changepoint, and
then the conditional distribution of the time of the second changepoint, given the first, and so
on.
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It achieves this by taking the parameter values to find the posterior distribution of the latent variables,
which in turn are used to evaluate the expectation of the likelihood function on the data in the first step.
Since our aim is to sample from the posterior distribution and to make use of the EM algorithm in estimating
the parameters of a model with hidden surgical phases, the algorithm simply leverages Bayesian inference
tools provided in Section 2.2 and uses sufficient statistics to compute the MLE for those said parameters [39,
p.615-618] in the second step.

We borrow the notations used in Fearnhead [33] with which to introduce the offline BCD algorithm.
For n independent variables x = {x1, ..., xn} and m changepoints τ = {τ1, ..., τm}, with τ0 = 0 and
τm+1 = n, the data belonging to the kth segment is assumed to be independent with the data on other
segments given a set of parameters θk associated with the kth segment for k = 1, ...,m+ 1. Then the data
point xi drawn from a density belonging to the kth segment is denoted here f(xi|θk).

For this project we define the change point priors on the model to be specified by a probability mass
function g(t) for the time between two successive points. This is chosen because we assume we do not have
prior knowledge for the exact number of changepoints. See Fearnhead [33] for a prior based on the number
of changepoints. The cumulative distribution function between two points is then defined as:

G(t) =

t∑
i=1

g(i) (3.2)

Which implies a prior distribution on the changepoints. The likelihood function of evaluating how well
the data for times s ≥ t can fit in one segment is given by:

P(t, s) = P(xt:s|t, s belong to the same segment) (3.3)

With xt:s denoting the sequence of all data points from t to s. We can now begin with the backward
recursion part with defining the likelihood function on the observed data for t = 2, ..., n:

Q(t) = P(xt:n|change point occurred at t− 1) (3.4)

=
n−1∑
s=t

P(xt:n, next change point is at s) + P(xt:n, no further changepoints)

=

n−1∑
s=t

P(next change point is at s) · P(xt:s, xs+1:n|next change point is at s)

+ P(xt:n|t, n belong to the same segment) · P(segment length is > n− t)

=

n−1∑
s=t

g(s+ 1− t) · P(xt:s|t, s belong to the same segment) · P(xs+1:n|change point is at s)

+ P(xt:n|t, n belong to the same segment) · (1−G(n− t))

=
n−1∑
s=t

g(s+ 1− t) · P(t, s) ·Q(s+ 1) + P(t, n) · (1−G(n− t))

Where we drop the notation conditioning on a change point occurring at t−1 for convenience. Similarly,
Q(1) = P(x1:n) since the series begins with a change point on τ0 = 0 by default. Once we iterate over
all the data backwards for t = n, .., 1, the forward recursion for the inference of changepoints take place
where the posterior distribution of the first change point τ1 is given by:

P(τ1|x1:n) =
P(x1:n, τ1)
P(x1:n)

(3.5)

=
P(τ1) · P(x1:τ1 |τ1) · P(xτ1+1:n|τ1)

Q(1)
(3.6)
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=
P(1, τ1) ·Q(τ1 + 1) · g(τ1)

Q(1)

For τj = τj−1 + 1, ..., n− 1. Since there are m changepoints and τm+1 = n is a change point when the
time series terminates, the posterior probably of observing no changepoints is:

P(τm+1|x1:n) =
P(1, n)(1−G(n− 1))

Q(1)
(3.7)

In fact, for any future change point τj having observed a change point at a previous time step τj−1 the
posterior probability is simply:

P(τj |τj−1, x1:n) =
P(τj−1 + 1, τj)Q(τj + 1)g(τj − τj−1)

Q(τj−1 + 1)
(3.8)

Whilst the probability of observing no further changepoints is:

P(τm+1|τj−1, x1:n) =
P(τj−1 + 1, n)(1−G(n− τj−1 − 1))

Q(τj−1 + 1)
(3.9)

A sequential and complete implementation of the Forward-Backward method is presented in Algorithm 2.
In summary, we use Bayes’ Rule from Theorem 1 to compute the posterior distribution over the possible
change point locations given the data. This involves multiplying the prior distribution by the likelihood
function and normalising to obtain a probability distribution. The expectation maximisation for the locations
of the changepoints is then repeated to maximise the posterior probability.

In the univariate case, by Equation 61 in Murphy [46] we know that for data from a univariate Gaussian
with unknown parameters θ = {µ, σ2} the likelihood function is Normal:

P(x|µ, σ2) = N (µ, σ2) (3.10)

With the conjugate prior on parameters θ being from a Normal-Inverse-Gamma (NIG) distribution:

P(µ, σ2) = NΓ−1(µ, σ2|µ0, κ0, α0, β0) (3.11)

= N (µ|µ0, κσ
2) · Γ−1(σ2|α0, β0)

Then due to conjugacy the posterior is also from an NIG:

P(µ, σ2|x) = P(µ, σ2) · P(x|µ, σ2) (3.12)

= NΓ−1(µ, σ2|µ0, κ0, α0, β0) · N (µ, σ2)

The posterior predictive of a new data point is then:

P(xnew|x, µ, σ2) = NΓ−1(µ, σ2|µn, κn, αn, βn) (3.13)

Figure 3.4 demonstrates the offline BCD applied on the T = 1000 randomly generated data points used
in Section 3.1.1. The posterior probability over changepoints is modelled with a Student’s t distributed
likelihood model P(xt:s|µk, κk, αk, βk) where µ0 = 0, α0 = β0 = κ0 = 1. The hyperparameters are
updated as in Sholihat et al. [37]:

µn =
κn−1 · µn−1 + xt:s

κn−1 + 1
(3.14)

σn =

√
2βn · (κn−1 + 1)

κn−1
(3.15)
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Algorithm 2: Offline Bayesian change point detection
1: Define the prior distribution over the parameters:

θ0 = µ, σ ∼ NΓ−1(µ, σ|µ0, α0, κ0, β0)

2: Compute cumulative distribution function:

G(n) = n · λ

3: Initalise data sequence and likelihood of data:

P(n− 1, n) = f(xn|θ0)
Q(n) = f(xn|θ0)

4: Evaluate recursively backwards the data between two points i < j ≤ n− 1:

P(i, j) = f(xi:j |θk)

5: Compute the likelihood function on the observed data:

Q(i) = P(i, j) ·Q(j) · g(j − i) + P(i, j) · (1−G(j − i))

6: Compute probability of next change point:

P(τi|τj , x1:n) =
P(i, j)Q(j)g(j − i)

Q(i)

7: Update distribution function parameters for the nth step.

κn+1 = κn + 1

µn+1 =
κn · µn + x1:n

κn
αn+1 = αn + 0.5

βn+1 = βn +
κn · (x1:n − µn)

2

2(κn + 1)

8: Return to Step 4 while 0 < i < j.
9: Compute posterior distribution over the change point using forward recursion:

P(τj |τi, x1:n) =
P(i, j)Q(j)g(j − i)

Q(i)

10: Return to Step 9 while i < j < n.
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νn = 2αn (3.16)

Where the hyperparameter αk is used to define the new degrees of freedom and βk scales the variance
factor:

κn = κn−1 + 1 (3.17)

αn = αn−1 + 0.5 (3.18)

βn = βn−1 +
κn−1 · (xt:s − µn−1)

2

2(κn−1 + 1)
(3.19)

Figure 3.4: Offline change point detection for T = 1000 synthetic data points modelled from a Gaussian
distribution. The marginal likelihood P(xt:s|θ) ∼ t(xt:s|µn, κn, αn, βn) that data from t to s is produced
by a single model θk is modelled from a Student’s t distributed likelihood model.

The top plot in Figure 3.4 shows the normalised time series data together with three preset and detected
change point locations. The bottom plot depicts the posterior change point probability P(τj |τj−1, x1:n)
with a probability threshold of 0.1. Algorithm 2 distinguishes between the four different segments and
assigns high probability to each detected change point location.

3.2.1 Multivariate likelihood models

Often in surgery there are several data rich surgical tasks to assess. The risk of modelling every data stream
as an individual univariate model is that it ignores the covariance between non-stationary time series and
thus is unable to capture correlations between the features. Xuan et al. [47] provides a full covariance model
approach for modelling the likelihood of data sequence belonging to a single model segment. The proof
follows the extensive Bayesian analysis work found in Section 3.4 and Section 9.5 of Murphy [46].

For a multi-parameter model we therefore employ the multivariate Normal distribution:

P(xp|µ,Σ) = Np(µ,Σ) (3.20)
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The conjugate prior is from a Normal-Inverse-Wishart distribution:

P(µ,Σ) = NIW(µ,Σ|µ0, κ0, ν0,Σ
−1
0 ) (3.21)

With ν degrees of freedom. It can then be shown that the posterior predictive distribution over a new
data point belongs to a t distribution for p dimensions:

P(xnew|xp,µ,Σ, ν) =
Γ(νn+p

2 )

Γ(νn2 )ν
p
2
n π

p
2 |Σn|

1
2

[
1 +

1

νn
(xp − µn)

⊺Σ−1
n (xp − µn)

]− νn+p
2

(3.22)

We demonstrate the difference in methods between the independent features and full covariance models
in Figure 3.5 where the time series data is modelled from Gaussian distributions with p = 3. Both methods
are viable candidates for offline change point detection in multivariate time series and are able to identify
both change point locations at 90 and 178. The full covariance model is able to outperform the independent
features model by assigning a larger change point probability at each location because it captures the correlations
between all three data sequences.

Figure 3.5: Multivariate offline change point detection with and without covariance factor for T = 250
synthetic data points modelled from three Gaussian distributions.

The full covariance model clearly outperforms the independent factor model in the event of 15 change
point locations in Figure 3.6. The former model assigns higher change point probability between each
partition, with the two most interesting changepoints taking place at 1151 and 2193. On both instances the
Gaussian distributions N (µ,Σ) have very different segment mean and standard deviation from the mean,
yet the independent factor model is unable to pick a change point at those locations.

3.3 Bayesian online change point detection

Our aim is to infer the posterior predictive distributionP(xt+1|x1:t). This algorithm is of an online nature
as we are conditioning on past observations with a constant inflow of new data. Inference about particular
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Figure 3.6: Multivariate offline change point detection with and without covariance factor for T = 3156
synthetic data points modelled from three Gaussian distributions with 15 change point partitions.

future observation may then be made by first conditioning on the partition over the current run length rt at
time t. What we then do is assume that observations in different partitions of the data are independent and
deduce the posterior distribution P(rt|x1:t) over the current run length inside of the sequence x1:t. This is
achieved by generating a distribution of the next unseen data point xt+1, given that we had observed data
points xs, xs+1, ..., xt−1, xt for s ≤ t, using a message passing system.

The application of both these posterior distributions inside BOCD is made possible using Bayesian methods
for conditional probabilities and marginalisation that we had encountered in Section 2.1. The goal is to
recursively update the run length estimation with every new data point. Then for BOCD, the posterior
predictive probability of the next data point xt+1, given all the observations so far x1:t, is computed by
taking Equation 2.6 to sum over every possible parameter value of xt+1 that has a joint distribution with
x1:t and then marginalising over the run length rt:

P(xt+1|x1:t) =
P(xt+1,x1:t)

P(x1:t)
(3.23)

=

∑
rt
P(xt+1, rt,x1:t)

P(x1:t)

=

∑
rt
P(xt+1|rt,x1:t)P(rt|x1:t)P(x1:t)

P(x1:t)

=
∑
rt

P(xt+1|rt,x1:t)P(rt|x1:t)

=
∑
rt

P(xt+1|rt,xr
t )P(rt|x1:t)

We denote xrt to be the data points covered only by the current run length rt which contribute to the
prediction of xt+1. The interpretation here is that as new evidence flows in it does not determine our
beliefs, but rather updates our prior beliefs. Thus we arrive at Equation 1 from the paper [35]. It takes in
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essence the form of the predictive distribution showcased in Equation 8.24 from [41, p.268] over a set of
independently and identically distributed training data x = {x1, x2, ..., xn} and model parameters θ that
govern the distribution of x:

P(xnew|x) =
∫

P(xnew|θ)P(θ|x) dθ (3.24)

To recover the density of the next data point xnew, the probabilistic model P(xnew|θ) weighs itself by
the posterior predictive distribution P(θ|x) since it accounts for uncertainty about θ, something that MLE
does not do. To infer a solution from Equation 3.23, it is assumed we can iteratively compute the predictive
distribution that is conditional on some run length rt. All that is left to find is the run length posterior
distribution:

P(rt|x1:t) =
P(rt,x1:t)

P(x1:t)
(3.25)

We again make use of marginalisation to compute the joint distribution inside the numerator:

P(rt,x1:t) =
∑
rt−1

P(rt, rt−1,x1:t) (3.26)

=
∑
rt−1

P(rt, rt−1, xt,x1:t−1)

=
∑
rt−1

P(rt, xt|rt−1,x1:t−1)P(rt−1,x1:t−1)

=
∑
rt−1

P(xt|rt−1,x1:t−1)P(rt|rt−1,x1:t−1)P(rt−1,x1:t−1)

=
∑
rt−1

P(xt|rt−1,x
r
t−1)P(rt|rt−1)P(rt−1,x1:t−1)

The term x1:t−1 drops out from inside the change point prior P(rt|rt−1) because we base our assumption
on the probability of a change point occurring at a given time t. This can be expressed using some intensity
value taken from a distribution of previously observed run length. Similarly, the term rt drops out of the
predictive distribution over the newly observed data point xt because this depends only on the data since
the last change point. Lastly, the joint distribution P(rt−1,x1:t−1) on the previous run lengths probabilities
gives this algorithm its iterative charm and acts as the message passing term.

All that is left for us to do is initialise a change point probability and to set some priors to feed into
the underlying probabilistic model P(xt+1|rt,xr

t ), just as we had done in Equation 2.44. Then similar to
the authors in [35] we assume that a change point has occurred at the initial starting point, forcing the
probability mass for the initial run length to zero P(r0 = 0) = 1, and that the run length either continues
to grow with rt = rt−1 + 1 or a change point has occurred at rt = 0:

P(rt|rt−1) =


H(rt−1 + 1) if rt = 0

1−H(rt−1 + 1) if rt = rt−1 + 1

0 otherwise

(3.27)

Not only does this add simplicity to the model since we only have to worry about two cases with probability
mass to compute, but we can also compute the hazard function once by setting it to be a constant H(·) = p
with some probability of success p. Since the initial run length at the start is zero with probability one, the
associated hyperparameters of this particular run length are simply the priors:

ν01 = νprior (3.28)
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χ0
1 = χprior (3.29)

Assuming that the model is from an exponential family exactly as it was shown in Section 2.2.5, we are set
and ready to iteratively solve the BOCD algorithm. Algorithm 3 compiles these computations together as
we are now equipped to find the marginal predictive distribution in Equation 3.23.

To better understand the BOCD algorithm we provide an illustration in Figure 3.7 which is adapted
from [35]. In the left hand side figure the seven data points xi={1:7} belong to two partitions pi={1,2}
separated by one changepoint on the mean that occurs in the interval t = {3, 4}. The right hand side figure
shows the run length rt as a function of time t passing its probability mass along the solid lines. When a
changepoint occurs, r4 = 0 drops to zero, otherwise run length increases by one. The dashed lines indicate
the possibility of a run length being truncated after a changepoint. In this example we are aware of when
each change point occurs. During other scenarios it is not possible to explicitly know when the run length
drop down to zero. However, the message passing term will continue travelling along this trellis since we
are dealing with probabilities from the joint distribution, that is why the dashed lines are also important to
consider here. Note that these message passing terms do not only travel along the diagonal for illustrative
purposes only, but these also have a strong connection to how the algorithm works numerically.

1 2 3 4 5 6 7

p1

p2

changepoint

t

xt

1 2 3 4 5 6 7
0

1

2

3

4

r3 = 2

r7 = 3

t

rt

Figure 3.7: Changepoint model expressed in terms of run lengths. Figure adapted from [35].

We aim to further improve the understanding surrounding how Algorithm 3 deals with the message
passing term numerically by showing how it is used in computing the posterior distribution over the current
run length in Figure 3.8. The left hand side shows the run length posterior distribution with a logarithmic
scale, where darker shades indicates higher probability of the run length increasing by one. These probabilities
are computed along the diagonal just as we had illustrated for Figure 3.7. To obtain the posterior distribution
at time t it is best to visualise the probabilities as a matrix of values, which is done in the right hand side
figure. This is the exact same visualisation only mirrored, but in reality is the way most programming
languages would populate this matrix.

Suppose then that we find ourselves in the middle column of the matrix in Figure 3.8 at time t = 4 (shown
in dashed blue area) and we wish to follow the steps of Algorithm 3 in order to compute the posterior
distribution. First we observe the new data point x5. We then evaluate the predictive probability of x5
under the posterior predictive distribution associated with the previous run length at time t = 4:

πr
5 = P(x5|νr5 ,χr

5) (3.30)

For r = {0, 1, 2, 3, 4}. The two posterior distributions are discussed in Section 3.4 and Section 3.5. We
then compute two near identical steps. To obtain the growth probability for the run length increasing by a
step size of one (shown in solid blue area) we simply make use of the bookkeeping being performed inside
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Algorithm 3: Bayesian online change point detection
1: Initalise change point and priors:

P(r0 = 0) = 1

ν01 = νprior

χ0
1 = χprior

2: Observe a new datum xt.
3: Compute the predictive probability of the underlying model over the current run length:

πr
t = P(xt|νrt ,χr

t )

4: Compute the growth probabilities for every possible run length value:

P(rt = rt−1 + 1,x1:t) = P(rt−1,x1:t−1) · πr
t · (1−H(rt − 1))

5: Compute the change point probabilities for every run length dropping to zero:

P(rt = 0,x1:t) =
∑
rt−1

P(rt−1,x1:t−1) · πr
t ·H(rt−1)

6: Compute the evidence:

P(x1:t) =
∑
rt

P(rt,x1:t)

7: Compute the posterior distribution over the current run length:

P(rt|x1:t) =
P(rt,x1:t)

P(x1:t)

8: Update the sufficient statistics:

ν0t+1 = νprior

χ0
t+1 = χprior

νr+1
t+1 = νrr + 1

χr+1
t+1 = χr

t + u(xt)

9: Perform prediction of marginal predictive distribution from Equation 3.23

P(xt+1|x1:t) =
∑
rt

P(xt+1|rt,xr
t ) · P(rt|x1:t)

10: Return to Step 2.
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of the matrix by shifting the growth probabilites at the previous time step t = 4 down and to the right and
multiplying with:

P(r5 = r4 + 1,x1:5) = P(r4,x1:4) · πr
4 · (1−H(r4 − 1)) (3.31)

The mere difference in computing the change point probability (shown in solid red area) is we sum over
all possible values of the run length at time t = 4:

P(r4 = 0,x1:4) =
∑
r4

P(r4,x1:4) · πr
5 ·H(r4) (3.32)

Of course we normalise across all values inside that particular column of the matrix before filling in the
remainder rows of that column with zero values. These steps are repeated for the remainder of the columns
before then plotting the results.

1 2 3 4 5 6 7
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1
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3

4
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7

t

rt
P(r5 = 0 | x1:5)

P(r5 = l | x1:5)

Figure 3.8: Run length posterior distribution P(rt|x1:t) for the changepoint model expressed as a matrix of
probability values with a logarithmic scale. The left hand side graph is none other than a mirrored matrix
that is used for bookkeeping.

3.4 Gaussian distributed posterior

Adams et al. [35] had presented three case studies which involved modeling of the data from a Gaussian
distribution with unknown mean, Gaussian distribution with abrupt changes to the piecewise constant
variance, and discrete data from a Poisson distribution. For our case on hand we forego the latter two cases.
Firstly we can assume that a surgeon is not all of the sudden able to perform a surgery task in record time
over night, but rather the learning process has a slow moving trend, hence there are no abrupt changes to
the variance. Secondly since surgery task times are continuous we have no use of modelling the data using a
Poisson distribution.

Instead, we model the posterior predictive probability P(xt+1|x1:t) = N (x|µn, σn + σ) as a Gaussian
process with unknown mean µ and a known variance σ2, whilst also incorporating priors µ0, σ2

0 . This
assumption that the mean is unknown but the variance is within some range follows from Section 2.2.2. The
parameters µn, σ

2
n are none other than µMAP, σMAP after n data points had been observed. See Section 2.2.2

for detail. The unknown mean µ ∼ N (µ|µ0, σ
2
0) changes according to the priors.

The run length probability together the probability of change points are shown in Figure 3.9. We make
use of normalising the run length probabilities P(rt,x1:t) for improved numerical stability. The original
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method in [35] is a bit difficult to make use of to the untrained eye in an industry setting due to the
pixelated regions of probability. Therefore we introduce a clear cut method for surgeons and clinical staff
to understand whether a change point had taken place.

Firstly, we set the segment length lt to be our assumption of how many data points are required before
change point is detected. Note that the run length probability is a matrix of values, with each run length
traveling diagonally upwards. Setting lt = x is equivalent to observing the run length probability for row
x (from the bottom) of this matrix. Secondly, we calculate the average run length probability of row x. If
two neighbouring pixels are on either side of the average probability, we mark the column indices of these
probability values as the inversion points. Thirdly, by setting a probability threshold pt and seeing which
column values exceed this then signals the occurrence of a change point.

To showcase this method at work we generated T = 1000 random data points across four different
segments with varying mean. This is the exact same synthetic data used in Section 3.1.1 to study learning
curves using the CUSUM analysis method. The three change points for this dummy test data are set by us
so to assess whether the algorithm is able to detect those. The hazard function of a change point occurring
at time t was set to H(·) = 4 × 10−3, with the prior parameters being µ0 = 0, σ2

0 = 2 and the known
variance of the data σ2 = 1.

Figure 3.9: Bayesian online change point detection for T = 1000 synthetic data points modelled from
a Gaussian distribution. The growth probability of run length P(rt,x1:t) modelled from a Gaussian
distribution is able to pick up the three change points with almost near perfection.

The top plot in Figure 3.9 shows the normalised values over time, with the data points normalised around
0. At each time step t, the predictive mean µ̂t is modelled from a Gaussian distribution and is plotted using
a solid black line. The middle plot shows the posterior probability of the current run length P(rt|x1:t) at
each time step using a logarithmic colour scale. Darker pixels indicate higher probability of a run rt of length
t emerging. The vertical black lines indicate that we set a change point to take place inside the dummy test
data, whilst the red dotted lines suggest that the BOCD algorithm detected a change point. The bottom
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plot tracks the run length probability of each data point belonging to a segment of length lt = 50, whilst
the probability threshold was set to pt = 0.1.

3.5 Student’s t distributed posterior

In the event that a new surgeon had started and completed only a handful of surgeries, the sample size
may be too small to model the BOCD using a Gaussian process. We therefore also investigate the novel
case where both the mean and variance are unknown and are distributed according to a Normal-gamma
distribution µ, σ ∼ NΓ(µ, σ|µ0, α0, κ0, β0). The posterior predictive probability is then t-distributed

P(xt+1|x1:t) = t2αn

(
x|µn,

βn(κn+1)
αnκn

)
with mean µn, variance βn(κn+1)

αnκn
and degree of freedom 2αn. For

further detail and derivations we refer the reader to Section 3 in [46].

The hyperparameter α controls the tails of the run length growth probability distribution. Larger values
mean less mass in the tails of the distribution, with more data points being clustered around the mean.
This means the likelihood of extreme run length values is small and changepoints are more prevalent. These
results are antithetical to the MAP estimate derivations from Section 2.2. Meaning if the hyperparameters
are poorly chosen, the resulting prior distribution may not accurately capture our beliefs about the true
parameters, and this can lead to incorrect or biased posterior estimates.

As the value of α increases, Student’s t-distribution becomes more spread out with more probability in the
tails, resulting in less changepoints detected. β measures the deviation of the distribution from a symmetric
distribution with zero mean. Similarly to α, smaller values of β means that the distribution is centered

Figure 3.10: Bayesian online change point detection for T = 1000 synthetic data points modelled from
a Student’s t distribution. The growth probability of run length P(rt,x1:t) modelled from a Student’s t
distribution are also able to pick up the three change points with almost near perfection when presented
with a large data set.
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around zero. The Student’s t-distribution becomes more skewed as the value of β increases. thus taking the
truncated distribution, more extreme values for the run length growth are expected.

The hyperparameter κ refers to the precision of the estimates. This scale parameter is reciprocal of the
standard deviation of the distribution. Thus as it increases the distribution becomes more spread out,
resulting in fewer changepoints. In contrast, smaller values of κmeans the distribution is more concentrated
around the mean. Smaller possible values of run length growth mean more occuring changepoints. Finally,
the hyperparameter µ represents the mean of the distribution. We further show the achieved results under
various initial hyperparameter settings in Section 3.7.

Student’s t-distribution looks almost identical to the standard Normal distribution but has more distribution
in its tails. Both assume a normally distributed population but the probability of getting values very far
from the mean is larger with a t-distribution. This has the benefit of mitigating the effect of outliers. The
assumption here is that Student’s t distribution should be used for modelling the early learning stages of
using the Mako RAS system. With more observations the degree of freedom increases and the t-distribution
approaches the standard Normal distribution. We show this method at work in Figure 3.10.

At each time step t, the predictive mean µ̂t is modelled from a Student’s t distribution and is plotted
using a solid black line. The predictive probability of the underlying model over the current run length
πr
t (Step 3 from Algorithm 3) is being modelled from a Student’s t distribution with parameters α0 =

1, β0 = 0.1, κ0 = 2, µ0 = 0. The segment length and probability threshold are lt = 50 and pt = 0.1
respectively. The results of modelling the run length from a Student’s t distribution in Figure 3.10 is akin
to the results found in Figure 3.9. This is reasonable because as the sample size increases, the Student t
distribution approaches Gaussian.

3.5.1 Multivariate change point detection

Akin to the offline method presented in Section 3.2.1, when modelling change point detection with Algorithm 3
for multivariate data from an online nature it is beneficial to model correlations between features using
a covariance matrix. We opt to model the posterior predictive probability where the parameters in the
multivariate case from Equation 3.22 are updated as in Wang et al. [36]:

µn,p =
κn−1 · µn−1 + x1:n,p

κn−1 + 1
(3.33)

κn = κn−1 + 1 (3.34)

αn = αn−1 + 0.5 (3.35)

βn,p = βn−1,p +
κn−1 · ((x1:n,p − µn−1,p) · (x1:n,p − µn−1,p)

T)

2(κn−1 + 1)
(3.36)

Where the segments dimension is simply denoted using p. Figure 3.11 presents the multivariate BOCD
method at work on change point detection for three Gaussian distributed data streams. The run length
plotted as log scale probabilities in the middle plot clearly comes to an end with the start of a new partition
segment. The assigned change point probabilities are also significantly high, although not as large as in
Figure 3.5 when computing with Algorithm 2 which evaluates on all the data in a single batch due to its
offline nature.

Multivariate BOCD applied to data with many partitions in Figure 3.12 is able to rely on the auxiliary
variable in run length to assign higher probability of a change point occurring than in Figure 3.6. The
benefit of this method is that we both take into account the multivariate covariance structure and obtain
the same parameter update rule as in the univariate case without loss of generality [36].
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Figure 3.11: Multivariate BOCD for T = 250 synthetic data points modelled from three Gaussian
distributions with change point locations at 90 and 178.

3.6 Small data set

The downfall of CUSUM analysis as was shown in Section 3.1.2 is that the number of observations heavily
influences whether a learning curve is to be found, particularly when data is scarce such as when a new
surgeon is employed by a clinic. BOCD can instead detect shifts in the data which is helpful because it
remains invariant with respect to the amount of data used. We motivate further what happens when data is
scarce. In particular examining whether Algorithm 3 is able to detect change points correctly over a shorter
range of data points, and whether the growth probabilities on the run lengths should be modelled from a
Gaussian distribution or a Student’s t.

For this purpose we randomly generated T = 30 data points and again chose three different segments
with varying mean. This index level was chosen because it is widely accepted that Student’s t distribution
outperforms the Gaussian distribution when observed data points total n < 35. The hazard function for
a change point to occur at time t was set to H(·) = 1

15 . The prior parameters for growth probabilities of
run lengths modelled from a Gaussian distribution were set to µ0 = 0, σ2

0 = 0.5. A larger value for known
variance of the data σ2 = 2 was chosen in order to highlight the increased variability in the performance of
a surgical task we can expect to observe at the beginning of training. For Student’s t distribution the prior
parameters were chosen to be α0 = 3, β0 = 0.05, κ0 = 0.1. Since there are now less data points, the
segment length was lowered to be lt = 5 whilst the probability threshold remained at pt = 0.1. The results
of using the BOCD on this smaller data set are presented in Figure 3.14.
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Figure 3.12: Multivariate BOCD for T = 3156 synthetic data points modelled from three Gaussian
distributions with 15 change point locations.

3.7 Comparison between methods

Both the Offline BCD and BOCD algorithms are superior when comparing our results versus CUSUM
analysis found in Figure 3.1. This is because the algorithms are better suited for detecting multiple shifts
in the data process, as opposed to only one inflection point. This is more realistic therefore of a real world
scenario where we might expect surgeons to follow various phases in their training such as from being an
apprentice to intermediate, then to advanced, before finally becoming an expert in operating the MAKO
RAS system. By bringing all our results together it is clearer why this is so.

3.7.1 Gaussian versus Student’s t distribution

When it comes to modelling the posterior from a Gaussian and Student’s t distribution then the results can
be replicated between the former method with the correct choice of hyperparameters in the latter method.
The top plot in Figure 3.13 and Figure 3.14 shows the normalised values over time, with the data points
normalised around 0. The four different coloured vertical lines indicate real location of a change point, as
well as where the three discussed methods identify a change point to have occurred. The middle plot tracks
the run length probability. The bottom two plots compare using logarithmic colouring scale the probability
of the current run length with growth probabilities being modelled from either a Gaussian or t-distribution.

Both BOCD methods are very good at detecting all three change points for large amount of data, achieving
near perfect results. There is also no substantial difference between the bottom two plots in terms of run
length distribution. On the other hand, using CUSUM analysis completely misses the mark of where either
one of the three change points lie and incorrectly assigns the only change point it is able to detect.

The meager difference we observe is the run length modelled from a Student’s t distribution over a

41



Figure 3.13: Comparison of change point detection methods for T = 1000 synthetic data points.

Gaussian distribution fitting the detected change point tighter to the real location of each change point,
in particular the middle change point is identified exactly. Furthermore, Student’s t distribution is able to
compute the change point probability in accordance with the order of the change in magnitude of the varying
mean between the four different segments. A larger shift in the mean between the segments is then given a
greater change point probability in the middle plot. Despite observing little difference in the distributions
in computing the posterior, we opt to model with Student’s t distribution in Chapter 5 because we assume
that we have no prior knowledge of the models parameters.

From Figure 3.14 we see that both BOCD methods perform well and detect the main change point at index
12. Student’s t distribution outperforms the Gaussian distribution because it assigns a higher probability of
change point occurring. It also picks up that a very early change point had taken place at index 1 and that
the segment data that follows is different, something that the Gaussian is unable to distinguish correctly.
Once again CUSUM analysis overshoots and assigns a change point prediction at index t = 24.

Furthermore, judging from the lack of variation in the pixel colour intensity inside of the bottom right
plot, which depicts the growth probabilities of possible run lengths, the Gaussian assigns almost equal
probabilities across the board. Albeit the BOCD identified a change point had taken place in Figure 3.14, the
growth probabilities suggest that the BOCD algorithm, especially for the top diagonal, interprets most if not
all of the data as belonging to the same run length. Concurrently, a different conclusion can be drawn from
Figure 3.14 and made much more assertively. The bottom left plot clearly distinguishes the two different
segments either side of the change point at index 12 as the shades of pixels distinctively contrast each other
on the diagonal.

Lastly, the use multivariate models in Bayesian analysis are a complimentary addition when it is necessary
to analyse several data streams. The posterior predictive distribution is able to pick up correlations between
features and therefore identify a change point location more accurately. This has further benefit within
a surgical workflow that involves completing many short subtasks. Employing Bayesian statistics paints a
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Figure 3.14: Comparison of change point detection methods for T = 30 synthetic data points.

fuller picture of the learning phases than with many univariate CUSUM analysis models and we ought to
examine this on industry data in Chapter 6.

3.7.2 Offline versus online detection

In seeking to understand whether our analysis of surgical data would benefit from an offline algorithm
when compared with one from an online nature, we witnessed that both perform equally well in the univariate
case. What more is that both offline BCD and BOCD are able to leverage the covariance structure between
data streams in the multivariate case. We run further experiments to see which method is superior under
distinct values for the variance of the data.

One clear advantage the offline method holds is hindsight by iterating over the data twice using the
EM approach. On the other hand, the online method can incrementally detect changepoints as the data
arrives. This method also benefits from the initial hyperparameters that can determine where a change
point is detected. Sholihat et al. [37] have extensively shown the role of parameters for efficient change
point detection in BOCD.

The authors in [37] had shown using a probability distribution function for the predictive distribution
of a newly observed data point since the last change point of a Student’s t-distribution that larger initial
hyperparameter values of α0, β0 increases the probability density function P(xt|rt−1,x

r
t−1), which in turn

decreases the probability of a change point occurring. Additionally, the possibility of a change point increases
under small values of α0, β0 since decreasing the probability density function of the growth probability in
turn increases the probability of a change point occurring. These results match the theoretical rationale
presented in Section 3.5.

An additional hyperparameter λ is used to formulate the hazard function H(·) = 1
λ . Larger values of

λ clearly decrease the hazard rate and with that also the probability of a change point decreases. On the
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contrary, if λ decreases, then the changepoints inter-arrival time decreases, and the number of changepoints
increases. For the synthetic data sets we keep λ unchanged at λ = N for data sequence with length N . This
was decided because under real life scenarios we often have no knowledge of how many changepoints exist.
Therefore, we instead focus on the initial values of hyperparameters α0, β0, κ0.

To compare both offline and online methods we generated three synthetic data sets with lengthN = 1117
across which 15 changepoints occur. The segments of these time series are randomly assigned a length in
the range of 50 − 80 and a segment mean in the range of 0 − 1.5. For the variance of each segment we
selected from three possible range values of limited variance 0 − 0.1, moderate 0 − 0.5 and substantial
0.5 − 1.5 in order to test the robustness of each algorithm against fuzzy data. Additionally, in order to
put more emphasis on a change point occuring the variance of the data points increased by a factor of 0.01
across each segment before resetting at the next change point. With the Offline BCD a uniform distribution
between two successive points g(i) = 1

N was used. For BOCD the hazard function used remained constant
H(·) = 1

N on the run length between two changepoints.

The experiments assess the precision accuracy of these methods and include three assessment criteria using
a radius of δ on which to base the findings. These include the number of changepoints correctly identified
within the range of δ = 5, the number of changepoints correctly identified within the range of δ = 10
and all the incorrectly identified changepoints outside of this radius. In Table 3.1 this precision accuracy is
assessed on time series data with limited variance across segments.

Precision

Method
Offline Online Online Online

α0 = 1 α0 = 5 α0 = 0.1
β0 = 1 β0 = 5 β0 = 0.1
κ0 = 1 κ0 = 5 κ0 = 0.1

CP identified with δ = 5 15 11 6 15
CP identified with δ = 10 15 11 6 15
Incorrectly identified CP 0 0 0 0

Table 3.1: Precision accuracy comparison between Offline BCD versus BOCD under various
hyperparameters. The variance of the data points was limited across all sixteen segments.

The Offline BCD correctly picks up all 15 changepoints, whilst incorrectly identifying zero others. BOCD
is able to identify 11 changepoints with initial hyperparametersα0 = β0 = κ0 = 1, whilst the performance
drops by identifying 6 changepoints when increasing the initial hyperparameters values. The BOCD is able
to match the performance of the Offline BCD algorithm only when the initial hyperparameter values are
lowered to α0 = β0 = κ0 = 0.1 with all 15 changepoints identified correctly.

Increasing the segments variance to moderate level brings about new challenges for both algorithms by
having to contend with greater spikes in the time series that may or may not exhibit behaviour of a change
point. The results in Table 3.2 show that the overall precision in terms of correctly identified change points
stays as before and the Offline BCD continues to outperform the BOCD algorithm under various initial
hyperparameter settings. Increasing the segments variance even further to substantial level in Table 3.3
brings about a decrease in the precision accuracy. The Offline BCD outperforms BOCD but also incorrectly
identifies a greater number of changepoints that may had been caused due to greater spikes caused as a
results of substantial variance inside the time series.

Intragroup analysis for the BOCD reveal that with smaller initial hyperparameter values the online algorithm
is able to correctly identify more changepoints. These findings are inline with Sholihat et al. [37]. The stark
difference is when we introduce substantial level of variance to the time series. In that instance, it is best
to not choose the smallest initial hyperparameter values as shown in Table 3.3. Although this did come at a
cost of incorrectly identifying more changepoints also.
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Precision

Method
Offline Online Online Online

α0 = 1 α0 = 5 α0 = 0.1
β0 = 1 β0 = 5 β0 = 0.1
κ0 = 1 κ0 = 5 κ0 = 0.1

CP identified with δ = 5 13 11 7 13
CP identified with δ = 10 15 12 7 14
Incorrectly identified CP 0 0 0 0

Table 3.2: Precision accuracy comparison between Offline BCD versus BOCD under various
hyperparameters. The variance of the data points was moderate across all sixteen segments.

Precision

Method
Offline Online Online Online

α0 = 1 α0 = 5 α0 = 0.1
β0 = 1 β0 = 5 β0 = 0.1
κ0 = 1 κ0 = 5 κ0 = 0.1

CP identified with δ = 5 8 7 5 6
CP identified with δ = 10 9 7 5 6
Incorrectly identified CP 3 2 0 1

Table 3.3: Precision accuracy comparison between Offline BCD versus BOCD under various
hyperparameters. The variance of the data points was substantial across all sixteen segments.

3.7.3 Multivariate offline versus online detection

Similar experiments in the multivariate case are conducted in order to mimic the real world setting where
several surgical steps have to be analysed concurrently. For this we generated three distinct time series
of length N = 1041 using the aforementioned range values from the univariate case. The one common
attribute of these time series is they all share the same change point locations. We begin with generating three
time series with limited variance across segments in Table 3.4. We observe the Offline BCD to outperform
the BOCD in terms of precision accuracy for identifying correctly the location of changepoints. Smaller
initial hyperparameter values for the online method improve the algorithms performance in identifying all
15 change point locations within a radius of δ = 5.

Precision

Method
Offline Online Online Online

α0 = 1 α0 = 5 α0 = 0.1
β0 = 1 β0 = 5 β0 = 0.1
κ0 = 1 κ0 = 5 κ0 = 0.1

CP identified with δ = 5 15 13 2 15
CP identified with δ = 10 15 13 2 15
Incorrectly identified CP 0 0 0 0

Table 3.4: Precision accuracy comparison between Multivariate Offline BCD versus Multivariate BOCD
with various hyperparameters. The variance of the data points was limited across all sixteen segments.

Increasing the segments variance to moderate produces similar results in Table 3.5. The offline method
continues to outperform the online algorithm despite tuning the initial hyperparameter to three distinct
values. Increasing the segments variance to substantial we observe a significant drop in Table 3.6 in terms of
precision accuracy when using the Offline BCD. Furthermore, the offline method also incorrectly identifies
2 change point locations that are caused due to fluctuations inside the segments. On the other hand, BOCD
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with α0 = β0 = κ0 = 1 is able to identify 11 changepoints correctly across a radius of δ = 10, whilst not
mistakenly identifying any other locations as potential changepoints. It is therefore best for the practitioner
to use the online method in the event that the multivariate time series data displays more variability between
data points.

Precision

Method
Offline Online Online Online

α0 = 1 α0 = 5 α0 = 0.1
β0 = 1 β0 = 5 β0 = 0.1
κ0 = 1 κ0 = 5 κ0 = 0.1

CP identified with δ = 5 15 13 9 15
CP identified with δ = 10 15 13 9 15
Incorrectly identified CP 0 0 0 0

Table 3.5: Precision accuracy comparison between Multivariate Offline BCD versus Multivariate BOCD
with various hyperparameters. The variance of the data points was moderate across all sixteen segments.

Precision

Method
Offline Online Online Online

α0 = 1 α0 = 5 α0 = 0.1
β0 = 1 β0 = 5 β0 = 0.1
κ0 = 1 κ0 = 5 κ0 = 0.1

CP identified with δ = 5 6 10 7 3
CP identified with δ = 10 7 11 8 3
Incorrectly identified CP 2 0 0 0

Table 3.6: Precision accuracy comparison between Multivariate Offline BCD versus Multivariate BOCD
with various hyperparameters. The variance of the data points was substantial across all sixteen segments.

3.8 Summary

Throughout this chapter we had introduced CUSUM analysis, Offline BCD and BOCD algorithms, whilst
exemplifying working examples and the robustness of each method in identifying change point locations.
We had also ran experimental comparisons on the best practice of using these methods for small and large
data sets, sampling from Gaussian or Student’s t-distribution for the posterior probability, and tested for
robustness of the offline versus online algorithms with univariate and multivariate data. In summary, this is
how to use change point detection algorithms to the best of our ability:

1. CUSUM analysis is only able to detect at most one change point.

2. Offline BCD and BOCD algorithms allow for multiple change point detection through recursive
updating of the run length probability.

3. Bayesian change point detection methods are more robust than CUSUM for detecting multiple shifts
in univariate and multivariate data streams.

4. When the variance of data is low, offline method outperforms the online method. Conversely, both
methods struggle under high fluctuations.

5. Online data processing can outperform offline batch data via the inclusion of an auxiliary probability
variable evaluating whether the data belongs to the same run length.
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6. Adapting the BOCD algorithm to the multivariate case is straightforward due to conjugacy in Bayesian
statistics.

7. It is up to the user or practitioner to set the probability of a change point occurring, as well as the
initial priors and hyperparameters.

8. In the online method, higher hazard function and smaller initial hyperparameter values decrease the
run length growth probability and in turn increase the possibility of a change point.

9. For large data sets it is reasonable to model run lengths from a Gaussian distribution.

10. When data is scarce, run lengths modelled from a t-distribution are preferred due to being less prone
to influence from outlier data points.
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Chapter 4

Experimental results of learning curves

In this chapter we showcase and discuss results that help us on the way to answering Question 1. Each
TKA surgery is comprised of several principal tasks that are recorded using the Mako RAS system. Some of
these tasks originate in classical surgery, such as for instance the total surgery time and bone sawing time.
Whilst other tasks are unique to the Mako RAS system. These tasks include but are not limited to the
bone registration time, which is used to communicate with the system as to where the haptic boundaries are
located, and ligament balancing, which assists the surgeon in setting anatomical alignment to match that
of the pre-surgical plan in a patient. This makes the surgeons job more straightforward but also adds an
additional phase in learning how to operate the new system.

To assess the learning curves in operating the MAKO robot, we take one task at a time and construct time
series of the surgeons performance across consecutive surgeries. CUSUM analysis is then used in identifying
whether inflection points on the learning curve exist and the surgeon is able to transition between the
inexperienced to the proficient phase, thus displaying an elevation in the skill of using the RAS system.

We highlight how surgeons learn to perform RAS with the Mako by analysing at which point the transition
from being the inexperienced to the proficient stage takes place and compare our work with alongside that
of Vermue et al [32] , Kayani et al. [30] and Tay et al. [31]. This is done for the total surgery time from 299
consecutive surgeries, as well as the operative stage times of implant planning, ligament balancing, bone
registration, bone cutting and bone sawing from 446 consecutive surgeries. Inflection points of learning
curves are identified for all six tasks, however, the analysis had to be conducted across three time periods
due to the Covid - 19 pandemic.

4.1 Total surgery time

The surgical time is described as the skin to skin contact time during which the surgeon is operating on
the knee. This is from the time the first incision is made to when the last stitch is closed. We visualise the
surgical time in minutes of surgeon 1 in Figure 4.1. Observe the gap in successive surgeries at the clinic
of approximately three months between April and June of 2020 which occurred as a result of the world
grappling with the Covid-19 pandemic. This world event forced the clinic to be shut until the safety of each
workplace was assessed.

Once new legislation that prioritised the safety of all patients and staff could be implemented, the working
environment was different. This is noteworthy of mentioning because from Figure 4.1 we observe a downward
trend taking place leading up to the eve of Covid 19 in March 2020, showing that a surgeon is honing the
skills in using the RAS system. However, immediately after the resumption of work in June of 2020, there is
an evident change in trend of surgical time. This prolonged period out of work, combined with new health
legislation being set for the workplace, resembles signs of a surgeon retraining in how to operate as part of
this new and almost alien environment.
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Figure 4.1: Surgeon 1 surgical time in minutes.

We therefore perform CUSUM analysis on three time periods in Figure 4.2. We do this across all TKA
surgeries performed in the clinic by the surgeon, as well as splitting those surgeries into two periods: first
period leading up to March 2020 we refer to as pre-Covid-19 and the second from June 2020 onwards we
refer to as post-Covid-19. The latter period marks the period post when societal norms had changed and the
clinic was forced to shut, as opposed to the complete eradication of the Covid 19 pandemic.

For the three aforementioned periods a third degree polynomial curve is fitted for each of the CUSUM
charts and the inflection point is defined as being found at the global maxima. The phase before the
inflection point is called the inexperienced phase and phase after is the proficient phase. Akin to Figure 1
in Kayani et al. [30], both phases benefit from being plotted to check whether the datapoints fit a linear
regression trend. This results in a three by three grid of nine plots in Figure 4.2.

The number of surgeries included in the CUSUM analysis stood at 299, with 106 and 193 surgeries taking
place pre- and post-Covid- 19 respectively. This total case load is threefold compared with the average case
load of all three high case volume surgeons reported in Vermue et al. [32], fivefold greater than the cases
reported in Kayani et al. [30] and tenfold greater than the average case load of the three surgeons reported
in Tay [31]. An inflection point is revealed in Figure 4.2a after 172 consecutive surgeries performed by the
surgeon. Our results show a much longer learning phase for the surgeon than only after 7 surgeries found
in [30], the 11, 43 and 22 in [32] or the mean inflection point of 16 found in [31]. However, the maximum
attainable CUSUM value only just surpasses 40, making it at a minimum four and at a maximum fifteenfold
smaller than the values achieved elsewhere. There is little difference than than average attained CUSUM
value in [31].

The visible issue for the learning curve found in our data is that the CUSUM chart exhibits two humped
peaks either side of the date on which the surgery clinic closed for three months during the start of the
pandemic. The first hump in Figure 4.2a at approximately 70 surgeries is followed by a sharp reduction in
the running CUSUM value, indicating the surgeon began to improve with a reduction in the total surgery
time before the pandemic. There is then an increase in the CUSUM value, which ultimately culminates
in a second hump forming at approximately the 220 surgery mark, following the reopening of the clinic.
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(a) Learning curve. (b) Before inflection point. (c) After inflection point.

(d) Pre-Covid- 19 learning curve. (e) Pre-Covid- 19 before inflection point. (f) Pre-Covid- 19 after inflection point.

(g) Post-Covid- 19 learning curve. (h) Post-Covid- 19 before inflection
point.

(i) Post-Covid- 19 after inflection point.

Figure 4.2: CUSUM analysis for the surgical time in minutes of Surgeon 1.

Fitting linear regression in Figure 4.2b and Figure 4.2c further exhibits that the CUSUM analysis method
is not perfect when used in this scenario because the datapoints deviate further from the trend in both the
inexperienced and proficient phases.

The learning curves for the pre- and post-Covid- 19 also exhibit much longer learning phases at 61 and
115 (222 if counted consecutively) surgeries. Once again the maximum attainable CUSUM values are much
smaller when compared with [30, 32]. The linear regression exhibits a much tighter fit to the trend in
Figures 4.2e, 4.2f, 4.2h, 4.2i. This further reaffirms our intuition that the CUSUM analysis method should
be applied independently to each period, rather than bunched together for all consecutive surgeries before
and after the pandemic.

4.2 Ligament balancing time

The precision of implant positioning utilises gap balancing, with the time to apply proper tension to the
knee joint in extension and flexion being recorded via the ligament balancing time. The surgeon can then
finalise the implant plan to obtain near equal medial and lateral gaps, as well as balanced extension and
flexion gaps [38]. An assessment of the resulting joint gap balance is performed using the spacer block.
The ideal knee gap balance generally has near equal joint tension in extension and flexion for medial and
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lateral compartments. Asymmetric gaps may indicate that soft tissue releases or post-resection implant
adjustments are necessary. From conversation with the three surgeons at the clinic it became clear that
ligament balancing was a cumbersome task to learn when it came to using the Mako RAS system.

The number of surgeries used in the analysis for the ligament balancing time stood at 446, with 167 and
279 belonging to the pre- and post-Covid- 19 periods respectively. An inflection point of all the surgeries
taken consecutively was found at 273 in Figure 4.3a. Both the inexperienced and proficient phases display
good fits to the trend line in Figures 4.3b , 4.3c. With CUSUM analysis Vermue et al. [32] had found no
learning curve for gap balancing. Both Kayani et al. [30] and Tay et al. [31] found a statistically significant
difference for the ligament balancing time in minutes between the first ten cases and the rest, but with no
learning curve being found for this operative stage.

(a) Learning curve. (b) Before inflection point. (c) After inflection point.

(d) Pre-Covid- 19 learning curve. (e) Pre-Covid- 19 before inflection point. (f) Pre-Covid- 19 after inflection point.

(g) Post-Covid- 19 learning curve. (h) Post-Covid- 19 before inflection
point.

(i) Post-Covid- 19 after inflection point.

Figure 4.3: CUSUM analysis for the ligament balancing time in minutes of Surgeon 1.

When the pre- and post-Covid- 19 periods are analysed independently despite a global maxima point is
found for the former after 127 surgeries in Figure 4.3d, this inflection point is not convincing due to its
arrival after a global minima. This suggests that the surgeon worsened in terms of operative stage time
rather than improved. As we know from the surgeons feedback, the complexity of this task may indeed
require longer training time and hence we see more variability in the operative stage time. We conclude that
no learning curve is to be found for the first batch of surgeries using CUSUM analysis. In the latter case a
learning curve is found at 141 (308 consecutive surgery) in Figure 4.3g. Both phases fit the linear regression
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trend very well in Figures 4.3h , 4.3i.

4.3 Bone registration time

Bone registration is a process whereby a surgeon collects point markers on the bony surface of the knee
that in turn enables the RAS to track patient anatomy in real time. It is comprised of three distinct steps:
patient landmarks (used in setting the mechanical axes of the bones), bone checkpoints (collects and verifies
the checkpoints of the femur and tibia), and bone registration and verification (consisting of forty points
the surgeon inserts a sharp probe tip into) [38]. To the non-surgical audience, this last step can be envisaged
as looking at a screen whilst typing on a keyboard, a skill that does not come naturally at first but has the
potential of improving with practice. Owing to the fiddly nature of these tasks, the bone registration is an
extremely intricate step that allows for more precise implant positioning and resection during surgery. It
therefore requires guile and experience to perform quickly.

(a) Learning curve. (b) Before inflection point. (c) After inflection point.

(d) Pre-Covid- 19 learning curve. (e) Pre-Covid- 19 before inflection point. (f) Pre-Covid- 19 after inflection point.

(g) Post-Covid- 19 learning curve. (h) Post-Covid- 19 before inflection
point.

(i) Post-Covid- 19 after inflection point.

Figure 4.4: CUSUM analysis for the bone registration time in minutes of Surgeon 1.

Akin to ligament balancing, the surgeons at the clinic had expressed similar notions of complexity in
learning how to perform bone registration quickly and becoming proficient. We find an inflection point
takes place at 161 surgeries in Figure 4.4a, with the inexperienced phase of the learning curve displaying a
steep trajectory relative to the proficient phase thus indicating Surgeon 1 is able to improve fast in the short
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term but slower in the long term. Both Kayani et al. [35] and Tay et al. [43] found statistically significant
differences for the bone registration time in minutes between the first ten cases and the rest, but with no
learning curve being found for this operative stage either.

Splitting the data into the pre-and post-Covid- 19 period we are still able to identify inflection points
taking place at 92 in Figure 4.4d and 89 (257 consecutive surgery) in Figure 4.4g for both learning curves
respectively. The linear regression trends fit poorly in Figure 4.4e , 4.4f , 4.4h , 4.4i. On the other hand,
linear regression exhibits a tighter fit to the inexperienced and proficient trend lines in Figures 4.4b , 4.4c.
This indicates to us that the real learning curve for bone registration is by taking all surgeries consecutively,
with the pandemic having little to no impact on the ability of the surgeon in learning how to operate this
surgical stage. Thus reaffirming the notion that Surgeon 1 improves faster when beginning to use the RAS
system but this progress gradually slows across an extensive period of time.

4.4 Sawing time

During the bone sawing stage, the surgeon holds the saw blade and is guided along the haptic boundaries
of the patients knee displayed on the RAS system screen. This is achieved with the help of the pre-surgical
CT scan that makes up the 3 D virtual model of the patients knee. When the saw blade exits the haptic
boundary zone, the stereotactic control of the saw blade is disabled, thus bringing no harm to the patient.
When in cutting mode, if the saw blade exceeds 0.75 millimetres the boundary zone, the saw will not be
powered. Longer bone sawing times can be indicative of the blade having to traverse a previously sawed area
simply due to a lack in training.

Out of the discussed surgical steps, bone sawing has the most resemblance between the surgical step in
traditional analog surgery and with using the RAS system. The suspicion was that the learning curve for
surgeons with prior experience of bone sawing would be flattened [48]. Instead, the learning curve displays
a steep trajectory for the inexperienced phase and an inflection point is found at the 146 surgery mark in
Figure 4.5a. This confirms the intuition that Surgeon 1 is able to quickly learn how to operate the bone
sawing step by falling back on years of prior surgical experience.

Taking the initial 167 surgeries that took place in the pre-Covid - 19 period shows an inflection point for
the learning curve at 87 in Figure 4.5d. Both linear regression trend lines fit the data well in Figures 4.5e , 4.5f.
Although an inflection point is also found at 146 (313 consecutive surgery) for the post-Covid - 19 period,
the learning curve in Figure 4.5c is less profound and attains a much smaller CUSUM value when compared
with Figure 4.5d. This indicates that the time in performing bone sawing surgical step does not differ greatly
over an extended period of time. We conclude the progress over an extensive period of time has slowed and
it would therefore suffice to examine the learning curve of a surgeon using the CUSUM method for only the
initial surgeries.

4.5 Summary

We have shown inflection points exist for the three surgical steps as well as the overall procedure. The
results for both surgical steps implant planning and bone cutting time in Appendix B performed by Surgeon 1
further reaffirm that learning curves are identified when analysing Mako RAS data. In answering Question 1
regarding whether surgeons improve over many surgeries we can therefore give a concretely resounding yes.

The surgeon had demonstrated a long inexperienced phase for the ligament balancing and overall surgical
time. These two tasks showed susceptibility to the events of the pandemic, exemplifying the difficulty in
learning to use the RAS system. This shows that prolonged periods out of work for surgeons can result in
longer operating times when using the RAS system. Both bone registration and bone sawing time showed
relatively shorter inexperienced phases thus indicating the surgeon learned quickly. The pandemic had a
lesser effect on the learning curve because the surgeon was able to improved faster at the beginning.

53



(a) Learning curve. (b) Before inflection point. (c) After inflection point.

(d) Pre-Covid- 19 learning curve. (e) Pre-Covid- 19 before inflection point. (f) Pre-Covid- 19 after inflection point.

(g) Post-Covid- 19 learning curve. (h) Post-Covid- 19 before inflection
point.

(i) Post-Covid- 19 after inflection point.

Figure 4.5: CUSUM analysis for the total saw time in minutes of Surgeon 1.

The data set we worked with was substantially larger which can explain why all the results showed relatively
longer time until the inflection points and the transition between inexperienced to proficient phases than
those found in [32, 30, 48]. Recall the caveats for interpretation from Section 3.1.2 on why this is the
case when using the CUSUM analysis method. It is therefore not the best method to analyse data of
many consecutive surgeries. Albeit its relative simplicity and intuitiveness, the variability in results shown
between the two periods of pre- and post-Covid - 19 is also indicative of the flaws that the CUSUM analysis
method provides. The surgical profession should therefore look elsewhere for better metrics in analysing
and crucially comparing the performance between surgeons.

54



Chapter 5

Experimental results of surgeons improving

In this chapter we provide results that assist us in answering Question 2 and provide an alternative method
that is able to build on the answer for Question 1. We do this by foregoing the CUSUM analysis method used
in Chapter 4 and instead use the BOCD method. Recall that the threefold problem with the former method
laid in the fact that it was incomparable across varying case number quantities thus comparison between
surgeons becomes biased, more phases such as intermediate may exist other than only inexperienced or
proficient, and finally the polynomial curve fitted during the CUSUM analysis may uncover a global minima
instead which implies that surgical step time performed by the surgeon deteriorates.

Our results are directly compared with the findings from Chapter 4. Owing to the fact that all surgical
steps differ in the nature of the task and hence in the time until execution, to perform the BOCD analysis
we normalise the time in minutes of all the surgical steps and subsequently run Algorithm 3 over the time
series. This was decided in order to retain consistency by keeping the initial hyperparameters α0, β0, κ0
and µ0 equivalent across all surgical steps. We alter the change point probability threshold between 0.1 and
0.4. Multiple learning phases are identified for all six tasks, displaying constant skills improvement by the
surgeon. Furthermore, changepoints detected with BOCD analysis are invariant to different lengths of the
time series across the three time periods as a result of the Covid - 19 pandemic.

5.1 Total surgery time

Once again we work with data total surgery time collected from 299 consecutive TKA surgeries. We find
the BOCD allocates five independent phases to this time series, with change points identified in Figure 5.1
at 48, 148, 154 and 258. Because the middle two change points are near each other, we simply take the
average of these two and assume we instead have four phases. Data for the total surgery time we denote as
belonging to the novice (1− 47), intermediate (48− 150), proficient (151− 257) and expert (258− 299)
phases.

The novice phase in Figure 5.1 clearly stands out from the other three phases due to possessing a larger
mean value and greater variance of the surgeries. The initial period is therefore very important and can be
achieved in under 50 surgeries, which is relatively faster than the 172 as suggested with CUSUM analysis in
Figure 4.2a. The effect of learning diminishes in the subsequent two phases of intermediate and proficient as
we observe only a slight reduction in both the average surgery time and variance. This slightest of differences
is also observed in Figure 5.2b during our analysis of only the post-Covid - 19 data. The middle and bottom
plots inside Figure 5.1 suggest that due to the low changepoint probability the BOCD also struggles to
distinguish between the data across both phases. It is therefore possible that the data belongs to one longer
phase from 48 to 257 surgeries.

The final phase is also clearly distinguishable from the rest with its low average value of surgical time and
the variance of the data being more concentrated. The change point probability of a new phase beginning
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Figure 5.1: BOCD for the surgical time in minutes of Surgeon 1. Predictive probability πr
t is modelled with

parameters α0 = 1, β0 = 1, κ0 = 1, µ0 = 0.

is also very high at nearly 50%. The surgeon becomes an expert in the final phase with the ability to operate
quickly and almost indistinguishably in terms of time between consecutive surgeries. This suggests the
surgeon is still able to improve much later in time than what was originally shown with CUSUM analysis.

When separating the data into the pre- and post-Covid - 19 periods the BOCD near perfectly identifies
the same changepoints as before. Therefore we observe the overall ability of the algorithm to identify a
change point is not determined by the quantity of data it has seen. The only difference being a change
point is identified at 45 in Figure 5.2a rather than 48. The middle plot of Figure 5.2b shows that the BOCD
algorithm continues to distinguish the fractional difference between the intermediate and proficient phases
after a change point at 151 due to the diminished intensity of the pixels for the run length probability
thereafter. The abnormally high surgical time for the two surgeries preceding this change point we believe
contributes to a change point being placed at that location. Further work is necessary to explain the extent
to which anomalous data points inside a time series impact on the performance of the BOCD algorithm.

5.2 Ligament balancing time

The time series for the ligament balancing surgical step is modelled using 446 consecutive surgeries. The
BOCD algorithm finds changepoints at 129, 265 and 316 in Figure 5.3. Hence the surgical learning phases
occur during 1− 128 for the novice, 129− 264 intermediate, 265− 315 proficient and 316− 446 expert.
Comparing with Figure 4.3a, the learning curve displays a somewhat similar inflection point at 273 until
proficiency level is reached. We see that again it requires a long time until the surgeon reaches proficiency
in performing ligament balancing together with the RAS system.

The stark difference in Figure 5.3 with Figure 4.3a is that we are better guided by the data in understanding
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(a) BOCD for the surgical time in minutes of Surgeon 1 pre-Covid- 19.

(b) BOCD for the surgical time in minutes of Surgeon 1 post-Covid- 19.

Figure 5.2: BOCD for the surgical time in minutes of Surgeon 1 separated into pre- and post-Covid- 19
periods. Predictive probability πr

t is modelled with parameters α0 = 1, β0 = 1, κ0 = 1, µ0 = 0.

57



Figure 5.3: BOCD for the ligament balancing time in minutes of Surgeon 1. Predictive probability πr
t is

modelled with parameters α0 = 1, β0 = 1, κ0 = 1, µ0 = 0.

how the learning takes place. Observe that the novice phase is marred with a greater mean ligament balancing
time, as well as greater variability between consecutive surgeries, as opposed to the intermediate stage that
immediately follows. We directly see how the surgeon improves with the ability to standardise the time in
performing this surgical step. The final phase displays the lowest average ligament balancing time as well as
the least variability between consecutive surgeries, therefore it is concluded the surgeon becomes an expert
after performing 316 surgeries.

The changepoints in the pre - and post - Covid - 19 phases are identified at the exact same locations as
given above and we therefore do not display these here. This again shows the BOCD algorithm is invariable
to the amount of data it has seen. Note that the inflection point of 127 from Figure 4.3d is near identical to
129 in Figure 5.3. However, in the latter method we do not plot a learning curve and hence do not encounter
a global minima existing before an inflection point. We are therefore not faced with the conflicting notion
of a surgeon initially improving, then seeing a rise in ligament balancing time, before improving again
for the final time as with CUSUM analysis. In another scenario it is possible that no learning curve in
Figure 4.3d would had been found at all if only the first 100 surgeries were assessed. The BOCD also detects
the proficient phase in Figure 5.3 much earlier than with CUSUM analysis in Figure 4.3g since there is a
downward shift in the average ligament balancing time, albeit with higher variability between consecutive
surgeries.

5.3 Bone registration time

For bone registration time we raised the threshold probability for the occurrence of a change point to 0.4
(or 40%) due to BOCD detecting many changepoints but assigning small probabilities to each. Changepoints
are detected at 32, 120, 356, 371 and 411 in Figure 5.4. The novice phase between 1− 31 exhibits a larger
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Figure 5.4: BOCD for the bone registration time in minutes of Surgeon 1. Predictive probability πr
t is

modelled with parameters α0 = 1, β0 = 1, κ0 = 1, µ0 = 0.

average bone registration time than the subsequent phases. During the intermediate phase between 32−119
the surgeon improves by demonstrating a lower average time to perform this surgical step, however, there
is now more variability across consecutive surgeries.

The proficient stage 120 − 355 proceeds for many surgeries and is reached relatively faster than with
CUSUM analysis where an inflection point was found at 161 in Figure 4.4a. The BOCD method assigns a
very high probability of over 90% to this change point, marking the start of the proficient phase at 120.
Across both BOCD and CUSUM methods we spot a similarity with a short but steep period of learning
followed by a prolonged period where little improvement is evident. This again suggests that the surgeon
learns quickly in how to operate the Mako RAS system for the bone registration step, but across a prolonged
period of surgeries this learning diminishes.

Immediately following the change point at 356 we observe a small increase in both the average phase time
and standard deviation from the mean with the learning phase entering the final expert phase in Figure 5.4.
The probabilities assigned to these change points are relatively smaller than when the surgeon entered into
the proficient phase. It is therefore possible that these surgeries in fact belong to the same proficient phase
and because we do not perform hyperparameter optimisation the BOCD algorithm assigns these higher than
conventional bone registration times as another phase. Again we observe no difference in the changepoints
locations and therefore do not show if the pre- and post - Covid - 19 periods are taken in isolation.

5.4 Sawing time

BOCD applied to the total sawing time detects changepoints at 8, 208 and 322 in Figure 5.5 when
threshold probability was set to 0.4. This surgical step is of course a familiar application for a surgeon
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trained in conventional surgery. The novice phase is thus very short with only seven surgeries necessary
for the surgeon to familiarise oneself with removing the worn and damaged area of the bone. The surgeon
improves little through the intermediate, proficient and expert stages with all three phases displaying near
identical average phase time.

Figure 5.5: BOCD for the total sawing time in minutes of Surgeon 1. Predictive probability πr
t is modelled

with parameters α0 = 1, β0 = 1, κ0 = 1, µ0 = 0.

However, as a result of taking the pre-Covid - 19 data in isolation the probability of a change point
happening at 8 is now lower in Figure 5.6a and instead a change point is only detected at 99. Setting a
higher threshold probability for a change point therefore returns a much longer novice phase. Looking at
the characteristics of data the two phases clearly differ, with the latter phase in Figure 5.6a displaying lower
average phase time with variance. In either case, the longest phase is the intermediate, hence the BOCD
method detects a proficient phase starting at 208 in Figures 5.5, 5.6b later than the inflection point given
with CUSUM at 146 in Figure 4.5a.

The results of using BOCD for the analysis of learning phases in total bone sawing time across the entire
data array are not convincing because the detection of a change point is highly influenced by several abnormally
large surgical phase times being recorded. What more, the data does not account for the burr size used.
Smaller blades are more precise but are less powerful and thus the recorded surgical stage time can be higher.
What is telling however is the algorithm is better suited than CUSUM to analyse tasks that a surgeon may
be somewhat familiar already. The data points to BOCD relating quicker to the clinic that the surgeon
is improving from the onset of using the Mako RAS system, helped by the use of the Student t prior for
modelling the run length distribution.
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(a) BOCD for the total sawing time in minutes of Surgeon 1 pre-Covid- 19.

(b) BOCD for the total sawing time in minutes of Surgeon 1 post-Covid- 19.

Figure 5.6: BOCD for the total sawing time in minutes of Surgeon 1 separated into pre- and post-Covid- 19
periods. Predictive probability πr

t is modelled with parameters α0 = 1, β0 = 1, κ0 = 1, µ0 = 0.
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5.5 Summary

We have successfully shown with BOCD analysis that for each of the surgical steps there exist four learning
phases the surgeon traverses through in order to hone the skills in using the Mako RAS system. In the
process we had exposed that using CUSUM analysis to identify a singular inflection point is insufficient
and therefore discounts the true stages of learning an arthroplasty surgeon exhibits in practice. Particularly,
the surgeon exhibited continued improvement for the total surgery time, ligament balancing time and bone
sawing time notwithstanding having already completed over 300 surgeries. BOCD applied to the bone
registration data showed inconclusive evidence caused by the algorithm applied to this time series being
highly influenced by abnormally large recorded surgical step times. In answering Question 2 our answer is
then with BOCD we can uncover multiple learning phases at various locations for each of the surgical steps.

Furthermore, we had again uncovered learning phases for the ligament balancing time, building on from
the earlier work of Kayani et al. [30] and Tay et al. [31]. The BOCD analysis method is able to achieve
more because it searches for transition between phases over time of the underlying process. It can thus
better inform the clinic when the surgeons performance both improves and deteriorates. Whereas CUSUM
analysis only communicates a singular change point in the process. The use cases with BOCD extend to
when the surgeon if off work for an extended period of time such as during a global pandemic or illness. We
are also better placed to provide meaning as to why a change point occurs by assigning probabilistic weight
to how much the data in a particular phase differs from the rest of the time series as with BOCD. Extending
our answer to Question 1 we also add that BOCD routinely detects improvement by the surgeon inline with the
assumption of Student t distribution for the univariate case.
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Chapter 6

Experimental results of golden standard

In this chapter we provide results that help with answering Question 3 and on the way discuss why
arthoplasty surgery consisting of a handful of intricate surgical steps needs to be taken as a whole to correctly
assess the golden standard in RAS. For this we forego analysing the total surgery time. The reasoning is
twofold: the data gathered of total surgical times belongs to a shorter time series than the 446 data points
of all other surgical steps, whilst also wanting to test whether BOCD is good at picking up on correlations
in the learning phases between the surgical subtasks. For this we experiment with all five surgical steps
together, implant planning with ligament balancing time, ligament balancing with bone registration time
and bone cutting with bone sawing time.

The results with CUSUM analysis method from Chapter 4, as well as the work presented in Kayani et

Figure 6.1: Multivariate BOCD for five individual stages of the robotic procedure in minutes of Surgeon 1
post-Covid- 19. Predictive probability πr

t is modelled with parameters α0 = 1, β0 = 1, κ0 = 1, µ0 = 0.
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al. [30] and Tay et al. [31], had only examined surgical steps as mutually exclusive events. In Chapter 4 and
Chapter 5 we had examined the total surgery time as a metric for a surgeon improving. This is a good starting
point for an arthroplasty clinic to begin assessing their surgeons. It was then shown how various learning
phases exist for a multitude of surgical steps which helps towards understanding where more training is
required. However, this only gives one perspective. The foreseeable issues that the clinic will otherwise run
into can for instance be an increase in workload with having to monitor a multitude of surgical steps and
difficulty in explaining whether the change in performance of one surgical step has an effect on another.

In a real world setting subtasks are often dependant on one another, such as the surgeons ability to prepare
a good preoperative plan to help with sizing, aligning and positioning of the implant is important when
intraoperatively fitting the prosthesis to the bony anatomy later on. What our analysis was therefore missing
and which can be resolved with the help of data science is firstly a multivariate method to summarise all the
tasks inside a single metric and secondly a more robust method that allows for a covariance matrix between
features to be incorporated.

That is why we examine all five surgical steps from earlier using multivariate BOCD in Figure 6.1. The
algorithm detects a change point between phases at 176, 233 and 372. Here the novice phase is the longest,
spanning 1 − 175. It is interesting to notice that the middle plot in Figure 6.1 displays run length ending
after approximately 100 surgeries, however, the change point probability remains near zero in the bottom
plot. Meaning the algorithm assigns low probability for the data from the first few surgeries belonging to a
run length beyond this interval, being most likely caused by the cessation in fluctuation of the surgical steps
time. Once the run length probability resets back to zero, the algorithm does not differentiate the surgeries
that follow from the ones preceding the large fluctuations in the series. It requires more surgeries for the
algorithm to gather evidence of a new phase beginning, leading to a change point only assigned at 176.

The intermediate phase in Figure 6.1 continues for 176−232, displaying both a lower average phase time
and smaller variance than during the novice phase. The surgeon reaches proficiency at 233 and again shows
improvement over the previous two phases. An expert phase is reached in 372 surgeries and displays an
almost identical average phase time as during the proficient phase only with a slight increase in the standard
deviation from the mean, most likely caused with an increase in bone registration time as we had previously
observed in Figure 5.4. Multivariate BOCD is useful in this context by providing a single metric to be used
across an entire surgical procedure consisting of many individual yet correlated subtasks. It is therefore
possible for the clinic to mix and match the surgical steps in order to create customised monitoring plans of
each surgeon depending on their prior experience.

As previously mentioned, a well worked pre-surgical plan will allow for a more accurate implant alignment
intraoperatively. Accurate alignment intraoperatively translates to speedier ligament balancing time. Both
the implant planning and ligament balancing surgical steps had therefore been analysed together with
multivariate BOCD in order to assess how the learning phases of both tasks impact on our assessment of a
surgeons proficiency. Recall the univariate BOCD algorithm detected changepoints at 129, 265 and 316 in
Figure 5.3 and at 100, 112, 360 in Figure B.3.

The multivariate algorithm detects a change point between phases at 74 and 344 in Figure 6.2. Taken
together therefore, the novice phase for the two surgical steps is much shorter at only 1 − 73 than for
each task independently of each other. We observe the surgeon improves after a change point at 74 due
to a distinctly lower average phase time during the intermediate phase. To reach proficiency or expert
level it takes the surgeon until 344. Again this phase displays a lower average phase time than the previous
two phases, communicating again that the surgeon is able to further improve. The number of surgeries
required to reach the final learning phase is relatively similar to what we previously observed in Figure 5.3
and Figure B.3.

The distinct advantage over the univariate case can be seen in the final phase. Observe how the implant
planning time is on the rise. If analysed with CUSUM we obtain a global minima point in Figure B.1a and
an indication of deterioration rather than improvement with BOCD in Figure B.3. However, an increase
in longer implant planning time can be translated into shorter ligament balancing time. The multivariate
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Figure 6.2: Multivariate BOCD for implant planning with ligament balancing time in minutes of Surgeon 1
post-Covid- 19. Predictive probability πr

t is modelled with parameters α0 = 1, β0 = 1, κ0 = 1, µ0 = 0.

BOCD algorithm therefore computes the predictive probability over the current run length using a covariance
matrix between of these two surgical steps. This enables the algorithm to detect a change point because
the predictive probability is of course a factor inside the growth change point probabilities. It is therefore
extremely beneficial to model the predictive probabilities with a covariance matrix between each data stream
once a new multivariate datum is observed.

A third multivariate example selected to be tested was the ligament balancing with bone registration time
due to the cumbersome nature of learning these two tasks as expressed by surgeons at the clinic. The nature
of these two steps being inherently linked in difficulty adds to the curiosity of whether a golden standard
truly exists. For instance, it is possible to conceive an improvement in the bone registration time. However,
if this is coupled with an increase in the length of time to achieve ligament balancing then it becomes more
difficult to concretely state that the surgeon had improved. As already reasoned, performing independent
tasks that possess mutually inclusive outcomes would affect the surgeons learning curve.

The algorithm detects a change point between phases at 120 and 316 in Figure 6.3. Both data streams
tend to move in tandem and display improvement in each surgical step over time, except for the small
unexplained increase in bone registration time towards the final stages of the time series. The algorithm
isolates the initial novice phase, which lasts between 1− 119 and is clearly distinguishable due to the many
data points exceeding its standard deviation from the mean. It also assigns this change point a very high
probability at near 0.6 likelihood for the beginning of a new phase. This period is also marred by a higher
average phase time than the intermediate phase that succeeds it. The surgeon shows clear improvement
during the phase 120 − 315 from the initial phase. Entering into the final proficiency or expert phase the
average phase time is again lower and the algorithm also assigns a high probability for a change point at 316.

Recall from Figure 5.4 the BOCD algorithm was very sensitive to the abnormally large surgical instances of
bone registration time. This resulted in changepoints being detected at the latter stages of the time series,
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Figure 6.3: Multivariate BOCD for ligament balancing with bone registration time in minutes of Surgeon 1
post-Covid- 19. Predictive probability πr

t is modelled with parameters α0 = 1, β0 = 1, κ0 = 1, µ0 = 0.

albeit with a small change point probability. Instead, the multivariate case is less sensitive to these data
points. This forces the middle plot in Figure 6.3 to visually depict the run length ending after about 400
surgeries on a logarithmic colour scale, but in the bottom plot we observe the change point probability to
be near naught. Hence despite a change occurring, BOCD had not gathered enough evidence to mark this a
change point which is beneficial in our use case as we do not want to be influenced by a single surgery but
rather a series of surgeries.

The final multivariate experiment involved the analysing of bone cutting with bone sawing time due to
the intrinsic relationship between the two tasks. With the latter forming part of the former surgical step
and thus having the ability of relating not only an improvement in time until execution of the task but also
improved efficiency of the burr on versus off time. For instance, the bone sawing time may be on the decline
but this could still mean little if the total cutting time is on the rise due to ineffective use of the burr.

We had seen from Figure 1.2 the burr time efficiency being on the rise year on year, signalling it is more
commonplace for the surgeon to operate efficiently with the saw blade being on. Using CUSUM analysis,
early inflection points were identified for each individual surgical step in Figures 4.5a, B.2a. BOCD in the
univariate case identified four distinct phases in Figure 5.5 for bone sawing time, but little difference was
found for bone cutting time in Figure B.4.

The algorithm detects a change point between phases at 176, 233 and 372 in Figure 6.4. Note these are
identical changepoints to those identified analysing all five surgical steps in Figure 6.1. This implies the
two data streams are highly influential on the learning phases of all surgical steps. At all three locations, the
change point probability surpasses 0.8 meaning it is highly likely the data observed belongs to the beginning
of a new phase.

The novice phase continues for 1 − 175, exhibiting both the largest average phase time with standard
deviation from the mean. Through the intermediate phase during 176 − 232 the surgeon improves across
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Figure 6.4: Multivariate BOCD for total cut with total saw time in minutes of Surgeon 1 post-Covid- 19.
Predictive probability πr

t is modelled with parameters α0 = 1, β0 = 1, κ0 = 1, µ0 = 0.

both tasks with both lower average time and lower standard deviation. The proficiency phase begins on 233
and arrives later than 208 with bone sawing time by itself in Figure 5.5. On the other hand, the algorithm is
able to limit the redundant change point locations in Figure B.4 whilst becoming less sensitive to instances
of abnormally large bone cutting time. It therefore better suited to show the surgeon gradually improving,
as oppose to having an off day in surgery for whichever reason.

The final expert phase which begins at 372 has the backing of the middle plot in Figure 6.4 as to why
a change point is assigned at this place. We observe that once the algorithm detects the proficient phase
which begins at 233, with every newly seen data point the probability of a new run length starting after this
point is very low, resulting in most of the probability mass being concentrated on the diagonal shown in
darker pixels. The same effect can be seen inside the expert phase where the growth probabilities of every
possible run length below the diagonal being very small. Thus indicating the run length that started at
372 most likely continues. This is an improvement on the rather indistinguishable to the naked eye growth
probabilities and change point probabilities seen in Figures 5.5, B.4.

Multivariate BOCD is therefore better suited in understanding how surgical steps impact on each other.
During periods when an arthoplasty surgeon exhibits both improvement and deterioration across various
tasks, it can shed further detail as to how the surgeon is learning by leveraging information via the covariance
matrix. This is beneficial for setting a true gold standard and is best used with specific interconnected
surgical tasks, as oppose to packaging the entire surgical procedure inside a black box and simply analysing
the total surgery time. An example we had shown is with implant planning and ligament balancing where
the growth probabilities reset back to naught only once the algorithm had gathered enough evidence of a
change occurring across both data streams.

We had also observed that uniting ligament balancing with bone registration in Figure 6.3 and bone sawing
with cutting in Figure 6.4 improves the performance of the BOCD algorithm. This was achieved twofold:
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by preventing anomalous data points on having a large influence on the change point location, as well as
assigning clearer run length probabilities inside each middle plot.

The Bayesian approach can therefore certainly be used in answering Question 3 because it provides another
perspective to assess RAS surgery with. By unpacking the black box-like total surgical time often used as a go to
measure of improvement, the method shown here explores RAS further than Kayani et al. [30], Vermue et
al. [32] and Tay et al. [31] by analysing individual surgical steps as belonging to a wider process. Where the
gold standard lies remains open question and will require further comparisons with trainee surgeons to see
whether they exhibit different behaviour.
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Chapter 7

Experimental results of anomalous data

In this chapter we build further on the work from Section 3.7 and run experiments to see which of the
offline and online methods is superior under distinct circumstances. In Sholihat et al. [37] the authors had
shown that using larger initial hyperparameter values for the posterior sampled from a Student’s t-distribution
detects more changepoints. This is useful in the context of an early warning system because an anomalous
outlier can signal a volcanic eruption is imminent. However, in the context of detecting learning curves this
becomes of little use because anomalous surgeries can incorrectly signal the start of a new learning phase.

In answering Question 4 the aim is to therefore assess which method is less prone to outliers in the data, as
oppose to commenting on which of the two methods can detect the most outliers. We do this by comparing
the robustness of each method when there are anomalous data points, akin to a complex case with longer
surgery time cropping up in amongst a time series. We show that tweaking the initial hyperparameter
settings for the BOCD algorithm can match the precision accuracy of Offline BCD. However, the performance
of the latter begins to falter in the multivariate case with outliers.

7.1 Univariate time series with anomalies

We had previously observed in Chapter 5 how the BOCD algorithm can perform sensitively to outlier
points. This is caused due to the run length probability dropping to zero after an extreme value for a surgery
time. As a result of this data point appearing, a low probability is assigned to the next data point of belonging
to the previous run length since it exhibits different characteristics to the anomalous data point. This in
turn forces a spike in the change point probability immediately following this anomalous data point.

It is therefore unclear whether the BOCD algorithm assigns a change point due to an accumulation in
evidence from across the entire run length, or whether an anomalous point influences the spike in change
point probability. Having no manner with which check this on real world data since the location of changepoints
is unknown, we instead opt to test this assumption on synthetic data. The intent is to better guide the
practitioners in using these algorithms in a real life surgical setting.

Following on from Section 3.7, we take the same time series data of length N = 1117 with limited and
moderate levels of variance in the data. We populate these two sequences with 30 anomalous data point at
random locations. Data with substantial level of variance is not included in our analysis because this does
not match the characteristics of the surgical data we worked with. In this setting we describe anomalous as
possessing a time series value double that than its immediate neighbours.

Table 7.1 shows the results of using the Offline BCD and BOCD on data with limited variance. The
offline method matches the precision accuracy shown in Section 3.7 of correctly identifying the change
point locations, only now this method also incorrectly identifies an additional 11 changepoints. Similarly,
BOCD performs equally as well with small initial hyperparameter values and is able to identify correctly all
15 changepoints within a radius of δ = 10, whilst also misidentifying an additional 7 changepoints. Both
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these methods are therefore hypersensitive to anomalies when there is limited variance across segments. A
possible medium is to use the BOCD method but initial hyperparameter values α0 = β0 = κ0 = 1 as these
achieve a high level of precision accuracy and identify correctly 12 changepoints, whilst misidentifying zero
incorrect changepoints.

Precision

Method
Offline Online Online Online

α0 = 1 α0 = 5 α0 = 0.1
β0 = 1 β0 = 5 β0 = 0.1
κ0 = 1 κ0 = 5 κ0 = 0.1

CP identified with δ = 5 15 11 8 14
CP identified with δ = 10 15 12 8 15
Incorrectly identified CP 11 0 0 7

Table 7.1: Precision accuracy comparison between Offline BCD versus BOCD with various hyperparameters.
The variance of each data segment was limited and included 30 anomalous data points across all 16 segments.

In the event the variance inside the data segments is moderate we observe a small decrease in the precision
accuracy in Table 7.2. This is again consistent with the results presented earlier in Section 3.7 when there
were no outlier points. The difference now is that the BOCD with small initial hyperparameter values
outperforms the Offline BCD method when anomalous points are introduced both in terms of precision
accuracy and misidentifying less changepoints incorrectly.

Precision

Method
Offline Online Online Online

α0 = 1 α0 = 5 α0 = 0.1
β0 = 1 β0 = 5 β0 = 0.1
κ0 = 1 κ0 = 5 κ0 = 0.1

CP identified with δ = 5 12 11 7 12
CP identified with δ = 10 13 12 8 14
Incorrectly identified CP 4 1 0 3

Table 7.2: Precision accuracy comparison between Offline BCD versus BOCD with various hyperparameters.
The variance of each data segment was moderate and included 30 anomalous data points across all 16
segments.

7.2 Multivariate time series with anomalies

Similarly, we wanted to test the model selection from Chapter 6 when the surgeons are assessed across
several tasks simultaneously. To do this we adopt the same data sequences from Section 3.7 with limited and
moderate levels of variance in the data. We proceed to randomly assign 100 anomalous data points across
the three sequences that makeup the multivariate time series data.

In Table 7.3 we observe a near total collapse of the Multivariate Offline BCD method in identifying
change point locations, despite a covariance structure between the time series existing. In terms of precision
accuracy this algorithm identifies 5 correctly and mislabels a further 2. The Multivariate BOCD on the other
hand is able to significantly outperform the offline method and correctly identifies 14 changepoints with
small initial hyperparameter values. However, this comes at a high cost with also 14 incorrectly labeled
changepoints. Instead a reasonable medium would be to use slightly larger initial hyperparameter values
with which 12 changepoints are identified correctly and only 3 incorrectly.

Taking the multivariate data sequences with moderate variance inside the phase segments is again not
suited for with the Multivariate Offline BCD when there are anomalous points. The algorithm mislabels
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Precision

Method
Offline Online Online Online

α0 = 1 α0 = 5 α0 = 0.1
β0 = 1 β0 = 5 β0 = 0.1
κ0 = 1 κ0 = 5 κ0 = 0.1

CP identified with δ = 5 5 11 7 13
CP identified with δ = 10 5 12 7 14
Incorrectly identified CP 2 3 0 14

Table 7.3: Precision accuracy comparison between Multivariate Offline BCD versus Multivariate BOCD
with various hyperparameters. The variance of each data segment was limited and included 100 anomalous
data points across all 16 segments.

incorrect locations as changepoints more often than correctly identifying the real changepoints. The Multivariate
BOCD is able to achieve a high level of precision accuracy under two different initial hyperparameter
settings. It outperforms the offline method across all three cases we had tested.

Precision

Method
Offline Online Online Online

α0 = 1 α0 = 5 α0 = 0.1
β0 = 1 β0 = 5 β0 = 0.1
κ0 = 1 κ0 = 5 κ0 = 0.1

CP identified with δ = 5 2 14 10 12
CP identified with δ = 10 3 14 10 14
Incorrectly identified CP 4 2 0 7

Table 7.4: Precision accuracy comparison between Multivariate Offline BCD versus Multivariate BOCD
with various hyperparameters. The variance of each data segment was moderate and included 100 anomalous
data points across all 16 segments.

7.3 Summary

In earlier chapters throughout this thesis a question which cropped up was to what extent do outliers
impact on the findings of learning phases. Working on synthetic data, we have now provided a set of results
that help form a best practice approach of working with Bayesian methods for segmentation of time series
with anomalous data points.

The results show that with data from a univariate time series sequence the Offline BCD method continues
to outperform the BOCD algorithm. Comparable results can be achieved for the latter method by choosing
smaller initial hyperparameter values. This follows the theoretical observations from Section 3.5 and Section 3.7,
where it was pointed out that smaller hyperparameter values result in less dispersed posterior distribution
of run lengths and thus more changepoints being detected.

On the other hand, choosing large hyperparameter values is an antithetical example to the MAP estimate
derivations from Section 2.2. If the hyperparameters are poorly chosen, the resulting prior distribution may
not accurately capture our beliefs about the true parameters, and this can lead to incorrect or biased posterior
estimates. We observe that the BOCD algorithm achieves the lowest precision accuracy for correctly identifying
changepoints with larger hyperparameter values.

With multivariate time series analysis, the Offline BCD method should not be used as it poorly identifies
changepoints in data sequences with outliers. The online BOCD method achieves a near perfect precision
accuracy by detecting 14 changepoints correctly. This method can however perform sensitively to outliers
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and therefore initial hyperparameter values are an important choice.

We therefore answer Question 4 by stating that offline methods are more suited for univariate data but online
methods possess superior performance in the multivariate case. Furthermore, in order to avoid miscommunication
for the beginning of a new learning phases of surgeons, a good medium is to use initial hyperparameter
settings which do not capture all changepoints correctly but that are also less sensitive to outliers.
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Chapter 8

Conclusion

In this chapter we summarise the findings to the four questions posed in this thesis, as well as to provide
a comparison between the different change point detection methods used. We also discuss the future
possibilities in building supportive surgical tools with data science.

8.1 Research questions

In this thesis, we had set out to provide surgeons in the clinic with concrete performance metrics by means
of analysing surgical data. On the way, we compared the three change point methods, CUSUM, Offline BCD
and BOCD, and evaluated their performance in solving for the four clinical questions at hand.

In answering Question 1, we had shown that learning curves exist for Surgeon 1 in performing TKA
surgery, as well as for the five surgical subtasks. By working with a greater amount of data in relative terms
than [30, 31, 32], we had been able to go further and to find learning curves for ligament balancing and bone
registration time. However, using CUSUM analysis with more data did provide challenges. We had found
the learning curves to be much longer in number of surgeries than in previous literature findings. It is also
not possible to simultaneoulsy compare multivariate data sequences. It was therefore concluded that this
method is not useful to compare data of invariant lengths, particularly for comparing new surgeons who
may be starting with more experienced surgeons.

We had discussed both the Offline BCD and BOCD as alternative change point detection methods and
thus expanded on the notion of learning curves instead consisting of multiple phases. Due to comparative
results being obtained on synthetic data for the offline and online Bayesian methods, the decision was made
to work with BOCD. The reasoning follows that as part of building supportive surgical tools, surgeons would
benefit most if feedback was provided in real time. As opposed to collecting all the data and looking back
retrospectively at what happened, as is done with offline methods such as Offline BCD and CUSUM.

Working with real world Mako RAS data, it was shown for multiple phases to exist when using BOCD.
Thus in answering Question 2 it is true Surgeon 1 continuously improves beyond the change points of
the first learning phase, again disproving other literature findings in TKA surgery. This method is therefore
better equipped to communicate to the clinic when the surgeons performance both improves and deteriorates,
such as in the period during which the surgery was shut due to the Covid - 19 pandemic.

To streamline feedback being made to surgeons, surgical subtasks had also been analysed simultaneously
using Multivariate BOCD, with which we were able to model correlations between the features with the use
of a covariance matrix. Thus simplifying the complexity exacerbated by the multitude of tasks in surgery, as
well as the black box - like total surgical time, we showed how interconnected surgical subtasks impacted on
completion time of one another. In answering Question 3 we had therefore shown where the gold standard
is for the most difficult tasks such as ligament balancing and bone registration time, as well as for more
analog tasks such as bone sawing and cutting time.
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A common complication which arose in answering both questions with Bayesian change point detection
is whether this method was sensitive to jumps in the time series data. In Question 4 we had therefore
assessed whether our choice of method was in fact correct for use with surgical data. We ran experiments on
synthetic data and showed both the offline and online methods provide comparative results in the univariate
case when the correct set of initial hyperparameters was used for the latter. The performance of both also
decreased with increased variance in the data sequences. However, with the introduction of anomalous data
points, the offline method overcompensates by detecting too many instances of changepoints and sees a
drop in its precision as a result. The suitability of the online method in change point detection is that we
do not have too many under BOCD. It was concluded for analyses of data in surgery, where complications
result in jumps in the time series, it is best to use BOCD as this method is less sensitive to outliers.

8.2 Limitations and future work

The work presented here looks promising but more can be done in data science for surgery. For instance,
further analysis are required to incorporate bone alignment of the knee, care quality and patient insights
with data science. Data from other surgeons in the clinic will also need to be reviewed, with Bayesian priors
from the gold standard of Surgeon 1 being used to precisely identify the learning phases of junior surgeons.

The issues surrounding the slow implementation of alignment data inside data scientific tools is associated
with the resource constraints surrounding much needed input from surgical professionals. Overrides to bone
alignment rules can take place from one patient to the next. There is also a lack of consensus in the industry
regarding the best knee alignment, with different alignment strategies existing across nations, something
that would prove difficult if had to be hard coded inside an algorithm.

Any future supportive surgical tools will therefore necessitate a link to be made between the expertise of
a human surgeon to the decision on knee alignment being made. What form this intelligence inside surgical
tools will take remains to be seen. Questions will also have to be asked whether the recommended settings
of using the Mako RAS will match future cohorts of patients.

The added effect of simply looking at care quality can be misleading for the reason of patients answering
questions to best suit their situation, as oppose to what surgical professionals believe best suits the recovery
of a patient. Extra care is therefore required when communicating conclusions from any data related to
patient behaviour as those who are in discomfort most tend to disapprove most often too.

In this thesis we had only worked time series data. In reality, there is a need to tap into all available data
sources in order to provide a diverse, effective and beneficial supportive surgical tools with data science. To
achieve the aforementioned goals will require time and effort from both ends of the spectrum - surgeons
and data scientists.
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Appendix A

Bayesian estimation

Conjugate priors are useful because they allow for computational efficiency when incorporating the prior
inside the posterior. If the prior and the posterior belong to the same distribution, then they are conjugate
to each other. The general problem can then be solved in a closed form expression form. We consult the
work outlined in [46] to answer why the natural conjugate prior is of the form :

P(µ) = exp

(
− 1

2σ2
0

(µ− µ0)
2

)
(A.1)

Recall from Equation 2.11 that the likelihood function is of the form:

P(x|µ, σ) =
∏
i

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)
(A.2)

=
1(√

2πσ2
)n exp

(
− 1

2σ2

∑
i

(xi − µ)2
)

Utilising the MLE technique from Equation 2.9 to define the empirical mean and variance over the sample
observations:

µ̂ML =
1

n

∑
i

xi (A.3)

σ̂2
ML =

1

n

∑
i

(xi − x̄)2 (A.4)

These are simply the sample mean µ̂ML and sample variance σ̂2
ML we already derived in Equations 2.13-2.14.

Then the quadratic term inside the exponent can instead be written as:∑
i

(xi − µ)2 =
∑
i

((xi − µ̂ML)− (µ− µ̂ML))
2 (A.5)

=
∑
i

(xi − µ̂ML)
2 − 2

∑
i

(xi − µ̂ML) (µ− µ̂ML) +
∑
i

(µ̂ML − µ)2

= nσ̂2
ML + n (µ̂ML − µ)2

Since:

2
∑
i

(xi − µ̂ML) (µ− µ̂ML) = 2 (nµ̂ML − nµ̂ML) (µ− µ̂ML) = 0 (A.6)
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We can the rewrite Equation A.2 for the likelihood as being:

P (x|µ, σ) = 1(√
2πσ2

)n exp

(
− 1

2σ2

(
nσ̂2

ML + n (µ̂ML − µ)2
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(A.7)

∝ 1
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− n
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(µ̂ML − µ)2

)
Then if σ2 is a constant, we only keep the exponent with term µ for the likelihood:

P (x|µ) = exp
(
− n

2σ2
(µ̂ML − µ)2

)
(A.8)

∝ N
(
µ̂ML|µ,

σ2

n

)
Therefore to simplify the derivation for the posterior, we take the prior distribution to be conjugate to

the likelihood function:

P(µ) = exp

(
− 1

2σ2
0

(µ− µ0)
2

)
(A.9)

∝ N
(
µ|µ0, σ

2
0

)
Which is simply Equation 2.16 with the constant term dropped. The posterior distribution is then:

P(µ|x) = N
(
µ|µMAP, σ

2
MAP
)

(A.10)

Through multiplication of the likelihood with the prior as we had done in Equation 2.17 and simple
manipulation we show that it is indeed the case that the posterior takes the form of another Gaussian
process with parameters

[
µMAP, σ

2
MAP
]
:
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We then separate this expression into terms that depend and those that are independent of µ:
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 (A.12)

Bishop [39, p.86, p.98] solves for µ with completing the square by matching first and second order powers of
µ, whilst Murphy [46] takes advantage of the fact that any quadratic polynomial can be written simply as:

p2 − 2pq + q2 = (p− q)2 (A.13)
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Then Equation A.12 can be rewritten:

P(µ|x) = exp

(
− 1

2σ2
MAP

(µ− µMAP)
2

)
(A.14)

Where we match the coefficients of a from inside Equation A.12 to solve for the posterior variance σ2
MAP:
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Similarly, matching the coefficients of b from inside Equation A.12 to solve for the posterior mean µMAP:
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Placing µn on one side:
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Finally, the posterior distribution takes the same functional form as the prior, since the latter is conjugate

to the likelihood function, and with parameters
[
µMAP, σ

2
MAP
]
:

P(µ|x) = P(x|µ)P(µ) (A.18)

∝ N (µ|µMAP, σ
2
MAP)
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Appendix B

Additional results

CUSUM of implant planning time

The Mako RAS system enables the surgeon to perform pre-operative implant planning using the patient
specific bone model and implant templates built on top of the CT scan. The primary purpose of pre-operative
implant planning is to size, align, and position the implant specifically to each patients bony anatomy. Fine
tuning of the implant plan using additional clinical information such as patient specific kinematics, fixed
deformities, and soft tissue tension will be completed intraoperatively.

The implant planning surgical step is a balancing trick between experience in using the RAS system,
knowledge of distinctive anatomical structures, the guile together with speed to adjust any pre-surgical plan
intraoperatively without this impacting on the total surgical time and at the same time using the pre-surgical
time as efficiently as possible by performing other tasks in the patient pathway care. A well prepared implant
plan therefore does not go unnoticed.

The inflection point for the learning curve in Figure B.1a shows 121. The inexperienced phase is short
and the curve is steep. Furthermore, an inflection point is found at 107 in Figure B.1d if we take only
the first 167 consecutive surgeries that took place before the pandemic, but no learning curve is identified
post-Covid - 19 in Figure B.1g. Once again indicating that Surgeon 1 does not require much time to become
proficient in performing the pre-surgical implant planning.

CUSUM of cutting time

The bone cutting phase prepares the knee for the implant positioning by performing resections in the
bone and it encompasses the active and inactive modes of the saw blade, as well as the switch between cut
types. This on-off mechanism is crucially what determines the speed and proficiency with which the surgeon
is able to perform the bone sawing. Many stop start motions will in turn increase the time of this surgical
step.

Surgeon 1 is able to quickly hone the skills to perform the bone cutting step with a steep inflection
point being found at the 143 surgery mark in Figure B.2a. The pre-Covid- 19 data gives off an inflection
point at 107 in Figure B.2d, despite having a worse linear regression fit to the data in Figures B.2e , B.2f.
Albeit an inflection point is found at 136 (304 consecutive surgery) in Figure B.2g, the learning curve is
flattened and remains centered around zero, thus lacking the conviction of the surgeon improving during
the post-Covid - 19 period.
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(a) Learning curve. (b) Before inflection point. (c) After inflection point.

(d) Pre-Covid- 19 learning curve. (e) Pre-Covid- 19 before inflection point. (f) Pre-Covid- 19 after inflection point.

(g) Post-Covid- 19 learning curve. (h) Post-Covid- 19 before inflection
point.

(i) Post-Covid- 19 after inflection point.

Figure B.1: CUSUM analysis for the implant planning time in minutes of Surgeon 1.

BOCD of implant planning time

For the time series of the implant planning time BOCD identifies changepoints at 100, 112, 355, 363
and 364. Due to the probabilistic nature of the algorithm, a change point can be assigned very soon after
already designating one as it continues to gather more evidence from the data. For simplicity here we opt
to forego changepoints which occur consecutively near each other to best fit our predefined surgical phases.
Observing from the middle plot in Figure B.3 which run length possess the lowest logarithmic colour scale
and thus should be merged, we assume the three defined change point locations are therefore 100, 112 and
360.

The novice together with the intermediate phase persist until the change point into the proficient phase
occurs at 112. This is only a handful of surgeries sooner than the inflection point of the learning curve at
121 with CUSUM in Figure B.1a. There is a significantly evident drop in the average phase time from the
start of the novice phase to when surgeon enters proficiency, as well as the surgeon being able to standardise
the time to perform this surgical step with a more concentrated standard deviation around the mean.

The final stage that takes place between 360− 446 is the expert phase and should by definition show an
improvement on the proficient phase. However, the change point at 360 takes place because the surgeons
performance time increases on average. The change point probability of over 0.3 at that location is the
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(a) Learning curve. (b) Before inflection point. (c) After inflection point.

(d) Pre-Covid- 19 learning curve. (e) Pre-Covid- 19 before inflection point. (f) Pre-Covid- 19 after inflection point.

(g) Post-Covid- 19 learning curve. (h) Post-Covid- 19 before inflection
point.

(i) Post-Covid- 19 after inflection point.

Figure B.2: CUSUM analysis for the total cutting time in minutes of Surgeon 1.

largest for this time series and signal that the data post 360 surgeries differs from the rest. We observe this
trend also in Figure B.1a with a global minima being identified towards the tail end of the time series.

The number of surgeries it requires to reach proficiency before the start of the pandemic is also akin to the
inflection point at 93 with CUSUM in Figure B.1d. However, with BOCD analysis a change point from the
proficient into the expert phase takes place at 360 in Figure B.3. The BOCD is therefore an improvement on
the CUSUM when applied to the post-Covid - 19 data. This is because in Figure B.1g no learning curve was
found due to an inflection point being found only for a global minima. Recall that this does not translate
as being a transition into a more proficient stage but rather a deterioration in performance.

BOCD of cutting time

With change point probability being set to 0.4 for the total bone cutting time the BOCD algorithm
identified six change points taking place at 55, 112, 176, 233, 321 and 372 in Figure B.4. The algorithm
is very sensitive for this surgical step and more often than not detects a change point based on abnormally
large time recorded as opposed to the probability of data being different in amongst those phases.

We observe there is insignificant difference in the average or standard deviation of the phase time. Similar
to the bone sawing, bone cutting is a surgical step performed in conventional surgery also. This would
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Figure B.3: BOCD for the implant planning time in minutes of Surgeon 1. Predictive probability πr
t is

modelled with parameters α0 = 1, β0 = 1, κ0 = 1, µ0 = 0.

therefore provide an edge to experienced surgeons when working with the Mako RAS system and could
explain why we witness so little improvement amongst the learning phases. The cut order is also influential
on the flow of the procedure, with the first 71 surgeries having a different cut order to the rest of the data.
The performance for the bone cutting time up to the 71 surgery mark is therefore incomparable with the
rest of the data in a fair and accurate manner.

86



Figure B.4: BOCD for the total cutting time in minutes of Surgeon 1. Predictive probability πr
t is modelled

with parameters α0 = 1, β0 = 1, κ0 = 1, µ0 = 0.
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