
Agent Based Model
Discovery with

Reinforcement Learning

Recovering latent school-choice policies from summary
statistics using RL for ABMs

Author: Alexios Ioannis Carras1

Daily Supervisor: Brian Logan1

1st Supervisor: Michael Lees2

2nd Supervisor: Eric Dignum2

Examiner: Mehdi Dastani1

A thesis submitted in partial fulfilment of the requirements for the
Masters of Science degree in Artificial Intelligence at

Utrecht University

May, 2023

Utrecht University1

University of Amsterdam2

Abstract

Agent Based Modelling (ABM) is a powerful tool for modelling social sys-
tems. Generative runs simulate micro-level behaviours that give rise to emergent
macro-level outcomes. To ensure the accuracy of those outcomes to the modelled
process, behavioural rules are carefully implemented and their parameters cali-
brated. Recently, methods for the inverse generation of ABMs - from outcomes
to behavioural rules - have received much attention. Most approaches aim at
constructing parts of the ABM or require high-resolution data. In this thesis,
we use Reinforcement Learning (RL) to learn the individual policies of a school
choice model using only summary statistics of the reference process. A Deep
Q-Network is used to learn and encode the recovered policy, which can then be
used in simulations. We demonstrate the robustness of our method for the re-
covery of different latent behavioural rules using different reward functions. We
find that our method is not very robust, although it shows signs of learning. In
subsequent experiments, we show that the recovered policies generalise better
than a baseline random agent, but the learned behaviour only partially matches
the reference. We speculate on two critical obstacles to the performance that
future research should address.

Keywords:

Reinforcement Learning, Agent-Based Models, Inverse Generative Social Sci-
ence, School-choice models

1

List of Notation

Agent Based Modelling
H Set of households
M Set of schools
i Household agent
m School agent
cm Composition of school m
dmi Euclidean distance from school m to agent i
ti Tolerance threshold of agent i
M Homogeneity preference factor
Umi Utility of school m for agent i
Cmi Composition utility of school m for agent i
Dmi Distance utility of school m for agent i
TG Maximum system segregation
TLi Local segregation (e.g., in a school)
T Theil’s index
Reinforcement Learning
S Set of states
As Set of actions in state s
R(·) Reward function
γ Discount factor
Gt Return at time-step t
π Policy
Our method
S Reference set of summary statistics

Ŝ Sample set of summary statistics
τ Target (i.e., a reference measure we want to match)
tτ Target vector of statistic τ
t̂τ Target vector of statistic τ
s Household state-vector
a Household action
Q(s) DDQN’s output action-value vector
Rτ (·) Reward for target τ
Rτ

gradient(·) Reward for change in dissimilarity of target τ

2

Contents

1 Introduction 5
1.1 COMPASS project . 6
1.2 Research Questions . 7
1.3 Structure . 8

2 Background and Related Work 9
2.1 Agent Based Models . 9

2.1.1 ABMs of Segregation . 10
2.1.2 Properties of the considered ABMs 12

2.2 Reinforcement Learning . 13
2.2.1 Value-based methods . 14
2.2.2 Neural Networks . 15

2.3 Learning and generative models 16
2.4 Learning and inverse generative models 18

3 Methods 22
3.1 School choice model . 22

3.1.1 Model assumptions . 24
3.2 Controller implementations . 24

3.2.1 Baselines . 24
3.2.2 Learning algorithm . 25

3.3 Data . 27
3.4 MDP design . 28
3.5 Reward function . 30

3.5.1 Wasserstein distance . 33
3.5.2 Mean-Squared Error . 34

3.6 Training and evaluation . 35
3.7 Software, hardware, and implementation 37

4 Experimental Setup 39
4.1 School-choice model configuration 39
4.2 Experiments . 40

3

5 Results 44
5.1 Learning Performance comparisons 44
5.2 Generalisation . 50
5.3 Ranking score . 51

6 Discussion 54

7 Conclusion 59
7.1 Limitations . 59
7.2 Further work . 60

A Appendix 67
A.1 COMPASS model . 68
A.2 Extended Methods . 69

A.2.1 DDQN details . 69
A.2.2 Reward Function . 70

A.3 Experimental Details . 71
A.4 Extended results . 71

4

Chapter 1

Introduction

Agent Based Models (ABMs) are a popular tool for modelling complex systems
where the interaction of individual agents at the micro-scale leads to emergent
outcomes at the macro-scale. Agent interaction takes place in a computational
environment according to predefined behavioural rules (Bonabeau, 2002). A
limitation of ABMs and other modelling architectures is that designing the
behavioural rules requires deep domain knowledge. Moreover, human designers
may be biased or, due to the complexity of an agent, have to make assumptions
resulting in the implementation of simplistic rules or the omission of unknown
ones. These issues can limit the simulation’s validity (i.e., how closely real-world
behaviours are computationally reproduced) and, thus, how useful they are as
a tool for scientists and policymakers.

Behavioural rules may be subject to parameters which affect the agent’s
behaviour and system outcome. In these cases, calibration methods can iden-
tify the parameters that lead to most accurate behaviours with the reference
process (Cranmer et al., 2020). However, this is a computationally expensive
process requiring thousands of generative simulations under different parame-
ters to compare them with the macro-level summary statistics of the reference
processes. Moreover, the outcome is still limited by the validity of the coded
behavioural rules.

The new, upcoming field of inverse generative social science is concerned
with automating the design of behavioural rules by inferring them using the
system output data (Epstein, 2023). Learning methods from Artificial Intelli-
gence (AI) - mainly supervised learning (SL) and genetic programming (GP) -
have been at the forefront of this research (Lavin et al., 2021). However, SL
is unsuitable for optimising sequences of actions and can thus lead to the ac-
cumulation of errors in simulation. GP is a promising approach but sample
inefficient. Furthermore, both require high-resolution data for training, which
is often unavailable, particularly in privacy-sensitive social processes.

Reinforcement Learning (RL) is a learning method that has the potential
to address the aforementioned limitations of inverse ABM construction. RL
is a family of AI methods for learning sequential decision-making in dynamic

5

environments; by specifying a quantifiable objective, an RL agent can learn
the optimal policy that maximises it (Sutton and Barto, 2018). RL imple-
mented with deep neural networks (DNN) can learn to approximate functions
of arbitrary complexity in high-dimensional state spaces to optimise long-term
rewards. Consequently, it can model decision-making without accumulating er-
rors in simulation. Moreover, it only requires sparse learning information as
a scalar reward rather than high-resolution spatiotemporal information as in
traditional supervised learning approaches. Finally, the learned policy can be
naturally integrated into an existing ABM to model the agents’ decision process.
The ABM can then be used to forecast and understand the process dynamics.

Here we introduce RL as an automated discovery tool in the inverse gen-
erative process for school-choice ABMs. We leverage the generality of RL to
learn latent policies (behavioural rules) for ABMs from scratch by using the
dissimilarity of the RL system’s macro-scale outcome summary statistics with
that of a reference system as the reward signal. The problem of inversely recov-
ering latent policies from summary statistics is especially hard as the reference
processes are complex with non-linear dynamics sensitive to initial conditions
and characterised by emergent outcomes.

1.1 COMPASS project

Our research is constrained to theoretical grids and is intended as a proof-of-
concept for using RL in model discovery. We use the work of Dignum et al.
(2022) to address the problem in a controlled, computational environment like
the one depicted in Figure 1.1. The focus is on recovering the utility function1

of a school-choice ABM. In the context of social segregation ABMs, this work is
novel and part of a growing body of work on the intersection of complex systems
and AI. Findings and intuition regarding the development of such a methodology
may be relevant to other domains where only aggregated, summary statistic
data of social processes are available, but modelling individual decision-making
is desirable.

1A note on terminology: We refer to the terms policy, behavioural rule, decision process,
and utility function interchangeably though they are subtly different. For example, in ABMs
the decision process is implemented as a behavioural rule which in our case implements a
ranking logic over utilities that are calculated using a utility function. In RL, policies refer to
behaviours as manifested in sequences of actions. Finally, we refer to the reference policy as
latent policy because in the formulation of our problem ,summary statistics are available but
not the exact decision rules that lead to them. This terminological overlap is an unavoidable
side-effect of interdisciplinary work on the intersection of complex systems and RL.

6

Figure 1.1: Grid environment of size 20 × 20, 16 neighbourhoods (white lines)
and 16 schools (yellow circles). There are two types of household agents: blue
(0) and red (1). Households make decisions about where to reside on the grid
and which school to attend (Dignum et al., 2022)

.

The work for this thesis takes place in the context of a larger project titled
Computational Modelling of Primary School Segregation (COMPASS) for the
Dutch Inspectorate of Education and the City of Amsterdam. Therefore, the
ultimate objective of this research is to develop a model that accurately captures
parent decision-making and, thus, school segregation in Amsterdam.

The school-choice model is a suitable testbed, not only on account of how
consequential it is as a societal process but because of its inherent characteris-
tics: it involves multiple factors in the decision rule (e.g., distance, demographic,
economic, and other) which allows for a diverse set of reference rules to be recov-
ered and get the potency of our method evaluated. Moreover, the school process
is an example domain where social data is highly sensitive and thereby, only ag-
gregate statistics and information is usually available. Finally, school models
have a spatial dimension which can influence the dynamics. This also means
that the process can be broken down into spatially distinct units, e.g., house-
holds and schools, which can be encoded as vectors of statistical information
and thus naturally compared in terms of their dissimilarity. These properties
are common in utility-based spatial ABMs.

1.2 Research Questions

We focus on recovering a model of the household school choice policy exclusively
using function approximation to learn a value map of the state-action space.
Given the novelty of our problem, our primary research question is general:

7

Research question: What is the feasibility of using reinforcement learning
(RL) to recover a valid school-choice policy for use in ABM of school segrega-
tion using only outcome summary statistics data?

To answer research question 1, we must examine the robustness, generalisation
performance, and micro-scale prediction accuracy of the policies recovered us-
ing our method. Therefore, the following three sub-questions must be addressed:

Sub-research question 1: What is the robustness of the method’s learn-
ing performance for different configurations of the reference system and reward
function?

Sub-research question 2: What is the generalisation performance of the
recovered policy on unseen instances, measured in terms of Mean Absolute Er-
ror, between the sample and reference segregation (Theil index)?

Sub-research question 3: What is the accuracy of the recovered policy in
predicting individual household’s school choices made by the reference policy?

Answers to these research questions will provide insight into the suitability
of RL for inverse generative social science from outcomes and embolden inter-
ested researchers to tackle similar challenges by identifying the strengths and
limitations of the methodology.

1.3 Structure

The thesis starts with a brief overview of the necessary background and work
related to the intersection of AI, modelling, RL and ABMs. We then cover our
methodology in Section 3. In Section 4 we give an overview of our experimental
setup. In the following Section 5, we present our experimental results. We inter-
pret and contextualise the results in the discussion Section 6, where we further
attempt to draw general guidelines from our findings. The thesis concludes with
Section 7 by providing a summary of our main findings, limitations of our work,
and suggestions for further research.

8

Chapter 2

Background and Related
Work

First we introduce two fundamental concepts that form the foundations of our
work: Agent-Based Modelling and Reinforcement Learning. Subsequently, we
summarise previous work on the intersection of learning and simulations in
general, and learning in the inverse generative process in particular.

2.1 Agent Based Models

Simulations are a tool for exploring a system’s dynamics and evolution. In
computational contexts, one can design a model of some process grounded in
real life to explore perturbations in the system’s environment or counterfac-
tual and hypothetical scenarios. Agent-Based Models (ABMs), a computa-
tional simulation architecture, are based on collections of autonomous interact-
ing units through which complex dynamics and behaviours arise (Bonabeau,
2002). Agents can represent any entity, for example, a student or an organisa-
tion and implement the characteristics and behaviours of the entity they model
that are necessary for the studied process to take place. For example, an agent
representing a pedestrian can have characteristics such as speed, direction, and
preferred walking paths. Moreover, ABMs used for prediction and explana-
tion must be validated by evaluating their accuracy with respect to the real-life
process being modelled (Macal and North, 2009).

Repeated agent interaction can lead to self-organisation and the emer-
gence of structures or behavioural patterns that have not been explicitly pro-
grammed and are thus not part of the individual properties or policies. For
example, birds flocking or neighbourhoods becoming segregated. In this re-
search, we focus on a class of ABMs - namely, random utility models where
at every time step, agents have to make a choice or take an action from a finite
discrete set of choices which is evaluated using a utility function. An agent’s
choice can affect the environment and, thus, the choices of other agents. Choice

9

modelling aims at designing formal models of a decision process that individuals
follow in some phenomenon (Train, 2009).

ABMs are generative models. This means that they are used to generate
data about a phenomenon to better understand and predict the underlying dy-
namics in a bottom-up fashion: implementing the basic individual rules which
lead to the emergent outcome (Epstein, 1999). Traditionally, to use an ABM for
forecasting it must be calibrated which entails identifying appropriate param-
eterisations of the utility function such that the emergent outcome and agent
behaviours are as close as possible to the real process and behaviours. Herein
lies the assumption that matching outcomes can imply matching individual be-
haviours. Calibrating ABMs requires running multiple generative runs with
different parameter settings in the utility functions and comparing the emer-
gent outcomes with real world data (O’Sullivan, 2004). This is a laborious
process, not scalable for complex utility functions with many parameters, and
the achieved validity is limited by the utility function design in the first place.

More recently, researchers have been exploring the inverse of this process,
coined in the context of social science research by Vu et al. (2019) as inverse
generative social science (IGSS). Here the agent rules are not the input but
the output, and the goal is not to generate statistics about a process or give rise
to an emergent outcome but to discover or recover the decision process that led
to them.

2.1.1 ABMs of Segregation

ABMs have often been used in the context of social science research (Heath
et al., 2009). In fact, one of the first instances of social science research being
conducted by means of computational methods and what we would now call an
ABM is the Schelling segregation model used to study patterns of residential
segregation (Schelling, 1971). In this model, Schelling assumed the existence of
two types of agents: blue and red households (A and B, respectively). These
agents reside on an N × N grid in which each cell can be empty or occupied
by either type of household. Each agent i has a tolerance value ti, which corre-
sponds to the proportion of neighbours of the opposite type of i that they are
willing to tolerate. In terms of utility, this entails that the closer the ratio of
neighbours to that tolerance factor, the higher the utility. For example, given
ti = 0.5 and neighbourhood composition of agent i ci = 0.5 the agent is at the
maximum utility. The behavioural rule is that if the household neighbour ratio
ci
ti

is less than the tolerance factor, then the household moves to an empty spot
on the grid. The key insight of the Schelling model is that even for simula-
tions where households have only a moderately low tolerance of opposite-type
neighbours, households form clusters on the grid resulting in spatial segregation.
Therefore, individual preferences can be central to the residential segregation
dynamics (Clark and Fossett, 2008). This example is an instance of emergent
outcomes: moderate individual preferences (e.g., t = 0.6) can lead to extreme
outcomes (e.g., only similar neighbours ci = 1)

10

School segregation and modelling

Simulation models inspired by Schelling’s work are still being implemented today
to explore exactly this: how individual preferences lead to collective behavioural
patterns and emergent segregation outcomes. An ongoing subject of research in
many parts of the world, due to its role in inequality more broadly, is segregation
in schools. School segregation can be defined as the skew in the distribution of
students in schools with respect to some social or economic characteristic. For
example, a school is segregated when it is predominantly attended by people
of one ethnic group in an otherwise diverse city. Boterman et al. (2019) find
that school segregation is widespread in cities and that the segregation can
be with respect to social dimensions other than ethnicity, e.g., socioeconomic
background. In the US school segregation has resulted unequal education and
fewer opportunities for intergenerational social mobility (Creusere et al., 2019;
Reardon and Owens, 2014).

Notwithstanding school segregation being a global phenomenon, different
countries exhibit different patterns of school segregations as they are subject
to different group distributions, residential segregation, spatial distribution of
schools, and preferences. Additionally, countries follow different policies for the
allocation of students to schools. For example, the US and the UK implement
catchment areas, that is, geographical areas wherein households get prioritized
allocation to specific schools or the existence of private schools. In contrast,
systems like that of the Netherlands allow for more freedom of school choice
and most schools are publicly funded (Boterman, 2019). The diversity in public
policy juxtaposed with the universal outcome of segregation has led researchers
to explore the decision process households follow when choosing a school. While
there are multiple factors at play, researchers have identified household location
and school composition as primary factors in this decision and have been studied
in relation to residential segregation patterns (Wilson and Bridge, 2019; Boter-
man, 2019). Composition, like in the residential process, is important because
of choice homophily (i.e., the tendency of people to be attracted to schools with
more people of their own group attending) and distance for practical reasons.

Stoica and Flache (2014) augment the Schelling model into one for school
choice, by incorporating two preferences in the parent’s utility function: candi-
date school composition and candidate school distance to the household. They
find that the existence of catchment areas or high importance to school proxim-
ity can abate the effect that the residential distribution has on school segregation
and is usually observed. Dignum et al. (2022) built on that work and designed
an ABM which models the process of both residential and school segregation to
test an alternative hypothesis of why empirical research often finds that schools
are more segregated compared to neighbourhoods. In contrast to previous liter-
ature they found that this gap could even arise in case of symmetric preferences
and households don’t need to be less tolerant for school compositions than for
residential compositions. In their model they include neighbourhoods - subsets
of the grid at which scale the residential segregation is calculated - and schools.
Since our work is based on this work we elaborate on it further in Section 3.1.

11

Measures of segregation

For an extensive review, the work by Royuela et al. (2010) offers a survey of three
different measures of segregation. Our experimental work uses the Theil index
of segregation due to its decomposability. We therefore limit our discussion to
it. Theil’s index is a statistical, entropy-based measure of segregation across
different locations. Segregation in this case could be with respect to income,
ethnicity, or other social demographic characteristic and a location could be
any spatial apportion, for example, a neighbourhood or a school. Theil’s index
ranges between 0 (complete integration) and 1 (complete segregation) and is
measured by taking the difference of the maximum theoretical entropy and the
observed entropy, normalized by the global entropy (Equations 2.1.1, 2.1.2, and
2.1.3, respectively).

TG = xlog
1

x
+ (1− x)log

1

(1− x)
(2.1.1)

TLi = xilog
1

xi
+ (1− xi)log

1

(1− xi)
(2.1.2)

where x and xm are the global and local compositions (i.e., proportions) of
the group, respectively in a system with |M | spatial apportions, local population
nm, and total population N . In our case, spatial apportions correspond to
schools m ∈M and therefore local populations are the students attending each
school.

T =

|M |∑
i=1

ni

N

(TG − TLi)

TG
(2.1.3)

2.1.2 Properties of the considered ABMs

Although the school-choice process is complex and challenging to recover, it is
not unique. It belongs to the class of ABMs that represent spatial patterns i.e.,
spatial ABMs (Manson et al., 2020). Specifically, ABMs where the behavioural
rules are defined in terms Random Utility Models (RUM), similar to discrete
choice models (Train, 2009). ABMs within this class share properties that can
make latent policy recovery from macro-scale summary statistics particularly
challenging. Here we list a few of these properties: ABMs are non-linear in
terms of the outcome measures, emergent in terms of the macro-scale charac-
teristics not necessarily being present in the micro-scale, and are sensitive to
initial conditions (Bonabeau, 2002; Mitchell, 2009).

ABMs model heterogeneity in the system units, which requires modelling
behavioural rules along various choice attributes - for example, in the school
choice model, composition and distance characteristics and agent attributes,
archetypes blue and red (Train, 2009). From an inverse generative perspec-
tive, this entails that the latent policy depends on multiple factors to unknown
degrees. Path dependence implies that decisions in one-time step can have

12

long-lasting effects, making optimal sequences of actions necessary in complex
systems (Thurner et al., 2018). In the theoretical system we address - namely,
the school-choice model, agent actions can have long-lasting effects, for exam-
ple, by moving to a school and therefore deterring opposite-type agents from
moving there. However, they base their decisions on the current state only; that
is, their decision is not subject to any previous moves they have made. Hence,
the Markov assumption is satisfied as multiple RL algorithms require (Sutton
and Barto, 2018).

The considered systems may have equifinal outcomes. Equifinality is the
presence of multiple explanations for a single outcome. In the context of complex
systems, this may mean that multiple policies are equivalent with respect to the
outcome, but, possibly, qualitatively very different (Williams et al., 2020).

We take these properties into account when designing our methodology.
However, they make the predictability of complex systems outcomes difficult
and, thus, the recovery of micro conditions from those outcomes challenging.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a family of AI methods for learning sequential
decision-making in dynamic environments, that is, learning complex behavioural
policies where the outcome depends on a series of decisions. In RL, an agent
is situated in an interactive environment Env and receives reward signals (e.g.,
in the form of a scalar) through a reward function based on the outcome of the
actions it has taken. (Sutton and Barto, 2018).

Formally, this process is defined as a Markov Decision Process (MDP)
5-tuple ⟨S,A, p,R, γ⟩.

• S is the set of observable states containing all possible environment rep-
resentations. In a fully observable environment this is the true set of
states.

• AS is the set of actions the RL agent can choose from in state s

• p : S × A × S → [0, 1] is a model of the state transition probabilities
P (st+1 = s′|st = s, at = a). The probability of transitioning to state s′ in
time-step t+ 1 from previous state s having taken action a in time-step t
is given the by this model.

• R : S×A×S′ → R is the reward function which returns a scalar reward
rt+1 = R(st = s, at = a, st+1 = s′)

• γ ∈ [0, 1] is the discount factor which determines the discount in the
valuation of rewards over time (i.e., rewards received later in time are
valued less). For example, γ = 0 means that the agent only cares about
immediate rewards, as future rewards are completely discounted.

Importantly, environments modelled as MDPs satisfy the Markov condi-
tion, which requires that a state transition is dependent only on the current

13

state and action and no previous states. Given an MDP and an agent that
repeatedly interacts with and explores the environment, we generate a sequence
of 4-tuples - namely a trajectory of state, actions, rewards, and next states
τ = {(s0, a0, r1, s1), ..., (sT , aT , rT , sT)}.

RL provides a collection of optimisation processes for solving MDPs: An
agent learns a policy π through iterated interaction with the environment such
that π ≈ π∗, i.e., the policy approximates the optimal policy. Optimality in a
MDP is the maximisation of return or the cumulative future discounted reward
of a trajectory τ starting at time t = 0 defined as:

R(τ) =

T∑
t=0

γtrt (2.2.1)

where T is the final time step. In continuous tasks T =∞ but in episodic tasks
that we consider T is an integer value. Note that for infinitely long episodes (i.e.,
continuous episodes), a discount rate γ < 1 is used to avoid infinite rewards.

A policy in the context of reinforcement learning is a decision-making strat-
egy in which π(a|s) for a ∈ A, i.e., the probability of taking an action given the
current state. The goal of RL, and hence a policy π, is the maximisation of the
expected return. Formally, given that the probability of a trajectory τ depends
on the policy, the expected return is:

P (τ |π) = P (s0)

T−1∏
t=0

P (st+1|st, at)π(at|st) = Eτ∼π[R(τ)] (2.2.2)

In considering different approaches to RL, we distinguish between model-
based and model-free approaches. The former are methods of optimising
a policy given a state transition probability function. This function may not
always be available and must be learned through exploration of the environment.
The latter do not require this information and do not use an explicit MDP
structure but learn the policy from experience. Therefore, The latter methods
can be more flexible and practical if an environment’s MDP is unknown or too
complex to map accurately. In learning a policy, there are two main methods
value-based and policy gradient methods.In our research we focus on the
former.

2.2.1 Value-based methods

Value-based methods learn a value estimate of taking an action at a given state,
expressed as the expected return. The goal is to learn a value function Q(s, a)
that maps a state and action to an expected return. Through repeated inter-
action with the environment, the value estimates can be updated in two ways:
Monte Carlo (MC) and Temporal Difference (TD). The former is based on
full episode returns, while the latter relies on bootstrapping (i.e., estimates of
state-action values). TD has been empirically found to be more sample efficient,

14

although they suffer from overestimating state-action pairs, i.e., maximisation
bias (Sutton and Barto, 2018).

An example value-based, TD algorithm is Q-learning. The state-action
value function is updated using an estimate of the next state value instead of a
full return. Since we use the next state’s action value estimate, this is referred
to as one-step TD. Equation 2.2.3 shows the temporal difference equation
where at+1 is the action taken in st+1 using the greedy policy i.e., at+1 =
argmaxa∈Ast+1

Q(st+1, a)

δ = rt + γQ(st+1, at+1)−Q(s, a) (2.2.3)

The value function is then updated according Equation 2.2.4, where α is the
learning rate hyper-parameter.

Q(s, a)← Q(s, a) + αδ (2.2.4)

There exist more distinctions within value-based methods. For example, an
approach can be on-policy or off-policy. On-policy methods update the value
function using the same policy with which they interact with the environment,
whereas off-policy methods use a different policy. Q-learning (see update rule
Equation 2.2.4) interacts with the environment using the ϵ-greedy policy but
updates using a greedy policy and is therefore an off-policy algorithm. ϵ-greedy
is a method of exploration where the agent explores the state action space by
taking a random (as opposed to optimal) action with a probability ϵ.

Another relevant distinction is that between tabular and function approx-
imation methods. For cases with small state and action sets the q-function can
be represented as a table. However, as the size of the state representation in-
creases the number of states increases exponentially. For large state and action
spaces the table can be represented by a function approximator such as a neural
network. This leads to much better memory efficiency and state space general-
isation as similar states return similar values for the same actions (Sutton and
Barto, 2018).

2.2.2 Neural Networks

In this project, we use artificial neural networks (ANNs) as function approx-
imators. ANNs are loosely inspired by biological neural networks and based
on the perceptron algorithm. In their simplest form, they are implemented
as a feedforward multi-layer perceptron (MLP) (Rumelhart et al., 1986). The
feedforward architecture means that there are no cycles in the network. The
connections between the units are real-valued parameters (also referred to as
weights). Following the analogy with biological neural networks, their magni-
tude can be understood as the connection’s strength, excitatory if positive or
inhibitory if negative. A unit’s activity at layer l is the weighted sum of the
previous layer’s l − 1 activities (Equation 2.2.5. This sum can be applied to
an activation function g(·), which can be non-linear. Networks with hidden

15

layers (i.e., more than one layer) and non-linear activation functions are called
deep neural networks (DNNs).

zli = g(
∑
j

wl
ijh

l−1
j) (2.2.5)

Non-linearity is a critical factor in neural networks which allows them to
approximate any function, otherwise, their approximation power is limited to
that of linear functions. Furthermore, the layered architecture of such networks
is considered to result in hierarchical compositions of the input at different levels
of abstractions (Bengio et al., 2009). This means that by using hidden layers, a
DNN automatically learns useful features or representations of the input in the
first few layers of the network, removing the need for manual feature engineering
or in RL constructing state feature vectors.

The final output layer of an MLP can be a value or a vector of values (e.g.,
action values). ANNs and, by extension DNNs are fitted using gradient descent
optimisation methods, which ultimately involve updating the parameters such
that some objective is minimised. In the context of RL, the objective is reward
maximisation and, therefore, gradient ascent. This process requires defining
three components: the objective function, the derivative calculation, and the
update method. The first can be computed using a loss function (e.g., mean
squared error). The loss has to be calculated against some ground truth. In
RL, specifically Q-learning, this can be the TD (Equation 2.2.3) which should
be minimised. The derivatives are calculated using backpropagation. This algo-
rithm first computes a forward pass of the network (i.e., all the unit activations)
and then, through a backward pass, the partial derivative of each parameter with
respect to the objective. That is, the effect of each parameter on the final loss is
computed. Since the partial derivatives point to the objective’s maximisation,
the weights are then adjusted by them multiplied by a negative learning rate
value α such that the loss is minimised.

We have reviewed the foundational concepts behind our work. In the following
subsection we cover work similar to ours in spirit: attempts to integrate AI
methods in modelling and recovering decision rules for ABMs using AI. There
exists a growing body of research on the combination of AI methods with simula-
tion and modelling in general and RL and ABMs in particular. In the following
sections we cover work that falls within two categories: first, work that gener-
ally combines learning systems with computational modelling and second, that
uses learning systems to recover decision rules and policies — in other words,
focusing on inverse generative process.

2.3 Learning and generative models

One of the primary ways to combine RL with ABMs is by replacing or augment-
ing hardcoded logics or behavioural rules with learned ones. This combination

16

maintains the generative nature of ABMs as the learning process involves op-
timising for some internal ABM objective, e.g., the utility of individual agents
rather than accuracy to the real world process.

An example is the research of Zheng et al. (2020), who leverage RL methods
to learn optimal taxation policies in a simulated environment where human-
designed agents who are part of a virtual economy interact by producing, selling
and buying goods. The RL system uses the monetary health of the simulated
economy as feedback to adjust its taxation policy, finally learning the optimal
taxation strategy for different economic agents. The objective is not to recover
the real-life system’s decision process or match some target outcome but rather
the optimisation of critical metrics in the virtual economy and insight into what
an optimal policy may look like.

The work of Radovic et al. (2022) is another example of multi-agent RL
being integrated in a wargame between international oil companies. In this
instance, companies observe energy futures and demand/supply metrics and
make decisions on energy-type production levels and investments. By playing
against hard-coded adversaries that exploit strategies or behave in a business-
as-usual manner they identify a series of robust individual strategies.

Sert et al. (2020) focus on Schelling’s residential segregation model. Using
the DQN algorithm, a DNN based Q-learning implementation, they learn two
neural networks corresponding to the two types of agents (red and blue) located
on a grid. They use a deep-convolutional neural network to encode the state
of an agent with respect to their surrounding neighbours and train the two
controllers to make decisions for the agents on the grid - for example, whether
to move or stay in their current location, using a neural-network as opposed to
codified rules. By introducing different kinds of rewards that resemble societal
incentives or agent utility functions in a traditional ABM, they explore the
segregation dynamics of the trained agents. They find that despite segregation
rewards, integration can be achieved by establishing interdependencies between
different agent types. They also find that younger agents are attracted to diverse
neighbourhoods more than older ones.

The work of Jäger (2019) is another example of this methodology also applied
to a Schelling model of residential segregation. Instead of defining the decision-
making logic, they define a utility function which rewards the learning agent for
its actions. They show that by using Deep RL they can match the segregation
dynamics of ABMs with manually defined rules. Additionally, they show that
the learning capacity of those models facilitate the expansion of the models to
new environments and therefore research of different segregation dynamics.

Osoba et al. (2020) use RL in ABMs to explore policy decisions and compare
them to heuristic models. They demonstrate that RL is a suitable abstraction
for behavioural ABMs and outperforms non-learning agents in all experiments,
with better generalisation in multi-agent cases. The RL formalism provides
a natural abstraction for the reward seeking behaviour of agents allowing re-
searchers to focus on designing sound counterfactual and predictive experiments
instead of the internal decision-making structure or parameters. However, their
models do not satisfy the Markov condition, which can limit some RL algo-

17

rithms’ performance. Furthermore, the learned policies solely aim to maximise
the ABM utility objective without ensuring their real-world validity.

The reviewed work illustrates that RL and ABMs are naturally compatible
in terms of formalism: definition of an agent and environment, mappings of
states to actions, and presence of a temporal scale and objectives. However,
the above approaches pay little attention to the validity of the learned models,
focusing instead on the traditional bottom-up approach, the flexibility of the
agent, the achievement of the environment objective, and the emergent outcome.
Moreover, while these approaches are meant to bypass the complicated process
of constructing utility functions, the burden is, in fact, shifted to constructing
appropriate reward functions and imputing the latent decision process.

2.4 Learning and inverse generative models

Work in this subsection leverages data-driven AI techniques to improve or en-
sure the validity of the created models. That means that the ultimate goal of
using the model for explanation or prediction using the statistics it generates is
preceded by automatically learning or generating policies through minimising
the difference between the generated statistics and those of the reference system.
Much of this work focuses on the programmatic generation of the agents and
models. This kind of work leverages techniques from evolutionary computing
and more recently RL to synthesise agent programs that are then run in the
simulation, offloading from human researchers the testing of multiple variations
and hyperparameters of their programs (Lavin et al., 2021).

One of the first instances of such data-driven ABM work is the development
of ABMs for the study of walking and moving patterns. Here Torrens et al.
(2011) develop a method for learning action models of movement behaviour
given trajectory data. The method involves collecting samples of real-world
movement trajectories to train a linear regression and using k-means clustering
and nearest-neighbour to integrate into a variety of action models. The goal is
for agents to output plausible moving patterns. Results of the learned model
are quantitatively compared with the reference real-world trajectory data on
different tasks (children walking, adults walking, and cycling patterns). They
show that the learned action models are qualitatively and quantitatively similar
and generalise to non-sampled situations.

Wunder et al. (2013) collect data on participants who played a series of
public goods games where they are required to contribute part of an endowment
to a public pool. They fit and compare 1) a small deterministic model and 2) a
stochastic model where both predict the a) average participant contribution and
b) full distribution of participant contributions. Unlike the stochastic model,
the former model does well in the average contribution but fails to fit the entire
distribution. This is an important point because it shows that using coarser
statistical information may be enough to recover the average behaviour, but not
accurate to capture the full diversity of latent policies. Furthermore, they show
how the stochastic model generalises to extrapolations of simulation settings. In

18

sum, they show the advantages of learning and validating models on empirical
data.

Zhang et al. (2016) follow a similar methodology to the work above and
highlight the importance of empirically assessing the model’s validity. They
develop a framework for learning individual behaviours using machine learning,
deploying the learned models in a simulation, and then evaluating the model’s
predictive performance on a test set. They specifically showcase their frame-
work on a simulation of solar-panel adoption. They compare their model to
an ABM, parameterised such that the mean-squared error of its simulated be-
haviour against the ground truth is minimised. However, they show that their
maximum-likelihood model outperforms it. In this work, the decision model
is based on the probabilities of solar panel adoption estimated by two logistic
regression classifiers which are shared among all deciding agents.

An alternative approach to recovering acting models or decision rules with
learning methods is based on program synthesis. As the nomenclature suggests,
it is the process of automatically synthesising programs. The synthesiser can
be an optimisable module that iteratively improves the output code quality as
measured via some objective. An example of such an approach which uses RL
to synthesise differential equation models (therefore not ABMs) is the work of
Bassenne and Lozano-Durán (2019). Differential equations are used for mod-
elling which, unlike ABMs, are expressed in analytical form and evaluated using
a computational solver. The differential equation of choice is a fluid-dynamics
equation of which they try to generate a missing term.

Bassenne and Lozano-Durán (2019) formulate the problem as a multi-armed
bandit problem (i.e., a category of RL algorithms for single-state MDPs) where
the agent consists of a model generator so that its actions are formulations of
differentiable expressions. The action is a sampling from a domain-specific lan-
guage (DSL). Given an action and thus the equation’s completion, the equation
is passed into a computational solver to run and compare it to a reference ex-
pression (the entire ground-truth equation). The reward is calculated based on
the difference in the exact solution of both equations, including a complexity
penalisation (where more terms lead to a smaller reward). Given this reward
signal, they show that the agent can eventually learn to substitute the missing
terms of the fluid-mechanics equation correctly.

Previous work focusing on ABMs has used evolutionary methods to evolve
logic for a crowd simulation model (Junges and Klügl, 2011). However, the re-
sulting program was meant to be used as inspiration for a modeller rather than a
ready-to-use agent. Greig and Arranz (2021) use program synthesis to generate
the action logic for two ABMs: an opinion dynamics model and a bird flocking
model. They develop a broad methodology for evolving agent logics for ABMs
given a DSL. Similar to extensive hypothesis testing, their approach leverages
evolutionary computation by using a fitness metric to converge to an agent logic.
The fitness is calculated by comparing the candidate agent’s behaviour against
an output reference model, specifically by calculating the mean-squared error
between the two. Behaviour, in this case, is represented as a set of state and
action trajectories. Thus, given a state, the mean-squared error is calculated

19

over the difference in actions of the candidate and reference models. The refer-
ence systems, as in our case, are hand-designed ABM models which can be run
extensively to obtain large amounts of data. While they provide examples of the
qualitative resemblance of the learned model and how it generalises, the most
significant advantage of this approach is that the output can be human-readable,
albeit requiring some modification. However, such genetic and evolutionary ap-
proaches tend to be computationally inefficient and prone to overfitting target
data. In both cases, it is unclear how the approach would perform for larger
systems with agent states of higher dimensions.

Latent policy recovery offloads human labour, can improve a model’s accu-
racy, and may improve the computational efficiency of a model as in Novati et al.
(2021) in turbulence models, for example. The most accurate (with respect to
spatial resolution) way to model turbulence flows is direct numerical simulation
(DNS). However, this requires solving equations at extremely high resolutions
(e.g., trillions of points in a flow field’s grid). Instead, researchers use large eddy
simulation to resolve the flow dynamics at larger scales and use heuristics or sta-
tistical models for finer scale points and their interaction with the larger scale.
(Novati et al., 2021) replace those lower scale models with a trained controller
which models the finer scale flow fields. The controller is trained to maximise
the similarity of the statistics of the model it controls to that of a reference DNS
model at different parts of the volumetric grid. This approach leads to much
more efficient fine-scale modelling, shown to generalise better than approaches
that solely use supervised learning. The authors hypothesise that this is due
to RL optimising for the long-term reward of its actions which a traditional,
single-step supervised learning approach does not, leading to an accumulation
of errors in the model. Despite learning a single controller, they refer to their
method as a case of multi-agent RL, given that the single controller has different
effects on different parts of the environment simultaneously. In a more recent
version they show their methodology can be extended to simulate the near-wall
(i.e., close to a surface) turbulence dynamics (Bae and Koumoutsakos, 2022).

The most recent example of IGSS in the context of ABMs is the work of
Chopra et al. (2022). The authors use DNNs with ABMs to create an end-to-end
differentiable epidemiological model. In place of the traditional object-oriented
design they use two parameterised models, for computing the probability of
transmission between agents and a disease progression model. These models
are used to simulate at the level of individual contact networks. The error
is computed between the simulation’s and real world macro statistics and the
models are optimized via gradient descent. One of the key advantages of this
process is the efficiency of running this simulation which is effectively reduced to
a matrix multiplication between the two models and agent states. Additionally,
this model is meant to inversely infer the mechanisms of the disease spread
and progression without relying on handmade rules as in traditional ABMs or
omitting the individual and network effects as in differential equation models.

The final set of approaches to the inverse generation of models involves two
subdomains of RL: inverse RL (IRL) and imitation learning (IL). For a more
extensive review of such methods, consult (Torabi et al., 2019). Imitation learn-

20

ing involves learning the state-action value function or policy in a domain by
minimising the difference in the behaviour (i.e., action selection) of the learning
and expert policies. Imitation learning can be used to improve sample efficiency
by first training a model and then optimising the learned parameters through
interaction Hester et al. (2018). More advanced methods use even less informa-
tion (i.e., only state and next-state pairs), making use of causality to infer the
latent expert policy (Edwards et al., 2019).

IRL is another methodology used to recover the behavioural objectives of
agents given demonstrations of their behaviour by finding the appropriate re-
ward function. In IRL the reward function is modelled as a linear combination
of weights and features such that the observed trajectory behaviour maximises
the received reward (Abbeel and Ng, 2010). Given the recovered reward func-
tion, one can train agents in parts of the state-space of the domain that may
not be present in the given trajectories. Lee et al. (2017) present a method-
ology for using IRL to automatically learn the ABM policy of a system. The
steps considered involve the collection of trajectory data, an MDP design, clus-
tering of agent trajectories across behavioural patterns and candidate reward
functions, estimating the transition probabilities for agents in clusters, extract-
ing behavioural rules that maximise the expectation of the reward functions,
and finally constructing the ABM from the extracted rules. They test their
methodology on a simple segregation ABM where agents, split along a 2-level
characteristic, can decide whether to move and whether to have a conversation
with other proximal agents. In a very similar manner to us, they generate syn-
thetic data using a known ABM and quantitatively and qualitatively compare
the extracted behaviours with the reference ones.

While the objectives of the reviewed work resemble ours, we strive to recover
a policy given very coarse data about the target process. Approaches like IRL
and IL require high-quality, high-resolution (temporal) scale trajectory data
which is not always available. For example, in the case of school segregation,
the process may take multiple decades to stabilise. Data about school choices
may not be consistently available over long periods and at the individual level,
which is rarely available due to privacy concerns.

In this inverse generative work, we have seen that most approaches require
and exploit trajectory data: fine-scale temporal and individual actions of the
reference system. In such circumstances, simple ML methods like logistic regres-
sion, supervised-learning-based imitation learning or more advanced and general
like IRL may be used. However, we take an approach where the reward signal
is modelled on the final state or high-level statistical description of the system
(as in Novati et al. (2021)).

21

Chapter 3

Methods

The following section covers our work’s most important methodological details.
First, in Section 3.1 we introduce the reference model and policy used in this
thesis, which is a computational grid-based ABM of residential and school segre-
gation processes. In Section 3.2, we introduce the implementation of the baseline
and learning controllers for the RL process. In Section 3.3, we cover the process
of collecting the summary statistic from the reference model and how they are
used to run the recovery process. Section 3.4 describes our implementation of
the MDP formalism. Section 3.5 covers the reward function implementation
separately. Finally, we put all of the above together in Section 3.6 and close
with some technical details regarding the implementation in Section 3.7.

3.1 School choice model

This section discusses the ABM used in this project - namely, the COMPASS
model. In the context of the inverse latent policy recovery with RL, the ABM
serves three functions: First, it implements the reference model(s), which we
recover via our method. Its second purpose is to serve as the school-choice envi-
ronment simulator for the RL controller. Finally, it serves as the ABM in which
we incorporate the recovered policies for testing. The ABM is implemented
by Dignum et al. (2022) based on the work of Stoica and Flache (2014), Sage
and Flache (2020), and Schelling (1971). The purpose of the model is to help
study the emergent dynamics of residential and school choice and the emergent
segregation outcomes.

The processes can be simulated on grid environments and real city geograph-
ical data. It is assumed that residential choice precedes school choice and thus
runs the two processes in sequence, with the former preceding the latter. Both
processes include a random initialisation schedule, i.e., the allocation of agents
to random residential locations and schools in the first step. In the following
steps until the preset maximum or convergence (defined as a minimal change in
average agent utility) a subset of agents is chosen to act using their behavioural

22

rules. In the residential process, that action may be to change neighbourhoods
and, in the school process, to change schools. Numerous parameters can be used
to configure the model. Dignum et al. (2022) extensively analyses the available
simulation parameters and their influence on the residential and school process
outcomes. The parameters that affect our experiments are listed in Table A.1
of the Appendix A.1.

Our RL pipeline relies on a set of summary statistics S which is also obtained
using methods of the reference model. We refer to each summary statistic as
a target vector t. Those are the school composition tc, average household
distance td, and attendance proportion ta vectors. All target vectors have
a norm equal to |M |. That is, they contain the relevant statistic for each
school. We elaborate more on those targets in 3.5. The emergent outcome
in both processes is segregation or lack thereof. The simulator measures the
level of segregation according to Theil’s index (see subsection 2.1.1) either in its
decomposed or global form.

The COMPASS model implements a random utility model policy for every
household. Since this utility function U , as implemented for the school choice
model, is the latent policy we attempt to recover using RL, we discuss it in
detail here. For each household i ∈ H, the utility of a school is calculated
based on a combination of two factors. First, the utility from that school m
composition cmi i.e., the proportion of same-as-i-type agents over all attending
agents. Second, the distance dmi from household i to the school m. The two
are linearly weighted using the 0 ≤ α ≤ 1 parameter. The utility of a school m
for a household i is defined as per Equation 3.1.1:

Umi = αCmi + (1− α)Dmi (3.1.1)

The distance utility factor is linear and defined as :

Dmi = 1− dmi − dmin,i

dmax,i − dmin,i
(3.1.2)

where dmi is the Euclidean distance from i to school m and dmin,i, dmax,i is
the distance to the closest and furtherst school to i, respectively. The composi-
tion utility factor defined using a single-peaked utility function:

Cmi =

{
xmi

ti
if xmi ≤ ti

M+ (1−xmi)(1−M)
1−ti

if xmi > ti
(3.1.3)

Here xmi is the proportion of agents of the same type as i in school m. M
is a factor which affects the utility to agents when the proportion is larger than
the optimal fraction. An M = 1 would signal indifference, but one may want
to model agents seeking diversity.

Note that with the α parameter, we can alter the structure of the utility
function: for α = 0, the utility function is equivalent to Equation 3.1.2 while for
α = 1 it is equivalent to Equation 3.1.3. Other parameters relevant to the school-
choice process but independent of the reference policy itself include the existence

23

of capacity constraints in the schools, both in terms of the minimum number
of students (which implies that attending students cannot leave) and maximum
(which means no new students can attend). These can have a substantial effect
on the processes’ dynamics as they may block agent actions.

3.1.1 Model assumptions

There are numerous assumptions in the design of the school choice model. For
a better understanding, the reader is referred to the original work of Dignum
et al. (2022). For the purposes of our research, we further limit the operat-
ing parameters of the model to consider simple cases. For example, we allow
schools to be empty (i.e., minimum capacity of 0) such that households can
freely move around while maintaining a sizeable maximum capacity. We also
consider identical behavioural rules for both agent archetypes (i.e., blue and red)
parameterised with an optimal fraction ti = 0.6 ∀ i ∈ H. The utility functions
we consider are also non-peaked (M = 1). This means that if the composition of
a school is higher than the optimal fraction that still leads to maximum utility.
In turn, this entails that the process will likely lead to complete segregation.
Finally, we randomly distribute the agent types such that their proportions are
close to 0.5. Table A.1 in Appendix A.1 lists all parameters used in our method.
The only parameters we vary in our experiments is the α value and the number
of households |H|. We elaborate on those in the experimental setup Section 4.
In general, we consider the extreme cases to be the simplest to recover as they
are likely to converge to extreme outcomes and hence clear differences in the
outcome summary statistics.

3.2 Controller implementations

This subsection describes the implementation of the controllers used in the RL
environment. We implement two types of controllers: non-learning and learning
ones. The former are used as baselines or benchmarks for the latter. The
learning controller is a typical RL algorithm used in discrete-action spaces - a
DDQN.

3.2.1 Baselines

Oracle model

The Oracle model implements the utility function in 3.1.1. It takes the α pa-
rameter as input to compute a value ranking according to the state vector. For
example, in a scenario where reference policy is parameterised with an α = 0,
the Oracle model will output a school ranking in increasing order of the school
distances (i.e., closest school first and furthest school last).

Even though the Oracle implements the reference behavioural rule, which is
what the training process aims to recover, it is not guaranteed to receive maxi-
mum reward. The reward function is built on certain assumptions regarding the

24

system’s stochasticity and dissimilarity computations with the reference. There
is no established reward function design for our task therefore it is subject of
research and experimentation in itself. Basically, there may be a discrepancy
between what we want the reward function to measure and what it actually
measures. Consequently, the Oracle plays a crucial role in the design of the re-
ward function during preliminary experiments. Ideally, a good reward function
would be optimised under the Oracle’s policy control.

Random choice model

As the name suggests, outputs a random ranking of schools, regardless of the
household that is being moved. This sets a baseline against which we can
compare the learning model.

3.2.2 Learning algorithm

Our RL agent is an implementation based on the Double DQN (DDQN), the
algorithm behind many recent RL breakthroughs (Mnih et al., 2013). DQN is
based on the Q-learning algorithm introduced in Section 2.2 but uses a deep
neural network for function approximation. The key idea behind the DQN is to
use the Q-learning update step 2.2.4 as the loss for stochastic gradient ascent.

We use experience replay for training. Experience replay introduces a mem-
ory buffer, a store of episode transitions. During training, transitions are pushed
to the buffer. During optimisation, those transitions are uniformly sampled to
compute the loss and update the DQN’s parameters. One of the advantages of
this process is that it maintains the i.i.d. assumption required for ML algorithms
like backpropagation in DNNs since uniform sampling breaks any correlations
between states in the gradient update (Sutton and Barto, 2018).

Van Hasselt et al. (2016) proposed DDQN, which is the algorithm we im-
plement in this project. DDQN was proposed to address the maximisation bias
present in Q-learning due to the use of the maximum expected action value in
the temporal-difference computation. In DDQN, we maintain two DNNs, the
online and target networks. These are used as separate estimates of the action
value function Qo and Qt parameterised as θ and θ′, respectively. The online
network is used in the evaluation of the greedy policy. However, the target
network is used for the estimation of its value as expressed in the formulation
3.2.1. The target network’s parameters θ′ are replaced with those of the online
network θ every n steps.

Qo(s, a)← Qo(s, a) + α[r + γQt(s′, argmaxaQ
o(s′, a))−Qo(s, a)] (3.2.1)

The entire DDQN algorithm can be read in pseudocode 1, adapted from the
work of Mnih et al. (2013).

25

Algorithm 1 Double Deep Q-Network (DDQN) with Experience Replay

Require: Environment with state S, action space A, reward function R(·),
discount factor γ, and terminal state T .

Require: Q-networks Qo(s, a; θ) and Qt(s, a; θ′) with parameters θ and θ′, re-
spectively.

Require: Replay memory D with capacity C.
Require: Exploration policy ϵ-greedy with decay schedule.
1: Initialize Q-network Qo and target network Qt with random weights θ and

θ′, respectively.
2: Initialize replay memory D to capacity N .
3: Initialize time step t = 0.
4: for episode do
5: while t < T do
6: Observe state st.
7: Choose action at using ϵ-greedy policy.
8: Take action at and observe reward rt and next state st+1.
9: Store transition (st, at, rt, st+1) in replay memory D.

10: Sample mini-batch of transitions (si, ai, ri, si+1) from D.
11: Compute target Q-value for each transition:

ŷt = rt + γQt(si+1, argmax
a

Qo(st+1, a; θ); θ
′
).

12: Update Q-network parameters by minimising the loss on all the sam-
pled transitions:

L(θi) = E(si, ai, ri, si+ 1) ∼ D
[
(ŷi −Q(si, ai; θi))

2
]
.

13: Every C steps, update target network parameters: θ− ← θ.
14: Increment time step t.
15: end while
16: end for

In contrast to early claims in the literature, recent work has shown that RL
algorithms, in general, and DQN approaches in particular, are very sensitive
to hyperparameters such as the learning rate, target network update frequency
n, ϵ decay and more (Henderson et al., 2018). We observed this sensitivity to
hyperparameters in our runs as well. Therefore we run a hyperparameter search
based on a random search for multiple seeds and multiple environment setups
to settle on the final parameters reported in Table A.2.

The DDQN gives us the expected reward over schools. For action selection
we use the ϵ-greedy algorithm, where the threshold ϵ decays exponentially with
the number of training steps. Equation A.2.1 in Appendix A.2.1 formulates our
decay implementation and more details on the process.

26

3.3 Data

The reward signal depends on the outcome summary statistics of the reference
system. Thus we require these summary statistics along with information about
the system’s setup, such as, for example, the geolocations of the households
(which is relevant to the school process). This project is limited to compu-
tational, grid-structure reference models based on the work of Dignum et al.
(2022), which we use as a synthetic data generator. We have complete control
over the reference model and can use it to explore how our learning pipeline
performs for different reference conditions.

To make the data collection and experimental process easy to understand, we
define two terms: scenario and instances. A scenario is a particular configura-
tion of reference system, including the reference policy. An example of a real-life
scenario is the city of Amsterdam and the school-choice policies of its different
household types. We can be more precise in a computational model over which
we have complete control: A scenario is a particular system configuration, e.g.,
α = 0.2, 100 households, and a low tolerance t = 0.2.

An instance is an instance of that scenario. While the scenario defines the
process, there are still some random factors, for example, the exact distribution
of different types of agents, the residential segregation pattern, initial random
school allocations, and the sequence in which agents move. Thus a scenario
can give rise to a variety of instances, and depending on the scenario, these
differences may be substantial.

To clarify the distinction between instances and scenarios, we provide an
analogy with the city of Amsterdam. Any neighbourhood of Amsterdam may
be considered an instance because we assume the same individual policies and
school constraints apply to the households, but there may be different residential
patterns or initial school allocations - for example, a new neighbourhood, re-
cently populated, where all schools are new. In the context of the school-choice
simulator, instances are unique instantiations of the environment, distinguished
by different random seeds and therefore residential and initial school allocations.
Nonetheless, all instances are run with the same utility function and number of
agents.

Consider the scenario where α = 0 and thus the reference policy (utility
function) is an inversely proportional, linear preference over distances. In such
a case, the school process is entirely determined by the residential process and
thus mirrors the residential segregation (provided there are no strict school
capacity constraints). Households will always choose their local school. Different
instances of this scenario will therefore be completely different: an instance with
low residential segregation will result in low school segregation, whereas a highly
segregated grid will lead to a high school segregation.

Obtaining the training data

The training data consists of the reference outcome summary statistics gener-
ated under the parameters listed in Table A.1. Complex system outcomes are

27

sensitive to initial conditions. Therefore, we store information such as the exact
distributions of agent archetypes and converged residential patterns of the refer-
ence run to make the sample as similar to the reference one, with respect to the
initial conditions. We configure the school-choice model to the desired scenario
to obtain the training data and run it to record the final residential pattern and
school outcome summary statistics. We do this 25 times with different random
seeds to generate more instances for the same scenarios. Note that the initial
allocation of households to random schools is also part of the initial conditions.
However, we omit this information and therefore the sample system does not
have the same initial school distributions as the reference.

We make the decision to discard the initial school allocations because we
assume that a feasible inverse generative method should work in the absence of
this data. That is, we consider this data to be entirely unavailable in the real
process because is unclear what the ’start’ of the real system would be and how
this data would could be estimated. In contrast the residential distributions
can be estimated through aggregated data on a neighbourhood scale. This
data, for the city of Amsterdam, is publically available (e.g., in (Municipality
of Amsterdam, 2023)).

Once we generate the data, we can load it to train and evaluate our RL
method. We implement a module that loads this data and reconstructs the
grid by assigning the reference model’s converged residential geolocations to the
appropriate households. This makes the training process more versatile as we
do not have to rerun the generative reference model when running the inverse
process. In the loaded grid, a household i will reside at the exact same x, y coor-
dinates in the reference and sample models. We can then assign each household
to a random school and use the RL controller as the school-choice policy to run
the school process. The sample model is run, and rewards are computed based
on the dissimilarity with the recorded outcome statistics between the reference
and the sampled learning model.

3.4 MDP design

Since we only use model-free approaches, the exact specification of the MDP
dynamics is not useful. Generally, the state transitions happen with probability
1 unless some capacity constraint is encountered, in which case the transition
does not happen. Notwithstanding, we elaborate on the design of the state,
observations, and other MDP factors while we expand on the reward function
in the following subsection 3.5

Note that the agent does not fully receive information on all the summary
statistics. That may tempt one to consider our problem formally as a Par-
tially Observable MDP. However, that is not the case, as POMDPs imply noisy
observations of system states or the collapse of multiple states into identical ob-
servations. Both issues can lead to the Markov assumption not holding (Spaan,
2012). Although not all summary statistic targets are part of the state space,
both POMDP characteristics are not present in our system. Some targets are

28

a ommitted on the grounds that they are irrelevant or inaccessible to the in-
dividual agents and therefore not specified in the agent interface. Thus, the
state contains all the information that is given to the reference policy (utility
function).

• Environment: The learning and simulation environments are the same
and consist of a set of spatial units which can hold a school m, a household
agent i, or nothing (i.e., an empty location). The areas are cells in an
H × W grid. In every environment, M and H are the set of schools
and households, respectively. Each school m ∈ M can be described by
various features including, but not limited to, its location x, y coordinates,
composition cm ∈ [0, 1] and the Euclidean distance to a household i, dmi ∈
[0, H ×W]. D is the |H| × |M | matrix of school to households distances.
Unlike grids in previous research in the school process, we assume non-
periodic boundaries.

• State s: The state vector must be carefully designed to include all relevant
information to the households’ decision process. It must also match all
information available to the reference decision-makers. Of course, in our
case, that is trivial to obtain, but in a real-world application, this decision
must be informed by prior research. For a system with |M | we have a
state vector s ∈ R2|M |+2. Each state vector includes the agent’s type, the
agent’s current school, and for every school, its distance from the agent
and its composition. The school’s composition cm is the number of agents
enrolled in it of the same type as the agent whose state is being computed,
divided by the total number of students in that school. The composition
and distances are real-valued, so the state space is continuous.

• Action a ∈ A: The action of the controller represents the choice to move
to a school m. For a given household, the controller can choose to move
to the household’s current school and therefore not move. Therefore, the
number of actions |A| = |M |.

Note that in our experiments, the type (blue vs red) of an agent is obso-
lete with respect to the latent policy though relevant in discriminating among
choices. That is, it is a factor in the agent actions but there we consider sce-
narios where all agents follow the same policy. The compositions in the state
vector are computed such that they always reflect the composition as a ratio of
cm = self-type

total and thus is implicit in the state vector information.
As aforementioned, there can be constraints to the execution of actions, for

example, if a school is at maximum capacity. We briefly illustrate how we handle
such action blocks. While algorithms like ϵ-greedy prescribe a single action to
take, we use the full action set A in the simulator. Recall that the output
of the controller in value-based methods is the expected reward, and thus we
interpret the full output Q(s) where Q(s) = [Q(s, a1), Q(s, a2), . . . , Q(s, an)] as
the value of moving to every school m ∈ M . The simulator takes as input the
full action-value vector.

29

In the context of ϵ-greed: If the random action is triggered then we shuffle
the action-value output. If the optimal action is to be taken then we sort them
from highest to lowest expected value. The simulator receives as input this
ranking and moves the agent to the first school. If the move to is blocked,
then a move to the second school in the ranking is attempted. This process
continuous until the agent is assigned to a school.

How this is handled during training is important for learning. The simulator
returns the chosen action (i.e., the school to which the agent was moved), and
it is this action that is inserted into the replay buffer for training. Thus, if
the optimal move is not allowed from the perspective of the learning controller,
this is equivalent to an exploration move and should theoretically lead to an
appropriate valuation of all schools, given sufficient training.

We set reward discount factor γ = 0.995. This is a typical, although
marginally large value for this factor. With a high gamma we increase the
value of longer term rewards, which makes sense in a sparse reward environ-
ment. The exact details of the reward function are critical. We elaborate on
them in the following section.

3.5 Reward function

The reward function outputs a scalar which aggregates the dissimilarity com-
putation between the reference and sample model summary statistics S and Ŝ.
The reference output is the terminated ground-truth policy, while the sample
model is the one controlled by the RL agent. The reward is computed for differ-
ent summary statistics, which we refer to as targets for short. There are three
targets τ : the school composition vector, the average household distance vector,
and the attendance proportion vector. Note that we use the hat notation (e.g.,
t̂c) to refer to target vectors of the sample system.

• The school composition vector tc contains, for each school, the number of
type 0 (blue) agents over the number of agents that attend that school.

• The average household distance vector td contains, for each school, the
average distance to all the attending households from taht school.

• The attendance proportion vector ta contains, for each school, the number
of households that are enrolled to that school over all households in the
system.

We chose these targets as our summary statistics based on preliminary ex-
periments and the following observations: We require that the targets change
linearly to the controller actions. For example, using Theil’s decomposed index
which is based on the non-linear entropy calculations would change differently
at different value ranges producing an unclear dissimilarity signal. Instead we
use averages and proportions. Moreover, the summary statistics should convey
information that is causally related to the latent reference policy. All our targets

30

change subject to agent choices. An example of a summary statistic indepen-
dent to the policy would be the average distance between schools. Furthermore,
due to equifinality (see 2.1) having multiple targets facilitates discrimination
between latent policies. To illustrate, consider two latent policies: one parame-
terised with an α = 0 - where only distance is taken into account and another
parameterised with α = 1 where only the school compositions are taken into
account. Given an environment that is residentially highly segregated both out-
comes lead to high school segregations. Consequentially, the composition target
vectors describing both systems show extreme composition values. Both policies
are equifinal with respect to composition. However, if we include another target,
for example the average distances, we observe a difference. The system subject
to the former policy has lower values of all school. Hence the two policies can
be discriminated.

There are two more reasons for which including multiple targets is bene-
ficial for learning: First, we want to demonstrate that the learning is robust
to reward signals dependent on information that is not exclusively used in the
latent decision rule. The second reason is that in preliminary experiments we
identified some mode-collapses where the network pushed the system to extreme
states (e.g., all students in one school) which would maximise reward but lead
to inaccurate policies. This is a case of shortcut learning (Geirhos et al., 2020).
Including information such as attendance leads to optimal rewards only when a
plausible system is reached.

The sparseness of the reward signal is another critical design choice. Given
that we are computing the dissimilarity between outcome summary statistics
which are often describing emergent and non-linear processes, we provide a
reward signal at the end of every episode, making this a sparse reward task.
Potential-based reward shaping approaches discussed by Ng et al. (1999) are
not compatible precisely due to the non-linear dynamics of complex systems: a
reward signal at each step would require the learning controller to get to the
outcome summary statistics at each step which is not what the reference policy
is doing. One of the implication of non-linear dynamics is that the dissimi-
larity between some of the reference and sample targets cannot monotonically
decrease, even under reference policy control. The random sampling of moving
agents also plays a role: an agent may be moved to the correct school, but
because not all agents have moved this may worsen one of the other target met-
rics e.g., the attendance proportions. Hence we can only compare the reference
outcome summary statistics with the sample outcome ones.

The reward function is implemented as follows. We measure the dissimilarity
D between reference outcomes and sample summary statistics, at the episode’s
initialisation (t = 0) and at the episode’s termination (t = T). If the dissimi-
larity at termination is less than at initialisation (i.e., a negative gradient) and
the magnitude of the change is above a certain sensitivity threshold ϵ then a
reward of +1 is given. If the gradient is positive and the magnitude larger than
the ϵ threshold then a −2 reward is given. The asymmetry between reinforce-
ment and punishment empirically found to work better, as it helps the DDQN
discriminate between good and bad outcomes. To balance this asymmetry we

31

introduce an accuracy threshold α. That is, if the dissimilarity gradient is nega-
tive (i.e., dissimilarity has decreased) and the termination dissimilarity is below
α a positive reinforcement of +2 is given. This helps the DDQN discriminate
between sequences of actions that lead to the right direction of change and those
that lead to the actual correct outcomes. This process is calculated for every
target and for a predefined dissimilarity metric.

There are two important design decisions here, and we elaborate on the
motivation behind them: the use of gradients and thresholds. The motivation
for the former was to avoid rewarding ’lucky’ initialisations but focus on the
controller’s improvement. The use of thresholds has two advantages: first, it
only considers larger changes and, therefore, better sequences of actions, which
can expedite learning. In the case of the accuracy threshold, it accounts for
minor noise in system outcomes and dissimilarity calculations. Second and
related, it stabilises the reward signal by allowing mapping to integer scalars.
Using the dissimilarity values directly was attempted but led to very noisy
reward signals. A limitation of this decision is that we introduce reward function
hyperparameters that have to be set for every measure of dissimilarity and every
target. Here, it is important to note that the exact values of the thresholds were
set empirically but not as a result of systematic testing.

Furthermore, the exact choice of reward values was empirically motivated. In
particular we noticed that the learned DDQN’s expected values of most schools
for numerous distinct household states were all positive. Generally, even random
policies where able to achieve positive rewards. We therefore make the reward
for negative similarity gradients that are larger than epsilon to have an equal
value to the positive and accurate gradients and facilitate the discrimination
between good and bad action sequences.

The dissimilarity function D is a critical component and has important im-
plications for what is learned. D takes as input the reference sampled targets
in the summary statistics and applies a dissimilarity measure to each summary
statistic. The resulting dissimilarity values are used by Rgradient to determine
the reward. The reward function design is formally defined in the following
equations: Equation 3.5.1 defines the computation of maximal reward given to
accurate outcomes for a target τ . Equation 3.5.2 defines the gradient reward
computation.

Rτ (Ŝ0, ŜT , ST) =

{
+2 if Dτ

T ≤ Dτ
α

Rτ
gradient(D

τ
0 , D

τ
T) else

(3.5.1)

In Equation 3.5.1 Dτ
t is the shorthand notation for Dτ

t (t̂
τ
t , t

τ
T) i.e., the dis-

similarity of the sample system’s target τ at time t with the reference system’s
outcome target τ .

Rτ
gradient(D

τ
0 , D

τ
T) =


−2, if Dτ

T −Dτ
0 ≥ +ϵ

+1, if Dτ
T −Dτ

0 ≤ −ϵ
0, else

(3.5.2)

32

At the last time step, the target rewards are computed by applying the
dissimilarity measures to each target and summing the resulting values. These
target rewards are then aggregated using a summation and normalised, as shown
by the following equation:

R(Ŝ0, ŜT , ST) =
Rc(Ŝ0, ŜT , ST) +Rd(Ŝ0, ŜT , ST) +Ra(Ŝ0, ŜT , ST)

6
(3.5.3)

Here, Rc, Rd, and Ra represent the target rewards computed using the
dissimilarity measures for the summary statistics related to the system’s com-
position, spatial distribution, and attendance distribution, respectively. Note
that only the outcome summary statistics of the reference system are available.
This is one of the key challenges faced by our approach, due to the lack of high
resolution data. We notate the reference outcome ST i.e., termination though
of course a real reference system cannot be said to terminate.

Given a maximum reward for each target summary statistic the total maxi-
mum is (3× 2 =)+6 and in the minimum cases (3×−2 =)−6. By normalising,
we get +1 and −1. The resulting reward scalar R(·) is used to update the RL
agent’s policy parameters in order to maximise the expected cumulative reward
over time. Normalising the reward is useful because it leads to smaller gradients
and a more stable gradient descent process and is common practice in RL.

Note that different targets in the summary statistics have different values and
vary differently with the controller actions. Therefore, the sensitivity gradient
threshold ϵ and the threshold accuracy α are defined differently for each. The
gradient thresholds also depend on the number of moving agents, as moving
more agents at a time can change the sampled summary statistics more. Table
A.3 in the Appendix A.2 overviews the reward function parameterisation for
the single-moving agent cases. Another implementation detail which we found
to be critical for learning is the handling of undefined values. An example is the
computation of the average household distance for an empty school. While these
are generally rare cases, in the extreme scenarios that we run they can occur
frequently. In the Appendix A.2 we cover in detail the handling of undefined
values in the summary statistics.

Since computing a reward from summary statistics is a critical component
of an inverse generative pipeline, the definition of the dissimilarity function D is
the subject of experimental investigation. In our experiments, we consider two
different implementations of the dissimilarity function, each having different
implications for the inductive bias of the agent. Those are the Wasserstein
distance and Mean Squared Error (MSE).

3.5.1 Wasserstein distance

The Wasserstein distance, based on the idea of optimal transport, computes the
distance between distributions. Thus in our case the target vectors are treated
as empirical distributions. Formally, given two probability distributions t and
t̂ the Wasserstein distance is:

33

W (t, t̂) = inf
π∈Γ(t,̂t)

∫
R×R
|x− y|dπ(x, y) (3.5.4)

where Γ(t, t̂) is the set of all joint distributions over R2 whose marginals
are t and t̂, x and y are the elements of the target vectors, and d(x, y) is
the Euclidean distance metric over R. The Wasserstein distance measures the
minimum amount of ’work’ necessary to transform one distribution to the other.
The cost is proportional to this work. Since this is a distribution distance metric
the minimum is 0 but there is no upper bound.

In Wasserstein distance, each school is interpreted as an observation and the
target vectors as random variables. We choose the Wasserstein distance specifi-
cally because of the following three properties: First, it considers the probability
and the distance between two outcomes implying that it respects the geometry
of the distributions. Second, it can handle continuous values (Panaretos and
Zemel, 2019). Finally, by treating the target vectors as empirical distributions
this measure does not assign importance to the order of the vector elements.
It considers matching distributions of outcomes and not exact outcomes. In
our case, this entails that it does not matter which exact school is described by
a particular value in the reference-system. Effectively, the spatial information
between the reference and sample systems is lost. This is important in com-
plex systems where initial conditions and path dependency can lead to different
outcomes, but a similar distributions of outcomes. For example, a latent policy
parameterised by α = 1 entails that high composition values in t̂c are probable
but not in the exact same schools in every run. Which schools will have high
type-0 compositions partly depends on initial conditions.

3.5.2 Mean-Squared Error

Given two target vectors t and t̂ of length |M |, containing summary statistic
information for each school, the Mean Squared Error (MSE) between them is
defined as:

MSE(t, t̂) =
1

|M |

|M |∑
i=1

(t[i]− t̂[i])2 (3.5.5)

where t[i] and t[i] denote the ith elements of the vectors. The MSE measures
the average squared difference between the two vectors and is calculated for each
reference-sample pair of target vectors. A smaller MSE implies higher similarity.

MSE has three properties that are of interest to our application: Firstly, it
is exponential in nature, which implies that high divergence between two partic-
ular schools will substantially impact the error. Second, the error is calculated
between the two specific schools in the reference and sample systems. That is,
the exact difference between a school (which is associated with specific spatial
coordinates) is computed. This retains information regarding location, which is
important in cases where the reference policy depends on spatial information,

34

such as distance. Finally, as the error is an average, the MSE’s range remains
theoretically independent of the number of schools. This eliminates the need
for a new reward function hyperparameterisation of the various thresholds for
more complex scenarios with more schools. That said, in practice, changing the
number of schools can affect the learning dynamics and lead to higher average
errors than one may usually get in cases with fewer schools.

3.6 Training and evaluation

The goal of the RL controller is to maximise the discounted return in expec-
tation. Given that our reward is computed on the similarity of the reference
and sample statistics S and Ŝ, respectively, the assumption is that the optimal
policy π∗ (which should be the reference, latent policy) is the one that leads
to an outcome most similar to S. The problem of recovering the school-choice
policy is implemented as an episodic task. The terminal episode is determined
empirically based on the number of steps rather than being determined by a
specific terminal system state due to the absence of any convergence measures.

On a high level, the training process involves iterating over three steps,
comprising of three key modules. Figure 3.1 offers a schematic overview of this
process. First, an instance is loaded from the scenario to be recovered, along
with all relevant summary statistics. As described in 3.3 the actual reference
process is not run during training. This comprises the reference system (light
blue). Second, the school choice model is run using the policy of the RL learning
controller. This is the sample-system (green-grey). Third, the reference statis-
tics S are compared with the sample statistics Ŝ, and a reward is computed
(orange). The policy is then improved based on that reward. The process is
repeated, starting at step two on the same instance, but with a new random
school initialisation, i.e., households are assigned to random schools at the start
of each episode. Pseudocode 3.6 provides a detailed overview of the training
and evaluation loop i.e., the sample system process.

Figure 3.1: A schematic illustration of the proposed RL pipeline for discrete-
choice model discovery.

The evaluation loop is the same with the omission of the optimisation step
and use of the optimal policy with no exploration. The evaluation loop is ran to
track the learning progress and evaluate the learning optimal policy using the

35

evaluation loop.
Each episode represents a simulation and each step is a controller’s deci-

sion(s) for the moving agents. Given a sampled household’s state, the output
of the DDQN is the value of moving to each of the |M | schools. We treat the
full output as a ranking over schools. The simulator assigns the household to
a school according to the logic described in 3.4. We found that using simple
random sampling to select the acting agents without a really high number of
steps lead to very unequal number of moves per households.

Algorithm 2 Training loop

1: Simulator(H,M, ·) ▷ Simulator with a set of households, schools, and
other scenario-defining information

2: policy π̄θ(·) initialised with random weights θ
3: R(·, ·) ▷ The reward function
4: T ← maximum number of steps
5: households← shuffled household array
6: for episode do
7: Gt ← 0
8: initialise the simulator based on an instance (randomly allocate house-

holds to school)
9: load reference statistics S = {tc, td, ta} from instance

10: collect sample summary statistics Ŝ0 = {tc, td, ta}
11: while step < T do
12: move batch← f agents from households based on sliding window
13: for agent ∈ move batch do
14: a, school ranking ← π̄θ(agent.state)
15: end for
16: Simulator.update(a, school ranking)
17: collect sample summary statistics ŜT = {tc, td, ta}

18: reward←

{
R(·, ·) if t == T

0 otherwise

19: append all relevant information to buffers for training
20: Gt ← Gt + reward
21: update weights θ using gradient-based optimization
22:

23: end while
24: end for

The selection of moving agents, a random sampling process taking place in
line 11 and implemented as follows: First, the array of households is shuffled.
Throughout an episode, we iterate over the shuffled array and exclusively select
as many agents as we want to move in each step (defined by the max move frac

parameter). For all experiments, we use the singleton moving agent batch. This
decision is empirically informed based on evidence from our preliminary runs,
although not systematically evaluated. However, using a larger moving-agent

36

batch size, the system will resemble the real processes’ dynamics better (as
agents change schools simultaneously) and reduce the number of training steps
(as we move all agents in fewer steps).

Note how, between training and evaluation episodes, the scenario, i.e., latent
reference policy, summary statistics, position of schools, and residential choices
of households remain constant. Only the initial school allocation of households
changes. This is a complicated choice as different reference policies are sensitive
to initial conditions in different ways. For example, a reference policy imple-
mented as a distance-only utility function is deterministic given the residential
decisions of households. On the other hand, a composition-utility policy is very
sensitive to initial conditions, such as the initial household allocation to schools
and random batching of moving agents. The data available from the reference
system in the sample system initialisation was discussed in 3.3.

3.7 Software, hardware, and implementation

The code for this project is available at COMPASS repository under the policy-
learning branch (https://gitlab.computationalscience.nl/edignum/compassproject/-
/tree/policy-learning). Following standard practice in AI and the existing ABM,
the language of choice was Python (specifically, version 3.9), and the code is
dependent on the usual scientific programming stack for Python used for statis-
tics, vectorised calculations, visualisations, and plotting. PyTorch was used to
implement neural networks and automatic differentiation modules. Particular
attention was paid to logging the performance and behaviour of the RL con-
trollers in the environment to facilitate debugging and experimental analysis.
For this purpose, the Tensorboard package was used. Finally, the ABM is im-
plemented in the Mesa Python library. The experiments were run on a 36 core
Intel Xeon Platinum 8360Y CPU and Nvidia A100 GPU, provided by Snellius,
the Dutch national supercomputer cluster.

The codebase follows an object-oriented design by implementing various
modules, such as the learning agents and reward functions, as objects. This
architecture helps keep the code modular, intuitive, and consistent with the
existing ABM architecture even as the codebase grows. We also ensure consis-
tent documentation and fully use Python’s support for soft typing. Generally,
changes to the existing ABM code were kept to a minimum, although some ad-
ditional functionalities were added. Functional capabilities of Python were also
used to implement functions responsible for training, evaluation, and various
logs statistical logs. The combination of simulation and deep learning can be
computationally expensive, so decisions to optimise the code by reducing the
number of computations inside the step-loop and allowing for parallelisation of
matrix multiplication calculations using PyTorch’s CUDA GPU API and tools
such as CPython profiler were used to identify and eliminate performance bottle-
necks. Finally, RayTune was used for parallelising the hyperparameter sweep.
Generally, the computational complexity scales linearly with the number of
households, schools, and episode / simulation time-steps: O(|H|×|M |×T), but

37

the Neural Network related computations such as inference and backpropagation
are the most expensive operations.

38

Chapter 4

Experimental Setup

This section provides an overview of our experimental setup and process. We de-
scribe our experiments in detail and the evaluation measures used within them.
We justify their design and execution with respect to the research question.

4.1 School-choice model configuration

We attempt to recover the latent policy from the school-choice model by Dignum
et al. (2022). We do this using only outcome summary statistics on the refer-
ence system and RL. Our experiments address the primary and sub-research
questions posed in Section 1. Given three sub-questions, we focus on three sets
of experiments. Regarding problem complexity, we consider the six scenarios:
latent policies where α ∈ {0, 0.5, 1} and for each α, |H| ∈ {12, 96}. In all scenar-
ios |M | = 4, and households reside on a 15×15 grid. We use the same tolerance
threshold t = 0.6 andM = 1 for both archetypes in all experiments.

The choice of the α parameter entails different sensitivity of the outcome to
the initial conditions: In the first case (α = 0), the school process mirrors the
residential distribution, whereas in the latter cases, the initial random distri-
bution of households to schools matters. This particular set of parameters was
chosen in our experiments because they lead to extreme outcomes (i.e., highly
segregated schools), which means that the summary statistics are more distinct
(e.g., tτ is often a binary vector in the α = 1 case). In general, experiment-
ing with different latent reference policies helps evaluate the robustness of our
method and, therefore, the feasibility of its application.

The choice of households is based on the approximate initial household-to-

school density (i.e., |H|
|M |). That is, for the first case, we expect approximately

three agents per school and for the second case, an initial school density multi-
plied by a factor of eight i.e., 24. We consider the sparser cases to be simpler
because, at the start there is much less diversity in the composition values. A
school can take four composition values for each archetype: 0, 0.333, 0.667, 1.
Sparser scenarios are simpler from a combinatorial perspective as well: If we

39

consider the possible set of solutions (i.e., allocations of households to school
that perfectly match the summary statistics). The combinatorial implication
of the problem guided the decision to test on systems where |M | = 4. Finally,
fewer households allow for shorter episodes and therefore more experiments to
be run in the context of the project’s time and computational constraints.

Different reference policies entail different outcome sensitivity to initial con-
ditions (see Section 3.5). Hence we consider reward functions that compute the
reward using identical logic but on different dissimilarity metrics of the reference
and sample summary statistics. The dissimilarity metrics are the Wasserstein
and MSE criteria. In total, we evaluate the recovery performance in terms of
reward in twelve separate cases.

4.2 Experiments

Learning performance experiment setup

In our methodology, recovering the latent policy amounts to training the learn-
ing RL controller - namely, the DDQN. Our first set of experiments focuses on
evaluating the learning performance of the DDQN during training. We measure
this by running 15 evaluation episodes every 60 training episodes and plotting
the average reward received. This is done for all three scenarios, and both
reward function dissimilarity criteria.

Training requires selecting the appropriate amount of episodes and episode
steps. Both choices are scenario dependent since higher household density re-
quires more moving steps and implies a more complex problem which requires
more episodes. The first case is run for 5000 episodes of 40 steps each, and
the second for 6000 episodes and 290 steps each. As we use singleton batches
of moving agents, each step corresponds to a single agent move. We choose
the number of steps by multiplying by 3 the number of households and ceiling-
rounding to a multiple of 10. This was done to ensure that the controller has
sampled and moved all agents at least 3 times, again, a decision made on empir-
ical evidence from preliminary experiments. More challenging tasks also require
more exploration.

The same DDQN hyperparameter choice was made for all experiments. The
hyperparameters were chosen based on a random grid search. This was done
over three scenarios, two instances, and two random seeds to identify the best
hyperparameters for most tasks. We chose the hyperparameters based on the
controller’s sample efficiency (inversely weighing the reward by the number of
time-step), average reward, maximum reward, and minimum standard deviation
of evaluation rewards. The set of hyperparameters used can be found in Table
A.2 in Appendix A.2.1. Similarly, small grid sizes lead to faster convergence
in the residential process, which substantially sped up the data-generation pro-
cess. We kept the number of exploration steps (random actions) as a constant
proportion of total training steps i.e., 14%.

In Section 5, we present the results for both the reward function criteria

40

(Wasserstein and MSE). However, the two cannot be directly compared in ex-
periment 1. That is because the various reward thresholds were not systemat-
ically set. For instance, a theoretical maximum can be computed for the MSE
criterion. Thresholds could be set as percentages of that maximum, but the
Wasserstein criterion has no such maximum.

Following the field’s best practices (Henderson et al., 2018), we run our
training process for five random seeds. In experiment 1 we present aggregated
results. For experiments 2 and 3, we pick one random seed run and use the
weight checkpoint of the best-performing model for each scenario and reward
function criterion combination. Even if the model finishes training at a lower
performance, we select an earlier weight checkpoint where performance was
maximum. The corresponding details on the seed and maximum evaluation
reward can be found in Table A.4 in Appendix A.3.

Generalisation experiment setup

In the second set of experiments, we explore the intra-scenario generalisation
of the recovered (learned) policy. Specifically, we evaluate the zero-shot gener-
alisation of our agent - how well our agent performs to other unseen instances
without any training on them (Kirk et al., 2023). Overfitting is a pertinent is-
sue with traditional ML techniques, including RL, where agents specialise in the
training environment instance and fail to perform adequately in novel instances
(Cobbe et al., 2019). In our case generalisation is important because we want to
use the recovered ABM in counterfactual settings, for example, what happens
in the event of a school closure.

We collect 25 instances per scenario and train on only one. We then use the
learned controller (taking the weights at the highest performance checkpoint)
and run the school-choice model on all 25 instances. The evaluation is done with
respect to Theil’s segregation index (see Section 2.1). Specifically, we compute
the mean absolute error (MAE) between the reference and sample outcome
segregation indices. Note that when loading the scenario instances we maintain
the same residential distribution of agents as in the reference run, but not the
same random allocation of households to schools.

Ranking score experiment setup

The third set of experiments leverages the fact that our reference model is com-
putational and fully available: The trained controller is supposed to recover and
encode the household decision utility function by outputting a school ranking
based on a sampled household’s observations. By comparing the full school
ranking of the reference and sample model outputs for different, randomly sam-
pled households, we gain insight into the extent of the accuracy of the policy
recovered on a micro-scale for different scenarios. That is, whether the refer-
ence utility function has been recovered or whether the summary statistics were
matched through some other behavioural policy. Additionally, learning short-
cuts is commonly present in Deep RL (Geirhos et al., 2020). By comparing the

41

reference and recovered policies for identical inputs, we may ascertain that a
behaviorually similar policy has been recovered with respect to the reference
policy and scenario.

The exact reference and sample policy outputs do not represent the same
quantities. The reference policy, implemented as a behavioural rule on a utility
function, relies on utility computations. On the other hand, the DDQN outputs
the expected value (i.e., discounted return) of taking an action in a particular
state. That is, we did not compare the exact valuation of schools between
reference and recovered policies but how they are ranked. This is in line with
how the simulator handles the utility and value outputs (see 3.4 for more details
on the handling of actions). The underlying assumption is that the reward
depends on the outcomes. Thus, a high expected reward will be estimated for
a move to a school that will lead to a similar system outcome and, therefore, a
school that the reference behavioural rule (utility function in this case) would
have chosen.

Similarly to Section 3.3, we collect 1250 observations and corresponding
rankings made by the reference model decision process in each scenario. We use
those observations to infer a ranking with our learned model. Since we do have
lax capacity constraints in schools, the households are most often assigned to
first school choice. We measure top-1 accuracy, top-2 accuracy of the reference
and recovered school rankings. Additionally, we measure the top-half accuracy
and the average Kendall-Tau rank correlation and standard deviation. The the-
oretical random baseline scores are 25%, 50%, 83%, and 0, respectively. Top-1
accuracy is the proportion highest-ranked element by the recovered policy that
matches the highest-ranked element in the reference policy list. Top-2 is the
same, but the second-highest-ranked elements of the reference policy are also
counted as hits. We additionally calculate whether there is a significant differ-
ence in the Top-1 accuracy between the DDQN and Random policies. Signifi-
cance was calculated with the Wilcoxon signed test because we cannot assume
that performance is normally distributed.

We have introduced two hitherto undefined evaluation metrics: Top-half ac-
curacy and Kendall-Tau correlation. Top-half accuracy was designed post-hoc,
in light of our results, specifically for the scenarios where α = 1. Top-half ac-
curacy measures whether any same schools exist in the top-half of the reference
and sample rankings. We implement this measure to account for the high ran-
domness of this particular scenario. Because of the extreme configuration of
the simulation, it is subject to extreme, discrete outcomes. This entails that
the composition target vector (the relevant part of the household state, in this
case) only contains fully segregated schools (i.e., values of 0 or 1). Thus, the’
true’ reference ranking expresses indifference between all the fully segregated
schools. The exact ranking (assessed via the other measures) is subject to the
random tie-breaking of the simulator’s scheduler. Accordingly, we expect and
observe all performance measures to be very low, even for the Oracle model.
Our new measure brings the Oracle score close to 100 but offers a minimal dif-
ference to the random performance. The random baseline performance for this
new measure is 83%.

42

Kendall-τ correlation is an established measure in the field of information
retrieval for comparing rankings (Sanderson and Soboroff, 2007). The coeffi-
cient τ measures the correlation between two rankings. A correlation of τ = 1
indicates that the two rankings are in the same order, τ = −1 that they are the
reverse of each other and τ = 0 that there is no association (Kendall, 1938).
The definition of Kendall-τ is given in Equation 4.2.1.

τ =
C −D

|M |
(4.2.1)

Here C, D, and |M | are the number of concordant, discordant pairs, and
the number of samples (in this case, the number of schools), respectively. Pairs
between the two ranks are considered concordant if they both have the same
ranking relative to another pair. Discordant are pairs that have different rank-
ings relative to another pair. A limitation of this measure is that it can be
sensitive to the range of values (Sanderson and Soboroff, 2007). However, that
is not a problem since the reward is bounded between 1 and -1, as is the reference
utility function output. Note that Kendall-τ coefficient was computed for each
ranking individually. The average and standard deviation for the coefficient are
shown in the respective table.

43

Chapter 5

Results

In this section we present our experimental results. First, in experiment 1 (5.1),
we show the differences in learning performance for different scenario and reward
function criteria. We find that, despite indications of learning (performance
improvement), the RL controller fails to converge to the optimal policy. Next,
in experiment 2 (5.2), we evaluate how well our method generalises when used
as a forecasting tool. The generalisation is better than random, but poor when
compared with the Oracle policy. Finally, in experiment 3 (5.3), we assess the
learned-recovered policy at a micro, individual household level. We find that
the recovered policy matches the top-school significantly better than random,
but fails to match the school-ranking of the reference utility policy.

5.1 Learning Performance comparisons

Figure 5.1 shows the performance achieved in terms of reward and performance
improvement. Due to the different distance metrics and unsystematic use of
reward thresholds, the rewards are different for similar policies. For example,
one can see that the DDQNMSE starts at approximately half as low a reward
as the DDQNWass, whereas both are randomly parameterised at the start.

44

Figure 5.1: Average reward received over 15 evaluation episodes plotted at in-
tervals of 60 training episodes of the DDQN controller in different scenarios
(columns) trained and evaluated using different reward function criteria (rows).
This is the average over five random seed trainings with the 95% confidence in-
terval visible as the faded colour. The first, second, and third column correspond
to a latent reference policy parameterised by an α = 0, α = 0.5, and α = 1,
respectively. The top and bottom rows show the DDQNWass and DDQNMSE,
respectively. The x-axis marks the number of training episodes. The maximum
and minimum score in all plots is +1 and -1, respectively.

It is noticeable that the DDQNWass does not show any performance improve-
ment in scenarios with higher household density (orange plots). That contrasts
with the DDQNMSE for the dense scenario. When α = 0, both DDQNs rapidly
improve initially, but the learning slows down after ≈ 1000 episodes. Given suf-
ficient training, the DDQNMSE in denser cases reaches the same reward. While
generally, there appears to be an upward trend; there seems to be a slight de-
crease in four out of twelve scenarios towards the end of the training. This may

45

be a case of catastrophic forgetting due to a limited replay memory size (see
hyperparameter Table A.2) (Kirkpatrick et al., 2017).

Both DDQNWass and DDQNMSE fail to receive maximum reward consis-
tently in all scenarios. They tend to stabilise between a 0.25 and 0.55 reward.
However, the DDQNMSE consistently starts at a lower reward than DDQNWass,
indicating that the MSE reward function produces a better reward signal for
learning, possibly due to its thresholds being better calibrated. We note that,
generally, in scenarios where the composition is part of the latent reference policy
(i.e., α > 0), the DDQNs, are better at maximising the reward for both reward
criteria. For example, the learning performance of DDQNMSE in the α = 1
scenario which shows a rapid performance improvement. This is surprising as
such scenarios are typically more complex due to the presence of interaction,
which entails a higher sensitivity to initial conditions.

The learning process appears to be unstable in all scenario and reward func-
tion dissimilarity criteria combinations. Instability is typical in the DQN learn-
ing algorithm. However, high spikes (not visible due to data averaging) indicate
that the model has not converged and therefore not robustly recovered the ref-
erence policy.

We have found that the reward is not maximised, which raises a question
regarding the exact trade-off between the three targets and their dissimilarity
with the reference outcomes. To better understand this, Figures 5.2 and 5.3
show the dissimilarity over the steps of five evaluation episodes, for all three
target summary statistics under the control of DDQNMSE. That is we plot, for
each time-step, how far the sample RL-controlled model is from the reference
model’s outcome summary statistics. For completeness we include the respective
plots for the Wasserstein dissimilarity in the Appendix A.4.

46

(a) Dissimilarity trajectory using the initial random weights

(b) Dissimilarity trajectory of the recovered policy (DDQNMSE)

Figure 5.2: Change of dissimilarity (MSE) between the reference outcome ST

and current sample Ŝt over the steps t of five evaluation episodes (grey lines);
each episode is independent of the other and, therefore, subject to different
random household-to-school distributions on initialisation of the environment.
The reward is calculated based on the gradient between the two grey lines (start
and termination of episodes) and whether the samples are sufficiently accurate,
i.e., below the accuracy threshold (dotted lines). This is the scenario where
|H| = 12 and α = 0. a) showsD(tτT, t̂

τ
t) for the DDQN with randomly initialised

weights. The average reward received over these five episodes is -0.5. b) shows
D(tτT, t̂

τ
t) of the policy at the weight checkpoint where the DDQNMSE achieves

the maximum reward. The average reward received over these five episodes is
0.8. Note that the values are not normalised; the errors are not comparable
across target statistics as absolute values.

47

Figure 5.2a shows the dissimilarity as a result of control with the random
initial weights of the DDQN. This is a subset of the evaluation episodes of the
very first point in the bottom left plot in Figure 5.1. After all (12) agents are
moved, the dissimilarity no longer changes: the randomly initialised DDQN
moves the households when sampled the first time but did not react to changes
to the updated system state when it can move the agents for a second or third
time because the random decision space is so coarsely separated. In this case,
the random weights happen to lead to a decrease of the composition target
dissimilarity though outside the accuracy threshold.

In 5.2b, we see that the controller has learned to decrease the dissimilarity
of the composition and distance vectors to reach the accuracy threshold in most
episodes. The attendance target is also closely matching the reference one.
This is always the case at the start because of the uniform initial distribution
of agents to schools. The dissimilarities in 5.2b indicate that the policy learned
is close to optimal i.e., maximising the reward function.

An important observation is that the dissimilarities do not stabilise. The
composition dissimilarity remains within the accuracy thresholds, but distance
and attendance summary statistics fluctuate until the end of the episode. This
implies that the DDQN has not reached a converged state and possibly more
steps were necessary. Nonetheless, it is important to take into account that in
this scenario the reference policy can be matched in a single move per agent
(i.e., move to the closest school).

The dissimilarity measure appears very volatile to the controller’s actions
(i.e., households moving). We hypothesise that this is due to the low number of
agents. The summary statistics are much more sensitive to individual household
decisions, as a single agent can substantially change the statistics of each school.
Moreover, the changes are very large: consider a school composition cm = 1 as
a result of only two type-0 households attending m. If one agent of the oppo-
site type moves to that school, the composition will change to 0.66, which can
substantially affect the error. While this can make the reward signal volatile, it
also reduces the importance of the credit assignment problem: the RL controller
receives a clear, positive reinforcement when taking the correct sequence of ac-
tions because those actions will have a larger effect on the dissimilarity at the
end of the episode. The difference in the volatility of the dissimilarity can be
compared with the dissimilarity measures over steps of the more dense scenario,
depicted in Figure 5.3.

48

Figure 5.3: Change of dissimilarity between the reference outcome ST and cur-
rent sample Ŝt across the steps t of five evaluation episodes (grey lines); each
episode is independent of the other and, therefore, subject to different random
initialisations of the environment. The scenario plotted here is |H| = 96, α = 0
under control of the DDQNMSE. The average reward received over these five
episodes is 0.167.

Comparing Figure 5.2b with Figure 5.3 we notice three interesting differ-
ences. First in the composition target dissimilarity D(tcT , t̂

c
t) specifically, the

dense case (5.3) the DDQN does not reach the accuracy threshold and it ap-
pears to oscillate rather than stabilise. As aforementioned the more dense case
leads to more diverse composition vectors (in terms of values). This means
that it is harder for the DDQNMSE to match the exact reference vector. The
distance target can still be consistently matched: In all episodes reducing the
average distance of attending households will decrease dissimilarity, as the ref-
erence vector consistently contains small values. The DDQN appears to have
learned that. In this case, the policy recovered is not optimal because it fails
to decrease the dissimilarity along the attendance target. While the attendance
target dissimilarity is increasing, the MSE value in 5.3 is an order of magnitude
less than the untrained controller in 5.2a.

The second observation is that the oscillation of the composition suggests
that the DDQNMSE keeps reacting to its previous actions without stabilis-
ing. Particularly we notice that the composition fluctuates until the end of
the episode, which may imply that the DDQNMSE is reacting to composition
changes in the input states. However, under the reference policy these should be
ignored. The third observation is that the dissimilarity changes more smoothly,
since each agent move has a smaller impact. This is due to the effect of each
agent on the summary statistics being smaller as the number of agents increases.

49

5.2 Generalisation

The second set of experiments evaluate the generalisation of the recovered poli-
cies for each scenario. The results for those runs are shown in Table 5.1.

MAE

|H| |M | α Oracle DDQNWass DDQNMSE RandomPolicy

12 4
0.0 0.000 0.353 0.422 0.637

0.5 0.142 0.432 0.425 0.544

1.0 0.361 0.473 0.552 0.759

96 4
0.0 0.000 0.315 0.175 0.435

0.5 0.307 0.679 0.402 0.745

1.0 0.025 0.883 0.828 0.948

Table 5.1: Generalisation to unseen instances for DDQNWass and DDQNMSE,
compared against the Oracle and Random Policy performance. Note that the
two baselines are not learned and therefore we do not distinguish them between
reward function criteria. The scores are the MAE between the global Theil index
outcome of the reference policy and the controller indicated by the column name.

We find that the errors are lower for the more densely populated grids in the
α = 0 scenario. Strikingly, that is also the case for the random policy, suggesting
that this is a simulator/environment artefact as opposed to something related
to the learning process. A possible explanation is that having few agents on
the grid leads to very unstable processes and, therefore, highly varied outcomes
(despite the same latent policy), which are harder to predict. A dense grid will
be subject to more complex dynamics but more consistent outcomes. Paying
attention to the relative decreases of error between the random and DDQN
controllers, we find that they are not equal. The DDQNMSE error is lower in
the dense α = 0 scenario by 0.247, whereas the random is lower by 0.202. We
attribute this difference in decrease to the fact that the weight checkpoint used
for this particular scenario is optimal (with respect to the reward function, see
Table A.4) policy and better than the checkpoint used for the less dense case.

Another finding is that the results contrast the learning performance plots
in Figure 5.1. The recovered policies where the composition was part of the
reference policy (i.e., α > 0) perform very poorly on unseen instances. In
contrast, these were the policies that obtained higher rewards. Possibly, the
learned models maximise reward by memorising a system configuration that
maximises the similarity of reference - sample outcomes instead of recovering a
valid policy.

On average, the difference between the DDQN’s errors to the random policy
errors (Wasserstein: 0.16; MSE: 0.217 - larger is better) is smaller than to the
Oracle errors (Wasserstein: −0.383; MSE: −0.328 - closer to zero is better).

50

This implies that the generalisation performance is closer to random than the
reference policy.

The Oracle also has an above-zero error in scenarios where α > 0. This
can be attributed to our assumption regarding the unavailability of the initial
random allocation of households to schools when loading the sample runs and,
therefore, a mismatch in initial conditions between the reference and sample
models. Consequently, the system starts from different initial conditions, which
in the α = 1 scenario where only compositions matter, they are detrimental to
the process. In contrast, the error is 0 in the α = 0 scenario where the relevant
initial conditions (i.e., the residential distributions) are preserved.

There is a discrepancy in the sparser and denser cases controlled by the Ora-
cle: the former has a larger error (0.361) than the latter (0.025). We suspect this
is due to the noisier outcomes of sparser cases: fewer agents can lead to unequal
agent-type distributions (due to the random process of generating them), which
can affect the global Theil measure. Furthermore, in the sparse scenario where
α = 1 and distance is not a factor, we expect at least one empty school. This
again affects the global Theil measure making the outcome on which the MAE
is computed more sensitive to the initial conditions than the denser case (where
we expect the Theil measure to yield a segregation of ≈ 1). This does not entail
that the dense case is any less affected by the initial conditions. However, it
does show how different summary measures reflect these effects differently.

5.3 Ranking score

Experiments 1 and 2 focused on aggregate performance in terms of reward and
recovered summary statistics. In the ranking-score experiment 3 we compare
and evaluate the school rankings of the reference and recovered policies, for
arbitrary households. The results from this experiment can be found in Table
5.3.

First, we focus on the top-1 accuracy, which is the most important metric
in our case due to the relaxed school capacity constraints. Relaxed constraints
entail that the top school is often chosen and, therefore, sufficient for accurate
outcomes. Interestingly, the learned model is significantly better compared to
the random baseline. Exceptions include the sparse α = 1.0, where both DDQNs
behave randomly and the dense α = 1 case, where they are significantly worse.
In three out of four cases where the DDQN is better than random, the MSE
criterion leads to a more accurate policy than the Wasserstein criterion, except
for the sparse α = 0.5 case where the Wasserstein criterion led to a worse than
random accuracy. In the dense α = 0.5 the DDQNWass performs substantially
better than the DDQNMSE , nearly double the random one.

51

Policy Top1 (%) Top2 (%) Top-half (%) KT σKT

12 households, α = 0.0
Oracle 100.0 100.0 100.0 1.000 0.000
RandomPolicy 23.6 49.5 81.1 -0.047 0.493
DoubleDQNwasserstein 35.2 68.5 90.4 0.121 0.425
DoubleDQNMSE 50.4 71.9 93.7 0.211 0.511

12 households, α = 0.5
Oracle 79.6 95.3 99.9 0.528 0.553
RandomPolicy 21.6 47.3 82.2 -0.0212 0.485
DoubleDQNwasserstein 15.8 54.6 85.1 -0.075 0.447
DoubleDQNMSE 31.2 56.7 89.4 0.152 0.520

12 households, α = 1.0
Oracle 55.8 87.6 97.1 0.241 0.591
RandomPolicy 24.7 51.6 82.8 0.024 0.470
DoubleDQNwasserstein 26.3 46.5 81.8 0.032 0.484
DoubleDQNMSE 25.7 48.8 85.6 0.026 0.479

96 households, α = 0.0
Oracle 100.0 100.0 100.0 1.000 0.000
RandomPolicy 24.7 50.3 81.9 -0.021 0.499
DoubleDQNwasserstein 28.2 51.3 76.5 -0.082 0.527
DoubleDQNMSE 38.6 53.7 89.0 0.234 0.442

96 households, α = 0.5
Oracle 90.8 99.1 100.0 0.463 0.563
RandomPolicy 24.5 49.2 83.1 0.007 0.488
DoubleDQNwasserstein 46.0 73.4 93.3 0.126 0.484
DoubleDQNMSE 39.1 72.3 90.4 0.058 0.502

96 households, α = 1.0
Oracle 44.0 84.5 100.0 0.425 0.560
RandomPolicy 25.5 50.4 82.9 -0.007 0.483
DoubleDQNwasserstein 21.3 43.5 80.6 -0.008 0.477
DoubleDQNMSE 20.4 45.4 82.1 0.003 0.473

Table 5.2: Scores from the comparison of the school rankings between the refer-
ence and recovered policies, for individual households. The scores are computed
on 1250 observation-ranking pairs per scenario. In the Top1 column, bold values
indicate a statistically significant difference with the random policy.

The result trends of the top-1 accuracy are not reflected in the other perfor-
mance measures. For example, the difference to the random controller for the
top-2 accuracy is almost always smaller than the difference in the top-1. Even
though the random baseline performance in top-2 accuracy doubles, the top-2
for the recovered DDQN policies less than double. We find that the DDQNs
that are significantly better than random in the top-1 accuracy are also sub-

52

stantially better than random in the top-half measures, though all other cases
match the random performance.

A higher than random top-school accuracy is a promising sign. However, we
are interested in the school ranking made by the recovered policy compared with
the reference’s. The Kendall-τ correlation gives us a measure of similarity for
the entire ranking. The correlation measure between rankings should be close to
1 for a good approximation. Despite the DDQNMSE always getting a positive
correlation, the scores are low and not near those of the Oracle. This finding
suggests that our method can learn the expected reward of the best school but
has not converged to the true expected reward of all actions. In turn, this entails
that the full reference utility function has not been recovered.

In Section 4, we justified why we expect low accuracy scores of the Oracle
policy. The same reason applies to the low Kendall-τ score: the discrete nature
of the system leads to binary representations of school compositions in the
household states and thus the exact ranking is random. However, the argument
developed in 5.2 does not apply here because we are no longer dealing with
outcomes but individual states.

53

Chapter 6

Discussion

In view of our results, we contextualise them and interpret their significance with
respect to our research question(s). Furthermore, we offer recommendations and
cautionary advice regarding the use and extension of our methodology.

Sub-research question 1 concerns the robustness of our method’s learning
performance in different scenarios and reward function criteria. Interestingly,
the combination can have detrimental effects on learning. For example, high
household-to-school density scenarios show no learning when using the Wasser-
stein criterion in the reward function and, thus, no progress in the latent policy
recovery. On the other hand, DDQNMSE improves its performance even in
dense scenarios though it also fails to converge to the optimal reward. However,
we have noted that the two dissimilarity criteria cannot be compared directly,
and therefore we cannot conclude whether one metric is better than the other
for learning.

There are two factors that render the comparison of the two reward functions
unfair: First, unsystematic configuration of the sensitivity and accuracy thresh-
olds of the reward function. A more systematic calibration of the thresholds
may have yielded better results for both reward functions. The second factor is
the size of the target vectors and its effect on the dissimilarity computation. In
scenarios with few schools, as in our experiments, each target (in the context
of Wasserstein, random variable) only contains 4 observations. Wasserstein, be-
ing a distribution distance measure, is sensitive to the number of observations,
which may make its dissimilarity signal unreliable. In other words small number
of schools lead to a higher sampling error. In contrast MSE, which measures an
average, is not as sensitive to vector sizes.

Both DDQNWass and DDQNMSE are able to recover scenarios where α > 0.
In these scenarios the initial random allocation of household to schools greatly
influences the outcome because they define the initial compositions that in turn
dictate the reference policy’s initial actions. Since we did not guarantee that
the initial conditions were identical between the reference and sample runs, we
cannot expect identical outcomes to be reached for the same schools even under
the reference policy’s control. Instead we expect the distribution of outcomes

54

to be similar. This suggests that even though both DDQNs learn and therefore
recover a policy, the DDQNWass may have recovered a more accurate one and
DDQNMSE overfitted to the set of summary statistics used for training. That
is, the DDQNMSE have memorised a configuration that matches the summary
statistics of the training instance without recovering a valid school-choice policy.
However, in the second set of experiments we find evidence that both recovered
policies fail to generalise.

In the generalisation experiment 5.2, we evaluated the robustness of our re-
covered policies for forecasting the school segregation in unseen instances. The
answer to sub-research question 2, concerning the generalisation of the recov-
ered policy, is that despite outperforming a simple random baseline controller,
the MAE errors of both the DDQNs are large. In our real-world analogy, this
implies that the DDQN would fail to generalise to arbitrary neighbourhoods
in Amsterdam when trained on a (singleton) subset of them. We again ob-
serve that performance depends on the scenario being recovered, particularly
the household-to-school density. It appears that the recovered policy is not ro-
bust enough and for scenarios where α > 0 the generalisation is even poorer.
Since the DDQNWass also generalises poorly we cannot ascertain that Wasser-
stein, in the tested configuration, is a more suitable dissimilarity criterion for
these scenarios.

In this set of experiments we additionally found that in scenarios where
α > 1, the Oracle fails to match the policy it implements in terms of the
outcome Theil segregation. While the number of households does seem to also
affect the stability of outcomes, this is due to the initial conditions that are
relevant to this process not being identical with the reference S that we use as
targets.

The third set of experiments addressed sub-research question 3, on the micro-
level school-ranking comparison of the reference and recovered policies. Our
results show that for the average household, the school-ranking of the recovered
policy does not correlate highly to that of the utility function implementing
the latent reference policy. However, the optimal actions of the DDQN are
significantly more accurate than the random baseline in most cases where α < 1.

In hindsight, it is perhaps unreasonable to expect the RL controller to learn
the full function, especially in the absence of constraints in the simulator. For
a full ranking to be learned, this would require multiple blocked actions to be
encountered during training a sufficient number of times such that the network
learns an appropriate evaluation for all schools for a household’s state. Alter-
natively, a much higher exploration rate would be required as, currently, the
controller receives a very sparse reward on the tail of its rankings. This would
also require many more training steps. Moreover, DQNs offer no theoretical
guarantees of convergence, so getting the exact expected reward values for all
the schools for one given household is not guaranteed.

We again found that the Oracle performs worse when α = 1. However, this
was for a different reason to the previous experiment where we were focusing
on outcomes and not the individual school-choices. In the ranking scores, the
discrete nature of the household states as a result of the extreme scenarios tested,

55

imply that the exact school choices are subject to random tie-breaking by the
reference environment’s scheduler and therefore so are the exact outcomes. In
support of this hypothesis we devised the top-half accuracy to show that the
Oracle ranking scores were high when the order of the first two schools is not
considered.

In response to the main research question, the methodology and RL-based
pipeline proposed in this thesis for the school-choice model, is not a feasible so-
lution to latent policy recovery using outcome summary statistics. The method
is brittle and the recovered policy does not fully match the behaviour of the
latent one on a micro-scale. Moreover, the reference policies considered were
simple and uniform across agent archetypes. We have no evidence to suggest
that this method is precise and robust enough to discriminate and recover more
complex utility functions with even subtler differences. For example, utility
functions with different tolerance thresholds or preference profiles for different
agent types. Even such scenarios would only scratch the surface of the com-
plexity of the decision process of real households in real cities, and noisy data.

On a positive note, our method is often (significantly) better than a random
policy and shows promising learning trajectories (Figure 5.1). Furthermore,
it effectively reduces the research overhead required for designing the ABM’s
behavioural rule and allows for arbitrary policies to be recovered, albeit at an
increased computational cost. This indicates that future work may improve our
method, even if constrained to theoretical and controlled contexts.

In the following subsections we diverge from our specific results and offer
more speculative explanations about what made our method work to the extend
that it did and what limited its capacity to recover the latent reference policies.
In an effort to make these points more general, we relate them to the properties
of the class of problems the school choice belongs (2.1). We do this to facilitate
further work on our method or its application on different domains.

Recommendations:

We identify two key design choices that led to the above-random performance
discussed earlier. Those are the choice of summary statistics and the reward
sparsity:

Choice and combination of summary statistics: Not any set of summary
statistics S can be used in the inverse generative process. tτ ∈ S must change
linearly to the controller’s actions in all system phases. The need for linear
statistics is why we do not use the decomposed (vector-form) Theil segregation.
We chose linear measures with respect to the controller’s action selection (e.g.,
proportions and averages). Furthermore, we found it useful to include a target
for each statistic that may be part of the decision-making process and thus may
reflect helpful decision-making information. Specifically, since we knew that we
would be recovering policies incorporating some (possibly 0) weighting of either
composition or distance characteristics, we included both as summary statistics.
Finally, we include a ’plausibility’ target statistic, such as attendance statistics,

56

to address mode collapses, for example, the controller emptying most schools
(see A.2). Plausibility targets incorporate additional information in the reward
signal, which does not refer to the hypothesised target measures, but helps by
enforcing plausible outcomes in optimal rewards. However, whether such ’plau-
sibility’ targets would be necessary for a more realistic system where constraints
are imposed as part of the system design to ensure plausible, non-extreme out-
comes is unclear. Finally, in applications where the latent reference policy is
entirely unknown, we can ensure that we have sufficient relevant reference sta-
tistical information to recover a valid policy.

Frequency: Complex, emergent systems are non-linear. Providing a frequent
reward signal based on dissimilarity between reference and sample outcome
summary statistics at each step will reward monotonic improvement for all tar-
gets. However, non-linear dynamics imply that the summary outcomes, e.g.,
segregation and, thus, composition, may emerge after sequences of interactions.
Moreover, due to the random batching of agents, in an arbitrary step, one target
metric dissimilarity must be sacrificed to improve on another, as is visible in
Figure 5.2. Therefore, while sparse rewards can complicate learning due to the
credit-assignment-problem, when rewarding based on outcome summary statis-
tics, there can only be terminal rewards to allow for non-linear dynamics with
respect to the reference outcome throughout an episode. Of course, that would
not be the case if the reference summary statistics were available at a higher
temporal resolution.

This list is not exhaustive, and there are many other factors related to the
reward function implementation (see Appendix A.2) and other, e.g., the use
non-linear function approximators, that were crucial in achieving the reported
performance.

Considerations

The key considerations also relate to the reward function. Specifically, how the
reference targets should be interpreted in the computation of dissimilarity with
respect to the consistency of initial conditions between the reference and sample
models.

In complex systems, differences in initial conditions can lead to substantial
differences in the outcomes (Mitchell, 2009). In our case, we have considered
the variation of two initial conditions: 1. the residential distribution and 2.
the initial random allocation of households to schools. We have maintained
an identical residential distribution between the reference and sample runs in
training and experiments. However, the initial allocations of households to
schools are not kept the same. We made this decision on the basis that the
initial allocations of students to schools cannot be obtained. Results showing
an imperfect Oracle policy generalisation where α > 0 imply that without both
initial conditions, it may be impossible to match the exact reference outcomes
even under the same reference policy. We have argued that this is the case when

57

the reference rule is affected by the initial conditions. This finding has important
implications for the choice of the reward function dissimilarity criterion - if the
outcomes cannot be exactly the same spatially, then they must be interpreted
differently and not as point-wise targets. A solution is to use our approach and
violate the assumption regarding data to train on initial conditions identical
to the reference model. Alternatively, this assumption may not be required in
other applications where initialisation data is fully available.

In case the the assumption regarding unavailability of initial conditions for
the choice process cannot be violated, a solution may be to approximate the
outcome conditions as distributions rather than point estimates which are im-
posed by use of vector-based dissimilarities. Dissimilarity metrics on distribu-
tions, like the Wasserstein distance, represent the set of summary statistics as
a distribution of statistical outcomes. An important point to consider is that
larger sample sizes and therefore target vectors are needed. Since |tτ | = |M |,
scenarios with more schools will be necessary. Alternatively one can attempt
to use the reference training data differently, for example by aggregating all
summary statistics for all instances in one scenario to produce a distribution
of that scenario. Training will then involve rewarding based on the decrease of
dissimilarity to the average instance and therefore not depend on any one set
of initial conditions. This approach seems more promising as it is more general,
allowing for less dependence on initial condition data of the reference process.

58

Chapter 7

Conclusion

In conclusion, our method is brittle and, without addressing its limitations,
shows no prospects of working in the variety of complex conditions present in
real-world scenarios. We have reached this conclusion by testing our method
on three sets of experiments: 1. on the learning performance, 2. on the gen-
eralisation, and 3. on the micro-level behavioural accuracy. The results show
sensitivity to the scenario being recovered, and even the best models score far
from the Oracle policy, albeit significantly better than the Random baseline.
Furthermore, the Oracle policy scores have led us to challenge some of the
assumptions of our work regarding the initial conditions stored in the train-
ing data. In an effort to provide actionable insights on the extension of our
method, we have made some general recommendations and considerations for
the inverse generative model construction using our method. Using outcomes
as the only ground-truth signal requires making important assumptions about
the availability of the system’s initial conditions and the interpretation of the
summary statistic data. Therefore, further research with the appropriate dis-
similarity metrics and training data may yield more promising results. There
are, however, limitations to our work that hinder the value and generality of
our findings, recommendations, and considerations. We conclude our research
by listing those limitations and offering precise directions for future work that
extends our method or related but alternative approaches that rely on higher-
resolution data.

7.1 Limitations

• We use the random school-choice policy as a baseline for our learning
method. However, there are better, more challenging baselines that can
be used and which may have rendered the DDQN results insignificantly
better than the baseline. For example, a better alternative would have
been a neural network optimised via random parameter search. Literature
has shown that even such simple approaches can match the performance

59

of state-of-the-art RL algorithms (Mania et al., 2018).

• A premise of our work is that extreme scenarios and system configurations
have led to more discrete and thus discernible summary statistics and,
therefore, clearer learning signals. However, while it is true that system
statistics take extreme values, we have found that this may actually make
the task more challenging. Running our experiments using more realistic
assumptions (e.g., capacity constraints) may have led to improved and
more stable learning dynamics.

• Our reward functions rely on certain thresholds to magnify and resolve the
reward signal. However, those thresholds were not systematically set. This
makes comparing the reward functions harder and leaves unused potential
in their suitability for the task.

• Using the Wasserstein distance as the reward function’s dissimilarity crite-
rion may be too noisy when working with such a small number of schools.
As discussed in the considerations subsection 6 attempting to use this
criterion in a larger system with more schools or with a different repre-
sentation of the reference data may reveal the metric’s advantages.

• We show results for only one RL algorithm. Other approaches, including
policy gradients which can approximate stochastic policies or actor-critic
methods that can include information about the summary statistic dis-
similarity in the critic module, may have led to improved performance.

• The interpretation of our results has been, to a great extent, speculative
due to the black-box nature of the DQN. Explainability methods (see
(Heuillet et al., 2021) for examples) may have allowed us to offer more
concrete interpretations of our results and understanding of the recovered
policy.

7.2 Further work

We believe further research on this topic should take either of the following two
approaches:

Refining and expanding the proposed method

Future work can address the limitations of our approach outlined in 7.1. This
will allow more general claims to be drawn and shed light to fundamental short-
comings of the inverse generative process using summary statistics and RL.
Such research may, for example, explore reward shaping techniques, the use of
more sophisticated RL algorithms, and explainability methods for more insight.
For example, actor-critic controller architectures may be used to incorporate
system-wide summary statistic information in the critic module. A crucial limi-
tation to address is to systematically set and understand the effect of the reward
function parameters in the recovery process.

60

Any extensions to our work should pay attention to the considerations dis-
cussed in Section 6. If the assumption regarding the initial conditions cannot
be violated then approaches should focus on distributional dissimilarity metrics
like Wasserstein and ensuring they are properly applied. The research of No-
vati et al. (2021); Bae and Koumoutsakos (2022) are recent examples that use
distributional dissimilarities to recover models with RL.

Alternative methods

In recent years there have been many promising approaches on IGSS leverag-
ing AI methods as reviewed in Section 2. A promising example is the work of
Greig and Arranz (2021) which was recently expanded by Greig et al. (2023)
which relies on evolutionary computing for program synthesis. Though sample
inefficient, the recovered policies are symbolic and therefore interpretable. The
approach by Chopra et al. (2022) is a promising alternative. By implementing
an end-to-end differentiable ABM they achieve good forecasting performance
with efficient computation. Although RL approaches are often sample ineffi-
cient, in the presence of fine-resolution data, methodologies based on imitation
learning (Edwards et al., 2019) or inverse RL (Lee et al., 2017) show promising
results.

Any future work should also address more realistic models and a real-world
application of the method. For example, modelling the task as a POMDP to
model partial, wrong, or unknown information to which real-world decision-
makers are subject and use of geo-location data of Amsterdam.

61

Bibliography

Abbeel, P. and Ng, A. Y. (2010). Inverse reinforcement learning.

Bae, H. J. and Koumoutsakos, P. (2022). Scientific multi-agent reinforce-
ment learning for wall-models of turbulent flows. Nature Communications,
13(1):1443.

Bassenne, M. and Lozano-Durán, A. (2019). Computational model discovery
with reinforcement learning. arXiv preprint arXiv:2001.00008.

Bengio, Y. et al. (2009). Learning deep architectures for ai. Foundations and
trends® in Machine Learning, 2(1):1–127.

Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for sim-
ulating human systems. Proceedings of the national academy of sciences,
99(suppl 3):7280–7287.

Boterman, W., Musterd, S., Pacchi, C., and Ranci, C. (2019). School segrega-
tion in contemporary cities: Socio-spatial dynamics, institutional context and
urban outcomes. Urban Studies, 56(15):3055–3073.

Boterman, W. R. (2019). The role of geography in school segregation in the free
parental choice context of dutch cities. Urban Studies, 56(15):3074–3094.

Chopra, A., Rodŕıguez, A., Subramanian, J., Krishnamurthy, B., Prakash,
B. A., and Raskar, R. (2022). Differentiable agent-based epidemiology. arXiv
preprint arXiv:2207.09714.

Clark, W. A. and Fossett, M. (2008). Understanding the social context of the
schelling segregation model. Proceedings of the National Academy of Sciences,
105(11):4109–4114.

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman, J. (2019). Quantify-
ing generalization in reinforcement learning. In International Conference on
Machine Learning, pages 1282–1289. PMLR.

Cranmer, K., Brehmer, J., and Louppe, G. (2020). The frontier of
simulation-based inference. Proceedings of the National Academy of Sciences,
117(48):30055–30062.

62

Creusere, M., Zhao, H., Bond Huie, S., and Troutman, D. R. (2019). Postsec-
ondary education impact on intergenerational income mobility: Differences
by completion status, gender, race/ethnicity, and type of major. The Journal
of Higher Education, 90(6):915–939.

Dignum, E., Athieniti, E., Boterman, W., Flache, A., and Lees, M. (2022).
Mechanisms for increased school segregation relative to residential segrega-
tion: a model-based analysis. Computers, Environment and Urban Systems,
93:101772.

Edwards, A., Sahni, H., Schroecker, Y., and Isbell, C. (2019). Imitating latent
policies from observation. In International conference on machine learning,
pages 1755–1763. PMLR.

Epstein, J. M. (1999). Agent-based computational models and generative social
science. Complexity, 4(5):41–60.

Epstein, J. M. (2023). Inverse generative social science: Backward to the future.
Journal of Artificial Societies and Social Simulation, 26(2):1–9.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge,
M., and Wichmann, F. A. (2020). Shortcut learning in deep neural networks.
Nature Machine Intelligence, 2(11):665–673.

Greig, R. and Arranz, J. (2021). Generating agent based models from scratch
with genetic programming. In ALIFE 2021: The 2021 Conference on Artifi-
cial Life. MIT Press.

Greig, R., Major, C., Pacholska, M., Bending, S., and Arranz, J. (2023). Learn-
ing interpretable logic for agent-based models from domain independent prim-
itives. Journal of Artificial Societies and Social Simulation, 26(2):1–12.

Heath, B., Hill, R., and Ciarallo, F. (2009). A survey of agent-based modeling
practices (january 1998 to july 2008). Journal of Artificial Societies and Social
Simulation, 12(4):9.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D.
(2018). Deep reinforcement learning that matters. In Proceedings of the AAAI
conference on artificial intelligence, volume 32.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan,
D., Quan, J., Sendonaris, A., Osband, I., et al. (2018). Deep q-learning
from demonstrations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

Heuillet, A., Couthouis, F., and Dı́az-Rodŕıguez, N. (2021). Explainability in
deep reinforcement learning. Knowledge-Based Systems, 214:106685.

Jäger, G. (2019). Replacing rules by neural networks a framework for agent-
based modelling. Big Data and Cognitive Computing, 3(4):51.

63

Junges, R. and Klügl, F. (2011). Evolution for modeling: a genetic programming
framework for sesam. In Proceedings of the 13th annual conference companion
on Genetic and evolutionary computation, pages 551–558.

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika,
30(1/2):81–93.

Kirk, R., Zhang, A., Grefenstette, E., and Rocktäschel, T. (2023). A survey of
zero-shot generalisation in deep reinforcement learning. Journal of Artificial
Intelligence Research, 76:201–264.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A. A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.
(2017). Overcoming catastrophic forgetting in neural networks. Proceedings
of the national academy of sciences, 114(13):3521–3526.

Lavin, A., Zenil, H., Paige, B., Krakauer, D., Gottschlich, J., Mattson, T.,
Anandkumar, A., Choudry, S., Rocki, K., Baydin, A. G., et al. (2021). Sim-
ulation intelligence: Towards a new generation of scientific methods. arXiv
preprint arXiv:2112.03235.

Lee, K., Rucker, M., Scherer, W. T., Beling, P. A., Gerber, M. S., and Kang, H.
(2017). Agent-based model construction using inverse reinforcement learning.
In 2017 Winter Simulation Conference (WSC), pages 1264–1275. IEEE.

Macal, C. and North, M. (2009). Agent-based modeling and simulation.

Mania, H., Guy, A., and Recht, B. (2018). Simple random search of static
linear policies is competitive for reinforcement learning. Advances in Neural
Information Processing Systems, 31.

Manson, S., An, L., Clarke, K. C., Heppenstall, A., Koch, J., Krzyzanowski, B.,
Morgan, F., O’Sullivan, D., Runck, B. C., Shook, E., et al. (2020). Method-
ological issues of spatial agent-based models. Journal of Artificial Societies
and Social Simulation, 23(1).

Mitchell, M. (2009). Complexity: A guided tour. Oxford university press.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M. (2013). Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602.

Municipality of Amsterdam (2023). Basisbestand gebieden am-
sterdam (bbga). https://onderzoek.amsterdam.nl/dataset/

basisbestand-gebieden-amsterdam-bbga. Accessed February 2023.

Ng, A. Y., Harada, D., and Russell, S. (1999). Policy invariance under re-
ward transformations: Theory and application to reward shaping. In Icml,
volume 99, pages 278–287. Citeseer.

64

https://onderzoek.amsterdam.nl/ dataset/basisbestand-gebieden-amsterdam-bbga
https://onderzoek.amsterdam.nl/ dataset/basisbestand-gebieden-amsterdam-bbga

Novati, G., de Laroussilhe, H. L., and Koumoutsakos, P. (2021). Automating
turbulence modelling by multi-agent reinforcement learning. Nature Machine
Intelligence, 3(1):87–96.

Osoba, O. A., Vardavas, R., Grana, J., Zutshi, R., and Jaycocks, A. (2020).
Modeling agent behaviors for policy analysis via reinforcement learning. In
2020 19th IEEE International Conference on Machine Learning and Applica-
tions (ICMLA), pages 213–219. IEEE.

O’Sullivan, D. (2004). Complexity science and human geography. Transactions
of the Institute of British Geographers, 29(3):282–295.

Panaretos, V. M. and Zemel, Y. (2019). Statistical aspects of wasserstein dis-
tances. Annual review of statistics and its application, 6:405–431.

Radovic, D., Kruitwagen, L., de Witt, C. S., Caldecott, B., Tomlinson, S.,
and Workman, M. (2022). Revealing robust oil and gas company macro-
strategies using deep multi-agent reinforcement learning. arXiv preprint
arXiv:2211.11043.

Reardon, S. F. and Owens, A. (2014). 60 years after brown: Trends and conse-
quences of school segregation. Annual Review of Sociology, 40(1):199–218.

Royuela, V., Vargas, M., et al. (2010). Residential segregation: A literature
review. Universidad Diego Portales: Facultad de Economı́a Y Empresas.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning repre-
sentations by back-propagating errors. nature, 323(6088):533–536.

Sage, L. and Flache, A. (2020). Can ethnic tolerance curb self-reinforcing
school segregation? a theoretical agent based model. arXiv preprint
arXiv:2006.13531.

Sanderson, M. and Soboroff, I. (2007). Problems with kendall’s tau. In Pro-
ceedings of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 839–840.

Schelling, T. C. (1971). Dynamic models of segregation. The Journal of Math-
ematical Sociology, 1(2):143–186.

Sert, E., Bar-Yam, Y., and Morales, A. J. (2020). Segregation dynamics with
reinforcement learning and agent based modeling. Scientific Reports, 10(1):1–
12. Number: 1 Publisher: Nature Publishing Group.

Spaan, M. T. (2012). Partially observable markov decision processes. Reinforce-
ment learning: State-of-the-art, pages 387–414.

Stoica, V. I. and Flache, A. (2014). From schelling to schools: A comparison of
a model of residential segregation with a model of school segregation. Journal
of Artificial Societies and Social Simulation, 17(1):5.

65

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT press.

Thurner, S., Hanel, R., and Klimek, P. (2018). Introduction to the theory of
complex systems. Oxford University Press.

Torabi, F., Warnell, G., and Stone, P. (2019). Recent advances in imitation
learning from observation. arXiv preprint arXiv:1905.13566.

Torrens, P., Li, X., and Griffin, W. A. (2011). Building agent-based walking
models by machine-learning on diverse databases of space-time trajectory
samples. Transactions in GIS, 15:67–94.

Train, K. E. (2009). Discrete choice methods with simulation. Cambridge uni-
versity press.

Van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning
with double q-learning. In Proceedings of the AAAI conference on artificial
intelligence, volume 30.

Vu, T. M., Probst, C., Epstein, J. M., Brennan, A., Strong, M., and Purshouse,
R. C. (2019). Toward inverse generative social science using multi-objective
genetic programming. In Proceedings of the genetic and evolutionary compu-
tation conference, pages 1356–1363.

Williams, T. G., Guikema, S. D., Brown, D. G., and Agrawal, A. (2020).
Assessing model equifinality for robust policy analysis in complex socio-
environmental systems. Environmental Modelling & Software, 134:104831.

Wilson, D. and Bridge, G. (2019). School choice and the city: Geographies of
allocation and segregation. Urban Studies, 56(15):3198–3215.

Wunder, M., Suri, S., and Watts, D. J. (2013). Empirical agent based models
of cooperation in public goods games. In Proceedings of the fourteenth ACM
conference on electronic commerce, pages 891–908.

Zhang, H., Vorobeychik, Y., Letchford, J., and Lakkaraju, K. (2016). Data-
driven agent-based modeling, with application to rooftop solar adoption. Au-
tonomous Agents and Multi-Agent Systems, 30(6):1023–1049.

Zheng, S., Trott, A., Srinivasa, S., Naik, N., Gruesbeck, M., Parkes, D. C., and
Socher, R. (2020). The AI Economist: Improving Equality and Productivity
with AI-Driven Tax Policies. Number: arXiv:2004.13332 arXiv:2004.13332
[cs, econ, q-fin, stat].

66

67

Appendix A

Appendix

A.1 COMPASS model

Parameter Range
Environment
Size (N) 15
Type distribution 50%
Number of households {12, 96}
Number of schools/neighbourhoods (m) 4
Households
Archetypes {0, 1}
Optimal fraction (t) 0.6
Composition/distance trade-off (α) {0, 0.5, 1}
Radius (r) 3
Schools

School capacity (c) 2× |H|
|M |

Minimum attendance 0
Simulation
Max number of residential steps 500
Max number of school choice steps 500
Convergence threshold (based on utility) 0.01
Number of agents moved per step(f) 1
Choice randomness i.e., temperature T 50

Table A.1: The configuration parameters of the COMPASS model that is used as
the reference-system for the RL process. Note that the values were used to run
the reference models, that are meant to be recovered with RL. The parameters
stay the same for the inverse runs, but some are obviously ignored (e.g., α,
convergence threshold, number of school steps). Notice how even though we
have two agent archetypes we use the same utility function parameters for both,
for simplicity. For a detailed description of the parameters see Dignum et al.
(2022).

68

A.2 Extended Methods

A.2.1 DDQN details

Hyperparameters

Hyperparameters are critical to the DDQN’s performance. Table A.2 lists the
hyperparameters chosen for all experiments. Note that we use an exponential
decay function for exploration. As we use a different number of training steps
for different scenarios we report the approximate number of exploratory steps
taken in training. Of the listed parameters only the learning rate, batch size,
target update frequency were determined using a hyperparameter grid search.

Hyperparameter Value
Discount factor γ 0.99
Learning rate α 1E-5
Optimizer Adam
Batch size 64
Replay buffer size (state transitions) 7.5E5
Target update frequency (training steps) 500
Exploration ϵ steps ≈ 14%
Decay exponential
ϵ start 100%
ϵ end 5%
Number of hidden layers 2
Size of hidden layers 32
Activation function ReLU

Table A.2: Hyperparameters for DDQN with Experience Replay

ϵ-greedy

Given three factors Estart, Eend, and Edecay which correspond to the start,
end, and decay rate values, respectively we can compute the ϵ threshold for
each training time-step n training steps. To take an action we sample a random
value from the range of 0 and 1, uniformly. If the value is above the threshold
we take the optimal action. Otherwise we take a random action. In evaluation
mode we only take optimal actions. Our exponential decay threshold function
is defined in A.2.1.

ϵ = Eend + (Estart − Eend)× a
1

n training steps
Edecay

(A.2.1)

69

A.2.2 Reward Function

Threshold parameters

Target Threshold
Criterion

MSE Wasserstein

Compositions
α 0.05 0.05
ϵ 0.01 0.01

Distances
α 2 10
ϵ 1 5

Attendance
α 0.01 0.005
ϵ 0.05 0.0005

Table A.3: The reward hyperparameters for the accuracy (α) and sensitivity (ϵ)
thresholds, for the different dissimilarity criteria.

Handling undefined values

In our preliminary experiments, we observed a mode collapse in training where
the agent would choose one school for all households, leading to overpopulating
one school and emptying most other schools. This is a consequence of having
very lax constraints, such as school capacities. Upon investigation, we found
that this strategy did indeed consist of a local optimum. Emptying schools would
render some of the summary statistics undefined (e.g., the average distance to
attending households) and due to an implementational decision of setting such
NaN values to zero. This would mean that the empty schools would be described
by near-zero average distance vectors. Due to the exponential nature of MSE,
this yielded a much better (lower) error as the targets had low values in scenarios
where distance mattered (households acted to minimise the distance to their
schools in the reference).

To eliminate this mode collapse, we designed the following method of dealing
with undefined values. The handling depends on the presence of undefined val-
ues in the reference model (i.e., whether there is an empty school), which is rare
but a possible occurrence. Undefined values of the reference vector would be
assigned a special value for each target. This value has to be carefully chosen as
it is relative to the value ranges of the target and may overshadow errors in dif-
ferent school observations. For such schools, the reference-sample dissimilarity
would be minimised when the learning agent empties the appropriate school.
If the learning agents empties a school (by moving households away from it)
that is not empty in the reference model, then that school’s value is dropped
by both reference and sample vectors in the dissimilarity calculation. This is a
natural choice for undefined values, but it serves to magnify the errors of the
other schools. Hence, instead of minimising the difference with an 0 reference
vector, the error now highlights the remaining schools’ mismatches.

70

A.3 Experimental Details

|H| |M | Seed α Reward Function Maximum reward

12

4

6 0.0
Wasserstein 0.65

MSE 0.88
3

0.5
Wasserstein 0.77

1 MSE 0.80
6

1.0
Wasserstein 1.00

3 MSE 1.00

96

6 0.0
Wasserstein 0.33

MSE 1.00
1

0.5
Wasserstein 0.33

42 MSE 0.77
3

1.0
Wasserstein 0.83

42 MSE 0.92

Table A.4: Maximum evaluation reward of the different scenarios run, and the
corresponding run seed. In experiments 2 and 3 we use the DQN weights at
those checkpoints.

A.4 Extended results

For completeness we show the change of dissimilarity over evaluation episode
steps for the DDQNWass.

71

(a) Dissimilarity trajectory using the initial random weights

(b) Dissimilarity trajectory of the recovered policy (DDQNWass,
|H| = 12)

Figure A.1: Change of dissimilarity (Wasserstein) between the reference out-
come ST and current sample Ŝt over the steps t of five evaluation episodes (grey
lines); each episode is independent of the other and, therefore, subject to differ-
ent random initialisations of the environment. The reward is calculated based on
the gradient between the two grey lines (start and termination of episodes) and
whether the samples are sufficiently accurate, i.e., below the accuracy thresh-
old (dotted lines). This is the scenario where |H| = 12 and α = 0. a) shows
D(tτ , t̂τ) for the DDQN with randomly initialised weights. The average reward
received over these five episodes is -0.6. b) shows D(tτ , t̂τ) of the policy at the
weight checkpoint where the DDQNWasas achieves the maximum reward. The
average reward received over these five episodes is 0.43. Note that the values
are not normalised; the errors are not comparable across target statistics as
absolute values.

72

Figure A.2: Change of dissimilarity between the reference outcome ST and
current sample Ŝt across the steps t of five evaluation episodes (grey lines); each
episode is independent of the other and, therefore, subject to different random
initialisations of the environment. The scenario plotted here is |H| = 96, α = 0
under control of the DDQNWass. The average reward received over these five
episodes is 0.

73

	Introduction
	COMPASS project
	Research Questions
	Structure

	Background and Related Work
	Agent Based Models
	ABMs of Segregation
	Properties of the considered ABMs

	Reinforcement Learning
	Value-based methods
	Neural Networks

	Learning and generative models
	Learning and inverse generative models

	Methods
	School choice model
	Model assumptions

	Controller implementations
	Baselines
	Learning algorithm

	Data
	MDP design
	Reward function
	Wasserstein distance
	Mean-Squared Error

	Training and evaluation
	Software, hardware, and implementation

	Experimental Setup
	School-choice model configuration
	Experiments

	Results
	Learning Performance comparisons
	Generalisation
	Ranking score

	Discussion
	Conclusion
	Limitations
	Further work

	Appendix
	COMPASS model
	Extended Methods
	DDQN details
	Reward Function

	Experimental Details
	Extended results

