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Chapter 1

Introduction

A jarring divide cleaves modern physics. On one side lies quantum theory, which
portrays subatomic particles as probabilistic waves. On the other lies general rela-
tivity, Einstein’s theory that space and time can bend, causing gravity. The quest for
reconciliation of both quantum mechanics and gravity is running up against thorny
paradoxes for over 90 years.

Hints are mounting that at least part of the problem lies with a principle at the
center of quantum mechanics. Unitarity, the main principle of quantum mechanics,
says that probabilities are conserved. When particles interact, the probability of all
possible outcomes must sum to 100%. Unitarity severly limits how subatomic parti-
cles might evolve from moment to moment. It also ensures that change is a two-way
street: any imaginable event at the quantum scale can be undone, at least on paper.
It is a very restrictive condition, even though it might seem a little bit trivial at first
glance.

Unitarity in quantum gravity and even in black holes is a very open question. In
both situations problems arise when predictions of general relativity and quantum
mechanics are combined. In the 1970s, Stephen Hawking applied the rules of quan-
tum mechanics to black holes and found that an isolated black hole would emit a
form of radiation called Hawking radiation [37]. This led to the famous black hole
information paradox, when one considers a process in which a black hole is formed
through a physical process and then evaporates away entirely through Hawking ra-
diation. Hawking’s calculation suggests that the final state of radiation would retain
information only about the total mass, electric charge and angular momentum of the
initial state. Since many different states can have the same mass, charge and angu-
lar momentum this suggests that many initial physical states could evolve into the
same final state. Therefore, information about the details of the initial state would
be permanently lost. This violate unitarity since, the evolution of the state is deter-
mined by a unitary operator, and unitarity implies that the state at any instant of
time can be used to determine the state either in the past or the future. A similar
paradox arises in cosmology, the main problem is that the universe is expanding.
This expansion is well described by general relativity. But it means that the future
of the cosmos looks totally different from its past, while unitarity demands a tidy
symmetry between past and future on the quantum level.

The expansion of the cosmos and the fact that there are no degrees of freedom on
length scales shorter than the Planck scale suggest that the dimension of the Hilbert
space that describe the quantum states of subatomic particles grows with time. This
led Anderw Strominger and Jordan Cotler to propose the radical idea that a more
relaxed principle called isometry can accommodate an expanding universe while
still satisfying the stringent requirements of unitarity [19].

Isometries are maps from a smaller to a larger Hilbert space which preserve the
inner product between any two states. If the Hilbert spaces have the same size, the
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isometry is unitary. In an expanding universe they allow new degrees of freedom to
be added without affecting inner products. While the expanding universe is a per-
fectly valid solution to the equations of general relativity, its grow troubles quantum
mechanics, by presenting particles with an expanding variety of options for where
to be and how to behave. With the help of isometries, the above intuitive statement
which is equivalent to "new degrees of freedom appear in their ground state" [57,
60] gets mathematical precision. Adding to that isometries also specify the quantum
correlations of the new degrees of freedom with the preexisting ones.

We motivate this hypothesis from two different approaches, all in 1 + 1 dimen-
sions: a continuum analysis of entanglement entropy using toy and cosmological
models, and a latticization of quantum field theory on an expanding geometry us-
ing the finite elements method. While in our closing remarks we mention the in-
terplay of isometries in encodings of quantum information theory [3, 56] and their
fundamental role in physical law.

The first example is a toy model that we will use is a 1 + 1 free field theory with
a moving mirror [30, 1, 2]. The mirror is initially at rest, and then uniformly accel-
erates from infinity. After that, the mirror stops accelerating and remains at a final
receding velocity. The problem is analytically soluble and in order to examine the
Hilbert space evolution we mainly use entanglement entropy. The entanglement en-
tropy of the outgoing radiation rises thermally during acceleration and then remains
at a nonzero constant. An observer at infinity with any finite UV cutoff will never
see the thermal radiation purified no matter how long they wait. This is due to the
fact that some super-cutoff incoming modes are redshifted below the cutoff by the
receding mirror before arriving at the observer. Hence there is an increase in the
amount of modes that contribute to entanglement entropy before and after acceler-
ation. Because new effective degrees of freedom have emerged, the description of
time evolution is isometric and non-unitary. This continuum example illustrates the
fact that non-unitary isometries arise no matter how high we place the cutoff.

After that example, we examine entanglement entropy in continuum closed ex-
panding cosmologies [27]. Basically, we show that the same principles hold true for
de Sitter spacetime in 1 + 1-dimensions. That is, new effective degrees of freedom
are being added with cosmological expansion indicating the need of non-unitary
isometric time evolution.

The second approach is the lattice discretization of spacetime in which a finite
UV cutoff manifests. Our goal is to formulate and study the finite elements method
(FEM) [24, 9] in a Lorentzian setting of a 1 + 1-dimensional quantum field theory
(QFT). We would try to incorporate two separate field theories, one with a free mass-
less scalar field and a corresponding one with a fermion. The part with FEM and
fermions corresponds to our own research that came to be problematic. A discus-
sion about the nourishment of the problems that arose will follow. Many lattice
realizations of QFT in an expanding geometry necessitate adding lattice points, and
a unitary transformation between time slices is clearly impossible. We construct the
Lorentzian FEM path integral and show that time evolution between subsequent
slices is an isometry. This demonstrates that discrete path integral methods are not
restricted to unitary systems and naturally describe the more general isometries of
interest to us here. There have been related work connecting the canonical and path
integral quantization setting in [28, 43, 23].

The thesis is organized as follows. In chapter 2 we included the preliminaries
that are needed in order to achieve a self-contained manuscript. In chapter 3 we
examine the properties of a receding mirror boundary in 1 + 1-dimensional confor-
mal field theory (CFT). In chapter 4 we study the entanglement of 1+ 1-dimensional
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conformal field theory (CFT) in closed expanding cosmological models. In chapter
5 we review the finite elements method (FEM) by using two approaches: one based
on functional analysis and another based on geometry. We also explain its necessity
for discretizing classical equations of motion for fields curved or time-dependent
backgrounds. In chapter 6 we perform a Lorentzian path integral quantization for
a massless scalar field in 1 + 1-dimensions and show that time evolution is isomet-
ric. In chapter 7 which contains our own independent research, we again perform
a Lorentzian path integral quantization but this time for a fermionic field in 1 + 1-
dimensions and discuss the troublesome nature of the finite element method (FEM)
and fermions. Chapter 8 contains some closing comments for our work and some
proposals for further research, while the connection between quantum error cor-
rection schemes and their role in physical law is being proposed. The appendix A
contains a review of basic facts of conformal field theory (CFT) that were needed in
the calculation of entanglement entropy of moving mirrors.
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Chapter 2

Preliminaries

Before diving into the main thesis we review basic facts that will be useful in under-
standing the details of our work and make the thesis relatively self-contained. The
organization of this chapter is as follows. In sec. 2.1 we review quantum states in the
path integral formulation. In sec. 2.2 and 2.3 we provide a summary of the basics of
entanglement entropy in discrete and continuum field theories. Lastly, in sec. 2.4 we
review the classical and quantum formalism for the evolution operator in discrete
time mechanics.

2.1 Path Integrals and Quantum states

In this section we will explain the relationship between path integrals and states in
quantum field theory [36]. This material is not normally covered in detail in QFT
courses or the author of this thesis was not that familiar with it. It will turn out
being extremely useful for moving mirrors in chapter 3, since it provides a pictorial
representation of path integrals and quantum states.

2.1.1 Transition Amplitudes

Path integrals define transition amplitudes. A Euclidean path integral defines a tran-
sition amplitude under evolution by the operator e−βH

⟨ϕ2|e−βH |ϕ1⟩ =
∫ ϕ(τ=β)=ϕ2

ϕ(τ=0)=ϕ1

Dϕe−SE[ϕ]. (2.1)

This involves a split into space and time; ϕ1,2 is a boundary condition that specifies
data at a fixed time. If space is a line in 2D, then we depict this by

⟨ϕ2|e−βH |ϕ1⟩ = , (2.2)

meaning it is a Euclidean path integral over an infinite line, with the boundary con-
ditions shown and the interval has length β.
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2.1.2 Wavefunctions

The transition amplitude defines the wavefunction, in the Shrödinger picture. The
wavefunction for the state

|Ψ⟩ = |ϕ1(τ)⟩ = e−τH |ϕ1⟩, (2.3)

is the overlap
Ψ[ϕ2] ≡ ⟨ϕ2|Ψ⟩. (2.4)

2.1.3 Cutting the Path Integral

To define the transition amplitude, we specified data on two cuts, at τ = 0 and
τ = β. We can formally think of a path integral with one set of boundary conditions
and one open cut as a quantum state. That is, the state

|Ψ⟩ = e−βH |ϕ1⟩, (2.5)

is the path integral

|Ψ⟩ =
∫ ϕ(τ=β)=??

ϕ(τ=0)=ϕ1

DϕeS[ϕ] = . (2.6)

It is a fuctional |Ψ⟩ that turns field data ⟨ϕ2| into complex numbers ⟨ϕ2|Ψ⟩.

2.1.4 Euclidean vs. Lorentzian

States are defined on a spatial surface and do not care about Lorentzian vs Euclidean.
The state |Ψ⟩, defined above by a Euclidean path integral, is a state in the Hilbert
space of the Lorentzian theory. It is defined at a particular Lorentzian time, call it
t = 0. It can be evolved forward in Lorentzian time by acting with the operator
e−iHt, or equivalently by performing the Lorentzian path integral

|Ψ(t)⟩ = e−iHt|Ψ⟩ = . (2.7)

Remark: To be more precise, states are defined upon Cauchy surfaces [64]. A
Cauchy surface intuitively is a slice at a fixed time, thus points on the Cauchy sur-
face are related spacelike i.e. there are not causally connected. Think of Cauchy
surface as signifying an instant of time. Physics can be predicted to the future or
(retroacted to the) past from data prescribed on the Cauchy surface. In the case of a
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massless theory, which is the main theory of this thesis, null surfaces are Cauchy sur-
faces since particles travel only in null trajectories. A state that it is defined upon a
spacelike surface it is equally well defined upon a null surface with the requirement
that these two are causally connected.

2.1.5 The Ground State

Evolution in Euclidean time damps excitations. Suppose we start in some state |Y⟩
and expand in energy eigenstates

|Ψ⟩ = ∑
n

ψn|n⟩, H|n⟩ = En|n⟩. (2.8)

By evolving over a long Euclidean time we can project onto the lowest energy state,

e−τH |Ψ⟩ ≈ e−τE0 ψ0|0⟩, (τ → ∞). (2.9)

It follows that we can define the (unnormalized) ground state by doing a path inte-
gral that extends all the way to infinity in one direction. In 2D spacetime the ground
state in the line is produced by the Euclidean path integral

|0⟩ = (2.10)

It is a path integral on the semi-infinite plane, with an open cut at the edge.

2.1.6 Glueing Path Integrals

Path integrals with cuts can be glued together to make transition amplitudes. On a
2D theory the vacuum-to-vacuum amplitude is

⟨0|0⟩ =
∫

Dϕe−SE[ϕ] = . (2.11)

The lower half-plane produces |0⟩, the upper half-plane produces ⟨0|, and glueing
them together along the cuts at τ = 0 produces the transition amplitude. One way
to see the glueing is to insert the identity

⟨0|0⟩ = ∑
ϕ1

⟨0|ϕ1⟩⟨ϕ1|0⟩. (2.12)
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The first term is a path integral on the upper half plane; the second term is a path
integral on the lower half plane; and summing over all possible boundary conditions
ϕ1 in the middle just says that fields should be continuous across τ = 0 and therefore
glues the half-planes together.

2.1.7 Density Matrices

A density matrix is an operator; it takes a bra and a ket, and produces a complex
number. Thus any path integral with two open cuts defines a density matrix. For
example, the density matrix ρ = e−βH, for a 2D theory on a line, is formally the
doubly-cut Euclidean path integral

ρ ≡ e−βH = . (2.13)

The matrix elements ⟨ϕ2|ρ|ϕ1⟩ are computed by the path integral with boundary
conditions ϕ1,2 on the cuts.

2.1.8 Thermal Partition Function

The density matrix ρ = e−βH is the density matrix in a thermal ensemble at temper-
ature T = 1/β. The thermal partition function is

Z(β) = tr e−βH. (2.14)

This can be represented by a Euclidean path integral as follows

Z(β) = tr e−βH

= ∑
ϕ1

⟨ϕ1|e−βH |ϕ1⟩

= ∑
ϕ1

. (2.15)

By summing over ϕ1 we are really just imposing periodic boundary conditions on
the plane. This glues together the two lines, producing an infinitely long cylinder of



2.2. Basics of Entanglement Entropy 9

period β

Z(β) = (2.16)

The trace ’glues together’ parts of the Euclidean manifold that computes ρ.

2.2 Basics of Entanglement Entropy

In this section we will review basic elements of entanglement entropy which are
based on the lectures notes of M. Rangamani and T. Takayanagi [58].

In statistical mechanics one averages over physically distinct states of a system
which have common values of a macroscopic state variables. Many microscopically
different states look alike macroscopically. Entropy is a precise measure of this lack
of resolution.

In quantum mechanics there is an additional source of entropy. This comes from
the fact that an observer has access only to a partial set of observables.

Consider a quantum mechanical system with many degrees of freedom such as
arbitrary lattice model (later on we will include QFTs and CFTs). The total quantum
system is described by the pure ground state |Ψ⟩. Then, the density matrix is that of
a pure state

ρtot = |Ψ⟩⟨Ψ| (2.17)

The von Neumann entropy of a quantum state is defined as

S = −trρ log ρ (2.18)

which is clearly zero for the total system S = −trρtot log ρtot = 0.
Next, we divide the total system into two subsystems A and B, as shown in

Fig. 2.1. Note that physically we do not do anything to the system and the cutting
procedure is an imaginary process. We could hypothesize that A is the accessible
part of the universe for an observer and B the inaccessible one. The total Hilbert
space can be written as a direct product Htot = HA ⊗HB

1. The observer who has
access only to the subsystem A will feel as if the total system is described by the
reduced density matrix ρA

ρA = trB ρtot (2.19)

where trace is taken only over the Hilbert spaceHB.
Now we define the entanglement entropy of the subsystem A as the von Neu-

mann entropy of the reduced density matrix ρA

S = −trρA log ρA (2.20)

This quantity provides us with a convenient way to measure how quantum infor-
mation is stored in a given state |Ψ⟩. It counts the number of entangled bits between
A and B. Roughly speaking, entropy is the logarithm of the number of states of the

1Note that the splitting of the total Hilbert space is doable since we are currently working on a
lattice model. Generally, in quantum gravity it is unknown if the Hilbert space splits.
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FIGURE 2.1: Lattice quantum system divided by the boundary ∂A
into subsystems A (shaded area) and B (unshaded area).

inaccessible, for the observer, part of the universe B that are consistent with all mea-
surements restricted to the accessible part A, together with a priori knowledge that
the universe as a whole is in a pure state.

Now, consider a quantum field theory on a d + 1 dimensional manifold R× N,
where R and N denote the time direction and the d dimensional space-like manifold,
respectively. We define the subsystem by a d dimensional submanifold A ⊂ N at
fixed time t = t0. We call its complement the submanifold B, as shown in Fig.
2.2. The boundary of A, which is denoted by ∂A, divides the manifold N into two
submanifolds A and B. Then we can define the entanglement entropy SA by using
(2.20). Sometimes, this kind of entropy is called geometric entropy as it depends on
the geometry of the submanifold A.

Entanglement Entropy in continuum QFTs is a divergent quantity. There are
ultraviolet (UV) modes at arbitrarily small scales across the dividing surface ∂A,
this makes it impossible to actually split the full Hilbert space, HAB ̸= HA ⊗HB.
For example, no realistic measuring apparatus resolves infinitely small distances,
so the sharp distinction between inside and outside might appear to be an unreal-
istic idealization. To deal with this, we must impose a UV cutoff by introducing
the ’lattice scale’ ϵUV . With a finite cutoff, the Hilbert space of a finite region is
finite-dimensional. In the end we usually want to regulate and renormalize these di-
vergences in such a way that physically meaningful quantities are assigned definite
finite values in the theory.

FIGURE 2.2: QFT on a R× N manifold at fixed time t = t0. The N
manifold is divided by the boundary ∂A into submanifolds A and B.
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2.3 Entanglement Entropy in 2D CFT

Here we review existing computations of entanglement entropy in (1 + 1)D CFTs.
The central charge of a given CFT is denoted by c. Such a computation was initiated
by C. Holzhey, F. Larsen and F. Wilczek [40]; see also P. Calabrese and J. Cardy [15].

2.3.1 A Replica Approach

In order to find the entanglement entropy we will use the so called replica trick. Very
helpful quantities for this kind of procedure are the so called Rényi entropies. These
are defined as follow

S(n)
A =

1
1− n

log trρn
A. (2.21)

The replica trick consists of evaluating trρn
A, differentiate it with respect to n and

finally take the limit n→ 1,

SA = − lim
n→1

∂

∂n
trρn

A = − lim
n→1

∂

∂n
log trρn

A = lim
n→1

S(n)
A , (2.22)

since trρA = 1.
This can be done in the path-integral formalism as follows. We first assume that

A is the single interval x ∈ [u, υ] at tE = 0 in the flat Euclidean coordinates (tE, x) ∈
R2. The ground state wave function Ψ can be found by path-integrating from tE =
−∞ to tE = 0 in the Euclidean formalism, cf. ssec 2.1.5 ,

Ψ(ϕ0(x)) =
∫ ϕ(tE=0,x)=ϕ0(x)

tE=−∞
Dϕe−S(ϕ), (2.23)

where ϕ(tE, x) denotes the field which defines the 2D CFT. The values of the field at
the boundary ϕ0 depends on the spatial coordinate x. The total density matrix ρ is
given by two copies of the wave function [ρ]ϕ0ϕ′0

= Ψ(ϕ)Ψ(ϕ′0), cf. Ssec 2.1.7. The
complex conjugate on Ψ can be obtained by path-integrating from tE = ∞ to tE = 0.
To obtain the reduced density matrix ρA, we need to integrate ϕ0 on B assuming
ϕ0(x) = ϕ′0(x) when x ∈ B

[ρ]ϕ+ϕ− = (Z1)
−1
∫ tE=∞

tE=−∞
Dϕe−S(ϕ) ∏

x∈A
δ
(
ϕ(+0, x)− ϕ+(x)

)
· δ
(
ϕ(−0, x)− ϕ−(x)

)
,

(2.24)
where Z1 is the vacuum partition function on R2 and we multiply its inverse in order
to normalize ρA such that tr AρA = 1. This computation is sketched in Fig. 2.3 (a).

To find tr Aρn
A, we can prepare n copies of (2.24)

[ρA]ϕ1+ϕ1− [ρA]ϕ2+ϕ2− · · · [ρA]ϕn+ϕn− (2.25)

and take the trace successively. In the path-integral formalism this is realized by glu-
ing {ϕi±(, x)} as ϕi−(x) = ϕ(i+1)+(x)(i = 1, 2, ..., n) and integrating ϕi+(x). Hence,
the calculation of tr Aρn

A reduces to that of a partition function on a complicated Rie-
mann surface Rn (see Fig. 2.3 (b)) that is analytically achievable in a quantum field
theory

tr Aρn
A = (Z1)

−n
∫
(tE,x)∈Rn

Dϕe−S(ϕ) ≡ Zn

(Z1)n . (2.26)
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FIGURE 2.3: (a)The path integral representation of the reduced den-
sity matrix [ρA]ϕ+ϕ− . (b) The n-sheeted Riemann surface Rn (for

n = 3).

When the right hand side of equation (2.26) has a unique analytic continuation
to Ren > 1, its first derivative at n = 1 combined with the equation (2.22) gives the
required entropy

SA = − ∂

∂n
log

Zn

(Z1)n |n=1. (2.27)

The problem is now moved to the existence and uniqueness of a proper analytic
continuation to extract the entanglement entropy. In some cases this is trivial, in
others difficult, and in several others beyond our present understanding.

2.3.2 Twist Fields

The partition function of a model of 2D QFT (or CFT) with local Lagrangian L(ϕ) on
a (euclidean-signature) Riemann surfaceR is formally obtained by the path integral

ZL,R =
∫
R

dϕexp
(
−
∫
R

dxdtEL(ϕ)
)

(2.28)

where dϕ is an infinite measure on the set of configurations of some field ϕ living
on the Riemann surface R. Since the Lagrangian density does not depend on the
Riemann surface R, as a consequence of its locality, it is expected that the partition
function can be expressed as an object calculated from a model on the complex plane
C, where the structure of the Riemann surface is implemented through appropriate
boundary conditions around the points with non-zero curvature.

In our case, the n-sheeted Riemann surface Rn has zero curvature everywhere
except at a finite number of points (i.e. the boundaries between A and B which
are denoted by the points u and υ respectively). We expect that there is a model in
which the associated partition function in a theory defined on the complex plane C

with coordinates z = x + itE can be written in terms of certain "fields" at z = u and
z = υ. Equation (2.28) essentially defines these fields, i.e. it gives their correlation
functions, up to a normalization independent of their positions. However in the
model on the complex plane, this definition makes them non-local (ref). Locality is
at the basis of QFT, so it is important to recover it.
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The idea is again to use the Replica trick and consider a larger model formed by n
independent copies of the original model, where n is the number of Riemann sheets
necessary to describe the Riemann surface R by coordinates on the complex plane
C. The partition function in equation (2.28) can be re-written as the path integral on
the complex plane

ZL,Rn =
∫

Cu,υ

dϕ1 · · · dϕn exp
(
−
∫
C

dxdtE
(
L(ϕ1) + ... + L(ϕn)

))
(2.29)

where with
∫
Cu,υ

we indicated the restricted path integral with boundary conditions

ϕi−(x) = ϕ(i+1)+(x), x ∈ [u, υ], n + i ≡ i, i = 1, 2, ..., n. (2.30)

The Lagrangian density of the multi-copy model is

L(n)(ϕ1, ..., ϕn) = L(ϕ1) + ... + L(ϕn) (2.31)

since we duplicated the theory n times without adding interactions, we have a La-
grangian which is the sum of the Lagrangians of the n individual copies. The equa-
tion (2.29) takes the form of

ZL,Rn =
∫

Cu,υ

dϕ1 · · · dϕn exp
(
−
∫

C
dxdtEL(n)(ϕ1, ..., ϕn)

)
(2.32)

and indeed defines local fields at z = u and z = υ in the multi-copy model.
These local fields are examples of twist fields. They are made up fields and act

to change the path integral boundary conditions. Twist fields exist in a quantum
field theory whenever there is a global internal symmetry σ:

∫
dxdtL(σϕ)(x, t) =∫

dxdtL(ϕ)(x, t). In the model with Lagrangian L(n), there are two opposite cyclic
permutation symmetries i → i + 1 and i + 1 → i under exchange of the copies. We
can denote them by Φ and Φ̄, respectively

Φn ≡ Φσ , σ : i→ i + 1modn,

Φ̄n ≡ Φσ−1 , σ−1 : i→ i + 1modn.
(2.33)

Notice that Φ̄n can be identified with Φ−n.
For the n-sheeted Riemann surface along the set A we then have

ZL,Rn ∝ ⟨Φn(u, 0)Φ−n(υ, 0)⟩L(n),C. (2.34)

This can be seen on Fig. 2.4 by observing the effect of the twist fields on the local
fields. For x ∈ [u, υ], consecutive copies are connected through tE = 0 due to the
presence of Φn(u, 0), whereas for x in B, copies are connected to themselves through
tE = 0 because the conditions arising from the definition of Φ(u, 0) and Φ−n(υ, 0)
cancel each other. More generally, the identification holds for correlation functions
in the model L onRn

⟨O(x, tE : sheet i) · ··⟩L,Rn =
⟨Φn(u, 0)Φ−n(υ, 0)Oi(x, tE) · ··⟩L(n),C

⟨Φn(u, 0)Φ−n(υ, 0)⟩L(n),C
. (2.35)
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FIGURE 2.4: The effect of twist fields on other local fields.

2.3.3 Mapping the Riemann surface to the complex plane

We will use the complex coordinate w = x + itE and w̄ = x − itE, note that this is
a coordinate on a single sheet. The conformal mapping w → ζ = (w− u)/(w− υ)
maps the points [u, υ] to (0, ∞). This is uniformized by the mapping ζ → z = ζ1/n =(
(w − u)/(w − υ)

)1/n. This maps the whole n-sheeted Riemann surface Rn to the
z-plane C, see Fig. 2.5 for an illustration of this.

Now consider the holomorphic component of the stress tensor T(w). This is
related to the transformed stress tensor T(z) by

T(w) =
( dz

dw

)2
T(z) +

c
12
{z, w} (2.36)

where {z, w} = (z
′′′

z
′ − 3

2 z
′′2
)/z

′2
is the Schwarzian derivative. Taking the expecta-

tion value of equation (2.36), and using ⟨T(z)⟩C = 0 by translational and rotational
invariance, we find

⟨T(w)⟩Rn =
c

12
{z, w} = c(1− n−2)

24
(υ− u)2

(w− u)2(w− υ)2 (2.37)

From equation (2.35), we have

⟨T(w)⟩Rn =
⟨Φn(u, 0)Φ̄n(υ, 0)Tj(w)⟩L(n),C
⟨Φ(u, 0)Φ̄n(υ, 0)⟩L(n),C

(2.38)

FIGURE 2.5: w→ ζ = (w− u)/(w− υ) maps the branch points [u, υ]
to (0, ∞). This is uniformized by the mapping ζ → z = ζ1/n.
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for all j, where j is the number of the sheet. We can then obtain the correlation func-
tion involving the stress-energy tensor of L(n) by multiplying by n:

⟨T(n)(w)⟩L,Rn =
⟨Φn(u, 0)Φ(υ, 0)T(n)(w)⟩L(n),C
⟨Φn(u, 0)Φn(υ, 0)⟩L(n),C

=
c(n2 − 1)

24n
(u− υ)2

(w− u)2(w− υ)2 .

(2.39)

The comparison with the conformal Ward identity, see Appendix A equation (A.26),

⟨Φn(u, 0)Φ̄n(υ, 0)T(n)(W)⟩L(n),C =

(
1

w− u
∂

∂u
+

hΦn

(w− u)2 +
1

w− υ

∂

∂υ

+
hΦ̄n

(w− υ)2

)
⟨Φn(u, 0)Φ̄n(υ, 0)⟩L(n),C,

(2.40)

allow us to identify the scaling dimension of the primary fields Φn and Φ̄n (same
dimension dn = d̄n), using ⟨Φn(u, 0)Φ̄n(υ, 0)⟩L(n),C = |u− υ|−2dn , to be

dn =
c

12

(
n− 1

n

)
. (2.41)

The above equation determines all the properties under conformal transformations
and we therefore conclude that Zn/Zn ∝ tr Aρn

A behaves under scale and conformal
transformations identically to the two-point function of a primary operator with di-
mension dn. In particular, this means that

trρn
A =

(υ− u
ϵ

)−c(n−1/n)/6
. (2.42)

The power of ϵ corresponds to the renormalization constant (plus the constant that
arises due to the ambiguity of this method). Using equation (2.22) we get the entan-
glement entropy of A to be

SA =
c
3

log
l
ϵ

, (2.43)

where l = υ − u is the length of system A. For a general conformal field theory,
where we are interested in both holomorphic and antiholomorphic modes, equation
(2.43) takes the following form

SA =
c + c̄

6
log

l
ϵ

. (2.44)

This equation will turn out particularly useful in conformal field theories, such as
the moving mirror model in chapter 3, where we only use one set of modes.

2.4 Discrete Time Mechanics

In this section we will describe the operator for time evolution in discrete time me-
chanics. This operator will be useful later on when we will examine the time evolu-
tion of a free massless scalar field on a lattice. The section is based on the papers of
P. A. Höhn [43, 44] on evolving Hilbert spaces. For related work on classical discrete
time mechanics, see [45, 46].
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2.4.1 Classical Mechanics in the Continuum and Discrete

In continuous time mechanics Lagrangian dynamics is conventionally formulated
via an action principle based on the action integral

Si f [γ] =
∫ t f

ti

dtL(q, q̇, t), (2.45)

where ti and t f are the initial and final times respectively along some given path γ.
In our version of discrete time mechanics we postulate that the dynamical variables
q(t) are observed at a finite number of times tn, n = 0, 1, ..., N, where t0 = ti and
tN = t f , such that the intervals are all equal to some fundamental interval a. For
convenience we will write qn ≡ q(tn).

In our formulation of discrete time mechanics we replace the action integral by
an action sum of the form

SN [γ] =
N−1

∑
n=0

Fn, (2.46)

where Fn ≡ F(qn, qn+1, n) will be referred to as the system function. The system
function has the same central role in discrete time mechanics as the Lagrangian has
in continuous time mechanics.

A necessary condition to extremise the action (2.46) is that

∂F[{qn}]
∂qm

= 0, m = 0, 1, ..., N. (2.47)

It is assumed that F(x, y, z) is a continuously differentiable function with respect to
the arguments x and y. Performing this differentiation gives

∂

∂qn
{Fn−1 + Fn} = 0, 0 < n < N, (2.48)

where the equality holds over a true or dynamical trajectory. For a more detailed
discussion which includes the boundary equations of motion at m = 0, N see [14].
We now discuss the interpretation of this equation.

Suppose we have a continuous time action integral of the form (2.45). First, par-
tition the time interval [t0, tN ] into N equal subintervals. Then the action integral
may be written as a sum of sub-integrals, i.e.,

Si f [γ] =
N−1

∑
n=0

∫ tn+1

tn

dtL
(
q(t), q̇(t), t

)
. (2.49)

Now suppose that we fixed the co-ordinates qn at the various times t0, t1, ..., tN and
then chose the path connecting each pair of points (qn, qn+1) to be the true or dy-
namical path, that is, a solution to the Euler-Lagrange equations of motion for those
boundary conditions. If this partially extremised path is denoted by γc then we may
write

Si f [γc] =
N−1

∑
n=0

Sn, (2.50)

where Sn ≡ S(qn+1, tn+1; qn, tn) is known as Hamilton’s principal function, being just
the integral of the Lagrangian along the true path from qn at time tn to qn+1 at time
tn+1. The Hamilton’s principal function will play the role of the system function for
the discrete system.
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The Hamilton-Jacobi Equation

Here we will build intuition about the Hamilton′sprincipal f unction which is a gen-
erating function for canonical time. Consider the action (2.45) evaluated only along
the true path γc and define

W(qinitial
i , q f inal

i , T) = S[qclassical
i (t)] ≡ S[γc], (2.51)

where T = t f − ti. While S is a functional on any path, W is to be considered as a

function of the initial and final configurations qinitial
i and q f inal

i as well as the time T it
takes to get between them. Now if we keep qinitial

i fixed but vary the end point q f inal
i

we get

δS =
∫ T

0
dt

[
∂L
∂qi
− d

dt

(
∂L
∂q̇i

q̇i

)]
δqi(t) +

[
∂L

∂q̇i(t)
δqi(t)

]T

0

, (2.52)

which on the classical path takes the form,

∂W

∂q f inal
i

=
∂L
∂q̇i

∣∣∣∣∣
T

= p f inal
i . (2.53)

Consider a classical path with fixed initial configuration qinitial
i and the fact that

dS/dT = L. Then we get

L(q f inal
i , q̇ f inal

i , T) =
dW
dT

=
∂W
∂T

+
∂W

∂q f inal
i

q̇ f inal
i . (2.54)

By relabelling T 7→ t and dropping the word "final" we have found ourselves a time
dependent function on configuration space W = W(qi, t) which satisfies

∂W
∂t

= −H(qi, ∂W/∂qi, t). (2.55)

This is the Hamilton-Jacobi Equation. Combine this with the first of Hamilton’s equa-
tions we get

q̇i =
∂H
∂pi

∣∣∣∣∣
pi=∂W/∂qi

. (2.56)

In this manner the function W determines the path of the classical system: start
it off at a point in configuration space and W can be considered as a real valued
classical wavefunction which tells it how to evolve. The function W ≡ S[γc] is called
Hamilton’s principal function. Notice that in the discretized case (2.50) the action is a
sum of Hamilton’s principal functions Sn that evolve the system in each time step
tn 7→ tn+1.

2.4.2 Quantum Mechanical Propagators in the Continuum

In continuum quantum mechanics, the propagator is defined, in the position repre-
sentation, as the transition amplitude between states at different times

K(q1, t1; q0, t0) = ⟨q1|e−i(t1−t0)Ĥ/h̄|q0⟩ =
∫

DQeiS, (2.57)
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where Ĥ is the Hamiltonian of the system and q0,1 coordinatize the configuration
manifold Q. Remember that in the construction of the path integral we partition
the time interval t1 − t0 into n segments and we take the limit of n → ∞. The path
integral measure is of the form DQ ∝

∫
limn→∞

(
∏n−1

k=1

∫
dQk

)
where |Qk⟩ are states

inserted in-between the boundary states |q0⟩, |q1⟩.
The propagator satisfies the Schrödinger equation in both sets of variables

ih̄∂t1 K(q1, t1; q0, t0) = ĤK(q1, t1; q0, t0), ih̄∂t0 K∗(q1, t1; q0, t0) = ĤK ∗ (q1, t1; q0, t0),
(2.58)

and, importantly, maps wave functions at t0 one-to-one to wave functions at t1

ψ(q1, t1) =
∫
Q

dq0K(q1, t1; q0, t0)ψ(q0, t0). (2.59)

An illuminating illustration of the fact the K operator in position space generates
time evolution can be seen by using the Dirac notation,

⟨q1|ψ⟩ =
∫
Q

dq0⟨q1|K̂|q0⟩⟨q0|ψ0⟩, (2.60)

and the fact that
∫
Q dq0|q0⟩⟨q0| = Î,

|ψ⟩ = K̂|ψ0⟩, where K̂ = e−i(t1−t0)Ĥ/h̄. (2.61)

Four of the continuum propagator’s basic properties are

(i) Composition: K(q2, t2; , q0, t0) =
∫
Q dq1K(q2, t2; q1, t1)K(q1, t1; q0, t0), where t1 <

t0 and t2 < t1,

(ii) Time reversal: K(q0, t0; q1, t1) =
(
K(q1, t1; q0, t0)

)∗,
(iii) Invertibility:

∫
Q dq1

(
K(q1, t1; q0.t0)

)∗K(q1, t1; q′0, t0) = δ(q0 − q′0), and,

(iv) Infinitesimal transition: limt1→t0 K(q1, t1; , q0, t0) = δ(q1 − q0).

Next, we shall examine how these well-known continuum properties of the prop-
agator do or do not translate into a consistent quantum formalism for discrete sys-
tems.

2.4.3 Quantum Mechanical Propagators in the Discrete

Consider an evolution from (t0, x0)→ (t1, x1) or just 0→ 1. The discrete propagator
associated to the move cannot be given as a transition amplitude between states on
one and the same Hilbert space in the form of the right hand side of (2.57): the eigen-
states of the ’position operators’ x̂i at time steps n = 0, 1 |x0⟩ ∈ H0 and |x1⟩ ∈ H1,
respectively, are elements of two distinct Hilbert spaces H0 := L2(Q0, dx0),H1 :=
L2(Q1, dx1) and refer to different variables whereQ0,Q1 are the configuration man-
ifolds with Lebesgue measure dxn, n = 0, 1. Correspondingly, an expression such
as ⟨x1|x0⟩ is not defined. Instead, we shall construct the propagator directly as the
quantum time evolution map between H0 and H1- in analogy to (2.59). In addition,
given that time evolution is generated by the move 0 → 1, a Hamiltonian (which
would generate infinitesimal time evolution, i.e. continuous time evolution) is ab-
sent in the discrete systems. Consequently, in the quantum theory a unitary map of
the type Û(t1, t0) = e−i(t1−t0)Ĥ/h̄ cannot arise and be used to define the map between
Hilbert spaces associated to time steps 1, 0.
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We must therefore proceed differently, we shall employ the action (or rather
Hamilton’s principal function) which also generates time evolution, instead of a
Hamiltonian, to construct the propagator (and thereby the transition amplitude) and
to define the dynamics.

More precisely, in the spirit of the configuration space path integral expression
for the continuum propagator, we shall make the following ansatz for the propagator
of an evolution move 0 → 1. We associate a (possibly complex) path integration
measure C01 to this move and absorb it in the definition of the propagator

K0→1(x1, x0) := C01eiS1(x1,x0)/h̄, (2.62)

where S1(x1, x0) is the classical action, or Hamilton’s principal function, associated
to 0→ 1.

Let us now begin with the construction: Classically, to every evolution move
0 → 1 there is associated a pair of phase spaces P0 := T∗RN and P1 := T∗RN at
steps n = 0, 1, respectively. In analogy, in the quantum theory we associate a pair
of Hilbert spaces H0 := L2(Q0, dx0) and H1 := L2(Q1, dx1) with every evolution
0 → 1. We refer to the elements ψ0(x0) ∈ H0 and ψ1(x1) ∈ H1 associated with the
move 0 → 1. We use the discrete propagator (2.62)-in analogy to (2.59)- to define
the time evolution map U0→1 : H0 → H1 from states at n = 0 to states at n = 1 vis
U0→1 :=

∫
dx0K0→1 such that

ψ1(x1) =
∫

dx0K0→1(x0, x1)ψ0(x0). (2.63)

Just as in the continuum (property (ii) of ssec. 2.4.2), we require the reverse prop-
agator to be the complex conjugate

K1→0(x0, x1) = C∗01e−iS1(x0,x1)/h̄ =
(
K0→1(x1, x0)

)∗. (2.64)

Hence,

ψ1(x1) =
∫

dx0K0→1(x1, x0)ψ0(x0) =
∫

dx0K0→1(x1, x0)
∫

dx′1
(
K0→1(x′1,x0)

)∗
ψ1(x′1).

(2.65)
This entails ∫

dx0K0→1(x1, x0)
(
K0→1(x′1, x0)

)∗
= δ(N)(x′1 − x1) (2.66)

which, by (2.62), is a condition on the measure C. In complete analogy, by consider-
ing ψ0 in terms of ψ1,∫

dx1
(
K0→1(x1, x0)

)∗K0→1(x1, x′0) = δ(N)(x′0 − x0). (2.67)

Both equations (2.66) and (2.67) are the discrete incarnation of the continuum prop-
erty (iii) in ssec 2.4.2 above.

Provided the two conditions (2.66,2.67) are fulfilled, the propagator defines a
bijective quantum time evolution map betweenH0 andH1. Using (2.67),∫

dx1
(
ϕ1(x1)

)∗
ψ1(x1) =

∫
dx1dx0dx′0

(
K0→1(x1, x0)

)∗K0→1(x1, x′0)
(
ϕ0(x0)

)∗
ψ0(x′0)

=
∫

dx0
(
ϕ0(x0)

)∗
ψ0(x0) (2.68)
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and thus
⟨ϕ1|ψ1⟩H1 = ⟨ϕ0|ψ0⟩H0 . (2.69)

By using (2.66), one can prove the reverse direction.
The transition amplitudes for the evolution 0→ 1 can now be written as

⟨ϕ1|U0→1ψ0⟩ =
∫

dx1dx0(ϕ1)
∗K0→1ψ0. (2.70)

Notice that in the regular case where the configuration manifolds at different
time steps are isomorphic, aka they have the same dimension, to one another Q0 ≃
Q1 ≃ RN the discrete time evolution move 0 → 1 is unitary. Later, we will see that,
when this is not the case, the time evolution map could be an isometry.

In analogy to the continuum (property (i) in ssec. 2.4.2), the propagator of the
composition of the moves is to be the convolution

K0→2(x2, x0) =
∫

dx1K1→2(x2, x1)K0→1(x1, x0). (2.71)

This allows us to consistently write

ψ2(x2) =
∫

dx1K1→2ψ1(x1)

=
∫

dx1K1→2

∫
dx0K0→1(x1, x0)ψ0(x0)

=
∫

dx0K0→2(x2, x0)ψ0(x0). (2.72)

The composition of the sequence of moves 0→ 1→ 2→ · · · → n to the effective
move 0→ n yields the path integral (PI)

K0→n(xn, x0) =
∫ n−1

∏
l=1

dxl

n−1

∏
j=0

Kj→j+1(xj+1, xj)

=
∫ n−1

∏
l=1

dxl

n−1

∏
j=0

Cjj+1ei/h̄ ∑n
k=1 Sk(xk ,xk−1). (2.73)

In the case of only one move, i.e. 0 → 1, the path integral of our discrete system is
just the propagator K0→1.

Remark: The continuum property (iv) is meaningless in the systems under con-
sideration because of the absence of a time variable which could be made arbitrarily
small.
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Chapter 3

Moving Mirrors

Moving mirrors have led to interesting and tractable classes of time-dependent back-
grounds in quantum field theories [30]. A moving mirror model is described by a
QFT defined on a spacetime with a time-dependent boundary, which is identified
with the mirror trajectory. Note that in two dimensions the mirror actually consists
of a point which follows a given trajectory.

Moving mirrors could also be used as toy-models for cosmological expansion
which is the main subject of this thesis. In particular, we examine an 1 + 1 free field
theory with a moving mirror. The mirror is initially at rest, then accelerates uni-
formly away from infinity. Subsequently the mirror stops accelerating and remains
at final receding velocity. As depicted in Fig. 3.1, the mirror models an expand-
ing universe since the volume of space, in the right hand sight of the boundary, is
increasing with time.

This chapter is organized as follows. In sec. 3.1 we set up the spacetime of our
toy-model. In sec. 3.2 we equip the spacetime with a scalar field. Both sections 3.1
and 3.2 are based on the book of S. Carrol [17]. Finally, in sec. 3.3 we examine our
toy-model of cosmological expansion.

3.1 2D Minkowski Space

In this section we set up the spacetime background for our toy-model.
The two dimensional Minkowski space metric, in inertial coordinates t± = t± x,

is the following
ds2 = −dt2 + dx2 = −dt+dt−. (3.1)

FIGURE 3.1: A mirror following a trajectory suited for cosmological
expansion.
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We refer to these coordinates as inertial due to the fact that inertial trajectories are of
the form t+ = αt− + b. This can be seen from the geodesic equation

d2xµ

dλ2 + Γµ
αβ

dxα

dλ

dxβ

dλ
= 0→ d2xµ

dλ2 = 0→ d2t±

dλ2 = 0→ t+ = αt− + b, (3.2)

when applied to a two dimensional flat spacetime with the given coordinates.
Another useful aspect of 2D Minkowski is the Poincaré transformation which is

the combination of Lorentz coordinate transformations, aka boosts, and translations{
t̃ = γ(t− ux) + t0

x̃ = γ(x− ut) + x0 c = 1, γ = 1√
1−u2 ,

(3.3)

where u is the velocity of the coordinate system (t̃, x̃) with respect to the coordinate
system (t, x) and (t0, x0) is the amount of translation between the two coordinate
systems. In inertial coordinates, equation (3.3) takes the form{

t̃+ = t̃ + x̃ = 1−u√
1−u2 t+ + t+0

t̃− = t̃− x̃ = 1+u√
1−u2 t− + t−0 .

(3.4)

Moreover, an important tool that allow us to better visualize the spacetime is
conformal diagrams (or just Penrose diagrams). It captures the global properties and
causal structure of sufficiently symmetric spacetimes such as Minkowski. Our goal
is to portray the causal structure of spacetime, which is defined by its light cones,
and aim for coordinates in which infinity is only a finite coordinate value away, so
that the structure of the entire spacetime is immediately apparent.

A conformal transformation is essentially a local change of scale, cf. Appendix A.
Since distances are measured by the metric, such transformations are implemented
by multiplying the metric by a spacetime-dependent function:

g̃µν = Ω(x)gµν, (3.5)

or equivalently
d̃s2

= Ω2(x)ds2 (3.6)

for some nonvanishing function Ω(x). (Here x is used to denote the collection of
spacetime coordinates xµ which in our cause are inertial coordinates).

We define new inertial coordinates{
T+ = arctan (t+), −π/2 < T+ < π/2
T− = arctan (t−), −π/2 < T− < π/2, T− ≤ T+

(3.7)

The Minkowski metric takes the form

ds2 = − 1
cos2 T+ cos2 T−

dT+dT−. (3.8)

Equation (3.8) defines a conformal transformation of the form (3.6) with Ω2(x) =
cos2(T+) cos2(T−). Since conformal diagrams care about the causal structure of the
spacetime, which is given by the light cones, we can forget about the conformal
factor Ω. Our new Minkowski metric has the form

d̃s2
= −dT+dT−. (3.9)
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FIGURE 3.2: The conformal diagram of Minkowski spacetime where
the red and blue curves being the constant t-slices and x-slices.

We can unfold the metric by using the following coordinates{
T = T+ + T−, −π ≤ T ≤ π

X = T+ − T−, −π ≤ X ≤ π.
(3.10)

The metric (3.10) takes the form

d̃s2
= −dT2 + dX2, (3.11)

again we threw away a factor of 4 since it does not affect the causal structure of the
Minkowski spacetime.

Another important feature of the conformal diagram is the lines of constant time
and constant space. These can be found by setting either t or x constant in equation
(3.10) where t± = t± x, see also Fig. 3.2

In Fig. 3.2, you can see the structure of the conformal diagram. In fact, Minkowski
spacetime is only the interior of the diagram; the boundaries are not part of the orig-
inal spacetime. The boundaries are referred to as conformal infinity, and the union
of the original spacetime with conformal infinity is the conformal compactification,
which is a maniflod with a boundary. The structure of the conformal diagram allows
us to subdivide conformal infinity into a few different regions:

i+ = future timelike infinity (T = π, X = 0)

i0 = spatial infinity (T = 0, X = π)

i− = past timelike infinity (T = −π, X = 0)
I+R/L = future null infinity (T = π − X, 0 < X < π)

I−R/L = past null infinity (T = −π + X, 0 < X < π),

where R/L means right and left, respectively.
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3.2 Quantum Field Theory in 2D Minkowski Spacetime

In this section we are going to add a free massless scalar field ϕ upon the Minkowski
spacetime. We will consider the Klein-Gordon Lagrangian

L = −1
2

ηµν∂µϕ∂νϕ, (3.12)

for a free massless field ϕ.
The equation of motion is the Klein-Gordon equation,

∂µ∂µϕ = 0. (3.13)

Its solution is of the form

ϕ(x0, x1) = H(ωx0) + G(ωx1), (3.14)

where H and G are arbitrary function and ω ∈ R, later on ω will be more constricted.
We can observe that this quantum field theory is also a conformal field theory.

In particular, a conformal transformation, cf. Appendix A, on equations (3.12) and
(3.13) gives the following

L = −1
2

Ω(x)ηµν∂µϕ∂νϕ (3.15)

Ω(x)∂µ∂µϕ = 0. (3.16)

Obviously, the solution of the equation of motion is unaffected by the conformal
transformation. This is true due to the fact that there are no interactions and the
field is massless. For that reason, our QFT is also an CFT.

For our Lagrange density (3.12), the conjugate momentum is

π = ϕ̇. (3.17)

It is not hard to write down solutions to equation (3.13). One good example is a
plane wave,

ϕ(xµ) = ϕ0eikµxµ
= ϕ0e−iωt+ikx, (3.18)

where the wave vector has components kµ = (ω, k) and the frequency must satisfy
ω = k.

The most general solution is constructed by a complete, orthonormal set of modes
in terms of which any solution may be expressed. To make sense of "orthonormal",
we need to define an inner product on the space of solutions to the equation (3.13).
Although the modes themselves are functions of spacetime, the appropriate inner
product can be expressed as an integral over a constant-time plane Σt,

(ϕ1, ϕ2) = −i
∫

Σt

(ϕ1∂tϕ
∗
2 − ϕ∗2 ∂tϕ1)dx. (3.19)

Applying this inner product (3.19) to two plane waves of different wave vectors
gives

(eikµ
1 xµ , eikν

2xν) = (ω2 + ω1)(2π)δ(k1 − k2), (3.20)

where we have used
∫

eikxdx = 2πδ(k). Thus, the inner product vanishes unless the
frequencies ω = k are equal for both modes. An orthonormal set of mode solutions
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is thus given by

fk(xµ) =
eikµxµ

(4πω)1/2 , (3.21)

so that
( fk1 , fk2) = δ(k1 − k2). (3.22)

Our strategy will be to insist that ω always be a positive number (since it is asso-
ciated with the energy of the field), and complete the set of modes by including the
complex conjugates f ∗k (xµ). The fk modes are said to be positive-frequency meaning
they satisfy

∂t fk = −iω fk, ω > 0, (3.23)

while the f ∗k modes are negative-frequency1, satisfying

∂t f ∗k = iω f ∗k , ω > 0. (3.24)

The complex conjugate modes are orthogonal to the original modes, ( fk1 , f ∗k2
) = 0,

and orthonormal with each other but with a negative norm, ( f ∗k1
, f ∗k2

) = −δ(k1− k2).
Together, the modes fk and f ∗k form a complete set, in terms of which we can expand
any solution to the equation (3.13).

To canonically quantize this theory, we promote our classical variables (the fields
and their conjugate momenta) to operators acting on a Hilbert space, and impose the
canonical commutation relations on equal-time surfaces:

[ϕ(t, x), ϕ(t, x′)] = 0, (3.25)
[π(t, x), π(t, x′)] = 0, (3.26)
[ϕ(t, x), π(t, x′)] = iδ(x− x′). (3.27)

We can expand the field operator ϕ(t, x) in terms of the modes (3.21). Denoting
the coefficients of the mode expansion of the field operator by α̂†

k and α̂†, we have

ϕ(t, x) =
∫

dk
[
âk fk(t, x) + â†

k f ∗k (t, x)
]
. (3.28)

We observe that distinguishing between positive and negative frequencies, allows
for an interpretation of their coefficients in the mode expansion of ϕ as annihilation
and creation operators. Plugging this expansion into (3.25), (3.26) and (5.16) we find
that the operators â†

k and â† obey commutation relations

[â†
k , âk′ ] = 0,

[â†
k , â†

k′ ] = 0,

[â†
k , â†

k′ ] = δ(k− k′).

We can use the operators â†
k and â† to define a basis for the Hilbert space. There

will be a single vacuum state |0⟩, characterized by the fact that it is annihilated by
each âk,

âk|0⟩ = 0, for all k. (3.29)

1Be careful; these modes are called negative-frequency even though ω > 0, because the time deriva-
tive pulls down a factor +iω rather than −iω.
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A state with ni excitations of various momenta ki would be

|n1, n2, ..., nj⟩ =
1√

n1!n2! · · · nj!

(
â†

k1

)n1(
â†

k2

)n2
· · ·
(

â†
k j

)nj
|0⟩. (3.30)

We can define a number operator for each k,

n̂k = â†
k âk, (3.31)

which obeys
n̂ki |n1, n2, ...ni, ..., nj⟩ = ni|n1, n2, ...ni, ..., nj⟩. (3.32)

The states that are eigenstates of the number operators form a basis for the entire
Hilbert space, known as the Fock basis; the space constructed from this basis is
often called "Fock space", but of course it is just the original Hilbert space.

3.2.1 Bogolubov2 Transformation

We will always be able to find a set of solutions fi(x) to equation (3.13) that are
orthonormal,

( fi, f j) = δij, (3.33)

and corresponding conjugate modes with negative norm,

( f ∗i , f ∗j ) = −δij. (3.34)

The index i may be continuous or discrete; we will adopt the discrete case for the
sake of clarity. We may expand our field as

ϕ = ∑
i

(
âi fi + â†

i f ∗i
)
, (3.35)

since the modes can be chosen to be a complete set. The coefficients âi and â†
i have

the familiar commutation relations

[âi, âj] = 0,

[â†
i , â†

j ] = 0,

[âi, â†
j = δij.

There is also a vacuum state |0 f ⟩ that is annihilated by all the annihilation operators,

âi|0 f ⟩ = 0, for all i. (3.36)

As in the previous section, for this vacuum state we can define an entire Fock basis
for the Hilbert space. A state with ni excitations is created by repeated action by â†

i ,

|ni⟩ =
1√
ni!

(
âi
)ni |0 f ⟩, (3.37)

and likewise for states with different kind of excitations.
2Nikolay Nikolayevich Bogolyubov, also transliterated as Bogoliubov and Bogolubov, was a Soviet,

Ukrainian and Russian mathematician and theoretical physicist known for a significant contribution
to quantum field theory, classical and quantum statistical mechanics, and the theory of dynamical
systems; he was the recipient of the 1992 Dirac Medal [66].
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The basis modes fi(xµ) are highly nonunique. There are other choices we could
have made. Consider an alternative set of modes gi(xµ) with all of the properties that
our original modes possessed. They, also, form a complete basis that we expand our
field operator,

ϕ = ∑
i

(
b̂igi + b̂†

i g∗i
)
. (3.38)

The annihilation and creation operators b̂i and b̂†
i have commutation relations

[b̂i, b̂j] = 0, (3.39)

[b̂†
i , b̂†

j ] = 0, (3.40)

[b̂i, b̂†
j ] = δij. (3.41)

There will be again a vacuum state |0g⟩ that is annihilated by all the annihilation
operators,

b̂i|0g⟩ = 0, for all i. (3.42)

The transformation from one set of bases modes into another is known as a Bo-
golubov transformation,

gi = ∑
j

(
αij f j + βij f ∗j

)
, (3.43)

fi = ∑
j

(
α∗jigj − β jig∗j

)
, (3.44)

where the matrices αij and βij that are implementing the transformation are known
as Bogolubov coefficients. Using the orthonormality of the mode functions, they can
be expressed as

αij = (gi, f j), (3.45)

βij = −(gi, f ∗j ), (3.46)

and they satisfy their own normalization conditions,

∑
j

(
αikα∗jk − βikβ∗jk

)
= δij, (3.47)

∑
j

(
αikβ jk − βikαjk

)
= 0. (3.48)

The Bogolubov coefficients can be also used to transform between the operators

âi = ∑
j

(
αijb̂j + β∗ji b̂

†
j
)
, (3.49)

b̂i = ∑
j

(
α∗ij â

j − β∗ij â
†
j
)
. (3.50)

Now imagine that the system is in the f -vacuum |0 f ⟩, in which no f -particles
would be observed; we would like to know how many particles are observed by an
observer using the g-modes. We therefore calculate the expectation value of the g
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number operator, equation (3.31) in the f -vacuum

⟨0 f |n̂gi|0 f ⟩ = ⟨0 f |b†
i bi|0 f ⟩

= ⟨0 f |∑
jk

(
αij â† − βij âj

)(
α∗ik âk − β∗ik â†

k
)
|0 f ⟩

= ∑
jk
(−βij)(−β∗ik)⟨0 f |âj â†

k |0 f ⟩

= ∑
jk

βijβ
∗
ik⟨0 f |

(
â†

k âj + δjk|0 f ⟩

= ∑
jk

βijβ
∗
ikδjk⟨0 f |0 f ⟩

= ∑
j

βijβ
∗
ij.

Thus the number of g-particles in the f -vacuum can be expressed in terms of the
Bogolubov coefficients as

⟨0 f |n̂gi|0 f ⟩ = ∑
j
|βij|2. (3.51)

The index j may be continuous or discrete; we adopt notation appropriate to the
discrete case but the same results hold true for the continuous one, i.e. ∑j →

∫
dj.

The fact that the g-Fock space has a different choice of ’time’ coordinate means
it has a different choice of ’energy’ and therefore a different notion of ’particle’ and
’vacuum’:

time coordinate↔ energy↔ particle↔ vacuum. (3.52)

The ambiguity comes from the fact that energy is observer dependent. The energy
is the expecation value of the Hamiltonian; and the Hamiltonian is the operator that
generates time evolution

i
h̄
[H, O] = ∂tO. (3.53)

Therefore the Hamiltonian depends on a choice of time t. Different choices of this
coordinate correspond to different choices of Hamiltonian, and therefore different
notions of positive energy, and therefore different notions of vacuum state.

One last thing that we need for the upcoming sections is how our Fock space
basis behaves under Poincaré coordinate transformations (3.3). The time derivative
of our mode functions (3.21) in the tilde-frame is

∂t̃ fk =
∂xµ

∂t̃
∂µ fk

= γ(−iω) fk + γu(ik) fk

= −iω̃ fk,

where ω̃ = γω − γuk is simply the frequency in the tilde-frame. Clearly, then, a
state describing a collection of particles with certain momenta is transformed into
a state describing the same particles, but with boosted momenta. Thus, the total
number operator in the two frames will coincide, and in particular the vacuum state
will coincide.
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3.2.2 Vacuum Coordinates

It is now obvious that we have the freedom to choose between different sets of solu-
tions in the Klein-Gordon equation (3.13). These solutions provides as with a set of
modes, with which we can expand solutions to the Klein-Gordon equation in a flat
two-dimensional space-time. The coefficients of the modes in the expansion of the
Klein-Gordon solution are used to define the vacuum state. Although the Hilbert
space for the theory is the same in either set of solutions, its interpretation as a Fock
space will be different; in particular, the vacuum states will be different.

The usual set of solutions arises in inertial coordinates t± = t± x and it defines
the Minkowski vacuum |0M⟩, satisfying

âk|0M⟩ = 0, for all k. (3.54)

Let’s examine a set of coordinates that will be useful later on for the mirror toy
model. Apply a conformal transformation in the inertial coordinates of the form

t− → t̃−(t−), (3.55)
t+ → t̃+(t+). (3.56)

In these new coordinates the two dimensional Minkowski space-time metric (3.1)
takes the form

ds2 = −e2ρdt̃+dt̃−, ρ = −1
2

log ∂+ t̃+∂− t̃−. (3.57)

The conformal factor of the transformation is Ω = eρ.
So far, so good. These new coordinates will lead to a different set of solutions

of the Klein-Gordon equation and as a result a new set of modes. As previously
stated, we can expand the field operator ϕ in terms of these modes, and interpret
the operator coefficients as creation and annihilation operators. By doing this, we
get a different representation of the same Hilbert space and a different Fock space;
in particular, the vacuum states will be different. The new Minkowski vacuum |0̃M⟩,
satisfies

ˆ̃ak|0̃M⟩ = 0. (3.58)

3.3 Toy-model of Cosmological Expansion

Our toy model for cosmological expansion consists of a massless scalar field upon
the 2D Minkowski spacetime with a boundary. In particular, we are interesting in
studying 2D conformal field theory with a moving mirror. This section is based on
reference [1]; see [2] for a complete overview of moving mirrors.

In a typical moving mirror setup, considering the 2D Minkowski spacetime de-
fined by equation (3.1)

ds2 = −dt2 + dx2 = −dt+dt−, with t± = t± x, (3.59)

one initially places a mirror,which is the boundary ∂Σ, at x = 0, so that the physical
space Σ is given by x > 0, see Fig (3.3).

Next, the location of the mirror moves according to x = Z(t), as sketched in the
left picture in Fig. (3.4). The physical picture of our spacetime consists of moving
modes that begin from the past null infinity I−R , reflect upon the mirror and end up
propagating to the future null infinity I+R .



30 Chapter 3. Moving Mirrors

FIGURE 3.3: Minkowski spacetime with a static mirror located at x =
0.

Although we are going to choose a specific trajectory for the moving mirror
later on, simplifications occur with mapping the original configuration to the simple
setup of a boundary 2D conformal field theory with a static mirror by employing
conformal transformations, see right picture in Fig. (3.4).

We start from a vacuum state in the static mirror tilde-coordinates, in 2D Minkowski
with

ds2 = −dt̃2 + dx̃2 = −dt̃+dt̃−, t̃± = t̃± x̃, (3.60)

where t̃+,t̃− denote advanced and retarded (null) vacuum coordinates on I−R ,I+R ,
respectively. The static mirror as the boundary ∂Σ is a timelike straight line located
at x̃ = 0, i.e., t̃− = t̃+. In ssec. 3.2.2 we saw that the vacuum coordinates (t+, t−)
and (t̃+, t̃−) could be related by a conformal transformation. Assuming that in this
particular case the coordinates are related by a chiral conformal transformation as
follows

t̃− = p(t−), t̃+ = q(t+) = t+, (3.61)

one can also map the static mirror with t̃− = t̃+ to a moving mirror at x = Z(t) by
using the reflection boundary condition

t+ = p(t−), (3.62)

FIGURE 3.4: Caption
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or

t(t−) =
p(t−) + t−

2
, (3.63)

x(t−) = Z(t−) =
p(t−)− t−

2
. (3.64)

Using equation (3.57) and (3.62) it is straight forward to find that the metric, in
vacuum coordinates, takes the form

ds2 = −e2ρdt̃−dt+, ρ = −1
2

log ∂− t̃− = −1
2

log ∂−p(t−). (3.65)

Since the state in (t̃+, t̃−) corresponds to the vacuum state, we would have a
vanishing stress-energy tensor T+̃+̃ = T−̃−̃ = 0. Therefore after performing the con-
formal transformation of equation (3.61), we can evaluate the energy flux in terms
of the Schwarzian derivative. Namely, using equations (A.30)3 and (A.31) from Ap-
pendix A we find

T−− =
(dt̃−

dt−
)

T−̃−̃ +
1

2π

c
12
{t̃−, t−} (3.66)

=
c

24π

(
3
2

( p
′′
(t−)

p′(t−)

)2
− p

′′′
(t−)

p′(t−)

)
, (3.67)

where c denotes the central charge of the CFT we are intersted in and the prime
corresponds to the (partial) derivative with respect to t−. It is clear that the non-
vanishing energy flux is completely determined by the mapping function p(t−), i.e.,
by the trajectory of the mirror.

A better suited form of equation (3.67) for the moving mirror model is obtained
by using equation (3.65) and the identity e−ρ∂2

−eρ = ∂2
−ρ + (∂−ρ)2 to get

T−− =
c

24π
e−ρ∂2

−eρ. (3.68)

3.3.1 Entanglement Entropy in Moving Mirrors

An important quantity for measuring the spacetime expansion of our toy-model is
entanglement entropy; see [68, 7]. In sec. 2.2 we have discussed the concept of
entanglement entropy, and evaluated it for finite intervals relative to the vacuum
state of conformal field theories in 1 + 1 dimensions. Since the high-energy modes
responsible for the divergence are not easily excited, however, we might expect that
the divergent piece of the entanglement entropy will not change if we evaluate it
relative to some other low-energy state. This suggests that the difference between
the entanglement entropy of a given state and that of the vacuum is a finite quantity
characterizing an interesting physical property of the state.

To an observer far to the right of the mirror, the moving mirror manifests itself
as a change in the radiation field compared to the case of a stationary mirror. Thus
each mirror trajectory corresponds to a state. It is natural to identify the stationary
mirror with the vacuum.

Let us use this procedure to calculate the entanglement entropy as seen by a dis-
tant observer. Our observer will have access to a finite interval [t̃−1 , t̃−2 ] upon the null

3There is an extra rescaling factor 1/2π which helps the calculations that concern moving mirrors.
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FIGURE 3.5: The green field modes reflect upon the blue mirror trajec-
tory and arrive at the region [t̃−1 , t̃−2 ]. We illustrated only the bound-
ary green modes of the interval, there are also in-between modes that
arrive at [t̃−1 , t̃−2 ]. The quantum state on the interval [t̃−1 , t̃−2 ] is equiva-

lent to a state defined upon the red spacelike interval.

future infinity I+R , which we will call it A. This interval is light-like so the mate-
rial observer can not choose it as her or his world line; nevertheless it is possible to
monitor a null interval [t̃−1 , t̃−2 ] by appropriate organization of the measuring appa-
ratus, see ssec. 2.1.4. For right-moving modes, as we consider, it is only necessary to
monitor a surface that intersected by the same light-rays; this surface can be chosen
spacelike or even at a fixed time, see Fig. (3.5).

Applying equation (2.44) we should take c̄ = 0 since we only consider one set of
modes. In this case, the entanglement entropy takes the form

Sent(t−) =
c
6

log
t̃−2 − t̃−1

ϵ̃
. (3.69)

It is natural for the observer to choose the cutoff at the ends of the interval sym-
metrically as seen in her or his coordinate system. In our case that is

ϵ̃ = ∂− t̃−(t−)ϵ. (3.70)

This choice corresponds to an asymmetric choice of cutoff in the tilde-coordinate
system, where the mirror is stationary. The expression of equation (3.69) for the
entropy in the vacuum state is valid in the coordinate system where the mirror is
stationary. For an asymmetric choice of smearing we can use the fact that ϵ̃ =

√
ϵ̃1ϵ̃2.

Plugging into equation (3.69) and using equation (3.62), we find

Sent(t−) =
c

12
log

(t̃−2 − t̃−1 )
2

ϵ̃1ϵ̃2
=

c
12

log
(p(t−2 )− p(t−1 ))

2

∂−p(t−1 )∂−p(t−2 )ϵ2
. (3.71)



3.3. Toy-model of Cosmological Expansion 33

When expressed in terms of the new (t̃−, t̃+) vacuum coordinates, the Minkowski
spacetime metric takes the form of equation (3.65) where

ρ = −1
2

log ∂− t̃− = −1
2

log ∂−p(t−). (3.72)

In terms of this metric, the expression for the entropy becomes

Sent =
c
6
(ρ1 + ρ2) +

c
12

log
(p(t−2 )− p(t−1 ))

2

ϵ2 . (3.73)

Clearly the entropy of the system is infinite in the limit ϵ→ 0.
However, the observer would find this infinity even if the mirror were not mov-

ing at all, i.e. if observation were made in vacuum. It is therefore natural to define
the renormalized version of entanglement entropy to be

Sren = Sent − Sent|vac, (3.74)

where Sent|vac is the entropy expected for a stationary mirror, that is, for t̃− = p(t−) =
t−. The renormalized entropy Sren is

Sren =
c
6
(ρ1 + ρ2) +

c
12

log
(p(t−2 )− p(t−1 ))

2

(t−2 − t−1 )2
, (3.75)

and it is independent of the cutoff ϵ, and in particular it is finite as ϵ → 0. This is
the physical entropy. It is a property of the state of the system, which expresses the
information content of the state.

Remark: A useful case is when an observer is measuring the entanglement en-
tropy in a semi-infinite line (−∞, t̃−(t−)], see Fig (3.6) and [7].

This is characterized by the entanglement entropy of the portions of the quantum
state on I+R before and after t̃−, and as an extrapolation of the fact that t̃−(t−) we will
often say before and after t−. This set up corresponds to taking the limit t−1 → −∞
and relabelling t−2 7→ t− in the equation (3.75) of the renormalized entropy. By
imposing an extra assumption of the form ∂−p(t−) → 1 as t− → −∞, it is easy to
see that,

lim
t−1 →−∞

c
12

log
(p(t−)− p(t−1 ))

2

(t− − t−1 )2
= lim

t−1 →−∞

c
6

log
p(t−1 )

t−1
= lim

t−1 →−∞

c
6

log ∂−p(t−1 ) = 0,

lim
t−1 →−∞

ρ(t−1 ) = lim
t−1 →−∞

(
− 1

2
log ∂−p(t−1 )

)
= 0,

lim
t−1 →−∞

Sren =
c
6

ρ(t−), (3.76)

where in the last equality of the first equation we used the l’Hospital’s limit rule(ref).
The physical meaning of our assumption ∂−p(t−) → 1 as t− → −∞ is that the

moving mirror is initially located at the past timelike infinity i−. This can be seen in
the line element on the moving mirror. Using equations (3.60),(3.62) and (3.63) we
find

ds2∣∣
Mirror = −∂−p(t−)dt−2 = −∂−p(t−)

( 2
∂−p(t−) + 1

)2
dt2, (3.77)

which simply implies that, in general, the moving mirror is timelike when ∂−p(t−) >
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FIGURE 3.6: Every mode that reflects upon the mirror and arrives
at (−∞, t̃−] belongs to the quantum state on the semi-infite interval.
We illustrated with green colour only the last mode that belongs in
this state. Again, the quantum state is equally defined in any semi-
infinite spacelike interval with one point being the intersection point
with the right green moving mode and the other point being the right

spacelike infinity.

0 and by taking the limit of t− → −∞ the mirror is placed at the past timelike in-
finity i−. This is the setup that we are going to use later on a specific application of
moving mirrors.

3.3.2 Direct Analysis of Massless Free Scalar CFT

In the present subsection, we discuss the explicit quantization of a free massless
scalar field ϕ in 2D Minkowski spacetime with a moving mirror; see [1]. We urge ther
reader to revise ssec. 3.2 where we have set the basics of scalar field quantization.
The field equation (3.13) reads

∂2ϕ

∂t−∂t+
= 0. (3.78)

The scalar field ϕ shall satisfy the reflection boundary condition (3.62), i.e.

ϕ
(
t, Z(t)

)
= 0, (3.79)

where Z(t) denotes the moving boundary of the spatial direction.
A complete set of positive frequency modes, i.e. solutions to (3.78) and (3.79), is

given by
ϕω = H(ωt+) + G(ωt−) (3.80)

where ω = k, with H and G being arbitrary functions, cf. equation (3.14). More
specifically, we may write the incoming mode as

ϕin
ω′ = i(4πω′)−1/2(e−iω′t+ − e−iω′p(t−)). (3.81)

You can check that the equation for the boundary condition of the field (3.79) is
satisfied with the use of the reflection boundary condition (3.62). Intuitively, the
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incoming mode is a combination of a standard incoming Minkowski mode e−iω′t+

from I−R and a complicated one e−iω′p(t−) due to the reflection upon the moving
mirror. An incoming mode function describing Minkowski spacetime with a static
boundary would correspond to p(t−) = t−, hence

ϕin
ω′(t, x) = (πω′)−1/2 sin (ω′x)e−iω′t. (3.82)

The field ϕ can be expanded in terms of the incoming mode,

ϕ =
∫ ∞

0
dω′

[
aω′ϕ

in
ω′ + a†

ω′ϕ
in∗
ω′
]
, (3.83)

where aω′ and a†
ω′ are the standard annihilation and creation operators, such that

a|0⟩in = 0 and |0⟩in is the incoming vacuum state at I−R .
Alternatively, the outgoing mode can be expressed as

ϕout
ω = i(4πω)−1/2(e−iω f (t+) − e−iωt−), (3.84)

where f ≡ p−1. Again intuitively the outside mode is a combination of a regular
Minkowski mode e−iωt− on I+R and a complicated one e−iω f (t+) due to reflection
upon a moving mirror with an inverse trajectory.

Similarly, the field ϕ can also be expanded in terms of the outgoing mode

ϕ =
∫ ∞

0
dω
[
bωϕout

ω + b†
ω′ϕ

out∗
ω

]
, (3.85)

where bω and b†
ω correspond to the annihilation and creation operators defined with

respect to the outgoing vacuum state |0⟩out at I+R , such that b|0⟩out = 0.
One can expand the positive frequency modes ϕout

ω at I+R in terms of the positive
frequency modes ϕin

ω′ at I−R and vice versa, means

ϕout
ω =

∫
dω′

[
α∗ωω′ϕ

in
ω′ − βωω′ϕ

in∗
ω′
]
, (3.86)

ϕin
ω′ =

∫
dω
[
α∗ωω′ϕ

out
ω + βωω′ϕ

out∗
ω

]
, (3.87)

where
αωω′ = (ϕout

ω , ϕin
ω′), βωω′ = −(ϕout

ω , ϕin∗
ω′ ), (3.88)

are the corresponding Bogoliubov coefficients, cf. equations (3.45), (3.46). The scalar
product in equation (3.88) is defined as

(ϕ1, ϕ2) = −i
∫

Σ
(ϕ1∂µϕ∗2 − ϕ∗2 ∂µϕ1)dΣµ, (3.89)

where Σ is a Cauchy surface. The mode functions are orthonormal with respect to
this scalar product,

(ϕω, ϕω′) = δ(ω−ω′), (ϕω, ϕ∗ω′) = 0. (3.90)

The number of particles that are detected by an observer due to the motion of the
moving mirror can be found by using equation (3.31) for the continuum case

⟨0in|n̂out|0in⟩ =
∫

ω′
dω′|βωω′ |2. (3.91)
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Remark: In this section we used the Heisenberg picture of quantum field theory. We
took the state to be a solution to the equation of motion/ the field equation for all
times. There was clearly a set of states that looked like energy eigenstates at early
times, although they don’t look that way in the future; we called such states the "in
states". There was also a separate set of states that looked like energy eigenstates at
late times, correspondingly called "out states". Both sets of states exist at all times,
but they looked like energy eigenstates only in the appropriate asymptotic regime.

The Heisenberg picture will be used only in the calculation of the average num-
ber of particles due to the moving mirrors. Elsewhere, we will use the Schrödinger
picture where there is a time dependence and evolution of each state.

3.3.3 Receding Mirror

It is already obvious that our toy model consists of a free scalar, upon the Minkowski
spacetime, in the presence of a mirror. For our chosen trajectory of the moving mirror
there will be no I±L . We take the incoming state to be the vacuum on I−R , cf. ssec.
2.1.4 and 2.1.5, and the mirror to be initially stationary; then the mirror accelerates
away from infinity for a retarded time L on I+R , and then moves inertially. This
models an expanding universe because the volume of spacetime is increasing. The
mirror trajectory is described by the reflection boundary condition, equation (3.62),
with

p(t−) = t−, t− < 0, (3.92)

=
1

2πTH

(
1− e−2πTH t−), 0 < t− < L, (3.93)

= e−2πTH L(t− − L
)
+

1
2πTH

(
1− e−2πTH L), t− > L. (3.94)

Note that the final trajectory emerges from the initial one under a Poincaré transfor-
mation, i.e. equation (3.4), with

u =
1− e4πTH L

1 + e4πTH L ,

t−0 =
1

2πTH

(
1− e−2πTH L)− Le−2πTH L.

The outgoing state is the vacuum state on I+R with respect to the vacuum coordinates
(t+, t̃−). In Fig. (3.7), you can see an example of the mirror trajectory on the Penrose
diagram.

We denote the initial state of the full system at null past infinity I−R to be

ρ = |0in⟩⟨0in|, (3.95)

which is the vacuum in Minkowski spacetime with a boundary. In the case of a
static mirror in (t+, t−)-coordinates, the modes of the vacuum state at I−R propagate,
reflect upon the mirror and arrive at I+R unchanged. Let us divide the null infinity
I+R into a region A prior to a fixed retarded time t− and a region B later than t−. The
reduced density matrix in region A is

ρA ≡ trBρ (3.96)
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FIGURE 3.7: Mirror trajectory depicted by the blue curve for TH =
1/2π and L = 1.

As argued before ssec. 2.1.4, a state that is defined upon a null surface is equiv-
alent to a state defined upon a spacelike surface in which their points are causally
connected. As a result, the state in the region A on null infinity I+R is equivalent to
a state on a constant-time surface. The time-slice that we choose could be arbitrary,
see Fig. 3.6 for an example.

The path integral representation of ρA
4, equation (3.96), is

⟨ϕ2|ρA|ϕ1⟩ = ∑̃
ϕ

⟨ϕ̃, ϕ2|0⟩⟨0|ϕ1, ϕ̃⟩

= . (3.97)

The upper half of this diagram corresponds to the transition amplitude ∑ϕ̃⟨ϕ̃, ϕ2|0⟩
and the lower half to the transition amplitude ⟨0|ϕ1, ϕ̃⟩. The trace sums over fields
in region B, which glues together slits in the path integral, so in fact

⟨ϕ2|ρA|ϕ1⟩ = . (3.98)

4In Euclidean spacetime signature but one could easily Wick rotate back to Minkowskian.
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Now comes the key observation: we can re-slice this path integral by going to
the new vacuum coordinates (t+, t̃−), and calling t̃− ’time’. Let H̃ be the operator
that generates t̃−-evolution. That is,

1
h̄
[H̃, O] =

∂O
∂t̃−

(3.99)

for any operator O. In the intermediate accelerating phase, t̃− is invariant under
t− → t− + i

TH
. Then we can translate this same path integral back into operator

language in a different way. That is, the path integral (3.98) is equal to ⟨ϕ2|e−
1

TH H̃ |ϕ1⟩,
cf. ssec. 2.1.8. Therefore

ρA = e−
1

TH
H̃ (3.100)

This look just like a thermal state at temperature TH
5. Inertial detectors do not move

along lines of constant t̃− − t+ and so will detect particles. Outside the time period
0 < t− < L the mirror is inertial and there is no detection of particles at infinity.

A way to see particle creation due to the acceleration of the mirror is by examin-
ing the entanglement entropy Sent(t−) of the state ρA. In vacuum coordinates (t+, t̃−)
the Minkowskian metric takes the form, see equation (3.65),

ds2 = −e2ρdt̃−dt+ ρ = −1
2

log ∂− ˜t−. (3.101)

The entanglement entropy of region A is given by equation (3.76)

Sent[ρA](t−) =
c
6

ρ(t−), (3.102)

where ρ(t−) is given in equation (3.101). For a free scalar field c = 1. We find

Sent[ρA] = 0, t− < 0 (3.103)

=
πcTHt−

6
, 0 < t− < L, (3.104)

=
πcTH L

6
, t− > L. (3.105)

This can be compared to the formula for the stress-energy tensor and the expec-
tation value of the particle number operator.

For the stress-energy tensor (3.68) we find

T−− =
c

12π
e−ρ∂2

−eρ = 0, t− < 0, (3.106)

=
cπT2

H
12

, 0 < t− < L, (3.107)

= 0, t− > L, (3.108)

which is thermal during the acceleration phase.
To compute the expectation value of the number operator (3.51) we need to cal-

culate the Bogoliubov coefficient βωω′ (3.88). The calculation of βω′ω is done on I+R .

5In fact, H̃ is a Hamiltonian like operator since we are in the massless case. One can easily check
that the acceleration is invariant under t → t + i

TH
. So, if one is pedantic the same reasoning applies

for the Hamiltonian operator H that generates t-evolution.
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Using the equations (3.88,3.89) we get

βω′ω = i
∫ ∞

−∞
dt−
(
ϕout

ω ∂−ϕin
ω′ − ϕin

ω′∂−ϕout
ω

)
= −2i

∫ ∞

−∞
dt−ϕin

ω′∂−ϕout
ω , (3.109)

where we integrated by parts and used the fact that modes vanish at infinite dis-
tances. The modes take the form, see equations (3.81,3.84),

ϕin
ω′ = i(4πω′)−

1
2 (e−iω′t+ − e−iω′p(t−)), ϕout

ω = i(4πω)−
1
2 (e−iω f (t+) − e−iωt−).

(3.110)
Plugging into (3.109) yields,

βω′ω = − 1
2π

( ω

ω′

) 1
2
∫ ∞

−∞
dt−e−iωt−−iω′p(t−), (3.111)

where we used the identity δ(ω) =
∫ ∞
−∞ dxe−iωx; see [25] for an overview of beta

coefficients for moving mirror trajectories.
For our inertial trajectories (3.92,3.94) the Bogoliubov coefficient is vanishing

since

βω′ω|3.92 = − 1
2π

( ω

ω′

) 1
2
∫ ∞

−∞
dt−e−iωt−−iω′t− = − 1

2π

( ω

ω′

) 1
2
δ(ω′ + ω) = 0, (3.112)

βω′ω|3.94 = − 1
2π

( ω

ω′

) 1
2
∫ ∞

−∞
dt−e−iωt−−iω′e−2πTH Lt−e+iω′Le−2πTL− iω′

2πTH
(1−e−2πTL)

= − 1
2π

( ω

ω′

) 1
2
e+iω′Le−2πTL− iω′

2πTH
(1−e−2πTL)

δ(ω′e−2πTH L + ω) = 0, (3.113)

where again we used the identity δ(ω + ω′) =
∫ ∞
−∞ dxe−i(ω+ω′)x. It is to be expected

that there is no particle creation in the non-accelerating phases of our trajectory since
the Minkowski vacuum in invariant under Poincaré transformations, cf. end of ssec.
3.2.1 and the stress-energy tensor (3.106,3.108) was zero. For the intermediate accel-
erating phase (3.93), we anticipate the Bogoliubov coefficient to correspond with the
black-body radiation spectrum. We already have hints towards this direction from
the value of the stress-energy tensor (3.107) that is proportional to T2

H. In addition,
the path integral derivation of the state (3.96) utilized only the symmetries of our
spacetime and we ended up with a thermal state (3.100) with temperature TH. The
calculation of the Bogoliobuv coefficient is as follows 6,

βω′ω|3.93 = − 1
2π

( ω

ω′

) 1
2
∫ ∞

−∞
dt−e−iωt−− iω′

2πTH

(
1−e−2πTH t−

)
= − 1

2π

( ω

ω′

) 1
2
e
−iω′
2πTH

∫ ∞

−∞
dt−e−iωt−+ iω′

2πTH
e−2πTH t−

, (3.114)

using the substitution et = − iω′
2πTH

e−2πTH t− → t = log
(
− iω′

2πTH

)
− 2πTHt−, where

dt = −2πTHdt−, gives

βω′ω|3.93 = − 1
4π2TH

( ω

ω′

) 1
2
e
−iω′
2πTH e−

iω
2πTH

log
(
−iω

2πTH

) ∫ ∞

−∞
dt−e

iω
2πTH

t−et
, (3.115)

6Actually, the beta coefficient βω′ω |3.93 is the ‘Right’ bogolubov coefficient, in the Carlitz-Willey
construction [16].
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where we now use Γ(z) =
∫ ∞
−∞ dtezt−et

and − iω
2πTH

log
( −iω

2πTH

)
= −i

(
ω

2πTH

)2 − ω
4TH

to
obtain

βω′ω|3.93 = − 1
4π2TH

( ω

ω′

) 1
2
e−i
(

ω
2πTH

)2

e−
ω

4TH Γ
(

i
ω

2πTH

)
. (3.116)

With the use of Bogoliubov coefficient we can calculate the expectation value of the
number of particles (3.91) that are created. This is

⟨0in|n̂out|0in⟩ = 0, t− < 0,

=
∫

ω′
dω′

1
4π2THω′

1

e
ω

TH − 1
, 0 < t− < L,

= 0, t− > L.

As you can see, in the intermediate accelerating phase there is particle creation. It
precisely matches with the well known black-body radiation spectrum as obtained
by Hawking [38].

Therefore the entanglement entropy is zero prior to acceleration, increases as
expected for thermal radiation/particle production at temperature TH during accel-
eration, and then remains constant afterward. The same pattern is followed by the
stress-energy tensor and the expectation value of the number operator until t− = L.
After t− = L both of them vanish. As we will see in a moment, this is due to the
fact that there is no involvement of a UV-cutoff in the calculation of these physical
quantities and the fact that the entropy formula gather information from the initial
moment t− → ∞ until t− while the other two quantities are calculated in a given t−

regardless of the past.
Perhaps one should have anticipated entropy to be trivial/zero in the limit of the

entanglement point t− going to future timelike infinity i+. At the end of the day, our
toy-model consists of the Minkowski spacetime with a boundary and the quantum
field theories’ rules, where a pure quantum vacuum state at past null infinity I−R
propagates in time, reflects upon the mirror and arrives at the future null infinity
I+R . There is no reason for information loss. The state on I+R should be pure and
indeed it is manifestly pure.

Recall from ssec. 3.3.1 that in the calculation for entanglement entropy we regu-
lated for the UV divergences. In particular, we threw away the entanglement across
t− of modes with proper wavelength shorter than the UV cutoff. However during
acceleration, the wavelengths above the cutoff from I−R reflect upon the mirror and
get red-shifted into the IR below the cutoff before they reach I+R . After the end of the
acceleration phase, there is a total residual Doppler red-shift for wavelengths above
the cutoff in I−R to wavelengths below the cutoff in I+R . Hence some wavelengths on
I−R which do not contribute to the entanglement on I+R in the early period do con-
tribute in the late period because the cutoff is shifted. This can be seen from equation
(3.70) in the region of the trajectory of the mirror (3.94) where t− approaches future
timelike infinity

ϵ̃ =
1

e2πTH L ϵ. (3.117)

Besides cosmological expansion, these phenomenon is potentially relevant to the
black hole information paradox [47]. This ambiguity arises due to the ill-defined
nature of entropy and its pathological divergences which need to be nourished.
Surprisingly, an experimentalist stationed at I+R , uniformed of these subtleties will
never see the purity of the quantum state restored for any finite t− and will conclude
that information is destroyed.
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In our toy-model, the effective Hilbert space - composed of modes below the
cutoff- is larger on I+R than on I−R as a consequence of the expansion of the bulk
space and associated new degrees of freedom due to red-shifting. Hence there is no
effective unitary description no matter the choice of the UV cutoff. In the follow-
ing sections we will see that the map from the in to the out Hilbert space can be
effectively described by an isometry.
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Chapter 4

Cosmology

In this chapter we examine particular expanding cosmologies by utilizing entangle-
ment entropy. Again, our calculation of entropy includes a cutoff pointing us to an
effective field theory approach to the upcoming cosmological models. Our goal is to
explore the time evolution of the effective Hilbert space of certain spacetime regions
in these models.

The organization of the chapter goes as follows. In sec. 4.1 we calculate the
entanglement entropy in curved spacetimes. Next, in sec. 4.2 and sec. 4.3 we apply
the result of sec. 4.1 in a closed 1 + 1 and de Sitter cosmology, respectively.

4.1 Entanglement Entropy in Curved Spacetime

In ssec. 3.2.2 we saw that the vacuum state in Minkowski spacetime is defined with
respect to a given coordinate system. In moving mirrors we introduced a new null
coordinate t̃−(t−), and defined a vacuum relative to this new coordinate. In that
case the entanglement entropy of an interval [t̃−1 , t̃−2 ] is given by the equation (3.69).
This formula is true for a spacetime with a boundary where we only care about one
set of moving modes.

At this stage let us combine together the contributions to the entropy due to the
right-moving and left-moving modes and work with a spacetime without a bound-
ary. Our result will be based on the reference [27]. Suppose that the left moving
"vacuum" state is defined relative to the coordinate t̃+(t+). We consider a space-like
slice Σ, and a region [P2, P1] on this slice bounded on the left by the point (t̃+2 , t̃−2 )
and on the right by the point (t̃+1 , t̃−1 ). The quantum state upon [P2, P1] is equivalent
to the quantum state upon the union of the two null-intervals [t̃−1 , t̃−2 ] and [t̃+2 , t̃+1 ], as
shown in Fig. 4.1. The entanglement entropy on [P2, P1] is given by

Sent =
c
6

log
t̃−2 − t̃−1

ϵ̃−
+

c
6

log
t̃+1 − t̃+2

ϵ̃+
, (4.1)

where ϵ̃+, ϵ̃− are the cutoffs with respect to the new coordinates (t̃+, t̃−). As dis-
cussed in ssec. 3.3.1 equation (3.70), the cutoffs can be expressed in terms of the
original vacuum coordinates (t+, t−). Using an asymmetric choice of the cutoff
ϵ̃ =
√

ϵ̃1ϵ̃2 we get

ϵ̃−1 = ∂− t̃−(t−1 )ϵ
−, ϵ̃−2 = ∂− t̃2(t−2 ), ϵ− (4.2)

ϵ̃+1 = ∂+ t̃+(t+1 )ϵ
+, ϵ̃+2 = ∂+ t̃2(t+2 )ϵ

+. (4.3)
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FIGURE 4.1: The spacelike slice Σ is chosen to be at t = 0. The state
upon [P2, P1] is equivelant to the state on [t̃−1 , t̃−2 ]∪ [t̃

+
2 , t̃+1 ], since these

two are causally connected with left and right null rays, which are
depicted with green colour.

When the cutoff is expressed in (t+, t−) vacuum coordinates, the entanglement en-
tropy (4.1) becomes

Sent =
c

12
log

(t̃−2 − t̃−1 )
2

∂− t̃−1 ∂− t̃−2 ϵ−2 +
c

12
log

(t̃+2 − t̃+1 )
2

∂+ t̃+1 ∂+ t̃+2 ϵ+2
, (4.4)

where, e.g., ϵ− denotes the short-distance cutoff, in (t+, t−), on the wavelength of the
right-moving modes. By combining together the contributions of the right-movers
and the left-movers, we thus obtain an expression that is invariant under Lorentz
boosts, for the product ϵ−ϵ+ of the cutoffs on the right-moving and left-moving
modes is boost-invariant. This quantity is just (the square of) a proper length mea-
sured on the spacelike slice Σ.

When expressed in terms of the new (t̃−, t̃+) coordinates, the Minkowski space-
time metric is given by equation (3.57). In terms of this metric, the expression (4.4)
for the entropy becomes

Sent =
c
6
(ρ1 + ρ2) +

c
12

log
(t̃−2 − t̃−1 )

2

ϵ−2 +
c

12
log

(t̃+2 − t̃+1 )
2

ϵ+2 , (4.5)

where ρ = − 1
2 log ∂+ t̃+∂− t̃−.

This formula has the advantage that it can be applied to curved spacetime as
well. In curved spacetime, there is no global inertial frame. But we are free to intro-
duce coordinates (t̃+, t̃−), and to consider the vacuum state defined by these coordi-
nates. The metric (3.57) is called a conformal metric since it is a product of a scaling
factor and a flat metric, while the coordinates that describe this metric are called con-
formal coordinates. If the spacetime metric has the form of equation (3.57) in terms
of the (t̃+, t̃−)-coordinates, then equation (4.5) gives the entanglement entropy of a
system defined by a finite interval upon a spacelike slice. The cutoffs in equation
(4.5) are expressed in terms of the locally flat coordinates (t+, t−) at the endpoints of
the interval, for which the metric takes the form ds2 = −dt+dt−.
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We should also remark that, for a given vacuum state, the coordinates (t̃+, t̃−) are
not uniquely defined. We have the freedom to perform a Poincare SL(2, C) transfor-
mation on the coordinates without changing the vacuum, c.f. ssec. 3.2.1. It is easy to
check that equation (4.4) is Poincare-invariant. A Poincaré transformation (3.4) from
a coordinate system (t̃+, t̃−) to a coordinate system (t̃+ ′, t̃−′) takes the form{

t̃+ = 1−u√
1−u2 t̃+ ′ + t̃+0

′,

t̃− = 1+u√
1−u2 t̃−′ + t̃−0

′.
(4.6)

Applying equation (4.6) to the equation (4.4) of entanglement entropy we get

Sent =
c

12
log

(1+u)2

1−u2 (t̃−2
′ − t̃−1

′ + t̃−0
′ − t̃−0

′)2

(1+u)2

1−u2 ∂− t̃−1 ′∂− t̃−2 ′ϵ−
2

+
c

12
log

(1−u)2

1−u2 (t̃+2
′ − t̃+1

′ + t̃+0
′ − t̃+0

′)2

(1−u)2

1−u2 ∂+ t̃+1 ′∂+ t̃+2 ′ϵ+2

=
c

12
log

(t̃−2
′ − t̃−1

′+)2

∂− t̃−1 ′∂− t̃−2 ′ϵ−
2 +

c
12

log
(t̃+2
′ − t̃+1

′)2

∂+ t̃+1 ′∂+ t̃+2 ′ϵ+2

= S′ent,

which mean that entanglement entropy is SL(2, C)-invariant. As expected, then, the
conformal transformations that preserve the quantum state of the fields also pre-
serve our expression for the entanglement entropy for a finite interval.

4.2 Closed 1+1 Cosmology

Consider a free massless scalar field in a closed 1 + 1 cosmology in conformal coor-
dinates

ds2 = −R2(t̃)dt̃+dt̃−, t̃± = t̃± σ̃, σ̃ ∼ σ̃ + 2π. (4.7)

The radius R is an increasing function and goes to a constant in the far past, R(−∞) ≡
R−∞ = constant. Hence our cosmology is an expanding one, starting from a min-
imum radius which grows into the future, see Fig 4.2. The conformal coordinates
t̃± = t̃± σ̃ define a vacuum in which inertial detectors in the far past see no parti-
cles. A time-slice in our cosmology is a spacelike circle. We divide this circle in half
at points t̃+ − t̃− = 0, 2π which is σ̃ = 0, π. We define the upper half of the circle to
be region A and the lower half to be region B. We are interested in the entanglement
entropy between the states of these regions.

The metric (4.7) is of the conformal form (3.57) with

ρ = log R(t̃). (4.8)

The entanglement entropy is given by equation (4.5). For our region A in any
given time-slice it takes the form

Sent =
c
3

log R(t̃) +
c

12
log

π2

ϵ−2 +
c

12
log

π2

ϵ+2 (4.9)

As in the moving mirror case, c.f. ssec 3.3.1, in the limit of ϵ± → 0 the entropy is infi-
nite due to UV-divergences. To get rid of the divergences we define the renormalized
entanglement entropy to be

Sren = Sent − Sent|vac, (4.10)
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FIGURE 4.2: Expanding closed 1 + 1 cosmology. Our system A is de-
fined upon a time-slice as the upper half of the circle which is divided

at σ̃ = 0, π. The complementary is denoted by B.

where in the case the Sent|vac is the entropy in the far past, that is, for R(t) = R−∞.
That is

Sren =
c
3

log
R(t̃)
R−∞

. (4.11)

Hence, as the universe expands, the entanglement entropy grows. The interpreta-
tion of this phenomenon originates from the addition of new entangled degrees of
freedom which are redshifted below the cutoff due to the cosmological expansion.

4.3 de Sitter Space

de Sitter spacetime is the maximally symmetric spacetime of constant curvature. It
is a solution of the vacuum Einstein equations with a positive cosmological constant.
It is relevant for cosmological observations and not just a toy-model like our previ-
ous examples. There is evidence that the very early universe had a period of rapid
expansion, ’inflation’, well approximated by the de Sitter spacetime. Moreover, cur-
rently the tiny cosmological constant accounts for about 68% of the energy density of
the universe, and this fracton is growing as the universe continues to expand. This
means we are entering a second de Sitter phase. Below we will describe the basics of
de Sitter spacetime according to the lecture notes of M. Spradlin, A. Strominger and
A. Volovich [59].

4.3.1 Basics

Usually in GR we define manifolds intrinsically, not by embedding them in a higher
dimensional spacetime. But for de Sitter, the embedding is actually intuitive: 2-
dimensional de Sitter spacetime can be viewed as a timelike hyperbola, embedded
in 3-dimensional Minkowski spacetime R1,2. The metric in the embedding space
R1,D is

ds2
embed = −dX2

0 + dX2
1 + dX2

2 . (4.12)

de Sitter, with radius l, is the hypersurface defined by the equation

XµXµ = ℓ2. (4.13)

This is just a hyperbola. See Fig. 4.3 for an embedding of dS2 in R1,2
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FIGURE 4.3: dS2 viewed as a hyperbola in R1,2. The cross sections are
S1’s.

4.3.2 Global Coordinates

The cross-sections of the dS2 hyperbola (constant X0-slices) are S1 spheres. We can
put down global coordinates on the hyperbola by defining

X0 = ℓ sinh
τ

ℓ
, X1 = ℓω1 cosh

τ

ℓ
, X2 = lω2 cosh

τ

ℓ
, (4.14)

with −∞ < τ < ∞, where

ω1 = cos θ1, ω2 = sin θ1, θ1 ∈ [−π, π). (4.15)

This parametrization is designed so that plugging into the hyperbola equation (4.13)
automatically solves it. By computing the details we get

dX0 = cosh (τ/ℓ)dt,

dX1 = ℓdω1 cosh (τ/ℓ) + ω1 sinh (τ/ℓ)dt,

dX2 = ℓdω2 cosh (τ/ℓ) + ω2 sinh (τ/ℓ)dt.

It is clear that by plugging into the flat metric (4.12) we obtain the induced metric on
dS2

ds2 = −dτ2 + ℓ2 cosh
(τ

ℓ

)2
dθ2

1 . (4.16)

In these coordinates dS2 looks like a 1-sphere which starts out infinitely large at
τ → −∞, then shrinks to a minimal finite size at t = 0, then grows again to infinite
size as τ → ∞.

Relation to FRW
Recall that the FRW metric for any homogeneous, isotropic universe is

ds2
FRW = −dτ2 + α(τ)2dΣ2, (4.17)

where the spatial slices Σ are either open (hyperbolas), flat (R2), or closed (spheres).
Clearly de Sitter is an example of a closed FRW universe. The scale factor α(τ) =
ℓ cosh (τ/ℓ) is exponentially decreasing, reaches a minimum at τ = 0, α(0) = ℓ, then
expands exponentially into the future.

Analytic Continuation to the Sphere
dS2 is a Minkowski-signature version of the Euclidean sphere, S2. It is easy to see
that under

τ → iτ, Θ =
τ

ℓ
+

π

2
, (4.18)
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the metric (4.16) becomes

ds2
2−sphere = ℓ2(dΘ2 + sin2Θdθ1), (4.19)

with the help of the identities cosh ix = (eix + e−ix)/2 = cos x and cos (x− π
2 ) =

sin x. The shift by π/2 is there so that the metric on the sphere is written in the usual
way.

4.3.3 Conformal Coordinates

Now we want to draw an intrinsic picture of de Sitter, i.e., without an embedding
into a higher-dimensional spacetime. To capture the global properties of the space-
time we are going to use the Penrose diagram. Previously we saw that global de
Sitter in 2-dimensions can be viewed as a contracting-then-expanding 2-sphere on ei-
ther the Euclidean or Minkowskian signature. We foliate this 2-sphere by 1-spheres.
The form of the metric (4.16) is already favorable for that foliation due to the fact
that we are working in 2-dimensions. We will relabel θ1 to θ for the convenience of
the writer, so

ds2 = −dτ2 + ℓ2 cosh (τ/ℓ)2dθ. (4.20)

In the (τ, θ)-coordinates, null geodesics do not travel at 45◦. To draw the Penrose
diagram, aka the conformal diagram, we need a coordinate system that:

(i) covers the whole spacetime

(ii) makes masseless particles travel at 45◦

(iii) fits on the page.

Condition (i) is accomplished by the choice of global coordinates. To impose the
condition (ii) , we change coordinates t→ σ(τ), and require

−dτ2 + ℓ2 cosh (τ/ℓ)dθ2 = Ω(σ)[−dσ2 + dθ2]. (4.21)

The conformal factor Ω does not affect null geodesics, so null geodesics will satisfy
condition (ii). From equation (4.21) we read off Ω = ℓ cosh (τ/ℓ) and dt = Ωdσ, so∫ dτ

ℓ cosh τ/ℓ
=
∫

dσ. (4.22)

Integrating,

tan
(

sinh
τ

ℓ

)−1
= σ,

tan σ = sinh
τ

ℓ
. (4.23)

Note that τ ∈ (−∞, ∞) corresponds to σ ∈ (−π/2, π/2), so automatically condition
(iii) is satisfied. Using the identity cosh (τ/ℓ)2 = 1+ sinh (τ/ℓ)2 and equation (4.23)
we get Ω2 = ℓ2/ cos σ2. The metric (4.20) is now

ds2 =
ℓ2

cos σ2

(
− dσ2 + dθ2), (4.24)

where the (σ, θ)-coordinates are used to draw the Penrose diagram in Fig. 4.4.
Comments:
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FIGURE 4.4: Penrose diagram for dS2
Note: Later we will use only half of the penrose diagram of dS2 for a

better clarity of the illustrations.

• The σ-spatial slices are simple the 2-spheres on X0-slices of the embedding
picture in Fig 4.4 .

• There are past and future conformal boundaries I− and I+. Everyone ap-
proaches them in the infinite past and infinite future.

• The left and right edges are identified, θ ∼ θ + 2π , since θ ∈ (−π, π) . This is
a special case only for 2-dimensions.

• There is an observer-dependent horizon, called the cosmological horizon. This is
the null surface beyond which the observer can never receive a signal.

4.3.4 Flat Slicing Coordinates

In terms of the embedding space R1,2, the flat slicing of dS2 is

X0 = ℓ sinh (t/ℓ) +
x2

2ℓ
et/ℓ, X1 = ℓ cosh (t/ℓ)− x2

2ℓ
et/ℓ, X2 = xet/ℓ. (4.25)

Plugging into equation (4.12) gives de Sitter in the flat slicing coordinates

ds2 = −dt2 + e2t/ℓdx2, (4.26)

where dx is the flat metric on R. Note that here the time coordinate t is different than
the time coordinate τ of the global coordinates.

From equation (4.25) we see that these coordinates only cover

X0 + X1 > 0. (4.27)

This corresponds to the future expanding triangle of the Penrose diagram. Compar-
ing equations (4.14) and (4.25) for the global and flat slicing coordinates we find the
simple coordinate change

et/ℓ = cos θ cosh (τ/ℓ) + sinh (τ/ℓ),
ℓ

x
et/ℓ = sin θ cosh (τ/ℓ), (4.28)
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FIGURE 4.5: Blue curves are constant t-slices and red curves are con-
stant x-slices. We used half of the Penrose diagram of dS2, the other

half is just a mirroring with respect to the left axis of this diagram.

which allow as to draw the consant time and space surfaces of the flat slicing (t, x)-
coordinates on the half of the Penrose diagram, see Fig. 4.5.

4.3.5 Entanglement Entropy in de Sitter

Consider a free massless scalar field upon de Sitter. We will use the flat slicing (t, x)-
coordinates (4.25), define u = ℓe−t/ℓ and plug it into the metric (4.26) to get

ds2 =
ℓ2

u2 (−du2 + dx2). (4.29)

Introducing the null coordinates u± = u± x,

ds2 = − ℓ2(
u++u−

2

)2 du+du−. (4.30)

These coordinates cover a future expanding half of de Sitter with flat u-slices.
Consider region A to be one with fixed unit coordinate length in x and on a u-

slice, i.e. a slice of constant u which a slice of constant t. For an example see Fig. 4.6.
We are interested in the entanglement entropy between A and its complement upon
the u-slice. The metric (4.30) is of the conformal form (3.57) with

ρ = log
ℓ

u
. (4.31)

The entanglement entropy is given by equation (4.5). For our region A in any given
u-slice it takes the form

Sent =
c
3

log
ℓ

u
+

c
12

log
1

(ϵ−)2 +
c

12
log

1
(ϵ+)2 , (4.32)
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FIGURE 4.6: The region A consists of the points upon the t-slice which
belong between the two red intersections with the x1,2-slice.

where in that case the tilde-coordinates of equation (4.5) is the (u+, u−)-coordinates
of de Sitter. Renormalizing Sren = Sent − Sent|t=0, we get

Sren =
c
3

log
ℓ

u
. (4.33)

The Sent|t=0 corresponds to the entropy of the state defined upon t = 0. In these
particular coordinates this state is the Hartle-Hawking vacuum [35]. Knowing that
u = ℓe−t/ℓ, we see that entropy grows linearly with time t as

Sren =
ct
3ℓ

. (4.34)

We understand this as arising from the growth of the effective Hilbert space from
the redshifting cutoff.
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Chapter 5

Lattice Discretization of Spacetime

Most early universe cosmological models are based on an effective field theory (EFT)
analysis. An effective field theory includes the appropriate degrees of freedom to de-
scribe physical phenomena occurring at a chosen length scale or energy scale, while
ignoring substructure and degrees of freedom at shorter distances (or, equivalently,
at higher energies) by introducing a UV-cutoff. We followed the same approach in
chapters 3 and 4 were we utilized entanglement entropy to explore the time evo-
lution of effective Hilbert spaces. Note that the UV-cutoff has to correspond to a
fixed physical scale since it is determined by local physics; a time-dependent cuttoff
would have led to paradoxes in an expanding universe [63]. Usually from an EFT
point of view, the minimum value of the cutoff, say a, is an O(1) multiple of the
Planck length ℓP, i.e. a = 100ℓP. When we speak of taking the limit a → 0, we really
mean that a is going to ∼ 100ℓP. The introduction of a cutoff and the fact that there
are no degrees of freedom on length scales shorter than the Planck scale leads to the
lattice discretization of spacetime.

Constructing a lattice discretization of a scalar field theory seems intuitive, but in
time-dependent backgrounds, this procedure has interesting subtleties. An essential
classical consideration is that we must choose a lattice discretization of the action
such that in the appropriate continuum limit the action principle recovers the con-
tinuum classical equations of motion. Accordingly, we should understand how to
appropriately discretize a PDE on a lattice.

Usually the discretization of a PDE is via the finite difference method (FDM). His-
torically, it was the first discretization method to be discovered since it is intuitively
trivial. However, as we will shortly observe in sec. 5.1 FDM haw fatal deficiencies
for PDE’s on certain kinds of time-dependent backgrounds, such as our mirror toy-
model. These issues can be resolved using the finite elements method (FEM) which
leverages comparatively more sophisticated tools from functional analysis [24, 9].
FEM and its variants are the workhorses of modern numerical PDE solvers and it
is widely used in engineering [49]. In order to build intuition, we provided two re-
views of this method in ssec. 5.2.1 and 5.2.2 where one is more analysis oriented and
the other more geometry oriented. Both sections are aimed towards our application
to lattice field theory in expanding geometries.

5.1 Finite Difference Method

The FDM is the standard approach of lattice quantum field theory (see [22] for an
accessible overview in lattice QCD), usually implemented in Euclidean signature.
However, there are large number of circumstances for which the FDM is unsuit-
able, even for reproducing the correct classical equations of motion in the continuum
limit. One of these cases will be examined in this section.
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FIGURE 5.1: FDM discretization of spacetime. The figure was taken
from [19].

We will consider a free massless scalar field in 1 + 1 Minkowski spacetime in the
presence of the moving mirror boundary. The action of the field ϕ is given by

S[ϕ] = −1
2

∫
d2x∂µϕ∂µϕ. (5.1)

The discretization with the FDM approach is of the form of lattice plaquettes that
have spatial and temporal links with length δx and δt respectively. So, we have
a rectangular lattice where the lattice spacing varies depending on the location in
spacetime due to the presence of the moving mirror, see Fig 5.1. The recipe to go
from a continuum to a discrete field ϕ that lives in a rectangular lattice is

ϕ −→ ϕi,j, (5.2)

∂µ −→ ∆µ, (5.3)∫
d2x −→∑

i,j
δtδx, (5.4)

where ∆µ is a finite difference of the form

∆0ϕi,j =
ϕi+1,j − ϕi,j

δt
, ∆1ϕi,j =

ϕi,j+1 − ϕi,j

δx
. (5.5)

Plugging everything into the action (5.1) we obtain

SFDM[ϕi,j] = −
1
2 ∑

i,j
δtδxηµν∆µϕi,j∆νϕi,j. (5.6)
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FIGURE 5.2: Saw tooth converging to the diagonal of a unit square,
but not converging into its length.

Varying the discrete action (5.6) with respect to ϕi,j we get

δSFDM = −1
2 ∑

i,j
δtδxηµν∆µδϕi,j∆νϕi,j −

1
2 ∑

i,j
δtδxηµν∆µϕi,j∆νδϕi,j

⇒ δSFDM = −∑
i,j

δtδxηµν∆µδϕi,j∆νϕi,j

⇒ δSFDM = ∑
i,j

δtδxηµν
(
∆µ∆νϕi,j

)
δϕi,j, (5.7)

where in the last equation we used Dirichlet boundary conditions δϕi,j|boundary = 0.
The lattice equation of motion are an extremum of the action SFDM with respect to
ϕi,j. Using equation (5.7) we get

−
2ϕi,j − ϕi+1,j − ϕi−1,j

δt2 +
2ϕi,j − ϕi+1,j − ϕi−1,j

δx2 = 0, (5.8)

where the first and second term is a discrete Laplacian with respect to time and
space directions. In the case that δt, δx ∝ α, as α → 0, equation (5.8) becomes the
usual Klein-Gordon equation.

So far so good, however this approach fails in our moving mirror toy-model
which is a time-dependent boundary. In Fig. 5.1, you can observe that the saw-tooth
approximation of the moving mirror boundary is inadequate for an appropriate con-
tinuum limit. At the limit α → 0, the limiting curve of the left boundary will be
continuous but not be differentiable. Using equation (A.15) from Appendix A we
find the formula for a component of the energy flux of a scalar field with the action
(5.1)

Ttt = Txx =
1
2
(
(∂tϕ)

2 + (∂xϕ)2). (5.9)

As you can see, in the case of a non-differentiable boundary curve the energy flux
blows up. FDM is not the main subject of this thesis, details for the failure of this
method can be found on [42, 61].

Remark: Here we will try to give a short intuitive example for the failure of the
saw tooth approximation in the continuum limit. Imagine trying to approximate
the diagonal of a unit square with a saw tooth approximation, see Fig. 5.2. Divide
the diagonal into n segments. Each triangle is

( 1
n , 1

n ,
√

2
n

)
. So, the area between the
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diagonal and the saw tooth is n 1
2n2 which converges to 0 in the continuum limit

n→ ∞. The path length is n 2
n , which gives a wrong continuum limit since 2 ̸=

√
2.

This example illustrates the fact that two functions can be very close: | f (x) −
g(x)| < ϵ for x in the domain of the functions, but their derivatives can still be far
apart, | f ′(x)− g′(x)| > c for some constant c > 0.

In our case, let (t, Z(t)) be the parametrization for the moving mirror boundary
and

(
c(t), d(t)

)
the parametrizations of the saw tooth curve. In the continuum limit

n → ∞, we may assume that the two curves converge to each other ∥
(
t, Z(t)

)
∥≈∥(

c(t), d(t)
)
∥ but this does not imply ∥

(
1, Z′(t)

)
∥≈∥

(
c′(t), d′(t)

)
∥. This mean

that we do not get the correct continuous limit for the derivative of the saw tooth
approximation. The implication on the stress energy tensor (5.9) for the moving
mirror is that

lim
n→0

Ttt,xx|x=Z(t),saw−tooth ̸= Ttt,xx|x=Z(t),movingmirror. (5.10)

In certain cases of moving mirror trajectories the derivative is not just unequal but
blows up.

Similar problems occur when coupling fields to a time-dependent cosmology,
such as de Sitter. Note that both the receding mirror example and the de Sitter ex-
ample are expanding cosmologies. In each case the volume of spatial slices grows as
a function of time, and so to maintain comparable spatial resolution we are required
to increase the number of lattice sites as time advances. Persistent lattice artifacts
obstructing a smooth continuum limit of both Lorentzian and Euclidean theories,
especially for interacting fields, are discussed in [13, 24, 9, 28].

5.2 Finite Element Method

We now turn to the finite elements method, which provides a more sophisticated lat-
tice discretization and can handle the above circumstances in which finite difference
method fails.

5.2.1 Analysis Approach to FEM

Most problems in physics and mechanics are described as a set of partial differential
equations and initial/boundary conditions. This set is called the strong form of the
problem. Finite elements, however, are based on an alternative form, the weak form,
which is equivalent to the former as we will shortly see.

Consider the strong form of the 0 + 1 equation of a harmonic oscillator

−ϕ̈(t) = ϕ(t), ϕ(0) = ϕi, ϕ(T) = ϕ f . (5.11)

First, let us observe that we can always assume that ϕi = ϕ f = 0, by looking for a
solution of the form ϕ(t)−

(
ϕ f (1− t) + ϕit

)
; see [26] for a complete discussion on

the boundaries of differential equations. If ϕ ∈ L2[0, T] is the solution of the strong
form (5.11) and ψ is any (sufficiently regular) function such that ψ(0) = ψ(T) = 0,
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which we will call it as a test function, then integration by parts yields

(ψ, ϕ) : =
∫ T

0
ψ(t)ϕ(t)dt = −

∫ T

0
ψ
(
− ϕ̈(t)

)
(t)dt

=
∫ T

0
ψ̇(t)ϕ̇dt := α(ψ, ϕ). (5.12)

Let us define the space

V = {ψ ∈ L2([0, T]) : α(ψ, ψ) < ∞ and ψ(0) = ψ(T) = 0}. (5.13)

Then we can say that the solution ϕ to (5.11) is characterized by

ϕ ∈ V such that α(ψ, ϕ) = (ψ, ϕ) ∀ψ ∈ V, (5.14)

that is equivalent to∫ T

0
dt
(
− ψ̇(t)ϕ̇(t) + ψ(t)ϕ(t)

)
= 0 ∀ψ ∈ V, (5.15)

which is called the weak form of (5.11). From this set up it is obvious that the strong
form implies the weak form. Now we will prove the opposite direction. Suppose
that ϕ ∈ C2([0, T]

)
satisfy the weak form (5.15) then integration by parts gives

(ϕ, ψ) = α(ϕ, ψ) =
∫ T

0
ψ(−ϕ̈)dt + ψ(T)ϕ̇(T) + ψ(0)ϕ̇(0)

⇐⇒
∫ T

0
ψ(t)ϕ(t)dt =

∫ T

0
ψ(−ϕ̈)dt

⇐⇒
∫ T

0
dtψ(t)

(
ϕ̈(t)+ϕ(t)

)
= 0 ∀ψ ∈ V, (5.16)

where in the second equation we used the fact that ψ ∈ V means that ψ(0) = ψ(T) =
0. Equation (5.16) is true for all ψ in V and that give us the strong form (5.11). Now
the proof of equivalence between the two is completed.

The advantage of the weak form is that it allows as to weaken our criteria for
what it means to solve equation (5.11). In particular, we can approximate ϕ(t) by
a continuous (C0), piecewise-linear function on [0, T]. For that case we will need a
finite dimensional space for ϕ to live in and a basis for a representation of ϕ in that
space.

Let S ⊂ V be any finite dimensional subspace. We will consider the weak form
(5.15) with V replaced by S, namely

ϕS ∈ S such that α(ψ, ϕS) = (ψ, ϕS) ∀ψ ∈ S. (5.17)

Unraveling, ∫ T

0
dt
(
− ψ̇(t)ϕ̇S(t) + ψ(t)ϕS(t)

)
= 0 ∀ψ ∈ S. (5.18)

Now let 0 = t0 < t1 < ... < tN = 1 be a partition of [0, T], and let S be the linear
space of function ψ such that

(i) ψ ∈ C0([0, T]
)
,

(ii) ψ(ti) = ψi for i = 1, ..., N,
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(iii) ψ|[ti−1,ti ] is a linear polynomial, i = 1, ..., N, and

(iv) ψ(0) = ψ(T) = 0.

For each i = 1, ..., N define bi by the requirement that bi(tj) = δij. The set {bi : 1 ≤
i ≤ N} is a basis for S since ∑N

i=1 cibi(tj) = 0 implies cj = 0 Moreover, the set {bi}
spans S since ψ − ∑N

i=1 ψibi(tj) = 0. That is true because ψ − ∑N
i=1 ψibi(tj) = 0 is

linear on each [ti−1, ti] and zero at the endpoints, hence must be identically zero.
In the case where the partition of [0, T] is done by linear segments with width

a = T/N we will call the space S to be CPLa
(
[0, T]

)
, which is an abbreviation of

continuous, piecewise-linear. The a is playing the role of our lattice cutoff. The
basis bi of our space will be called triangular basis. It is defined by three functions
b(t), bL(t), and bR(t) where

b(t) =


0 if t < −a
t
a + 1 if −a ≤ t ≤ 0
− t

a + 1 if 0 ≤ t ≤ a
0 if a < t

, (5.19)

bL(t) =


0 if t < −a
t
a + 1 if −a ≤ t ≤ 0
0 if 0 < t

, (5.20)

bR(t) =


0 if t < 0
t
a + 1 if 0 ≤ t ≤ a
0 if a < t

. (5.21)

These functions are piecewise linear polynomials, seeFig. For our purposes,

b0(t) := bR(t), bj(t) := b(t− ja) for j = 1, ..., N − 1, bN(t) := bL(t− T). (5.22)

You can easily check that bi(tj) = δij. Then we can expand our function ϕS ≡ ϕa ∈
CPla

(
[0, T]

)
in this basis,

ϕa(t) =
N

∑
i=0

ϕibi(t). (5.23)

One can appreciate the economy of this framework by unravelling equation (5.23),
see also Fig. 5.3,

ϕa(t) =



ϕ1
a t if 0 ≤ t ≤ a

ϕ2−ϕ1
a (t− a) + ϕ1 if a ≤ t ≤ 2a

: :
ϕj+1−ϕj

a (t− ja) + ϕj if ja ≤ t ≤ (j + 1)a
: :

−ϕN−1
a

(
t− (T − a)

)
if T − a ≤ t ≤ T

. (5.24)

Note that without the weak form (5.18) we could not possibly find a continuous and
piecewise linear solution of the strong form (5.11) since ϕ̇(t) is piecewise constant
and discontinuous and thus ϕ̈(t) is a sum of delta distributions. So the left and right
hand sides of (5.11) are not even in the same function space.
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FIGURE 5.3: Plot of a ϕ(t) in CPLa([0, T]).

So far so good, but in what sense does a continuous piecewise linear function
achieves the correct continuum limit? Suppose that a solution to the weak form
(5.18) with S being CPLa is ϕ̃a(t). Moreover, suppose ϕ̃(t) is an L2([0, T]

)
solution of

the strong form (5.11) with Dirichlet boundary conditions ϕ(0) = 0 and ϕ(T) = 0,
that is ϕ ∈ V. We will show that

lim
a→0

∫ T

0
dtψ(t)

(
ϕ̃(t)− ϕ̃a(t)

)
= 0 ∀ψ ∈ V. (5.25)

Proof. Let us begin by

(ψ, ϕ̃− ϕ̃a) =
∫ T

0
dtψ(t)

(
ϕ̃(t)− ϕ̃a(t)

)
=
∫ T

0
dtψ̇(t)

( ˙̃ϕ(t)− ˙̃ϕa(t)
)
, (5.26)

where in the second equality we used manipulations of the equations of the weak
(5.18) with S = CPLa and strong form (5.11) with ϕ ∈ V,∫ T

0
dtψ̇(t)ϕ̇a(t) =

∫ T

0
ψ(t)ϕa(t), (5.27)∫ T

0
dtψ̇(t)ϕ̇(t) =

∫ T

0
ψ(t)ϕ(t) ∀ψ ∈ V. (5.28)

Using the Cauchy-Schwarz inequality for inner products |(ψ, ϕ)| ≤ (ϕ, ϕ)1/2(ψ, ψ)1/2

and equation (5.26) we get

|
∫ T

0
dtψ̇(t)

( ˙̃ϕ(t)− ˙̃ϕa(t)
)
| ≤

( ∫ T

0
dt
(
ψ̇(t)

)2
)1/2( ∫ T

0
dt
( ˙̃ϕ(t)− ˙̃ϕa(t)

)2
)1/2

. (5.29)

We will define as error between the discrete and continuous solution of ϕ the differ-
ence

e ≡ ϕ̃(t)− ϕ̃a(t). (5.30)

Since ψ ∈ V, the integral
( ∫ T

0 dt
(
ψ̇(t)

)2
)1/2

is a finite constant, that we will name it
C. Using the definition (5.30) in equation (5.29) we get

|
∫ T

0
dtψ̇(t)

( ˙̃ϕ(t)− ˙̃ϕa(t)
)
| ≤ C

( ∫ T

0
dt
(
ė(t)

)2
)1/2

, (5.31)
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which is, see equation (5.26)

|(ψ, ϕ̃− ϕ̃a)| ≤ C
( ∫ T

0
dt
(
ė(t)

)2
)1/2

. (5.32)

Now we will use a property of the error variable e(t) in the time interval t ∈ [tj−1, tj].
First of all we will do an affine transformation to map t ∈ [tj−1, tj] into t̃ ∈ [0, 1]. That
affine transformation is of the form,

t = tj−1 + t̃(tj − tj−1) and ẽ(t̃) = e
(
tj−1 + t̃(tj − tj−1)

)
. (5.33)

Observe that e(0) = e(1) = 0 and we can use Rolle’s (ref) theorem which state that
there exists a ξ ∈ (0, 1) such that e′(ξ) = 0, where the prime is a derivative with
respect to t̃. So, we can write

ẽ′(y) =
∫ y

ξ
dt̃ẽ′′(t̃). (5.34)

Again, by Cauchy-Schwarz’s inequality.

|ẽ′(y)| = |
∫ y

ξ
dt̃ẽ′′(t̃)| = |

∫ y

ξ
dt̃1 · ẽ′′(t̃)|

≤ |
∫ y

ξ
dt̃1|1/2|

∫ y

ξ
dt̃ẽ′′(t̃)2|1/2

= |y− ξ|1/2|
∫ y

ξ
dt̃ẽ′′(t̃)2|1/2

≤ |y− ξ|1/2
( ∫ 1

0
dt̃ẽ′′(t̃)2

)1/2
.

Squaring, (
ẽ′(y)

)2 ≤ |y− ξ|
( ∫ 1

0
dt̃ẽ′′(t̃)2

)
. (5.35)

Integrating with respect to y,∫ 1

0
dy
(
ẽ′(y)

)2 ≤
∫ 1

0
dy|y− ξ|

( ∫ 1

0
dt̃ẽ′′(t̃)2

)
≤ sup

0<ξ<1

∫ 1

0
dy|y− ξ|

( ∫ 1

0
dt̃ẽ′′(t̃)2

)
=

1
2

( ∫ 1

0
dt̃ẽ′′(t̃)2

)
.

By reversing the affine transformation we get∫ tj

tj−1

dy
(
e′(y)

)2 ≤ a2

2

( ∫ tj

tj−1

dte′′(t)2
)

, (5.36)

where a is our lattice cutoff since tj − tj−1 = a. In the interval [tj−1, tj] the discretized
solution ϕ̃a is a linear polynomial, which mean ¨̃ϕa = 0. So,∫ tj

tj−1

dy
(
e′(y)

)2 ≤ a2

2

( ∫ tj

tj−1

dtϕ̃′′(t)2
)

. (5.37)
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Summing over all the values of j,∫ 1

0
dy
(
e′(y)

)2 ≤ a2

2

( ∫ 1

0
dtϕ̃′′(t)2

)
. (5.38)

Plugging this into equation (5.32),

|(ψ, ϕ̃− ϕ̃a)| ≤ C
a2

2

( ∫ 1

0
dtϕ̃′′(t)2

)
. (5.39)

By taking the limit a→ 0 and remembering that the integral is finite, we get

lim
a→0
|(ψ, ϕ̃− ϕ̃a)| ≤ lim

a→0
C a2

2

( ∫ 1

0
dtϕ̃′′(t)2

)
= 0. (5.40)

This concludes our proof since

lim
a→0

(ψ, ϕ̃− ϕ̃a) = 0, (5.41)

which mean that

lim
a→0

∫ T

0
dtψ(t)

(
ϕ̃(t)− ϕ̃a(t)

)
= 0 ∀ψ ∈ V. (5.42)

Remark: From equation (5.26) we have

(ψ, ϕ̃− ϕ̃a) =
∫ T

0
dtψ̇(t)

( ˙̃ϕ(t)− ˙̃ϕa(t)
)
, (5.43)

using (5.40),

lim
a→0
|
∫ T

0
dtψ̇(t)

( ˙̃ϕ(t)− ˙̃ϕa(t)
)
| ≤ 0, (5.44)

which is equivalent to

lim
a→0

∫ T

0
dtψ̇(t)

( ˙̃ϕ(t)− ˙̃ϕa(t)
)
= 0. (5.45)

We see that even the derivative converges to the right continuum limit. So, FEM
resolves the divergence of the energy flux where FDM fails.

This means that our piecewise continuous solution ϕ̃a(t) better and better ap-
proximate the L

(
[0, T]

)
solution ϕ̃(t) as we take the limit a → 0. In fact, there are

more rigorous statements about convergence that can be proved but we will not
need these results in our analysis. From now on we will drop the rigorousness that
came with the definitions of finite and infinite dimensional spaces of solutions and
we will use ϕ(t) for any solution since we have a theorem of convergence.

Let us expand our function ϕ(t) ∈ CPAa
(
[0, T]

)
and test function ψ(t) ∈ CPAa

(
[0, T]

)
in the {bi} basis as,

ϕ(t) =
N

∑
j=0

ϕjbj(t), (5.46)

ψ(t) =
N

∑
i=0

ψibi(t). (5.47)
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Plugging these into the weak form (5.18) we get

N

∑
i,j=1

ψi

[(
−
∫ T

0
dtḃi(t)ḃj(t)

)
+
( ∫ N

0
dtbi(t)bj(t)

)]
ϕj = 0 ∀ψ0, ψ1, ..., ψN ∈ R. (5.48)

We define the stiffness matrix Sij and the mass matrix Mij to be

Sij := −
∫ T

0
dtḃi(t)ḃj(t), Mij :=

∫ T

0
dtbi(t)bj(t). (5.49)

Then, equation (5.48) becomes

N

∑
i,j=0

ψi
(
Sij + Mij

)
ϕj = 0 ∀ψ0, ψ1, ..., ψN ∈ R. (5.50)

In matrix form,
Ψ ·
(
S + M

)
·Φ = 0 ∀Ψ ∈ CPLa

(
[0, T]

)
(5.51)

where ΨT =
[
ψ0 ψ1 ... ψN

]
, ΦT =

[
ϕ0 ϕ1 ... ϕN

]
, S = [Sij], M = [Mij]. This

is equivalent to

(
S + M

)
·Φ = 0 ⇐⇒

N

∑
j=0

(Sij + Mij)ϕj = 0 for j = 0, 1, ..., N. (5.52)

This is the finite elements discretization of the continuum equation ϕ̈ + ϕ = 0, with
respect to the {bi} basis. Now, let’s unravel the finite element equation. First of
all notice that for a given i the only j’s that survive are j = i − 1, i, i + 1. That is
true because the stiffness matrix Sij and the mass matrix Mi j are product of basis
functions {bi} and our basis’ functions have no overlap for |j − i| > 1. From this,
equation (5.52) becomes

Sii−1ϕi−1 + Siiϕi + Sii+1ϕi+1 + Mii−1ϕi−1 + Miiϕi + Mii+1ϕi+1 = 0. (5.53)

For i ̸= 0, N the basis functions (5.19) that we need is

bi−1(t− (i− 1)a) =


0 if t < (i− 2)a
t−(i−1)a

a + 1 if (i− 2)a ≤ t ≤ (i− 1)a
− t−(i−1)a

a + 1 if (i− 1)a ≤ t ≤ ia
0 if ia < t

, (5.54)

bi(t− ia) =


0 if t < (i− 1)a
t−ia

a + 1 if (i− 1)a ≤ t ≤ ia
− t−ia

a + 1 if ia ≤ t ≤ (i + 1)a
0 if (i + 1)a < t

, (5.55)

bi+1(t− (i + 1)a) =


0 if t < ia
t−(i+1)a

a + 1 if ia ≤ t ≤ (i + 1)a
− t−(i+1)a

a + 1 if (i + 1)a ≤ t ≤ (i + 2)a
0 if (i + 2)a < t.

. (5.56)
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Let us compute some useful integrals∫ T

0
ḃi(t)ḃi−1(t) =

∫ ia

(i−1)a
dtḃi(t)ḃi−1(t) = −

1
a

,∫ T

0
ḃi(t)ḃi(t) =

∫ (i+1)a

(i−1)a
dtḃi(t)ḃi(t) =

2
a

,∫ T

0
ḃi(t)ḃi+1(t) =

∫ (i+1)a

ia
dtḃi+1(t)ḃi(t) = −

1
a

,∫ T

0
dtbi(t)bi−1(t) =

∫ ia

(i−1)a
dt
( t− ia

a
+ 1
)(
− t− (i− 1)a

a
+ 1
)
= − a

6
,∫ T

0
dtbi(t)bi(t) =

∫ ia

(i−1)a
dt
( t− ia

a
+ 1
)2

+
∫ (i+1)a

ia
dt
(
− t− ia

a
+ 1
)2

=
2a
3

,∫ T

0
dtbi(t)bi+1(t) =

∫ (i+1)a

ia
dt
(
− t− ia

a
+ 1
)( t− (i + 1)a

a
+ 1
)
=

a
6

.

From these integrals we can compute (5.52) and get the unravelled form of FEM on
the 0 + 1 harmonic oscilator,

2ϕi − ϕi−1 − ϕi+1

a2 +
1
3
(
ϕi +

1
2
(ϕi + ϕi+1) +

1
2
(ϕi − ϕi−1)

)
, (5.57)

where we have divided the equation with a. Observe that the first term is the lattice
second derivative. The second term approximates the value of ϕ(t) in the vicinity of
t = ia and has a "triangular" looking form. For the values of i = 0, N the equation is
trivial.

Note that we could have obtain equation (5.57) from the continuous action
∫ T

0 dt
( 1

2 ϕ̇2−
1
2 ϕ2) of the 0 + 1 harmonic oscillator upon setting ϕ(t) = ∑N

i=0 ϕibi(t),

Slattice[{ϕi}] =
∫ T

0
dt
(1

2

N

∑
i,j=0

ϕi ḃi(t)ḃj(t)ϕj −
1
2

N

∑
i,j=0

ϕibi(t)bj(t)ϕj

)
= −1

2

N

∑
i,j=0

ϕi(Sij + Mij)ϕj, (5.58)

using Euler-Lagrange,

d
dϕi

( N

∑
j=0

ϕi(Sij + Mij)ϕj

)
= 0⇒∑

j
(Sij + Mij)ϕj = 0, (5.59)

which unravelled is equation (5.57).
Lets summarize our procedure for lattice discretization via the FEM. Suppose

that we have some differential equation for ϕ(t). Then we carry out the following
procedure:

(i) Choose a suitable family of basis functions bi(t) whose span is the space CPLa
(
[0, T]

)
.

(ii) Expand our function ϕ(t) in this basis as ϕ(t) = ∑i= 0Nϕibi(t).

(iii) Plug this expansion of ϕ(t) into the equation for weak solutions of our differ-
ential equation, and do the same for the test function ψ(t). This reduces to a
discrete system of equations which comprises the discretization of the contin-
uum equations.
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Equivalently,

• If we have a continuum action S[ϕ(t)] whose Euler-Lagrange equation are our
differential equation, then we can simply let ϕ(t) = ∑N

i=0 ϕibi(t) to obtain a
discrete action Slattice[{ϕi}], and compute the new Euler-Lagrange equations
which are our discretized equations of motion.

The advantage of the FEM approach, besides its conceptual clarity and the com-
pact formulation of discretization can be seen when we turn from 0 + 1 dimensions
to 1 + 1 dimensions. Before doing so, we will prepare the 0 + 1 case for the 1 + 1
generalization. The basis functions {bi(t)}i=N

i=0 are associated to a single lattice site
and they overlap, as we saw in the computation of equation (5.57). There is a slightly
different organization which fruitfully generalizes to the 1 + 1 setting. Defining

bL,j(t) := bL
(
t− (j + 1)a

)
, bR,j(t) := bR(t− ja) f or j = 0, ..., N − 1, (5.60)

we can associate bL,j(t) and bR,j(t) with the 1-dimensional edge connecting t = ja to

t = (j+ 1)a. It is simple to observe that bL(t)+ bR(t) = b(t). In fact, {bL,j(t), bR,j}
j=N−1
j=0

comprises a basis for CPLa
(
[0, T]

)
, where we have two functions related with each

edge of the temporal lattice. In this notation, the expansion of the field ϕ into the
basis {bL,j(t), bR,j}

j=N−1
j=0 takes the form

ϕ(t) =
N−1

∑
j=0

ϕj+1bL,j(t) +
N−1

∑
j=0

ϕjbR,j(t). (5.61)

Next we examine the 1+ 1 massless Klein-Gordon equation, with action S[ϕ(t)] =
− 1

2

∫
d2x∂µϕ∂µϕ. Although ϕ(t, x) naturally lives in L2(R2), we would like to ap-

proximate it by an appropriate family of continuous, piecewise linear function on
R2, i.e., the (t, x) plane). To specify this family, we can consider various lattice dis-
cretizations of R2. The most obvious is the FDM’s approach of a rectangular lattice
with spacings δt, δx but as we saw in sec. 5.1 it fails in our case. Instead, we will
opt for the most flexible lattice of all: a triangular lattice. Indeed, any planar lattice
can be refined into a tringular lattice by adding more edges [67]. There is enormous
freedom in choosing a triangulation; for hyperbolic PDE’s such as wave equations,
we should be careful that our triangulation is in compliance with the CFL condition
[21] which affords numerical stability of the lattice approximation in the continuum
limit.

We will express our lattice L = {∆i} as a collection of triangular plaquettes ∆i,
and to each plaquette ∆i we associate an ordered list of its vertices in R2, namely
(υi,1, υi,2, υi,3) =

(
(xi,1, yi,1), (xi,2, yi,2), (xi,3, yi,3)

)
. Next we define our family of basis

functions for L. Let χ∆(t, x) be the characteristic function for the interior of the
’standard’ triangle ∆ in R2 with vertices (0, 0), (1, 0) and (0, 1). We can write χ∆(t, x)
explicitly in terms of a product of Heaviside step functions as χ∆(t, x) = θ(1− t−
x)θ(t)θ(x). Then we define the three functions

B(1)
∆ := (1− t− x)χ∆(t, x), B(2)

∆ (t, x) := tχ∆(t, x), B(3)
∆ (t, x) := xχ∆(t, x). (5.62)

We can map the ’standard’ triangle ∆ to any triangle in R2 via an affine transforma-
tion, see Fig. 5.4. In particular, if we want to map

(
(0, 0), (1, 0), (0, 1)

)
to
(
(x1, y1), (x2, y2), (x3, y3)

)
,
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FIGURE 5.4: Affine transformation A from the ’standard’ triangle to
a random triangle.

then we can leverage the affine transformation

A :
[

x
y

]
7−→

[
−x1 + x2 −x1 + x3
−y1 + y2 −y1 + y3

] [
x
y

]
+

[
x1
y1

]
(5.63)

and transform the B(j)
∆ (t, x) functions to B(j)

∆

(
A−1(t, x)

)
accordingly. Note that this

is an active transformation where the edges of the triangle transform with respect
to the coordinate system. We should be careful to map between triangles with the
same orientation in the plane. Let B(j)

∆i
(t, x) with j = 1, 2, 3 correspond to the basis

functions above, affinely transformed so that their vertices match the vertices of the
plaquette ∆i. Then we take our family of basis functions to be{

B(1)
∆i

(t, x), B(2)
∆i

(t, x), B(3)
∆i

(t, x)
}

∆i∈L
(5.64)

and denote its real-valued span by the family of functions CPLL(R2). We can ac-
cordingly expand ϕ(t, x) in this basis as

ϕ(t, x) = ∑
i

(
ϕυi,1 B(1)

∆i
(t, x) + ϕυi,2 B(2)

∆i
(t, x) + ϕυi,3 B(3)

∆i
(t, x)

)
= ∑

i

3

∑
j=1

(
ϕυi,j B

(j)
∆i
(t, x)

)
(5.65)

Plugging this into the continuum free action, we obtain a lattice action

Slattice[{ϕυ}] = ∑
υ,υ′∈V(L)

ϕυQυ,υ′ϕυ′ (5.66)

for a corresponding stiffness matrix Qυ,υ′ , where V(L) is the set of vertices of L.
Having triangular plaquettes comes with many advantages. The first advantage

of triangular plaquettes is that we can accommodate arbitrarily-shaped spacetime
boundaries without making a saw-tooth approximation. That is, we can approx-
imate spacetime boundaries in a piecewise-linear fashion that appropriately con-
verge to smooth boundaries in the continuum limit, i.e. as we consider a sequence of
progressively finer triangulations. This will preclude the divergence of the energy
flux from the moving boundary which was a pathology of the saw-tooth approxima-
tion, see Fig 5.5. The second, advantage is that we have a more flexible framework
for coupling our fields to a curved background, as will become more obvious in the
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FIGURE 5.5: A triangular FEM lattice regularization of a 1 + 1 scalar
field in a spacetime with a moving boundary. The moving boundary
is piecewise-linear-approximated by the lattice discretization, which
is continuous for any cutoff scale; this is in contrast to the FDM saw-
tooth approximation of Fig 5.1. Note that the number of lattice sites
on each Cauchy slice is increasing with time. The figure was taken

from [19].

next section. The third advantage is that we can more readily incorporate a chang-
ing number of lattice sites on spacelike Cauch slices, i.e. when the spatial volume is
changing as a function of time.

5.2.2 Geometric approach to FEM

In this section we are going to work on Euclidean spacetime to make the geometric
illustration more prominent ; see [11] for an overview. One can Wick-rotate back
to Minkowski spacetime to match with our previous results of ssec. 5.2.1. The Eu-
clidean action of a free massless scalar field is,

I =
1
2

∫
d2xδµν∂µϕ(x)∂νϕ(x), (5.67)

where x is used to denote the collection of spacetime coordinates (tE, x). We will
proceed in three steps,

• Topology: The 2D Minkowski M manifold will be replaced by a triangu-
lated manifoldMσ composed of 2D triangles, which is homeomorphic to the
Minkowski manifold.

• Geometry: The metric on Minkowski spacetime (M, δ) is approxiamted on the
triangulated manifold (Mσ, gσ) by assigning lengths lij on links and extending
the metric into the interior of each triangle.

• Hilbert Space: The Hilbert space of continuum fields, ϕ(x), is truncated by
expanding in a finite element basis on each triangle, ϕσ(x) = ∑2

i=0 Ei(x)ϕi.

This approach can be easily generalized in curved manifolds of more dimensions
[11]. In flat spacetime, the first step is trivial [67] but was included for the shake of
completeness. We will carry on with the following two steps.
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The interior of a random triangle in flat spacetime can be parametrized as

y⃗ =
2

∑
i=0

ξ i⃗ri =
2

∑
i=1

ξ i⃗li0 + r⃗0, (5.68)

using barycentic coordinates, 0 ≤ ξ i ≤ 1, with the constraint ∑2
i=0 ξ i = 1. The

vectors on the edges of the triangle are l⃗i0 = r⃗i − r⃗0. To pick a unique coordinate
system onMσ, we can arbitrarily eliminate ξ0, introducing the differentials,

dy⃗ =
∂y⃗
∂ξ i dξ i = l⃗i0dξ i, (5.69)

where l⃗i0 are the components of this one form in the basis dξ i with i = 1, 2, 3 and
dual tangent vectors,

∇⃗ = ∇⃗ξ i∂i = n⃗i∂i, (5.70)

with components, n⃗i = ∇⃗ξ i in the basis ∂i. The metric on each triangle is

ds2 = dy⃗ · dy⃗ = gijdξ idξ j, gij = l⃗i0 · l⃗j0 =
1
2
(l2

i0 + l2
j0 − l2

ij). (5.71)

The standard relations for raising and lowering indices by the metric tensor (gij) and
its inverse are

gij = n⃗i · n⃗j or n⃗i · l⃗j0 = δi
j, (5.72)

applies within each simplex. Not since we are in flat spacetime we choose the nota-
tion l⃗i0 and n⃗i,

l⃗i0 → lα
i0 =

∂yα

∂ξ i and ni
α =

∂ξ i

∂yα
, (5.73)

for both upper and lower indices.
Now the new action for a massless field ϕ on the triangulated Minkowski space-

time (Mσ, gσ) is again determined by equation (5.67) using the metric (5.71). It is
given by a sum over all the triangles σ,

Ilattice =
1
2 ∑

σ

∫
d2y[∇⃗ϕσ(y) · ∇⃗ϕσ(y)]

=
1
2 ∑

σ

∫
d2ξ
√

gσ[g
ij
σ ∂iϕσ(ξ)∂jϕσ(ξ)]. (5.74)

where
√

gσ/2 is the area of each triangle. Finally, we expand ϕσ(y) in a finite element
basis on each triangle,

ϕσ(y) = E0(y)ϕ0 + E1(y)ϕ1 + E2(y)ϕ2, (5.75)

where Ei(rj) = δi
j so that ϕi = ϕ(y = ri). We also impose the sum rule, ∑i Ei(y) =

1, so that the constant field is preserved. For simplicity, our subscript σ implies a
restriction to a single triangle. The expansion of the field over the entire manifold
(Mσ, gσ) is given by a sum over all sites,

ϕ(y) = ∑
σ

(
E0

σ(y)ϕ0 + E1
σ(y)ϕ1 + E2

σ(y)ϕ2
)
. (5.76)

Once the elements Ei(y) are chosen, explicit integration for the triangulated action
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(5.74) can be carried out leading to a quadratic form for the free massless field action
on the values of ϕi.

The simplest choice is the linear FEM,

Ei(ξ) = ξ i, i = 0, 1, 2. (5.77)

Since E0 + E1 + E2 = 1 we have,

ϕ(ξ) =
2

∑
i=1

(ϕi − ϕ0)ξ
i + ϕ0. (5.78)

Plugging into the action (5.74),

Ilattice =
1
2

∫
d2ξ
√

gσgij
σ ∂i

( 2

∑
i=1

(ϕi − ϕ0)ξ
i + ϕ0

)
∂j

( 2

∑
i=1

(ϕj − ϕ0)ξ
j + ϕ0

)
=

1
4

2

∑
i,j=1

√
gσgij

σ(ϕi − ϕ0)(ϕj − ϕ0), (5.79)

where we used the fact that the integration gives us the area of the triangle. Recall
that the area is equal to

√
gσ/2.

5.2.3 Analysis vs Geometric

The functional analysis and the geometric approach of FEM arrive at the same result
which is the finite element discretization of spacetime, see Table 5.1. In the func-
tional analysis approach, the discretization takes place essentially at the level of the
equations of motion. While in the geometric approach, the discretization is applied
in the Euclidean metric which is then can become Minkowskian by Wick-rotation.

Analysis FEM Geometric FEM
Spacetime Signature Minkowskian Euclidean

Coordinates (t, x) (ξ1, ξ2)

Basis Functions B(j)
∆i
(t, x) ξ i

Field Expansion ϕ(t, x) = ∑i ∑3
j=1

(
ϕυi,j B

(j)
∆i
(t, x)

)
ϕ(ξ) = ∑2

i=1(ϕi − ϕ0)ξ i + ϕ0

Discretized Action Slattice[{ϕυ}]∑υ,υ′∈V(L) ϕυQυ,υ′ϕυ′ Ilattice =
1
4 ∑2

i,j=1
√

gσgij
σ(ϕi − ϕ0)(ϕj − ϕ0)

TABLE 5.1: Comparison between the functional analysis approach of
FEM and the geometric one.

Both methods are illuminating and choosing one or the other depends on the
preference of the reader. In calculations, there is a slight advantage in the geomet-
ric approach since the coordinates change from the (tE, x)-cartesian coordianates to
(ξ1, ξ2)-barycentric coordinates absorbs the Heaviside step functions that appear in
basis functions {B(j)

∆i
(t, x)} of the functional approach. Moreover, the procedure of

the geometric approach is easily generalized to curved manifolds, but this thesis is
not about curved manifolds. We remark that in the Euclidean setting, the FEM has
been recently leveraged to great effect for lattice simulation of quantum field theo-
ries on curved back ground [11, 10, 12] ; see [13] for an overview.
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Chapter 6

FEM in Scalar Field Theory

Here we will examine scalar field theory on a FEM lattice. Firstly, in sec. 6.1 we will
compute the classical discretized action of the scalar field. Next, in sec. 6.2 we will
proceed to the quantization of the classical scalar field theory using the path integral
formulation, there has been related work using canonical quantization in [28, 43,
23]. Lastly, our main focus in sec. 6.3 will be to understand how the Lorentzian
evolution is instantiated by the path integral in a quantum manner, in particular
since the number of lattice sites on a Cauchy slice will be growing with time for our
examples of interest.

6.1 Classical Considerations

Both the analysis and geometric methods of ssec. 5.2 will be utilized for the calcula-
tion of the classical discretized FEM action.

6.1.1 Analysis Approach to Scalar FEM on a Triangle

We will explore the FEM discretizations of classical field equations of motion for the
scalar field theory in a triangle with three vertices as seen in Fig. 6.1. We will call
the triangle ∆̃, with vertices (t, x) = (0, 0), (δt,−δx) and (δt, δx). We need to find a
FEM basis {B(j)

∆̃
(t, x)} for j = 0, 1, 2 in order to expand ϕ(t, x) as

ϕ(t, x) = ϕ0B(0)
∆̃

(t, x) + ϕ1B(1)
∆̃

(t, x) + ϕ2B(2)
∆̃

(t, x), (6.1)

and the plug this into S[ϕ(t, x)] = − 1
2

∫
d2x∂µϕ∂µϕ to obtain a lattice action. The new

basis can be found by an affine transformation (5.63) from the ’standard’ triangle ∆

FIGURE 6.1: The triangle ∆̃ in R2 with vertices (t, x) = (0, 0), (δt,−δx)
and (δt, δx). We have labeled the vertices by their corresponding field

values ϕ0, ϕ1, ϕ2.
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to the triangle ∆̃ of the form

A =

[
δt δt
−δx δx

]
, (6.2)

with an inverse,

A−1 =

[ 1
2δt −

1
2δx

1
2δt

1
2δx

]
. (6.3)

Note that the matrix A−1 when it is applied to the vector
[
t x

]T results in

A−1
[

t
x

]
=

[ t
2δt −

x
2δx

t
2δt +

x
2δx

]
. (6.4)

Hence, the mapping between (t, x) and A−1(t, x) is

t 7→ t
2δt
− x

2δx
, x 7→ t

2δt
+

x
2δx

, (6.5)

Then we actively transform B(j)
∆ (t, x) to B(j)

∆̃
(t, x) ≡ B(j)

∆

(
A−1(t, x)

)
accordingly. That

is,

B(0)
∆̃

(t, x) =
(

1− t
δt

)
χ∆̃(t, x), (6.6)

B(1)
∆̃

(t, x) =
( t

2δt
− x

2δx

)
χ∆̃(t, x), (6.7)

B(2)
∆̃

(t, x) =
( t

2δt
+

x
δx

)
χ∆̃(t, x), (6.8)

where χ∆̃(t, x) = θ
(

1− t
δt

)
θ
(

t
2δt −

x
2δx

)
θ
(

t
2δt +

x
2δx

)
. Plugging (6.1) into the action

and using a computational software, i.e. Mathematica, we get

S∆̃[{ϕ0, ϕ1, ϕ2}] =
δx
δt
· 1

8
(
2ϕ0 − (ϕ1 + ϕ2)

)2 − δt
δx
· 1

8
(
ϕ1 − ϕ2

)2, (6.9)

which is the FEM discretization of the action for a massless free scalar field in the
triangle ∆̃.

6.1.2 Geometric Approach to Scalar FEM on a Triangle

We will calculate the discretized action with the geometric method of FEM. The in-
terior of the triangle ∆̃ is parametrized by, see Fig. 6.2,

y⃗ = ξ 1⃗l10 + ξ 2⃗l20, l⃗10 = r⃗1 = (δtE, δx), l⃗20 = r⃗2 = (δtE,−δx), (6.10)

where ξ1, ξ2 are the barycentric coordinates. In order to find the action (5.79) we will
need to calculate the metric (5.71). For our triangle that is

g11 = l⃗10 · l⃗10 = δt2 + δx2,

g12 = g21 = l⃗10 · l⃗20 = δt2 − δx2,

g22 = l⃗20 · l⃗20 = δt2 + δx2.

In matrix form,

g∆̃ ≡ [gij] =

[
δt2

E + δx2 δt2
E − δx2

δt2
E − δx2 δt2

E + δx2

]
. (6.11)
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FIGURE 6.2: The triangle ∆̃ parametrized by l⃗10, l⃗20.

From this we can compute the inverse of the metric which is

g−1
∆̃ ≡ [gij] =

[ 1
4δt2

E
+ 1

4δx2
1

4δt2
E
− 1

4δx2

1
4δt2

E
− 1

4δx2
1

4δt2
E
+ 1

4δx2

]
. (6.12)

Plugging into equation (5.79) and using the fact that
√g∆̃ = 2δxδtE we get

I∆̃[{ϕ0, ϕ1, ϕ2}] =
δx
δtE
· 1

8
(
2ϕ0 − (ϕ1 + ϕ2)

)2
+

δtE

δx
· 1

8
(
ϕ1 − ϕ2

)2, (6.13)

which the Euclidean discretized FEM action for a free masless scalar field. Observe
that by Wick-rotating tE 7→ it we get,

−I∆̃[{ϕ0, ϕ1, ϕ2}] = iS∆̃[{ϕ0, ϕ1, ϕ2}]. (6.14)

6.2 Quantum Considerations

So far we have discretized classical scalar fields which converge to the desired con-
tinuum equations in an appropriate limit. In order to proceed to quantum theory
we will perform a path integral quantization of a free massless scalar field on the
triangle ∆̃. Our desired path integral is simply, see ssec 2.4.3, the propagator from
t = 0 to t = 1

K(ϕ1, ϕ2; ϕ0) = CeiS∆̃[{ϕ0,ϕ1,ϕ2}]. (6.15)

Our system is described at time t = 0 by a wavefunction Ψ(ϕ0) inH0 and at time
t = 1 by a wavefunction Ψ(ϕ1, ϕ2) in H1 ⊗H2. Thus our forward time evolution
which is generated by the propagator K(ϕ1, ϕ2; ϕ0) must mapH0 → H1 ⊗H2,

Ψ(ϕ1, ϕ2) =
∫

dϕ0K(ϕ1, ϕ2; ϕ0)Ψ(ϕ0), (6.16)

and our backward time evolution which is generated by the conjugate of the propa-
gator K∗(ϕ1, ϕ2; ϕ0) must mapH1 ⊗H2 → H0,

Ψ(ϕ′0) =
∫

dϕ1dϕ2K∗(ϕ1, ϕ2; ϕ′0)Ψ(ϕ1, ϕ2). (6.17)

In operator language equations (8.15,8.16) is equivalent to

|Ψ1,2⟩ = K|Ψ0⟩, |Ψ0′⟩ = K†|Ψ1,2⟩, (6.18)
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where we call the operator K kernel and it has matrix elements ⟨ϕ1, ϕ2|K|ϕ0⟩ =
K(ϕ1, ϕ2; ϕ0). In ssec. 2.4.3 we saw that this map is unitary in the case of equally
dimensional Hilbert spaces but this is not the case here. So, an immediate question
arises: is our path integral, aka the propagator, unitary? What happens if we evolve
from t = 0 to t = 1, and then back to t = 0? This is expressed by

PI : =
∫

dϕ1dϕ2K∗(ϕ1, ϕ2; ϕ′0)K(ϕ1, ϕ2; ϕ0) = |C|2
∫

dϕ1dϕ2eiS∆̃[{ϕ0,ϕ1,ϕ2}]−iS∗∆̃[{ϕ
′
0,ϕ1,ϕ2}]

= |C|2e
iδx
2δt (ϕ

2
0−ϕ′0

2)
∫

dϕ1e
i
2

δx
δt (ϕ

′
0−ϕ0)ϕ1

∫
dϕ2e

i
2

δx
δt (ϕ

′
0−ϕ0)ϕ2 . (6.19)

As you can see the integral does not converge. In order to make it converge we will
need an iϵ-prescription. We will try to find one by examining the pathologies of the
previous integral. Let us make a coordinate change of the form,

u = ϕ1 − ϕ2, (6.20)
v = ϕ1 + ϕ2. (6.21)

In this coordinates the action (6.9) takes the form

S∆̃[{ϕ0, v, u}] = δx
δt
· 1

8
(
2ϕ0 − v

)2 − δt
δx
· 1

8
u2. (6.22)

A useful equation that we will need down the road is

iS∆̃[{ϕ0, v, u}]− iS∗∆̃[{ϕ0, v, u}] = iδx
8δt
(
(2ϕ0 − v)2 − (2ϕ′0 − v)2)

+
iδt
8δx

u2 − iδt
8δx

u2. (6.23)

The pathological integral becomes∫
dϕ1dϕ2K∗(ϕ1, ϕ2; ϕ′0)K(ϕ1, ϕ2; ϕ0) =

|C|2
2

∫
dudveiS∆̃[{ϕ0,v,u}]−iS∗∆̃[{ϕ

′
0,v,u}]

=
|C|2

2
e

iδx
2δt (ϕ

2
0−ϕ′0

2)
∫

dudve
i
2

δx
δt (ϕ

′
0−ϕ0)v, (6.24)

where in the second equality we used equation (7.24). In order for the integral (6.24)
to converge we will need terms like e−ϵu2

and e−ϵv2
which will make the integral to

be Gaussian. Observe that these terms can emerge in equation (7.24) with a flip of a
sign from − to +. For that reason we will prescribe the following iϵ-prescription

iS∆̃[{ϕ0, v, u}]− iS∗∆̃[{ϕ0, v, u}] = iδx
8δt
(
(2ϕ0 − v)2 − (2ϕ′0 − v)2)

− ϵ
δx
8δt
(
(2ϕ0 − v)2 + (2ϕ′0 − v)2)

+
iδt
8δx

u2 − iδt
8δx

u2

− ϵ
( δt

8δx
u2 +

δt
8δx

u2
)

. (6.25)
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That comes from an action of the form,

S∆̃[{ϕ0, ϕ1, ϕ2}; ϵ}] = δx
δt
· 1 + iϵ

8
(
2ϕ0 − v

)2 − δt
δx
· 1− iϵ

8
u2

=
δx
δt
· 1 + iϵ

8
(
2ϕ0 − (ϕ1 + ϕ2)

)2 − δt
δx
· 1− iϵ

8
(ϕ1 − ϕ2)

2, (6.26)

which in the continuum limit is

S∆̃[{ϕ0, ϕ1, ϕ2}; ϵ] = −1
2

∫
d2xηµν∂µϕ∂νϕ + iϵ · 1

2

∫
dx2δµν∂µϕ∂νϕ, (6.27)

with the property that limϵ→0 S∆̃[{ϕ0, ϕ1, ϕ2}; ϵ] = S∆̃[{ϕ0, ϕ1, ϕ2}]. Notice that the
delta metric δµν flips the necessary signs that we need for convergence. Moreover,
the second term of our action (6.27) is negative semi-definite when it is multiplied
with i in the path integral. Since we are examining a scalar field, our path integral
may converge. As a result the divergent integral (6.24) becomes

PIϵ : =
|C|2

2
e

iδx
2δt (ϕ

2
0−ϕ′0

2)− ϵδx
2δt (ϕ

2
0+ϕ′0

2)
∫

dve−
ϵδx
4δt v2+ δx

2δt

(
ϵ(ϕ0+ϕ′0)+i(ϕ′0−ϕ0)

)
v
∫

du
(
− ϵδt

4δx
u2
)

=
|C|2

2
e

iδx
2δt (ϕ

2
0−ϕ′0

2)− ϵδx
2δt (ϕ

2
0+ϕ′0

2)e
1
4ϵ

δx
δt

(
ϵ(ϕ′0+ϕ0)+i(ϕ′0−ϕ0)

)2
√

4πδt
ϵδx

√
4πδx
ϵδt

= |C|2 2π

ϵ
e−

δx
δt

1+ϵ2
4ϵ (ϕ′0−ϕ0)

2
, (6.28)

where in the second equality we completed the square,

−ϵδx
4δt

v2 +
δx
2δt
(
ϵ(ϕ0 + ϕ′0) + i(ϕ′0 − ϕ0)

)
v = −ϵδx

4δt

(
v +

ϵ(ϕ′0 + ϕ0) + i(ϕ′0 − ϕ0)

ϵ

)2

+
1
4ϵ

δx
δt

(
ϵ(ϕ′0 + ϕ0) + i(ϕ′0 − ϕ0)

)2
,

(6.29)

and used
∫

e
1
2 ax2

=
√

2π
a . From equation (2.66) of ssec 2.4.3 we see that the path

integral should result in a delta function giving us a condition for the measure C.
The definition of the delta function as a limit is

lim
ϵ→0

δ(ϕ′0 − ϕ0) =

√
δx
δt

1
4πϵ

e−
δx
δt

(ϕ′0−ϕ0)
2

4ϵ . (6.30)

As ϵ → 0, the path integral (6.29) tends to |C|24
√

δt
δx

π3

ϵ δ(ϕ′0 − ϕ0), and so we should
set

C =
1
2

(
δx
δt

ϵ

π3

)1/4

, (6.31)

to obtain,

PIϵ→0 = lim
ϵ→0

∫
dϕ1dϕ2K∗(ϕ1, ϕ2; ϕ′0; ϵ)K(ϕ1, ϕ2; ϕ0; ϵ) = δ(ϕ′0 − ϕ0). (6.32)

The iϵ-prescription might seemed random or that it was pure luck that everything
worked out correctly. The issue is that our choice of iϵ is non-unique. One could
have arrived at the same result with a different prescription, if only she follows the
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rules

(i) The path integral
∫

dϕ1dϕ2K∗(ϕ1, ϕ2; ϕ′0; ϵ)K(ϕ1, ϕ2; ϕ0; ϵ) is convergent.

(ii) The evolution t = 0→ t = 1→ t = 0 results in a delta function,∫
dϕ1dϕ2K∗(ϕ1, ϕ2; ϕ′0; ϵ)K(ϕ1, ϕ2; ϕ0; ϵ) = δ(ϕ′0 − ϕ0).

6.2.1 Function Spaces Accommodating the iϵ-prescription

The iϵ plays a more dramatic role in our analyses than in ordinary quantum field
theory. Consider the evolution of a normalizable wavefunction Ψ(ϕ0) on the vertex
ϕ0 and evolve it by the propagator,

Ψ(ϕ1, ϕ2; ϵ) =
∫

dϕ0K(ϕ1, ϕ2; ϕ0; ϵ)Ψ(ϕ0)

=
1
2

(δx
δt

ϵ

π3

)1/4
e−

δt
δx

ϵ+i
8 (ϕ1−ϕ2)

2
∫

dϕ0e−
δx
δt

ϵ−i
8

(
2ϕ0−(ϕ1+ϕ2)

)2

Ψ(ϕ0). (6.33)

Using the coordinate change (6.20,6.21) we can rewrite the above as

Ψ(v, u; ϵ) = Ψ̃1(u; ϵ) · Ψ̃2(v; ϵ) (6.34)

where we have defined the wavefunctions Ψ̃1, Ψ̃2 as

Ψ̃1(u; ϵ) =
1√
2

( δt
δx

ϵ

π

)1/4
e−

δt
δx

ϵ+i
8 u2

(6.35)

Ψ̃2(v; ϵ) =
1√
2

∫
dϕ0e−

δx
δt

ϵ−i
8

(
2ϕ0−v

)2

Ψ(ϕ0). (6.36)

Observe that Ψ̃2 is an L2-normalized wavefunction since

∫
du|Ψ̃1(u; ϵ)|2 =

1
2

√
δt
δx

ϵ

π
e−

1
2

δt
δx

ϵ
4 u2

= 1. (6.37)

Moreover, Ψ(v, u; ϵ) is an L2- normalized wavefunction, see equation (2.69) of ssec.
2.4.3 and that results in Ψ̃2(v; ϵ) being one too. A peculiar feature is that (6.34) van-
ishes in the ϵ → 0 limit, although if we take its L2 norm for finite ϵ and then take
the limit ϵ → 0 we get 1. Apparently, the order of limits matters here: we should
compute the norm before taking the limit ϵ→ 0.

We will consider an illuminating example, let

Ψ(ϕ0) =
1

(2π)1/4 e−
1
4 ϕ2

0 , (6.38)

so that (6.33) becomes

Ψ(ϕ1, ϕ2; ϵ) =

(
δt
δx

ϵ
2π2

)
√

δt
δx + 2(ϵ− i)

e

− 1

8

(
δt
δx +2(ϵ−i)

)[( δt2

δx2 (ϵ+i)+2 δt
δx (1+ϵ2)

)
(ϕ1−ϕ2)

2+(ϵ−i)(ϕ1+ϕ2)
2

]
.

(6.39)
Easily you can check that

lim
ϵ→0+

∫
dϕ1dϕ2Ψ∗(ϕ1, ϕ2; ϵ)Ψ(ϕ1, ϕ2; ϵ) = 1, (6.40)
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while ∫
dϕ1dϕ2

(
lim

ϵ→0+
Ψ∗(ϕ1, ϕ2; ϵ)

)(
lim

ϵ→0+
Ψ(ϕ1, ϕ2; ϵ)

)
= 0. (6.41)

Indeed, the order of limits is important and in particular limϵ→0+ Ψ(ϕ1, ϕ2; ϵ) = 0 is
not a normalizable wavefunction.

Clearly this dependence on ϵ augments what we mean by a quantum wavefunc-
tion in the present setting. In order to treat this we need to understand the nature of
the Hilbert spacesHi.

In single particle quantum mechanics, we usually think of the Hilbert space as
being L2(R), but a more refined approach is to consider a rigged Hilbert space [51].
A note on semantics. The word "rigged" has nothing to do with any "fixing" or pre-
determining a result. A more faithful translation would be "equipped Hilbert space".
To rig a Hilbert space means simply to equip that Hilbert space with distribution the-
ory. So, it is not a replacement but a enlargement of the Hilbert space. We will briefly
explain the construction of such a function space.

The problem with the single-particle quantum mechanics Hilbert space being
L2(R) is that the x̂ and p̂ operators and polynomials therof do not map L2(R) to
itself. For instance, ψ(x) = 1√

π
1√

1+x2 is in L2(R) since

∫
dx|ψ(x)|2 =

1
π

arctan x|∞−∞ = 1. (6.42)

But actiong x̂ on the state gives us xψ(x) which is not in L2(R).
To ameliorate this issue, we consider Schwartz class functions S(R) which are a

subset of L2(R) with the property that any operator which is a finite order polyno-
mial in x̂’s and p̂’s maps S(R) to itself. We can then say that physical wavefunction
live in S(R). However, eigenfunctions of x̂,p̂ and polynomial combination of them
need not be in either S(R) or the larger space L2(R). An example of this kind of
functions is δ(x) or eipx. To accomodate these wavefunctions, we consider S×(R)
which is the space of antilinear functionals over S(R) since we want a space of kets.
Then our rigged Hilbert space is

S(R) ⊂ L2(R) ⊂ S×(R). (6.43)

Our kernel operator K maps S(R) to Schwartz class functions from R2 → C
which also have a dependence on ϵ. The notation for this space is S(R2, C) which
denotes Schwartz class functions with domain R2 and codomian C. We need to ex-
pand our codomain space C to accommodate ϵ-dependence, we call this augmented
space ∗C. So then we can write

K : S(R, ∗C)→ S(R2, ∗C). (6.44)

The notation ∗C denotes the hypercomplex number ref which is a central object
in the theory of non-standard analysis. Non-standard analysis is an extension of
analysis which includes infinitesimals and infinite number. The only notation we
will need, besided the ∗C symbol, is ’st’. This denotes the ’standard’ part of a real
numberl for instance st(x + ϵy) = x, and for a smooth function f (x, y) we have
st
(

f (x, ϵ)
)
= limϵ→0+ f (x, ϵ). See for [54, 50] a complete discussion.

In this set up the inner product for L2(R, ∗C) or L2(R2, ∗C), which induces an
inner product on S(R, ∗C) or S(R2, ∗C), is chosen as a semi-inner product. For two
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functions ψ(x; ϵ), ψ′(x; ϵ) ∈ L2(R, ∗C) that is

⟨ψ, ψ′⟩ := st
∫

dxψ∗(x; ϵ)ψ′(x; ϵ), (6.45)

and we have analogous inner products on the other function spaces. We used the
prefic ’semi’ since the ϵ part of a wavefunction will essentially be taken to zero when
we compute the inner product. The limit ϵ → 0+ is on the outside, which is in
agreement with our previous discussion.

The above considerations suggest that we should work with th augmented rigged
Hilbert spaces

S(R, ∗C) ⊂ L2(R, ∗C) ⊂ S×(R, ∗C), S(R2, ∗C) ⊂ L2(R2, ∗C) ⊂ S×(R2, C),
(6.46)

and our kernel may be viewed as implementing the maps

K : S(R, ∗C)→ S×(R2, ∗C), K† : S(R2, ∗C)→ S×(R2, C). (6.47)

In summary, the most intersting output of this discussion is the proposal that we
should allow some physics states to have ϵ dependence (i.e. a ’non-standard’ part),
and in doing so we should leverage the inner product in (6.45).

6.3 Nonunitary Isometric Quantum Evolution

The condition (6.32) can be expressed more algebraically. We have K : H0 → H1 ⊗
H2, and the condition tells us that

K†K = 1H0 . (6.48)

That is, if we evolve from t = 0 to t = 1 and then back, we find the identity operator
on the t = 0 Hilbert spaceH0.

This condition (6.48) tells us that K is a Hilbert space isometry. That is, if we take
any two states |Φ⟩ and |Φ⟩ in H0 at the initial time t = 0 and evolve them via K,
then their inner product is preserved:

⟨Φ′|K†K|Φ⟩ = ⟨Φ′|Φ⟩. (6.49)

Note that K|Φ⟩ and K|Φ′⟩ are each states in H1 ⊗H2 at time t = 1. We also have
that K† : H1 ⊗H2 → H0; in fact, the condition (6.48) constrains the possibilities for
KK† which is a map fromH1 ⊗H2 → H1 ⊗H2. In particular,(

KK†)(KK†) = KK†, (6.50)

which means that KK† is idempontent, (i.e. if you apply it to itself it gives back
itself), and since it is also Hermitian we conclude that

(
KK†) is a projector. In the

case of finite dimensional Hilbert spaces we would have

rank[KK†] = tr [KK†] = ∑
i

(
KK†)

ii = ∑
i

∑
j
KijK†

ji = ∑
j

∑
i
K†

jiKij

= ∑
j

(
KK†)

jj = tr [K†K] = rank[K†K] = rank[IH0 ] (6.51)
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and since dim
(
H0
)
= dim

(
IH0

)
̸= dim

(
IH1⊗H2

)
= dim

(
H1 ⊗H2

)
< ∞, we would

get KK† ̸= IH1⊗H2 meaning that the isometry is not unitary. We denoted by [Kij]

a matrix representation of the kernel K (and thereof the other kernels KK†,K†K).
But since the rank of IH0 is infinite we do not learn much about the rank of the
projector. We will show that KK† has a non-trivial nullspace, which definitively
establishes that K is not unitary and is instead merely an isometry. When we speak
of the nullspace of KK†, what we operationally mean is the space of vectors which
are mapped to zero norm states in the sense of (6.45).

We will consider the evolution of the system from t = 1 to t = 0, and then back
to t = 1. Returning to the position-space representation KK† corresponds to∫

dϕ0K(ϕ1, ϕ2; ϕ0; ϵ)K∗(ϕ′1, ϕ′2; ϕ0; ϵ) =
∫

dϕ0eiS∆̃[{ϕ1,ϕ2;ϕ0}]−iS∗∆̃[{ϕ
′
1,ϕ′2;ϕ0}], (6.52)

where, (with the help of (6.20,6.21)),

iS∆̃[{v, u; ϕ0}; ϵ]− iS∗∆̃[{v
′, u′; ϕ0}; ϵ] =

iδx
8δt

(v′ − v)(4ϕ0 − v− v′)

− ϵδx
8δt
(
(2ϕ0 − v)2 − (2ϕ0 − v′)2)

− δt
δx

i + ϵ

8
u2 − δt

δx
−i + ϵ

8
u′2. (6.53)

Plugging into the integral, and performing Gaussian integrations and square com-
pletments with respect to ϕ0, we get∫

dϕ0K(v, u; ϕ0; ϵ)K∗(v′, u′; ϕ0; ϵ) =
1

4π
exp

(
− 1

16ϵ

δx
δt

(v′ − v)2

− iδt
8δx

(u2 − u′2)− ϵ f (v, u, v′, u′)
)

(6.54)

where
f (v, u, v′, u′) =

1
16

(δx
δt

(v− v′)2 + 2
δt
δx

(u2 − u′2)
)

. (6.55)

In the limit of small ϵ which we will denote by ’∼’ we have

∫
dϕ0K(v, u; ϕ0; ϵ)K∗(v′, u′; ϕ0; ϵ) ∼

√
δt
δx

ϵ

π
δ
(
v− v′

)
e−

i
8

δt
δx (u

2−u′2)−ϵ f (v,u,v′,u′). (6.56)

To interpret (6.56) let us integrate our kernel against a normalizable wavefunction
Ψ(v, u). Since we are working in v, u coordinates the measure will pick up a factor of
1
2 due to the Jacobian from (ϕ1, ϕ2) → (v, u). Since the same transformation applies
to the wave function Ψ(ϕ1, ϕ2)→ Ψ(v, u) and we want it to be L2-normalizable with
respect to the dv′du′ measure, we multiply by an extra 1√

2
. That is:√

δt
δx

ϵ

8π

∫
dvduδ(v− v′)e

i
8

δt
δx (u

2−u′2)−ϵ f (v,u,v′,u′)Ψ(v, u). (6.57)

Performing the v integral, we obtain√
δt
δx

ϵ

8π
e−

ϵ−i
8

δt
δx u′2

∫
due−

ϵ+i
8

δt
δx u2

Ψ(v′, u). (6.58)
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Interestingly, there is an entire subspace of Ψ’s for which the right-hand side van-
ishes in the ϵ→ 0 limit. For instance,

Ψ(v, u) =
1√
2π

exp
(
− 1

4
v2 − 1

4
u2
)

(6.59)

is giving us

lim
ϵ→0

(√
δt
δx

ϵ

16π2 e−
ϵ−i

8
δt
δx u′2− 1

4 v′2
√

8π

(ϵ + i) δt
δx + 2

)
= 0. (6.60)

So, our wavefunction has the property

KK†|Ψ⟩ = 0. (6.61)

This establishes that KK† has a non-trivial nullspace, and accordingly K is an isom-
etry which is not unitary.

We can now graduate to a full-fledged field theory with an arbitrary number
of lattice sites. Suppose we choose a triangular lattice L of the 2-dimensional flat
spacetime, and we consider the propagator between two adjacent Cauchy slices.
Let the field variables on the ’past’ Cauchy slice be denoted by the vector ϕ⃗P with
|P| components, and the field variables on the ’future’ Cauchy slice by ϕ⃗ with |F|
components. We will suppose that |F| > |P|, namely that there are a greater number
of lattice points on the future Cauchy slice than on the past Cauchy slice. Then for a
free scalar field theory, the most general action will be of the form

S[{ϕ⃗F; ϕ⃗P}; ϵ] = ϕ⃗T
P ·Q · ϕ⃗P + ϕ⃗T

F · R · ϕ⃗P + ϕ⃗T
F · S · ϕ⃗F

+ iϵϕ⃗T
P ·M · ϕ⃗P + iϵϕ⃗T

F · L · ϕ⃗P + iϵϕ⃗T
F ·W · ϕ⃗F. (6.62)

Our propagator (6.15) becomes

K(ϕ⃗F; ϕ⃗P; ϵ) = Cei
(

ϕ⃗T
P ·Q·ϕ⃗P+ϕ⃗T

F ·R·ϕ⃗P+ϕ⃗T
F ·S·ϕ⃗F

)
−ϵ
(

ϕ⃗T
P ·M·ϕ⃗P+ϕ⃗T

F ·L·ϕ⃗P+ϕ⃗T
F ·W·ϕ⃗F

)
. (6.63)

Let us compute the path integral that propagates the system from past to future to
past. This is∫

dϕ⃗FK∗(ϕ⃗F; ϕ⃗′P; ϵ)K(ϕ⃗F; ϕ⃗P; ϵ)

=|C|2ei
(

ϕ⃗T
P ·Q·ϕ⃗P−ϕ⃗′P

T·Q·ϕ⃗′P+ϕ⃗T
F ·R·(ϕ⃗P−ϕ⃗′P)

)
−ϵϕ⃗T

P ·M·ϕ⃗P−ϵϕ⃗′P
T·M·ϕ⃗′P−ϵϕ⃗T

F ·L·(ϕ⃗P+ϕ⃗′P)−2ϵϕ⃗T
F ·W·ϕ⃗F .

(6.64)

We will calculate this integral schematically. Every constant or unimportant term
will be denoted by #. Let us begin by rearranging the path integral (7.19),∫

dϕ⃗FK∗(ϕ⃗F; ϕ⃗′P; ϵ)K(ϕ⃗F; ϕ⃗P; ϵ) = |C|2#
∫

dϕ⃗Fe−ϵϕ⃗T
F ·W·ϕ⃗F+ϕ⃗T

F ·
(

iR·(ϕ⃗P−ϕ⃗′P)−ϵL·(ϕ⃗P+ϕ⃗′P)
)

= |C|2#
∫

dϕF|1 · · · dϕF||F|e
−ϵ ∑|F|i=1 ∑|F|j=1 ϕF |iWijϕF |j+∑|F|i=1 ∑|P|j=1 ϕF |i

(
iRij(ϕP−ϕ′P)|j−ϵLij(ϕP+ϕ′P)|j

)
= |C|2 #

ϵ
|F|
2

e
#
ϵ

(
i(ϕ⃗P−ϕ⃗′P)

T·RT−ϵ(ϕ⃗P+ϕ⃗′P)
T·LT
)
·W−1

(
·iR·(ϕ⃗P−ϕ⃗′P)−ϵL·(ϕ⃗P+ϕ⃗′P)

)
, (6.65)
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where we used the identity
∫

dx⃗e−
ϵ
2 xT·A·x+xT·J =

(( 2π
ϵ

)N 1
det[A]

) 1
2
e

1
2ϵ JT·A−1·J for Gaus-

sian integrals of dimension N. For small ϵ the above integral becomes∫
dϕ⃗FK∗(ϕ⃗F; ϕ⃗′P; ϵ)K(ϕ⃗F; ϕ⃗P; ϵ) = |C|2 #

ϵ
|F|
2

e−
#
ϵ (ϕ⃗P−ϕ⃗′P)

T·RT·W−1·R·(ϕ⃗P−ϕ⃗′P). (6.66)

Notice that RT ·W−1 · R is a |P| × |P|matrix, so a better reorganization of the above
result is∫

dϕ⃗FK∗(ϕ⃗F; ϕ⃗′P; ϵ)K(ϕ⃗F; ϕ⃗P; ϵ) = |C|2 #

ϵ
|F|
2 −

|P|
2

1

ϵ
|P|
2

e−
#
ϵ (ϕ⃗P−ϕ⃗′P)

T·RT·W−1·R·(ϕ⃗P−ϕ⃗′P). (6.67)

Compare the previous result with the generalization of the delta function (6.30),

lim
ϵ→0

δ(N)(ϕ⃗− ϕ⃗′) ∼ #

ϵ
N
2

e−
#
ϵ (ϕ⃗−ϕ⃗′)T·(ϕ⃗−ϕ⃗′), (6.68)

which has the property δ(N)
(

A · (ϕ⃗− ϕ⃗′)
)
= 1
|det[A]|δ

(N)(ϕ⃗− ϕ⃗′)1 meaning that,

lim
ϵ→0

δ(N)
(

A · (ϕ⃗− ϕ⃗′)
)
∼ #

ϵ
N
2

e−
#
ϵ (ϕ⃗−ϕ⃗′)T·AT·A·(ϕ⃗−ϕ⃗′) ∼ lim

ϵ→0
δ(N)(ϕ⃗− ϕ⃗′), (6.69)

for a N × N matrix A. So, in the limit of ϵ→ 0 equation (6.67) becomes

lim
ϵ→0

∫
dϕ⃗FK∗(ϕ⃗F; ϕ⃗′P; ϵ)K(ϕ⃗F; ϕ⃗P; ϵ) = |C|2 #

ϵ
|F|
2 −

|P|
2

δ(|P|)(ϕ⃗P − ϕ⃗′P). (6.70)

Letting C = ϵ
|F|−|P|

4 /#1/2, we are left with

lim
ϵ→0

∫
dϕ⃗FK∗(ϕ⃗F; ϕ⃗′P; ϵ)K(ϕ⃗F; ϕ⃗P; ϵ) = δ(|P|)(ϕ⃗P − ϕ⃗′P), (6.71)

and so K†K is the dentity. Hence K is a Hilbert space isometry. Similarly, if we
examine future to past to future propagation we find∫

dϕ⃗PK∗(ϕ⃗′F; ϕ⃗P; ϵ)K(ϕ⃗F; ϕ⃗P; ϵ)

=|C|2
∫

dϕ⃗Pei
(

ϕ⃗T
F ·S·ϕ⃗F−ϕ⃗′F

T·S·ϕ⃗′F+(ϕ⃗F−ϕ⃗′F)
T·R·ϕ⃗P

)
−2ϵϕ⃗T

P ·K·ϕ⃗P−ϵ(ϕ⃗F+ϕ⃗′F)
T·L·ϕ⃗P−ϵϕ⃗T

F ·W·ϕ⃗F−ϵϕ⃗′F
T·W·ϕ⃗′F

=|C|2#
∫

dϕ⃗Pe−#ϵϕ⃗T
P ·M·ϕ⃗P+

(
i(ϕ⃗F−ϕ⃗′F)

T·R−ϵ(ϕ⃗F+ϕ⃗′F)
T·L
)
·ϕ⃗P

=|C|2 #

ϵ
|P|
2

e
#
ϵ

(
i(ϕ⃗F−ϕ⃗′F)

T·R−ϵ(ϕ⃗F+ϕ⃗′F)
T·L
)
·M−1·

(
iRT·(ϕ⃗F−ϕ⃗′F)−ϵLT·(ϕ⃗F+ϕ⃗′F)

)
=

#

ϵ
|P|
2

e−
#
ϵ (ϕ⃗F−ϕ⃗′F)

T·R·M−1·RT·(ϕ⃗F−ϕ⃗′F), (6.72)

where we used the identity
∫

dx⃗e−
ϵ
2 xT·A·x+JT·x =

(( 2π
ϵ

)N 1
det[A]

) 1
2
e

1
2ϵ JT·A−1·J for Gaus-

sian integrals of dimension N and the last equality holds for small ϵ. Observe that
R · M−1 · RT is an |F| × |F| matrix. It seems that in the ϵ → 0 limit we would ob-
tain ∼ δ(|F|)(ϕ⃗F − ϕ⃗′F) by comparing with equation (6.69) and with a reshuffling of

1Properties of the dirac delta function with a matrix argument can be found in the paper [69] of L.
Zhang.



80 Chapter 6. FEM in Scalar Field Theory

the power of the ϵ term in front. In that case our kernel KK† would be the identity,
hence K would be unitary. But this is to quick and contradicts the previous results
of our toy model for a scalar field on a triangle. We need to take into account the fact
that R is a |F| × |P| matrix for |F| > |P|. This means that the rank of the matrix R is
|P|. Hence, the integral cannot possibly equal δ(|F|)(ϕ⃗F − ϕ⃗′F), and so KK† is not the
identity. We again conclude that K is not unitary and is instead just an isometry.

In an expanding spacetime, we have a sequence of Cauchy slices such that the
number of lattie sites per Cauchy slice is increasing with time. If K2←1 is the prop-
agator from the first to second Cauchy slice, K3←2 from the second to third, and so
one, then our analysis above establishes that eachKi+1←i is a Hilbert space isometry.
Then it is readily checked that for i < j,

Kj←i := Kj←j−1 · · · Ki+2←i+1Ki+1←i, (6.73)

is also Hilbert space isometry, since K†
i→jKi→j is the identity on the Hilbert space

corresponding to the ith Cauchy slice, and Ki→jK†
i→j is a non-identity projection.
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Chapter 7

FEM in Fermionic Field Theory

In the previous chapter we applied the FEM method on scalar field theory where we
showed that quantum mechanical time evolution is isometric. In sec. 6.3 it was noted
that for a case of finite dimensional Hilbert spaces the isometry of the evolution
operatorKwould have been obvious without the need of dealing with the null space
of the KK† projector. That prompted us to apply the FEM method in fermionic
field theory where the Hilbert spaces are finite dimensional, in hope of getting more
intuition for the evolution of quantum states in our lattice field theory.

One anticipates that for fermions the whole procedure will be simplified due to
the grassmannian nature of the fields. For example, the problems of convergence of
the path integral that we faced in the scalar field theory are supposed to be easily
solvable. It turns out that this is not the case. For free fermions, even in flat space-
time, there are additional difficulties that are not addressed in the FEM literature to
our knowledge. It is pointed out a long time ago in [29] that a non-regular, aka FDM,
latticization is unclear with fermions. Even nowadays the only two references that
rigorously study fermions on a FEM lattice are [13] and [11] but there is no men-
tion about quantum mechanical time evolution. Their analysis is about the energy
spectrum of the field on a curved manifold without time evolution.

The organization of the chapter goes as follows. In sec. 7.1 we will discretize our
classical action using the FEM method. In section 7.2 we describe the problems that
arise in the quantization of the discretized FEM field. Finally, in section 7.3 there is a
discussion for the nourishment of those problems.

7.1 Classical Considerations

Similarly with the scalar field case both the analysis and geometric methods of ssec
(5.2.1,5.2.2) will be utilized for the calculation of the classical discretized fermionic
FEM action.

7.1.1 Analysis Approach to Fermionic FEM on a Triangle

We will explore the FEM discretizations of classical field equations of motion for
the fermionic theory in the same 2 dimensional triangle lattice ∆̃ as for the scalar
field, see Fig. 7.1. The FEM basis {B(j)

∆̃
(t, x)} for j = 0, 1, 2 is given by equations
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FIGURE 7.1: The triangle ∆̃ in R2 with vertices (t, x) = (0, 0), (δt,−δx)
and (δt, δx). We have labeled the vertices by their corresponding field

values Ψ0 −Ψ†
0, Ψ1 −Ψ†

1, Ψ2 −Ψ†
2.

(6.33,6.7,6.8) in ssec. 6.1.1. We present them below for the convenience of the reader,

B(0)
∆̃

(t, x) =
(

1− t
δt

)
χ∆̃(t, x), (7.1)

B(1)
∆̃

(t, x) =
( t

2δt
− x

2δx

)
χ∆̃(t, x), (7.2)

B(2)
∆̃

(t, x) =
( t

2δt
+

x
δx

)
χ∆̃(t, x). (7.3)

The expansion of the fermion field in this basis is

Ψ(t, x) = Ψ0B(0)
∆̃

(t, x) + Ψ1B(1)
∆̃

(t, x) + Ψ2B(2)
∆̃

(t, x), (7.4)

where Ψ takes values in a complex vector space described concretely as C2. The
components of a representation of the fields Ψi in the C2 space are denoted by,

Ψi =

[
Ψi0
Ψi1

]
, (7.5)

with i = 0, 1, 2. Our goal is to FEM discretize the Dirac action for a massless fermion
in 2-dimensions which is

S =
∫

dx2 Ψ(iγµ∂µΨ), (7.6)

where Ψ = Ψ†γ0 and the gamma matrices γµ with µ = 0, 1 have the defining prop-
erty {γµ, γν} = γµγν + γνγµ = −2ηµν I2 to generate a Clifford algebra. We choose
the following representation for the gamma’s

γ0 =

[
1 0
0 −1

]
, γ1 =

[
0 1
−1 0

]
, γ0γ1 =

[
0 1
1 0

]
. (7.7)

In order for Hermiticity of the discretized action to be enforced, one must use the
freedom of the continuum Dirac action with respect to the boundary. This results in
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an action of the form,

S =
∫

dx2
( i

2
Ψγµ∂µΨ− i

2
(
∂µΨ

)
γµΨ

)
. (7.8)

Plugging the field expansion (7.4) into the action (7.8) and using Mathematica, we
get

S∆̃[{Ψ0, Ψ†
0, Ψ1, Ψ†

1, Ψ2, Ψ†
2}] =−

idx
12
(
Ψ†

0 + Ψ†
1 + Ψ†

2
)(

2Ψ0 −Ψ1 −Ψ2
)

+
idx
12
(
2Ψ†

0 −Ψ†
1 −Ψ†

2
)(

Ψ0 + Ψ1 + Ψ2
)

+
idt
12
(
Ψ†

0 + Ψ†
1 + Ψ†

2
) [0 1

1 0

] (
Ψ2 −Ψ1

)
− idt

12
(
Ψ†

2 −Ψ†
1
) [0 1

1 0

] (
Ψ0 + Ψ1 + Ψ2

)
=+

iδx
4

Ψ†
0
(
Ψ1 + Ψ2

)
− iδx

4
(
Ψ†

1 + Ψ†
2
)
Ψ0

+
iδt
12

Ψ†
0

[
0 1
1 0

] (
Ψ2 −Ψ1

)
− iδt

12
(
Ψ†

2 −Ψ†
1
) [0 1

1 0

]
Ψ0

+
iδt
12
(
Ψ†

1 + Ψ†
2
) [0 1

1 0

] (
Ψ2 −Ψ1

)
− iδt

12
(
Ψ†

2 −Ψ†
1
) [0 1

1 0

] (
Ψ1 + Ψ2

)
(7.9)

which is the FEM discretization of the action for a massless fermion field in the tri-
angle ∆̃. One can easily verify that the action is indeed Hermitian S†

∆̃ = S∆̃.

7.1.2 Geometric Approach to Fermionic FEM on a Triangle

The Euclidean continuum Dirac action is of the form,

I∆̃ =
∫

∆̃
dtEdx

(1
2

Ψ(tE, x)γ⃗E · ∇⃗Ψ(tE, x)− 1
2
(
∇⃗Ψ(tE, x)

)
· γ⃗EΨ(tE, x)

)
, (7.10)

where this time anti-Hermiticity is being enforced. This is due to the fact that the
Dirac operator is anti-Hermician in Euclidean signature. The Euclidean gamma ma-
trices are related to the Minkowskian by the equations

γ0
E = γ0, γ1

E = iγ1. (7.11)

and are defined by the property {γµ
E, γν

E} = γ
µ
Eγν

E + γν
Eγ

µ
E = 2δµν I2.

A more appealing geometric form than the one that was used for the scalar field
in ssec 5.2.2 can be found. Moreover, it will be more suited for the fermionic action
which only has first order derivatives. A convenient way to derive this is to relax the
constraint ξ0 + ξ1 + ξ2 = 1 and introduce an overcomplete set of 2 + 1 dual vectors,
n⃗k = ∇⃗ξk with k = 0, 1, 2, that are perpendicular to the face opposite the vertex k
and normalized relative to the edge vectors by

n⃗k · l⃗ij = δk
i − δk

j . (7.12)
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FIGURE 7.2: The triangle ∆̃ parametrized by l⃗10, l⃗20 with the addition
of the vector l⃗21.

For our triangle ∆̃ we have, see Fig. 7.2,

l⃗10 = (δtE, δx), l⃗20 = (δtE,−δx), l⃗21 = l⃗20 − l⃗10 = (0,−2δx) (7.13)

which translates into a {⃗nk}k=0,1,2 basis as,

n⃗0 =
(
− 1

δtE
, 0
)

, n⃗1 =
( 1

2δtE
,

1
2δx

)
, n⃗2 =

( 1
2δtE

,− 1
2δx

)
. (7.14)

In this over-complete basis, the gradient is ∇⃗Ψ = n⃗0Ψ0 + n⃗1Ψ1 + n⃗2Ψ2. Expanding
Ψ(ξ) = Ψ0ξ0 + Ψ1ξ1 + Ψ2ξ2 into the linear FEM basis and plugging into the action
(7.10) we get

I∆̃[{Ψ0, Ψ†
0, Ψ1, Ψ†

1, Ψ2, Ψ†
2}] =

δtEδx
6

2

∑
i,j=0

Ψi (⃗nj − n⃗i) · γEΨj

=+
δx
4

Ψ†
0(γ

0
E)

2(Ψ1 + Ψ2
)
− δx

4
(
Ψ†

1 + Ψ†
2
)
(γ0

E)
2Ψ0

+
δtE

12
(
Ψ†

2 −Ψ†
1
)
γ0

Eγ1
EΨ0 −

δtE

12
Ψ†

0γ0
Eγ1

E
(
Ψ2 −Ψ1

)
+

δtE

12
(
Ψ†

2 −Ψ†
1
)
γ0

Eγ1
E
(
Ψ1 + Ψ2

)
− δtE

12
(
Ψ†

1 + Ψ†
2
)
γ0

Eγ1
E
(
Ψ2 −Ψ1

)
(7.15)

where we used the identity of the barycentric coordinates
∫

dtEdxξ i(tE, x) =
∫

dξ1dξ2√g∆̃ξ i =
√g∆̃
(1+2)! for i = 1, 2 with

√g∆̃ = 2δEδx; see [62]. Wick-rotating back to Minkowski time,
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tE → it, we get

I∆̃[{Ψ0, Ψ†
0, Ψ1, Ψ†

1, Ψ2, Ψ†
2}] = +

δx
4

Ψ†
0
(
Ψ1 + Ψ2

)
− δx

4
(
Ψ†

1 + Ψ†
2
)
Ψ0

− δt
12
(
Ψ†

2 −Ψ†
1
) [0 1

1 0

]
Ψ0 +

δt
12

Ψ†
0

[
0 1
1 0

] (
Ψ2 −Ψ1

)
− δtE

12
(
Ψ†

2 −Ψ†
1
) [0 1

1 0

] (
Ψ1 + Ψ2

)
+

δtE

12
(
Ψ†

1 + Ψ†
2
) [0 1

1 0

] (
Ψ2 −Ψ1

)
, (7.16)

which is equivalent, see equation (7.9), to

−I∆̃[{Ψ0, Ψ†
0, Ψ1, Ψ†

1, Ψ2, Ψ†
2}] = iS∆̃[{Ψ0, Ψ†

0, Ψ1, Ψ†
1, Ψ2, Ψ†

2}]. (7.17)

7.2 Quantum Considerations and Isometric Evolution

In order to proceed to quantum theory we will again perform a path integral quan-
tization of the free massless fermion field on the triangle ∆̃. The propagator from
t = 0 to t = 1 is

K(Ψ1, Ψ†
1, Ψ2, Ψ†

2; Ψ0, Ψ†
0) = CeiS∆̃[{Ψ0,Ψ†

0 ,Ψ1,Ψ†
1 ,Ψ2,Ψ†

2}]. (7.18)

We will examine the evolution of the system from t = 0 to t = 1 back to t = 0. This
is expressed by the path integral

PI : =
∫

dΨ1dΨ†
1dΨ2dΨ†

2K†(Ψ1, Ψ†
1, Ψ2, Ψ†

2; Ψ′0, Ψ†′
0 )K(Ψ1, Ψ†

1, Ψ2, Ψ†
2; Ψ0, Ψ†

0)

= |C|2
∫

dΨ1dΨ†
1dΨ2dΨ†

2eiS∆̃[{Ψ0,Ψ†
0 ,Ψ1,Ψ†

1 ,Ψ2,Ψ†
2}]−iS†

∆̃[{Ψ
′
0,Ψ†′

0 ,Ψ1,Ψ†
1 ,Ψ2,Ψ†

2}], (7.19)

where,

iS∆̃[{Ψ0, Ψ†
0,Ψ1, Ψ†

1, Ψ2, Ψ†
2}]− iS†

∆̃[{Ψ
′
0, Ψ†′

0 , Ψ1, Ψ†
1, Ψ2, Ψ†

2}] =

=+
δx
4
(
Ψ†′

0 −Ψ†
0
)(

Ψ1 + Ψ2
)
− δx

4
(
Ψ†

1 + Ψ†
2
)

+
δt
12
(
Ψ†′

0 −Ψ†
0
) [0 1

1 0

] (
Ψ2 −Ψ1

)
− δt

12
(
Ψ†

2 −Ψ†
1
) [0 1

1 0

] (
Ψ†′

0 −Ψ†
0
)
. (7.20)

We will use a coordinate transformation of the form.

u = Ψ2 −Ψ1 (7.21)
v = Ψ2 + Ψ1 (7.22)
a = Ψ′0 −Ψ0 (7.23)
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Unravelling equation (7.20) in these coordinates yields,(
iS∆̃ − iS†

∆̃

)
[{ai, a∗i ,vi, v∗i , ui, u∗i }i=0,1] =

=− δx
4

v0a∗0 −
δx
4

v∗0a0 −
δx
4

v1a∗1 −
δx
4

v∗1a1

− δt
12

u0a∗1 −
δt
12

u∗0a1 −
δt
12

u1a∗0 −
δt
12

u∗1a0. (7.24)

Plugging into the path integral (7.19) we get,

PI =16|C|2
∫

dv0dv1dv∗0dv∗1du0du1du∗0du∗1e
(

iS∆̃−iS†
∆̃

)
[{ai ,a∗i ,vi ,v∗i ,ui ,u∗i }i=0,1]

=16|C|2
(δx

4

)4( δt
12

)4
a∗0a0a∗1a1a∗1a1a∗0a0

=0, (7.25)

where the factor of 16 comes for the inverse of the determinant of the coordinate
transformation since we are working with Grassmann numbers. As you can see we
end up with a pathological result which means that there is no time propagation of
the states from t = 0 to t = 1 to t = 0. Ideally we would like the path integral to
result in a delta function of the form,

δ(a0, a∗0 , a1, a∗1) = a0a∗0a1a∗1 . (7.26)

We speculated that for this to happen we need an ϵ1-prescription. There were many
failed attempts. The only prescription that seemed to work, but it is highly problem-
atic, is the following

S∆̃[{Ψ0, Ψ†
0,Ψ1, Ψ†

1, Ψ2, Ψ†
2}; E, E†] =

=+
iδx
4

Ψ†
0
(
Ψ1 + Ψ2

)
− iδx

4
(
Ψ†

1 + Ψ†
2
)
Ψ0

+
iδt
12

Ψ†
0

[
0 1
1 0

] (
Ψ2 −Ψ1

)
− iδt

12
(
Ψ†

2 −Ψ†
1
) [0 1

1 0

]
Ψ0

+
iδt
12
(
Ψ†

1 + Ψ†
2
) [0 1

1 0

] (
Ψ2 −Ψ1

)
− iδt

12
(
Ψ†

2 −Ψ†
1
) [0 1

1 0

] (
Ψ1 + Ψ2

)
+

δx
8

E†(Ψ1 + Ψ2
)
− δx

8
(
Ψ†

1 + Ψ†
2
)
E

+
δt
24

E†
[

0 1
1 0

] (
Ψ2 −Ψ1

)
− δt

24
(
Ψ†

2 −Ψ†
1
) [0 1

1 0

]
E, (7.27)

where,

E =

[
ϵ
ϵ

]
, (7.28)

1Typically, we use an iϵ-prescription. In our case, the integrated parameters take values in the
complex numbers so the prescription should not necessarily be imaginary. In standard QFT, the iϵ-
prescription is used in the calculation of the propagator where the integration parameter is real i.e.
the 0-momentum component. In that case, there is a reason to be made for an imaginary prescription.
Nevertheless, one could attempt the usual iϵ-prescription but since our work with fermions, as you
will shortly see, is highly problematic that attempt is left to the reader.
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with ϵ being a real number and not a Grassman variable. In this setting and using
coordinates (7.21,7.22,7.23) equation (7.24) becomes,(

iS∆̃ − iS†
∆̃

)
[{a, a†,v, v†, u, u†}; E, E†] =

=+
δx
4
(a† + iE†)v− δx

4
v†(a + iE)

+
δt
12

(a† + iE†)

[
0 1
1 0

]
u− δt

12
u†
[

0 1
1 0

]
(a + iE), (7.29)

which unravelled is equal to,(
iS∆̃−iS†

∆̃

)
[{ai, a∗i , vi, v∗i , ui, u∗i }i=0,1; ϵ] =

=− δx
4

v0(a∗0 + iϵ)− δx
4

v∗0(a0 + iϵ)− δx
4

v1(a∗1 + iϵ)− δx
4

v∗1(a1 + iϵ)

− δt
12

u0(a∗1 + iϵ)− δt
12

u∗0(a1 + iϵ)− δt
12

u1(a∗0 + iϵ)− δt
12

u∗1(a0 + iϵ). (7.30)

Now, the equation (7.25) for the path integral takes the form,

PIϵ :=16|C|2
∫

dv0dv1dv∗0dv∗1du0du1du∗0du∗1e
(

iS∆̃−iS†
∆̃

)
[{ai ,a∗i ,vi ,v∗i ,ui ,u∗i }i=0,1;ϵ]

=16|C|2
(δx

4

)4( δt
12

)4(
(a∗0 + iϵ)(a0 + iϵ)(a∗1 + iϵ)(a1 + iϵ)

× (a∗1 + iϵ)(a1 + iϵ)(a∗0 + iϵ)(a0 + iϵ)
)

=16|C|2
(δx

4

)4( δt
12

)4
(2iϵ)4a0a∗0a1a∗1 . (7.31)

If we set,

C =

(
12

δxδtϵ

)2

(7.32)

we obtain, in the limit of ϵ→ 0,

PIϵ→0 = δ(a0, a∗0 , a1, a∗1). (7.33)

Returning back to our original coordinates this is equal to,

PIϵ→0 = lim
ϵ→0

∫
dΨ1dΨ†

1dΨ2dΨ†
2

(
K†(Ψ1, Ψ†

1, Ψ2, Ψ†
2; Ψ′0, Ψ†′

0 ; E, E†)

×K(Ψ1, Ψ†
1, Ψ2, Ψ†

2; Ψ0, Ψ†
0; E, E†)

)
= δ

(
Ψ′0 −Ψ0, Ψ†′

0 −Ψ†
0
)
. (7.34)

As you can see, our ϵ-prescription enables us to arrive in a delta function and thus
our kernel K ends up being an isometry from H1 → H1 ⊗ H2. The isometry is
nonunitary since rank[KK†] = rank[K†K] = rank[IH0 ] and dim

(
H0
)
= dim

(
IH0

)
̸=

dim
(
IH1⊗H2

)
= dim

(
H1 ⊗H2

)
< ∞, meaning KK† ̸= IH1⊗H2 .

We will not proceed further in our work with fermions due to the fact that our
way of nourishing the path integral is controversial.
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7.3 Discussion

Initially, let us compare the scalar and fermion case in order to get some intuition
about the construction of the isometric evolution. For the scalar case the path inte-
gral PI|scalar without the ϵ-prescription diverges to infinity,

PI|scalar =
∫

dϕ1dϕ2K∗(ϕ1, ϕ2; ϕ′0)K(ϕ1, ϕ2; ϕ0) = ∞, (7.35)

while in the fermion case the path integral PI| f ermion is zero,

PI| f ermion =
∫

dΨ1dΨ†
1dΨ2dΨ†

2K†(Ψ1, Ψ†
1, Ψ2, Ψ†

2; Ψ′0, Ψ†′
0 )K(Ψ1, Ψ†

1, Ψ2, Ψ†
2; Ψ0, Ψ†

0)

= 0. (7.36)

This is to be expected since, in general, the path integral construction between scalars
and fermions has an inverse relationship.

We nourished this problem by introducing an ϵ-prescription. For the scalar case,
we were able to achieve a continuum limit for the prescription which is of the form,

iϵ · 1
2

∫
dx2δµν∂µϕ∂νϕ. (7.37)

This combined with the fact that we defined the measure of the path integral to be
controled by a constant C in the propagator (6.15) which was,

Cscalar =
1
2

(
δx
δt

ϵ

π3

)1/4

, (7.38)

resulted in a convergent path integral of the form,

PIϵ|scalar =
∫

dϕ1dϕ2K∗(ϕ1, ϕ2; ϕ′0; ϵ)K(ϕ1, ϕ2; ϕ0; ϵ) = δ(ϕ′0 − ϕ0). (7.39)

In the case of the fermion we did not achieved a continuum limit and our pre-
scription was designed only to superficially render the path integral to result in a
delta function. The prescription was,

+
δx
8

E†(Ψ1 + Ψ2
)
− δx

8
(
Ψ†

1 + Ψ†
2
)
E

+
δt
24

E†
[

0 1
1 0

] (
Ψ2 −Ψ1

)
− δt

24
(
Ψ†

2 −Ψ†
1
) [0 1

1 0

]
E. (7.40)

Including the defining constant of the measure,

C f ermion =

(
12

δxδtϵ

)2

, (7.41)
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it yields a path integral of the form,

PIϵ| f ermion =

=
∫

dΨ1dΨ†
1dΨ2dΨ†

2K†(Ψ1, Ψ†
1, Ψ2, Ψ†

2; Ψ′0, Ψ†′
0 ; E, E†)K(Ψ1, Ψ†

1, Ψ2, Ψ†
2; Ψ0, Ψ†

0; E.E†)

=δ
(
Ψ′0 −Ψ0, Ψ†′

0 −Ψ†
0
)
. (7.42)

Notice that in the limit of ϵ → 0 there is also an inverse relationship between the
measures since,

lim
ϵ→0

Cscalar = 0, lim
ϵ→0

C f ermion = ∞, (7.43)

which probably occurs again due to the nature of the scalar and fermionic path inte-
gral. The measure absorbs each divergence by being divergent in the opposite way
in order for our path integral to result in a finite answer.

The issue with our prescription, in the fermion case, is that the FEM discretized
action contains terms that are Grassmann-odd, aka linear fermionic terms. In con-
ventional formulations the action and the Hamiltonian should be Grassmann-even.
Grassmann-even numbers commute with each other and they are often called c-
numbers, while Grassmann-odd anticommute. Since the Hamiltonian is supposed
to measure energy, which is an ordinary number, it should contain an even number
of Grassmann-odd terms. There might be a case against this, since we discretized
time and so there is no Hamiltonian for the above argument to hold. Moreover, our
Grassmann-odd terms are part of an ϵ-prescription which at the end of our calcula-
tion should vanish, since we are taking the limit ϵ→ 0.

Looking back in our PI| f ermion computation (7.25), we observe that the reason for
it to be zero is the emergence of a doubling effect on the a components. We present
it below for the convenience of the reader,

PI f ermion = 16|C|2
(δx

4

)4( δt
12

)4
a∗0a0a∗1a1a∗1a1a∗0a0, (7.44)

where,

a0 = Ψ′00 −Ψ00, a1 = Ψ′01 −Ψ01, a∗0 = Ψ∗
′

00 −Ψ∗00, a∗1 = Ψ∗
′

01 −Ψ∗01. (7.45)

This observation could lead one to think that the pathology of the path integral is due
to the well-known fermion doubling problem. In lattice field theory, even without
the FEM discretization, fermion doubling occurs when naively putting the fermionic
fields on a lattice, resulting in more fermionic states than expected. It is intractably
linked to chiral invariance by the Nielsen-Ninomiya theorem [65]. A naive fermionic
lattice action could possess a symmetry that it is not found in the continuum limit.
There are many strategies that are used to solve this problem requiring modified
fermions which reduce to the Dirac fermion only in the continuum limit.

In our case the FEM discretized action (7.9) is indeed problematic according to
[11]. The ansatz of the previous reference for a FEM discretized action, in the Eu-
clidean signature, is of the following form,

Iansatz =
1
2 ∑
⟨i,j⟩

Vij

l2
ij

(
Ψi⃗lij · γ⃗EΨj −Ψ j⃗lij · γ⃗EΨi

)
. (7.46)
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Notice that the only difference with the action (7.16),

Inaive =
δtEδx

6

2

∑
⟨i,j⟩

Ψi (⃗nj − n⃗i) · γEΨj, (7.47)

that we used in our computation is the replacement of (⃗nj − n⃗i) · γ⃗E with Vij

l2
ij

l⃗ij · γ⃗E

where Vij could be thought as a non-zero number2. This has implications of spin
orientations upon the lattice but does not solve our problem since it only results in a
change of the numerical values in front of a∗0a0a∗1a1a∗1a1a∗0a0 in (7.44)3.

Besides a change in the action the fermionic doubling problem could be over-
come by the addition of a Wilson term which acts like a mass operator in the action
(7.46). That was a potential candidate for an ϵ-prescription. A Wilson term is,

IWilson = ∑
⟨i,j⟩

Vij

l2
ij

(
Ψi −Ψj

)(
Ψi −Ψj

)
. (7.48)

Again this does not solve our problem. If you unravel the summation and try to
incorporate the term in the path integral calculation you will once more end up with
residual α’s.

One last observation that might be useful is the following. In the scalar case the
action is of the form (6.26). That is,

S∆̃[{ϕ0, ϕ1, ϕ2}; ϵ}] = δx
δt
· 1 + iϵ

8
(
2ϕ0 − (ϕ1 + ϕ2)

)2 − δt
δx
· 1− iϵ

8
(ϕ1 − ϕ2)

2, (7.49)

which following a coordinate transformation of the form u = ϕ1 − ϕ2, v = ϕ1 + ϕ2
becomes,

S∆̃[{ϕ0, v, u}; ϵ}] = δx
δt
· 1 + iϵ

8
(
2ϕ0 − v

)2 − δt
δx
· 1− iϵ

8
u2. (7.50)

Notice that the degrees of freedom ϕ0 and u are uncoupled, while ϕ0 seems to be
coupled with v. That means that the initial degrees of freedom at t = 0 do not
couple with all the degrees of freedom at t = 1.

In the fermion case the action (7.9), combined with the coordinate transformation
u = Ψ2 −Ψ1, v = Ψ2 + Ψ1, yields,

S∆̃[{Ψ0, Ψ†
0, v, v†, u, u†}] = +

iδx
4

Ψ†
0v− iδx

4
v†Ψ0

+
iδt
12

Ψ†
0

[
0 1
1 0

]
u− iδt

12
u†
[

0 1
1 0

]
Ψ0

+
iδt
12

v†
[

0 1
1 0

]
u− iδt

12
u†
[

0 1
1 0

]
v. (7.51)

The initial degrees of freedom Ψ†
0 and Ψ0 at t = 0 are coupled with all the final de-

grees of freedom v, u and v†, u† at t = 1, respectively. The same behaviour between
the degrees of freedom is observed in the previous attempts (7.46,7.48) for a possible
solution of the problem and it might contribute in the fermion doubling.

2The Vij’s is actually 2-dimensional hybrid volumes for the links between the lattice sites. More
information can be found in [11]. For our investigation, only their non-zero nature is needed.

3After a Wick-rotation in the Minkowskian signature.
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In conclusion, our FEM discretized action for the fermion is naive but even with
corrections does not render the time evolution viable. This possibly comes from the
fact that the initial degrees of freedom couple with all the final degrees of freedom re-
sulting in a doubling of the Ψ0’s in the path integral. Residual symmetries due to dis-
cretization is a usual problem in fermionic theories and our situation might belong
in this category. Another possibility is that the path integral measure is not a flat one.
That would make C f ermion a function of fields in our definition (7.18) of the propaga-
tor K(Ψ1, Ψ†

1, Ψ2, Ψ†
2; Ψ0, Ψ†

0). Additional information about an ϵ-prescription could
come from an examination of the normalization of the wavefunctions, c.f. ssec. 6.2.1.
Nevertheless, our Grassmann-odd ϵ-prescription (7.40) seems to break this doubling
of Ψ0’s and could act as a hint for future research in this direction.
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Chapter 8

Closing Remarks and Future
Endeavours

In our final remarks the goal is to illuminate some foggy aspects of our previous
work and suggest future research directions. The organization of this chapter goes
as follows. In sec. 8.1 we describe the FEM latticization of the continuum moving
mirror model that we saw earlier and suggest further research in order to achieve a
better understanding of the FEM method on the mirror toy-models. In sec. 8.2 we
present how the postulate of unitarity of quantum theory emerges in our setting and
complement with comments for further study. Next, in sec. 8.3 and ssec. 8.3.1 we
mention the intuitive connection between our isometric time evolution and quantum
error correction codes while suggesting further work for the entanglement entropy
of a region of de Sitter spacetime. We conclude with a closing statement 8.4.

8.1 FEM in the Moving Mirror

In chapter 3 we dived deep into moving mirrors as a toy model for cosmological
expansion. While in sec. 5.2 we argued that FEM discretization is more suitable for
spacetimes with a time-dependent boundary. As a matter of fact Fig. 5.5 illustrates
how FEM discretization approaches a spacetime with a moving mirror boundary.
The boundary corresponds to a uniformly accelarating mirror in 1 + 1 dimensions.
We will proceed in a schematic construction of its action, in order to guide further
research into this toy-model.

At first we consider a 1 + 1 free massless scalar field for t ≥ 0 without a mirror
boundary. We leverage a triangulation of isosceles with width 2δx and height δt, see
Fig. 8.1. In order to satisfy the CFL condition [21] for numerical stability we choose
δt
δx < 1. In order to utilize the FEM machinery we label vertices according to

(8.1)

Let▽i,j denote a triangular plaquette with is bottom vertex labeled by ϕi,j, its upper
left vertex labeled by ϕi+1,j and its upper right vertex labeled by ϕi+1,j+1. Similarly,
let i,j△ denote a plaquette with its bottom left vertex labeled by ϕi,j, its upper ver-
tex labeled by ϕi+1,j+1, and its lower right vertex labeled by ϕi,j+1. Each of these
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FIGURE 8.1: A triangulation of R2 for t ≥ 0, built out of isosceles
triangles. The figure was taken from [19].

plaquettes contributes to the total lattice action as,

S[▽i,j; ϵ] =
δx
δt
· 1 + iϵ

8
(
2ϕi,j − (ϕi+1,j+1 + ϕi+1,j)

)2 − δt
δx
· 1− iϵ

8
(ϕi+1,j+1 − ϕi+1,j)

2,

(8.2)

S[i,j△; ϵ] =
δx
δt
· 1 + iϵ

8
(
2ϕi+1,j+1 − (ϕi,j+1 + ϕi,j)

)2 − δt
δx
· 1− iϵ

8
(ϕi,j+1 − ϕi,j)

2,

(8.3)

where we used the action (6.26) for a single triangle lattice. Notice that the triangle
i,j△ is rotated and translated with respect to the triangle ▽i,j but the action is un-
affected since the metric (5.71) is invariant under rotations and translations 1. The
total lattice action can be written as

Slattice[{ϕi,j}; ϵ] = ∑
i,j

(
S[▽i,j; ϵ] + S[i,j△; ϵ]

)
. (8.4)

Next, we generalize our construction to account for a left-moving, accelerating
mirror. For a uniform acceleration to the left its worldline is of the form,(

t(τ), x(τ)
)
=
(

sinh (τ), 1− cosh (τ)
)
. (8.5)

The trajectory of the mirror intersects with our triangulation, see Fig. 8.2. We need
to modify the triangulation to accommodate the new boundary.

Observe that most of the triangles in the x ≥ 0 region are unaltered. For the
altered triangles, we need to replace their contribution to the action (8.4). The tri-
angles left of the boundary are removed entirely in our replacement procedure and
so do not contribute to the new lattice action at all. The other altered triangles are
deformed; for instance, consider triangles of the general form,

(8.6)

1The geometric approach to FEM makes the invariance property more apparent.
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FIGURE 8.2: Triangulation with modified triangles. The figure was
taken from [19].

and also,

(8.7)

where labeled field degrees of freedom live upon their vertices. The lattice action for
these triangles is, respectively2,

S[▽′a,b; ϵ] =
1

δt′(δx′ + δx′′)
· 1 + iϵ

4

(
δx′′ϕa+1,b+1 + δx′ϕa+1,b − (δx′ + δx

′′
)ϕa,b

)2

− δt′

δx′ + δx′′
· 1− iϵ

4
(ϕa+1,b+1 − ϕa+1,b)

2, (8.8)

S[c,d△′; ϵ] =
1

δt′(δx′ + δx′′)
· 1 + iϵ

4

(
δx′′ϕc,d + δx′ϕc,d+1 − (δx′ + δx

′′
)ϕc+1,d+1

)2

− δt′

δx′ + δx′′
· 1− iϵ

4
(ϕc,d+1 − ϕc,d)

2. (8.9)

The action for the modified triangle is calculated similarly to ssec. 6.1.1 with an
active affine transformation of the form,

A−1 =

[
δx′

(δx′+δx′′)δt −
1

δx′+δx′′
δx′′

(δx′+δx′′)δt
1

δx′+δx′′

]
, (8.10)

in the FEM basis {B(j)(t, x)}.
Our original triangles are a special case of the modified ones with δx′ = δx′′ =

δx. The desired lattice action comes from a summation over all the triangles in our
modified triangulation {▽′a,b,c,d△′}. To impose Dirichlet boundary conditions on
the mirror, we simply set the field elements along the mirror boundary equal to
zero. In total, the lattice action for the moving mirror model becomes,

Smirror
lattice [{ϕi,j}; ϵ] =

(
∑
▽′a,b

S[▽′a,b; ϵ] + ∑
c,d△′

S[c,d△′; ϵ]

)∣∣∣∣∣
boundary ϕ′s=0

. (8.11)

2Again, the rotated and translated triangle leaves the form of the action unchanged.
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Notice the triangulation on the right-hand side of Fig. 8.2. , we see that the corre-
sponding lattice action propagators fro the past to the future will instantiate Hilbert
space isometries, since the degrees of freedom upon each Cauchy slice increases.

In fact this isometric evolution is in accordance with the continuum observation
of ssec. 3.3.3 where any finite resolution detector will not see unitary evolution. Fu-
ture research should aim in the precise calculation of the lattice action. Furthermore,
there is a need in understanding the continuum limit of this FEM discretization in
enough detail to reproduce the numerical value (3.104) of the entanglement entropy
produced by an accelerating mirror.

8.2 The Physical Subspace and the Recovery of Unitarity

In sec. 6.2 we proposed that time evolution of a free massless scalar field in 1 + 1
dimensions is instantiated by an isometry which is not unitary. There are indica-
tions, in sec. 7.2, that the same holds true for a free massless fermionic field. The
fermionic case came with a bunch of problems that were discussed in sec 7.3, so
further research should aim in their nourishment. Nevertheless, both cases seem to
point towards isometric quantum mechanical time evolution in the setting of cos-
mological expansion. Here we discuss some physical consequences of this proposal.
We will work with finite dimensional Hilbert space since it is more illuminating.

Suppose we have a sequence of Hilbert spaces Ht0 ,Ht1 ,Ht2 , ... with increasing
dimensions d0 < d1 < d2 < · · ·. The time evolution is instantiated by an isometric
but non-unitary propagator Kj←i which maps Hti → Htj for i < j. We identify
Ht0 with the ’physical’ Hilbert space Hphys, for reasons that will become apparent
shortly.

Imagine an initial state |Ψ0⟩ in Hphys. If we evolve it via Kj←0, then |Ψj⟩ :=
Kj←0|Ψ0⟩ is in Hj. Suppose that there is another state |Ψ′j⟩ in Hj. A state like this
could emerge from an operator Oj which takes Hj to itself; that is, |Ψ′j⟩ = Oj|Ψj⟩. A
question immediately arises: is there an alternative initial state |Ψ0⟩′ in Hphys such
that |Ψ′j⟩ = Kj←0|Ψ′0⟩? This is equivalent to asking if there are any initial conditions
which could have evolved into |Ψ′j⟩.

Let Hphys,tj denote the image of Hphys under evolution by the propagator Kj→0.
It is obvious that Hphys,tj is a proper subspace of Htj with dimension d0. Then the
answer to the above question is that there exists such a |Ψ′0⟩ if and only if |Ψ′j⟩ is in
Hphys,tj . It is apparent that most states |Ψ′j⟩ do not have antecedent states |Ψ′0⟩.

Essentially there is a sequence of bijections,

Hphys
K1←0−−→ Hphys,t1

K2←1−−→ Hphys,t2

K3←2−−→ · · ·, (8.12)

that comprises the physical evolution of physical states. From this point of view, the
evolution restricted to the physical subspaces is completely unitary. Even though
Htj is larger in dimension than Ht0 , this is in effect illusory since the only physi-
cally accessible states in Htj are those in Hphys,tj . A consequence is that the physical
algebra of observables on Htj is composed of precisely those observables that map
Hphys,tj to itself.

8.2.1 Comments

In the context of effective filed theory, the Hilbert space of states increases in an ex-
panding universe. As pointed out a long time ago in [63], this is due to the fact that
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in order to maintain a fixed physical scale for the UV cutoff there need to be a contin-
uous production of modes. So, it appears that the Hilbert space is time-dependent.
Conceptually, time evolution is being instantiated by isometries in expanding uni-
verses since the volume of the space grows as a function of time but the Plank length,
and as a result the UV cutoff, stays fixed.

There is a holographic analog of this for universes in which the horizon of each
observer is expanding, such as our own universe in its present phase. If an observer
identify the area of his cosmological horizon with the number of degrees of free-
dom which describe the universe; suppose that it increases for all observers, then
the numbers of degrees of freedom is increasing with time. Thus even a holographic
perspective appears to necessitate some from of isometric but non-unitary time evo-
lution.

Furthermore, most early universe models are based on an effective field the-
ory analysis. A scalar matter field is introduced to yield the cosmological back-
ground evolution desired. In the case of inflation [33], the unitarity problem for
effective field theory models was discussed a number of years ago under the name
Trans-Planckian Problem (TPP) for cosmological perturbations [52] where it was pointed
out that, if the wavelength corresponding to the mode whose current wavelength is
equal to the current Hubble radius is smaller than the Planck length at the beginning
of inflation, then new physics should be revoked; see [8] for a complete discussion.

Recently, Bedroya and Vafa [5] formulated the Trans-Planckian Censorship Conjec-
ture (TCC) which states that in no consistent quantum theory of gravity the situation
will arise that some mode with initial wavelength smaller than the Planck length
becomes super-Hubble.

A question arises about contracting geometries: How should we examine them?
There is not much to say. One is driven out of the region of validity of effective field
theory since the modes are blueshifted above the UV cutoff. If we ignore this and
naively time reverse the propagator 6.15 the isometry becomes a projection. Perhaps
the forward arrow of time is correlated with the isometric direction so that we always
perceive geometries as expanding. This could leads to a multi-history picture as in
[31] or a final state projection as in [41]; see also [20]. This concept could be examined
in future research.

The general picture is that even for a scalar field coupled to gravity in the con-
tinuum limit not all states of the quantum field in the far future will correspond to
antecedent states in the far past. For instance, many configurations when evolved
backwards will lead to singularities at finite time, past which we cannot evolve back
further. One might conclude some of these late-time states could be ruled out once
a suitable definition of the physical subspace is understood in this setting. But this
could be too hasty: an alternate possibility is that the scalar effective field theory
breaks down and more degrees of freedom are needed. In an analogous AdS setting
this line of reasoning leads to the inclusion of black holes [56] rather than constrains
on the boundary Hilbert space.

Finally, narrowing the conversation about unitarity down in the context of two-
dimensional toy models of gravity. Cotler and Jensen [18] studied time evolution in
two simple models of de Sitter quantum gravity, Jackiw-Teitelboim (JT) gravity and
a minisuperspace approximation to Einstein gravity with a positive cosmological
constant. In de Sitter JT gravity they found that time evolution is isometric while
there were suggestions that the same holds true for Einstein gravity.
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8.3 Apparent Degrees of Freedom (Fact or Fiction?)

Our perspective of restricting to physical subspaces recovers unitarity, but allows for
the number of ’apparent’ degrees of freedom to increase in time. A valid question
arises: what is the role of the total ambient Hilbert space, which increases in size as
time advances?

An analogy with gauge theory may be appropriate. A gauge theory possesses
gauge-invariance which is not a physical symmetry but an artifact of how we formu-
late our theories. Two configurations related by a gauge transformation, are phys-
ically equivalent and our description of the physics thus has redundancies. Since
gauge-invariance is not physical, the theory can be described in terms of physical
gauge-invariant objects which are the Wilson loops. Thus, the physical states only
lie in the gauge-invariant (physical) subspace. Moreover, the Wilson loops are non-
local objects. In order to render the theory as local we choose a redundant descrip-
tion with gauge fields. In other words we embed the theory in a larger ambient
Hilbert space.

Turning back to theories in expanding universes, we need a progressively larger
ambient Hilbert space as time advances to keep rendering the theory local. Similarly
with the gauge theory, we could choose to describe an expanding universe solely in
terms of unitary evolution of the physical subspace. In that case the dynamics may
be non-local. We can render the dynamics local by requiring a larger ambient Hilbert
space whose size increases with time, and as such need isometric evolution. On the
one hand, if we describe evolution as unitary we lose locality. On the other hand,
if we describe it as local we lose unitarity. This suggests a possible tension between
unitarity and locality in cosmological expansion.

Besides gauge theory, there are parallels between the above and the ’code sub-
space’ in the error correction interpretation of AdS/CFT bulk reconstruction [3, 56].
That could further illuminate the need of apparent degrees of freedom in the descrip-
tion of quantum states in expanding cosmologies. However, we have no argument
that our isometries in our FEM field discretization need to be ones which comprise a
quantum error correction code robust to spatially local errors. In the quantum error
correction scheme that we will describe below there is a need of both the apparent
and physical degrees of freedom.

8.3.1 Quantum Error Correction

Quantum error correction is a scheme where a small message made from quantum
states is redundantly encoded inside a bigger system. Say Alice wants to send Bob
a quantum state of k qubits in the mail, but she is worried that some of the qubits
might get lost on the way. Quantum error correction is a procedure that allows her
to embed this state into n > k qubits in such a way that even if some qubits are
lost, Bob can still recover it. More can be found on section 4 of [34]. Here we will
use just an illuminating example to make a connection with our previous discussion
and motivate the need for apparent degrees of freedom.

The simplest example of quantum error correction uses three-state qutrits to send
a single-qutrit message [3].

Say Alice wishes to send the state

|ψ⟩ =
2

∑
i=0

ai|i⟩. (8.13)
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The idea is to instead send the state

|ψ̃⟩ =
2

∑
i=0

ai|ĩ⟩, (8.14)

where

|0̃⟩ = 1√
3
(|000⟩+ |111⟩+ |222⟩) (8.15)

|1̃⟩ = 1√
3
(|012⟩+ |120⟩+ |201⟩) (8.16)

|2̃⟩ = 1√
3
(|021⟩+ |102⟩+ |210⟩). (8.17)

This protocol has two remarkable properties. First of all for any state |ψ̃⟩, the re-
duced density matrix on any one of the qubits is maximally mixed. Thus no single
qutrit can be used to acquire any information about the state. Secondly, from any
two of the qutrits Bob can reconstruct the state. For example, say he has access to
only the first two qutrits. He can make use of the fact that there exists a unitary
transformation U12 acting only on the first two qutrits that implements,

(U12 ⊗ I3)|ĩ⟩ = |i⟩ ⊗
1√
3
(|00⟩+ |11⟩+ |22⟩). (8.18)

Acting with this on the encoded message, we see that Bob can recover the state |ψ⟩,

(U12 ⊗ I3)|ψ̃⟩ = |ψ⟩ ⊗
1√
3
(|00⟩+ |11⟩+ |22⟩). (8.19)

Explicitly U12 is a permutation that acts as

|00⟩ → |00⟩ |11⟩ → |01⟩ |22⟩ → |02⟩
|01⟩ → |12⟩ |12⟩ → |10⟩ |20⟩ → |11⟩
|02⟩ → |21⟩ |10⟩ → |22⟩ |21⟩ → |20⟩

(8.20)

Clearly by the symmetry of (8.15,8.16,8.17) a similar construction is also possible if
Bob has access only to the second and third, or first and third qutrits. Thus Bob can
correct for the loss of any one of the qutrits. The subspace spanned by (8.15,8.16,8.17)
is called the code subspace3.

Turning back to our expanding universes, the initial encoded state (8.13) by Al-
ice, can be thought as a state in our physical subspaceHphys ≈ Ht0 at t = 0 while the
state (8.14) can be thought as a state in the total ambient Hilbert space Ht1 at t = 1.
So, to describe a state at that Hilbert space there need to be apparent degrees of free-
dom that consist the code subspace. The Hilbert spaces Hphys with dim(Hphys) = 3
and Ht1 with dim(Ht1) = 33 are connected with an isometry Hphys → Ht1 which is
a perfect tensor; see [56] for an interesting analysis about perfect tensors and isome-
tries. Note that as we already stated we have no argument that our isometries in our
FEM field discretization are necessarily ones that comprise a quantum error correc-
tion code. The parallelism above is that this might be the case and there are indica-
tions that we might need the apparent degrees of freedom in our regime.

All in all, this analysis points out to interesting structures of encodings provided

3The entanglement of the states in the code subspace is essential for the functioning of the protocol.
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by isometric time evolution in quantum field theory and hypothetically in quantum
gravity. Understanding the precise information-theoretic properties of these encod-
ings should be a future pursuit.

Comments

As we stated earlier, the holographic structure of AdS itself is captured by a quantum
error-correcting code [56]. One can use the fact that quantum gravity in de Sitter
space can be holographically realized by embedding it as an RS-type braneworld
near the boundary of AdS [39], to connect the de Sitter space with the quantum
error-correcting code of the Anti-de Sitter space. One therefore could reproduce the
result (4.33) for the entanglement entropy of a region of de Sitter space. We leave this
to future study. This work will broadly suggest that toy tensor network models of
de Sitter with isometric time evolution [48, 4, 53, 55] should be taken more seriously
as capturing properties of time evolution in the real world.

8.4 Closing Statement

Throughout this thesis, our research indicated that quantum mechanical time evo-
lution is isometric in expanding cosmologies. This coupled with encodings of quan-
tum information theory, possibly points to interesting structures in quantum gravity.
Understanding the precise mechanism of the above appears to be an interesting av-
enue for future pursuit.
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Appendix A

Introduction to Conformal Field
Theory

The purpose of this section is to get comfortable with the basic language of confor-
mal field theory. We will only cover the material that is needed for the thesis. Much
of the material covered in this section was first described by Belavin, Polyakov and
Zamalodchikov [6]. The canonical reference for learning conformal field theory is
the excellent review by Ginsparg [32].

A.1 Conformal Algebra in 2-dimensional Euclidean Space

We will work in Euclidean space since it is much simpler and elegant. Everything
we do could also be formulated in Minkowski space. Consider the space R2 with flat
metric gµν = δµν and line element ds2 = gµνdxµdxν. Under a change of coordinates,
x → x′, we have gµν → g′µν(x′) = ∂xα

∂xµ ′
∂xβ

∂xν ′ gαβ(x). By definition, the conformal group
is the subgroup of coordinate transformations that leaves the metric invariant up to
a scale change

gµν → g′µν(x′) = Ω(x)gµν(x). (A.1)

These are coordinate transformations that preserve the angles. Invariance under
the transformation (A.1) can only hold if the theory has no preferred length scale.
But this means that there can be nothing in the theory like a mass or a Compton
wavelength.

The infinitesimal generators of the conformal algebra can be determined by con-
sidering the infinitesimal coordinate transformation xµ → xµ + ϵµ, under which

ds2 → ds2 + (∂µϵν + ∂νϵµ)dxµdxν (A.2)

To satisfy (A.1) we must require ∂µϵν + ∂νϵµ to be proportional to gµν,

∂µϵν + ∂νϵµ = (∂ · ϵ)gµν, (A.3)

where the constant of proportionality is fixed by tracing both sides with gµν.It can
be easily seen that (A.3) becomes the Cauchy-Riemann equations

∂1ϵ1 = ∂2ϵ2, ∂1ϵ2 = −∂2ϵ1 (A.4)

It is then natural to move in the complex plane C and write ϵ(z) = ϵ1 + iϵ2 and
ϵ̄(z̄) = ϵ1 − iϵ2, in the complex coordinates z, z̄ = x1 ± ix2. Two dimensional confor-
mal transformations thus coincide with the analytic coordinate transformations

z→ f (z), z̄→ f̄ (z̄), (A.5)
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the local algebra of which is infinite dimensional. In complex coordinates we write

ds2 = (dx1)2 + (dx2)2 = dzdz̄→
∣∣∣∂ f

∂z

∣∣∣2dzdz̄ (A.6)

and have Ω = |∂ f /∂z|2. Note that we have an infinite number of conformal trans-
formations — in fact, a whole functions worth f (z). This is special to conformal field
theories in two dimensions. In higher dimensions, the space of conformal transfor-
mations is a finite dimensional group. For theories defined on Rp,q, the conformal
group is SO(p + 1, q + 1) when p + q > 2.

A.2 Constraints of Conformal Invariance in 2-dimensions

Recall from (A.6) that the line element ds2 = dzdz̄ transforms under z→ f (z) as

ds2 →
(∂ f

∂z

)(∂ f̄
∂z̄

)
ds2. (A.7)

We shall generalize this transformation law to the form

Φ(z, z̄)→
(∂ f

∂z

)h(∂ f̄
∂z̄

)h̄
Φ( f (z), f̄ (z̄)) (A.8)

where h and h̄ are real-valued1.
The transformation (A.8) defines what is known as a primary field Φ of confor-

mal weight (h, h̄). Some comments:

• In a unitary CFT, all operators have h, h̄ ≥ 0 (add ref)

• The weights tell us how operators transform under rotations and scalings. The
eigenvalue under rotation is the spin, s and is given in terms of the weights as
s = h− h̄. Meanwhile, the scaling dimension ∆ of an operator is ∆ = h + h̄.

Infinitrasimally, under z→ z + ϵ(z), z̄→ z̄ + ϵ̄(z̄), we have from (A.8)

δϵ,ϵ̄Φ(z, z̄) =
(
(h∂ϵ + ϵ∂) + (h̄∂̄ϵ̄ + ϵ̄∂̄)

)
Φ(z, z̄), (A.9)

where ∂̄ ≡ ∂z̄.
Now the 2-point function G(2)(zi, z̄i) = ⟨Φ1(z1, z̄1)Φ(z2, z̄2)⟩ is defined to satisfy

⟨Φ1(z1, z̄1)Φ2(z1, z̄2)⟩ =
∣∣∣∂z′1
∂z1

∣∣∣h1
∣∣∣∂z′2
∂z2

∣∣∣h2
∣∣∣∂z̄′1
∂z̄1

∣∣∣h̄1
∣∣∣∂z̄′2
∂z̄2

∣∣∣h̄2
⟨Φ1(z′1, z̄′1)Φ2(z′2, z̄′2)⟩, (A.10)

which infinitesimally takes the form,

δϵ,ϵ̄G(2)(zi, z̄i) = ⟨δϵ,ϵ̄Φ1, Φ2⟩+ ⟨Φ1, δϵ,ϵ̄Φ2⟩ = 0, (A.11)

giving the partial equation((
ϵ(z1)∂z1 + h1∂ϵ(z1)

)
+
(
ϵ(z2)∂z2 + h2∂ϵ(z2)

)
+
(
ϵ̄(z̄1)∂z̄1 + h1∂ϵ̄(z̄1)

)
+
(
ϵ̄(z̄2)∂z̄2 + h2∂ϵ̄(z̄2)

)
G(2)(zi, z̄i) = 0.

(A.12)

1h̄ does not indicate the complex conjugate of h.
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By using ϵ(z) = ϵ̄(z̄) = 1 we can observe that G(2) depends only on z12 = z1 − z2,
z̄12 = z̄1 − z̄2; then use ϵ(z) = z and ϵ̄(z) = z̄ to require G(2) = C12/(z(h1+h2)

12 z̄h̄1+h̄2
12 );

and finally ϵ(z) = z2 and ϵ̄(z) = z̄2 to require h1 = h2 = h, h̄1 = h̄2 = h̄. The result
is that the 2-point function is constrained to take the form

G(2)(zi, z̄i) =
C12

z2h
12 z̄122h̄

. (A.13)

If we consider bosonic fields with spin s = h− h̄ = 0, (A.13) is equivalent to

G(2)(zi, z̄i) =
C12

|z12|2∆ . (A.14)

A.3 The Stress-Energy Tensor

Symmetry generators in general can be constructed via the Noether prescription.
A 1 + 1 quantum theory with an exact symmetry has an associated conserved cur-
rent jµ, satisfying ∂µ jµ = 0. The conserved charge Q =

∫
dx0 j0(x), constructed

by integrating over a fixed-time slice, generates, according to δϵ A = ϵ[Q, A], the
infinitesimal symmetry variation in any field A. In particular, local coordinate trans-
formations are generated by charges constructed from the stress-energy tensor Tµν.
We define the stress-energy tensor to be

Tµν = − 4π
√

g
∂S

∂gµν
. (A.15)

In conformal theories, Tµν is traceless. To see this, vary the action with respect to
a scale transformation δgµν = ϵgµν. Then we have 0 = δS =

∫
dx2 ∂S

∂gµν
δgµν =

− 1
4π

∫
dx2√gϵTµ

µ which gives Tµ
µ = 0. In our case, we will work with flat Euclidean

"space" and "time" coordinates x1 and x0, so gµν = δµν. In Minkowski space, the stan-
dard light-cone coordinates would be x0 ± x1. In Euclidean space the analogs are
instead complex coordinates ζ, ζ̄ = x0± ix1. The two dimensional Minkowski space
notions of left- and right-moving massless fields become Euclidean fields that have
purely holomorphic or anti-holomorphic dependence on the coordinates. Occasion-
ally, we call the holomorphic and anti-holomorphic fields left and right-movers re-
spectively.

We introduce the necessary complex tensor analysis since we will be working
on the complex plane. In complex coordinates z = x0 + ix1, the line element is
ds2 = (dx0)2 + (dx1)2 = dzdz̄. The components of the Euclidean metric are thus
δzz = δz̄z̄ = 0 and δzz̄ = δz̄z = 1

2 , and the components of the stress-energy tensor are
Tzz = 1

4 (T00 − 2iT10 − T11), Tz̄z̄ = 1
4 = 1

4 (T00 + 2iT10 − T11) and Tzz̄ = Tz̄z = 1
4 (T00 +

T11) =
1
4 Tµ

µ . The conservation law δαµ∂αTµν = 0 gives two relations, ∂z̄Tzz + ∂zTz̄z =
0 and ∂zTz̄z̄ + ∂z̄Tzz̄ = 0. Using the traceless condition Tzz̄ = Tz̄z = 0, these imply

∂z̄Tzz = 0 and ∂zTz̄z̄ = 0. (A.16)

Thus we only have holomorphic and anti-holomorphic dependences

T(z) ≡ Tzz(z) and T̄(z̄) = Tz̄z̄(z̄). (A.17)
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A.4 Quantum Aspects

So far our discussion has been entirely classical. We now turn to quantum theory.
To eliminate any infrared divergences, we compactify the space coordinate, x1 ≡
x1 + 2π. This defines a cylinder in the x1, x0 coordinates. Next we consider the
conformal map ζ → z = expζ = exp(x0 + ix1) that maps the cylinder to the complex
plane coordinatized by z, see Fig. A.1. To build up a quantum theory of conformal
fields on the z-plane, we will need to realize the operators that implement conformal
mappings on the plane. The integral of the component of the current orthogonal to
an "equal-time" (constant radius) surface becomes

∫
j0(x)dx →

∫
jr(θ)dθ. Thus we

should take
Q =

1
2πi

∮ (
dzT(z)ϵ(z) + dz̄T̄(z̄)ϵ̄(z̄)

)
(A.18)

as the conserved charge.
The variation of any field is given by the "equal-time" commutator with the

charge (A.18),

δϵ,ϵ̄Φ(w, w̄) =
1

2πi
=
∮ [

dzT(z), Φ(w, w̄)
]
+
[
dz̄T̄(z̄)ϵ̄(z̄), Φ(w, w̄)

]
. (A.19)

In parallel with time ordered functional integral formulation we define the radial
ordering operation R as

R
(

A(z)B(w)
)
=

{
A(z)B(w) |z|>|w|
B(w)A(z) |w|>|z|

(A.20)

The equal-time commutator of a local operator A with the spatial integral of an op-
erator B will become the contour integral of the radially ordered product,[ ∫

dxB, A
]

E.T. →
∮

dzR
(

B(z)A(w)
)
. (A.21)

FIGURE A.1: Map of the cylinder to the plane
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We may thus rewrite (A.19) in the form

δϵ,ϵ̄Φ(w, w̄) =
1

2πi

( ∮
|z|>|w|

−
∮
|z|<|w|

)(
dzϵ(z)R

(
T(z)Φ(w, w̄)

)
+ dz̄ϵ̄(z̄)R

(
T̄(z̄Φ(w, w̄)

))
=

1
2πi

∮ (
dzϵ(z)R

(
T(z)Φ(w, w̄)

)
+ dz̄ϵ̄(z̄)R

(
T̄(z̄)Φ(w, w̄)

))
= h∂ϵ(w)Φ(w, w̄) + ϵ(w)∂Φ(w, w̄) + h̄∂̄ϵ̄(w̄)Φ(w, w̄)

+ ϵ̄(w̄)∂̄Φ(w, w̄),

(A.22)

where in the last line we have substituted the desired result, i.e. the result of the
transformation (A.8) in the case of infinitesimal f (z) = z + ϵ(z). In order that the
charge (A.18) induce the correct infinitesimal conformal transformations, we infer
that the short distance singularities of T and T̄ with Φ should be

R
(
T(z)Φ(w, w̄)

)
=

h
(z− w)2 Φ(w, w̄) +

1
z− w

∂wΦ(w, w̄) + ...

R
(
T̄(z̄)Φ(w, w̄)

)
=

h̄
(z̄− w̄)2 Φ(w, w̄) +

1
z̄− w̄

∂w̄Φ(w, w̄) + ....
(A.23)

From now on we shall drop R symbol and remember that we are working with radi-
ally ordered products. The above equations encodes the conformal transformation
properties of a primary field Φ. They are equivalent to canonical commutators of
the modes of the fields, for further research look at ref.

A.5 Conformal Ward Identities

Ward identities are generally identities satisfies by correlation functions as a reflec-
tion of symmetries possessed by a theory.

We consider insertions of operators at points w1 and w2 as in Fig. A.2, and per-
form a conformal transformation in the interior of the region bouned by the z con-
tour by line integrating ϵ(z)T(z)2 around it. The result is thus〈 ∮ dz

2πi
ϵ(z)T(z)Φ1(w1, w̄1)Φn(wn, w̄n)

〉
=
〈 ∮ dz

2πi
ϵ(z)T(z)Φ1(w2, w̄2)Φ2

〉
+
〈

Φ1(w1, w̄1

∮ dz
2πi

ϵ(z)T(z)Φ2

〉
=
〈
δϵΦ1(w1, w̄1)Φ(w2, w̄2)

〉
+
〈
Φ1(w1, w̄1)δϵΦ(w2, w̄2)

〉
.

(A.24)

In the last line we have used the infinitesimal transformation property

δϵΦ =
∮ dz

2πi
ϵ(z)T(z)Φ(w, w̄) =

(
ϵ(w)∂ + h∂ϵ(w)

)
Φ(w, w̄), (A.25)

encoded in the operator product expansion (A.23).

2The same applies for ϵ̄(z̄)T̄(z̄) since the right and left movers can be treated as independent.
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FIGURE A.2: Caption

Since (A.24) is true for arbitrary ϵ(z) and
∮

dz̄T(z) = 0, we can write an uninte-
grated form of the conformal Ward identities,〈

T(z)Φ1(w1, w̄1)Φ2(w2, w̄2)
〉

=
2

∑
j=1

(
hj

(z− wj)2 +
1

z− wj

∂

∂wj

)〈
Φ1(w1, w̄1)Φ2(w2, w̄2)

〉
.

(A.26)

A.6 The Central Charge

Not all fields satisfy the simple transformation property (A.8) under conformal trans-
formations. A secondary field is any field that has higher than the double pole sin-
gularity (A.23) in its operator product expansion with T or T̄. An example of such
kind of a field is the stress-energy tensor itself.

For any CFT, T has weight (h, h̄) = (2, 0). The reason for this is simple: Tµν has
dimension ∆ = 2 because we obtain the energy by integrating over space. It has
spin s = 2 because it is a symmetric 2-tensor. But these two pieces of information
are equivalent to the statement that T is an operator of weight (2, 0). Similarly, T̄ has
weight (0, 2). This means that

T(z)T(w) = ... +
2T

(z− w)2 +
∂T

z− w
+ ... (A.27)

and similar for T̄T̄. Moreover, each terma has dimension ∆ = 4, any operators that
appear on the right-hand-side must be of the form On/(z − w)n where ∆[On] =
4− n. But, in a unitary CFT there are no operator with h, h̄ < 0. So the most singular
term that we can have is of order (z − w)−4. Such a term must be multiplied by a
constant. We write3,

T(z)T(w) =
c/2

(z− w)4 +
2T

(z− w)2 +
∂T

z− w
+ ... (A.28)

and similarly for T̄(z̄)T̄(w̄) with constant c̄.
The constants c and c̄ are called the central charges. Sometimes they are re-

ferred to as left-moving and right-moving central charges. They somehow measure

3We did not include a (z−w)−3 term due to the fact that the operator expansion product should be
invariant under z ↔ w. These operator equations are taken to be radially(time)-ordered T(z)T(w) =
T(w)T(z).
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the number of degrees of freedom in the CFT. For example, if we consider D non-
interacting free scalar fields, we would get c = c̄ = D.

In general, the infinitesimal transformation law for T(z)4 induced by (A.28) is

δϵT(z) = ϵ(z)∂T(z) + 2∂ϵ(z)T(z) +
c

12
∂3ϵ(z) (A.29)

It can be integrated to give

T(z)→ (∂ f )2T( f (z)) +
c

12
S( f , z) (A.30)

under z→ f (z), where the quantity

S( f , z) =
∂z f ∂3

z f − 3
2 (∂

2
z f )2

(∂z f )2 (A.31)

is known as the Schwartzian derivative.

4This can be seen by performing the procedure of paragraph A.4 but in reverse.
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