
Utrecht University

Master’s Programme in Theoretical Physics

Fabiano Feleppa

Master’s thesis

Electromagnetic interactions
near the black hole horizon

Supervisors: Prof. Gerard ’t Hooft, Dr. Nava Gaddam

ACADEMIC YEAR 2022–2023



i

“How wonderful that we have met this paradox. Now we have some hope of making progress.”
Niels Bohr
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Abstract

The thermal nature of black-hole radiation led Hawking to argue that black holes destroy
quantum information, leading to the formulation of the so-called ‘black-hole information
paradox’. Dissatisfied with such conclusion, ’t Hooft emphasized the importance of grav-
itational interactions, ignored in the derivation of the Hawking spectrum. In this thesis,
while shortly reviewing and partly revisiting ’t Hooft’s gravitational S-matrix, we generalize
his approach to the case of degrees of freedom carrying electric charge. In particular, we
investigate how to expand the effect of the change of gauge of the electromagnetic field
in partial waves. We proceed with computing the same effect via elastic 2 → 2 scatter-
ing diagrams by constructing the photon propagator near the event horizon in an angular
momentum basis. More precisely, we calculate the S-matrix by summing over an infinite
number of photon exchange diagrams in the high-energy limit. The S-matrix so-obtained
agrees with the one derived within ’t Hooft’s approach, thus providing a generalized result.
The techniques used in this work allow for straightforward generalizations to capture par-
ticle production, study higher-derivative corrections and include non-Abelian gauge fields,
among many others. They open up possibilities for new research on black-hole scattering.
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Introduction

In 1965, it was proved that black holes results from the death of supermassive stars which, after
exhausting all their fuel, collapse under the enormity of their own gravity, leaving a black hole
as their final state [1]. At the center of a black hole, the curvature of space and time is so
strong that even general relativity itself breaks down. From the outside, the only properties of
a black hole that we can discern are mass, charge and state of rotation. Two static chargless
black holes with the same mass are indistinguishable to us. This is the statement that black
holes have no hair, or perhaps we should say black holes have only three hairs, one for each of
the three properties. Therefore, a natural question arises: where does the information carried by
objects thrown into a black hole go? From a general relativistic point of view, such information
is not lost, but simply hidden behind the event horizon of the black hole. However, the situation
completely changed after Hawking discovered, by combining general relativity with quantum
field theory, that black holes emit radiation at a temperature1 [2]

TH =
1

8πM
,

where M is the mass of the black hole. This discovery led to more puzzles and questions. In
particular, it seems to have a catastrophic consequence. Indeed, the radiation emitted carries
away mass from the black hole. Now, the radius of the black hole is proportional to its mass,
so if the black hole radiates, it shrinks. Moreover, the temperature is inversely proportional to
the black-hole mass. Thus, as the black hole shrinks, it gets hotter, and it shrinks even faster,
eventually entirely evaporating. When this happens, all that is left is the thermal radiation it
emitted, which in the case we are considering only depends on the initial mass of the black hole.
This indicates that, besides this quantity, it does not matter what formed the black hole originally
or what fell in later, the result is the same thermal radiation. Black hole evaporation is therefore
irreversible: we cannot tell from the final state, namely the outcome of the evaporation, what
the initial state was that formed the black hole. This contradicts the fundamentals of quantum
mechanics, where processes in quantum theory are indeed always time-reversible. Thus, we set
out to combine quantum mechanics with gravity, but we produce an outcome that contradicts
what we started with. This contradiction, which was first pointed out by Hawking himself [3]
and is now known as the “black hole information paradox”, had troubled scientists for the last
forty years and remains one of the biggest problems in theoretical physics [4–9]. For a review
about the current status, the reader may refer to Ref. [10].

In this thesis we focus on ’t Hooft’s proposed resolution to the paradox. Such proposal have
been presented long ago, in the nineties [11–13], but in the last few years significant progress has
been made [14–18]. The idea is to consider gravitational interactions, ignored in the derivation
of the Hawking spectrum, between the particles that fall into an already formed black hole
and the ones that come out due to Hawking radiation. More precisely, ’t Hooft studied how
ingoing particles affect the outgoing ones, leading to a construction of a scattering matrix that
maps in- to out-states. It is easy to check that this S-matrix is unitary, which therefore implies

1This result is valid for a Schwarzschild black hole. However, it can be extended to black holes carrying charge
and angular momentum.
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that all information falling into the black hole is entirely transferred to the outgoing Hawking
particles. This remarkable result has been obtained in the context of quantum mechanics.
However, in the last few years, a second-quantized approach has also been proposed, showing
that the same S-matrix can be derived by taking into account gravitational interactions mediated
by graviton exchange in 2 → 2 scattering processes near the horizon [19, 20]. Very recently,
further progress has been made by considering the possibility for particle production [21] and by
rewriting the theory as a scalar theory with a specific four-vertex to compute Feynman diagrams
more efficiently [22].

In this work we generalize ’t Hooft’s approach, as well as its second-quantized extension,
to the case of electromagnetic interactions. The thesis is organized as follows. In section 1 we
will discuss the framework in which Hawking radiation has been derived, namely quantum field
theory in curved spacetime. In section 2 we will carefully reproduce the original calculation
performed by Hawking in the seventies, deriving the formula for the temperature introduced
above. In section 3, while shortly reviewing and partly revisiting ’t Hooft’s gravitational S-
matrix, we generalize his approach to the case of degrees of freedom carrying electric charge. In
particular, we obtain an expression for the electromagnetic S-matrix in a partial-wave basis2.
We proceed, in section 4, by constructing a scalar quantum electrodynamics near the black-hole
horizon, thus defining the Feynman rules of the theory. Section 5 is devoted to the computation
of all the scattering amplitudes of interest, leading to an expression for the scattering matrix
which is in agreement with the one found in section 3. We end this section by considering a
one-loop diagram with four vertices; the entire one-loop calculation is presented, showing that
such diagram is sub-leading with respect to the corresponding one containing three-vertices
only. Finally, we conclude by briefly summarizing all the results obtained in this work, as well
as discussing some possible future directions.

2This section has been written in collaboration with N. Gaddam and N. Groenenboom. The author of this
thesis primarily carried out all the field-theory calculations.
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1 Preliminaries

Our discussion starts by introducing the concept of vacuum states in quantum field theory. We
proceed by presenting the basic idea on how to quantize scalar fields on curved backgrounds,
a necessary ingredient for the derivation of the Hawking spectrum. This first section primarily
relies on the book written by Birrell and Davies [23], the book written by Wald [24], as well as
the one by Mukhanov and Winitski [25]. In addition to that, the lecture notes on black-hole
physics by Dowker [26] and Lambert [27] have been consulted. The reader is assumed to be
familiar with the basics of quantum field theory and general relativity.

1.1 A subtle concept: the vacuum state

At the basis of the original formulation of general relativity there is the identification, from a
physical point of view, between uniformly accelerated systems and uniform gravitational fields.
That is, an observer in a free-falling reference system is in no way able to locally distinguish the
effects of gravity from those produced by the acceleration of the system itself; in other words, a
non-inertial reference system is locally equivalent to a uniform gravitational field. In Newtonian
mechanics, in order to study accelerated (non-inertial) reference systems, it is necessary to add
apparent forces to the treatment. This is no longer true in general relativity; in fact, here the
principle of general covariance holds, according to which there is no distinction that favours
inertial systems over non-inertial ones. These premises are indispensable to understand how the
framework in which a theory is developed may influence its treatment. This point will be clear
when we will discuss the Unruh effect, an analog of Hawking effect in special relativity.

Let us now suppose that we have a certain coordinate system and then we perform a trans-
formation and change coordinates. With such an operation, the way of describing the physical
system has been changed, but its “nature” has not. The purpose, therefore, is to be able to
transform all the quantities that characterized the system in the initial coordinates into new
quantities obtained using the new coordinates. Of course there are many types of transforma-
tion, depending on the mathematical objects involved. For example, we can consider a scalar
quantity; its value at one point, say p, does not change if we evaluate it at the same point
expressed in different coordinates. Differently, a vector or a tensor change under coordinate
transformation since all its components may be altered. In summary, when a transformation is
performed, the functions that describe the physical properties of a system change, and change
differently depending on whether they are scalars, vectors or tensors.

Let us now consider the quantization of a scalar field in Minkowski spacetime. Moreover, let
us suppose we apply a Lorentz boost and quantize again once the transformation is done. We
certainly do not expect the operators and the other quantities thus obtained to be the same as
the initial ones. For example, we may consider a plane-wave with wave vector k, four-momentum
p and a certain energy E. Since after the transformation the components of the four-momentum
change, then both k and the energy will change too; we would eventually get some momentum
p′ and some energy E′. Therefore, in correspondence with the starting mode characterized by k,
p and E, we would obtain, according to the Lorentz transformation, a mode characterized by p′,
k′ and E′. Now we would have particles with a different momentum, so it is not unreasonable to



4

suspect that the annihilation and creation operators, usually denoted by a and a†, respectively,
may have been changed too. In fact, it is really the case and there are transformations that
allow us to describe how such operators change; these are called Bogoliubov transformations and
they tell us how the creation and annihilation operators change between reference systems (not
necessarily inertial ones). After these transformations have been performed, we are able to write
a and a† in the final reference system as a linear combination of the creation and annihilation
operators in the initial system with appropriate coefficients (and vice versa). Moreover, we
expect that the number operator N := a†a, which counts particles with momentum k⃗, might
change too. But if the number operator changes, its eigenvalues will change, and that means
that we might count particles differently depending on the reference system we are working in.

At this point, a natural question arises: how can quantum field theory in Minkowski space-
time be consistent? Indeed, based on our previous discussion, it seems that the definition of
vacuum state depends on a particular choice of frame. Fortunately, it turns out that in this
case some of the Bogoliubov coefficients are vanishing, and this happens in such a way that
the concept of particle and, consequently, the one of vacuum state are invariant under Lorentz
transformations; for this reason quantum field theory in flat spacetime is consistent in all inertial
systems, and so the concept of particle.

Let us now come back to the Unruh effect, already mentioned before. The basic idea is
fairly simple: this effect is a manifestation of the fact that observers with different notions of
positive- and negative-frequency modes will disagree on the particle content of a given state. In
other words, we start by considering an inertial reference frame in Minkowski spacetime. Then,
by applying a certain transformation, we introduce a second reference frame which is uniformly
accelerated; the initial vacuum state is classified by the observer in the new reference system
as a state containing particles. Moreover, if we studied the distribution of these particles and
plotted, e.g., the spectrum, we would obtain a black-body spectrum at a certain temperature
which depends on the acceleration of the system. Therefore, in the accelerated system, the
creation operators must have acted on the accelerated vacuum state, which is no longer empty
(unlike what happened in the case of Lorentz transformations, in which the vacuum state was
Lorentz invariant). To sum up, if we consider a massless scalar field, where an inertial observer
sees a vacuum state, a non-inertial one will detect a thermal spectrum of field excitations. This
paradox can be solved in a simple way, namely by considering that, according to special relativity,
inertial systems are privileged; and it is precisely this adjective, “privileged”, that eliminates
the contradiction. Since quantum field theory has been formulated in order to work in inertial
systems, if one gets into a situation where there is a discrepancy between two predictions obtained
in two different reference systems, one of which is non-inertial, then the prediction made in the
inertial one can be certainly favoured. This is analogous to how we describe accelerated systems
in Newtonian mechanics. In that case, we are forced to introduce the so-called “fictitious” or
“apparent” forces. The adjectives we choose clearly denote that “real” forces are the ones that
we perceive as real in an inertial reference system (which is privileged according to Newtonian
theory). Even though it occurs in flat spacetime, the Unruh effect teaches us a very important
lesson, namely the idea that “vacuum" and “particle" are observer-dependent notions rather
than fundamental concepts. However, when we deal with black holes and curved spacetimes in
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general, the physics is much more subtle.
Hawking radiation is treated within the framework of general relativity (a field theory on

curved spacetime). As we know, in this framework no system is privileged; therefore, if two
observers draw different conclusions on the number of particles contained in a certain state, there
is no way to establish which one of them is right; we will see that the root of this problem lies
in the choice of the concept of particle we use to describe the physical system. In fact, choosing
the concept of particle and, consequently, the number operator with the aim of characterizing
the system of interest is in general inconsistent in quantum field theory on curved backgrounds.
Then, how does Hawking compare an initial vacuum state with a final state in which the number
of particles is different from zero? In order to answer this question, we need to define what a
particle is. We can basically give two definitions. The first one is more operative: a particle is
something we measure by means of a detector. The second one is more mathematical: a particle
is something we obtain if we apply a creation operator. An identification between these two
definitions should hold, or quantum field theory would not work as we know.

According to the equivalence principle, as already anticipated before, an accelerated system
can be related to a uniform gravitational field. Although in reality gravitational fields are
not globally uniform, we can consider a very small portion of spacetime where they may be
considered as such. For example, the gravitational field produced by a black hole is globally
non-uniform. Nevertheless, if we consider a very small time interval (say of the order of 10−12 s)
and a very small spatial region (with linear dimension, say of the order of 10−15 m), in this
portion of spacetime the gradient of the field could be small and so it will not be unreasonable
to consider the field uniform there. Of course the time interval and the spatial dimensions should
be chosen depending on the curvature and magnitude of the gravitational field. For instance, the
larger is the curvature the smaller should be the region that we consider. Starting from these
considerations, one expects to reduce Hawking radiation to Unruh radiation, at least from a
theoretical point of view. At this point, however, an objection could be made. Precisely because
of the “operative” definition of particle that we have given above, one could make a further step,
which consists in placing a detector near the event horizon. Naively, one would detect both a
number of particle and an energy which diverge. Thus, how is it possible to reduce conceptually
this situation to the Unruh effect? The answer lies in the fact that in reality it is not correct to
speak of a particle near the event horizon since this concept, as seen before, is consistent only in
Minkowski space. Thus, what would be the meaning of placing a detector in a curved region if
we are unable to count particles in such a region? Consider now the Schwarzschild solution in its
maximal extension. As it is well-known, we can identify two asymptotically flat regions where
we will be able to count particles, while we cannot do it near the event horizon; usual definition
of a detector as we know it does not apply close to the event horizon, nor where the gravitational
field is not negligible. In order to get a better understanding, let us just think about the way we
study scattering processes: we prepare the incoming particle at infinite distance from the target
before the collision and then we measure what happens at an infinite distance after the collision,
but we do not specifically consider the region of interaction between the two particles. Similarly,
Hawking counts particles in the two flat regions, away from the black hole, in the past and in
the future. This allows him to start with a vacuum state and to obtain a final state in which
particles are distributed according to a thermal spectrum, at a certain temperature TH . To sum
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up, it is not possible to count particles near the horizon because the concept of particle does
not make sense there. In fact, a particle is what makes the detector emit a signal, but we do
not know what is really going on for our standard definitions near the horizon. Therefore, it is
fundamental to clarify the origin of the apparent paradox. As often happens, it is nothing but an
imprecise use of a language or a concept that in the considered context is somehow meaningless.
In this case, the concept of particle and so that of particle number are not adequate near the
black-hole event horizon, nor where there is a non-negligible gravitational field. For this reason,
Hawking’s argument is built as much as possible on the knowledge of quantum field theory and
its application in Minkowski spacetime, so his purpose was to use as much of this theory as
possible in an asymptotically flat region of the curved spacetime considered.

1.2 How to quantize in curved spacetime

General relativity treats the spacetime metric as a smooth changing field, which is therefore a
dynamical quantity. Conversely, in quantum field theory the metric is a background. Therefore,
in any physical situation in which gravity and another interaction appear, the role of the metric
must be certainly clarified. The first approach one can think of is to quantize spacetime and all
the other fields independent of the metric; unfortunately, no theory has yet proven successful
in doing this using standard quantization methods. Technically speaking, we say that quantum
gravity is a non-renormalizable theory (the reader may refer to Ref. [28] for further details).

Therefore, as a first step, it seems reasonable to consider the so-called semiclassical approxi-
mation, which is a simplified scheme in which we treat fields quantum-mechanically on a classical
curved spacetime background. This is exactly the framework in which Hawking analyzed the
problem of particle creation caused by the gravitational collapse of a body to form a black hole; a
natural question arises: how accurate is this approximation? Of course, this question cannot be
answered with certainty until we have a satisfactory quantum theory of the gravitational field (it
is generally believed that an approximation of this kind is valid when the spacetime curvature is
much less than Planckian). However, it is not unreasonable to suppose such an analysis to give
a good indication of the kind of phenomena which will occur in an exact quantum treatment.

Let us start by introducing a fixed background, say (M, gµν). Furthemore, we assume this
spacetime to have a Cauchy surface (definition of globally-hyperbolicity): once a set of initial
data is defined, the solution to the field equations results entirely determined everywhere. So,
in a global hyperbolic spacetime, it is possible to determine the entire past and future history of
the universe from the conditions imposed at the instant of time defined implicitly by the Cauchy
surface. In the present context, our background is represented by the Schwarzschild spacetime.
To be more precise, two important results have to be mentioned; the first is a theorem due to
Dieckmann and Geroch (see Ref. [29] for further details), while the second one is due to Hawking
and Ellis (one may consult the book written by the same authors, Ref. [30]):

• Theorem 1: If (M, gµν) is globally hyperbolic with Cauchy surface Σ, then M has topol-
ogy R×Σ. Furthermore, M can be foliated by a one-parameter family of smooth Cauchy
surfaces Σt, where t acts as a type of time coordinate. All hypersurfaces of coordinate
t = const. form Cauchy surfaces.
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• Theorem 2: For any globally hyperbolic spacetime (M, gµν) with Cauchy surface Σ,
there exists a global solution φ to the Klein-Gordon equation valid on all of M for which
φ = φ0 and nµ∇µφ = φ̃0 on Σ, where nµ is the future unit normal to Σ. In this sense the
function φ0 is the classical evolution of the pair of functions (φ0, φ̃0) on Σ.

The above two theorems basically say that the presence of a Cauchy surface provides the frame-
work to built a quantum field theory. By singling out a single timelike coordinate t, one can con-
sistently define the momentum density conjugate to the field and so proceed with a phase-space
formulation of the evolution of the scalar field φ. This is how we usually proceed in quantum
field theory in flat spacetime, where we write the solution to the Klein-Gordon equation in terms
of a complete, orthonormal set of modes. In order to make sense of “orthonormal”, a precise
binary operation (i.e., an inner product) is defined, expressed as an integral over a constant-time
hypersurface Σt

3. As it is well-known, if we restrict to the subspace of positive-frequency solu-
tions, then the Klein-Gordon inner product is positive-definite, and so we can safely define an
Hilbert space H. Instead, the negative-frequency solutions can be put into linear correspondence
with vectors of the complex conjugate Hilbert space H∗ that is dual to H. Thus, as elements
of H∗, the negative-frequency solutions adhere to the positive-definiteness condition necessary
to build up a Hilbert space. Now, in order to define a vacuum state, we introduce a physically
meaningful Hamiltonian by recalling Noether’s theorem. Indeed, the Hamiltonian is nothing
more than the conserved charge associated with time translations between Cauchy surfaces.
Having said that, we have all the necessary tools to quantize our theory; applying the standard
procedure, the field φ, which is now treated as an operator-valued distribution, can be written
in terms of creation and annihilation operators. These operators define a bosonic Fock space of
particles as excitations of a unique vacuum state |0⟩, the ground state of the Hamiltonian, and
satisfy the usual commutation relations. The main point of this discussion is that, in order for
a globally valid quantum field theory (with a unique vacuum) to be defined, the spacetime in
which we are working in must be “uniform”.

Now, the question is: can we more or less easily generalize this scheme when the spacetime is
curved? Or, equivalently, can we build a quantum field theory in globally hyperbolic spacetimes
following the same procedure? Unfortunately, for general globally hyperbolic spacetimes, this is
not as straightforward. The reason is that, even if Cauchy surfaces are present, it is impossible
to define a universal concept of time on them. As a consequence, no conserved charge associated
with time translation between Cauchy surfaces can be defined and, in turn, no single quantum
field theory that is valid everywhere. Luckily, there is a way out if one more assumption is made.
In fact, if we restrict to stationary spacetimes, then the situation completely changes. Let us
now try to be more concrete. The metric signature we use is (−,+,+,+).

Consider a free scalar field φ propagating on a given globally hyperbolic spacetime. The
action is given by the following expression:

S =

∫
d4x

√
−g
(
−1

2
∇µφ∇µφ− 1

2
m2φ2

)
, (1)

where ∇µ denotes the covariant derivative. The equation of motion of the scalar field can be
3It is possible to prove that such an inner product is independent of the hypersurface Σt.
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easily obtained in the usual way, namely by varying the action. We have:

δS = 0 ⇒ 1√
−g

∂µ
(√

−ggµν∂ν
)
φ−m2φ := □φ−m2φ = 0, (2)

where we defined the d’Alembertian operator. The above equation is the Klein-Gordon equation
in curved spacetime, with no coupling to the curvature scalar R (however, the results we will
obtain would be the same since in the case of Schwarzschild we have that R = 0). Let us now
try to quantize the theory following the procedure outlined before. For a spacelike hypersurface
Σ with induced metric γij and unit normal vector nµ, we define the scalar product as

(φ1, φ2) = −i
∫
Σ
(φ1∇µφ

∗
2 − φ∗

2∇µφ1)n
µ√γdn−1x. (3)

Working in four dimensions, namely setting n = 4 in the above expression, we can easily show
that the above definition of the inner product is independent of the choice of Σ:

(φ1, φ2)|Σ1
− (φ1, φ2)|Σ2

= −i
∫
Ω=Σ1−Σ2

(φ1∇µφ
∗
2 − φ∗

2∇µφ1)
√
γnµd3x,

= −i
∫
∂Ω

∇µ (φ1∇µφ
∗
2 − φ∗

2∇µφ1)
√
−gd4x,

= −i
∫
∂Ω

(
φ1m

2φ∗
2 − φ∗

2m
2φ1

)√
−gd4x

= 0, (4)

where Gauss’ theorem has been used to get to the second equality and the equation of motion
to get to the last one. So far, so good. Now, since the spacetime in question admits a Cauchy
surface, it is well-known that a non-unique orthonormal basis of solutions can be found:

(ui, uj) = δij , (u∗i , u
∗
j ) = −δij , (ui, u

∗
j ) = 0, (5)

where, for simplicity, the indices i, j have been chosen to be discrete. So, the good news is
that we were able to define a consistent binary operation that in turn allowed us to find an
orthonormal basis. The “bad news" is that, since such a basis is non-unique, if we did standard
field quantization we would obtain a vacuum state without a basis-independent physical meaning.
However, what bothers us most is not the fact that we have more than one basis (we already
expected that after the discussion about the Unruh effect!), but that we cannot introduce a
physically meaningful Hamiltonian due to the absence of a preferred time coordinate. Or,
putting it differently, in curved spacetime we are not in general be able to find solutions to the
Klein-Gordon equation that separate into time-dependent and space-dependent factors, and so
we cannot classify modes as positive- or negative-frequency as in flat spacetime. To sum up,
having at hand many sets of solutions, on what grounds we choose one of them over the others?
It seems that the standard way of proceeding breaks down at this point.

Now, the assumption we were talking about before, namely the stationarity of the metric,
comes into play. By definition, a spacetime (M, gµν) is stationary if there exists a timelike
Killing vector field K = ∂t for the metric; why does this assumption is helpful? This can be
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understood by considering a couple of properties of the Killing vector field. The first one is that
K commutes with the Klein-Gordon operator. Indeed, on one hand we have that

K□φ = ∂t□φ = ∂t (∇µg
µν∂νφ) = gµν

(
∂t∂µ∂νφ− Γσ

µν∂t∂σφ
)
. (6)

On the other hand, we can also write

□Kφ = □∂tφ = ∇µg
µν∂ν∂tφ = gµν

(
∂µ∂ν∂tφ− Γσ

µν∂σ∂tφ
)
, (7)

from which the result immediately follows. The second property of K is antihermiticity. The
proof is immediate; given two complex-valued functions f, g, we have:

(f,Kg) = −i
∫
Σ
[f∇µ (∂tg

∗)− (∂tg
∗)∇µf ]

√
γnµd3x

= −i
∫
Σ
[(−∂tf)∇µg

∗ − g∗∇µ (−∂tf)]
√
γnµd3x = (−Kf, g), (8)

where we integrated by parts to get to the second equality. Now, the first property allows us
to find simultaneous eigenmodes of these two operators, while the second property we have
introduced, antihermiticity, tells us that the eigenvalues of K are purely imaginary, namely
we can write Kfi = −iωfi, with ω ∈ R ̸=0; we also recall that eigenfunctions corresponding
to distinct eigenvalues must be orthogonal. We now basically have all the necessary tools to
second-quantize our theory. The set of modes fj are defined to be positive-frequency if

∂tfj = −iωfj , ω > 0. (9)

If, instead, we have a set of modes fj∗ satisfying

∂tf
∗
j = iωf∗j , ω > 0, (10)

then these are defined to be negative-frequency modes4. Having said that, we can now easily
find a (unique) basis {ui} of positive-frequency eigenmodes (see the first of the two equations
above) that are solutions of the wave equation with a purely positive-definite scalar product,
(ui, uj) = δij . Therefore, in exactly the same way as in Minkowski flat spacetime, a legitimate
Hilbert space can be defined; concerning the negative-frequency solutions, they can be put into
linear correspondence with vectors of the complex conjugate Hilbert space. By applying the now
familiar quantization procedure, we write the field operator φ in terms a and a†:

φ =
∑

i

(
aifi + a†if

∗
i

)
. (11)

These operators, a and a†, define a bosonic Fock space of particles as excitations of a unique vac-
uum state which is the ground state of an Hamiltonian that can now be consistently introduced
thanks to the presence of the time Killing vector field K.

What we want to do now is to consider a particular spacetime (M, gµν) divided into three
regions, denoted as B, C and T , respectively, such that M = B ∪ C ∪ T (this is usually called

4Note that these modes are called negative-frequency modes even if ω > 0.
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sandwich spacetime). If we consider a scalar field φ propagating on M, then we know that
the wave equation holds in the entire spacetime (Theorem 2). Unlike regions B and T , where
the metric is stationary (but timelike Killing vectors are different), region C is not stationary
provided that the manifold remains globally hyperbolic. In regions B and T , the scalar field
is quantized by choosing two sets of positive-frequency modes, say {fi} and {gi}, respectively.
Therefore, it can be expressed in terms of these modes as

φ =
∑

i

(
aifi + a†if

∗
i

)
=
∑

i

(
bigi + b†ig

∗
i

)
. (12)

Moreover, thanks to the completeness property, we can express one set in terms of the other:

gi =
∑

j

(
αijfj + βijf

∗
j

)
, (13)

where αij and βij are called Bogoliubov coefficients. First of all, we need to find a way to
compute these coefficients; concerning αij , this can be easily done by calculating the scalar
product between gi and fj . Indeed, we have:

(gi, fj) = (αikfk + βikf
∗
k , fj) = αik(fk, f

∗
j ) + βik(f

∗
k , fj) = αij . (14)

Similarly we find βij = −(gi, f
∗
j ). Moreover, the coefficients αij and βij must satisfy their own

normalization conditions. This can be see in the following way. We first compute the inner
product between gi and gj , obtaining

(gi, gj) = (αikfk + βikf
∗
k , αjlfl + βjlf

∗
l )

= αikα
∗
jk + βilβ

∗
jl(−1)

= αikα
†
kj − βikβ

†
kj = δij . (15)

In matrix notation we can write this last expression as

αα† − ββ† = 1, (16)

where 1 is the identity matrix. We now compute the inner product between gi and g∗j :(
gi, g

∗
j

)
=
(
αikfk + βikf

∗
k , β

∗
jlfl + α∗

jlf
∗
l

)
= αikβjk + βilαjl(−1)

= αikα
T
kj − βikα

T
kj = 0, (17)

where we used Eq. (16) to get to the last equality. In matrix notation we have

αβT − βαT = 0. (18)

Now, we can also express fi in terms of gj and g∗j as follows:

fi =
∑

j

(
α′
ijgj + β′ijg

∗
j

)
, (19)
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where we denoted the new coefficients with α′
ij and β′ij ; by making use of the above expression,

we can write (again using matrix notation)

g = α
(
α′g + β′g∗

)
+ β

(
α′∗g∗ + β′∗g

)
=
(
αα′ + ββ′∗

)
g +

(
αβ′ + βα′∗) g∗. (20)

This last expression is equal to g if and only if α′ = α† and β′ = −βT . Therefore,

fi =
∑

j

(
α∗
jigj − βjig

∗
j

)
. (21)

Also, αij and βij must satisfy the following conditions:

α†α− βTβ∗ = 1, α†β − βTα∗ = 0. (22)

From these results we can easily find

ai = (φ, fi) =
∑

j

(
αjibj + β∗jib

†
j

)
, bi = (φ, gi) =

∑
j

(
α∗
ijaj − β∗ija

†
j

)
. (23)

We have thus expressed ai in terms of bj and b†j , and vice versa.
The procedure outlined above allows us to define the in-vacuum as ai |0in⟩ = 0 ∀i; we will

call this state in-vacuum. If we consider an observer together with a stationary reference frame
in B, the vacuum will appear empty to such an observer. Now, a very natural questions arises:
what happens in T? In order to answer this question, we should be able to compute the number
of particles in the initial vacuum state as seen from T . If this number is different from zero, then
some particles must have been created; consequently, the vacuum state, which we should call the
out-vacuum, defined as bi |0out⟩ = 0 ∀i, would be different from the in-vacuum. In conclusion,
there must have been a particle production due to a change of the spacetime geometry, i.e., due
to the presence of region C. We therefore now compute Nout

i in the in-vacuum as follows:

〈
0in
∣∣Nout

i

∣∣ 0in〉 = 〈0in ∣∣∣b†ibi∣∣∣ 0in〉
=
〈
0in

∣∣∣∑
j

(
αjia

†
j − βjiaj

)∑
k

(
α∗
ikak − β∗ika

†
k

)∣∣∣ 0in〉
=
∑

jk
(−βji) (−β∗ik)

〈
0in

∣∣∣âj â†k∣∣∣ 0in〉
=
∑

jk
βijβ

∗
ik

〈
0in

∣∣∣(â†kâj + δjk

)∣∣∣ 0in〉
=
∑

jk
βijβ

∗
ikδjk ⟨0in | 0in⟩

=
∑

j
|βij |2 , (24)

where we made use of the fact that βij = βji and also used the commutation relation between a
and a†. What we learn from the above relation is that the number of particles as seen from T

is in general different from the number of particles measured from B.
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2 Derivation of the Hawking spectrum

In the present section we will reproduce Hawking’s calculation on black-hole radiance. Then, the
same phenomenon will be derived by considering the so-called eternal black hole. This section
is developed on the original paper written by Hawking in the seventies [2], as well as on the
subsequent work written by Wald [31]. We will closely follow the lecture notes on black holes
by Dowker [26] and Traschen [32], and also Refs. [33–35]. The reader is assumed to be familiar
with the construction of Penrose diagrams.

2.1 Field quantization

Let us consider, in Fig. 1, the Penrose diagram corresponding to the spacetime of a spherically-
symmetric collapsing star that is about to form a black hole. As is well-known, Schwarzschild
spacetime is curved and globally hyperbolic; it is not dissimilar to the sandwich spacetime we
have talked in the previous section. What we called region C corresponds to the star that is
about the form a black hole, while regions B and T corresponds to the far asymptotic past (i.e.,
near I−) and the far asymptotic future (i.e., near I+), respectively.

singularity

r = 0

H

i

i

i -

0

+

-

+

+

I

I

Figure 1: Penrose diagram of a collapsing star. Figure adapted from [26].

We can therefore proceed in the same way as before. A positive-frequency set of modes can
be certainly defined on I−. However, the same cannot be done for I+, which is not a Cauchy
surface. Indeed, at late times, some of the in-falling particles may cross the horizon H+ and
so never reach the far asymptotic future. Thus, the Cauchy surface needed for quantization is
I+ ∪H+. To sum up, we can write the set of modes as follows:

• {fi}: positive-frequency modes on I−;

• {pi}: positive-frequency modes on I+ and zero on H+;

• {qi}: “positive-frequency modes" on H+ and zero on I+.

As we see, quotation marks have been used when introducing positive-frequency modes on the
horizon. The reason is simple: no timelike Killing vector exists on H+. Putting it differently, we
can also say that in absence of a timelike Killing vector, a physically meaningful Hamiltonian
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cannot be defined, as well as a consistent quantum field theory; Wald discussed this issue in his
1975 paper, proving that all predictions of the theory with regard to measurements at infinity
are actually independent of the definition of positive-frequency modes on the horizon. Therefore,
in order to perform the calculation, we can safely assume that the modes on the horizon are
positive-frequency modes. We are now ready to expand our field φ in terms of the two different
sets of modes {fi, f∗i } and {pi, p∗i } ∪ {qi, q∗i }:

φ =
∑

i

(
aifi + a†if

∗
i

)
=
∑

i

[(
bipi + b†ip

∗
i

)
+
(
ciqi + c†iq

∗
i

)]
.

(25)

The number of particles at I+ will be given by

〈
0in
∣∣Nout

i

∣∣ 0in〉 = (ββ†)ii, (26)

where the in-vacuum is defined as ai |0in⟩ = 0 ∀i. Now, on the basis of our previous discussion,
the modes {fi, f∗i } are related to the modes {pi, p∗i } ∪ {qi, q∗i } as

pi =
∑

j

(
αijfj + βijf

∗
j

)
, (27)

qi =
∑

j

(
γijfj + δijf

∗
j

)
. (28)

As we have seen before, the Bogoliubov coefficient βij in the pi expression is needed if we want
to obtain an expression for the particle number. To this end, as we will see, Hawking “traced the
solution back in time", from the far future to the far past. We will soon understand what does
it mean exactly. In the next paragraph we will analyze the form of the Klein-Gordon equation
in Schwarzchild spacetime. In the following we will use geometric units (c = G = 1).

2.2 Equation of motion in a Schwarzchild background

In Schwarzschild coordinates, (t, r, θ, ϕ), the Schwarzschild metric reads

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (29)

where dΩ2 = dθ2 + sin2 θdϕ2. The massless Klein-Gordon equation,

1√
−g

∂µ
(√

−ggµν∂ν
)
φ = 0, (30)

can be specialized to the spacetime in question, obtaining

∂t

[
−
(
1− 2M

r

)−1

∂tφ

]
+

1

r2
∂r

[(
1− 2M

r

)
r2∂rφ

]
+

1

r2
∆Ωφ = 0, (31)

where ∆Ω is the Laplacian operator on the unit two-sphere:

∆Ω :=
1

sin θ
∂θ (sin θ∂θ) +

1

sin2 θ
∂2ϕ. (32)
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In order to solve the above equation we can use the method of separation of variables. Also, the
spherical-symmetry of the background allows us to make the following ansatz5:

φ(t, r, θ, ϕ) =
ϕ(r, t)

r
Ylm(θ, ϕ), (33)

where an expansion in spherical harmonics has been considered6. Thus, Eq. (31) reduces to

−
(
1− 2M

r

)−1

∂2t ϕ+
2M

r2

(
∂rϕ− 1

r
ϕ

)
+

(
1− 2M

r

)
∂2rϕ− l(l + 1)

r2
ϕ = 0. (34)

Above, we used one of the main properties of the spherical harmonics, namely that

∆ΩYlm(θ, ϕ) = −l(l + 1)Ylm(θ, ϕ). (35)

Now, by introducing the so-called tortoise coordinate,

r∗ = r + 2M ln
∣∣∣ r
2M

− 1
∣∣∣ , (36)

from which the following expressions can be easily derived:

∂r =
∂r∗

1− 2M
r

, (37)

∂2r = −2M

r2
∂r∗(

1− 2M
r

)2 +
∂2r∗(

1− 2M
r

)2 . (38)

Eq. (34) can then be written as (note that now ϕ is a function of r∗ and t)

(
∂2t − ∂2r∗ + Vl

)
ϕ = 0, (39)

where the potential Vl(r∗) in the above equation is given by7

Vl(r∗) :=

(
1− 2M

r

)[
l(l + 1)

r2
+

2M

r3

]
. (40)

Now, the method of separation of variables can be used once again:

ϕ(r∗, t) = e−iωtψ(r∗), (41)

where Rlω is the solution of the radial equation

(
∂2r∗ + ω2

)
ψ = Vlψ. (42)

All that remains is solving Eq. (42), which is an ordinary differential equation of second order.
One can cast the above equation into the so-called confluent Heun equation; however, the solu-
tions of such equation are rather complicated. Luckily, we can avoid considering the complete

5For simplicity, we will omit sums over the indices l and m.
6We will dedicate an entire paragraph to the spherical harmonics in the next section.
7The potential depends on r∗ through r.
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solutions if we look a bit more closely at Vl(r∗); in fact, we can notice that the potential goes
to zero both near the event horizon H+, where r → 2M ⇐⇒ r∗ → −∞, and near I±, where
r → ∞ ⇐⇒ r∗ → ∞. Starting from these considerations, Eq. (42) can be easily solved; the
solution can then be plugged in Eq. (41) which, in turn, leads to the solutions of the Klein-
Gordon equation in the limit r → ∞. Since we are only interested in ingoing early modes and
outgoing late modes, we can define

fω′ ∼ 1

r
√
2πω′

e−iω′v, (ingoing early modes) (43)

pω ∼ 1

r
√
2πω

e−iωu, (outgoing late modes) (44)

where we also introduced the so-called light-cone coordinates u and v, defined as u := t − r∗

and v := t + r∗. Note that in the previous subsection we used the index i to denote the state,
while here we are using ω (in principle we should have introduced also the “quantum numbers"
l and m, but we are working in a spherically-symmetric setup, so we may safely drop them).
Of course, the solutions should also contain the spherical harmonics, but since it is not relevant
for the following discussion we decided not to write them. Concerning the frequencies ω′ and ω,
they are eigenvalues of the following eigenequations (see the discussion in subsection 1.2):

i∂tfω′ = ω′fω′ , (45)

i∂tpω = ωpω. (46)

Moreover, again referring to subsection 1.2, we know that each solution pω can be written as a
linear combinations of the fω′ ’s and their complex conjugates (continuous version):

pω =

∫ ∞

0
dω′ (αωω′fω′ + βωω′f∗ω′) , (47)

As already anticipated, in order to compute the coefficients αωω′ and βωω′ , we will trace the
solution back in time; more specifically, we are going to consider a solution pω which propagates
inwards from I+ (towards decreasing values of r∗), with zero Cauchy data on the event horizon,
until it reaches the potential barrier. Part of the wave, say p(1)ω , will be reflected by the barrier
and will end up on I− preserving its frequency ω. This will give a coefficient αωω′ proportional
to a delta function, namely δ(ω − ω′). The remaining part of the wave, say p(2)ω , will enter the
collapsing matter, i.e., it will be transmitted through the potential barrier with the result of
being distorted before eventually coming out towards past null infinity. Therefore, p(2)ω is the
part of the wave we are interested in.

A couple of comments are in order here. We have said that we are interested in the part
of the wave which enters the collapsing matter, but we did not specify any spacetime geometry
there. Is this a serious problem? How can we trace back in time the solution if we have no idea
about the internal geometry of the star? Fortunately, there is a way out; we will soon explain
how we can perform the analysis without specifying the geometry inside the star. Before doing
that, let us also notice that positive-frequency plane waves like pω are completely delocalized.
This problem can be easily overcome if we consider a superposition of these waves, namely
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constructing a localized wave packet on I+ (for example a Gaussian packet). In particular,
we can construct it so that it is peaked in the neighborhood of some finite frequency ω0 and
some coordinate u0; we will comment more on this later on. Now, concerning the problem of
the internal geometry of the star, we know that u diverges at the horizon and so the effective
frequency of the solution becomes arbitrarily large; the fact that near H+ the frequency is
so high will lead to a fundamental approximation, i.e., the geometrical optics approximation,
which can be explained as follows. Consider a wave which propagates with a certain wavelength
λ towards an obstacle. If the wavelength is of the order of the obstacle’s characteristic dimension
(or higher), we have to study interference and diffraction phenomena; on the contrary, if the
wavelength is smaller with respect to the obstacle’s dimension, these phenomena are negligible
and we can safely consider the wave as if it is propagating along straight trajectories (rays).
This logic applies to p(2)ω as well, which will be able to cross the body and escape towards I+.

2.3 Tracing back in time

Let us now analyze the form of the solution at I−. In order to do so, we refer to Fig. 2, where we
indicated with y a point on the event horizon. Then, as we can notice, two null vectors have been
introduced: lµ, tangent to the horizon, and nµ, a future-directed null vector pointing towards
the singularity; we choose these two vectors to be normalized so that lµnµ = −1. Looking at
the figure, we notice that no path with an affine parameter v larger than v0 would be able to
arrive at I+ because it would end into the newly-formed black hole. Furthermore, we introduce
another vector, −ϵnµ, with ϵ small and positive.

ℓn

ε

μμ

ε

U=  ε-

r=0

v

v0

U=  Ce- -ku0singularity

y

Figure 2: Penrose diagram useful to understand Hawking’s analysis. Figure adapted from [33].

We can now parallel transport the two vectors nµ and lµ along γH , the null geodesic which
travels backwards from I+. Also, we notice that the vector −ϵnµ generates another null geodesic,
γ, which starts at some u at I+ and ends on I− at v. If we now transport the vectors lµ and
nµ back to the point of intersection between the past and future horizons, then the vector −ϵnµ

introduced before will lie along the past event horizon. Let U be an affine parameter on the
past event horizon. At the point where the two horizons intersect, we have that

U = 0, nµ =
dxµ

dU
. (48)
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Moreover, U and the retarded time u are related by the following relation:

U = −Ce−κu, (49)

where C is a constant and κ = 1/4M is the surface gravity of the black hole. On the null
geodesic γ, near the event horizon, the affine parameter is given by U = −ϵ. Therefore, by
inverting the above relation we get the expression for u on γ:

u = −1

κ
(ln ϵ− lnC) . (50)

So far, so good. Let us recall that our goal is to obtain the form of p(2)ω on I−. We first notice
that on I− the vector nµ is parallel to the Killing vector, say Kµ, which is tangent to the null
geodesics generators of I−. Therefore, we write

nµ = Dξµ, (51)

where D is some constant. Moreover, from the figure it is evident that ϵ = v0−v on I−. Putting
it all together, we finally obtain the phase of the solution:

ω

κ
(ln (v0 − v)− lnD − lnC) . (52)

At this point we need to distinguish two cases. For v > v0, p
(2)
ω gives no contribution since

particles would be trapped beyond the event horizon. However, if v ≤ v0, then we can write
down the final expression for p(2)ω by using the result we just derived:

p(2)ω ∼ exp

[
i
ω

κ
ln

(
v0 − v

CD

)]
, v < v0. (53)

Let us now simplify a little bit our p(2)ω . We may safely set v0 = 0 since the spacetime in question
is invariant under translations v → v + A, where A is some constant. Moreover, we can define
η := (CD)−1. In this way, the solution can be written as

p(2)ω ∼ exp
[
iκ−1ω ln(−ηv)

]
, v < 0, ∥v∥ ≪ 1. (54)

We now also recall that pω can be expressed as

pω =

∫ ∞

0
dω′ (αωω′fω′ + βωω′f∗ω′) , (55)

where we omitted the superscript (2) for simplicity. Our aim is find βωω′ and, in turn, the particle
number. In order to do so, we first substitute fω′ in the above equation and then consider a
Fourier transformation, resulting in∫ ∞

−∞
dveiω

′′vpω(v) ∼
∫ ∞

−∞
dveiω

′′v

∫ ∞

0
dω′

(
αωω′e−iω′v + βωω′eiω

′v
)

= 2π

∫ ∞

0
dω′ [αωω′δ

(
ω′ − ω′′)+ βωω′δ

(
ω′ + ω′′)] . (56)
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Since ω′ + ω′′ ̸= 0, from the above expression we get

αωω′ ∼
∫ ∞

−∞
dveiω

′vpω(v) := p̃ω(ω
′). (57)

In a very similar way we can write∫ ∞

−∞
dve−iω′′vpω(v) ∼

∫ ∞

−∞
dve−iω′′v

∫ ∞

0
dω′

(
αωω′e−iω′v + βωω′eiω

′v
)

= 2π

∫ ∞

0
dω′ [αωω′δ

(
ω′ + ω′′)+ βωω′δ

(
ω′ − ω′′)] , (58)

from which we can deduce that

βωω′ ∼
∫ ∞

−∞
dve−iω′vpω(v) := p̃ω(−ω′). (59)

Now, if we are able to relate p̃ω(ω′) to p̃ω(−ω′), then we are done. Indeed, in this case the
coefficient of interest can be easily found by using the orthonormality condition proved before
(its continuous version to be precise), αα† − ββ† = I. So, let try to find the relation between
such quantities. First of all, we notice that

p̃ω(ω
′) =

∫ ∞

−∞
dveiω

′vpω(v) ≈
∫ 0

−∞
dveiω

′veiκ
−1ω ln(−ηv). (60)

The above approximation is valid since |ω′| ≫ 1; in fact, in this case eiω′v vary so rapidly that its
oscillations cancel out any contribution to the integral when v is large. Concerning the integral
over the positive range of v, it is zero since the solution pω vanishes in this case. Now, the
reader may wonder why such approximation (|ω′| ≫ 1) is valid. Heuristically, only if the initial
frequency is very high the photon can “come out from the horizon” and be seen by an observer at
infinity as travelling with a “normal” frequency. The idea is that the photon loses a huge amount
of energy while trying to escape the black hole and so, in order to succeed, it needs to have a lot
of energy, i.e., a high frequency. Before proceeding, we first notice that the integral in Eq. (60)
is not convergent; this is due to the fact we should have considered wave packets. Instead of
doing so and making the procedure rigorous, we manipulate the solution as if it converged; the
calculation will be much easier and the physics clear anyway. Above, we obtained an expression
for p̃ω(ω′). Similarly, find

p̃ω(−ω′) =

∫ ∞

∞
dve−iω′vpω(v) ≈

∫ 0

−∞
dve−iω′veiκ

−1ω ln(−ηv). (61)

In order to get the relation between p̃ω(ω′) and p̃ω(−ω′), let us extend the above integrand into
the complex v-plane; now, as we know, the complex logarithmic function that appears in the
above integral is multiple-valued: if a complex number, say z, is written in polar form, namely
as z = reiθ, then its logarithm ln z = ln r+ i(θ+2πn) has multiple possible values corresponding
to different values of n. For this reason, let us take a brunch cut as in Fig. 3 (of course, this is
not the only possible choice!). Consequently, the contour we choose to perform the integration
must avoid the brunch cut; in order to do that, we simply deform the contour by considering a
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half circle of radius ϵ whose center is the origin of the complex plane, as shown below, and then
send ϵ to zero. Moreover, we notice that the function we are integrating is holomorphic inside
the closed contour since it contains no poles. Therefore, we can safely apply Cauchy’s theorem:∮

dve−iω′veiκ
−1ω ln(−ηv) =

{∫
γ1

+

∫
γ2

+

∫
Γ

}
dve−iω′veiκ

−1ω ln(−αv) = 0. (62)

Notice that we did not write down the contribution coming from the semicircle of radius ϵ, which
indeed vanishes when setting ϵ to zero. Now, by assuming ω′ > 0 (without losing generality),
we see that the integrand in p̃ω(−ω′) exponentially decays for Im(v) < 0, implying that the
integration over Γ gives no contribution as R→ ∞. Hence, we have:∫

γ1

dve−iω′veiκ
−1ω ln(−ηv) = −

∫
γ2

dve−iω′veiκ
−1ω ln(−ηv), (63)

where γ1 and γ2 extend to infinity now. So, in light of this, we can rewrite Eq. (61) as

p̃ω(−ω′) ≈
∫ 0

−∞
dve−iω′veiκ

−1ω ln(−ηv)

= −
∫ ∞

0
dve−iω′veiκ

−1ω ln(−ηv)

= −
∫ 0

−∞
dveiω

′veiκ
−1ω ln(ηv)

= −
∫ 0

−∞
dveiω

′veiκ
−1ω[ln(−ηv)+iπ]

= −e−πω/κp̃ω(ω
′).

In the above expression, to get to the first equality, we used the result derived above, namely the
fact that the integral along the curve γ1 is equal to the one along γ2 up to a minus sign. Moreover,
in the next step we simply changed variable, v → −v. Now, by recalling how the coefficients
αωω′ and βωω′ are related to p̃ω(ω′) and p̃ω(−ω′), respectively, we obtain |βωω′ | = e−ωπκ−1 |αωω′ |.

Im(z)

Re(z)

γ2 

Γ

 γ1

Figure 3: Contour chosen to perform the integration in Eq. (61). Figure adapted from [26].

By using the orthonormality condition (continuous version),∫ ∞

0
dω′ (|αωω′ |2 − |βωω′ |2

)
= 1, (64)
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we finally find the spectrum of particles:

Nω =

∫ ∞

0
dω′|βωω′ |2 = 1

e2πκ−1ω − 1
. (65)

Eq. (65) shows that a black hole behaves like a black body, emitting radiation at the temperature

TH =
κ

2π
. (66)

Black holes are therefore not as black as they are painted, they are not the eternal prisons they
were once thought. Below, we will derive Eq. (66) by considering a slightly different perspective.

2.4 The eternal black hole

From our previous discussion, we deduce that the features of the Hawking effect are actually
independent of the nature of gravitational collapse, i.e., the effect is more a consequence of the
causal and topological structure of spacetime rather than the specific geometry. Thus, one is
tempted to ask: can we derive Hawking’s result by considering an already formed black hole, a
so-called eternal black hole? In other words, our goal is to examine quantum field theory on the
maximally-extended manifold. The Penrose diagram of an eternal black hole is shown is Fig. 4.

+

-

Past horizon

Future horizon

III

IV

III

I

I

Figure 4: Penrose diagram of an eternal black hole. Figure adapted from [3].

How can we prove that eternal black holes emit radiation? The idea is the following. We
consider two different observers: an inertial observer falling into a black hole in a finite proper
time, say T , and an asymptotic observer. The relation between these two different points of
view is exactly what is needed to derive Hawking’s result. To be more precise, what we want
to do it so quantize the massless scalar field ϕ in these two different coordinate frames and then
compare the corresponding vacuum states. In the following, we will use Schwarzschild-tortoise
coordinates for the asymptotic observer, while Kruskal coordinates for the freely-falling one.

Let us now write down the mode expansion in both these coordinates. For the asymptotic
observer the procedure has already been outlined in subsection 2.2. Starting from the same
ansatz, and introducing the tortoise coordinates r∗, we end up with the following ingoing and
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outgoing solutions to the Klein-Gordon equation8:

φin ∼ Nωlme
−iωv Ylm

r
,

φout ∼ Nωlme
−iωuYlm

r
,

(67)

where with Nωlm we denoted the normalization. The outside observer can thus expand the fields
in modes of given t-frequency ω as follows:

φR ∝
∫ ∞

0
dω
(
bωe

−iωu + b†ωe
iωu
)
, (68)

where, for convenience, we omitted the angular part (spherical harmonics), the factor of 1/r and
the normalization. Above, the subscript “R" stands for “right-moving", indicating that we are
considering only outgoing solutions (this will turn out to be sufficient for our purposes). We also
recall that the annihilation and creation operators, denoted as bω and b†ω, respectively, satisfy
the following commutation relation :

[bω, b
†
ω′ ] ∝ δ(ω − ω′)δll′δmm′ . (69)

The corresponding vacuum state, usually called Boulware vacuum, is defined as

bω |0⟩B = 0. (70)

Let us now consider the freely-falling observer in region I of the Kruskal diagram; we would
like to proceed in exactly the same way as before. Our aim is to write down the massless
Klein-Gordon equation in Kruskal coordinates, solve it and expand the field in modes of given
T -frequency ν. Outside the event horizon, namely when r > 2M , Kruskal–Szekeres coordinates
are defined in terms of Schwarzschild coordinates as follows:

T =
( r

2M
− 1
) 1

2
e

r
4M sinh

(
t

4M

)
, (71)

R =
( r

2M
− 1
) 1

2
e

r
4M cosh

(
t

4M

)
. (72)

In (T,R) coordinates, it is not hard to see that the Klein-Gordon equation reduces to(
∂2T − ∂2R + Ṽl

)
ϕ(T,R) = 0, (73)

where, this time, the potential is given by

Ṽl(r) :=
4e−

r
2M

r3

[
l(l + 1) +

2M

r

]
. (74)

At this point, we immediately notice that the potential Ṽl does not vanishes near the black-hole
event horizon; however, it may be neglected anyway by assuming that we are dealing with a very

8For simplicity, we chose a slightly different notation with respect to the previous subsection.
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large black hole (this assumption seems reasonable otherwise the semiclassical approximation
would break down) and that the orbital angular momentum l of the Klein-Gordon particle is
sufficiently small. Under these assumptions, in the proximity of the event horizon, the differential
equation (73) takes the following form:

(
∂2T − ∂2R

)
ϕ(T,R) = 0. (75)

The ingoing and outgoing positive-energy solutions can then be written as

φin ∼ Nνlme
−iν(T+R)Ylm

r
= Nνlme

−iνV Ylm
r
, (76)

φout ∼ Nνlme
−iν(T−R)Ylm

r
= Nνlme

−iνU Ylm
r
, (77)

respectively. Above, we introduced light-cone coordinates U = T − R and V = T + R. Also,
note that in this case we used ν to denote the frequency. Having found the ingoing and outgoing
solutions, the freely-falling observer can now expand the fields in modes of given T -frequency ν
in the usual way (again, we are considering only outgoing solutions):

φR ∝
∫ ∞

0
dν
(
aνe

−iνU + a†νe
iνU
)
. (78)

The creation operator a†ν and the annihilation operator aν satisfy the commutation relation

[aν , a
†
ν′ ] ∝ δ(ν − ν ′)δll′δmm′ . (79)

The corresponding vacuum state, the Kruskal vacuum, is defined as

aν |0⟩K = 0. (80)

Now we can proceed as follows. To start, we can write down the relationship between the two
outgoing solutions we have found, namely the Bogoliubov transformation. Then, we can express
the Bogoliubov coefficients as Fourier integrals and find the relation between their absolute
values, from which the result immediately follows. To be more explicit, we first recall the
relation between the coordinates U and u:

U = −e−κu ⇒ u = −κ−1 ln (−U)

⇒ e−iωu = eiωκ
−1 ln(−U), (81)

where we recall that κ is the surface gravity. Now, the Bogoliubov transformation is given by

eiωκ
−1 ln(−U) =

∫ ∞

0
dν
(
αωνe

−iνU + βωνe
iνU
)
, (82)

where for simplicity we use the equality sign instead of the proportionality one; including all the
proportionality factors would not alter our conclusions. The Bogoliubov coefficients αων and
βων can be written as Fourier integrals, in the same way as we did before. Starting from the
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above expression, we can write∫ ∞

−∞
dUeiν

′Ueiκ
−1ω ln(−U) ∼

∫ ∞

−∞
dUeiν

′U

∫ ∞

0
dν
(
αωνe

−iνU + βωνe
iνU
)

= 2π

∫ ∞

0
dν
[
αωνδ

(
ν − ν ′

)
+ βωνδ

(
ν + ν ′

)]
.

(83)

Since ν + ν ′ ̸= 0, we immediately get

αων ∼
∫ 0

−∞
dUeiνUeiωκ

−1 ln(−U). (84)

In a very similar way, we also obtain an expression for βων :

βων ∼
∫ 0

−∞
dUe−iνUeiωκ

−1 ln(−U). (85)

It is important to notice that the above integration is performed from −∞ to 0 since the light-
cone coordinate U is strictly negative in region I of the Kruskal diagram. Following a similar
procedure as before, the above integrals can be manipulated by extending the integrand into the
complex U -plane, finally obtaining the relation between the absolute values of βων and αων :

|βων | = e−
ωπ
κ |αων |. (86)

By proceeding as before, namely by using the orthonormality condition of the Bogoliubov coef-
ficients, we obtain the spectrum of a blackbody at the temperature given by Eq. (66).

In these two last subsections we derived Hawking’s famous result following two distinct pro-
cedures. As already explained in the introduction, such result poses a threat to the concept
of unitarity in quantum mechanics. Dissatisfied with such conclusion, ’t Hooft emphasized the
importance of gravitational interactions which, as we have seen, have been ignored in the deriva-
tion of the Hawking spectrum. In the next section we will discuss how to treat such interactions
(i.e., how information is transferred) in a curved background, constructing a scattering matrix
which turns out to be unitary.
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3 Shock wave of a charged particle in curved spacetime

In this section, we review ’t Hooft’s shock wave analysis in the case of a charged particle propa-
gating in the background of a Schwarzschild black hole [13]. In four dimensions, the metric for
the background is given by the following expression:

ds2 = −2A (U, V ) dUdV + r2 (U, V ) dΩ2, (87)

where U, V are light-cone coordinates. The functions A (U, V ) and r (U, V ) are defined as

A (U, V ) =
R

r
exp

(
1− r

R

)
, UV = 2R2

(
1− r

R

)
exp

( r
R

− 1
)
. (88)

The line element dΩ2 = dθ2 + sin2 θdϕ2, already introduced at the beginning of subsection 2.2,
defines the round metric on the unit two-sphere and R = 2GM is the Schwarzschild radius. In
this section, as well as in all the remaining ones in this thesis, we will work in natural units (we
will set c = ℏ = 1).

3.1 Gravitational backreaction and electromagnetic gauge rotation

Here we consider the backreaction of a highly boosted charged shock wave on a probe test particle
[36]. The gravitational backreaction of the shock wave leaves an imprint on the gravitational
field experienced by the probe. The probe then experiences geodesics that are shifted across the
null surface traced out by the shock wave.

3.1.1 Backreaction on the gravitational field

The stress-energy tensor associated with a source carrying momentum pin at a location U = 0

and a point on the sphere Ω0 = (θ0, ϕ0) can be parametrised as

Tµν = 4pinδ (U) δ (Ω− Ω0) δ
µ
V δ

ν
V . (89)

An ansatz for the backreacted geometry that solves the Einstein equations with the above source
can be taken to be (see Appendix B in Ref. [36] for details)

ds2 = −2A (U, V ) dU
(
dV − δ (U) λ̃1 (Ω,Ω0) dU

)
+ r2 (U, V ) dΩ2, (90)

where λ̃1(Ω,Ω0) is a function of the angular separation between the points Ω and Ω0: it es-
sentially parametrizes the “kick". Outside of the location of the source shock, a probe particle
experiences the background Schwarzschild solution with a vanishing λ̃1 (Ω,Ω0). At the location
of the source, however, the Einstein equations reduce to9 [15, 17]

(∆Ω − 1) λ̃1 (Ω,Ω0) = −8πGpinδ (Ω− Ω0) , (91)
9In this derivation, terms that are quadratic in δ (u) have been neglected. This implies that the calculation is

only valid when the impact parameter between the probe and the shock, measured by the transverse distance on
the sphere, is larger than Planck length. This is the regime of validity of this effective description. Beyond this
regime, it is of course well-known that a point-particle description in gravity is problematic.
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where ∆Ω is the Laplacian on the unit two-sphere, namely Eq. (32). Now, by expanding (91)
in spherical harmonics, we end up with the following expression for the coefficients:

λ̃lm1 =
8πG

l2 + l + 1
pin := λlm1 pin. (92)

3.1.2 Backreaction on the electromagnetic field

In analogy to the gravitational backreaction discussed above, an electromagnetically charged
shock wave leaves an imprint on the electromagnetic field of the probe. The probe then experi-
ences a discontinuity in its electromagnetic field across the null surface traced out by the shock
wave. By definition, since it is a probe, we will assume its electromagnetic field to be negligible
in comparison to its response to the backreacting shock wave. Thus, before approaching a back-
reacting shockwave, the gauge field of a boosted probe particle near the horizon can be gauge
fixed to zero. At the location of the shock wave, however, its field is affected by the source.

To see this, let us consider a localised source of charge qin moving on the horizon, that is

Jµ = qin
1√
−g

δ (U) δ (Ω− Ω0) δ
µ
V . (93)

The ansatz for the electromagnetic field of the probe upon the introduction of the above source
can be parametrised in the following way:

Aµ = δ (U) λ̃2 (Ω,Ω0) δ
µ
V . (94)

Therefore, in analogy with the gravitational case, we now must solve the Maxwell equations in
curved spacetime at the location of the horizon U = 0:

□Aµ −∇µ∇νA
ν = qin

1√
−g

δ (U) δ (Ω− Ω0) δ
µ
V , (95)

The left-hand side can be simplified in the Schwarzschild background, obtaining

□AV − ∂V (∇ ·A) = gUV (∂U ŨV )A
V + 2ŨU∂UA

V + 2Ṽ U∂UA
V

+ 2Ṽ V ŨVA
V − 2Ṽ V ṼVA

V +
1

r2
∆ΩA

V − ∂V
[
∂V log(Ar2)AV

]
, (96)

where we defined Ṽa := ∂a log r and Ũa := ∂a logA(r). Notice that the Latin index a runs over
the coordinates U and V . Now, upon integration over U , Eq. (95) reduces to an equation for
the undetermined bilocal function λ̃2 (Ω,Ω0):

∆Ωλ̃2 (Ω,Ω0) = qinδ (Ω− Ω0) , (97)

which when expanded in partial waves results in the following solution:

λ̃lm2 = − 1

l2 + l
qin := λlm2 qin. (98)

In conclusion, while the electromagnetic field of the probe could be gauge-fixed to vanish in
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the absence of sources, the backreaction of a source shock results in a gauge rotation of the
electromagnetic field of the probe.

3.2 An S-matrix for the wavefunction of a probe charged particle

The aim of this subsection is to calculate the S-matrix for the wavefunction of a charged particle
in the presence of a gravitationally backreacting charged shock wave. To this end, let us first
begin by writing the wavefunction of a charged particle as ψ (pin, qin) = ⟨ψ|pin, qin⟩. In order to
label states as such, we may demand the existence of a charge operator which when acted on its
eigenstate yields the charge of the state. Just as a superposition of momentum eigenstates yields
a state of definite position, a superposition of charge eigenstates will yield a state with definite
electric field. As we argued in the previous subsection, for boosted particles backreacting near
the horizon of a black hole, this electric field approaches a pure gauge configuration and may be
parameterised by a gauge parameter, say, Λ. Therefore, we may label states in the momentum-
charge basis by |p, q⟩ or by |y,Λ⟩ in the position-gauge field basis. In terms of the momentum
and charge eigenstates, the S-matrix can formally be written as

S (pin, qin; pout, qout) := ⟨pout, qout|pin, qin⟩. (99)

This allows us to write the wavefunction as follows:

ψ (pin, qin) = ⟨ψ|pin, qin⟩

=

∫
dqout

∫
dpout
2π

⟨ψ|pout, qout⟩⟨pout, qout|pin, qin⟩

=

∫
dqout

∫
dpout
2π

⟨ψ|pout, qout⟩S (pin, qin; pout, qout)

=

∫
dΛout

∫
dy

∫
dqout

∫
dpout
2π

ψ (y,Λout) ⟨y,Λout|pout, qout⟩

× S (pin, qin; pout, qout) , (100)

where we used the completeness relations∫
dqout

∫
dpout
2π

|pout, qout⟩⟨pout, qout| = 1 (101)∫
dΛout

∫
dy|y,Λout⟩⟨y,Λout| = 1, (102)

and the definition of the scattering matrix, Eq. (99). As we argued in the previous subsection,
the gravitational backreaction implies that the position of the outgoing particle is determined
by the momentum of the incoming particle. Similarly, the gauge parameter of the out-particle is
determined by the charge of the in-particle. These relations (position ↔ momentum and gauge
parameter ↔ charge) can be obtained from Eqs. (90) and (94), respectively10:

y = λ1pin, Λout = λ2qin. (103)

10Here, the “constants” λi are only constants along the longitudinal coordinates U, V , They indeed depend on
the transverse distance on the horizon, between the backreacting shock and the probe outgoing particle.
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We now insert in the previous expression for the wavefunction to find

ψ (pin, qin) =

∫
λ2dq

′
in

∫
λ1dp

′
in

∫
dqout

∫
dpout
2π

ψ
(
λ1p

′
in, λ2q

′
in

)
⟨y,Λout|pout, qout⟩

× S (pin, qin; pout, qout)

=

∫
dq′in

∫
dp′in

∫
dqout

∫
dpout
2π

ψ
(
p′in, q

′
in

)
⟨y,Λout|pout, qout⟩

× S (pin, qin; pout, qout) . (104)

The rescaling of integration variables to arrive at the second equality does not change the ranges
of integration (which remain from −∞ to ∞ for both the integrals.) This relation must hold for
any wavefunction as (103) contains invertible basis transformations. Therefore, we find that∫

dq′in

∫
dp′in⟨y,Λout|pout, qout⟩S∗ (pin, qin; pout, qout) = δ

(
p′in − pin

)
δ
(
q′in − qin

)
. (105)

To invert this equation for the S-matrix, we now need an expression for ⟨y,Λout|pout, qout⟩.
Writing the positions y in a momentum basis gives us a plane wave. Similarly, we know that
the electric field and charge density are conjugate; therefore, we may write

⟨y,Λout|pout, qout⟩ = exp (−iypout + iΛoutqout) = exp (−iλ1pinpout + iλ2qinqout) . (106)

Plugging this into the previous expression, we see that it is a Fourier transform equation for the
scattering matrix, which can easily be inverted to find

S (pin, qin; pout, qout) = exp (iλ1pinpout − iλ2qinqout) . (107)

3.3 Generalization to many particles and the continuum

We would now like to generalise the previous results to the case of many particles in order to then
take a continuum limit to describe a distribution of particles on the horizon. Since quantum
mechanics does not allow for particle production, we may safely assume that the number of
incoming and outgoing particles is equal; we call the number of incoming and outgoing particles
asNin andNout respectively. We will label the i-th incoming particles by its longitudinal position
xi, angular position on the horizon Ωi and momentum piin such that i ∈ Nin. Similarly, outgoing
particles are labelled by yj ,Ωj , p

j
out, with j ∈ Nout. Assuming that there is no more than one

particle at each angular position on the horizon, in the continuum limit Nin = Nout → ∞, the
positions of particles may be described by distributions x (Ω) and y (Ω). Let us start by writing
the basis of states in the following way:

|pin,tot, qin,tot⟩ =
⊗
i

|piin, qiin⟩, (108)

|pout,tot, qout,tot⟩ =
⊗
j

|pjout, q
j
out,tot⟩, (109)

where we assumed a factorised Hilbert space because all parallel moving particles are independent
of each other. The completeness relations are now integrals defined with measures dpout,tot =
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∏
j dp

j
out and dytot =

∏
j dy

j . The S-matrix may formally be written as

Stot := S (pin,tot, qin,tot; pout,tot, qout,tot) := ⟨pout,tot, qout,tot|pin,tot, qin,tot⟩. (110)

This S-matrix is dictated by the backreaction relations which are now given in terms of invertible
matrices that are in turn functions of the transverse distance between the in- and out-particles:

yj = λij1 (Ωi,Ωj) p
i
in, Λj

out = λij2 (Ωi,Ωj) q
i
in, (111)

such that the out-state can be written as

|ytot,Λout,tot⟩ =
⊗
j

|λij1 (Ωi,Ωj) p
i
in, λ

ij
2 (Ωi,Ωj) q

i
in⟩. (112)

Since the scattering matrix is a basis transformation, it is necessarily bijective between the in-
and out-Hilbert spaces. This implies that the matrices λ1 (Ωi,Ωj) and λ2 (Ωi,Ωj) are invertible,
which in turn implies that there is no more than one particle entering (leaving) the horizon at
any given angle. Moreover, we have the condition that Nin = Nout. Consequently, we may now
adapt the procedure outlined above for the single particle case to the multiparticle case. We
begin by writing the wavefunction as

ψ (pin,tot, qin,tot) = ⟨ψ|pin,tot, qin,tot⟩

=

∫
dqout,tot

∫
dpout,tot

2π
⟨ψ|pout,tot, qout,tot⟩⟨pout,tot, qout,tot|pin,tot, qin,tot⟩

=

∫
dqout,tot

∫
dpout,tot

2π
⟨ψ|pout,tot, qout,tot⟩Stot

=

∫
dΛout,tot

∫
dytot

∫
dqout,tot

∫
dpout,tot

2π
ψ (ytot,Λout,tot)

× ⟨ytot,Λout,tot|pout,tot, qout,tot⟩Stot. (113)

where we used the completeness relations∫
dqout,tot

∫
dpout,tot

2π
|pout,tot, qout,tot⟩⟨pout,tot, qout,tot| = 1 (114)∫

dΛout,tot

∫
dytot|ytot,Λout,tot⟩⟨ytot,Λout,tot| = 1. (115)

Defining λij1,2 := λ1,2 (Ωi,Ωj), we now insert the relations in (111), resulting in the measures

∏
j

dyj = det
(
λij1

)∏
i

dpiin,
∏
j

dΛj
out = det

(
λij2

)∏
i

dqiin, (116)

to write the wavefunction as

ψ (pin,tot, qin,tot) = det
(
λij1

)
det
(
λij2

)∫ ∏
i

dq′ iindp
′ i
in

∫
dqout,tot

×
∫
dpout,tot

2π
ψ
(
λij1 p

i
in, λ

ij
2 q

i
in

)
⟨ytot,Λout,tot|pout,tot, qout,tot⟩Stot. (117)
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For every j in the product, we have a sum over all incoming particles labelled by i. In each
term of the sum, we rescale the integration variables pin and qin to neutralise the corresponding
factors of λ1 and λ2, just as we did in the single particle case:

ψ (pin,tot, qin,tot) =

∫
dq′in,tot

∫
dp′in,tot

∫
dqout,tot

∫
dpout,tot

2π
ψ
(
p′in,tot, q

′
in,tot

)
× ⟨ytot,Λout,tot|pout,tot, qout,tot⟩Stot. (118)

In analogy to (106), we now write

⟨ytot,Λout,tot|pout,tot, qout,tot⟩ =
∏
j

⟨yj ,Λj
out|p

j
out, q

j
out⟩

= exp

−i
∑
j

yjp
j
out + i

∑
j

Λj
outq

j
out

 . (119)

Therefore, we may invert the previous relation for the scattering matrix to find

Stot = exp
(
iλij1 p

i
inp

j
out − iλij2 q

i
inq

j
out

)
. (120)

In the above equation, a sum over all in- and out-particles is implicit. The continuum limit can
be easily achieved. We first promote the momenta and charges to be distributions as smooth
functions of the sphere coordinates and then replace the sum over in- and out-particles with
integrals over the same coordinates, obtaining

Stot = exp

[
i

∫
dΩ dΩ′ (λ1 (Ω,Ω′) pin (Ω) pout (Ω′)− λ2

(
Ω,Ω′) qin (Ω) qout (Ω′))] . (121)

Now, by expanding the above expression in spherical harmonics, and substituting for λ1 and λ2
using Eqs. (92) and (98), we finally get

Stot = exp

[
i

(
8πGplmin p

lm
out

l2 + l + 1
− qlmin q

lm
out

l2 + l

)]
. (122)

As one can easily check, the above S-matrix is manifestly unitary. We conclude this subsection
by defining the electromagnetic part of the above scattering matrix as

SEM := exp

(
−iq

lm
in q

lm
out

l2 + l

)
. (123)

This will turn out to be useful for the comparison with the scattering matrix we will obtain the
context of quantum field theory in the next sections.
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4 From quantum mechanics to quantum field theory

Our goal here is to show that a similar expression for the electromagnetic S-matrix computed by
’t Hooft can be obtained in the context of quantum field theory. To this end, we build a scalar
quantum electrodynamics near the horizon using the tools recently developed in Refs. [19,20].

4.1 Scalar quantum electrodynamics in curved spacetime

Let us start by considering the following path integral:

Z =

∫
DAµDϕeiS[ϕ,Aµ,gµν ], (124)

where ϕ is a complex scalar field, Aµ is the electromagnetic vector potential and gµν is the
spacetime metric; moreover, S[ϕ,Aµ, gµν ] represents the action functional for a complex scalar
field coupled to the electromagnetic field in an arbitrary background:

S[ϕ,Aµ, gµν ] =

∫
d4x

√
−g
[
− (Dµϕ)

∗ (Dµϕ) +
(
ξR−m2

)
ϕϕ∗ − 1

4
FµνF

µν

]
. (125)

In the above expression, m is the mass of the complex scalar field, ξ is the scalar curvature
coupling, R is the scalar curvature and Dµ is the gauge covariant derivative defined by

Dµ = ∇µ − iqAµ, (126)

where q represents the coupling between the complex scalar field and the electromagnetic field.
Moreover, we recall that the electromagnetic field tensor is given by

Fµν = ∇µAν −∇νAµ. (127)

For simplicity, we consider a minimally coupled complex scalar field setting ξ = 0 in Eq. (125):

S[ϕ,Aµ, gµν ] := S =

∫
d4x

√
−g
[
− (Dµϕ)

∗ (Dµϕ)−m2|ϕ|2 − 1

4
FµνF

µν

]
. (128)

The Lagrangian implicitly defined before can be easily manipulated by considering that

(Dµϕ)
∗ (Dµϕ) = (∇µϕ− iqAµϕ)

∗(∇µϕ− iqAµϕ)

= ∇µϕ
∗∇µϕ− iqAµϕ∇µϕ

∗ + iqAµϕ
∗∇µϕ+ q2AµA

µϕ∗ϕ

= ∇µϕ
∗∇µϕ+ iqAµ (ϕ∗∇µϕ− ϕ∇µϕ

∗) + q2A2
µ|ϕ|2. (129)

Therefore, Eq. (128) can now be written as

S =

∫
d4x

√
−g
[
−|∇µϕ|2 − iqAµ (ϕ∗∇µϕ− ϕ∇µϕ

∗)−
(
q2A2

µ +m2
)
|ϕ|2 − 1

4
F 2
µν

]
. (130)

We can split the action S into two terms:

S := Sγ + SM = Sγ [Aµ] + SM [Aµ, ϕ], (131)
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where Sγ is the action for the photon field, the last term in Eq. (128), while SM is the matter
action, given by the following expression:

SM :=

∫
d4x

√
−g
[
−|∇µϕ|2 − iqAµ (ϕ∗∇µϕ− ϕ∇µϕ

∗)−
(
q2A2

µ +m2
)
|ϕ|2

]
=

∫
d4x

√
−gϕ∗

(
□−m2

)
ϕ− q

∫
d4x

√
−gAµjµ − q2

∫
d4x

√
−gA2

µ|ϕ|2, (132)

where jµ is the scalar field current, defined as

jµ := i (ϕ∗∇µϕ− ϕ∇µϕ
∗) . (133)

Notice that in Eq. (132) an integration by parts has been performed to get to the last line. Let
us now focus on the action for the photon field, Sγ . The first step is to rewrite it in terms of
the vector potential; in particular, we want to write the Lagrangian in the form AµOµνAν (to
find the photon propagator in curved spacetime), where Oµν is a some operator. We have:

Lγ := −1

4
FµνF

µν = −1

4
[(∇µAν −∇νAµ) (∇µAν −∇νAµ)]

= −1

4
[∇µAν∇µAν −∇µAν∇νAµ −∇νAµ∇µAν +∇νAµ∇νAµ]

= −1

4
[∇νAµ∇νAµ −∇νAµ∇µAν −∇νAµ∇µAν +∇νAµ∇νAµ]

= −1

4
[2∇νAµ∇νAµ − 2∇νAµ∇µAν ]

= −1

2
[−Aµ∇ν∇νAµ +Aµ∇ν∇µAν ]

=
1

2
Aµ [g

µν∇σ∇σ −∇ν∇µ]Aν

=
1

2
Aµ [g

µν□−∇µ∇ν −Rµν ]Aν . (134)

Above, to get to the fifth line, we integrated by parts (omitting all the boundary terms). In
analogy with the flat case, we managed to write down the Lagrangian in the form AµOµνAν (we
will not take into account Rµν since the background we are considering is a vacuum solution):

Lγ = −1

4
FµνF

µν =
1

2
Aµ [g

µν□−∇µ∇ν ]Aν =
1

2
AµOµνAν , (135)

where the operator in the middle has been defined as

Oµν := gµν□−∇µ∇ν . (136)

The action can then be easily written down as follows:

Sγ =
1

2

∫
d4x

√
−gAµ [g

µν□−∇µ∇ν ]Aν . (137)

It is important to notice that we still need to fix a gauge. Indeed, when the path integral is
written for the U(1) invariant action Sγ , one can notice that the measure over the field is not
well-defined (over-counting of gauge orbits). We will deal with this in the following section.
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4.2 Intermezzo - analysis into spherical harmonics

The goal of this subsection is to introduce vector spherical harmonics, which have been widely
used in different branches of physics; they have been defined in different ways, depending on
the context. Here we will introduce a set of vector spherical harmonics which turned out to be
extremely useful in classical electrodynamics. Here, we will closely follow Ref. [37]. In order to
set notation, we will start by briefly reminding the reader how scalar spherical harmonics are
defined. According to the expansion theorem, any scalar function f(θ, ϕ) may be written as

f(θ, ϕ) =

∞∑
l=0

l∑
m=−l

αlmYlm(θ, ϕ) :=
∑
l,m

αlmYlm(θ, ϕ), (138)

In the above expression, Ylm represents the set of scalar spherical harmonics:

Ylm(θ, ϕ) =

√
(2l + 1)(l −m)!

4π(l +m)!
(−1)meimϕPlm(cos θ) := ClmeimϕPlm(cos θ), (139)

where Plm(x) are the associated Legendre polynomials of degree l and order m, defined as

Plm(x) =
(−1)m

2ll!
(1− x2)m/2

(
d

dx

)l+m

(x2 − 1)l. (140)

One of the crucial properties of the scalar spherical harmonics is the orthonormality condition:∫
dΩY ∗

lm(θ, ϕ)Yl′m′(θ, ϕ) = δll′δmm′ , (141)

where dΩ := sin θdθdϕ. The coefficients in Eq. (138) can be found by using Eq. (141):∫
dΩY ∗

lm(θ, ϕ)f(θ, ϕ) =

∫
dΩY ∗

lm(θ, ϕ)
∑
l′,m′

αl′m′Yl′m′(θ, ϕ) (142)

=
∑
l′,m′

αl′m′δll′δmm′ = αlm. (143)

In general, the coefficients can be evaluated quite easily by exploiting the following symmetries:

Ylm(π − θ, ϕ+ π) = (−1)lYlm(θ, ϕ),

Ylm(θ, ϕ+ π) = (−1)mYlm(θ, ϕ),

Ylm(π − θ, ϕ) = (−1)l+mYlm(θ, ϕ).

(144)

As anticipated in the previous section, the analysis into scalar spherical harmonics can be ex-
tremely useful if one considers also another property, namely

∆ΩYlm(θ, ϕ) = −l(l + 1)Ylm(θ, ϕ), (145)

where ∆Ω is the Laplacian operator. There are other useful properties that should be mentioned,
but we choose to write only the ones that will be of interest for us as we proceed. As already
stated, the spherical harmonic expansion shown above greatly simplifies many problems. For
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example, let us consider the Poisson equation, ∆Φ = −4πρ, where Φ is the electric potential
and ρ the charge density. Now, by expanding Φ and ρ in spherical harmonics,

Φ =
∑
l,m

alm(r)Ylm(θ, ϕ), ρ =
∑
l,m

blm(r)Ylm(θ, ϕ), (146)

the Poisson equation can then be written as

∆Φ =
∑
l,m

∆(almYlm) =
∑
l,m

(∆alm)Ylm +
∑
l,m

alm (∆Ylm)

=
∑
l,m

[
1

r2
d

dr

(
r2
d

dr
alm

)
− l(l + 1)

r2
alm

]
Ylm

= −4πρ = −4π
∑
l,m

blmYlm,

(147)

finally resulting in the following simple equation:

1

r2
d

dr

(
r2
d

dr
alm

)
− l(l + 1)

r2
alm = −4πblm. (148)

The effect of the spherical harmonic expansion is essentially to “cancel out" the angular depen-
dence. Now, the question we would like to answer is: can we construct vector functions having
the same useful properties as the scalar spherical harmonics? As explained in Ref. [37], it is
tempting to try to consider the components of a vector (as an example we consider a vector in
three dimensions) as a scalar field and then expand:

F(r, θ, ϕ) = êrF
r + êθF

θ + êϕF
ϕ

= êr
∑
l,m

F r
lm(r)Ylm + êθ

∑
l,m

F r
lm(r)Ylm + êϕ

∑
l,m

F r
lm(r)Ylm.

(149)

Because of the completeness property of the scalar spherical harmonics, the above expansion is
certainly allowed. Our main concern, however, is whether it is useful. Let us consider the partial
differential equation ∇ ·V = g, where g is some scalar function. Expanding the operator on the
left-hand side of the equation, in spherical coordinates, we get

∇ ·V =
1

r2
∂

∂r

(
r2F r

)
+

1

r sin θ

∂

∂ϕ
F ϕ +

1

r sin θ

∂

∂θ

(
sin θF θ

)
. (150)

It is immediate to see that the second term in the above expression causes problems. Indeed, by
expanding as in Eq. (149), we would get a term proportional to Ylm/ sin θ. Therefore, we would
not be able to “cancel out" the angular dependence, and so we must conclude that Eq. (149) is
not very useful for our purposes. Another strategy is therefore needed. A clever way to construct
vector spherical harmonics, as already anticipated, has been presented in Ref. [37]. Here, the
authors considered a scalar function, say f = f(r, θ, ϕ), expanded it in spherical harmonics, and
took its gradient, obtaining

∇f =
∑
l,m

(Ylm∇flm + flm∇Ylm) =
∑
l,m

(
d

dr
flmYlmêr + flm∇Ylm

)
, (151)
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where flm = flm(r) are the expansion coefficients. Then, for the sake of simplicity, they assumed
that (151) is itself a spherical harmonic expansion; this motivates the following definitions:

Ψlm := ∇Ylm =
1

r

∂Ylm
∂θ

êθ +
1

r sin θ

∂Ylm
∂ϕ

êϕ, (152)

Ylm := Ylmêr. (153)

Finally, they took into account another vector equation, namely11

E = N× êr. (154)

If we now let N = Ψlm, then we can write

E = Ψlm × êr. (155)

From the above equation one can easily notice that the vector E cannot be expanded neither
in terms of Ψlm nor in terms of êr (it is orthogonal to both of these vectors). Therefore, the
authors concluded that E is a new type of vector that has to be included in the expansion:

Φlm := Ψlm × êr = ∇Ylm × r

r
=

1

r sin θ

∂Ylm
∂ϕ

êθ −
1

r

∂Ylm
∂θ

êϕ. (156)

We now have a set of three objects, namely {Ylm,Ψlm,Φlm}, which can be shown to be orthog-
onal and complete, implying that any vector field can be expanded as follows:

V(r, θ, ϕ) =
∑

l,m
(Vlm,rYlm + Vlm,1Ψlm + Vlm,2Φlm) . (157)

Above, V r
lm, V

1
lm and V 2

lm are the expansion coefficients; as for the scalar case, the vector spherical
harmonics have many interesting properties that should be definitely mentioned. However,
for clarity reasons, in the following we shall write down only the ones we use. In order to
check whether the above expansion is indeed useful, we want to consider again an equation like
∇ · V = g. By using the above expansion, namely Eq. (157), we obtain

∇ · V = ∇ ·
∑
l,m

[(
1

r2
d

dr

(
r2Vlm,r

)
− l(l + 1)

r
Vlm,1

)]
Ylm = g =

∑
l,m

glm(r)Ylm, (158)

where we also made use of the following properties:

∇ · (F (r)Ylm) =

[
1

r2
d

dr

(
r2F (r)

)]
Ylm,

∇ · (F (r)Ψlm) = − l(l + 1)

r
F (r)Ylm.

(159)

Therefore, Eq. (158) reduces to the following ordinary differential equation:

1

r2
d

dr

(
r2Vlm,r

)
− l(l + 1)

r
Vlm,1 = glm(r). (160)

11Actually, they considered E = êr ×N. However, we defined it as in (154) for later convenience.
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As hoped, the angular dependence has been “cancelled out". To perform computations, it is
convenient to work with the covariant components of the vector harmonics (152) and (156). The
component representation can be easily obtained by considering the scalar products (Ψlm)i · ei
and (Φlm)i · ei, where {ei} is the natural basis (to be distinguished from the physical basis êi).
From Eqs. (152) and (156) we then obtain the following components:

(Ψlm)i = ∂iYlm, (161)

(Φlm)i = ϵ j
i ∂jYlm, (162)

where the labels i and j run over the coordinates θ and ϕ. In the above expressions, we defined
the fully antisymmetric symbol on the sphere with non-vanishing components

ϵθϕ = −ϵϕθ = 1

r2 sin θ
. (163)

From Eqs. (161) and (162) we get the following four expressions:

(Ψlm)θ = ∂θYlm, (164)

(Ψlm)ϕ = ∂ϕYlm, (165)

(Φlm)θ =
1

sin θ
∂ϕYlm, (166)

(Φlm)ϕ = − sin θ∂θYlm. (167)

Another important remark we should make is the following. Under parity transformation,

r → r,

θ → π − θ,

ϕ→ ϕ+ π,

(168)

the behaviour of the spherical harmonics comes into two different types: even-parity spherical
harmonics, for which the transformation gives a factor (−1)l, and odd-parity spherical harmon-
ics, for which the transformation gives a factor (−1)l+1. From the group of spherical harmonics
introduced until now, Ylm and ∂iYlm are multiplied by (−1)l under the above transformation,
while ϵ j

i ∂jYlm is multiplied by (−1)l+1. Our discussion so far can be quite easily extended to
four-vectors. Indeed, our primary interest is to expand the electromagnetic vector potential A
in Eq. (137) in spherical harmonics. In the previous section we did not specify the background
geometry; however, here we are considering expansions in spherical harmonics, so we are implic-
itly assuming that the background is spherically symmetric. In particular, we want to consider
a Schwarzschild black hole, described by Eq. (29); in these coordinates, the electromagnetic
potential will be given by A = A(t, r, θ, ϕ). Eq. (157) can be easily generalized as follows:

A(t, r, θ, ϕ) =
∑

l,m

(
Alm,tY

t
lm +Alm,rYlm +Alm,1Ψlm +Alm,2Φlm

)
. (169)

In the above expression, it should be noted that the expansions coefficients depend both on t

and r. Moreover, we defined Yt
lm := Ylmêt = Ylmet. Let us now work a bit on Eq. (169); based
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on our previous discussion, we have

A =
∑
l,m

[Alm,t(t, r)Ylmet +Alm,r(t, r)Ylmer +Alm,1(t, r) (∂θYlmeθ + ∂ϕYlmeϕ)

+ Alm,2(t, r) (csc θ∂ϕYlmeθ − sin θ∂θYlmeϕ)] , (170)

which can also be rewritten in terms of its components in the following way:

Aµ =
∑
l,m


Alm,t(t, r)

Alm,r(t, r)

Alm,2(t, r) csc θ∂ϕ +Alm,1(t, r)∂θ

−Alm,2(t, r) sin θ∂θ +Alm,1(t, r)∂ϕ

Ylm. (171)

Now that we have an expression for the electromagnetic vector potential in terms of Ylm and its
derivatives, we can also split it into odd- and even-parity modes [38]:

Aµ = A−
µ +A+

µ , (172)

where the first term on the right-hand side (odd-parity mode) has been defined as

A−
µ =

∑
l,m


0

0

Alm,2(t, r) csc θ∂ϕ

−Alm,2(t, r) sin θ∂θ

Ylm, (173)

while the second term (even-parity mode) as

A+
µ =

∑
l,m


Alm,t(t, r)

Alm,r(t, r)

Alm,1(t, r)∂θ

Alm,1(t, r)∂ϕ

Ylm. (174)

We can also work in Kruskal–Szekeres coordinates and so consider the line element [19]

ds2 = −2A(U, V )dUdV + r2(U, V )dΩ2, (175)

where A and r are defined by the two equations

A =
R

r
exp

( r
R

− 1
)
, UV = 2R2

(
1− r

R

)
exp

( r
R

− 1
)
, (176)

respectively. Above, R = 2GM . In this case, Eqs. (173) and (174) become

A−
µ =

∑
l,m


0

0

Alm,2(U, V ) csc θ∂ϕ

−Alm,2(U, V ) sin θ∂θ

Ylm, A+
µ =

∑
l,m


Alm,U (U, V )

Alm,V (U, V )

Alm,1(U, V )∂θ

Alm,1(U, V )∂ϕ

Ylm. (177)
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We notice that the last two components in A+
µ can be gauged away by the transformation12

Aµ → Aµ + ∂µΛ, (178)

where Λ = Λ(U, V, θ, ϕ) is some function that has to be appropriately chosen; indeed, if we now
choose Λ(U, V, θ, ϕ) = −

∑
l,mAlm,1(U, V )Ylm(θ, ϕ), we have that13

∂µΛ(U, V, θ, ϕ) =
∑
l,m


−∂UAlm,1(U, V )

−∂VAlm,1(U, V )

−Alm,1(U, V )∂θ

−Alm,1(U, V )∂ϕ

Ylm. (181)

Therefore, by redefining Alm,U (U, V ) and Alm,V (U, V ) as

Alm,U (U, V ) → Alm,U (U, V ) + ∂UAlm,1(U, V ), (182)

Alm,V (U, V ) → Alm,V (U, V ) + ∂VAlm,1(U, V ), (183)

we can write the even-parity mode in the following way:

A+
µ =

∑
l,m


Alm,U (U, V )

Alm,V (U, V )

0

0

Ylm. (184)

Let us now set a new notation for later convenience; in particular, we introduce lower-case
Latin indices a, b, c, etc., which run over U and V (light-cone coordinates), and upper-case Latin
indices A,B,C, etc., which span the two-sphere. The odd- and even-parity modes can now be
written in index notation. The odd mode is written as14

A−
B = −

∑
l,m

Alm,2ϵ
C

B ∂CYlm (185)

12The field strength is invariant under the gauge symmetry: Fµν → ∂µ(Aν + ∂νΛ)− ∂ν(Aµ + ∂µΛ) = Fµν .
13Here we are assuming that the gauge degree of freedom is in A+

lm,µ. This can be proved in the following way.
We first treat ∂µΛ as a vector and expand it in spherical harmonics:

∂µΛ =
∑

l,m

(
Alm,UYlmeU +Alm,V YlmeV +Alm,1∂iYlmei +Alm,2ϵ

j
i ∂jYlmei

)
(179)

Alternatively, we can first expand the function Λ in scalar spherical harmonics and then act with ∂µ. We have:

Λ(U, V, θ, ϕ) =
∑

l,m
Λlm(U, V )Ylm(θ, ϕ) ⇒ ∂µΛ(U, V, θ, ϕ) =

∑
l,m


∂UΛlm(U, V )
∂V Λlm(U, V )
Λlm(U, V )∂θ

Λlm(U, V )∂ϕ

Ylm. (180)

By comparing the above two equations we understand that the most general gauge transformation is of the
even-parity form, i.e., the gauge degree of freedom is indeed in A+

lm,µ; by choosing Λlm = −Alm,1, we can indeed
kill the desired degree of freedom.

14Note that for any diffeomorphism that acts on the light-cone and angular coordinates separately (this decom-
position is always possible), we may transform ϵ C

B ∂CYlm → ϵ C′
B ∂′

CYlm accordingly. Thus, in the new coordi-
nates, A−

B is still given by (185), meaning that the spherical harmonics decomposition is coordinate-independent.
Of course, the same is also true for the even mode.
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where we recall that the antisymmetric Levi-Civita tensor on the two-sphere is given by

ϵAB = r2 sin θ

(
0 1

−1 0

)
. (186)

Of course, we can raise and lower indices using the metric tensor. Therefore, for the more
common form ϵ C

B we obtain the following expression:

ϵ C
B =

(
0 sin θ

− csc θ 0

)
. (187)

In a similar way, for the even mode we can write

A+
a =

∑
l,m

Alm,aYlm. (188)

4.3 Odd- and even-parity decoupling

Here, following Ref. [19], we investigate the coupling between odd- and even-parity modes; in
order to do that, let us recall the decomposition obtained in the previous subsection:

A−
B = −

∑
l,m

Alm,2ϵ
C

B ∂CYlm, A+
a =

∑
l,m

Alm,aYlm. (189)

We also recall the Lagrangian for the photon extracted from the action (137):

Lγ =
1

2
AµOµνAν , (190)

where the operator in the middle has been defined as

Oµν = gµν□−∇µ∇ν . (191)

In the following we want to show the power of the covariant formalism introduced before; we
will distinguish between operators on the light-cone and on the sphere. To see how it works, let
us begin by explicitly writing down the operator (191):

OµνAν = [gµν∇σ∇σ −∇µ∇ν ]Aν

= [gµνgσρ∇σ∇ρ − gµσgρν∇σ∇ρ]Aν . (192)

In the above expression we have the action of a double covariant derivative on the vector potential
Aν . In terms of Christoffel symbols, we can write

∇σ∇ρAν = ∂σ(∇ρAν)− Γγ
σρ∇γAν − Γδ

σν∇ρAδ

= ∂σ(∂ρAν − Γδ
ρνAδ)− Γγ

σρ(∂γAν − Γα
γνAα)− Γδ

σν(∂ρAδ − Γα
ρδAα)

= ∂σ∂ρAν −
(
∂σΓ

α
ρν

)
Aα − Γδ

ρν∂σAδ − Γγ
σρ∂γAν + Γγ

σρΓ
α
γνAα

− Γδ
σν∂ρAδ + Γδ

σνΓ
α
ρδAα. (193)
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By considering the fact that we can distinguish between upper- and lower-case Latin indices,
and recalling the decomposition of the vector potential, we have

∇σ∇ρAν = ∂σ∂ρAν −
(
∂σΓ

g
ρν

)
Ag −

(
∂σΓ

B
ρν

)
AB − Γg

ρν∂σAg − ΓB
ρν∂σAB − Γγ

σρ∂γAν

+ Γγ
σρΓ

g
γνAg + Γγ

σρΓ
B
γνAB − Γg

σν∂ρAg − ΓB
σν∂ρAB + Γδ

σνΓ
g
ρδAg + Γδ

σνΓ
B
ρδAB

= ∂σ∂ρ(A
+
ν +A−

ν )− (∂σΓ
g
ρν)(A

+
g +A−

g )−
(
∂σΓ

B
ρν

)
(A+

B +A−
B)

− Γg
ρν∂σ(A

+
g +A−

g )− ΓB
ρν∂σ(A

+
B +A−

B)− Γγ
σρ∂γ(A

+
ν +A−

ν )

+ Γγ
σρΓ

g
γν(A

+
g +A−

g ) + Γγ
σρΓ

B
γν(A

+
B +A−

B)− Γg
σν∂ρ(A

+
g +A−

g )

− ΓB
σν∂ρ(A

+
B +A−

B) + Γδ
σνΓ

g
ρδ(A

+
g +A−

g ) + Γδ
σνΓ

B
ρδ(A

+
B +A−

B)

= ∂σ∂ρ(A
+
ν +A−

ν )−
(
∂σΓ

g
ρν

)
A+

g −
(
∂σΓ

B
ρν

)
A−

B − Γg
ρν∂σA

+
g − ΓB

ρν∂σA
−
B

− Γγ
σρ∂γ(A

+
ν +A−

ν ) + Γγ
σρΓ

g
γνA

+
g + Γγ

σρΓ
B
γνA

−
B − Γg

σν∂ρA
+
g − ΓB

σν∂ρA
−
B

+ Γδ
σνΓ

g
ρδA

+
g + Γδ

σνΓ
B
ρδA

−
B. (194)

The above expression should be inserted in (192). However, to avoid confusion, let us consider
the two pieces separately; the first one is given by gµνgρσ∇σ∇ρAν . Focusing on this term and
considering first the case µ = a, ν = b, then Eq. (194) becomes

gabgρσ∇σ∇ρAb = gabgρσ
[
∂σ∂ρA

+
b − (∂σΓ

g
ρb)A

+
g −

(
∂σΓ

B
ρb

)
A−

B − Γg
ρb∂σA

+
g

− ΓB
ρb∂σA

−
B − Γγ

σρ∂γA
+
b + Γγ

σρΓ
g
γbA

+
g + Γγ

σρΓ
B
γbA

−
B

−Γg
σb∂ρA

+
g − ΓB

σb∂ρA
−
B + Γδ

σbΓ
g
ρδA

+
g + Γδ

σbΓ
B
ρδA

−
B

]
. (195)

Above, ρ and σ can be either upper- or lower-case Latin indices. For the sake of clarity, let us
consider these two cases separately. We first set ρ = c (and so σ = d since gaB = 0):

gabgcd∇d∇cAb = gabgcd
[
∂d∂cA

+
b − (∂dΓ

g
cb)A

+
g −

(
∂dΓ

B
cb

)
A−

B − Γg
cb∂dA

+
g − ΓB

cb∂dA
−
B

− Γe
dc∂eA

+
b − ΓE

dc∂EA
+
b + Γe

dcΓ
g
ebA

+
g + ΓE

dcΓ
g
EbA

+
g

+ Γe
dcΓ

B
ebA

−
B + ΓE

dcΓ
B
EbA

−
B − Γg

db∂cA
+
g − ΓB

db∂cA
−
B

+Γg
dbΓ

f
cgA

+
f + ΓG

dbΓ
g
cGA

+
g + Γe

dbΓ
B
ceA

−
B + ΓE

dbΓ
B
cEA

−
B

]
. (196)

For the sake of completeness, let us list the non-vanishing Christoffel symbols of the Schwarzschild
metric in Kruskal-Szekeres coordinates [19]:

ΓU
UU = ∂U logA,

ΓV
V V = ∂V logA,

Γθ
θU = Γθ

Uθ = Γϕ
ϕU = Γϕ

Uϕ = ∂U log r,

Γθ
θV = Γθ

V θ = Γϕ
ϕV = Γϕ

V ϕ = ∂V log r,

Γϕ
θϕ = Γϕ

ϕθ = − sin−2 θΓθ
ϕϕ = cot θ,

ΓU
θθ = sin−2 θΓU

ϕϕ =
1

2A
∂V r

2,

ΓV
θθ = sin−2 θΓV

ϕϕ =
1

2A
∂Ur

2.

(197)



40

Therefore, from the above expressions we deduce that

ΓA
ab = Γa

bA = 0, (198)

which implies that Eq. (196) reduces to

gabgcd∇d∇cAb = gabgcd
[
∂d
(
∂cA

+
b − Γg

cbA
+
g

)
− Γe

dc

(
∂eA

+
b − Γg

ebA
+
g

)
−Γg

db

(
∂cA

+
g − Γf

cgA
+
f

)]
. (199)

By defining differential operators with a tilde to represent those on the light-cone, the above
expression can be compactly written as

gabgcd∇d∇cAb = gabgcd
[
∂d∇̃cA

+
b − Γe

dc∇̃eA
+
b − Γg

db∇̃cA
+
g

]
= gabgcd∇̃d∇̃cA

+
b . (200)

Let us come back to Eq. (195). We now set ρ and σ to be upper-case Latin indices, say ρ = B

and σ = C. Proceeding in a similar way as before, we have:

gabgBC∇B∇CAb = gabgBC
[
∂C∂BA

+
b − (∂CΓ

g
Bb)A

+
g −

(
∂CΓ

L
Bb

)
A−

L − Γg
Bb∂CA

+
g − ΓE

Bb∂CA
−
E

− ΓE
BC∂EA

+
b − Γd

BC∂dA
+
b + ΓE

BCΓ
g
EbA

+
g + Γd

BCΓ
g
dbA

+
g

+ ΓE
BCΓ

L
EbA

−
L + Γd

BCΓ
L
dbA

−
L − Γg

Cb∂BA
+
g − ΓL

Cb∂BA
−
L

+ΓE
CbΓ

g
BEA

+
g + Γe

CbΓ
g
BeA

+
g + ΓD

CbΓ
E
BDA

−
E + Γd

CbΓ
E
BdA

−
E

]
. (201)

By using again (198) and the fact that ΓL
Bb, when evaluated, depends only on the light-cone

coordinates, the above equation reduces to

gabgBC∇B∇CAb = gabgBC
[
∂C∂BA

+
b − ΓE

Bb∂CA
−
E − ΓE

BC∂EA
+
b − Γd

BC∂dA
+
b + Γd

BCΓ
g
dbA

+
g

+ΓE
BCΓ

L
EbA

−
L − ΓL

Cb∂BA
−
L + ΓE

CbΓ
g
BEA

+
g + ΓD

CbΓ
E
BDA

−
E

]
. (202)

As we can notice, we have four coupling terms. Let us show that they are zero; the first two
coupling terms can be paired. Explicitely, the first term is given by15

gBCΓE
Bb∂CA

−
E = gθθΓE

θb∂θA
−
E + gϕϕΓE

ϕb∂ϕA
−
E

= gθθΓθ
θb∂θA

−
θ + gϕϕΓϕ

ϕb∂ϕA
−
ϕ , (203)

while the second coupling term is

−gBCΓE
BCΓ

L
EbA

−
L = −gθθΓE

θθΓ
L
EbA

−
L − gϕϕΓE

ϕϕΓ
L
EbA

−
L = −gϕϕΓθ

ϕϕΓ
θ
θbA

−
θ . (204)

We now realize that the sum of the above two terms gives the following quantity:

gBCΓE
Bb∇̂CA

−
E , (205)

15We are ignoring the metric gab for a moment.
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where the hat denotes operators on the sphere. Indeed, by explicitly evaluating it, we have

gBCΓE
Bb∇̂CA

−
E = gBCΓE

Bb

(
∂CA

−
E − ΓL

CEA
−
L

)
= gBCΓE

Bb∂CA
−
E − gBCΓE

BbΓ
L
CEA

−
L

= gθθΓE
θb∂θA

−
E + gϕϕΓE

ϕb∂ϕA
−
E − gθθΓE

θbΓ
L
θEA

−
L − gϕϕΓE

ϕbΓ
L
ϕEA

−
L

= gθθΓθ
θb∂θA

−
θ + gϕϕΓϕ

ϕb∂ϕA
−
ϕ − gϕϕΓϕ

ϕbΓ
L
ϕϕA

−
L

= gθθΓθ
θb∂θA

−
θ + gϕϕΓϕ

ϕb∂ϕA
−
ϕ − gϕϕΓϕ

ϕbΓ
θ
ϕϕA

−
θ

= gθθΓθ
θb∂θA

−
θ + gϕϕΓϕ

ϕb∂ϕA
−
ϕ − gϕϕΓθ

θbΓ
θ
ϕϕA

−
θ . (206)

Now, from Eqs. (166) and (167) it can be explicitly checked that ∇i (Φlm)i = 0, where we recall
that i runs over θ and ϕ, from which we deduce that the above term is zero:

gBCΓE
Bb∇̂CA

−
E = ΓE

Bb∇̂BA−
E ∝ ∇̂B

(
ϵ C
B ∂CYlm

)
= 0, (207)

The last two coupling terms in Eq. (202) can also be paired. By renaming indices, we can write

−gBCΓL
Cb∂BA

−
L + gBCΓD

CbΓ
E
BDA

−
E = gBCΓD

Cb∇̂BA
−
D

= ΓD
Cb∇̂CA−

D = 0, (208)

for the same reason as before. Therefore, we are left with the following expression:

gabgBC∇B∇CAb = gabgBC
[
∂C∂BA

+
b − ΓE

BC∂EA
+
b − Γd

BC∇̃dA
+
b + ΓE

CbΓ
g
BEA

+
g

]
. (209)

Let us focus on the first two terms for a moment. It is easy to see that they give the two-sphere
Laplacian. Indeed, we have

gBC
(
∂C∂B − ΓE

BC∂E
)
= gθθ∂2θ + gϕϕ∂2ϕ − gθθΓE

θθ∂E − gϕϕΓE
ϕϕ∂E

=
1

r2
∂2θ +

1

r2 sin2 θ
∂2ϕ − 1

r2 sin2 θ
Γθ
ϕϕ∂θ

=
1

r2
∂2θ +

1

r2 sin2 θ
∂2ϕ − 1

r2 sin2 θ

(
− sin2 θ

)
cot θ∂θ

=
1

r2
∂2θ +

1

r2 sin2 θ
∂2ϕ − 1

r2
cot θ∂θ =

1

r2
∆Ω, (210)

Now, we want to express the Christoffel symbols of the form Γa
AB and ΓA

aC in terms of the vector
potential Va := 2∂a log r. By noting that16

∂agBD = ∂a
(
r2ΩBD

)
= gab∂b

(
r2ΩBD

)
= 2rgabΩBD∂ar = r2gabΩBDVb = gBDV

a, (211)

we can easily deduce the following two relations:

Γa
AB =

1

2
gab (∂AgBb + ∂BgbA − ∂bgAB) = −1

2
gab∂bgAB = −1

2
∂agAB = −1

2
gABV

a, (212)

ΓA
aC =

1

2
gAB (∂agCB + ∂CgBa − ∂BgaC) =

1

2
gAB∂agCB =

1

2
gABgCBV

a =
1

2
δACV

a. (213)

16In Eq. (211), ΩBC is the metric of the unit two-sphere.
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Therefore, the last two terms appearing in (209) can be written in terms of the vector potential
defined above in the following way:

−gBCΓd
BC = −gBC

(
−1

2
gBCV

d

)
= V d, (214)

gBCΓE
CbΓ

g
BE = gBC

(
1

2
δECVb

)(
−1

2
gBEV

g

)
= −1

2
VbV

g, (215)

respectively. Eq. (209) finally becomes

gabgBC∇B∇CAb =

[
1

r2
gab∆Ω + gabV d∇̃d −

1

2
gacVcV

b

]
A+

b . (216)

We now focus on the second piece in Eq. (192), namely −gµσgρν∇σ∇ρAν . Since we are consid-
ering the case µ = a, ν = b, then σ and ρ must be lower-case Latin indices, say σ = c and ρ = b.
We can then write

gacgbd∇c∇dAb = gacgbd
[
∂c∂dA

+
b − (∂cΓ

g
db)A

+
g −

(
∂cΓ

B
db

)
A−

B − Γg
db∂cA

+
g − ΓB

db∂cA
−
B

− Γe
cd∂eA

+
b + Γe

cdΓ
g
ebA

+
g + Γe

cdΓ
B
ebA

−
B − Γg

cb∂dA
+
g − ΓB

db∂dA
−
B

+Γe
cbΓ

g
deA

+
g + Γe

dbΓ
B
deA

−
B

]
. (217)

Above, when summing over γ, we already took into account of the identities (198). Furthermore,
for exactly the same reason, we can immediately notice that all the coupling terms vanish. What
is left is the following expression:

gacgbd∇c∇dAb = gacgbd
[
∂c∂dA

+
b − (∂cΓ

g
db)A

+
g − Γg

db∂cA
+
g − Γe

cd∂eA
+
b

+Γe
cdΓ

g
ebA

+
g − Γg

cb∂dA
+
g + Γe

cbΓ
g
deA

+
g

]
, (218)

which can be written more compactly as

gacgbd∇c∇dAb = gacgbd
[
∂c∇̃dA

+
b − Γe

cd∇̃eA
+
b − Γg

cb∇̃dA
+
g

]
= gacgbd∇̃c∇̃dA

+
b . (219)

Putting it all together, namely by considering Eqs. (200), (216) and (219), we obtain a compact
expression for the case µ = a, ν = b:

AaOabAb = A+
a

[
gabgcd∇̃c∇̃d − gacgbd∇̃c∇̃d +

1

r2
gab∆Ω + gabV d∇̃d −

1

2
gacVcV

b

]
A+

b . (220)

Let us now consider the case µ = a, ν = B; the first term in (192) vanishes since gµν = gaB = 0.
Therefore, we only need to consider the second term:

gaσgBρ∇σ∇ρAB = gaσgBρ
[
∂σ∂ρA

−
B − (∂σΓ

g
ρB)A

+
g −

(
∂σΓ

E
ρB

)
A−

E − Γg
ρB∂σA

+
g

− ΓE
ρB∂σA

−
E − Γγ

σρ∂γA
−
B + Γγ

σρΓ
g
γbA

+
g + Γγ

σρΓ
E
γBA

−
E

−Γg
σB∂ρA

+
g − ΓE

σB∂ρA
−
E + Γδ

σBΓ
g
ρδA

+
g + Γδ

σBΓ
E
ρδA

−
E

]
. (221)
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From the above expression we immediately see that σ must be a lower-case Latin index, while
ρ an upper-case Latin index. Let us set σ = b, ρ = C:

gabgBC∇b∇CAB = gabgBC
[
∂b∂CA

−
B − (∂bΓ

g
CB)A

+
g − (∂bΓ

E
CB)A

−
E − Γg

CB∂bA
+
g − ΓE

CB∂bA
−
E

− Γγ
bC∂γA

−
B + Γγ

bCΓ
g
γBA

+
g + Γγ

bCΓ
E
γBA

−
E − Γg

bB∂CA
+
g − ΓE

bB∂CA
−
E

+Γδ
bBΓ

g
CδA

+
g + Γδ

bBΓ
E
CδA

−
E

]
= gabgBC

[
∂b∂CA

−
B − (∂bΓ

g
CB)A

+
g − Γg

CB∂bA
+
g − ΓE

CB∂bA
−
E

− ΓD
bC∂DA

−
B + ΓD

bCΓ
g
DBA

+
g + ΓD

bCΓ
E
DBA

−
E − ΓE

bB∂CA
−
E

+ΓD
bBΓ

g
CDA

+
g + ΓD

bBΓ
E
CDA

−
E

]
. (222)

As we can notice, in the above expression we have six coupling terms. Let us show that they
are zero. Considering the first two, we have:

gabgBC
[
∂b∂CA

−
B − ΓE

CB∂bA
−
E

]
= gabgBC∂b

(
∂CA

−
B − ΓE

CBA
−
E

)
= gabgBC∇̃b∇̂CA

−
B

= r2gabΩBC∇̃b∇̂CA
−
B = 0. (223)

The same holds for the other coupling terms. Therefore, we are left with the following expression:

gabgBC∇b∇CAB = gabgBC
[
−∂b

(
Γg
CBA

+
g

)
+ ΓD

bCΓ
g
DBA

+
g + ΓD

bBΓ
g
CDA

+
g

]
. (224)

As before, we want to express our results in terms of V a. The first term is given by

∂b
(
Γg
CBA

+
g

)
= −1

2
∂b
(
gCBV

gA+
g

)
= −1

2
ΩCB∂b

(
r2V gA+

g

)
= −1

2
ΩCB

[
2r(∂br)V

gA+
g + r2∂b(V

gA+
g )
]

= −1

2
r2ΩCBVbV

gA+
g − 1

2
r2ΩCB∂b

(
V gA+

g

)
= −1

2
gCB

[
VbV

gA+
g + ∇̃b

(
V gA+

g

)]
, (225)

where we made use of Eq. (212) and the fact that ∂br = (r/2)Vb. Therefore, by also considering
the minus sign and the metric gBC in front of the first term, we get

−gBC∂b
(
Γg
CBA

+
g

)
= ∇̃b

(
V gA+

g

)
+ VbV

gA+
g . (226)

Regarding the last two terms, we have

gBCΓD
bCΓ

g
DBA

+
g = gBCΓD

bBΓ
g
CDA

+
g = −1

2
VbV

gA+
g . (227)

We can now write down the final expression:

AaOaBAB = −gabA+
a ∇̃b

(
V gA+

g

)
= −A+

a ∇̃a
(
V gA+

g

)
. (228)
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We still need to consider two cases: µ = B, ν = a and µ = A, ν = B. If we consider the first
case, we just need to deal with the second piece in (192) since gBa = 0. We have:

gBσgaρ∇σ∇ρAa = gBσgaρ
[
∂σ∂ρA

+
a − (∂σΓ

g
ρa)A

+
g − (∂σΓ

E
ρa)A

−
E − Γg

ρa∂σA
+
g − ΓE

ρa∂σA
−
E

− Γγ
σρ∂γA

+
a + Γγ

σρΓ
g
γaA

+
g + Γγ

σρΓ
E
γaA

−
E − Γg

σa∂ρA
+
g − ΓE

σa∂ρA
−
E

+Γδ
σaΓ

g
ρδA

+
g + Γδ

σaΓ
E
ρδA

−
E

]
= gabgBC

[
∂C∂bA

+
a − (∂CΓ

g
ba)A

+
g − (∂CΓ

E
ba)A

−
E − Γg

ba∂CA
+
g − ΓE

ba∂CA
−
E

− ΓL
Cb∂LA

+
a + ΓL

CbΓ
g
LaA

+
g + ΓL

CbΓ
E
LaA

−
E − Γg

Ca∂bA
+
g − ΓE

Ca∂bA
−
E

+ΓL
CaΓ

g
bLA

+
g + ΓL

CaΓ
E
bLA

−
E

]
= gabgBC

[
∂C∂bA

+
a − Γg

ba∂CA
+
g − ΓL

Cb∂LA
+
a + ΓL

CbΓ
E
LaA

−
E

−ΓE
Ca∂bA

−
E + ΓL

CaΓ
E
bLA

−
E

]
. (229)

To get to the last line, we made use of (198) and the fact that Γg
ba only depends on the light-cone

coordinates. Therefore, the above expression gives rise to the following three coupling terms:

A−
Bg

abgBC∂C∂bA
+
a , A−

Bg
abgBCΓg

ba∂CA
+
g , A−

Bg
BCΓL

Cb∂LA
+
a . (230)

In the following we will show that they vanish by explicitly plugging in both equations in (189).
Concerning the first of these terms, we can write

A−
Bg

abgBC∂C∂bA
+
a =

(
−
∑

l,m
Alm,2ϵ

D
B ∂DYlm

)
gabgBC∂C∂b

(∑
l′′,m′′

Al′m′′,aYl′′m′′

)
= −

∑
l,m

∑
l′′,m′′

gab
(
∂bAl′′m′′,a

)
Alm,2g

BCϵ D
B ∂DYlm∂CYl′′m′′ . (231)

As we can notice, there is a clear splitting between the light-cone part (depending on U and V
only), and the spherical part, depending on ϕ and θ. Focusing on the angular part, the above
term, when inserted in the action, gives the following integral:

Slm;l′m′ :=

∫
dϕdθ

√
gS2g

BCϵ D
B ∂DYlm∂CYl′′m′′ ∝

∫
dϕdθ

√
gS2ϵ

CD∂DYlm∂CY
∗
l′m′ , (232)

where we recall that √
gS2 = r2 sin2 θ, i.e., the volume element on the 2-sphere. Moreover, we

expressed the integral in terms of Y ∗ and defined m′ := −m′′ for the sake of simplicity. The
last remark we want to make is that the quantity Slm;l′m′ is coordinate-independent. This can
be understood from the fact that the integrand above contains contractions over C,D and is
integrated over the sphere. Let us explicitly write down (232):

Slm;l′m′ =

∫
dϕdθ (∂ϕYlm∂θY

∗
l′m′ − ∂θYlm∂ϕY

∗
l′m′) , (233)

where we recalled the definition of the Levi-Civita antisymmetric tensor, i.e., (186). The above
integral can be written in terms of the associated Legendre polynomials by making use of (139),
i.e., the definition of Ylm. Furthermore, from the same relation, we can easily deduce that

∂ϕYlm = −imYlm, (234)



45

since the only dependence on ϕ comes from the exponential. Therefore, we can write

Slm;l′m′ =

∫
dϕdθ

[
(−im)Ylm∂θY

∗
l′m′ − ∂θYlm(im′)Y ∗

l′m′
]

∝
∫ π

0
dθ

∫ 2ϕ

0
dϕei(m−m′)ϕ

[
mPlm(cos θ)∂θPl′m′(cos θ) +m′Pl′m′∂θPlm(cos θ)

]
. (235)

Now, by solving the integral in ϕ, namely∫ 2π

0
dϕei(m−m′)ϕ = 2πδmm′ , (236)

we arrive at the following expression:

Slm;l′m′ ∝ mδmm′

∫ π

0
[Plm(cos θ)∂θPl′m(cos θ) + Pl′m∂θPlm(cos θ)]

= mδmm′

∫ π

0
dθ∂θ [Pl′m(cos θ)Plm(cos θ)]

= mδmm′ [Pl′m(1)Plm(1)− Pl′m(−1)Plm(−1)] . (237)

If m = 0, then Slm;l′m′ = 0. However, it is zero also for m ̸= 0, as one can understand from the
definition of the associated Legendre polynomials, (140). Thus, we have shown that Slm;l′m′ = 0.
The same reasoning applies for the other two terms in (230) since Γa

gb and ΓL
Cb depend only on

the light-cone coordinates. Moreover, it is important to notice that ΓL
Cb is non-vanishing if and

only if L = C. Now, starting from these considerations, we can write

ABOBaAa = −A−
Bg

abgBC
[
ΓL
CbΓ

E
LaA

−
E − ΓE

Ca∂bA
−
E + ΓL

CaΓ
E
bLA

−
E

]
. (238)

We can now express the various Christoffel symbols in terms of the vector potential V a:

gabgBCΓL
CbΓ

E
La = gabgBCΓL

CaΓ
E
bL =

1

4
gBEVaV

a, (239)

gBCΓE
Ca =

1

2
gBEVa. (240)

Therefore, we can finally write down our result:

ABOBaAa = −1

2
gBEA−

B

[
−Va∇̃aA−

E + VaV
aA−

E

]
=

1

2
gBEA−

B

[
Va∇̃a − VaV

a
]
A−

E . (241)

The case that still needs to be considered is µ = A, ν = B. Considering the first piece in (192),
and setting ρ = E, σ = F , we can write

gABgEF∇F∇EAB = gABgEF
[
∂F∂EA

−
B − (∂FΓ

a
EB)A

+
a −

(
∂FΓ

L
EB

)
A−

L − Γa
EB∂FA

+
a

− ΓL
EB∂FA

−
L − ΓL

EF∂LA
−
B − Γa

EF∂aA
−
B + ΓL

EFΓ
a
LBA

+
a

+ Γb
EFΓ

a
bBA

+
a + ΓP

EFΓ
L
PBA

−
L + Γb

EFΓ
L
bBA

−
L − Γa

FB∂EA
+
a

− ΓL
FB∂EA

−
L + ΓP

FBΓ
a
EPA

+
a + Γb

FBΓ
a
EBA

+
a

+ΓP
FBΓ

L
EPA

−
L + Γb

FBΓ
L
EbA

−
L

]
. (242)
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Instead, by setting ρ = e, σ = f , we get

gABgef∇f∇eAB = gABgef
[
∂f∂eA

−
B − (∂fΓ

a
eB)A

+
a −

(
∂fΓ

L
eB

)
A−

L − Γa
eB∂fA

+
a

− ΓL
eB∂fA

−
L − ΓL

ef∂LA
−
B − Γa

ef∂aA
−
B + ΓL

efΓ
a
LBA

+
a

+ Γb
efΓ

a
bBA

+
a + ΓP

efΓ
L
PBA

−
L + Γb

efΓ
L
bBA

−
L − Γa

fB∂eA
+
a

− ΓL
fB∂eA

−
L + ΓP

fBΓ
a
ePA

+
a + Γb

fBΓ
a
eBA

+
a

+ΓP
fBΓ

L
ePA

−
L + Γb

fBΓ
L
ebA

−
L

]
. (243)

If we now consider the second piece in (192), then σ and ρ can only be upper-case Latin indices.
We obtain the same expression as in (242) but with indices contracted in a different way:

gAF gBE∇F∇EAB = gAF gBE
[
∂F∂EA

−
B − (∂FΓ

a
EB)A

+
a −

(
∂FΓ

L
EB

)
A−

L − Γa
EB∂FA

+
a

− ΓL
EB∂FA

−
L − ΓL

EF∂LA
−
B − Γa

EF∂aA
−
B + ΓL

EFΓ
a
LBA

+
a

+ Γb
EFΓ

a
bBA

+
a + ΓP

EFΓ
L
PBA

−
L + Γb

EFΓ
L
bBA

−
L − Γa

FB∂EA
+
a

− ΓL
FB∂EA

−
L + ΓP

FBΓ
a
EPA

+
a + Γb

FBΓ
a
EBA

+
a

+ΓP
FBΓ

L
EPA

−
L + Γb

FBΓ
L
EbA

−
L

]
. (244)

We explicitly wrote down all these expressions in order to show that all the coupling terms
cancel. Indeed, this case is a bit different with respect to the other ones in the sense that some
of the coupling terms do not vanish separately. In other words, we need to consider the sum of
Eqs. (242) and (244) to show complete decoupling, namely

AA

(
gABgEF − gAF gBE

)
∇F∇EAB. (245)

Most of the terms vanish because of (198) or because of the fact that the Christoffel symbol
under consideration does not depend on the coordinate with respect we are differentiating; thus,
let us focus only on those terms that deserve greater attention. In (242), one of them is17

1221 := −A−
Ag

ABgEFΓa
EB∂FA

+
a = −A−

θ g
θθgθθΓa

θθ∂θA
+
a −A+

ϕ g
ϕgϕΓa

ϕϕ∂ϕA
+
a . (246)

The corresponding term in (244) gives

1223 := A−
Ag

AF gBEΓa
EB∂FA

+
a = A−

θ g
θθgθθΓa

θθ∂θA
+
a +A−

θ g
θθgϕϕΓa

ϕϕ∂θA
+
a

+A−
ϕ g

ϕϕgθθΓa
θθ∂ϕA

+
a +A−

ϕ g
ϕϕgϕϕΓa

ϕϕ∂ϕA
+
a . (247)

By summing over these last two expressions, we obtain

1221 + 1223 = A−
θ g

θθgϕϕΓa
ϕϕ∂θA

+
a +A−

ϕ g
ϕϕgθθΓa

θθ∂ϕA
+
a . (248)

It is easy to see that the angular part of above sum, when inserted in the action, exactly gives
the integral (233), which we proved to be zero. Always referring to (242), we can now consider
another term, namely A−

Ag
ABgEFΓL

EFΓ
a
LBA

+
a . By writing it explicitly, and by recalling (198)

17We also consider the Aµ in front of the expression, which is of course necessary to show decoupling.
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and the expressions for the non-vanishing Christoffel symbols, we can write

A−
Ag

ABgEFΓL
EFΓ

a
LBA

+
a = A−

θ g
θθgϕϕΓθ

ϕϕΓ
a
θθA

+
a

= A−
θ g

θθgϕϕΓθ
ϕϕ

(
ΓU
θθA

+
U + ΓV

θθA
+
V

)
= −Alm,2ϵ

ϕ
θ (∂ϕYlm) gθθgϕϕΓθ

ϕϕ

(
ΓU
θθAl′m′,U + ΓV

θθAl′m′,V

)
Yl′m′ , (249)

where we ignored for a moment the sum over l, l′,m and m′. By inserting the above expression
in the action, and by considering the spherical part only, we obtain the following integral:∫

dϕdθ cot θ (∂ϕYlm)Y ∗
l′m′ . (250)

A couple of comments are in order here. First of all, the minus sign in Eq. (249) is canceled by
the minus sign coming from the Christoffel symbol Γθ

ϕϕ. Moreover, we also notice that ΓU
θθ and

ΓV
θθ depend on the light-cone coordinates only and so they do not contribute to the angular part.

If we tried to explicitly compute this term, we would obtain an expression which is in general
non-vanishing; we did not explicitly write down the light-cone piece, but it can be easily verified
that it is in general non-vanishing too. Therefore, the first thing one can think of is to look at
the corresponding term in Eq. (244) and check if they cancel each other. The term we want to
look at can be massaged to give

−AAg
AF gBEΓL

EFΓ
a
LBA

+
a = −A−

θ g
θθgϕϕΓϕ

ϕθΓ
a
ϕϕA

+
a

= −A−
θ g

θθgϕϕ
(
− sin2 θ

)
Γθ
ϕϕ

(
sin2 θ

)
Γa
θθA

+
a

= A−
θ g

θθgϕϕΓθ
ϕϕΓ

a
θθA

+
a , (251)

which is equal to (249). Thus, these two terms add up instead of canceling each other. However,
if we look at (244) more carefully, we will notice that there is a term of the form

AAg
AF gBE (∂FΓ

a
EB)A

+
a = A−

θ g
θθgϕϕ

(
∂θΓ

a
ϕϕ

)
A+

a . (252)

Now, by recalling that Γa
ϕϕ = sin2 θΓa

θθ, we have ∂θΓa
ϕϕ = ∂θ

(
sin2 θΓa

θθ

)
= 2 sin θ cos θΓa

θθ since
Γa
θθ = Γa

θθ(U, V ). Therefore, we obtain

A−
θ g

θθgϕϕ
(
∂θΓ

a
ϕϕ

)
A+

a = −2A−
θ g

θθgϕϕΓθ
ϕϕΓ

a
θθA

+
a . (253)

Therefore, (249), (251) and (252), when added up, cancel each other. Now, one can wonder
what happens at the term corresponding to (252) in Eq. (242). We can easily show that this
term is zero by simply writing down the full expression:

−A−
Ag

ABgEF (∂FΓ
a
EB)A

+
a = −A−

θ g
θθgEF (∂FΓ

a
Eθ)A

+
a −A−

ϕ g
ϕϕgEF

(
∂FΓ

a
Eϕ

)
A+

a

= −A−
θ g

θθgθθ (∂θΓ
a
θθ)A

+
a −A−

ϕ g
ϕϕgϕϕ

(
∂ϕΓ

a
ϕϕ

)
A+

a = 0, (254)

where we made use of the fact that Γa
Eθ is non-vanishing if and only if E = θ. Lastly, we can

immediately check that the term −AAg
ABgEFΓa

FB∂EA
+
a appearing in (242) is canceled by the

corresponding term in (244). All the other coupling terms vanish because of the identities (198),
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as already mentioned. Now that we have proved decoupling, we can write down the expression
for AAOABAB in terms of covariant derivatives and the vector potential defined before; in
particular, by summing all of the terms, making use of the fact that the Christoffel symbols can
be written in terms of V a, and lastly considering that Γa

ef , when contracted with gef , vanishes,
we end up with the following expression:

AAOABAB = A−
A

[
gABgEF ∇̂E∇̂F − 1

4
gABV aVa + gAB□̃

]
A−

B − 1

2
A−

Ag
AB∇̃a

(
VaA

−
B

)
. (255)

Above, based on (192), we would have expected to obtain a term of the form gAF gBE∇̂F ∇̂EA
−
B.

However, it can be easily shown that this term vanishes by again making use of one of the
properties of the vector spherical harmonics, namely ∇i (Φlm)i = 0:

gAF gBE∇̂F ∇̂EA
−
B = gAF gBE∇̂F ∇̂BA−

B ∝ ∇̂B
(
ϵ C
B ∂CYlm

)
= 0. (256)

We are now ready to write down the full photon Lagrangian:

Lγ =
1

2
AµOµνAν =

1

2

(
AaOabAb +AaOaBAB +ABOBaAa +AAOABAB

)
, (257)

where the four terms above are given by Eqs. (220, (228), (241) and (255), respectively.

4.4 A two-dimensional field theory for the photon

In the previous section we split the spacetime into two components, the light-cone gab and the
two-sphere gAB, and showed that we have decoupling between even- and odd-parity modes.
Finally, we ended up with the Lagrangian (257). Now, the question is: can we integrate the
sphere out and obtain a two-dimensional field theory for the photon? This would clearly be an
enormous simplification. We would obtain a two-dimensional description of the problem with
the metric gab only. Last but not least, by doing so we will explicitly see that the different l,m
modes decouple, i.e., we will obtain an infinite tower of decoupled actions, one for each partial
wave; this is to be expected due to the spherical symmetry of the background. In order to see
if what we have said so far can be achieved, let us analyze each term in (257); in particular,
let us insert the decomposition (189) in the Lagrangian. For clarity, we will consider each term
separately. The first one can be written as

AaOabAb =
∑

l,m;l′,m′

Alm,aYlm

[
gab□̃− ∇̃a∇̃b − gab

λ′

r2
+ gabV d∇̃d −

1

2
V aV b

]
Al′m′,bY

∗
l′m′ , (258)

where we have defined λ′ := l(l+1). Moreover, we introduced the box operator on the light-cone,
namely □̃ = ∇̃a∇̃a. At this point we can immediately see that the sphere can be integrated
out. Indeed, the operators in the middle of the above expression are light-cone quantities and
so the indices never sum over the coordinates θ and ϕ. We can therefore safely move around the
spherical Y ∗

l′,m′ to the left, obtaining the following expression:

AaOabAb =
∑

l,m;l′,m′

YlmY
∗
l′m′Alm,aP

ab
1 Al′m′,b, (259)
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where the operator in the middle has been defined as

P ab
1 := gab□̃− ∇̃a∇̃b − gab

λ′

r2
+ gabV d∇d −

1

2
V aV b. (260)

The same can be done for the second term in (257):

AaOaBAB = −
∑

l,m;l′,m′

Alm,aYlm

[
∇̃aV b + V b∇̃a

]
Al′m′,bY

∗
l′m′

= −
∑

l,m;l′,m′

YlmY
∗
l′m′Alm,aP

ab
2 Al′m′,b, (261)

with P ab
2 := ∇̃aV b + V b∇̃a. The above two terms can be combined, giving

AaOabAb +AaOaBAB =
∑

l,m;l′,m′

YlmY
∗
l′m′Alm,aP̃

abAl′m′,b, (262)

where the operator P̃ ab is defined as

P̃ ab := P ab
1 − P ab

2 = gab□̃− ∇̃a∇̃b − gab
λ′

r2
+ gabV d∇̃d −

1

2
V aV b − ∇̃aV b − V b∇̃a. (263)

Let us now focus on the last two terms in (257). The first one gives

ABOBaAa = gABA−
A

[
1

2
Va∇̃a − 1

2
VaV

a

]
A−

B

=
∑

l,m;l′,m′

gAB (Φlm)A (Φ∗
l′m′)B Alm,2P3Al′m′,2, (264)

where P3 := 1
2Va∇̃

a − 1
2VaV

a. Note that above we used the same notation as in (162) for the
vector spherical harmonics. Finally, for the last one we have

AAOABAB =
∑

l,m;l′,m′

gAB (Φlm)A (Φ∗
l′m′)B Alm,2P4Al′m′,2, (265)

where the operator P4 has been defined as

P4 := □̃+
1− λ′

r2
− 1

4
V aVa −

1

2
∇̃aVa −

1

2
Va∇̃a. (266)

The (1− λ′)r−2 factor above comes from the action of the operator ∇̂F ∇̂F on (Φl′m′)B. As we
did for the first two terms, let us combine these two last contributions:

ABOBaAa +AAOABAB =
∑

l,m;l′,m′

gAB (Φlm)A (Φ∗
l′m′)B Alm,2P̃Al′m′,2, (267)

where the operator P̃ is defined as

P̃ := P3 + P4 = □̃+
1− λ′

r2
− 1

2
∇̃aVa −

3

4
VaV

a. (268)
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The full Lagrangian can thus be written as

Lγ =
1

2

∑
l,m;l′,m′

YlmY
∗
l′m′Alm,aP̃

abAl′m′,b +
1

2

∑
l,m;l′,m′

gAB (Φlm)A (Φ∗
l′m′)B Alm,2P̃Al′m′,2, (269)

where the two terms represent the even- and odd-parity contributions, respectively. The corre-
sponding action for the even part is given by

Sγ,even =
1

2

∑
l,m;l′,m′

∫
dΩYlmY

∗
l′m′

∫
d2xA(r)r2Alm,aP̃

abAl′m′,b

=
1

2

∑
l,m

∫
d2xA(r)r2Alm,aP̃

abAl′m′,b, (270)

where we simply used the orthogonality relation for the scalar spherical harmonics:∫
dΩYlmY

∗
l′m′ = δll′δmm′ . (271)

The odd-parity contribution is instead given by

Sγ,odd =
1

2

∑
l,m;l′,m′

∫
dΩgAB (Φlm)A (Φ∗

l′m′)B

∫
d2xA(r)r2Alm,2P̃Al′m′,2

=
1

2

∑
l,m

∫
d2xA(r)r2λ′Alm,2P̃Al′m′,2

=
1

2

∑
l,m

∫
d2xA(r)r2Alm,2P̃Al′m′,2, (272)

where this time we used the orthogonality relation for the vector spherical harmonics:∫
dΩgAB (Φlm)A (Φ∗

l′m′)B = λ′δll′δmm′ . (273)

Notice that in last step λ′ has been absorbed in the operator P̃ . To avoid clutter of notation,
we did not give it a new name. Therefore, the sum of these two contributions, Sγ , is

Sγ =
1

2

∑
l,m

∫
d2xA(r)r2Alm,aP̃

abAl′m′,b +
1

2

∑
l,m

∫
d2xA(r)r2Alm,2P̃Al′m′,2. (274)

The above expression represents an infinite tower of decoupled actions, one for each l and m, as
anticipated before. We have been able to integrate the sphere out and obtain a two-dimensional
field theory for the photon. It is important to notice that the only residual curvature components
arising from the two-sphere are embedded in the potential Va present both in P̃ ab and P̃ . At
this point we recall that our aim is to find the photon propagator, which can be obtained
directly from the action by finding the inverse of the kinetic term operator. Starting from these
considerations, we can immediately notice that there is a problem in the above action, namely
the presence of the factor r2, which comes from the two-sphere Jacobian; the best thing we can
do in order to read off the propagator from the Lagrangian would be to absorb r2 into the fields.
This is not immediate since the operators P̃ ab and P̃ do not commute with r2, so a little more
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work is needed. Looking at (274), the idea is to remove one r to the left of Alm,a (or Alm,2) and
introduce an r on the right of Al′m′,b (or Al′m′,2). If we are able to do this, then we can redefine
the fields appropriately and obtain the form of the action that we want. In order to achieve this,
we can first recall how the vector potential Va has been defined: Va = 2∂a log r. This leads to
the definition of a new operator:

Da(·) := ∇̃a(·) +
1

2
Va(·) =

1

r
∇̃a(r ·), (275)

where with the symbol · we indicate the fact that we are not specifying the type of mathematical
object we are acting on. The strategy is to now replace every covariant derivative in Eqs. (262)
and (268) with this new operator that has been introduced, Da. Let us start from the operator
P̃ ab, which can rewritten as follows:

P̃ ab = gab
[
□̃+ Vd∇̃d − λ′

r2

]
− ∇̃a∇̃b − ∇̃aV b − V b∇̃a − 1

2
V aV b. (276)

The box operator, in terms of Da, becomes18

□̃f = ∇̃a∇̃af = ∇̃a

(
Daf − 1

2
Vaf

)
= Da

(
Daf − 1

2
Vaf

)
− 1

2
V a

(
Daf − 1

2
Vaf

)
= DaDaf − 1

2
Da(Vaf)−

1

2
V aDaf +

1

4
V aVaf

= D2f − 1

2
(DaVa)f − VaDaf +

1

2
VaV

af, (277)

where we defined D2 := DaDa and used the following identity19:

Da(V
af) = (DaV

a)f + V aDaf − 1

2
VaV

af. (278)

The second term in (276), Vd∇̃d, immediately gives

Vd∇̃df = Va∇̃af = VaDaf − 1

2
VaV

af. (279)

Therefore, by summing these two contributions, we get

□̃f + Vd∇̃df = D2f − 1

2
(DaVa)f = D2f − F a

a f, (280)

where, for later convenience, a new quantity has been introduced20:

Fab :=
1

2
D(aVb) =

1

r
∇̃a∇̃br =

1

2
∇̃(aVb) +

1

4
VaVb. (281)

18Note that, for the sake of simplicity, we are applying the operator to some generic function f . Indeed, it is
not important to distinguish the object we are acting on here since we never work out the Christoffel symbols in
this computation.

19The Leibniz rule does not hold for the operator Da.
20Here we are using the standard notation for symmetric tensors: T(ab) :=

1
2
(Tab + Tba). The fact that Fab is

a symmetric tensor follows from the commutativity of covariant derivatives when acting on a scalar [19].
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Let us now focus on the other terms in (276). The first term in parentheses is

∇̃a∇̃bf = ∇̃a

(
Db − 1

2
V bf

)
= Da

(
Dbf − 1

2
V bf

)
− 1

2
V a

(
Dbf − 1

2
V bf

)
= DaDbf − 1

2

(
DaV b

)
f − 1

2
V bDaf +

1

4
V aV bf − 1

2
V aDbf +

1

4
V aV bf, (282)

while the second and third terms are given by(
∇̃aV b

)
f =

(
DaV b

)
f − 1

2
V aV bf, (283)

V b∇̃af = V bDaf − 1

2
V bV af, (284)

respectively. Thus, by considering (282), (283), (284) and the last term in (276) we get

−∇̃a∇̃b − ∇̃aV b − V b∇̃a − 1

2
V aV b = −DaDbf − F abf − V [bDa]f. (285)

Finally, putting it all together, we can write down P̃ ab in terms of the operator (275):

P̃ ab = gab
[
D2 − F c

c − λ′

r2

]
−DaDb − F ab − V [bDa]. (286)

We can do the same with P̃ . Following the same steps, we can write

□̃f − 1

2

(
∇̃aVa

)
f − 3

4
VaV

af = D2f − 2F a
a f − VaDaf. (287)

The operator P̃ can then be written as

P̃ = λ′D2 +
λ′ (1− λ′)

r2
− 2λ′F a

a − λ′VaDa. (288)

Now we recall that Da(·) = 1
r ∇̃a(r ·); starting from this, we want to write all the operators

appearing in (286) and (288) in the same form. The following identities can be easily proven:

DaDa(·) =
1

r
□̃(r ·), (289)

DaDb(·) = 1

r
∇̃a∇̃b(r ·), (290)

V [bDa](·) = 1

r
V [b∇̃a](r ·). (291)

Therefore, by making use of the above relations, and ignoring the subscripts lm, l′m′ for a
moment, we can rewrite the two integrands in (274) as follows:

r2AaP̃
abAb

(289)−(291)−−−−−−−→ rAa

[
gab
(
□̃− F c

c − λ′

r2

)
− ∇̃a∇̃b − F ab − V [b∇̃a]

]
rAb, (292)

r2A2P̃A2
(289)−(291)−−−−−−−→ rA2

[
λ′□̃+

λ′ (1− λ′)

r2
− 2λ′F a

a − λ′Va∇̃a

]
rA2. (293)
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We can now safely make the following field redefinitions:

Ãa := rAa, Ã := rA2. (294)

The photon action can then be written in the following form21 [39]:

Sγ = Sγ,even + Sγ,odd =
1

2

∫
d2x
√
−g̃Ãa∆̃−1

ab Ã
b +

1

2

∫
d2x
√

−g̃Ã∆̃−1Ã, (295)

where
√
−g̃ = A(r) and the operators ∆̃−1

ab and ∆̃−1 are defined as follows:

∆̃−1
ab := gab

(
□̃− F c

c − λ′

r2

)
− ∇̃a∇̃b − Fab − V[b∇̃a], (296)

∆̃−1 := λ′□̃+
λ′ (1− λ′)

r2
− 2λ′F a

a − λ′Va∇̃a. (297)

In principle we can now insert the metric in our expressions and invert (296) and (297) in order
to find the photon propagator. However, an important remark concerning the metric can be
made at this point. Indeed, even if in section (4.2) we explicitly mentioned that we would have
worked in Kruskal–Szekeres coordinates, we have not yet used a particular form of the function
A(r), which is in principle still arbitrary. In particular, the metric we are working with (i.e., the
light-cone metric) is now given by

g̃ab = A(r)

(
0 −1

−1 0

)
= A(r)ηab, (298)

where ηab is the two-dimensional Minkowski metric in light-cone coordinates. From the form of
the metric we immediately deduce that our theory is conformally flat; at this point, one can ask:
can we appropriately redefine the fields such that one obtains a flat theory? This would of course
be extremely advantageous since, as we have seen in section (1.2), working with a quantum field
theory in curved spacetime can be very challenging. The next section will be devoted to such
redefinition.

4.5 From curved to flat spacetime

As already anticipated, the goal of this section is to exploit the fact that the metric is written
as g̃ab = A(r)ηab, and appropriately redefine all the fields present in order to work with a flat
theory. In particular, we will rescale the fields in such a way to make sure that the kinetic term
in the action contains no more r−dependent terms. Let us first work on the odd part, which is
much easier as we will see. Explicitly, we have:

Sγ,odd =
1

2

∫
d2x
√

−g̃Ã∆̃−1Ã =
1

2

∫
d2xA(r)Ã∆̃−1Ã

=
λ′

2

∫
d2xA(r)Ã

[
□̃+

1− λ′

r2
− 2F a

a − Va∇̃a

]
Ã. (299)

21We are again ignoring the subscripts lm, l′m′ as well as the sum. Moreover, for later convenience, we raised
the indices of the vector potentials and lowered those of the operator in the middle in the even-parity action.
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We now redefine the scalar as Ã := A, i.e, we just give it a new name for later convenience. By
also lowering all indices with the metric, we get

Sγ,odd =
λ′

2

∫
d2xA(r)A

[
g̃ab∇̃a∇̃b +

1− λ′

r2
− 2g̃abFab − g̃abVa∇̃b

]
A

=
λ′

2

∫
d2xA(r)A

[
1

A(r)
ηab∇̃a∇̃b +

1− λ′

r2
− 2

A(r)
ηabFab −

1

A(r)
ηabVa∇̃b

]
A. (300)

By simply considering the fact that

ηab∇̃a∇̃bA = ηab∂a∂bA− ηabΓc
ab∂cA = ηab∂a∂bA, (301)

we are left with the following expression:

Sγ,odd =
λ′

2

∫
d2xA

[
∂2 +A(r)

1− λ′

r2
− 2F a

a − V b∂b

]
A, (302)

where we defined ∂2 := ηab∂a∂b. It is important to notice that all index manipulations are
performed with the flat metric; in particular, above we used that F a

a = ηabFab and V b = ηabVa.
Actually, a further comment about the symmetric tensor Fab must be made at this point. Indeed,
we need to consistently redefine it in terms of partial derivatives and curvature potentials since
the light-cone derivative in terms of which it has been originally defined does not hold anymore
after the rescaling. By recalling how we defined Fab, namely Eq. (281), we can write

Fab =
1

4
∇̃aVb +

1

4
∇̃bVa +

1

4
VaVb =

1

4
(∂aVb − Γe

abVe) +
1

4
(∂bVa − Γe

baVe) +
1

4
VaVb. (303)

Now, in order to write Fab in terms of residual curvature components only, we first express the
Christoffel symbols of the form Γe

ab in the following way22:

Γe
ab = 2δe(aUb) − g̃abU

e = 2δe(aUb) − g̃abg̃
deUd = 2δe(aUb) − ηabη

deUd = 2δe(aUb) − ηabU
e, (304)

where the new potential Ua has been defined as

Ua :=
1

2A(r)
∂aA(r). (305)

Therefore, from Eq. (303) we obtain

Fab =
1

2
∂(aVb) −

1

2
(δeaUb + δebUa − ηabU

e)Ve +
1

4
VaVb

=
1

2
∂(aVb) −

1

2
UbVa −

1

2
UaVb +

1

2
ηabU

eVe +
1

4
VaVb

=
1

2
∂(aVb) − U(aVb) +

1

2
ηabU

eVe +
1

4
VaVb. (306)

The last equality in the above expression is our new definition of Fab, after the rescaling (we
continue to call it Fab to avoid clutter of notation). As we can notice from this discussion, the

22Here we use the same logic as before. We first find an expression for the Christoffel symbols in terms of the
curvature potential; then we exploit the fact that g̃ab = A(r)ηab and finally we define Ue = ηdeUd.
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fact that our theory is conformally flat allowed us to reduce it to a flat theory by appropriate
redefinitions. Of course, this does not affect the physics, i.e, the action we have obtained is
equivalent to the one we started from. Let us now consider the even part of the action:

Sγ,even =
1

2

∫
d2xA(r)Ãa

[
gab

(
□̃− F c

c − λ′

r2

)
− ∇̃a∇̃b − Fab − V[b∇̃a]

]
Ãb. (307)

By redefining Ãa :=
√
A(r)Aa and by exploting the fact g̃ab is conformally invariant, we get

Sγ,even =
1

2

∫
d2x
√
A(r)Aa

[
ηab

(
ηcd∇̃c∇̃d − ηcdFcd −A(r)

λ′

r2

)
−∇̃a∇̃b − Fab −

1

2
Vb∇̃a +

1

2
Va∇̃b

]
1√
A(r)

Ab. (308)

Therefore, we need to consider the action of the operator in the middle on Ab/
√
A(r); let us

first work on the action of the double covariant derivative on such quantity23. We have:

∇c∇d

(
1√
A
Ab

)
= ∇c

[(
∇d

1√
A

)
Ab +

1√
A
∇dAb

]
= ∇c

[(
∂d

1√
A

)
Ab

]
+∇c

[
1√
A
∇dAb

]
= −∇c

[
1√
A
UdAb

]
+∇c

[
1√
A
∇dAb

]
. (309)

By simply applying the product rule, we get

∇c∇d

(
1√
A
Ab

)
= −

(
∂c

1√
A

)
UdAb − 1√

A
(∇cUd)Ab − 1√

A
Ud∇cAb

+

(
∂c

1√
A

)
∇dAb +

1√
A
∇c∇dAb. (310)

By explicitly writing down the action of the covariant derivative on Ab, and recalling that

∇c∇dAb = ∂c

(
∇dAb

)
+ Γb

ce∇dAe − Γe
cd∇eAb, (311)

we obtain the following expression:

∇c∇d

(
1√
A
Ab

)
=

1√
A

[
UcUdAb − (∂cUd)Ab + Γe

cdUeAb − Ud∂cAb − UdΓ
b
ceAe

− Uc∂dAb − UcΓ
b
deAe + ∂c∂dAb +

(
∂cΓ

b
de

)
Ae + Γb

de∂cAe

+ Γb
ce∂dAe + Γb

ceΓ
e
dfAf − Γe

cd∂eAb − Γe
cdΓ

b
efAf

]
. (312)

Looking at the above equation, we can now express every term that contains a Christoffel
symbol in terms of curvature potentials. This can be easily done by using the identity (304). By

23For the sake of simplicity, we will denote the covariant derivative on the light-cone without the tilde. There
is no need to distinguish between light-cone coordinates and angular coordinates from the moment that these
latter have been integrated out. Moreover, we will omit the r−dependence in A.
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excluding those terms with Γe
cd (they do not contribute since the first piece in the even action

(308) is contracted with ηcd), we find

ηabη
cdUdΓ

b
ceAe = ηabη

cdUcΓ
b
deAe = −ηabηcdUcUdAb, (313)

ηabη
cd
(
∂cΓ

b
de

)
Ae = (∂aUe)Ae + ηabη

cd (∂cUd)Ab − (∂cUa)Ac, (314)

ηabη
cdΓb

de∂cAe = ηabη
cdΓb

ce∂cAe = Ue∂aAe + ηabη
cdUd∂cAb − Ua∂cAc. (315)

Furthermore, we have that ηcdΓb
ceΓ

e
df = 0. Therefore, putting it all together, namely by inserting

Eqs. (313), (314) and (315) in (312) and contracting with the two metrics, we end up with

ηabη
cd∇c∇d

(
1√
A
Ab

)
=

1√
A

[
ηab
(
∂2 − UcU

c
)
+ 2Ub∂a − 2Ua∂b

]
Ab. (316)

Now, from Eq. (312) we can immediately deduce that

∇a∇b

(
1√
A
Ab

)
=

1√
A

[
UaUbAb − (∂aUb)Ab + Γe

abUeAb − Ub∂aAb − UbΓ
b
aeAe

− Ua∂bAb − UaΓ
b
beAe + ∂a∂bAb +

(
∂aΓ

b
be

)
Ae + Γb

be∂aAe

+ Γb
ae∂bAe + Γb

aeΓ
e
bfAf − Γe

ab∂eAb − Γe
abΓ

b
efAf

]
. (317)

The third and fifth term, as well as the last four terms of the above expression cancel each other.
The ones that contain Γb

be can be written as

UaΓ
b
beAe = 2UaUbAb, (318)(

∂aΓ
b
be

)
Ae = 2 (∂aUb)Ab, (319)

Γb
be∂aAe = 2Ub∂aAb. (320)

Therefore, Eq. (317) becomes

∇a∇b

(
1√
A
Ab

)
=

1√
A

[−UaUb + ∂aUb + Ub∂a − Ua∂b + ∂a∂b]Ab. (321)

The last two terms in (308) can be easily written in terms of the two vector potentials we have
defined. By following the same logic as before, for the first of these two we have

1

2
Vb∇a

(
1√
A
Ab

)
=

1

2
Vb

[
∇a

(
1√
A

)
Ab +

1√
A
∇aAb

]
=

1

2
√
A
Vb

[
−UaAb + ∂aAb +

(
δbaUe + δbeUa − ηaeU

b
)
Ab
]

=
1

2
√
A

(−VbUa + Vb∂a + VaUb + VbUa − ηabVcU
c)Ab. (322)

Similarly, we find that the second term is given by

1

2
Va∇b

(
1√
A
Ab

)
=

1

2
√
A

(Va∂b + VaUb) . (323)
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Now, considering that the two terms above are opposite to each other in (308), we finally obtain

−1

2
Vb∇a

(
1√
A
Ab

)
+

1

2
Va∇b

(
1√
A
Ab

)
=

1√
A

(
−V[b∂a] +

1

2
ηabVcU

c

)
Ab. (324)

The last term we need to analyze before putting it all together is ηcdFcd, where we recall that
Fcd has been defined in Eq. (306). By simply contracting with the metric, we obtain

F c
c =

1

2
∂cV

c +
1

4
VcV

c. (325)

The even part of the action can thus be written as

Sγ,even =
1

2

∫
d2xAa

[
ηab

(
∂2 − UcU

c +
1

2
VcU

c − 1

2
∂cV

c − 1

4
VcV

c −A(r)
λ′

r2

)
+2U[b∂a] + UaUb − ∂aUb − ∂a∂b − V[b∂a] − Fab

]
Ab. (326)

To sum up, the total photon action Sγ is now given by

Sγ = Sγ,even + Sγ,odd =
1

2

∫
d2xAa∆−1

ab A
b +

1

2

∫
d2xA∆−1A, (327)

where the operators after the rescaling have been defined as

∆−1
ab := ηab

(
∂2 − UcU

c +
1

2
VcU

c − 1

2
∂cV

c − 1

4
VcV

c −A(r)
λ′

r2

)
+ 2U[b∂a] + UaUb − ∂aUb − ∂a∂b − V[b∂a] − Fab,

(328)

∆−1 := λ′∂2 +A(r)
λ′ (1− λ′)

r2
− 2λ′F a

a − λ′V b∂b. (329)

The attentive reader will not fail to notice that in the previous two sections all factors of (−1)m

have been neglected; they arise when one uses the well-known relation Ylm = (−1)mY ∗
l(−m),

which in turn is needed in order to make use of the orthogonality relation for complex spherical
harmonics. These factors can easily be reintroduced once we will obtain the final expression for
the propagators. However, keeping track of these m-dependent factors will become trickier when
starting to compute scattering amplitudes; the way out is to consider a real basis of spherical
harmonics Xlm : S2 → R, which can be defined in terms of the Ylm’s in the following way (for
further details the reader can refer to Ref. [40]):

Xlm =


√
2(−1)mIm

[
Yl|m|

]
if m < 0,

Yl0 if m = 0,√
2(−1)mRe [Ylm] if m > 0,

(330)

where Im and Re denote the real and imaginary parts, respectively. Most of the properties of
the real spherical harmonics can be quite easily deduced from the properties of the complex
spherical harmonics. In particular, here the one of interest is the orthogonality relation∫

dΩXlm(θ, ϕ)Xl′m′(θ, ϕ) = δll′δmm′ . (331)
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Moreover, from (330) it is not difficult to see that the real spherical harmonics also satisfy (145).
Starting from the Xlm’s, it is possible to define a set of three vector spherical harmonics in a
similar way as before. We denote this set as {Xlm,Ψ

r
lm,Φ

r
lm}, where the superscript “r" stands

for “real". In this case, the orthogonality relation we want to use is∫
dΩgAB (Φr

lm)A (Φr
l′m′)B = λ′δll′δmm′ . (332)

The next step would be to expand the vector potential into real vector spherical harmonics,
obtaining two expressions (odd- and parity-modes) analogous to (185) and (188):

A−
B = −

∑
l,m

Alm,2ϵ
C

B ∂CXlm, (333)

A+
a =

∑
l,m

Alm,aXlm. (334)

Now, by repeating the same computations of the previous sections, we would end up with the
same results as above, but with no m-dependent factors. Therefore, from now on we can simply
consider Eqs. (328) and (329) as the exact results. As we can see, we have successfully reduced
the four-dimensional Schwarschild spacetime to a flat two-dimensional Minkowski spacetime; this
has been possible thanks to the high degree of symmetry of the background and the spherical-
harmonics expansion. Moreover, it is important to stress that, up to now, the procedure we
have followed is exact: we have not lost any piece of information; we can in principle find the
photon propagator on the Schwarzschild background starting from the action (327). However,
even if we are working in flat spacetime now, it is still challenging to invert the operators
given by (328) and (329). Luckily, in this work we are only interested in a particular region
of the Schwarzschild spacetime, namely the event horizon. Indeed, this is exactly the region
where high-energy scattering processes take place. We can thus build our quantum field theory
by restricting our attention to this region; in particular, our aim is to approximate the above
operators in order to be able to invert them. The next subsection will be devoted to what we
call the “near-horizon approximation".

4.6 Physics near the horizon

As already anticipated in the previous subsection, it is difficult to find the photon propagator
on the entire spacetime; thus, we will restrict to the near-horizon region. To do this, we first
rewrite the quantities defining (328) and (329) in terms of the coordinates U and V [19]

Va =
A

rR
xa, (335)

Ua = − A

4rR

(
1 +

r

R

)
xa, (336)

∂aVb =
A

rR
ηab −

A2

2R2r2

(
2 +

r

R

)
xaxb, (337)

∂aUb = − A

4rR

(
1 +

r

R

)
ηab +

A2

8R2r2

(
2 + 2

r

R
+
r2

R2

)
xaxb, (338)

Fab =
AR

2r3
ηab, (339)
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where we recall that the Schwarzschild background is specified by

A(r) =
R

r
e1−

r
R , UV = 2R2

(
1− r

R

)
e

r
R
−1. (340)

The approximation of interest, keeping the spherical nature of the horizon intact, is such that
the light-cone coordinates are much smaller than the Schwarzschild radius: U, V ≪ R24. Indeed,
we expect interactions to occur where the rays naturally accumulate25 and not near an arbitrary
point on the future horizon where the density of modes is sparse. From the second of (340), one
can deduce that the radial coordinate can be written as [19]

r = R+RO
(
UV

R2

)
. (341)

Thus, to linear order, we can simply write r = R, A(r) = 1. Consequently, Eqs. (335)–(339)
can be approximated in the following way:

Va ≈ µ2xa, (342)

Ua ≈ −µ
2

2
xa, (343)

∂aVb ≈ µ2ηab, (344)

∂aUb ≈ −µ
2

2
ηab, (345)

Fab ≈
µ2

2
ηab. (346)

We can now finally insert these approximated quantities into the quadratic operators defined by
(328) and (329). The first one, (328), gives

∆−1
ab,hor = ηab

(
∂2 − 1

2
ηcdµ2ηcd − µ2λ′

)
+ 2

(
−1

2

µ2

2
xb∂a +

1

2

µ2

2
xa∂b

)
+
µ2

2
ηab − ∂a∂b −

(
1

2
µ2xb∂a −

1

2
µ2xa∂b

)
− µ2

2
ηab

= ηab
(
∂2 − µ2 − µ2λ′

)
+ µ2x[a∂b] +

µ2

2
ηab − ∂a∂b + µ2x[a∂b] −

µ2

2
ηab

= ηab
[
∂2 − µ2

(
λ′ + 1

)]
+ 2µ2x[a∂b] − ∂a∂b, (347)

where we implicitly defined ∆−1
ab,hor := ∆−1

ab

∣∣
U,V≪R

. Concerning the second one, (329), we get

∆−1
hor = λ′∂2 + µ2λ′(1− λ′)− 2µ2λ′ − µ2λ′xb∂b = λ′∂2 − µ2λ′

(
λ′ + 1

)
− µ2λ′xb∂b, (348)

where ∆−1
hor := ∆−1

∣∣
U,V≪R

. Let us focus for a moment on the last term in the above expression.
When inserted into the action (327), it can be rewritten in the following way:

µ2λ′
∫
d2xAxb∂bA =

1

2
µ2λ′

∫
d2xxb∂bA2. (349)

24Recall that, in terms of the light-cone coordinates, the horizon is defined by the equation UV = 0.
25In Fig. 9 of Ref. [19], all wave fronts received on future null infinity appear to emanate from the central

causal diamond in a collapsing scenario.
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Now, integration by parts with vanishing boundary conditions yields

1

2
µ2λ′

∫
d2xxb∂bA2 = −1

2
µ2λ′

∫
d2xA2∂bx

b = −µ2λ′
∫
d2xA2. (350)

We have thus obtained another mass term. Putting it all together, Eq. (348) becomes

∆−1
hor = λ′

(
∂2 − µ2λ′

)
. (351)

We finally write down the total photon action within the near-horizon approximation:

Sγ,hor = Seven
γ,hor + Sodd

γ,hor =
1

2

∫
d2xAa∆−1

ab,horA
b +

1

2

∫
d2xA∆−1

horA, (352)

where the quadratic operators are given by

∆−1
ab,hor = ηab

[
∂2 − µ2

(
λ′ + 1

)]
+ 2µ2x[a∂b] − ∂a∂b, (353)

∆−1
hor = λ′

(
∂2 − µ2λ′

)
. (354)

As we can easily notice, Eqs. (328) and (329) have been simplified significantly. In the next
subsection we will try to invert (353) and (354) in order to find the photon propagator.

4.7 The photon propagator

This subsection is dedicated to the computation of the photon propagator. We will consider the
even-harmonics and odd-harmonics cases separately.

4.7.1 Propagator for the even-harmonics

As a first step, we write the operator (353) in Fourier space:

∆̂−1
ab,hor = −ηab

[
k2 + µ2

(
λ′ + 1

)]
+ kakb + 2µ2k[a∂

k
b]. (355)

To obtain such expression, we used that∫
d2xAa

(
µ2x[a∂b]

)
Ab =

∫
d2x

∫
d2k

(2π)2

∫
d2k′

(2π)2
Âa(k)Âb

(
k′
)
eik·x

(
2µ2x[a∂b]

)
eik

′·x

=

∫
d2x

∫
d2k

(2π)2

∫
d2k′

(2π)2
Âa(k)Âb

(
k′
)
eik·x

(
2iµ2x[ak

′
b]

)
eik

′·x

=

∫
d2x

∫
d2k

(2π)2

∫
d2k′

(2π)2
Âa(k)Âb

(
k′
)
eik·x

(
2µ2k′[b∂

k′

a]

)
eik

′·x

=

∫
d2x

∫
d2k

(2π)2

∫
d2k′

(2π)2
ei(k+k′)·xÂa(k)

(
−2µ2∂k

′

[ak
′
b]

)
Âb
(
k′
)

=

∫
d2k′

(2π)2
Âa
(
−k′

) (
2µ2k′[a∂

k′

b]

)
Âb
(
k′
)
. (356)

Above, in the second equality we simply acted with the partial derivative on the exponential.
Moreover, to get to the third line, we simply rewrote x as a partial derivative with respect to
k. Finally, integration by parts and antisymmetry have been used in the last two passages,
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respectively. In momentum space, the equation we want to solve is

∆̂−1
ab,hor∆̂

bc
hor = δca. (357)

Now, Lorentz invariance suggests the following form for ∆̂bc
hor:

∆̂bc
hor = A

(
k2
) (
ηbc +B

(
k2
)
kbkc

)
, (358)

where A and B have to be determined. Acting with ∆̂−1
ab,hor on ∆̂bc

hor gives

∆̂−1
ab,hor∆̂

bc
hor = −Ak2δca −ABkak

ck2 − µ2A
(
λ′ + 1

)
δca − µ2AB(λ′ + 1)kak

c

+Akak
c +ABkak

ck2 + 2µ2k[a∂
c]
k A+ 2µ2k[a∂

k
b]

(
ABkbkc

)
= −A

[
k2 + µ2

(
λ′ + 1

)]
δca −A

[
Bµ2

(
λ′ + 1

)
− 1
]
kak

c

+ 2µ2
[
k[a∂

c]
k A+ k[a∂

k
b]

(
ABkbkc

)]
. (359)

Let us now have a closer look at the two terms in the last square brackets. We can easily show
that the first one vanishes. Indeed, we have

k[a∂
c]
k A =

1

2
ka∂

c
kA− 1

2
kc∂

a
kA =

1

2
ka
(
2A′kc

)
− 1

2
kc
(
2A′ka

)
= A′ (kak

c − kck
a) = 0. (360)

Concerning the second one, we get

k[a∂
k
b]

(
ABkbkc

)
= ABk[aδ

b
b]k

c +ABk[aδ
c
b]k

b + kbkck[a∂
k
b] (AB)

=
1

2
FG

(
kak

cδbb − kbk
cδba + kak

bδcb − k2δca

)
= ABkak

c − 1

2
ABk2δca. (361)

Given the above, Eq. (357) turns out to be

∆̂−1
ab,hor∆̂

bc
hor = −A

[
k2 + µ2

(
λ′ + 1

)
+ µ2Bk2

]
δca −Akak

c
[
Bµ2

(
λ′ − 1

)
− 1
]
= δca, (362)

which can be immediately solved for A and B:

A = − 1

k2
(
1 + 1

λ′−1

)
+ µ2 (λ′ + 1)

, B =
1

µ2 (λ′ − 1)
. (363)

We finally obtained the photon propagator for the even-harmonics:

∆̂ab
hor(k) := Pab

even = −λ
′ − 1

λ′
1

k2 + µ2 (λ′ + 1) λ′−1
λ′ − iϵ

[
ηab +

kakb

µ2 (λ′ − 1)

]
. (364)

As we can notice, the shape of the above propagator is the one of a massive spin-1 particle. A
final remark concerns the case l = 0. For this value of l, the odd-mode A−

µ contains no degrees
of freedom, signalling an additional gauge redundancy in the even sector. Thus, Eq. (364) is
only valid for l ≥ 1. In the next paragraph we will focus on the monopole-mode case.
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4.7.2 A special case: the monopole mode

Before fixing any gauge, let us specialize the even-parity mode, namely the second expression in
(177), to the case l = 0. We have26:

A+
µ =

∑
l,m


Alm,U (U, V )

Alm,V (U, V )

Alm,1(U, V )∂θ

Alm,1(U, V )∂ϕ

Xlm
l=0−−→ A+

µ

∣∣
l=0

=


A00,U (U, V )

A00,V (U, V )

0

0

X00 = A00,aX00. (365)

Since we are dealing with a spin one field, a convenient choice of gauge to fix the redundant
degree of freedom is a Lorenz gauge. In its covariant form, it reads

∇µA
µ = 0. (366)

However, this does not fully specify the gauge condition because one may still transform the
vector potential. We therefore impose the following condition:

∇µA
′µ = ∇µ (A

µ +∇µΛ) = 0. (367)

Above, Λ is an arbitrary function of the coordinates U and V 27. In order to start, we compute
the action of the covariant derivative on the vector potential Aµ, obtaining

∇µA
µ = ∂µA

µ + Γµ
µρA

ρ

= ∂aA
a + ∂AA

A + Γµ
µaA

a + Γµ
µAA

A

= ∂aA
a + Γb

bUA
U + Γb

bVA
V + ΓA

AUA
U + ΓA

AVA
V

= ∂aA
a + ΓU

UUA
U + ΓV

V VA
V + Γθ

θUA
U + Γϕ

ϕUA
U + Γθ

θVA
V + Γϕ

ϕVA
V

= ∂aA
a + (∂U logA(r) + 2∂U log r)AU + (∂V logA(r) + 2∂V log r)AV . (368)

Moreover, from the expressions in (340), we deduce that

∂a log r =
1

r
∂ar ∝

xa
rR

, (369)

∂a logA(r) =
1

A(r)
∂aA(r) ∝

xa
R

(
1

r
+

1

R

)
, (370)

where we introduced the two-vector xa, with the two components given by xU = U and xV = V ,
respectively. Now, within the near-horizon approximation, i.e., xa ≪ R, we immediately notice
that (369) and (370) give a negligible contribution. Thus, the near-horizon version of Eq. (366)
reduces to the following simple expression:28:

∇µA
µ
∣∣
xa≪R

= ∂aAa = 0. (371)

26We recall that, when writing down (177), we were still working with the complex spherical harmonics. Here
we consider the real basis, as explained at the end of section 5.5.

27In the following we will determine which equation Λ needs to satisfy.
28Notice that we implicitly rescaled the field as we did in section 5.5.
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Next, we explicitly compute the second term in Eq. (367), giving

∇µ∇µΛ = ∇µ∂µΛ

= gµν∇ν∂µΛ

= gµν
(
∂ν∂µΛ− Γρ

µν∂ρΛ
)

= ∂a∂
aΛ + ∂A∂

AΛ− gµνΓa
µν∂aΛ− gµνΓA

νµ∂AΛ

= ∂a∂
aΛ + ∂A∂

AΛ− gbνΓa
bν∂aΛ− gAνΓa

Aν∂aΛ− gbνΓA
bν∂AΛ− gBνΓA

Bν∂AΛ. (372)

Moreover, by recalling that ΓA
ab = Γa

bA = 0, we end up with

∇µ∇µΛ = ∂a∂
aΛ + ∂A∂

AΛ− gABΓa
AB∂aΛ− gBCΓA

BC∂AΛ = ∂a∂
a − gABΓa

AB∂aΛ, (373)

where the last equality follows from the fact that Λ = Λ(U, V ), as already specified before. Now,
by making use of Eq. (212), we get

∇µ∇µΛ = ∂a∂
aΛ− gABΓa

AB∂aΛ = ∂a∂
aΛ− gBC

(
−1

2
gABV

a

)
∂aΛ = ∂2Λ + V a∂aΛ, (374)

which, when inserted in (367), finally give

∂2Λ + V a∂aΛ = −∂aAa. (375)

The function Λ can thus be found by solving the above equation. The action for the monopole
mode can be quickly obtained from (352) by setting l = 0:

Seven
γ,hor

∣∣
l=0

=
1

2

∫
d2xAa

(
ηab∂

2 − ∂a∂b + µ2xa∂b − µ2xb∂a − µ2ηab
)
Ab. (376)

From (371) we can immediately conclude the second and third terms vanish identically. The
fourth term can be integrated by parts, resulting in∫

d2xAaxb∂aAb =

∫
d2xAa∂a

(
xbAb

)
−
∫
d2xAa (∂axb)Ab. (377)

Now, by noticing that ∂axb = ∂a (ηbcx
c) = ηbc∂ax

c = ηbcδ
c
a = ηab, and integrating by parts again,

we finally obtain∫
d2xAaxb∂aAb = −

∫
d2x (∂aAa)xbAb −

∫
d2xAaηabAb = −

∫
d2xAaηabAb. (378)

In the last step, we again made use of the Lorenz-gauge condition. Eq. (376) reduces to

Seven
γ,hor

∣∣
l=0

=
1

2

∫
d2xAaηab∂

2Ab. (379)

In momentum space, the propagator is then found to be

Pab
even_0 = − ηab

k2 − iϵ
. (380)
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4.7.3 Propagator for the odd-harmonics

In this case, the equation we want to solve is

λ′
(
∂2 − µ2λ′

)
∆hor

(
x, x′

)
= δ(2)

(
x− x′

)
, (381)

where we directly inserted the operator (354). The strategy we adopt is exactly the same as
before; we perform a Fourier transformation, namely we write

∆hor

(
x, x′

)
=

∫
d2k

(2π)2
eika(x−x′)a∆̂hor(k), (382)

δ(2)
(
x− x′

)
=

∫
d2k

(2π)2
eika(x−x′)a , (383)

ending up with the following expression:

∆̂hor(k) := Podd = − 1

λ′
1

k2 + µ2λ′ − iϵ
. (384)

It is worth noting that the operator (354) vanishes identically for l = 0.

4.8 The scalar propagator

In this subsection our goal is to find the propagator for the scalar field by proceeding in exactly
the same way as we did for the photon propagator. The procedure will be of course much simpler
due to the scalar nature of the object in question. The kinetic term in (132) is given by

Skin
M :=

∫
d4x

√
−gϕ∗□ϕ, (385)

where, for the sake of simplicity, we temporarily neglected the mass of the scalar field. The
action of the box operator on ϕ is simply given by

□ϕ = gµν∇µ∇νϕ = gµν∇µ∂νϕ = gµν
(
∂µ∂ν − Γρ

µν∂ρ
)
ϕ. (386)

Setting µ = a, ν = b, we get

gab∇a∇bϕ = gab
(
∂a∂b − Γc

ab∂c − ΓC
ab∂C

)
ϕ = gab (∂a∂b − Γc

ab∂c) = □̃ϕ. (387)

Then, setting µ = A, ν = B gives

gAB∇A∇Bϕ = gAB
(
∂A∂B − ΓC

AB∂C − Γa
AB∂a

)
ϕ

=
1

r2
∆Ωϕ− gAB

(
−1

2
gABV

a∂a

)
ϕ

=
1

r2
∆Ωϕ+ V a∇̃aϕ. (388)

Therefore, the box operator can be compactly written as

□ = □̃+ V a∇̃a +
1

r2
∆Ω. (389)
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Expanding ϕ in spherical harmonics, using that ∆ΩXlm(θ, ϕ) = −l(l + 1)Xlm(θ, ϕ) as well as
the orthogonality relation, leads to the following action:

Skin
M =

∑
l,m

∫
d2xA(r)r2ϕ∗lm

(
□̃+ V a∇̃a −

λ′

r2

)
ϕlm. (390)

Now, it is possible to follow the same procedure explained in subsections 5.4 and 5.5. We have:

Skin
M

(280),(289), φlm:=rϕlm−−−−−−−−−−−−−−→ Skin
M =

∑
l,m

∫
d2xA(r)φ∗

lm

(
□̃− F a

a − λ′

r2

)
φlm. (391)

The action of the box operator on φlm is given by

□̃φlm = g̃ab∇̃a∇̃bφlm =
1

A(r)
ηab∇̃a∇̃bφlm

=
1

A(r)
ηab (∂a∂b − Γc

ab∂c)φlm

=
1

A(r)
ηab∂a∂bφlm

=
1

A(r)
∂2φlm, (392)

while from the definition of the tensor Fab we get

F a
a = g̃abFab = g̃ab

1

r
∇̃a∇̃br =

1

A(r)

1

r
ηab (∂a∂br − Γc

ab∂cr) =
1

A(r)

1

r
∂2r. (393)

Putting it all together, and taking into account the near-horizon approximation, results in

Skin
M,hor =

∑
l,m

∫
d2xφ∗

lm

[
∂2 − µ2

(
λ′ + 1

)]
φlm, (394)

where the following relation has been used29:

∂2r
∣∣
hor

=
1

R
:= µ. (395)

Performing a Fourier transformation finally leads to

Pφ = − 1

p2 + µ2 (λ′ + 1) +m2 − iϵ
, (396)

where we reinserted the mass of the scalar field.

4.9 Feynman vertices

In the previous two subsections we computed all the propagators we need, namely the photon
propagator (both for even- and odd-harmonics) and the one for the complex scalar field. In this
subsection we will deal with the interaction vertices. As we can notice from the action (132),
the scattering process of interest are mediated by both three- and four-vertices. We will treat
the two cases separately in the next two paragraphs. Once again, we follow the same procedure;

29Such relation can be easily deduced from the second expressions in (340)
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we first expand the fields in spherical harmonics and integrate the sphere out, reducing our four-
dimensional theory to a two-dimensional one. Then, we rescale the fields and take into account
the horizon approximation introduced before. However, as we will see, integrating the sphere
out is not trivial in this case. We will therefore rely on what we call the “spherical-symmetry
approximation". Let us start with the three-vertex.

4.9.1 Three-point vertex

More explicitly, the three-vertex in (132) can be written as

S{3} := −q
∫
d4x

√
−ggµνAµjν

= −q
∫
d4x

√
−g
(
gabAajb + gABAAjB + gaBAajB + gBaABja

)
. (397)

By recalling that gaB = gBa = 0 and how the current has been previously defined, we get

S{3} = −q
∫
d4x

√
−g
(
gabAajb + gABAAjB

)
= −iq

∫
d4x

√
−g
[
gabAa (ϕ

∗∂bϕ− ϕ∂bϕ
∗) + gABAA (ϕ∗∂Bϕ− ϕ∂Bϕ

∗)
]
. (398)

Now, as already discussed before, in this work we are neglecting transverse-momentum effects30,
meaning that we can safely set pA = 0 (in Fourier space). This, in turn, implies that the second
term in (398) is negligible. Moreover, expanding in spherical harmonics gives

S{3} = −iq
∫
d4x

√
−ggabAa (ϕ

∗∂bϕ− ϕ∂bϕ
∗)

= −iq
∫
dΩ

∫
d2xA(r)r2gabAa (ϕ

∗∂bϕ− ϕ∂bϕ
∗)

= −iq
∑
l,m

∑
l1,m1

∑
l2,m2

I3X

∫
d2xA(r)r2gabAa,lm

(
ϕ∗l1m1

∂bϕl2m2 − ϕl2m2∂bϕ
∗
l1m1

)
, (399)

where the following integral has been defined:

I3X :=

∫
dΩXlmXl1m1Xl2m2 . (400)

It is certainly possible to compute the integral above and integrate the sphere out, resulting
in a coupling between the various partial waves. However, it is reasonable to assume that this
mixing of partial waves is a sub-leading effect when one considers a large spherically symmetric
background, as in our case. Essentially, we are assuming that the effects of spherical-symmetry
breaking are mild. The minimal assumption we need in order to make the action diagonal in
the partial-waves indices is to consider one of the two scalar fields at l = 0 (we will refer to this
as the “spherical-symmetry approximation"). One possible choice is to set l2 = m2 = 0, giving

I3X =

∫
dΩXlmXl1m1X00 =

1√
4π

∫
dΩXlmXl1m1 =

1√
4π
δll1δmm1 , (401)

30Transverse-momentum transfer is a Planckian effect.
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which, in turn, leads to

S{3} = − iq√
4π

∑
l,m

∫
d2xA(r)r2g̃abAa,lm (ϕ∗lm∂bϕ0 − ϕ0∂bϕ

∗
lm) =: S

{3}
1 . (402)

Now, as already explained in the introduction to subsection 5.9, we rescale the fields and consider
the near-horizon approximation. We have:

S
{3}
1

rescaling, xa≪R−−−−−−−−−−→ − iµq√
4π

∑
l,m

∫
d2xAb

lm (φ∗
lm∂bφ0 − φ0∂bφ

∗
lm) =: S

{3}
1,hor, (403)

where µ = 1/R. The second option is to set l1 = m1 = 0; in this case, we get

I3Y =

∫
dΩXlmX00Xl2m2 =

1√
4π

∫
dΩXlmXl2m2 =

1√
4π
δll2δmm2 . (404)

By inserting the above expression into (399) finally gives

S
{3}
2,hor = − iµq√

4π

∑
l,m

∫
d2xAb

lm (φ∗
0∂bφlm − φlm∂bφ

∗
0) . (405)

We have thus obtained two three-vertices for our two-dimensional effective field theory. However,
one can wonder why we did not consider also the possibility of setting the partial-waves indices
associated to Aa,lm to zero. The reason is that we want to make contact with the result coming
from the first-quantized picture (section 3), where all information about the ingoing particle is
transferred to the outgoing particle. The only way this can happen is if the carrier (the photon
in our case) carries angular momentum. In a future work it would be interesting to include this
type of three-vertex in our theory.

4.9.2 Four-point vertex

We again start by looking at the action (132). We have:

S{4} := −q2
∫
d4x

√
−ggµνAµAν |ϕ|2

= −q2
∫
d4x

(
gabAaAb|ϕ|2 + gABAAAB|ϕ|2

)
= −q2

∫
dΩ

∫
d2xA(r)r2gabAaAb|ϕ|2 − q2

∫
dΩ

∫
d2xA(r)r2gABAAAB|ϕ|2. (406)

Expanding in spherical harmonics, the first term in the above expression gives

S{4}
even := −q2

∫
dΩ

∫
d2xA(r)r2gabAaAb|ϕ|2

= −q2
∑
l,m

∑
l1,m1

∑
l2,m2

∑
l3,m3

I4X

∫
d2xA(r)r2gabAa,lmAb,l1m1ϕl2,m2ϕ

∗
l3,m3

, (407)

where this time the integral over dΩ has been defined as

I4X :=

∫
dΩXlmXl1m1Xl2m2Xl3m3 . (408)
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We now want to consider again the spherical-symmetry approximation.The choice we make is
to set the two complex scalar fields at l = 031, getting

I4X =

∫
dΩXlmXl1m1X00X00 =

1

4π

∫
dΩXlmXl1m1 =

1

4π
δll1δmm1 , (409)

which, in turn, leads to the following expression:

S{4}
even = − q2

4π

∑
l,m

∫
d2xA(r)r2gabAa,lmAb,lm|ϕ0|2. (410)

As is now customary, we rescale the fields and consider the horizon approximation. We have:

S{4}
even

rescaling, xa≪R−−−−−−−−−−→ −µ
2q2

4π

∑
l,m

∫
d2xA2

a,lm|ϕ0|2 =: S{4}
even,hor. (411)

The second term in (406) instead gives

S
{4}
odd := −q2

∫
dΩ

∫
d2xA(r)r2gABAAAB|ϕ|2

= −q2
∑
l,m

∑
l1,m1

∑
l2,m2

∑
l3,m3

I4XΦ

∫
d2xA(r)r2Alm,2Al1m1,2ϕl2m2ϕ

∗
l3m3

, (412)

where the integral over angular coordinates has been defined as

I4XΦ :=

∫
dΩgAB (Φr

lm)A
(
Φr
l1m1

)
B
Xl2m2Xl3m3 . (413)

Now, setting l2 = m2 = l3 = m3 = 0 leads to32

I4XΦ =

∫
dΩgAB (Φr

lm)A
(
Φr
l1m1

)
B
X00X00 =

λ′

4π
δll1δmm1 . (414)

Inserting the above expression in (412), we get

S
{4}
odd = −λ′ q

2

4π

∑
l,m

∫
d2xA(r)r2A2

lm,2|ϕ0|2. (415)

Finally, by rescaling Alm,2 and considering the near-horizon limit, we end up with

S
{4}
odd

rescaling, xa≪R−−−−−−−−−−→ −λ′µ
2q2

4π

∑
l,m

∫
d2xA2

lm|φ0|2 =: S{4}
odd,hor. (416)

Putting it all together, we write

S{4} = −µ
2q2

4π

∑
l,m

∫
d2x

(
A2

a,lm + λ′A2
lm

)
|φ0|2. (417)

31In principle, other choices are possible. Differently from before, in this case there is no physical reason to
not consider the possibility to set the partial-waves indices associated to Aa,lm to zero. It would be certainly
interesting to include the corresponding four-vertex in the theory. However, towards the end of the thesis, we will
show that the one-loop diagram containing only four-vertices of the type obtained in this paragraph is sub-leading
with respect to the one containing only three-vertices. Our expectation is that also the one-loop diagram in which
the gauge field is at l = 0 is sub-leading. We hope to verify such expectation in a future work.

32In the odd-case there is no confusion about possible different choices. Indeed, we have that (Φr
00)A = 0.
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4.10 Near-horizon Feynman rules for scalar quantum electrodynamics

We are now ready to write down the full near-horizon action for our two-dimensional effective
field theory. In momentum space, we have33

Shor := Seven
γ + Sodd

γ + Skin
M + S

{3}
1 + S

{3}
2 + S{4}

even + S
{4}
odd , (418)

where the single terms are given by

Seven
γ =

1

2

∫
dΓ(2π)2δ(2)(k + k′)Âa(k)P−1

ab,evenÂ
b(k′) =

1

2

∫
d2k

(2π)2
Âa(k)P−1

ab,evenÂ
b(−k), (419)

Sodd
γ =

1

2

∫
dΓ(2π)2δ(2)(k + k′)Â(k)P−1

oddÂ(k′) =
1

2

∫
d2k

(2π)2
Â(k)P−1

oddÂ(−k), (420)

Skin
M =

∫
dΦ(2π)2δ(2)(p− p′)φ̂∗(p)P−1

φ φ̂(p′) =

∫
d2p

(2π)2
φ̂∗(p)P−1

φ φ̂(p), (421)

S
{3}
1 =

∫
dV3(2π)

2δ(2)(k + p1 − p2)Âb(k)φ̂0(p1)φ̂
∗(p2)

µq√
4π

(p1b + p2b), (422)

S
{3}
2 =

∫
dV3(2π)

2δ(2)(k + p2 − p1)Âb(k)φ̂∗
0(p1)φ̂(p2)

µq√
4π

(
p1b + p2b

)
, (423)

S{4}
even = −

∫
dV4(2π)

2δ(2)(k + k′ + p2 − p1)Âa(k)Âb(k′)φ̂∗
0(p1)φ̂0(p2)

µ2q2

4π
ηab, (424)

S
{4}
odd = −λ′

∫
dV4(2π)

2δ(2)(k + k′ + p2 − p1)Â(k)Â(k′)φ̂∗
0(p1)φ̂0(p2)

µ2q2

4π
. (425)

Notice that we also defined the following quantities:

dΓ :=
d2k

(2π)2
d2k′

(2π)2
, (426)

dΦ :=
d2p

(2π)2
d2p′

(2π)2
, (427)

dV3 :=
d2k

(2π)2
d2p1
(2π)2

d2p2
(2π)2

, (428)

dV4 :=
d2k

(2π)2
d2k′

(2π)2
d2p1
(2π)2

d2p2
(2π)2

. (429)

Furthermore, in order to facilitate the reading, we also summarize below the results that have
been obtained concerning the propagators:

Pab
even = −λ

′ − 1

λ′
1

k2 + µ2 (λ′ + 1) λ′−1
λ′ − iϵ

[
ηab +

kakb

µ2 (λ′ − 1)

]
, (430)

Pab
even_0 = − ηab

k2 − iϵ
, (431)

Podd = − 1

λ′
1

k2 + µ2λ′ − iϵ
, (432)

Pφ = − 1

p2 + µ2 (λ′ + 1) +m2 − iϵ
. (433)

33Note that, for simplicity, we suppressed the partial-waves indices (and so all the sums). Moreover, we also
suppressed the labels “hor ” in the single terms since all the results we obtain are only valid in this limit.
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Now, as is usually done in quantum field theory, we can read off the Feynman rules from the
action written in momentum space. Concerning the photon propagators, we have

k

Âa(−k) Âb(k) = iPab,even(k),
k

Â(−k) Â(k) = iPodd(k).

where we used different colors to distinguish between even- and odd-contributions, respectively.
As for the complex scalar field, we may write

p

φ̂∗(p) φ̂(p) = iPφ(p).

Moreover, we recall that we distinguished between fields at l = 0 and at l = 0 (this is due to
the spherical-symmetry approximation). Graphically, we again use different colors to make this
distinction. The scalar propagator at l = 0 will be denoted with a solid blue line:

p

φ̂∗
0(p) φ̂0(p) = iPφ(p)

∣∣
l=0
.

Notice that the arrows that are outside the scalar lines indicate the direction that momentum is
flowing, while the arrows superimposed on the lines corresponds to the flow of electric charge.
Let us now consider the vertices. The Feynman rules for the three-point vertices are

p2

p1

k

φ̂∗(−p2)

φ̂0(p1)

Âb(k) = i µq√
4π

(
p1b + p2b

)
,

p1

p2

k

φ̂(p2)

φ̂∗
0(−p1)

Âb(k) = i µq√
4π

(
p1b + p2b

)
.
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Concerning the two four-vertices, we have34:

p1 p2

k k′

φ̂∗
0(p1) φ̂0(p2)

Âa(k) Âb(k′)

= −2iµ
2q2

4π ηab,

p1 p2

k k′

φ̂∗
0(p1) φ̂0(p2)

Â(k) Â(k′)

= −2iµ
2q2

4π .

34Notice that, due to the fact that the two gauge fields can be interchanged, a factor of 2 is present in the
two four-point vertices below. Actually, we already implicitly included all symmetry factors in the above rules.
The photon propagators have been multiplied by a factor of 2 since we can always interchange the gauge fields;
this cancels the factor of 1/2 coming from the photon action. As for the scalar propagator, we do not need to
multiply by any factor in this case since it connects two different fields. The same is true for the three-point
vertices (they consist of three different fields).
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5 Scattering amplitudes on the horizon

In this section we will compute all the scattering amplitudes of interest.

5.1 Tree-level diagrams

At tree level, the diagrams we want consider are essentially three. The first one is the following:

p2

p1 p3

k

p4

φ̂∗
0(−p2)

φ̂∗(−p1)

φ̂(p4)

φ̂0(p3)

= iMt,1.

By using the Feynman rules introduced in the previous section, we can write

iMt,1 = i
µq√
4π

(pa1 + pa3)
λ′ − 1

λ′
−i

k2 + µ2 (λ′ + 1) λ′−1
λ′

[
ηac +

kakc
µ2 (λ′ − 1)

]
i
µq√
4π

(pc2 + pc4) , (434)

where the following two-vector has been defined:

ka := p1a − p3a. (435)

We also notice that external particles are on-shell, which implies that

p21 = −m2 − µ2 (λ′ + 1) , p23 = −m2 − µ2,

p22 = −m2 − µ2, p24 = −m2 − µ2 (λ′ + 1) .
(436)

Calculating the product between (pa1 + pa3) and ka immediately gives

(pa1 + pa3) ka = (pa1 + pa3)
(
p1a − p3a

)
= m2 − µ2

(
λ′ + 1

)
+m2 + µ2 = −µ2λ′, (437)

which, in turn, allows us to write (434) as

iMt,1 =
λ′ − 1

λ′
iµ2q2/4π

k2 + µ2 (λ′ + 1) λ′−1
λ′

[
(pa1 + pa3)

(
p2a + p4a

)
+

λ′

λ′ − 1

(
p3a − p1a

)
(pa2 + pa4)

]
. (438)

It is convenient to express amplitudes in terms of the so-called Mandelstam variables [41]:

s := − (p1 + p2)
2 = − (p3 + p4)

2 , (439)

t := − (p1 − p3)
2 = − (p2 − p4)

2 , (440)

u := − (p1 − p4)
2 = − (p2 − p3)

2 . (441)
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By definition, the Mandelstam variable s can be written as

s = −p21 − p22 − 2p1 · p2
= m2 + µ2

(
λ′ + 1

)
+m2 + µ2 − 2p1 · p2

= 2m2 + µ2
(
λ′ + 2

)
− 2p1 · p2, (442)

and so for the scalar product we have

p1 · p2 = pa1p
1
a = −s

2
+m2 +

1

2
µ2
(
λ′ + 2

)
= p3 · p4. (443)

The same can be done for t and u, obtaining

t = 2m2 + µ2
(
λ′ + 2

)
+ 2p1 · p3, (444)

u = 2m2 + 2µ2
(
λ′ + 1

)
+ 2p1 · p4. (445)

From (445) we immediately get

p1 · p4 =
u

2
−m2 − µ2

(
λ′ + 1

)
= p2 · p4. (446)

We now want to express u in terms of s and t. First we notice that

s+ t+ u = 6m2 + 6µ2 + 4µ2λ′ − 2p1 · (p2 − p3 − p4) . (447)

Furthermore, momentum conservation gives

p1 + p2 = p3 + p4 ⇒ −p1 = p2 − p3 − p4 ⇒ s+ t+ u = 4m2 + 2µ2
(
λ′ + 2

)
, (448)

finally leading to the following expression for u:

u = 4m2 + 2µ2
(
λ′ + 2

)
− s− t. (449)

By inserting the above expression in (446) we obtain

p1 · p4 =
1

2

[
4m2 + 2µ2

(
λ′ + 2

)
− s− t

]
−m2 − µ2

(
λ′ + 1

)
= m2 + µ2 − 1

2
(s+ t) . (450)

From the definition of u we can also compute the scalar product between p2 and p3:

p2 · p3 = m2 + µ2
(
λ′ + 1

)
− 1

2
(s+ t) . (451)

Therefore, the first term in square brackets in (438) gives

(pa1 + pa3)
(
p2a + p4a

)
= p1 · p2 + p1 · p4 + p3 · p2 + p3 · p4 = −2s− t+ 4m2 + 2µ2

(
λ′ + 2

)
, (452)

while the second term simply reduces to

(
p3a − p1a

)
(pa2 + pa4) = p3 · p2 + p3 · p4 − p1 · p2 − p1 · p4 = µ2λ′. (453)
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Putting it all together, Eq. (438) can be written as follows:

iMt,1 =
λ′ − 1

λ′
iµ2q2/4π

−t+ µ2 (λ′ + 1) λ′−1
λ′

[
−2s− t+ 4m2 + 2µ2

(
λ′ + 2

)
+ µ2

λ′2

λ′ − 1

]
=
λ′ − 1

λ′
−iµ2q2s/2π

−t+ µ2 (λ′ + 1) λ′−1
λ′

[
1 +

t

2s
− 2m2

s
− µ2

s

(
λ′ + 2

)
− µ2

s

λ′2

λ′ − 1

]
. (454)

As already explained before, in our theory we are looking at the situation in which the center-
of-mass-energy of collision is extremely high and where the momentum transfer is negligible. To
be more precise, we are considering the following limits:

s≫ t, s≫ µ2,m2, t→ 0. (455)

In the above approximations, Eq. (454) becomes

iMt,1 = − iq2s

2π (l2 + l + 1)
. (456)

The second diagram we want to consider is the following:

p2

p1 p3

k

p4

φ̂0(−p2)

φ̂∗(−p1)

φ̂∗(p4)

φ̂0(p3)

= iMt,2,

The computation is very similar to the previous one, so we will proceed more rapidly. We have:

iMt,2 = i
µq√
4π

(pa1 + pa3)
λ′ − 1

λ′
−i

k2 + µ2 (λ′ + 1) λ′−1
λ′

[
ηac +

kakc
µ2 (λ′ − 1)

]
i
µq√
4π

(−pc2 − pc4)

=
λ′ − 1

λ′
−iµ2q2/4π

−t+ µ2 (λ′ + 1) λ′−1
λ′

[
(pa1 + pa3)

(
p2a + p4a

)
+

λ′

λ′ − 1

(
p3a − p1a

)
(pa2 + pa4)

]
=
λ′ − 1

λ′
−iµ2q2/4π

−t+ µ2 (λ′ + 1) λ′−1
λ′

[
−2s− t+ 4m2 + 2µ2

(
λ′ + 2

)
+ µ2

λ′2

λ′ − 1

]
=
λ′ − 1

λ′
iµ2q2s/2π

−t+ µ2 (λ′ + 1) λ′−1
λ′

[
1 +

t

2s
− 2m2

s
− µ2

s

(
λ′ + 2

)
− µ2

s

λ′2

λ′ − 1

]
. (457)

By taking into account the same approximations as before, we finally get

iMt,2 =
iq2s

2π (l2 + l + 1)
. (458)

As we can notice, the only difference with respect to the previous result is the sign in front.
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Finally, the last tree-level diagram of interest is

p2

p1 p3

p4

k

φ̂0(−p2)

φ̂∗(−p1)

φ̂∗(p4)

φ̂0(p3)

= iMs.

Proceeding in exactly the same way as before, we have

iMs = i
µq√
4π

(pa1 − pa2)
λ′ − 1

λ′
−i

k2 + µ2 (λ′ + 1) λ′−1
λ′

[
ηac +

kakc
µ2 (λ′ − 1)

]
i
µq√
4π

(pc3 − pc4)

=
λ′ − 1

λ′
iµ2q2/4π

−s+ µ2 (λ′ + 1) λ′−1
λ′

[
(pa1 − pa2)

(
p3a − p4a

)
+

λ′

λ′ − 1

(
p1a + p2a

)
(pa4 − pa3)

]
, (459)

where this time ka := p1a + p2a. Proceeding as before, we easily find

iMs = − iµ2q2

4πl (l + 1)
. (460)

Let us now compare the results we have obtained so far. The amplitudes (456) and (458) are pro-
portional to the center-of-mass energy of collision s, while the one above, (460), is proportional
to the effective mass µ. Thus, within the regime we are working in, the contribution coming
from the s-channel diagram is certainly negligible. This concludes the computation of all the
scattering amplitudes of interest at tree-level. Once again, we remark that tree-level diagrams
as the one shown in Fig. 5 below, although certainly allowed by the the theory, have not been
considered for physical reasons (in the quantum-mechanics picture, all information about the
in-particle is transferred to the out-particle). It would be interesting to understand what is the
role they play in a future work. In what follows we will consider loop diagrams.

p2

p1

p4

p3

k, l = 0

φ̂0(−p2)

φ̂∗(−p1)

φ̂∗
0(p4)

φ̂(p3)

Figure 5: Example of a possible tree-level diagram obtained by setting the partial-waves indices
associated to the gauge field to zero in the three-vertex calculation.
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5.2 Loop diagrams with three-vertices

In 1969, Lévy and Sucher studied the Feynman amplitude describing the scattering of two
particles with no spin, interacting by the exchange of mesons (with no spin) [42]. In particular,
they showed that the contribution to the amplitude at arbitrary loop order can be evaluated
in closed form within the eikonal approximation. Their computation can be readily adapted
to our case, with only a few differences to be considered. The first one is that we are working
in two dimensions, and not four. However, their analysis is dimension-independent, so all the
results can be immediately adjusted. The second difference concerns the external legs; here we
are dealing with a complex scalar field, allowing for more diagrams with respect to their case.
In order to have an idea of the types of diagrams we consider at one loop, see Fig. 6.

p2

p1

k1

p2 − k1

k2

p4

p1 + k1 p3

φ̂∗
0(−p2)

φ̂∗(−p1)

φ̂0(p4)

φ̂(p3)

p2

p1

k1

p2 − k2

k2

p4

p1 + k1 p3

φ̂∗
0(−p2)

φ̂∗(−p1)

φ̂0(p4)

φ̂(p3)

p2

p1

k1

p2 − k1

k2

p4

p1 + k1 p3

φ̂0(−p2)

φ̂∗(−p1)

φ̂∗
0(p4)

φ̂(p3)

p2

p1

k1

p2 − k2

k2

p4

p1 + k1 p3

φ̂0(−p2)

φ̂∗(−p1)

φ̂∗
0(p4)

φ̂(p3)

Figure 6: All leading one-loop diagrams in the xa ≪ R, s≫ µ2 limits.

5.2.1 Eikonal amplitude: particle-particle case

Let us consider the case where the charge and momentum arrows point in the same direction (see
upper diagrams in Fig. 6). From now on, we will refer to this as “particle-particle case"35. As
already anticipated, we can readily adapt the calculation in Ref. [42] to our scenario, obtaining
the following expression for the n-order amplitude (n counts the number of photons exchanged):

iMn,p−p =

(
i
µq√
4π

)2n ∫ n∏
j=1

[
d2kj
(2π)2

4ip1ap
2
bPab

even (kj)

]
× I × (2π)2δ(2)

(∑n

j=1
kj

)
=

(
i
µq√
4π

)2n (s
2

)n ∫ n∏
j=1

[
d2kj
(2π)2

4iPUV
even (kj)

]
× I × (2π)2δ(2)

(∑n

j=1
kj

)
, (461)

35It is important to notice that here we are talking about particles even if we did not specify a Fock-space basis
yet. However, this will turn out to be a good choice, see subsection 5.3.
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where “p− p" stands for “particle-particle". The above equation is the two-dimensional analog
of Eq. (3.1) in Ref. [42], with different vertices and with q = p1 − p3 = p2 − p4 = 0. Above, the
second equality follows from the fact that we are considering one particle going into the black
hole and the other one going out, in orthogonal orbits. Due to the approximations made, the
two momenta can be considered to be light-like: p1 =

(
p1U , 0

)
, p2 =

(
0, p2V

)
. Thus, s reduces to

s = −(p1 + p2)
2 = 2p1Up

2
V . (462)

Therefore, the quantity in square brackets in the first step of (461) can be written as

p1ap
2
bPab

even = p1Up
2
UPUU

even + p1V p
2
V PV V

even + p1Up
2
V PUV

even + p1V p
2
UPV U

even =
s

2
PUV
even. (463)

P ′

P

φ̂∗
0

φ̂∗

φ̂

φ̂0

P ′

P

φ̂∗
0

φ̂∗

φ̂

φ̂0

P ′

P

φ̂∗
0

φ̂∗

φ̂

φ̂0

P ′

P

φ̂∗
0

φ̂∗

φ̂

φ̂0

P ′

P

φ̂∗
0

φ̂∗

φ̂

φ̂0

P ′

P

φ̂∗
0

φ̂∗

φ̂

φ̂0

Figure 7: All leading two-loop diagrams (p− p case) in the xa ≪ R, s≫ µ2 limits.

Let us now make a couple of comments more in regard to Eq. (461). The first one concerns an
approximation that has been implicitly made. To understand this, let us set n = 1 in (461) and
look again at the upper diagrams in Fig. 6; it is clear that, when writing down the amplitude, we
should have included contributions coming from the additional k’s (internal photon momenta).
However, within the near-horizon approximation that we have already made, we are interested
in effects from impact parameters of the order of the Schwarzschild radius or less, but much
larger than the Planck scale. Thus, it is reasonable to neglect these k-terms in Eq. (461). The
second comment concerns the quantity I that appears in the same equation36, which contains
the information regarding the matter propagators; for a fixed n, say n = 3, one needs to consider
all possible permutations of kj , with j ∈ [1, 3] (see Fig. 7). Within the eikonal approximation,
a simple expression for I has been derived, resulting in the general loop amplitude [42]

iMn,p−p = −µ
2q2s

8πn!

∫
d2k

(2π)2
4iPUV

even(k)

∫
d2xe−ik·x(iχ)n−1, (464)

36All other ingredients are the usual ones: vertex-factors, integration over all internal photon propagators and
insertion of Dirac-delta functions to ensure conservation of internal momentum.
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where the quantity χ has been defined as

χ := − iµ
2q2s

8π

∫
d2k

(2π)2
4iPUV

even(k)e
−ik·x ×

[
1

−2p1 · k − iϵ

1

2p2 · k − iϵ

+
1

−2p1 · k − iϵ

1

−2p2 · k − iϵ
+

1

2p1 · k − iϵ

1

2p2 · k − iϵ

+
1

2p1 · k − iϵ

1

−2p2 · k − iϵ

]
. (465)

The above expression in square brackets can be rewritten in a more convenient form, giving

χ = − iµ
2q2s

8π

∫
d2k

(2π)2
4iPUV

even(k)e
−ik·x

(
1

2p1 · k + iϵ
− 1

2p1 · k − iϵ

)
×
(

1

2p2 · k + iϵ
− 1

2p2 · k − iϵ

)
. (466)

Now, by using the identity (we recall that ϵ is an infinitesimal regulator)

1

x+ iϵ
− 1

x− iϵ
= −2πiδ(x), (467)

we arrive at a very simple expression for χ:

χ = − iµ
2q2s

8π

∫
d2k

(2π)2
4iPUV

even(k)e
−ik·x (−2πi)2 δ(2p1 · k)δ(2p2 · k)

= −µ
2q2

4π
PUV
even(0)

= − q2

4π (λ′ + 1)
. (468)

We can clearly see that χ is not dependent on spacetime coordinates. Thus, we can write

iMn,p−p = −µ
2q2s

8πn!
(iχ)n−1

∫
d2k

(2π)2
4iPUV

even(k)

∫
d2xe−ik·x

= −µ
2q2s

8πn!
(iχ)n−1

∫
d2k

(2π)2
4iPUV

even(k)(2π)
2δ(2)(k)

= − iµ
2q2s

2πn!
(iχ)n−1 PUV

even(0)

= 2s
(iχ)n

n!
, (469)

We can now find the total amplitude by summing over all odd and even n, resulting in

iMp−p = iModd,pp + iMeven,pp

= 2s

[∑∞

odd n

(iχ)n

n!
+
∑∞

even n

(iχ)n

n!

]
= 2s

[∑∞

m=0

(iχ)2m+1

(2m+ 1)!
+
∑∞

m=1

(−1)mχ2m

(2m)!

]
= 2s [exp(iχ)− 1] . (470)
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By inserting (468) in (470) and recalling that λ′ = l(l + 1), we finally obtain

iMp−p = 4pinpout

[
exp

(
− i

4π

q2

l2 + l + 1

)
− 1

]
. (471)

For the sake of clarity, we also relabelled the external momenta as pin and pout.

5.2.2 Eikonal amplitude: particle-antiparticle case

Let us now consider slightly different types of loop diagrams with respect to the ones presented in
the previous paragraph. In the present case37, the charge and momentum arrows of the bottom
vertices point in opposite directions, resulting in a factor of (−1)n in the amplitude. Again, as
an example, we show the case n = 3 (Fig. 8). The general loop amplitude is given by

iMn,p−a =

(
i
µq√
4π

)2n

(−1)n
∫ n∏

j=1

[
d2kj
(2π)2

4ip1ap
2
bPab

even (kj)

]
× I × (2π)2δ(2)

(∑n

j=1
kj

)
=

(
i
µq√
4π

)2n (
−s
2

)n ∫ n∏
j=1

[
d2kj
(2π)2

4iPUV
even (kj)

]
× I × (2π)2δ(2)

(∑n

j=1
kj

)
. (472)

By repeating the same procedure as before, the quantity χ turns out to be

χ =
q2

4π (λ′ + 1)
, (473)

which, in turn, leads to the following result for the amplitude:

iMp−a = 4pinpout

[
exp

(
i

4π

q2

l2 + l + 1

)
− 1

]
. (474)

As we can notice, the only difference with respect to Eq. (471) is a minus sign in the exponent.
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Figure 8: All leading two-loop diagrams (p− a case) in the xa ≪ R, s≫ µ2 limits.

37From now on, even if we did not specify a Fock-space basis yet, we will refer to this case as “particle-
antiparticle" case or, in abbreviated form, “p-a case".
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5.3 From fields to physical particles

Let us now specify a Fock-space basis, i.e., let us define what a particle/antiparticle is. This can
be done by expanding the field operator φ (and its conjugate of course) in terms of creation and
annihilation operators. For a specific l,m, the on-shell expansions are given by38 [41]

φlm(x) =

∫
dp

2π
√
2p

(
alm(p)e−ipx + b†lm(p)eipx

)
, (475)

φ∗
lm(x) =

∫
dp

2π
√
2p

(
a†lm(p)eipx + blm(p)e−ipx

)
, (476)

φ0(x) =

∫
dp

2π
√
2p

(
a0(p)e

−ipx + b†0(p)e
ipx
)
, (477)

φ∗
0(x) =

∫
dp

2π
√
2p

(
a†0(p)e

ipx + b0(p)e
−ipx

)
. (478)

A φlm in the interaction implies the annihilation of an antiparticle or the creation of a particle
at position x. A φ∗

lm implies the creation of an antiparticle or the annihilation of a particle.
The same is true for φ0 and φ∗

0, except for the fact that the particles and antiparticles that are
created or annihilated are at l = 0. Therefore, we can now safely talk about “particle-particle"
and “particle-antiparticle" cases referring to subsections 5.2.1 and 5.2.2, respectively. Let us now
combine the two results we have obtained, Eqs. (471) and (474), into a single formula:

iM = 4pinpout

[
exp

(
− i

4π

qinqout
l2 + l + 1

)
− 1

]
. (479)

In the above expression, qin and qout are the asymptotic charges of the in-particle and out-
particle, respectively, where qin/out = −q for particles and qin/out = q for antiparticles. The ex-
ponent in Eq. (479) naturally displays the emergence of repulsion/attraction for equal/opposite
charged particles, respectively.

5.4 From the scattering amplitude to the S-matrix

In the previous section the final result for the amplitude has been found, namely Eq. (479).
Compactly, the amplitude can be written as follows:

iM = 2s
(
eiχ − 1

)
, (480)

with χ given by (468). Here, to compare the results obtained in the two formalisms analyzed
in this thesis, we aim at finding the scattering matrix that relates the in- and out-states. The
relation between the S-matrix and the scattering amplitude is in our case given by [41]

⟨out|S − 1|in⟩ = (2π)2δ(2) (p1 + p2 − p3 − p4) i ⟨out|M|in⟩ , (481)

where the in- and out-states have been defined as (we consider only alm and a†lm for simplicity)

|in⟩ := a†(p1)a
†
0(p2)|0⟩, |out⟩ := ⟨0|a(p3)a0(p4). (482)

38Note that we are using the convention where we have a factor of
√
2p in the field expansion but not in the

commutation relation between a and a†: [alm(p), a†
l′m′(p

′)] = 2πδ(p− p′)δll′δmm′ .
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Notice that in Eq. (480) we used a shorthand notation: with iM we usually mean i ⟨out|M|in⟩.
The operators a†lm(p) and alm(p) create and annihilate on-shell quantum perturbations, respec-
tively. Moreover, we recall that they obey the commutation relation [41]

[alm(p), a†l′m′(p
′)] = 2p(2π)δ(p− p′)δll′δmm′ . (483)

Now, in order to find the S-matrix we also need to look at the free theory, for which we have

⟨out|S|in⟩ = ⟨out|in⟩ = ⟨0|alm(p3)a0(p4)a
†
lm(p1)a

†
0(p2)|0⟩. (484)

By making use of the commutation relation (483), it is straightforward to get

⟨out|in⟩ = ⟨0|alm(p3)a0(p4)a
†
lm(p1)a

†
0(p2)|0⟩ = 2s(2π)2δ(p1 − p3)δ(p2 − p4), (485)

which is indeed the expected result. The two delta functions tell us that the four-momenta of
the two outgoing particles are equal to the four-momenta of the two incoming particles. On the
other hand, by making use of Eq. (480), we can write the interacting piece as

(2π)2δ(2)(p1 + p2 − p3 − p4)i ⟨out|M|in⟩ = 2s(2π)2δ(p1 − p3)δ(p2 − p4)(e
iχ − 1). (486)

Putting it all together, Eq. (481) gives

⟨out|S − 1|in⟩ =
〈
out|1(eiχ − 1)|in

〉
. (487)

In the operator notation, we can then finally write the S-matrix as

S = 1+ 1(eiχ − 1) = 1eiχ = 1 exp

(
− i

4π

qinqout
l2 + l + 1

)
. (488)

5.5 A careful comparison

In the previous subsection we considered a 2 → 2 scattering process, computed the corresponding
amplitude, and finally obtained an expression for the S-matrix, Eq. (488). On the other hand,
in subsection 3.3 we computed its quantum mechanics analog, Eq. (123). A couple of comments
are in order here. The first one has to do with the presence of the identity operator in (488),
which ensures that the S-matrix is indeed an operator and not a function. The second comment
concerns the factor of 1/4π appearing in the same equation, showing a mismatch with respect
to Eq. (123), excluding the slightly different l-dependence39. The purpose of this subsection is
to shed light on this matter.

The idea is the following40. Two S-matrices that are very similar to each other have been
obtained. It is thus reasonable to suspect that the only difference between the two resides in the
sources. Therefore, we can quite safely conclude that the two scattering matrices are identical
provided that the sources are the same. To be more precise, we will demand the charge current
densities in the two frameworks to be the same, expecting to obtain the correct rescaling.

39A similar discrepancy was noticed in Ref. [19] and it deserves further attention.
40The author is greatly indebted to Nico Groenenboom for sharing his ideas about this topic.
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In the quantum-mechanics case the V -component of the current, at a specific l,m, reads

J lm
V = −µ2qlmin δ(U). (489)

The above equation has been obtained from (93) by expanding in spherical harmonics; it contains
information about the charges going into the black hole. On the other hand, in the field-theory
side, the V -component of the current density is given by

jV = −iqin (ϕ∗∂V ϕ− ϕ∂V ϕ
∗) , (490)

where, to make contact with the canonical current density that functions as source for the
equations of motion, in the definition we also included the minus sign and the charge coming
from the second term in (132). Moreover, the charge q has been renamed qin for obvious reasons.
Now, expanding in spherical harmonics, inserting the rescaling ϕ = µφ as we did in section 4.8,
as well as taking into account the spherical-symmetry approximation, results in

jlmV = −iqinµ2Y00 (φ∗
00∂V φlm − φlm∂V ϕ

∗
00 + φ∗

lm∂V φ00 − φ00∂V ϕ
∗
lm) , (491)

where, again, we considered the current density at a specific l,m. The main difference between
Eqs. (490) and (491) is that the current density in quantum field theory is an operator. There-
fore, in order to properly compare these two quantities, we need to consider the expectation value
of jlmV in an appropriately defined initial state. In order to start, we recall that the complex
scalar field is expanded in terms of creation and annihilation operators as in (475). Moreover,
we also recall that the only non-vanishing commutation relations are [41][

alm(p), a†l′m′(p
′)
]
=
[
blm(p), b†l′m′(p

′)
]
= 2πδ(p− p′)δll′δmm′ . (492)

As already anticipated, we now need to specify the initial state in order to compute the expec-
tation value of the operator jlmV . Such state is written as follows:

|in⟩ =
∫

dp

2π
Φ(p)× 1√

2

(
a†lm(p) + a†00(p)

)
|0⟩, (493)

where Φ(p) is a normalized test function localized around a specific momentum, say, p = p1. The
expression above, Eq. (493), represents a one-particle state where we have a superposition of two
spherical shells at equal momentum. Indeed, in computing the eikonal amplitude, we assumed
one ingoing particle to be at a specific l,m first, and later at l = m = 0. From the moment that
this choice is symmetric, this results in a superposition of both cases, i.e., a superposition of l,m
and l = m = 0. We are now ready to compute the expectation value of the current density. For
clarity, we will consider each term in Eq. (491) separately. Concerning the first term, already
including all prefactors, we get

− iqinµ
2Y00⟨in|φ∗

00∂V φlm|in⟩ = −µ
2

2
Y00

∫
dpdp′

(2π)2
√
4pp′

p′
∫
dkdk′

(2π)2
Φ∗(k)Φ(k′)

× ⟨0|a00(k)a†00(p)a
†
lm(p′)a†lm(k′)|0⟩ei(p−p′)x, (494)
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where we made use of the commutation relations, as well as of the definition of the vacuum
state, i.e., alm|0⟩ = blm|0⟩ = 0. By using once again the commutation relation between a and
a†, the above expression can be written as

− iqinµ
2Y00⟨in|φ∗

00∂V φlm|in⟩ = −µ
2

4
Y00

∫
dpdp′

(2π)2
p′√
pp′

∫
dkdk′

(2π)2
Φ∗(k)Φ(k′)

× (2π)2δ(k − p)δ(k′ − p′)ei(p−p′)x. (495)

Let us now consider the expectation value of the second term in (491). In this case, we have

iqinµ
2Y00⟨in|φlm∂V φ

∗
00|in⟩ = −µ

2

2
Y00

∫
dpdp′

(2π)2
√
4pp′

p′
∫
dkdk′

(2π)2
Φ∗(k)Φ(k′)

× ⟨0|a00(k)alm(p)a†00(p
′)a†lm(k′)|0⟩e−i(p−p′)x, (496)

finally resulting in

iqinµ
2Y00⟨in|φlm∂V φ

∗
00|in⟩ = −µ

2

4
Y00

∫
dpdp′

(2π)2
p′√
pp′

∫
dkdk′

(2π)2
Φ∗(k)Φ(k′)

× (2π)2δ(k − p′)δ(p− k′)e−i(p−p′)x. (497)

By following the exact same logic, it is easy to realize that the expectation value of third term
in Eq. (491) gives the same contribution as the expectation value of the first one, and the same
is true concerning the second and fourth terms. Putting it all together, we can write

⟨in|jlmV |in⟩ = −µ
2

2
qinY00

∫
dpdp′

(2π)2
p′√
pp′

∫
dkdk′

(2π)2
Φ∗(k)Φ(k′)

× (2π)2
[
δ(k − p)δ(k′ − p′)ei(p−p′)x + δ(k − p′)δ(p− k′)e−i(p−p′)x

]
. (498)

By taking into account that the particle falling into the black hole is localized around a specific
momentum p1, we obtain41

⟨jlmV ⟩ = −µ
2

2
qinY00

∫
dpdp′

(2π)2

(
Φ∗(p)Φ(p′)ei(p−p′)x +Φ∗(p′)Φ(p)e−i(p−p′)x

)
= −µ2qinY00

∫
dpdp′

(2π)2
Φ∗(p)Φ(p′)ei(p−p′)x

= −µ2qinY00|Φ(x)|2, (499)

where, to get to the last equality, the following Fourier transform has been defined:

Φ(x) =

∫
dp

2π
Φ(p)e−ipx. (500)

Now, interpreting |Φ(x)|2 as a probability distribution, we assume the particle with momentum
41Here we are implicitly defining a region, a small interval around p1, in which the test function is non-zero.

Therefore, the entire integrand will be non-zero only in this interval, allowing us to approximate all functions
obeying |f(p1)/f ′(p1)| ≪ 1 around p1.
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p1 to be localized at U = 0, finally resulting in

⟨J lm
V ⟩ = −µ2qinY00δ(U) = −µ2 qin√

4π
δ(U). (501)

By comparing Eqs. (490) and (501), we immediately get qlmin = qin/
√
4π. Therefore, by inserting

such rescaling in Eq. (123), we finally obtain

SEM = exp

(
− i

4π

qinqout
l2 + l

)
, (502)

in agreement with the result obtained in the field-theory calculation.
Up to now, we only considered loop diagrams with three-vertices. Indeed, the scattering

matrix (488) is the result of a resummation of an infinite number of diagrams of the type shown
in Fig. 6. However, we remind the reader that we have two types of four-vertex in our theory.
In the next subsection we will consider two one-loop cases with four-vertices, showing that these
are sub-leading with respect to the one-loop diagrams with three vertices only.

5.6 One-loop diagrams with “seagull" vertices

As anticipated, here we consider one-loop diagrams of the following type:

p2

p1

p4

k − p4 + p2

p3

k

φ̂∗
0(−p2)

φ̂∗
0(−p1)

φ̂0(p4)

φ̂0(p3)

d c

a b

Figure 9: One-loop diagram containing the so-called “seagull" vertices.

We want to show that the above diagram is sub-leading with respect to the one-loop diagram
containing three-vertices. Using the Feynman rules derived in subsection 4.10, we write the
amplitude as follows42:

iMeven
seagull =

∫
d2k

(2π)2

[
λ′ − 1

λ′
−i

k2 + m̃2 − iϵ

(
ηbc +

1

µ2
kbkc

λ′ − 1

)(
−2i

µ2q2

4π
ηab

)
× λ′ − 1

λ′
−i

k′2 + m̃2 − iϵ

(
ηda +

1

µ2
kdka

λ′ − 1

)(
−2i

µ2q2

4π
ηcd

)]
, (503)

with m̃2 and k′ given by

m̃2 := µ2
λ′2 − 1

λ′
, k′ := k − p̃, p̃ := p4 − p2. (504)

42Note that momentum conservation implies k − p4 + p2 − k + p3 − p1 = 0.
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It is easy to see that Eq. (503) can be split into four contributions, namely

iMeven
seagull = I1 + I2 + I3 + I4, (505)

where the following quantities have been defined:

I1 :=
µ4q4

2π2

(
λ′ − 1

λ′

)2 ∫ d2k

(2π)2
1

(k2 + m̃2 − iϵ)
(
k′2 + m̃2 − iϵ

) , (506)

I2 :=
µ2q4

4π2
λ′ − 1

λ′2

∫
d2k

(2π)2
k′2

(k2 + m̃2 − iϵ)
(
k′2 + m̃2 − iϵ

) , (507)

I3 :=
µ2q4

4π2
λ′ − 1

λ′2

∫
d2k

(2π)2
k′2

(k2 + m̃2 − iϵ) (k′2 + m̃2 − iϵ)
, (508)

I4 :=
q4

4π2λ′2

∫
d2k

(2π)2
ηabηcdk

bkck′dk′a

(k2 + m̃2 − iϵ) (k′2 + m̃2 − iϵ)
. (509)

Before computing such quantities, let us recall that we are working in light-cone coordinates:

ds2 = −2dUdV. (510)

In the following we will perform a Wick rotation; in order to do that we change coordinates from
light-cone to Cartesian: (U, V ) →

(
x0, x1

)
. The two sets of coordinates are related by

U =
1√
2

(
x0 + x1

)
, V =

1√
2

(
x0 − x1

)
⇒ ds2 = −

(
dx0
)2

+
(
dx1
)2
. (511)

A quick inspection of the expressions above shows that iMseagull contains integrals that diverge.
If there is some physics in the expressions we have written down, then we need a prescription to
handle these infinities. As is well-known, such a procedure exists and it is called renormalization.
In order to carry out this procedure in an explicit fashion, it is of course necessary to deal with the
infinities in some well-defined mathematical way. To ensure that this is done without introducing
spurious inconsistencies one usually employs a so-called regularization method, which renders
the potentially divergent integrals finite. Such a regularization procedure is defined in terms
of a parameter which, at the end of the computation, is taken to a certain limit in which the
divergences will again become manifest. This limiting procedure enables us to unambiguously
calculate the various Feynman diagrams. There exist many different regularization procedures;
the one we will use here in this thesis is called dimensional regularization and it is due to
’t Hooft and Veltman [43]. It is based on the observation that the degree of divergence of
Feynman integrals depends on the number of spacetime dimensions; one analytically continues
these integrals to arbitrary complex dimensions, where poles in the complex plane will emerge
at certain integer values of the dimension, indicating that at those dimensions the integral will
diverge. We assume the reader to be familiar with both the regularization and renormalization.

Let us start by considering (506), temporarily suppressing the iϵ’s for notational convenience.
Even if it is convergent, in order to be consistent, we shift to n dimensions anyway:∫

d2k

(2π)2
1

(k2 + m̃2)
(
k′2 + m̃2

) →
∫

ddk

(2π)d
1

(k2 + m̃2)
(
k′2 + m̃2

) , d = 2 + ε. (512)



86

In general, in order to bring the denominators into a form that allows us to perform the momen-
tum integrals, we can make use of a class of identities introduced by Feynman. In the particular
case we are considering what we need is the following expression [41]:

1

AB
=

∫ 1

0
dx

1

[A+ (B −A)x]2
. (513)

Looking at (512), we see that the role of A is played by k2+m̃2 while the role of B by k′2+m̃2 =

(k − p̃)2 + m̃2; therefore, we have∫
ddk

(2π)d
1

(k2 + m̃2)
(
k′2 + m̃2

) =

∫ 1

0
dx

∫
ddk

(2π)d
1

[(k − xq)2 + p̃2x(1− x) + m̃2]2
. (514)

Shifting k → k + xp̃ and performing a Wick rotation (we substitute k0 = ik0E) lead to [41]∫
ddk

(2π)d
1

(k2 + m̃2)
(
k′2 + m̃2

) = i

∫ 1

0
dx

∫
dnkE
(2π)n

1(
k2E +∆

)2 , (515)

where ∆ := p̃2x(1− x) + m̃2. As is well-known, the momentum integral above can be expressed
in terms of gamma functions; the more general result is given by [41]∫

dnkE
(2π)n

1(
k2E +∆

)α =
1

(4π)
n
2

Γ
(
α− n

2

)
Γ(α)

∆
n
2
−α. (516)

In our case, α = 2, we then obtain∫
ddk

(2π)d
1

(k2 + m̃2)
(
k′2 + m̃2

) =
i

(4π)
n
2

Γ
(
2− n

2

)∫ 1

0
dx∆

n
2
−α. (517)

In terms of ε, the above expression becomes∫
ddk

(2π)d
1

(k2 + m̃2)
(
k′2 + m̃2

) =
i

4π
(4π)−

ϵ
2Γ
(
1− ε

2

)∫ 1

0
dx∆

ε
2
−1. (518)

Now we want to expand in powers of ε, considering terms up to zeroth-order. However, since
we can only expand dimensionless quantities and ∆ clearly has dimensions, we introduce an
auxiliary mass parameter, say M , writing∫

ddk

(2π)d
1

(k2 + m̃2)
(
k′2 + m̃2

) =
i

4π
(4π)−

ϵ
2Γ
(
1− ε

2

)
M ε−2

∫ 1

0
dx

(
∆

M2

) ε
2
−1

. (519)

By considering the expansions

(4π)−
ε
2 = 1− ε

2
ln(4π) + . . . , (520)

Γ
(
1− ε

2

)
= −ε

2
Γ
(
−ε
2

)
= −ε

2

(
−2

ε
− γE + . . .

)
, (521)(

∆

M2

) ε
2
−1

=
M2

∆
+
ε

2

M2 ln
(
∆/M2

)
∆

+ . . . , (522)
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where γE ≈ 0.5772 is the Euler-Mascheroni constant, we end up with the following expression43:∫
ddk

(2π)d
1

(k2 + m̃2)
(
k′2 + m̃2

) =
i

4π

∫ 1

0
dx

1

∆
=
iM ε

4π

∫ 1

0
dx

1

p̃2x(1− x) + m̃2
. (523)

In principle, we should consider various cases, depending on the values of p̃2; however, we are
interested in the limit p̃→ 0, so the most convenient approach is to directly expand the integrand
and consider the first term of the expansion, which is p̃-independent44. We have:

1

p̃2x(1− x) + m̃2
=

1

m̃2
+
p̃2(x− 1)x

m̃4
+
p̃4(x− 1)2x2

m̃6
+O(p̃6). (524)

Therefore, in this specific limit the result of the above integral is∫
ddk

(2π)d
1

(k2 + m̃2)
(
k′2 + m̃2

) =
iM ε

4πm̃2
+O(ε). (525)

Before proceeding, let us make another observation about dimensions. For this discussion, as
well as for the subsequent one, we will closely follow Ref. [44]. When calculating Feynman
diagrams in 2+ ε spacetime dimensions, the coupling constants will carry the dimension that is
appropriate for the theory in 2 + ε dimensions. For the scalar quantum electrodynamics built
here, the dimension of the effective coupling constant turns out to be equal to 1− ε/2 in mass
units. On the other hand, in the 2-dimensional case we have that [µq] = 1 (integrating the
sphere out does not change the dimensions of the quantity q). Therefore, in order to ensure
that dimensional counting remains consistent throughout the calculations, we make again use
of the auxiliary parameter M and write the effective coupling constant as M−ε/2µq. Putting it
all together (taking into account the various prefactors), we now write down the final expression
for I1 in 2 + ε spacetime dimensions, in the limit p̃→ 0:

Id1
∣∣
p̃→0

=
iM−εµ2q4

8π3
λ′ − 1

λ′ (λ′ + 1)
+O(ε). (526)

Let us now consider the second contribution, namely I2. Ignoring the prefactors for a moment,
shifting to n dimensions, and writing k′ = k′ + m̃2 − m̃2, leads to∫

ddk

(2π)d
k′2

(k2 + m̃2)
(
k′2 + m̃2

) =

∫
ddk

(2π)d
1

k2 + m̃2
− m̃2

∫
ddk

(2π)d
1

(k2 + m̃2) (k′2 + m̃2)
. (527)

The first term can be quite easily computed by performing a Wick rotation to use (516) with
α = 1, where the role of ∆ is now played by m̃2. We have:∫

ddk

(2π)d
1

k2 + m̃2
=

i

(4π)
n
2

Γ
(
1− n

2

) (
m̃2
)n

2
−1
. (528)

We now substitute d = 2+ ε and expand in powers of ε, keeping track of possible poles at ε = 0.
43Expanding before performing the integral is allowed in this case since each term in the expansion, when

integrated, converges.
44Concerning the expansion, the same reasoning explained in the previous footnote is applied here: each term

in the expansion, when integrated, converges.
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In terms of ε, Eq. (528) becomes∫
ddk

(2π)d
1

k2 + m̃2
=

i

4π
(4π)−

ε
2 Γ
(
−ε
2

) (
m̃2
) ε

2 . (529)

Introducing M as before and rearranging, we get

∫
ddk

(2π)d
1

k2 + m̃2
=
iM ε

4π
(4π)−

ε
2 Γ
(
−ε
2

)( m̃2

M2

) ε
2

. (530)

We can now safely expand, obtaining∫
ddk

(2π)d
1

k2 + m̃2
= − iM

ε

2π

[
1

ε
+

1

2
γE +

1

2
ln

(
1

4π

m̃2

M2

)
+O(ε)

]
, (531)

which is now dimensionally consistent. Concerning the second term in (527), it has already been
computed. Putting it all together, we obtain the final result for I2:
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+O(ε)

]
. (532)

Now, looking at the third contribution to the amplitude, (508), we immediately notice that it is
equal to (507) upon shifting the momentum k, k → k + p̃. Therefore, we can directly focus on
the fourth contribution, I4. The strategy is to reduce this apparently complicated expression to
well-known integrals. Let us first consider the numerator of the integrand. By recalling how k′

is defined, it can be split as

ηabηcdk
bkck′dk′a = kak

′akck
′c = (k · k′)2

= k2k′2 − k′2(p̃ · k) + k2(p̃ · k′)− (p̃ · k)(p̃ · k′). (533)

Thus, shifting to 2 + ε spacetime dimensions, we obtain∫
ddk

(2π)d
ηabηcdk

bkck′dk′a
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As we can see, I4 has been split into four contributions. The first gives∫
ddk

(2π)d
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. (535)

The second piece has already been calculated before. The first one can be easily computed by
Wick rotating and making use of the following result [41]:∫

dnkE
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In terms of ε, by setting α = 1 and shifting k → k + p̃, we can write∫
ddk

(2π)d
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Moreover, inserting M and expanding in powers of ε, we end up with∫
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Therefore, Eq. (535) gives∫
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Let us now consider the second piece coming from (534). By writing k′ = k′ + m̃2 − m̃2, we get∫
ddk
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. (540)

The first integral vanishes since the integrand is antisymmetric under k → −k. Concerning the
second one, upon shifting k → k+xp̃ and combining the denominator by using Feynman’s trick
once again, we have (we ignore for a moment the factor in front, m̃2)∫

ddk

(2π)d
p̃ · k

(k2 + m̃2) (k′2 + m̃2)
=
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0
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=
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0
dx

∫
ddk

(2π)d
p̃ · (k + xp̃)

[k2 + p̃2x(1− x) + m̃2]2
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The first term, the one proportional to p̃ · k, vanishes. The remaining one leads to∫
ddk

(2π)d
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. (543)

We can now proceed in the same way as before, see below Eq. (514). However, we immediately
notice that the first term of the expansion (524) would be multiplied by p̃2, and so we can safely
conclude that, in this specific limit, the above integral vanishes. The next contribution in (534)
can be also shown to be vanishing. We have:∫
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. (544)

The first piece in the above equation vanishes, again because the integrand is antisymmetric
under k → −k. In the second term we can easily recognize two expressions we already proved
to be zero in the limit we are considering. Indeed, from the previous discussion we have that∫

ddk

(2π)d
p̃ · k

(k2 + m̃2) (k′2 + m̃2)
= 0, (545)∫
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where we made use of Eq. (525). We can now finally consider the last contribution in Eq. (534),
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which can be written as follows:∫
ddk
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The second term in the numerator of the above expression vanishes since, neglecting the factor
of p̃2, it is exactly the same integral as in Eq. (543). Concerning the first piece, we have

p̃ap̃b

∫
ddk
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kakb
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, (548)

where the definition of ∆ is the same as the one below Eq. (515). Splitting the numerator we
immediately notice that the above expression gives rise to integrals that vanish as long as p̃→ 0.
Thus, the only non-vanishing contribution in Eq. (534) is the first one. Putting it all together45,
we now write down the final result for I4:
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We are now ready to write down the final result for iMeven
seagull by summing each of these terms.

To be more precise, the expression below does not yet represent the final result since it is ε-
dependent. However, as we will see, it is possible to conclude that it is indeed sub-leading even
without the need of renormalizing. Up to zeroth-order in ε, we have:
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. (550)

We now want to argue that the above contribution is sub-leading with respect to the one-loop
amplitudes arising from the type of diagrams shown in subsection 5.2, which are given by

iM2,p−p = iM2,p−a = − q4s

16π2 (λ′ + 1)2
. (551)

This last expression has been obtained by setting n = 2 in our previous eikonal calculation,
where we recall that n counts the number of virtual photon exchanged. In principle we still
cannot compare the above results since the amplitude (550) is ε-dependent while (551) is not
(we cannot set ε = 0 in (550) because of the presence of the term 1/ε). However, we know that
this term will cancel upon renormalizing46, and so we only have to worry about the finite pieces.
One last comment concerns the presence of the parameter M in Eq. (550), which appears in the
form of a logarithm47; this parameter has been introduced for dimensional reasons. However,

45Essentially we are considering the prefactors in (509) as well as the fact that the effective coupling constant
has to be written as M−ε/2µq.

46One-loop renormalizability of quantum electrodynamics in a general curved spacetime has been extensively
discussed in Ref. [45].

47The M−ε term in front of Eq. (550) will vanish in the limit ε → 0.
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physical quantities should not depend on an auxiliary parameter in the end. This proves to be
the case indeed, noticing that the renormalized parameters will implicitly depend on M as well.
Of course, it is impossible to know the functional form of the amplitude without following the
entire procedure, but we can argue that renormalization will not introduce any power of s in the
calculation48. Thus, we can safely conclude that the amplitude (550) is sub-leading with respect
to (551). This is not the end of the story since, as we previously deduced by Fourier transforming
Eq. (417), the odd-parity photon led to another type of four-vertex, the last one shown on page
71. There is, therefore, another one-loop diagram that we can consider49: Mathematically, the

p2

p1

p4

k − p4 + p2

p3

k

φ̂∗
0(−p2)

φ̂∗
0(−p1)

φ̂0(p4)

φ̂0(p3)

Figure 10: One-loop diagram containing the so-called “seagull" vertices (odd case).

above diagram corresponds to the following expression:
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1
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, (552)

where we made use of the result obtained in (525), in the limit ε → 0. By applying the same
argument as above, we can conclude that the amplitude (552) is sub-leading with respect to the
one-loop amplitude with three-vertices only.

48This represents the key point since the sub-leading argument comes from the limit s ≫ µ2.
49Note that, as before, momentum conservation at the top vertex implies k − p4 + p2 − k + p3 − p1 = 0.
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Conclusions and future work

In Refs. [12–22], gravitational interactions on the black-hole horizon have been considered, both
in the context of quantum mechanics and quantum field theory. One of the possible routes
towards improvement is to include other fields in the picture, in principle everything known
from the Standard Model of particle physics. In particular, we aim to understand how Standard-
Model information falling into a black hole can be retrieved from scattering. The simplest field-
theoretical interaction we can consider is the electromagnetic one, which is exactly what has
been done in the present work.

Within ’t Hooft’s approach, in analogy to the gravitational backreaction discussed in the
references above, we see that an electromagnetically charged shock wave leaves an imprint on the
electromagnetic field of the probe, which indeed experiences a discontinuity in its electromagnetic
field across the null surface traced out by the shock wave; we investigated how to expand the
effect of the change of gauge of the electromagnetic field in partial waves and obtained an
expression for the scattering matrix.

In the field-theory side, within a path-integral approach, the strategy that has been used
is the following: starting from the action functional for a complex scalar field coupled to the
electromagnetic field in a Schwarzschild background, we first considered the kinetic terms and
inverted the quadratic operators in order to find the propagators; then, we looked at the inter-
action terms and finally defined the Feynman rules of the theory to compute all the scattering
amplitudes of interest. However, being in curved space significantly complicates the procedure
just outlined. Indeed, computing the propagator of even a scalar field is not analytically possible
in the presence of a black hole. Luckily, by taking into account the high degree of symmetry of
the Schwarzschild background, expanding in spherical harmonics, and restricting our attention
to the near-horizon region, we have been able to reduce our four-dimensional theory to an infinite
number of flat two-dimensional theories with potentials that capture the curvature effects, finally
allowing us to invert the quadratic operators to find all the propagators of interest. Therefore,
we proceeded with computing the effect of the change of gauge of the electromagnetic field via
elastic 2 → 2 photon exchange diagrams. More precisely, we obtained an expression for the
S-matrix by summing over an infinite number of such diagrams in the high-energy limit. The
S-matrix so-obtained is in agreement with the one found within ’t Hooft’s approach. In this the-
sis, the theory presented in Refs. [19, 20] has been successfully extended to the electromagnetic
case. Further, our model contains a four-vertex, leading to more types of loop-diagrams. In the
last section we showed that the one-loop diagram with four-vertices is sub-leading with respect
to the one with three-vertices only.

The black-hole scattering program developed in these last few years appears to be very rich.
We conclude by listing some of the possible ideas that can be explored:

• Up to now, tree-level scattering amplitudes and one entire class of loop corrections have
been computed. It would be certainly interesting to study higher-order derivative correc-
tions, as well as include non-Abelian gauge fields in the picture;

• It would be of interest to understand and revisit the issue of antipodal identification [46,47]
and quantum clones [18];
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• So far, scattering matrix elements that arise from gravitational/electromagnetic interac-
tions have been explicitly obtained, pretending the asymptotic states to be well-defined.
However, it is not clear how to properly define the S-matrix in the presence of a black
hole. Trying to understand this could allow us to combine Hawking’s leading answer (free
scalar fields in curved spacetime) and our corrections into one formula;

• Weinberg’s soft graviton/photon theorem relates the matrix elements of a Feynman dia-
gram with an external soft graviton/photon insertion to that of the same diagram without
an external soft graviton/photon [48, 49]. An intriguing possibility is to try to under-
stand if new soft theorems emerge near the black-hole horizon because of these gravita-
tional/electromagnetic interactions;

• Analyzing the observational consequences of our research, especially in relation to gravi-
tational waves, would be certainly of interest. A first step in this direction has been done
in Ref. [50].
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