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Abstract

To combat imbalances in the electricity grid and support the integration of renewable energy
sources, demand response (DR) is increasingly being looked at as a key solution. Electricity
consumers can change their electricity consumption pattern based on dynamic prices to help
stabilize the grid and reduce their energy bill. This study focuses on the economic potential of
demand response for office buildings in the Netherlands.

A model of an office building has been developed in Matlab, containing a thermal model
of the building and models of the Heating Ventilation and Air-Conditioning (HVAC) system,
employees’ electric vehicles (EVs) and employees’ laptops. These assets can be operated flexibly,
in reaction to dynamic prices. The office buys its electricity on the Dutch day-ahead market
and can subsequently also trade on the automatic frequency restoration reserve (aFRR) mar-
kets. Multiple control strategies have been considered: a reference control strategy, a rule-based
strategy and a Model Predictive Controller, with the objective of minimizing the electricity costs
while maintaining indoor comfort and respecting battery capacity boundaries.

Running yearly simulations with various variations in input, a number of conclusions can be
drawn: 1) The economic profitability is highly dependant on the simulation year. Profits of DR
are at least ten times higher in 2022 than 2019, due to higher electricity prices and increased
variability in the price. 2) The HVAC is best controlled by the MPC, but the MPC leads mainly
to energy consumption reduction instead of consumption pattern shifting. This combination can
also have high investment costs, although this strongly depends on the HVAC hard- and software
already installed in the office. 3) EVs have a lot of DR economic potential for office buldings as
investments are low and the electricity consumption is high and easily shiftable. Additionally,
the EV penetration level is expected to rise quickly the coming years in the Netherlands. 4)
Laptop DR is barely profitable in the day-ahead market, but performs well in the aFRR market.
5) Total electric vehicle DR profit in 2022 is around 7,500 euros, and HVAC DR profits lie at
2,000 euro for a 4,000 square meter office. Considering the revenue of a 4,000 sq. m office is in
the millions, the profits are not enormous but there is economic potential and the profits will
increase with higher EV penetration.
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1 Introduction

1.1 Problem background

Since the invention of the light bulb by Nikola Tesla in 1879, the world has rapidly electri-
fied, with many households now using electricity-powered fridges, washing machines, televisions,
phones, air-conditioners etc. The demand for electricity is ever-growing and The Electrification
of Everything is not complete; heating is becoming increasingly electric, just as transportation.
Besides this driving factor, global population growth and increasing welfare are causing more
and more electricity usage (J. K. Kok, Scheepers, and Kamphuis 2010). Lastly, the need for a
sustainable society and reduced greenhouse gas emissions also drives the energy system towards
electricity and away from fossil fuels.

The electricity supply has had to grow with the demand through the years, but is now
changing. Electricity has traditionally been generated by large, centralized, typically fossil fuel-
based power plants. The output of these power plants is adapted continuously to meet the
instantaneous demand. This is relatively straightforward, as the output is mainly determined
by the amount of fuel the plant is supplied with. With the rise of generation from Variable
Renewable Energy Sources (VRES) however, the energy supply is becoming less flexible. The
electricity output from photovoltaic (PV) panels and wind turbines is governed by the weather
and therefore largely uncontrollable (R. Li et al. 2022). This intermittency of RES causes power
balancing problems for grid operators, as the supply cannot be adapted to the demand as easily.
Additionally, much of the VRES capacity is spatially distributed instead of centralized. For
example, many PV panels are installed on private homes and thus connected to the distribution
grid, as opposed to the transmission grid as electricity suppliers usually are (J. K. Kok, Scheepers,
and Kamphuis 2010). On sunny days, this can cause overloading of local distribution grids which
were not designed for injection of power. Overloading can also happen during high demand, for
example around dinner time, when many households use their induction stoves, televisions etc.
This problem is called congestion.

To maintain grid stability, supply and demand must be balanced across all time scales. On a
short time scale, grid voltage levels and frequency must be kept within safe limits. This is done
by a combination of services, for example power generators able to quickly provide extra power
in case of a system contingency, or rotating machinery keeping the system frequency stable on a
second to minute basis. These ancillary services (AS) have historically only represented a small
share of the total electricity market revenue, but due to VRES, ancillary services are taking on
an increasing importance in the system. The variability of VRES entails a greater need for AS to
balance demand and supply (Franklin et al. 2022, Freund, Hume, and Stekli 2021). An example
of a problem is seen in Figure 2. The electricity production from wind energy causes the residual
load that has to be matched by power plants to fluctuate strongly and with very steep ramp
rates. This makes the balance between demand and supply harder to maintain.

To deal with the balancing problem, flexibility is required. Flexibility can be defined as ”the
ability of a power system to utilize its resources to respond to changes in net load” (Spiliotis,
Ramos Gutierrez, and Belmans 2016). This can be either supply-flexibility or demand-flexibility.
Supply-flexibility includes the ability of generation units to ramp up and down quickly to follow
changing loads, and the use of ancillary services to balance the grid, see also Figure 1. Supply-
side flexibility has traditionally been the main source of flexibility in the power system, but
since Variable Renewable Energy Sources (VRES) cannot be controlled to follow demand, the
need for flexibility in the power system grows. To cover the extra need, the supply-side needs
to operate even more flexibly or demand needs to become more flexible to balance out the
fluctuating generation of wind and solar power. The former option involves a rise in system
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Figure 2: Impact of wind energy on ramping rates in the electricity network. Source: Denholm
et al. (2010)

costs as the more flexible units (e.g. gas-fired plants) often have higher variable costs and energy
storage is also costly (Taibi et al. 2018). As the share of renewables in the energy mix needs to
grow considerably in the coming years, accommodating the resulting intermittency with supply-
flexibility would entail high costs.

Figure 1: Flexibility source clas-
sification. Source: Aduda et al.
(2016)

The second option, demand-flexibility, is therefore in-
creasingly being looked at as an essential part of the trans-
formation of our current energy system to a low-carbon en-
ergy system, characterised by intermittent renewable gen-
eration (R. Li et al. 2022, Batalla-Bejerano, Trujillo-Baute,
and Madlener 2022). Demand-flexibility, or Demand Side
Management (DSM) aims to alter consumers’ electricity con-
sumption patterns and/or reduce their consumption. The
higher objective is to flatten the load curve over time. Re-
duction of electricity consumption is achieved by energy effi-
ciency measures, such as replacing inefficient energy devices
with newer, more energy-efficient devices. Changing con-
sumers’ consumption patterns is a more challenging issue
and is achieved through demand response (DR); demand is
changed in response to signals, for example electricity prices.
This results in a portion of the energy demand being in-
creased, reduced or shifted for a specific time period. The
practice of DR can shift electricity loads from peak moments to off-peak moments, for example
from dinner time (when energy demand is high) to noon (when PV production is high). This helps
in balancing demand and supply and can relieve congestion by e.g. increasing self-consumption
of PV generated electricity. Demand response has proven to be able to minimise operating costs,
lower emissions, enhance the reliability and efficiency of power systems and reduce wholesale
market prices (Nwulu and Gbadamosi 2021).

DR can be performed by various types of energy consumers, the opportunities lie mostly
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in residential housing and the manufacturing and service industries, as seen in Figure 3. Each
consumer group has its own advantages and disadvantages for unlocking flexibility. Residential
consumers have a hard-to-predict demand pattern and a very small load per household, but
can shift operation of their appliances relatively easy. Industrial plants on the other hand are
predictable, high energy consumers. Their production processes, however, are often part of a
long chain involving many different machines and logistics, therefore deviating from the schedule
is impractical for these consumers. Furthermore, the profitability of industrial plants depends
on the efficiency they can achieve, so suboptimal operation regarding power and voltage levels
quickly translates to monetary losses. Commercial buildings (belonging to the service industry)
often have an easier to predict demand pattern compared to households. The demand can be
estimated based on weather data, building architecture and operational behaviour. The load in
commercial buildings is more flexible than industrial load and therefore more suitable for demand
response (Vardakas, Zorba, and Verikoukis 2015). This makes the service industry an attractive
sector for unlocking flexibility.

Figure 3: Pie chart of the final electricity
consumption in the Netherlands in 2021, by
sector. Source: CBS 2021

The service industry as used in Figure 3 consists
of hotels, restaurants, ICT companies, publishers,
banks, research and consultancy companies, archi-
tectural firms, job brokers, schools, hospitals, mu-
seums et cetera (Kruiskamp 2022). An especially
interesting commercial building type is offices,
which comprise a quarter of the non-residential
building stock by floor space (Economidou et al.
2011). The Dutch government decided in 2012 that
all Dutch office buildings with a surface of more
than 100 m2 should have the energy label classifi-
cation C or higher by 2023 or they are not allowed
to be used until they have taken the appropriate
measures to achieve at least label C. Energy labels
for buildings are determined based on three indi-
cators: i) the energy requirement in kWh/m2.y ii)

the consumption of fossil fuels in kWh/m2.y and iii) share of renewable energy in the total
consumption (Nederlands Normalisatie Instituut 2022). Additionally, all businesses, which in-
cludes offices, restaurants, shops etc., that use over 50,000 kWh or 25,000 m3 gas per year are
legally obligated to implement all energy saving measures with a payback time of five year or
less. These measures are given by the Netherlands Enterprise Agency and for offices include
the monitoring of the Heating Ventilation Air-Conditioning (HVAC) installations and analysis
of their consumption, isolating cavity walls, using time switches to turn off appliances at night,
automatically adjusting the heating to outside temperature and more (RVO 2019). These mea-
sures can also be taken by office buildings to achieve energy label C. These government bills
mean that a) offices are recognised by the government as a type of building that can and should
be conscious about their energy use and b) offices will have relatively modern energy systems
and monitoring capabilities from 2023 compared to other commercial building types. This makes
offices an interesting target for investigation into their potential for demand response.

An additional motivation for focusing on office buildings is the internship organisation this
thesis is undertaken at: Sweco. Sweco is an architecture and engineering consultancy firm, and
the Sustainable Buildings team this thesis is written at advises real estate owners on how to make
their building fleet more sustainable. Therefore, they have considerable knowledge of energy use
in the built environment and specifically office buildings.
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1.2 Existing literature and research gap

Figure 4: Number of published articles and
papers per year up til 2022 as recorded
in Scopus, by searching for ’demand re-
sponse’ and (’grid’ or ’electricity’) in titles,
abstracts and keywords.

In the scientific citations and abstract database
Scopus, the first article with ’demand response’ in
the title, abstract or keywords was published in
1969 in the American Journal of Agricultural Eco-
nomics. Unfortunately, this article does not discuss
demand response as defined in the previous section,
but analyses the negotiations and bargaining tac-
tics between tomato farmers in Indiana and Ohio
during the 1966 growing season (Babb, Belden, and
Saathoff 1969). The first article (as recorded in
Scopus) dealing with demand response to electric-
ity prices, instead of to tomato prices, was pub-
lished a decade later in Elsevier’s journal ’Energy’
(Cohn 1980). Demand response was mentioned lit-
tle the next 25 years, but around 2005 the interest
quickly started to rise, as seen in Figure 4. By now,
1400 papers and articles are published per year on
the topic. Narrowing it down to ’built environment’ or ’buildings’, 700 papers and articles per
year remain.

Considerable research has been done on demand response and related concepts such as smart
grids and their Information and Communication Technology (ICT). DR requires intelligent con-
trol of appliances and many ICT solutions have been proposed. Much cited surveys on these
topics are Palensky and Dietrich (2011), Vardakas, Zorba, and Verikoukis (2015) and Gungor et
al. (2013). Vardakas, Zorba, and Verikoukis (2015) provides an extensive review of DR programs
and relevant control mechanisms, whereas Gungor et al. (2013) gives an overview of possible
applications of smart grid architecture, and communications requirements needed for flexible,
reliable smart grid operation. The smart grid is ”a sophisticated system integrating an informa-
tion and communication technology infrastructure to the existing power system infrastructure
and the new distributed generation system, in order to fully exploit the use of renewable energy
systems and to maximize energy efficiency of the whole power system. (ibid.)”. Smart grids are
often seen as a prerequisite for effective demand-side management to handle data flows. Palensky
and Dietrich (2011) gives an overview of DSM taxonomy and measures, two DSM demonstration
projects and an outlook on the technology.

When replacing ’built environment’ or ’buildings’ in the search with the more specific ’res-
idential’ OR ’households’, 320 papers or articles published per year (in the past four years)
still remain. Replacing it with ’commercial’ however, only 80 remain. About ’office’ or ’offices’
in conjunction with ’demand response’ and (’grid’ or ’electricity’) only 40 articles and papers
are published per year. This shows that DR research is focused on residential application and
commercial application is likely overlooked.

The most influential articles and papers on demand response in offices are on predicting
electricity consumption profiles. Rahman, Srikumar, and Smith (2018) does this with a neural
network and Y. Chen et al. (2017) with ”Support Vector Regression”. Control algorithms are
developed by Ma et al. (2012) proposing a Model Predictive Control technique for HVAC control
in offices and Thomas, Deblecker, and Ioakimidis (2018) using mixed-integer linear programming
to optimise PV output and Electric Vehicle charging in offices. Hao et al. (2014) and Lin
et al. (2015) study the technology of HVAC fans performing frequency regulation (a type of
ancillary service). Not all papers can be summarised here, but the remaining papers tend to
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focus on operation of office (or commercial) buildings for demand response. Many control and
optimization algorithms are developed and/or tested for different energy assets and markets.
HVAC systems are a popular subject (in the studies mentioned above and for example by Klein
et al. (2017) and Mäki, Jokisalo, and Kosonen (2019)), though PV panels, EV and storage are
also considered. The research tends to focus on one control algorithm, a limited number of energy
assets and one type of market (if considered) at the same time. This gives detailed insight into
how one type of appliance could participate optimally in one type of electricity market. Studying
this existing literature, it is apparent there is a body of work on technical potential of various
methods of DR in office buildings. There is, however, little research into economic potential of
DR for office buildings using a more holistic view.

Higher-level studies on economic potential do exist beyond the office scope. However, eco-
nomic studies into DR often take the form of designing flexibility markets, negotiation and
optimization problems between utility companies and end users (N. Li, L. Chen, and Low 2011,
Maharjan et al. 2013, Kornrumpf et al. 2016) or studies into economic benefits on the grid level
(Klaassen et al. 2017). There is a lack of economic analyses that are building-centric and examine
revenues of DR for participants in detail, also taking various DR set-ups into account. Nolan and
O’Malley (2015) also recognises the uncertainty around the potential revenue for DR program
participants and sees this as a barrier to widespread deployment of DR programs.

A study into the economic potential of DR for office buildings would therefore be a valuable
contribution to the field of energy science. This study would need to take a holistic view on the
problem, considering different control strategies, multiple markets and all relevant (office-specific)
energy assets, to overcome the limits identified in the existing literature.

1.3 Research aim

The main research aim in this study will be:

To gain insight into the economic potential of demand response
for office buildings in the Dutch market.

This research objective follows from the research gap identified in Section 1.2. The Dutch market
will be used to narrow the spatial scope.
Insight will be gained by answering the following five research questions:

1. Which energy assets in office buildings are available for unlocking flexibility?
This concerns energy assets relevant for electricity consumption/production.

2. Which operational modifications need to be made to run an office building flexibly?
DR requires more advanced operation of buildings in terms of control and ICT.

3. What is the current (theoretical) profitability of demand response for office buildings?
The profitability of DR in various existing markets needs to be known to assess economic
potential. This question concerns office buildings that currently exist in the Netherlands,
and how they could perform DR with the assets they already have.

4. Which building technological/structural modifications can be made to increase the capacity
for demand response?
Technological modifications are changes in installed appliances, structural modifications
concern changes in walls, windows etc.

5. How could profitability of DR for office buildings develop under future electricity prices/DR
programs?
Future profitability is also of interest to assess economic potential.

5



2 Theoretical background

This section will describe various concepts relevant to this study. More specifically, this section
covers the electricity market, demand response programs and load flexibility.

2.1 Electricity market

There are multiple electricity markets, each dealing with balancing demand and supply on a
different time-scale. The process starts with determining demand. Electricity suppliers create
expected accumulated load profiles of all customers. Based on this load profile the base load,
needed throughout the entire day, and the 16 and 12 hour peak loads can be determined. These
are quantities that are often bought in advance on future markets, four years to a month ahead
of delivery. An example of such a profile is shown in Figure 5. On the day-ahead (DA) market,
participants can buy and sell electricity in an auction that cleares at 12 pm the day before.
Hourly prices are then set based on the demand and quantity offered, all parties receive/pay
these set prices. These day-ahead prices often referred to as ’the electricity price’. Figures 6 and
7 show the resulting filled in load curve. After closing of the day-ahead market, the intraday
market opens where participants can trade power continuously amongst each other (TenneT
2022). Lastly, real time imbalance as seen in Figure 8 is solved by ancillary services providers on
the balancing market.

Figure 5: Futures market Figure 6: Day-ahead market

Figure 7: Demand after closing DA market Figure 8: Remaining imbalance

Source: K. Kok (2021)

2.2 Demand response programs

A much used definition of demand response is given by the United States Department of Energy,
stating demand response is “a tariff or program established to motivate changes in electric use
by end-use customers, in response to changes in the price of electricity over time, or to give
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incentive payments designed to induce lower electricity use at times of high market prices or
when grid reliability is jeopardized” (Qdr 2006). This definition already classifies two types of
demand response. The first type is price-based demand response. These DR programs rely on
variation of electricity prices through time. During the day, prices for the same quantities of
electricity vary driven by the actual demand and supply. When the demand is larger than the
supply, prices are high, and when there is a surplus of generation, prices are low. The second type
of demand response is incentive-based. In incentive-based DR, consumers are offered monetary
incentives by a third party to curtail their load on demand. Penalties when the consumer does
not cooperate may be included (Nwulu and Gbadamosi 2021).
There are three key price-based demand response programs, which will be briefly described below
(idem):

• In time-of-use pricing, electricity prices vary during the day or seasonally. Prices are
predetermined according to a fixed schedule and are static. In the Netherlands this is
implemented as ’double tariff’: from 7 am until 11 pm, consumers pay the high tariff, and
during the night and in the weekend the low tariff (Essent n.d.).

• Amore dynamic pricing strategy is real-time pricing, where consumers are communicated
prices an hour up to a day ahead. Prices are based on forecasts of expected demand and
supply.

• Critical-peak pricing is aimed at specific, shorter time intervals. CPP participants
receive notice from the utility company announcing a peak price a few days per year. On
these days the network experiences significant challenges in providing all consumers with
electricity, and CPP participants are expected to curtail their load or else they pay a high
price.

Likewise, there are three types of incentive-based pricing strategies:

• Direct-load-control gives utility companies direct control over certain energy-intensive
appliances such as water boilers. Utility companies can remotely switch off these appliances
to relieve the grid and give the participating consumer a discount on their electricity bill.

• A similar strategy is Interruptible Programs, however, it is aimed at large-scale energy
consumers such as factories. Consumers are asked to discontinue their grid electricity
consumption on request by switching on their own power generator or shift their operations
to an off-peak moment. They are rewarded with reduced electricity prices. When complete
shut-down of operations is not necessary, but consumers are asked only to curtail their
load, this is called Curtailable Load Program. Penalties for non-compliance are less
severe in CLP than in IP.

Usually, price-based demand response is more suited for residential consumers and incentive-
based for industrial consumers.

2.3 Load flexibility

Demand response aims to flatten the load shape to reduce the costs and problems associated
with high peaks. The monetary incentives to do so have been explained in the previous section.
Consumers can change their load in response in a few ways, as seen in Figure 9.
In peak clipping, load is simply curtailed to reduce a peak. This is also often called peak shaving.
Valley filling is the opposite: increasing the power consumption to fill troughs. These alterations
usually go hand-in-hand, the load that was shaved during the peak is moved to a valley. This
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Figure 9: Types of load alterations (Lampropoulos et al. 2013)

is called load shifting. Flexible load shaping represents any controllable load systems during
critical periods Zeiler 2020.

A load shifting action in response to a signal such as a changing electricity price typically
looks as in Figure 10.

Figure 10: Visualisation of Flexibility Characteristics on a typical demand response curve. DR
is initiated after the penalty signal (electricity price) jumps upward. Source: Junker et al. 2018
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3 Methodology

This chapter starts with the general scope of the problem, after which the research approach is
described.

3.1 General scope

This section itemizes a few assumptions to reduce the general scope.

• The study is limited to the Dutch market. While the European market is to an extent
coupled, electricity prices and market structures still differ per country. Investigating the
profitability of demand response for all different markets and price data, albeit interesting,
requires too much time for the size of this project.

• In practice, individual buildings can not provide flexibility as the load of a single building is
too small to make a noticeable difference. Therefore, aggregation of flexibility is required.
This is reflected in market accessibility; there are power capacity thresholds to participate in
electricity markets. The thresholds are typically in the MW range, while building electricity
demand is in kW range. To limit the scope of the research and focus on the techno-economic
side of demand response, the legal and organisational aspects of demand response and
aggregation will not be considered a barrier to economic potential, meaning that in this
study a single building can perform demand response.

• In the same vein, aggregation can increase flexibility performance by enabling synergy
between different types of buildings, sharing their electricity or heat. For example, a
restaurant with PV panels that opens in the evening could deliver its electricity during the
day to a nearby office, or excess heat from a data centre can be used to warm a residential
building. These interactions however are hard to generalize, and therefore more suitable
to research in case studies than in this broader techno-economic study.

• The economic assessment will focus on the variable part of electricity prices. Offices also
pay grid operators connection fees, in which flexibility can play a role; by reducing the
monthly peak, the fees can be lowered and/or connection size enlargement deferred.

3.2 Research approach

To answer the research questions posed in Section 1.3, several research steps will need to be
undertaken. The research set-up can summarily be described as collect data, create a computer
model, run simulations and analyse results.

3.2.1 Literature research and data collection

The methodological steps relating to literature research/data collection are laid out below. It is
expected from the existing literature that the HVAC is an interesting flexibility asset, therefore
some steps relate to this. This study is done in cooperation with consultancy company Sweco,
at the team Sustainable Buildings. This means that apart from gathering information through
literature study, Sweco experts can be consulted on e.g. typical office building layouts, demand
profiles etc.

1. Inventorize the flexibility assets present in office buildings.
To know which assets are available for flexible operation of an office building, an inventory
needs to be made of possible contributors to demand response. This includes all assets
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that consume electricity, but also energy generation units (e.g. photovoltaic panels) and
storage units. A decision should then be made which assets are the most interesting for
demand response.
The flexibility asset information will be gathered by studying the available literature and
consulting Sweco experts.

2. Determine an office type
The geometry, size and insulation levels of office buildings are of interest to determine how
quickly an office cools down and heats up. A representative office building needs to be
constructed.

3. Research the various markets and DR programs a flexible office building could
participate in.
To study the potential profitability of DR, it is necessary to know in which markets flexibil-
ity can be sold. Various electricity markets exist with varying time-horizons. Additionally,
more straightforward DR programs exist where flexibility providers are paid a fee to reduce
their electricity consumption. This step should result in having electricity price data for
various markets over the past years.

4. Research control strategies for flexible operation.
Demand response requires more complex control strategies than normally used in office
buildings. A literature study will be carried out on the various control strategies that have
been developed so far. Based on this research, a number of control strategies compatible
with office buildings are selected to use in the simulation study.

5. Evaluate user comfort
User comfort norms need to be established wherein a building should operate. Several
standards are available, as well as research into the topic. User comfort includes for example
minimum and maximum indoor temperatures.

3.2.2 Model design

The profitability of demand response lies in adapting to electricity prices, in pursuance of saving
money by using less energy when the price is high and consequently using more when the price
is low. The resolution of these prices can be as small as 15 minutes. In order to calculate
the monetary gains of a flexible office building, a model of an office building will be made and
simulations run. Building simulation as a means to assess flexibility has been recognised by i.a.
Junker et al. (2018). The model will include the geometry and flexibility assets identified in
step 1 and 2, operated by control strategies identified in step 4, optimising energy savings under
electricity prices determined in step 3, while maintaining user comfort as in step 5.

The developed model will be used to analyse the economic potential of demand response for
office buildings. Results will show how much load can be shifted and money saved by a flexible
office building. Different market data and control strategies can be applied to study the effect on
profitability. The effects of differing flexibility assets and variations in office characteristics can
also be studied. Especially the former is an interesting point of research. Office buildings could
renovate or upgrade appliances to increase their capacity for flexibility, but this comes with a
cost. The costs of upgrading can be contrasted with the higher profit from DR, to determine the
pay-off from renovations.
The model design is visualized in Figure 11. The approach to implementing the model is discussed
in the next sections.
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Figure 11: Diagram of the model design, with exogenous variables in blue, endogenous variables
in yellow and constraints in red

3.3 Software

There are many software solutions for (thermal) building modelling, among them Modelica, En-
ergyplus, SketchUp Sefaira, IES-VE, Vabi EPA & Elements, Designbuilder, ESP-r and TRNSYS.
Creating a model in python or Matlab is also an option.

Modelling is always a trade-off between computation time and level of detail. For example,
one could model the heating system of the building to the level of detail of the piping system:
the distance hot water needs to travel from the heating unit to a room negatively influences the
temperature of the water once it arrives in the room, resulting in less heating power the further
away from the source. Moreover, the walls through which the pipes run would locally heat up,
affecting the heat radiative power of the walls. Modelling these mechanisms results in higher
accuracy, but a slower model. Considering the trade-off between detail and speed and some other
factors, a list of requirements for the model can be made:

1. The simulation must be able to run at a temporal resolution of 15 minutes, which is the
resolution of the aFRR market.

2. Simulation of the model must be fast for MPC. For MPC, the building will need to be
simulated with various temperature setpoints each timestep, to determine the optimal
control trajectory.

3. Simulation of the model must be fast for total simulation time. Especially combined with
MPC, a slow model may result in simulation of one day taking several hours. However,
weather and electricity prices vary greatly between days. To correctly assess the profits of
DR, the possibility of running longer simulations over several days or weeks has priority
over the accuracy of the thermal model. In other words, accuracy of the thermal model
may be traded in for a shorter simulation time.

4. The model must be flexible enough to easily change parameters such as wall insulation or
add assets such as a battery.
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5. It must be possible to control the building dynamically, so changing control input during
the simulation.

6. Preferably, the software is widespread and open-source, to make the study more repro-
ducible.

Many of the modelling programs reported above (Sefaira, IES-VE, Vabi Elements, Designbuilder)
give very detailed results on the temperature distribution over the building given a certain
indoor temperature/setpoint, using e.g. finite element analysis. The result is meant to help
designers identify problems in their building designs. These (graphical) simulations are quite
computationally expensive and therefore not suitable for the intended purpose. A 1D model is
preferred for computation time.

Energyplus, TRNSYS and Modelica are 1D building simulation tools. Energyplus is a popular
open-course tool developed by the US Department of Energy with a good reputation. Its accuracy
has been verified in studies that compare Energyplus results with actual measurements (e.g.
Pombeiro, Machado, and Silva 2017).

However, these modelling programs do not allow for dynamic control of the building. The
programs only allow for setting operational schedules beforehand, and then running the entire
simulation. MPC requires the simulation of multiple control trajectories from the same initial
state, which these programs are not designed to do. A solution is to couple a building modelling
tool to Matlab or python to combine the flexibility of Matlab/python with the pre-made solver
for building temperatures. However, the scope of these tools is often already beyond what is
necessary for MPC, and the interface for communication with Matlab or python compounds the
complexity (Sturzenegger 2014).

A more simple building modelling approach is thermal resistance-capacitance (RC) modelling.
A resistance-capacitance model is a popular way of modelling heat dynamics of a building in a
simplified way (Amara et al. 2015, Široký et al. 2011). Thermal RC models are analogous to
electrical circuits, but instead of electric resistors and capacitors, walls and windows are modelled
as having thermal capacity and resistance to heat fluxes. Voltage is replaced by temperature and
current by heat flowing through a thermal circuit of walls, windows and air. An RC model can be
made in any programming language and run step-by-step, allowing for changing the control input
based on the current state. The model will be a white-box model. Modelling the building physics
makes it easy to change building parameters or add assets. Fonseca, Chvatal, and Fernandes
(2021) also recognizes white-box models as the preferred option for RC modelling.

3.3.1 BRCM toolbox

Matlab will be used to model the office building, because it is the most popular tool for devel-
oping intelligent building control (Shaikh et al. 2014) and provides many functions for modelling
systems. A Matlab toolbox to create thermal RC models is the Building Resistance Capacitance
Model toolbox by Sturzenegger (2014). The toolbox can generate matrices that describe the
thermal behaviour of a building, and has been used to optimally control a Swiss office building.
Figure 12 shows an example of a building RC model. The building envelop is of the 2R1C type:
there is one capacitance which is the uniform temperature of the envelop, and the two resis-
tances describe the heat transfer between the outdoor and the envelop, and the indoor and the
envelop. The indoor contains a uniform temperature air mass, which interacts with the envelop
and internal mass. There are also direct heat gains to the indoor: solar heat Qsolar, indoor heat
production Qin and cooling QC . The internal mass represents indoor walls and floors.

In the BRCM toolbox, a building geometry is defined through various Excel files that de-
tail the building’s walls, windows, materials, heat transfer coefficients etc. Materials have an
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Figure 12: Example of a thermal resistance-capacitance model. Source: Wang and H. Chen
(2018)

identifier, description and several parameters such as density and specific thermal resistance.
Constructions consist of layers of materials and heat transfer coefficients for both sides of the
construction. Lastly, a geometry can be defined by creating building elements with a specific
area, vertices in a 3D space and a construction type. A building element is for example a wall,
a floor or a roof. The toolbox then generates matrices that describe the heat flows between all
building elements.

The BRCM toolbox makes a few assumptions that are listed below:

• The heat transfer coefficients are combined convective/radiative coefficients

• The model can have different zones, but the air temperature is uniform in each zone.

• The temperature within a layer of a building element is uniform.

• There is no conductive heat transfer between different building elements.

• All thermal model parameters (such as the heat transfer coefficients) are constant over
time.

3.4 Modelling heating

This section provides some background for the thermal calculations done in Matlab by the BRCM
toolbox The electricity consumption of a heating unit depends on the heat demand. The heat
demand is given as

Q̇dem = Q̇loss − Q̇sun − Q̇int + Q̇change[W ] (1)

The heat loss Q̇loss consists of conduction heat losses through the outer building shell and
convection heat loss by infiltration. This is partly compensated by incoming radiation energy
from the sun Q̇sun and internal gains: the heat produced by people and appliances Q̇int. If
Q̇change equals zero, Equation 1 is a balance that keeps the temperature at a stable level. If

Q̇change is positive the heat demand will be higher and the temperature will rise.
The thermal capacity of a building element is calculated as follows (Amara et al. 2015):

Cr = ρ · V · cp[J/K] (2)

where
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ρi = Density of the element
V = Volume of the element
cp,i = Specific heat capacity of the element

3.5 Planned analyses

The analysis to gain insight into the profitability of demand response for office buildings is
twofold. Firstly, office buildings can shift their load to make a profit in demand response pro-
grams, the profitability depends on the type of DR program and the building’s capacity for flex-
ibility. Quantification of flexibility is necessary to analyse a building’s flexibility performance.
Secondly, office buildings may need to be fitted with new meters or smarter ICT components
to be able to provide flexibility, which is an expense that should be subtracted from profits.
Additionally, office owners may upgrade appliances, renovate their buildings or buy a battery to
increase their capacity for flexibility and with that, their profits. The economic attractiveness of
technological and structural changes will need to be calculated to see if total profitability can be
improved.

3.5.1 Quantification of flexibility and profitability

A highly cited article on quantification of flexibility is Junker et al. 2018. Herein the Expected
Flexibility Savings Index (EFSI) is presented as a Key Performance Indicator. the ESFI compares
the total electricity costs of a flexible and a reference case. If FI<0, the flexible case is more
expensive. If 0<FI=<1, the flexible scenario is profitable, with e.g. an ESFI of 0.10 meaning a
reduction in costs of 10%. The equation is as follows:

ESFI = 1−
∑n

t=0(E
t
el · pt)flex∑n

t=0(E
t
el · pt)ref

[−] (3)

For each time step i, electricity consumption Eel in kWh is multiplied with the electricity price
p in euro/kWh to obtain the electricity costs for that time step. The sum over all time steps is
taken to get the total costs.

Hall and Geissler (2021) compare seven popular flexibility factors and mark the ESFI and
the Shifted Flexible Load factor as suitable for comparing a flexible case with a reference case.

The Shifted Flexible Load (Sflex) does not include costs but compares the amount of energy
shifted at each time step to the base case. Sflex ranges between 0 and 1, with 0 meaning no
electricity has been shifted and 1 meaning all electricity has been shifted.
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t
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[−] (4)

3.5.2 Effect of changes

The attractiveness of making changes to increase capacity for flexibility can be determined by
calculating the payback time (PBT) of these investments. The investments should yield a higher
profit from demand response but also cost money to acquire.
The payback time of an investment is

PBT =
Initialinvestment

Averageannualcashflow
(5)
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The cash flow is the annual income resulting from the investment. More complex cash flows can
be calculated by adding cost components, such as maintenance Ebrahimi and Keshavarz 2015.
If the PBT is longer than the lifetime of the investment, it is not an attractive investment. The
shorter the PBT, the more attractive the investment.
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4 Theoretical results

This section contains all the results from the literature survey and data collection research steps.

4.1 Energy asset inventory

Energy assets include i) electricity consuming appliances, ii) electricity generating units iii) stor-
age units and iiii) building characteristics relevant for demand response. Building characteristics
are relevant as the flexibility capacity of heating depends on the thermal inertia of the building.
If a building quickly cools down after the heating is turned off, the heating can only be off for
a short time. In a well-insulated building, heating could be turned off for a longer period and
therefore provide more flexibility.

4.1.1 Electricity consumption

Common electricity consuming appliances in offices are those providing space heating, space
cooling, (de)humidification and ventilation, (ICT) office devices, electric vehicles and lighting
Aduda et al. 2016. The first four are provided by HVAC systems: Heating, Ventilation and Air-
Conditioning. HVAC systems, office devices and EVs will be discussed below. Lighting will not
be considered as it not very suitable to run flexibly, it is required for visibility. Assets that are
suitable for flexible operation are typically assets that can store energy, be it electric or thermal.

Heating, Ventilation and Air-Conditioning

HVAC usually consists of an Air Handling Unit (AHU) installed on the roof that intakes air
and prepares it for circulation inside the building, and one or more units for heating water. A
schematic overview of an AHU is given in Figure 13. Air is extracted from both the building and

Figure 13: Diagram of Air Handling Unit. Source: Airtècnics (2021)

outside. Depending on the set-up, the flows are mixed or only one is used. Recirculation of air
is becoming less popular in favor of using fresh air though, especially due to COVID-19. Still, in
a heat exchanger, heat can be recovered from the indoor air flow to preheat the fresh, outdoor
air flow. Hereafter, the filtered air flow is (de)humidified and heated or cooled as necessary. The
air refresh rate will not be changed as fresh air is vital to employee productivity. A decrease in
employee productivity is most probably much more costly than the potential profit from lowering
the refresh rate. Sweco experts indicate that in the Netherlands (de)humidification devices are
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generally not installed. This leaves the heating/cooling as the only relevant HVAC component
for demand response in this study.

Hot water is required in buildings for space heating and domestic hot water. Domestic hot
water is used for washing dishes and clothes and for showering. This is a significant part of hot
water demand in residential buildings, but in offices it will be considered negligible as there are
very few of these assets per employee. Hot water for space heating is one of the largest, if not
the largest, contributor to total energy demand. Water can be heated by a gas boiler, an electric
boiler, a heat pump, district heating and more novel technologies. Only the technologies that
convert power to heat can perform (electric) demand response: electric boilers and heat pumps.
Electric boilers are typically used for domestic hot water, and heat pumps for space heating.
Heat pumps are therefore the only space heating/cooling asset available for electric DR.

There are several HP types, which are distinguished by the heat source and heat sink. The
heat sources and sinks are typically air or water. The HP types will henceforth be referred to as
’source/sink’ HP. For example, an A/W HP has air as source and water as sink. Looking at the
HP thermal power installed in the utility and agricultural sectors, 65% is from A/A HPs, 20%
from open W/W HPs , 12% from A/W HPs and 3% from closed W/W HPs (CBS 2022c). A/A
HPs are also known as ’reversible air-conditioners’ and are primarily used for cooling. A/W heat
pumps have water as the heat sink, which is used for radiators and underfloor heating. W/W
HPs can be closed or open. In open systems, groundwater (or lake water) is pumped up, used as
heat source in the HP, and then pumped down again. In closed systems, the HP transfer fluid
is heated up/cooled down in a closed pipe going deep into the ground, so no fluid is pumped up
from the ground.

A full model of a HP is not necessary for this study. Only the electricity consumption of the
HP at variable heating power is of interest. This is expressed in the Coefficient of Performance
(COP): the ratio between thermal power delivered and electric power supplied. A higher COP
means a better efficiency. The COP depends on the temperature difference between the source
and sink of the HP. Especially for A/X HPs, this difference can vary greatly during the day due
to the changing outdoor air temperature. W/X HPs usually have a much more stable source
temperature.

For a fully electric medium-sized building, an A/W HP will be assumed. A/A HPs can not
provide enough heating and W/X HPs are usually large, costly installations that only large office
buildings can afford. An A/W HP is a good solution for a medium-sized office building. The
temperature dependent COP is experimentally found by Posṕı̌sil et al. (2017) as:

COP = 0.0023 ·∆T 2
aw − 0.2851 ·∆Taw + 10.677 (6)

where

∆Taw = The difference between outdoor air temperature and indoor water supply temperature

The hot water can be used to preheat the air in the AHU. If the conditioning of the air
supply is not sufficient to maintain user comfort, the heating unit can also supply hot water to
a radiant system for extra heat. Radiant systems typically involve pipes that run around the
building and radiate heat to the interior. Free standing radiators can be used or floor surface
heating. Additional cooling may also be installed to complement the forced air conditioning
(Kubba 2017). Large buildings may be divided into zones that each have their individual heat
demand. Figure 14 gives an example of a building heating system with a heat pump, additional
electric boiler, thermal energy storage and the radiant space heating system.
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Figure 14: Simple process flow diagram of building heating system. Finck et al. 2018

ICT devices

Office devices are computers, servers, refrigerators, coffee machines etc. Most devices cannot
be turned off/down easily (e.g. servers and coffee machines) and/or have a negligible energy
consumption (coffee machines, refrigerators). An office device that could potentially perform
demand response is the laptop. Laptops have internal batteries that can be charged in a smart
way to provide demand response. The charging action could be shifted from on-peak to off-peak
hours. It will be assumed that at any time, 90% of the building occupants have a laptop plugged
in. Looking at Hewlett Packard’s (HP) business laptop offerings1, battery sizes range from 41
Wh for the more simple models to 56 Wh for the heavy-duty laptops. As more simple laptops
suffice for most office employees, a battery size of 45 Wh will be assumed. HP laptops come with
45 Watt chargers.

The laptop capacity is aggregated into one ’large’ laptop battery. The total laptop battery
capacity is then:

Claptops = Nemployees ∗ Spluggedin ∗ C1−laptop (7)

where

Nemployees = Number of employees
Spluggedin = Share of laptops that are plugged in
C1−laptop = Battery capacity of one laptop

100 employees would result in a laptop battery capacity of 4.05 kWh, which is approximately
equal to one residential home battery. Laptop demand response may prove to have negligible
impact, but since implementation into the model is simple, the potential will still be investigated.

EVs

Similar to laptop batteries, electric vehicles can be charged smartly to provide demand response.
Vehicle-to-grid (V2G) technology in which EV batteries can be discharged to sell electricity to
the grid is not considered, as almost no cars are suitable for bidirectional charging as of yet.
Without V2G, the full capacity of the EV batteries cannot be used. It will be assumed that
employees using an EV will charge their EV at work, drive home, drive back the following day
and charge again. Therefore, the battery capacity that can be charged smartly during the day
equals the drive from home to work times two plus some private use. Approximately half of
employees travel to work by car, which is stable from 2018 to 2021 (CBS 2022a). They drive 26
kilometres to work pre-corona, and 23-24 during corona. Car owners drive an additional 10-15

1www.hp.com
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kilometres per day for private motives, on average (CBS 2022b). It is likely a larger part of these
additional kilometres are driven on trips in the weekend, and less during the week. It will be
assumed car-driving employees travel 2x26+8= 60 kilometres on average between leaving work
and coming back. Extra discharge due to the weekend or irregular office days are neglected.
Employees will not come to the office every day, but this is accounted for in the occupancy of
the building the amount of EVs will be based on. The last step is to translate the kilometers
into the battery capacity that needs to be charged.

Business electric vehicles are on average more luxurious than private electric vehicles. Popular
models are the Tesla Model 3, Kia Niro and Nissan LEAF (R. Kok et al. 2021). These cars have
an expected fuel consumption rate of 20 kWh/100 km ANWB 2023. Driving 60 kilometres would
therefore cost 12 kWh. In the Netherlands at the end of 2020, 15% of all business passenger cars
were Battery Electric Vehicles (BEVs) and 4% were Plug-in Hybrid Electric Vehicle (PHEVs)
R. Kok et al. 2021. BEVs always have a battery of at least 12 kWh. It will be assumed business
PHEVs also have a battery of at least 12 kWh, making the split between BEVs and PHEVs
redundant.

With this information, the total EV battery capacity available for smart charging (CEV s)
can be estimated based on the number of employees.

CEV s = Nemployees ∗ Scar−to−work ∗ SEV s ∗ C1−EV (8)

where

Nemployees = Number of employees
Scar−to−work = Share of employees that travel to work by car
SEV s = Share of EVs (BEV+PHEV) in car fleet
C1−EV = Battery capacity of one EV available for smart charging

In an office with 100 employees present, this would result in a CEV s of 114 kWh. Again, all
EVs are aggregated into one large battery.

4.1.2 Electricity generation

The only electricity generation technology prevalent office buildings is solar photovoltaics. These
may be installed on the roof, though solar car ports are also becoming popular. A solar carport
is a parking place covered with a solar panel roof that can charge the parked EVs.

4.1.3 Energy storage

Thermal

As seen in Figure 14, HVAC systems can be augmented with additional thermal energy storage
(TES). Finck et al. (2018) identifies thermal energy storage (TES) as an effective flexibility
source. Many types of TES exist:

• Energy can be stored in the Building Thermal Mass (BTM) by raising its temperature
which can be released later. The storage consists of the walls, roof, floors and encapsulated
air in the building.

• Another type of sensible heat storage is a water tank, wherein water temperature can vary
between 21 and 95 degrees celsius for space heating and domestic hot water.

• Latent heat storage is based on phase changes of materials. This can be done with water,
which changes to ice or more advanced phase change materials such as molten salt and
paraffin (Cabeza et al. 2011).
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• Lastly, heat can be stored in reversible chemical reactions, which is called thermochemical
heat storage.

To investigate the current profitability of DR (research question 3), only the first two types will
be considered, as the last two are far from widely implemented. The water tank TES may also
fall under RQ4, if the selected office type does not have a hot water tank. Aquifer thermal energy
storage (ATES) should also be mentioned. Heat pumps (HPs) can use natural aquifers in the
ground as hot and cold sinks. In summer, water is pumped up from the cold aquifer to cool the
building and is then injected into the hot aquifer. In winter, vice versa. This type of TES mainly
serves to increase the efficiency of the HP. Due to its seasonal cyclic nature, the storage is not
very suitable for hourly HVAC demand response.

Electric

Using electric batteries for demand response is a well known application. The standard office
type will be assumed not to have a battery, but it may be considered in future profitability.
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4.2 Office types

In this section, a basic building type for analysis will be defined. The office will be medium-sized
and relatively modern, as offices interested in and suited for demand response will likely be offices
that have already taken various energy saving measures and are looking for what more they can
do. Occupancy is also discussed in this section as it relates to building size.

4.2.1 Geometry

According to Economidou et al. (2011), approximately 20% of office buildings in the Netherlands
are <500 m2. A breakdown of the >500 m2 building stock is given in Figure 15.

Figure 15: Dutch office stock by building size. Source: (Bak 2021)

A medium office size seems to be in the 2500-5000 m2 range. A 4000 m2 office will be used.
The geometry is chosen to be 25 meters long, 16 meters wide and 35 meters high. The height of
one floor is 3.5m. 60% of the external walls will consist of windows.

4.2.2 Insulation and thermal mass

Minimum insulation values of utility buildings are given in Table 1. R and U values determine
the thermal resistance of building elements. The transmittance is the amount of solar radiation
that is transmitted through a window.

External wall
R [m2 K/W]

Roof
R [m2 K/W]

Floor
R [m2 K/W]

Windows, insulation
U [W/m2 K] (glazing)

Windows,
transmittance [-]

<1965 0.19-0.85 0.22-0.85 0.15-0.83 5.1 (single) 0.85
1965-1974 0.43 0.86 0.17 2.9 (double) 0.75
1975-1987 1.30 1.30 0.52/1.30 2.9 (double) 0.75
1988-1991 2.00 2.00 1.30 2.3 (HR) 0.6
1992-2013 2.50 2.50 2.50 2.0 (HR+) 0.6
2014 3.50 3.50 3.50 1.6 (HR++(+)) 0.6
2015-2020 4.50 6.00 3.50 1.6 (HR++(+)) 0.6
>2021 4.70 6.30 3.70 1.4 (HR+++) 0.5

Table 1: Minimum wall, floor, roof and window insulation values for utility buildings through
the years, decided on in the Dutch building directives. Source: ISSO (2020)

Since the Dutch Building Directive of 2012, the average U-value of all windows, frames and doors
in new buildings must be below 1.65 W/m2K (Rijksoverheid 2011). Therefore, it will be assumed
offices built in the 2014-2020 period will have HR++ or HR+++ glass in a wood/plastic frame
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with a U-value of 1.6. The most modern buildings (>2021) will have HR+++ glass. Before
2012, the maximum allowed U-value for windows, frames and doors was 4.2, allowing anything
from double glazing to HR+++ (Rijksoverheid 2001). HR coating was commercialised in the
early 1980s (Jones 2014), so HR glass will be assumed from 1988 onwards.

There are no standards for specific heat capacity of buildings, as it is not very relevant for
energy saving standards. Specific heat capacity is expressed in Joule per kg per Kelvin. The heat
capacity of the building therefore depends on the types of materials used and the mass of these
materials. Sprecher et al. (2022) have studied the material intensity in the Dutch building sector.
Based on demolition data of 25 office buildings, they find that the building construction (the
walls and floor) contributes 90% of the total mass. The remaining contribution is spread over the
roof construction, glass, gypsum internal walls, steel, insulation and wood. Considering the big
difference in contribution to heat capacity between the construction and the other components,
including only the heat capacity of the building envelop is likely sufficient for getting an estimate
of the total heat capacity. Indoor gypsum walls will therefore not be modelled.

Sprecher et al. (ibid.) also find that the construction typically consists of concrete and/or
clay brick. Specific heat values of concrete and brick vary across sources. For brick, the value
ranges between 0.79 and 1 kJ/(kg K). For concrete, from 0.75 to 0.96 kJ/(kg K) (Engineering
ToolBox 2013, Designing Buildings 2022, NREL 2023). As data on the breakdown of brick and
concrete use in Dutch office buildings is not readily available and the specific heat capacities are
in similar ranges, a uniform specific heat capacity of 0.85 kJ/(kg K) is assumed for the office
construction. The envelop consist of 10 cm of brick/concrete, a layer of insulation and 10 cm of
brick/concrete. The insulation thickness depends on the R-value from Table 1.

Since a modern office building will be modelled, the values from 2015-2020 will be used.

4.2.3 Occupancy

According to a Dutch survey by Haas, Hamersma, and Faber (2022), Dutch office employees
worked from home on average 4 hours per week pre-corona, and 12 hours per week in May 2022.
Assuming office employees are 25-65 years of age and have a higher level of education, their
average work week is estimated to be 36 hours (CBS 2022d). This means that on average, office
employees work on location 24 hours/3 days/60% of the work week post-corona. Pre-corona,
this was 32 hours/4 days/80% of the work week. The occupancy rate is then defined as follows
(partly adapted from Finck et al. (2018)): Occupancy rate (ϵt) post-corona.

ϵt =



0, t = 19− 7

0.1, t = 7− 8, 18− 19

0.2, t = 8− 9, 17− 18

0.5 t = 9− 10, 16− 17

0.6, t = 10− 16

(9)

Occupancy rate (ϵt) pre-corona.

ϵt =



0, t = 19− 7

0.05, t = 7− 8, 18− 19

0.3, t = 8− 9, 17− 18

0.7 t = 9− 10, 16− 17

0.8, t = 10− 16

(10)

With the occupancy rate and total amount of people employed, the current occupancy can be
calculated at any moment in the day.
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4.3 Electricity markets and DR programs

In the Netherlands, total electricity costs paid by consumers consists of various components:

• Variable electricity costs in euro per kWh (paid to supplier)

• Fixed delivery costs, a monthly fee paid to the supplier

• Fixed connection fees, paid to grid operator

• Variable connection fees, paid to grid operator

• Capacity tariff based on connection size, paid to grid operator

• A fee for administration, paid to grid operator

• Costs for use of measuring device

• Taxes

As mentioned in the scope, this study will focus on the variable electricity costs.

4.3.1 Dynamic pricing

As mentioned in Methodology section 2.2, incentive-based DR programs are more often targeted
at industrial consumers and sometimes tailored to specific businesses. Reviewing the possibilities
for demand response in the Netherlands, there seems to be no publicly available data on incentive-
based programs. The Dutch TSO Tennet does have contracts with industrial parties such as a
chlorine factory in Rotterdam to steer their production in case of congestion (NRC 2022). This
DR program seems to be a direct-load-control program. The financial details are not publicly
posted however, making it impossible to implement in this study. Moreover, the program seems
to be targeted at industrial large-scale consumers.

Price-based demand response is a more suitable type of DR for office buildings. There do not
seem to be any critical-peak-pricing schemes in the Netherlands, but there are opportunities of
the real-time-pricing type.

Figure 16: Different time scales in which flexibility has to be analysed. Source: (Taibi et al.
2018)

Figure 16 shows the time scales across which demand and supply need to be balanced. These
time scales have been explained in the theoretical background. The relevant ones for demand
response are 1-3. Day-ahead balancing is done on the spot market:
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Day-ahead market. In this market, demand flexibility can help consume large influxes of
electricity from renewable energy sources that may be generated at times demand is low. In the
DA market, all participating parties define in blocks of one hour what amount of electricity they
are willing to buy/sell at which price. The hourly electricity price is then set at the intersection of
these bids. All buy bids lower than the price and sell bids higher than the price are not accepted.
In order to make good bids, i.e. bids that are accepted but do not cause unwanted costs, bidders
must predict the DA electricity prices. For example, if the prediction is that between 12:00 and
15:00 large amounts of cheap solar energy will be available due to sunny weather, buyers should
try to place large bids in this time period. The order of actions in the DA market for a buying
party would be: predict prices → schedule demand → receive DA prices.
Demand response is performed in the ’schedule demand’ action, and would therefore be based on
predicted prices. There is no general price prediction though and incorporating price prediction
in the model is (far) beyond the scope as it is a complex topic. Consequently, it will be assumed
the offices have perfect prediction and the action order is modified into: receive DA prices →
schedule demand. There are energy suppliers in the Dutch market that offer dynamic prices to
customers, for example Frank Energie, Tibber and Zonneplan2. These suppliers let customers buy
electricity at DA prices, so using the DA prices as input is a valid method. Another assumption
that is made, is that the DR does not influence the electricity price. For an individual building
this is perfectly reasonable, but for large-scale demand response this might have to be taken into
account. Day-ahead prices are obtained from the transparency platform of ENTSO-e. ENTSO-E
is the European Network of Transmission System Operators (ENTSO-e n.d.).

Real Time Balancing is not done on the spot market, but is largely organised by TenneT,
as they have the final responsibility for keeping the grid frequency at 50 Hertz. Parties providing
balancing services to TenneT are called Balance Service Providers (BSPs). Imbalance is caused
by electricity consumers and suppliers deviating from their planned consumption/production.
Balance Responsible Parties (BRPs) maintain a portfolio of grid connections and are financially
responsible for deviations. They pay an imbalance price for the deviations from the planned
consumption/production in their portfolio. The balancing system consists of four balancing
products (TenneT 2023):

Frequency Containment Reserves (FCR). Each European TSO is obligated to have a certain
amount of FCR. FCR are automatically activated within seconds to maintain the correct grid fre-
quency. This service is usually supplied by power plants. The contracted power must be available
at all times during the contracted period. BSPs receive remuneration for their availability.

automatic Frequency Restoration Reserves (aFRR). aFFR bids are made to TenneT by BSPs
for up regulating power (produce more or consume less) and down regulating power (produce
less or consume more). The bids are placed in a merit order and TenneT then automatically
accepts bids as necessary to correct imbalances in the grid. Bids can be made up to 60 minutes
before the moment of delivery, and the market functions in blocks of 15 minutes.

manual Frequency Restoration Reserves, scheduled activated (mFRRsa). This reserve capac-
ity is activated in case of incidents that cause substantial power deviations. It is sold through
bids, but must be activated manually.

manual Frequency Restoration Reserves, directly activated (mFRRda). mFRRda are larger
incident reserves, for long-lasting power deviations. For this ancillary service, parties with ad-
ditional generation capacity are usually contracted. Similar to FCR, parties are obliged to be
able to draw or supply the contracted power on call from TenneT over the entire contracted
period. The contracted power may not be used for other purposes. BSPs are remunerated for
the capacity they have available, and the delivered power. This service is usually supplied by
parties owning an emergency generator. Additionally, BRPs can purposefully create imbalance

2https://www.frankenergie.nl/, https://tibber.com/nl, https://www.zonneplan.nl/
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in their portfolio if it counteracts the system imbalance. They are remunerated for the imbalance
price, which is based on the price in the aFRR market.

Evaluating the workings of the grid balancing system in the Netherlands, it seems aFRR is
the most suitable product that could be delivered by a flexible building. FCR and mFRRda
both require power capacity that is always available. This is not the case in office buildings,
as power cannot be reduced if it results in user comfort violations or EV/Laptop boundary
condition violations. Furthermore, FCR requires very high reaction times and mFRRda must be
activated for multiple hours to compensate for a failing supplier. Both may not be possible for
office buildings. The response time of HVAC systems is between 1 and 15 minutes (Aduda et al.
2016). FCR and mFRRda have strict contractual obligations that flexible buildings may not be
able to fulfill.

The aFRR market is most suitable as demand response would be activated in blocks of 15
minutes and bids can be made freely. BSPs can also enter a contract with the TSO, committing to
provide aFRR which they receive additional renumeration for, but freely bidding is also allowed.
BSPs must still go through a verification procedure to gain access to the aFRR market though.
aFRR price data can be found on the transparency platform of TenneT (TenneT n.d.).

4.3.2 Reference market

A flexible market needs to be compared with a reference market. The reference market will be a
contract with a fixed electricity tariff over the whole year. For a fair comparison, the fixed tariff
could be set to the yearly average of the day-ahead market. However, fixed tariffs are higher
than the DA average due to consumers typically consuming electricity at a higher price point, i.e.
their electricity consumption is not perfectly even over the day but spikes when prices spike. As
a solution, the reference will also use the instantaneous DA price. Assuming the energy supplier
makes no profit, this should on a yearly basis be similar to a contract with a fixed tariff.
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4.4 Control strategies

Figure 17: Key elements of HVAC control system Mař́ık et al. 2011

Key elements of the HVAC control system are shown in Figure 17. Each piece of equipment
is controlled by its own unitary controller. Unitary controllers often use setpoints of a constant
value and do not communicate with each other. Setpoints for temperature, relative humidity or
hot water delivery temperature are determined for equipment per zone. Set-points are tracked
by simple single-loop controllers such as thermostats (Morales-Valdés, Flores-Tlacuahuac, and
Zavala 2014). For example, radiators are often controlled by thermostatic radiator valves. The
mass flow rate of the hot water is adjusted based on the difference between the current room
temperature and the setpoint. Floor heating systems have an on/off-control Reynders, Nuytten,
and Saelens 2013. The system can be controlled more efficiently if a supervisory control system
coordinates the unitary controllers Mař́ık et al. 2011.

The supervisory control system can be designed in many possible ways. Three control strate-
gies will be applied in this research: a simple rule-based strategy, a smart rule-based strategy
and a more advanced model-based strategy. These three control techniques are widely used in
studies into demand response (Fonseca, Chvatal, and Fernandes 2021)

In rule-based control, setpoints are determined based on only the current circumstances and
take few parameters into account. This is often already rudimentary implemented in office
buildings with a day/night scheme. For example, if it is between 9:00 and 17:00, the temperature
setpoint is 21 degrees and from 17:00 to 9:00, 18 degrees. In the smart rule-based strategy, the
rules will be based on the electricity prices. As proposed by Finck et al. (2018), three price
periods will be used. If the electricity prices are known well in advance (as in the day-ahead
market), the mean price and standard deviation (sd) can easily be computed. If the electricity
price is below 1 sd from the mean, it is considered low and if it is above 1 sd, it is considered high.
During each pricing regime, different rules will be applied to the building. Rule-based control
typically results in sub-optimal control (Mař́ık et al. 2011), but the computational complexity
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Figure 18: Basic principle of model predictive control for buildings Široký et al. 2011.

is minimal, investments do not need to be made and the algorithm is easy to understand and
adapt by building managers. These advantages can induce conservative building managers to
prefer this control strategy.

A more modern approach is model-based management. Model predictive control (MPC)
systems use a building model to predict the interactions between the building installations and
local conditions. Decisions on control variables are made based on the predicted consequences.
This method also allows for cost-minimisation (or other types of objective functions) (Morales-
Valdés, Flores-Tlacuahuac, and Zavala 2014). MPC has been studied extensively as a means
to control HVAC installations (Široký et al. 2011, Sturzenegger et al. 2014). The basic working
of MPC is shown in Figure 18. At each timestep, a finite-horizon optimal control problem
is formulated and solved. The window can range from hours to days. A certain criterium is
optimized (the cost function), subject to building constraints and dynamics. The output is a
plan for the heating, cooling etc. The control problem is solved again for each timestep because
the state of model changes (Široký et al. 2011). A strong advantage of MPC is the consideration
of predicted future disturbances, such as occupancy and outside temperature. In this research,
weather and occupancy predictions are assumed to be perfect. The control horizon of the MPC
will be determined by the timescale at which the market information is available.
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4.5 User comfort

User comfort is an important topic in DR for the built environment. In office buildings this is
especially important, as employee productivity may not decrease as a consequence of performing
demand response. The two main parameters of user comfort are thermal comfort and indoor
air quality (Aduda et al. 2016). Thermal comfort is influenced by temperature and humidity,
indoor air quality mainly consists of CO2 level and humidity. As mentioned in energy assets,
concessions on CO2 level will not be made. The CO2 level is a user comfort norm that is a
large factor in productivity. High CO2 levels can cause headaches and decrease productivity.
Therefore, it is assumed that air circulation must be kept at the same level and cannot be scaled
down to provide flexibility. This leaves temperature and humidity as the user comfort norms to
use flexibly. However, Sweco experts indicate that humidity is rarely regulated in Dutch office
buildings, but may be measured occasionally. Therefore, only temperature remains as a flexible
user comfort norm.

4.5.1 Fanger’s model

A common approach to evaluate thermal comfort is by using Fanger’s model Fanger 1973.
Fanger’s model is used by the American Society of Heating, Refrigerating and Air Conditioning
Engineers (ASHRAE) in their standard for thermal comfort. The international ISO norm also
uses Fanger’s method and the Dutch norm copies ISO (Nederlands Normalisatie Instituut 2005).
It is also used in the sustainable building certification method BREEAM (DGBC 2021). Fanger
defines an index named Predicted Mean Vote (PMV) to measure the thermal comfort of certain
conditions. The PMV has seven values: +3 hot, +2 warm, +1 slightly warm, 0 neutral, -1
slightly cool, -2 cool, -3 cold. The PMV of a (conditioned) area is the prediction of the mean
value if people were to vote on thermal comfort in this room. Acceptable conditions are assumed
to be in the -0.5 to +0.5 PMV range. Calculation of the PMV takes into account metabolic
heat gain, body external work, skin heat loss, sweat heat loss, respiration heat loss, radiative
heat loss and convective heat loss. These calculations use the parameters water partial pressure
in the air, clothing surface temperature, isolation level and area, convective heat transfer coef-
ficient and air speed. A normal distribution can be applied to the PMV to get the Percentage
People Dissatisfied (PPD) index. In the PMV range -0.5 to +0.5, 5-10% of people are dissatis-
fied. 5% is the lower bound of PPD, as due to natural diversity of people a thermal condition
that satisfies everyone does not exist. Fanger’s model is quite complex and involves non-linear
equations. Solving the full model for hundreds, perhaps thousands of time steps in a simulation
would require a lot of computation power.

Morales-Valdés, Flores-Tlacuahuac, and Zavala (2014) state that the PMV (or other thermal
comfort calculations) can be used in two ways: as a penalty or as a constraint. In the former
method, deviation from the thermal comfort norm (e.g. PMV=0) results in a penalty on the
objective function of the model. Alternatively, hard limits on thermal comfort (e.g. PMV = [-
0.5,+0.5]) can be set. These limits may either not be violated at any point in time, or the average
over a time period must fall within the bounds, which is more relaxed. Similar approaches can be
taken using the PPD metric. Lastly, instead of the PMV and PPD metrics, the deviation from a
given temperature set-point can be penalised. In the end, the three approaches boil down to the
same constraint on thermal comfort, as the temperature bounds can always mapped from the
corresponding PMV and PPD. The choice between penalisation and constraining does influence
the resulting user comfort. Morales-Valdés, Flores-Tlacuahuac, and Zavala (ibid.) perform a
numerical study using the different approaches to user comfort to analyse the corresponding
energy consumption. They find that penalisation gives more flexibility in the control system,
but results in very volatile user comfort. At some points, the percentage of people dissatisfied
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is much higher under penalisation than constraining with the same energy demand. This counts
for PMV and PPD both. As the volatile comfort resulting from penalisation is highly undesired,
constraining PMV or PPD has preference. Constraining PMV or PPD gives very similar results,
however using PMV is preferred over PPD as PPD is non-linear. PMV is also the most common
indoor thermal comfort assessment indicator according to Sung, Hsiao, and Shih (2019).

4.5.2 Thermal comfort range

With Fanger’s model, thermal comfort ranges for offices can be computed for summer and winter
conditions. The required input is air speed, relative humidity, metabolic rate and clothing level.

Metabolic rate is measured in met, one met is equivalent to 58.5 W/m2 (Morales-Valdés,
Flores-Tlacuahuac, and Zavala 2014). Metabolic rates of different activities have been defined,
a few are given in Table 2. It is assumed office employees have a metabolic rate of 1.1 met,
which corresponds with the activity typing. Employees are not always typing, and may often be
reading (1 met), but there will always be a part of the employees that are presenting (1.2 met)
or walking about (1.7 met), so an average of 1.1 met can be assumed.

Activity Metabolic rate [met]
Sleeping 0.7

Sitting (quiet/reading) 1.0
Sitting (typing) 1.1

Standing (relaxed) 1.2
Walking about 1.7

Table 2: Metabolic rates of different activities.

Clothing insulation is measured in clo, one clo equals 0.155 K·m2/W (ibid.). Values for
many pieces of clothing have been determined. Office employees tend to dress similar due to
corporate dress codes. Summer and winter clothing ensembles are determined in Table 3. The
ensembles are constructed based on male employees. Female employees usually dress more varied,
but it is assumed they dress for the same weather conditions, resulting in the same total insulation
values.

Clothing piece Insulation value (clo) Summer Winter
Underwear 0.04 X X

Calf-length socks 0.02 X X
Shoes 0.02 X

Shoes or boots 0.06 X
T-shirt 0.08 X X

Long-sleeve dress shirt 0.25 X
Long-sleeve thick sweater 0.34 X
Straight trousers (thin) 0.15 X
Straight trousers (thick) 0.24 X
Standard office chair 0.10 X X

Total insulation (clo): 0.66 0.88

Table 3: Office employee clothing ensembles for summer and winter. Source: Sung, Hsiao, and
Shih (2019).
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A normal airspeed in office buildings is 0.1 m/s (Fanger 1973). Relative humidity should
be between 40-60% indoors, 50% will be assumed.

With the above assumptions, a comfort range complying with ASHRAE standard 55-2020
can be constructed for cold and hot days (Figures 19 and 20). For a humidity of 50%, the
cold temperature range is between 21.2 and 25.0 degrees celsius. The hot temperature range
is from 22.7 to 26.1, which corresponds with a summer temperature range given by the Dutch
occupational safety and health guideline (Arbo 2018).
Most of the days, the cold-normal temperature range shall be applied. If the average daily
temperature is above 18 C, the hot temperature range is applied. This approximately 90 days
per year. The indoor comfort temperature is not equal to the air temperature, but also depends

Figure 19: Summer comfort psychrometric
chart. Made with tool by Tartarini et al. (2020).

Figure 20: Winter comfort psychrometric chart.
Made with tool by Tartarini et al. (2020).

on the temperatures of the walls, floors and ceilings, as they give of radiative heat. The comfort
temperature is 50% air temperature and 50% surrounding walls and floor temperature. The
contribution of the walls and floors is calculated in proportion with their surfaces.
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5 Model implementation

5.1 Building model

The building model consists of the identified flexibility assets and a thermal model of the building
geometry. The thermal model of the building is required to calculate the response of the building
to changing the operation of the HVAC. This model is constructed with help from the BRCM
toolbox.

5.1.1 Thermal model

The thermal model data can be found in Appendix A. Figure 21 shows the building geometry.

5.1.2 External Heat Flux Models

Figure 21: Modelled office building of
16x25x35 meters with 60% window surface.

After the building construction has been set up,
various BRCM modules are available to define Ex-
ternal Heat Fluxes (EHFs). The BuildingHull
model takes care of convective/conductive heat
transfer through the external walls and windows as
well as solar gains on the building. An AHU mod-
ule is available to model the air handling unit, in-
cluding options for an energy recovery wheel, evap-
orative cooling of return air and heating/cooling
of supply air. For further heating/cooling needs,
there are theBEHeatfluxes andRadiatorsmod-
els. BEHeatfluxes are building element heat fluxes,
meaning a heat flux inside a building element such
as a wall. With this model floor heating can be
modelled. Lastly, there is an InternalGains model for gains due to occupants, lighting and
appliances. In these modules, the data from the previous sections has been filled in, as well as
the constraints discussed below.

5.2 Control and simulation

5.2.1 Variables and constraints

The building will be modelled as a discrete-time system:

xt+1 = A · xt +Bv · vt +Bu · ut +

nu∑
i=1

(Bvu,i · vt +Bxu,i · xt) · ut (11)

where

xt+1 = Temperatures of building elements at next time step
xt = Temperatures of building elements at time t
vt = Disturbances at time t
ut = Control input at time t
nu = Number of control inputs

Matrices A,Bv, Bu, Bvu,i and Bxu,i are generated by the BRCM toolbox. The first term
describes the heat exchange between the building elements (the indoor air is also part of this

31



vector), the second the heat gains/losses due to exogenous variables, the third the heat fluxes
due to the control input. The fourth term describes the heat fluxes due to air moving in-/outside
the building, due to natural infiltration or the AHU. This term introduces a mild non-linearity in
the system. As this would cause a large increase in computation time for the MPC optimization,
it can be circumvented by replacing the xt component in that term with an estimation of x. The
estimation of x will be based on the previous time step and is typically very close to the final x.

In the case of EVs and laptops, x is the state of charge of the battery and there are no
disturbances.

xt+1 = A · xt +B · ut (12)

For EVs, no discharge is assumed over the 8 hours period they are at the office, so A = 0.
Laptops will discharge as they are actively used.

A breakdown of the variables is given in Table 4. Constraints are also given. The laptop
and EV maximum capacities and charging power are calculated based on 400 employees. The
state of charge of laptop batteries must always be above 20%. Laptops and phones often start
giving warnings about the low battery state when the SoC falls beneath 20%. Office employees
would likely be uncomfortable with their laptop charge going beneath 20% without the recharging
starting. In the case of EVs, the available capacity is only a small part of the full battery capacity
(see section 4.1.1), so the full range can be used. The HVAC constraints were taken from an
example office provided by Sweco and scaled up. The heating capacities were set higher than
the example because while testing the model, they were insufficient for maintaining the thermal
comfort. The blinds setting ranges from a gain of 0.2 to 1.0, meaning 80% to 0% of the incoming
irradiation is blocked.

Variable Description Constraint
x system state
Ti temperature of each building element i comfort range
SoCLaptop state of charge of laptops [kWh] 3.2 < & < 16.2
SoCEV state of charge of EVs [kWh] < 456
u control input
PTABS,heat Heating power of the floor heating system [W/m2] < 43
PTABS,cool Cooling power of the floor heating system [W/m2] < 31
PAHU,heat Heating power of the AHU [W] < 62.866
PAHU,cool Cooling power of the AHU [W] < 78.582
ṁAHU Mass flow rate of air through AHU [kg/s] = 12.28
Ublinds,i Blinds setting on each building side N, E, S, W 0.2 < & < 1
PLaptop rate of charging of laptops [kW] < 13.0
PEV rate of charging of EVs [kW] < 182.4
v disturbances
Tamb ambient temperature [C] −
Tsoil soil temperature [C] −
PIG Internal gains [W/m2] −
Psol,i Solar irradiation on each building surface i [W/m2] −

Table 4: List of all variables in the building model.

Additionally, non-negativity constraints are active for all variables. Weather data were taken
from the KNMI. The internal heat production is 180 W for each employee; 100 W for ICT such
as laptops, beamers, servers and coffee machines and lighting, 80 W of metabolic heat production
(VABI 2023). At night, there is 5 W per person active still.
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5.3 Basic rule-based

The basic rule-based algorithm tries to keep the indoor comfort temperature at 22 ℃, or 23 ℃on
hot days. In the weekends and at night, the HVAC is mostly off but keeps the temperature
within 22 ℃± 5 ℃. The algorithm starts preheating/cooling the building from 6:00 am, and on
especially cold days at 4:00 am. EVs and laptops start charging from 9:00 am until full. The
fixed temperature setpoints are chosen because this is the reference scenario, and most office
buildings operate on set points instead of Fanger’s ranges.

5.4 Smart rule-based

The smart rule-based algorithm keeps the temperature in the comfort range. Within the range,
the heating/cooling is maximized in a low pricing regime, turned off in a high pricing regime,
and set to 40% power in a medium pricing regime. The EVs and laptops are similarly maximally
charged, not charged and charged at approximately 15%.

5.5 MPC

The MPC optimizes the control input through solving a linear program. Constraints are set to
ensure the system state gets updated correctly, the temperatures stay within the comfort lower
and upper bound, and the input stays within the constraints. The objective is to minimise the
costs, which is the product of the energy consumption and the electricity price. Initially, the DA
market is used, so one day is optimized each time. Withing that day, a rolling window is used
of 12 hours. At 12 am, the control input is optimized until 12 pm, and so forth. This speeds
up the computation time considerably. It takes approximately 3 seconds to run one day, and
15-20 minutes to run one year. The resolution of the model is 15 minutes. The EV and laptop
charging are also optimized by using simple battery models.

For weather and electricity prices, 2019 was used for the standard office model. This is regarded
as a normal year, before COVID-19 and before the current energy crisis, and will therefore serve
as the baseline.
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6 Results

In this section, results of the base case as described in the previous sections are presented and
verified against TNO data. After the initial results, various scenarios will be tested and their
effect on the economic potential is investigated.

6.1 Base case results

Firstly, the initial results will be discussed and the three algorithms compared. To study the
behaviour of the three algorithms, the control of the three assets is plotted in the figures below
for 1 day (3rd of January 2019).
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Figure 22: Basic RB
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Figure 23: Smart RB
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Figure 24: MPC

The basic rule-based control strategy charges the EVs right away, between 9 and 11 at a fairly
high price. The smart rule-based strategy charges maximally when the price is below the low
price line, at 15% when the price is medium and zero when the price is at its highest. The MPC
charges only at the lowest price points.
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Figure 25: Basic RB
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Figure 26: Smart RB

0 5 10 15 20 25

Time [h]

0

2

4

6

8

10

12

14

C
h
a
rg

in
g
 p

o
w

e
r 

[k
W

]

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

E
le

c
tr

ic
it
y
 p

ri
c
e
 [
e
u
ro

/k
W

h
]

Laptops

Figure 27: MPC

The basic RB strategy again charges right away, and then continues charging at the laptop
discharge rate. The smart RB strategy is also similar to the EV result. The MPC shows more
on/off charging behaviour. It lets the laptops drain to a lower battery level and then charges
maximally.
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hTABS is the underfloor heating, hAHU the air handling unit heating
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Figure 28: Basic RB
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Figure 29: Smart RB
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Figure 30: MPC

The basic RB pre-warms during the early morning and then turns the heating on/off as
necessary. It results in quite some heating power being supplied in higher price periods, i.e.
between 9:30 and 11:00 and 17:00 to 19:00. The smart RB has a peak in the lowest price point,
but also needs to heat in the morning during the high price to get the building to the comfort
level. The MPC is clearly the winner by using the underfloor heating maximally at the start of
the day to pre-heat the building, and then only heats up the incoming air the rest of the day. On
this day, the basic RB HVAC uses 1,210 kWh, the smart RB HVAC 1,424 kWh and the MPC
990 kWh.

In Tables 5, 6 and 7, the results are seen for running the simulation for an entire year.

EV Basic RB Smart RB MPC
Consumption [kWh] 94850 94850 94850
Bill [euros] 11270 10480 10390
Mean price [euro/kWh] 0.119 0.111 0.110

DR savings [euro] - 790 880
ESFI - 7.0% 7.8%
Sflex - 0.91 0.96

Table 5: Comparison of annual electricity consumption between the three control algorithms for
EV control

The smart RB and MPC are both able to reduce the charging costs for EVs. They perform quite
equally, meaning planning the charging based on low and high price regimes is almost as good
as optimization. With Sflex being close to 1, almost all energy is shifted. Despite almost all
charging power being shifted to the lowest price points, the reduction in costs is quite minimal.
It is likely the 2019 DA prices are not variable enough to profit much from. This is partly due to
the electricity price consisting for ~50% of the DA price and ~50% of fixed taxes. The variable
cost component is then only 0.05 euro/kWh.
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Laptops Basic RB Smart RB MPC
Consumption [kWh] 7860 7860 7860
Bill [euros] 900 880 880
Mean price [euro/kWh] 0.115 0.112 0.111

DR savings [euro] - 20 20
ESFI - 2.2% 2.2%
Sflex - 0.26 0.54

Table 6: Comparison of annual electricity consumption between the three control algorithms for
laptop control

The cost reduction for laptops is minimal.

HVAC Basic RB Smart RB MPC
Consumption [kWh] 59720 47600 43250
Bill [euros] 7120 5700 5040
Mean price [euro/kWh] 0.119 0.120 0.117

corrected DR savings [euro] - -28 114
corrected ESFI - -0.4% 1.6%
Sflex - 0.46 0.69

Table 7: Comparison of annual electricity consumption between the three control algorithms for
HVAC control

The HVAC consists of the AHU heating and cooling, and the underfloor heating and cooling.
The MPC is much more efficient than the rule-based strategy in terms of electricity consumption.
This energy saving effect, although nice, is not the primary interest. To calculate the DR savings
and ESFI of DR, the electricity bills are corrected to eliminate the energy saving effect. The
MPC bill without DR but with energy savings would be the MPC consumption times the basic
RB mean price. Comparing this with the actual bill gives the corrected DR savings. The example
is worked out below.

correctedDRsavings = (43250 · 0.119)− 5040 = 5154− 5040 = 114[euro] (13)

The smart RB performs worse than the basic RB, though the difference is small. It could be that
there are not enough low price periods to take advantage of. The MPC shows some savings, but
the amount is almost negligible. The reason is probably the same as with the EVs. Additionally,
the HVAC has strict comfort constraints which the EV does not suffer from, reducing the profits
even more.

6.2 Verification

Dutch research organisation TNO studied the gas and electricity usage of office buildings in the
Netherlands using 2019 data (Sipma 2022). The average gas consumption split over energy labels
is given in 31. These numbers can be compared with the thermal energy supplied to the modelled
office to verify the energy consumption of the heating installations.
The modelled office building is well-insulated, fairly new and all-electric, placing it probably in
one of the best energy label categories. Reading Figure 31, the average expected gas consumption
should be 60 kWh/m2/year. With a boiler efficiency of 90%, this gives 54 kWh/m2/year thermal
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energy supplied to the building. The thermal energy supplied to/extracted from the building in
the model is presented in Table 8.

Figure 31: Average annual gas consumption of Dutch office buildings, split over energy labels.
Source: Sipma 2022

Basic rule-based
fixed setpoint

Smart rule-based MPC
Basic rule-based
temperature range

Thermal E[kWh/m2] Thermal E [kWh/m2] Thermal E [kWh/m2] Thermal E [kWh/m2]
Total 60.7 44.0 38.1 41.4
Heating 35.2 35.0 35.9 34.6
Cooling 25.4 9.1 2.2 6.8

Table 8: Annual thermal energy supplied to modelled building in all algorithms, normalized by
building area.

Ideally, the thermal heating energy required in the basic rule-based scenario should be similar
to the TNO data. Since the former is 35.2 kWh/m2 and the latter 54 kWh/m2, they are not
very close but also not wildly different. The difference can be explained by multiple factors:

• TNO works with the so-called ’usable surface’ in its analysis. This is the total surface
minus the surface occupied by walls, stairwells, elevators and vides. Many offices also have
a large entrance hall or canteen where floor space is missing.

• The TNO database is dominated by small offices. Only 30% of the analysed offices are
>1000m2. The report does provide a further breakdown of gas intensity between office sizes,
with the >1000m2 category having an average gas intensity closer to 50 kWh/m2/year, so
45 kWh/m2/year thermal power supplied. According to the analysis in subsection 4.2, this
is a very large category, so the actual number may still vary considerably within this size
category.

• Offices are all different and for example employee behaviour and control strategy can have a
large impact on the energy consumption. The TNO study also reports a factor 4 difference
in total energy consumption between the 10% lowest and 10% highest energy consuming
offices.

If the ’usable surface’ is actually 80% of the total surface, the modelled building consumes 44.0
kWh/m2 of heating energy. Comparing that with the 45 kWh/m2/year for larger buildings, the
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modelled result is very close to the observed data. The smart rule-based and MPC algorithms
use a similar amount of heating energy over the year. The small differences can be explained by
two mechanisms. The smart RB and the MPC should use less energy than the basic RB because
they use a different comfort setting. The smart RB and MPC have a lower comfort bound of
21.2 ℃on cold-normal days while the basic RB tries to keep the temperature at 22 ℃±0.4. On
the other hand, the smart RB and MPC can overheat the building at times, which consumes
more energy but could result in lower costs if it is done in low-price periods. In the smart RB
algorithm, the first mechanism seems to dominate while in the MPC, the second likely causes
the extra energy consumption.

The cooling is harder to verify as it is lumped into a number for total electricity use in the
TNO data study. Looking at Table 8, the differences in cooling energy are striking (the physically
correct term is extracted heat instead of cooling energy, but for readability ’cooling energy’ will
be used). The basic RB uses 2.8 and 11.4 times more cooling energy than smart RB and MPC
respectively. The difference is largely explained by the different comfort setting. This is seen
in the last column, which are the results from running the basic rule-based control with the
temperature range from the flexible control strategies instead of the fixed setpoint. Here, the
maximum indoor temperature can be as high as 26.1 ℃instead of 23 ℃±0.4, which lowers the
cooling energy required from 25.4 kWh/m2 to 6.8 kWh/m2. The smart RB uses more cooling
energy, likely due to overcooling in low-price periods. The MPC uses very little cooling energy.
This is likely due to two advantages the MPC has: its 12-hour ahead optimisation means the
algorithm knows far ahead when it’s going to be a warm and sunny day and can cool the building
cheaply at night by letting outside air in. The rule-based algorithms also use this pre-cooling
strategy, but only up until their setpoint/comfort bound. The MPC can intelligently cool down
the building below the lower comfort bound and let the early morning sunshine heat up the
building again up to the lower comfort bound, so the resulting temperature at e.g 9.00 am is
lower than in the rule-based strategies. Furthermore, in the rule-based strategies the blinds are
closed if the solar irradiation is higher than 200 W/m2 and open otherwise. In the MPC strategy,
the blinds are also closed if the solar irradiation is higher than 200 W/m2, but otherwise the
MPC can decided whether the blinds should be open or closed. On hot, sunny days, the MPC
can therefore keep the blinds down the whole day to reduce the solar heat coming in.

The HVAC electricity consumption in Table 7 stems from dividing the thermal energy con-
sumption in Table 8 by the COP of the heat pump, which is different at every time step dependant
on the outdoor temperature and heating/cooling mode. Over an entire year, the seasonal COP
(SCOP) and seasonal energy efficiency ratio (SEER) can be calculated, which are the average
COPs for respectively heating and cooling mode. The SCOPs and SEERs of the three control
strategies are as follows:

Control strategy SCOP [-] SEER [-]
Basic rule-based 3.5 5.3
Smart rule-based 3.5 4.7

MPC 3.5 4.7

Table 9: SCOP and SEER of each control strategy

The SCOP should be approximately 3.1 (Nederlands Normalisatie Instituut 2022) and the SEER
typically ranges between 4 and 6 (Energy Star 2023). The model’s COP and SEER appear to be
within the right range. Although the COP is slightly higher than the standard value suggested
by the Nederlands Normalisatie Instituut, it should be noted that there is variability in heat
pumps.
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6.3 Scenarios

To study the future profitability of the modelled office building, various scenarios will be simu-
lated in which variations in parameters will be made and their impact on the economic potential
of demand response investigated. The first scenarios will deal with the endogenous variables,
followed by the exogenous variables.

6.3.1 Higher capacity - Endogenous

The poor profitability of HVAC DR could be due to the HVAC installed capacity being too
low. If the capacity is low there is less room for flexibility, as the assests will often need to
operate at maximum capacity to retain indoor comfort, irregardless of the current electricity
price. Changing the floor heating capacity from 43 W/m2 to 50 W/m2 and the AHU heating
capacity from 62,866 W to 72,296 W, the results are as in Table 10. The cooling capacity is
not changed as the MPC uses little of it. The smart RB is left out as the DR savings were
negative in the base case. The DR savings are slightly increased and the total consumption

HVAC Basic RB (std W) MPC (std W) MPC (high W)
Consumption [kWh] 59720 43250 42660
Bill [euros] 7120 5040 4960
Mean price [euro/kWh] 0.119 0.117 0.116

corrected DR savings - 113.7 123.4
corrected ESFI - 1.6% 1.7%
Sflex - 0.69 0.70

Table 10: Comparison of annual electricity consumption between standard capacity basic RB
and MPC, and increased capacity MPC.

slightly decreased, but the change in capacity does not seem to have a large effect. The current
dimensioning ensures thermal comfort can be maintained on each day in the year, but the capacity
is quite tight. Dimensioning for the worst day of the year, however, means that on most other
days the system is already overdimensioned. A further increase in capacity does not appear to
enhance the results.

6.3.2 Insulation - Endogenous

The modelled office is a modern office complying with years 2015-2020 insulation standard.
Changing that to the 1992-2013 standard, the results are as in Table 11. The heating power
of the underfloor heating was slightly increased, to 45 W/m2 to be able to maintain thermal
comfort. The electricity consumption is considerably higher in all control strategies. The ESFI
has not changed much from Table 7.

6.3.3 The future EV fleet - Endogenous

In the current model, EV capacity was based on 2019 data. However, by 2030 all newly sold cars
in the Netherlands must be electric. By 2040 or 2050, perhaps all cars are electric. Changing
share of EVs in the employee car fleet from 19% to 80%, the results are as follows:
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HVAC (R=2.5) Basic RB Smart RB MPC
Consumption [kWh] 72810 60130 57380
Bill [euros] 8700 7240 6700
Mean price [euro/kWh] 0.119 0.120 0.117
corrected DR savings - -57.5 154
corrected ESFI - -0.7% 1.8%

Table 11: Comparison of annual electricity consumption between the three algorithms with low
insulation.

EV Basic RB Smart RB MPC
Consumption [kWh] 399360 94850 94850
Bill [euros] 47470 44140 43796
Mean price [euro/kWh] 0.119 0.111 0.110

DR savings [euro] - 3330 3674
ESFI - 7.0% 7.8%

Table 12: Comparison of annual electricity consumption between the three control algorithms
for EVs, with higher EV penetration.

6.3.4 Simulation year - Exogenous

The 2019 electricity prices are relatively low and consistent. In a more volatile market, the
profits from demand response may be higher. The results for HVAC and EV are seen in the
tables below. Laptops have been left out due to the small capacity. The weather in 2022 was
hotter in summer and colder in winter compared to 2019, leading to an increase in electricity
consumption. The results have improved significantly with the 2022 electricity prices. The

HVAC (2022) Basic RB Smart RB MPC
Consumption [kWh] 63320 47530 45510
Bill [euros] 23070 16600 14550
Mean price [euro/kWh] 0.364 0.349 0.320
corrected DR savings - 715 2029
corrected ESFI - 3.1% 8.8%

Table 13: Comparison of annual electricity consumption of the HVAC between the three algo-
rithms with 2022 electricity prices

DR savings are higher due to a 3x higher electricity price, but the ESFI is also higher, showing
flexible operation has saved costs.

6.3.5 aFRR market - Exogenous

As described in 4.3, an office could also participate in the aFRR market. Participating in the
aFRR market would be rather complicated to do rule-based, so only the MPC is considered here.
To optimize on the aFRR market, blocks of 1 hour are considered. The aFRR optimization is
done after the DA planning has been determined. Within a 1 hour block, the total electricity
consumption must be the same as to not deviate from the DA planning. For the HVAC, the
AHU heating and cooling may not deviate more than 20 kW to prevent large swings in thermal
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EV (2022) Basic RB Smart RB MPC
Consumption [kWh] 94850 94850 94850
Bill [euros] 33380 26790 25890
Mean price [euro/kWh] 0.352 0.282 0.273
DR savings - 6590 7490
ESFI - 19.7% 22.4%

Table 14: Comparison of annual electricity consumption of the EVs between the three algorithms
with 2022 electricity prices

comfort. The results are seen below, for 2019 and 2022. The first thing that is noticed is
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Figure 32: 4-weekly profits from the aFRR market for HVAC and laptops in 2019 and 2022.

HVAC Laptops
2019 466 158
2022 867 613

Table 15: Annual aFRR profits

that the EV is missing. Coincidentally, the charging power of the EVs and the EV capacity
have a ratio where the EVs are charged in exactly two hours at maximum power. In the case of
MPC, the EV charging power is therefore always 0 or maximum in a 1 hour block. Due to the
energy conservation constraints, there is no room to react to the aFRR market. The HVAC and
laptops have a more spread consumption profile, allowing for aFRR services. The results are
quite positive. The 2019 aFRR profits are much higher than the 2019 DA profits but although
the 2022 aFRR profits are higher still, they are much lower than the 2022 profits on the DA
market.
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Figure 32 shows the profits through the year. Evidently, the HVAC cannot provide much
balancing service during the summer months when the electricity consumption is lower. The
laptops have the advantage of being able to operate on the aFRR market all year long, resulting
in high profits relative to the laptop aggregated battery size.

6.4 Costs

The costs adapting a building to be able to provide DR can vary greatly depending on the
metering that is already present. As mentioned in the introduction, Dutch offices are required
to measure their HVAC consumption and perform other energy-saving measures by 2023. This
might mean the investment costs for DR-readiness are low for Dutch office buildings, but it de-
pends on the building. RVO (2023) provide a database of costs of taking energy-saving measures.
For example, it costs 6,000 euros to install an automatic pump control for a heat pump. To in-
stall a weather-dependant temperature control, 1,200 euro need to be paid, based on a 2,500 m2

building. Besides hardware costs, software developers and/or building maintenance engineers
would need to be paid for an improved rule-based control system or a model of the office to
perform MPC. The costs for HVAC DR may be quite high, but with an annual profit of 2000
euros (in 2022), it could be earned back. EV and laptop DR have much lower investment costs.
There is no hardware change required, only a software change needs to be made. With the high
profits from EV in the DA market and laptops in the aFRR market, the payback times should
be fairly short.
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7 Conclusion

The first research question has been answered in the section 4.1 and the results. HVAC, EVs
and laptops were initially identified as possible providers of demand response. From the results,
it can be concluded that the laptop capacity is too small to make a meaningful difference on the
DA market, but on the aFRR market performs quite well. The EV on the other hand is the
most profitable asset in the DA market, but does not perform well in the aFRR market due to
the DA optimization resulting in strong on/off behaviour. The HVAC MPC control saves 114
euros in year 2019 and 2029 euros in year 2022, which is a decent result but the investment costs
could be high.

The second research questions concerns the control strategies. From the results, it can be
seen that the HVAC is hard to optimize with a rule-based strategy. To perform HVAC DR,
MPC is required. For laptops and EVs, the rule-based strategy is almost as good as the model
optimization. Either could be implemented, the MPC is not much more complex than the rule-
based algorithm. To participate in the aFRR market, it is recommended to use an optimization
algorithm. Another thing that should be mentioned is the energy-saving capability of the MPC.
For the HVAC, the profits due to saving energy far outweigh the profits from demand response.

Research question three asks what the current profitability is. The base case DR profitability
is quite poor. The annual profit is around 1000 euros. The size of the building should be taken
into account here; the office is 40,000 m2 with 400 employees. The turnover of the business(es)
housed in this office building is much higher. It is questionable if 1000 euros is worth the hassle
of implementing DR.

The next research question is about whether changes made to the base case can improve
the economic potential. From the results, it appears that a higher HVAC capacity or a lower
insulation level do not affect the results much. This is positive, as it means older buildings or
those with lower capacities can also provide DR. Changing the amount of EVs present at the
office has a large impact on EV DR savings.

The fifth and last research question deals with future profitability. No future electricity prices
have been tested, as constructing these prices would require considerable literature reviewing.
Very recent prices (2022) have been tested though. 2022 was a year with high prices due to an
energy crisis, no one knows the future but future electricity prices could very well be akin to
2022 prices. With the energy transition in sight, it is at least unlikely 2019 prices will become
the norm again. The changes in electricity prices have a high impact on economic potential. The
HVAC DR savings increase almost twentifold, and the EVs nearly tenfold. The total is around
10,000 euros per year. The aFRR market returns a 600 euro profit in 2019 and 1500 in 2022.
This shows that DR profits are highly dependent on the electricity market, and that the profits
going forward will likely be quite positive. However, it should still be placed into perspective
with the size of the building. If each employee earns 40,000 euros per year, 10,000 euros is not
much compared to the labour costs alone: 16 million.

To conclude, economic potential highly depends on the electricity market and while the
payback time of investments seems positive, especially for EVs and laptops, the profits may not
be very significant compared to an office turnover. Moreover, the EVs seem the best candidate
for DR. The profits are the highest and the investment relatively low. Especially with the rising
EV penetration, this will likely become even more profitable in the future. HVAC DR is also
promising, but the building control is quite complex. It is recommended to focus on energy-
saving measures to reduce HVAC consumption, as this has a larger impact than DR. Laptops
unsurprisingly do not turn high profits in the DA market. They do, surprisingly, perform well in
the aFRR market. It remains the question whether office employees find it worth it to give the
charging of their belongings out of hand though.
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8 Discussion

”All models are wrong, but some are useful”. Any model that tries to approximate such a large
system as an office building can be improved. For example, user behaviour can have a large
impact on building operation. If employees open windows, carefully constructed heat exchange
equations can be blown away. The BRCM toolbox is also not perfect. As mentioned before,
for example conductive heat transfers between floor and walls are not considered. Furthermore,
perfect prediction of the weather and occupancy is assumed, which is a large advantage for the
MPC, as seen in the results of the cooling. Fanger’s method is, while still in use, quite old. Vellei
and Le Dréau (2019) for example propose an extended Fanger’s model taking the rate of change
of comfort into account.

There are some factors the model is sensitive to, the first one being the COP. The COP
determines the electricity consumption from the thermal input. If the SCOP is 3 instead of 3.5,
the entire HVAC consumes 15% more energy. Furthermore, the percentage of window surface in
the walls influences the HVAC behaviour considerably. Larger windows mean more heat loss in
winter, but also more solar heat gain. In summer the HVAC will need to work harder, in winter
it depends on the daily solar power. The EV results highly depend on the assumed EV capacity.
The EV capacity calculation rests on many factors: the average distance driven per day, the
share of employees coming to work by car, the share of cars that are electric and the amount of
office days of employees. Changes in these parameters can quickly double or triple the EV DR
savings.

One limitation was seen in the results: the EVs could not perform balancing services. To
enable this opportunity, the DA optimization may have to be adjusted to prevent maximum
charging, or there needs to be one optimization algorithm that optimizes profits on both markets
at the same time. A number of other changes are also of interest to future research: thermal
storage was not implemented due to modelling complexity, but may improve the MPC business
case. Furthermore, it would be interesting to investigate the potential of varying the refresh rate.
Being able to flexibly refresh the air could also help maintain indoor comfort as efficiently as
possible.

More scenarios could be investigated, but one should be careful with making the distinction
between energy-saving and DR. For example, the user comfort bounds could be lowered, but
this would likely mainly lead to an energy use reduction instead of more flexibility, as the MPC
already does not use the temperature range too much. Another interesting option would be
installing solar panels. It is also the question however whether this would increase the demand
response or simply lower the energy consumption.

Further research could also focus on other control strategies. Besides MPC, machine learning
and multi-agent systems are gaining in popularity.
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Mäki, Aleksi, Juha Jokisalo, and Risto Kosonen (2019). “Demand response of space heating
using model predictive control in an educational office building;” in: E3S Web of Conferences
111. doi: 10.1051/e3sconf/2019111030. url: https://doi.org/10.1051/e3sconf/
2019111030.
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