
What explains the difference between
naive Bayesian classifiers and

tree-augmented Bayesian network
classifiers.

Author

Thomas Wojcik
5915864

Master Thesis
Computing Science

Supervisor
Dr. Silja Renooij

Dr. Thijs van Ommen

Department of Information and Computing Sciences
Utrecht University

The Netherlands
April 2023

Contents

1 Introduction 2

2 Preliminaries 5
2.1 Bayesian Networks . 5
2.2 Naive Bayes . 6
2.3 Tree Augmented Naive Bayes . 7
2.4 Comparing NB and TAN . 9

3 Experiments 9
3.1 Methodology . 10
3.2 Experiment 1: Full independent variables . 12

3.2.1 Results . 12
3.2.2 Discussion . 13

3.3 Experiment 2: Naive Bayes and TAN . 14
3.3.1 Results . 14
3.3.2 Discussion . 15

3.4 Experiment 3: Random Bayesian Network . 16
3.4.1 Random Networks with δ = 0.1 . 17

3.4.1.1 Results . 17
3.4.1.2 Discussion . 17

3.4.2 Random Networks with δ = 0.5 . 18
3.4.2.1 Results . 18
3.4.2.2 Discussion . 19

3.4.3 Random Networks with δ = 0.7 . 19
3.4.3.1 Results . 19
3.4.3.2 Discussion . 20

3.4.4 Random Networks with δ = 0.9 . 21
3.4.4.1 Results . 21
3.4.4.2 Discussion . 21

3.4.5 Structural patterns . 22
3.5 Experiment 4: High Mutual Information . 23

3.5.1 Three Variable Network . 24
3.5.1.1 Results . 25
3.5.1.2 Discussion . 26

3.5.2 Mutual Information Boosted Random Bayesian Network 27
3.5.2.1 Results . 29
3.5.2.2 Discussion . 30

3.5.3 Real world network . 30
3.5.3.1 Results . 31
3.5.3.2 Discussion . 33

4 Conclusion 34

1

Abstract

Näıve Bayesian Networks (NB) have been proven to be decently accurate classifiers, even
in cases where their independency assumption does not hold. An approach to relax the inde-
pendency assumption is to search through the possible single dependencies that can be added
to the network, creating a so called Tree Augmented Bayesian Network (TAN), with the inten-
tion to improve the performance of the network. However, these TAN classifiers often perform
about as good as a NB classifier, while increasing computational cost. In this research we will
show what causes the difference in performances between these classifiers. This will be done by
comparing NB and TAN classifiers learned from theoretical data-sets to test different theories.
Afterwards, these theories are tested on real world data-sets, to see if these theories also hold in
practice. The comparison between NB and TAN will not only be performed on their accuracy,
but also on metrics pertaining to uncertainty, such as their Brier scores.

1 Introduction

Classification is the task of identifying the class label for instances, based on their features, and
is one of the most important tasks in data mining. Some examples of classification problems are:
what kind of object is seen in an image? Or what disease does a patient suffer from?. In these cases
the color value of each pixel and symptoms of the patient are the features describing the instance.
The instances are the image and the patient and their classes are the kind of object in the image
and the disease the patient has.

As the examples show, classifiers can be used in a very wide field of practices, which makes
learning accurate classifiers from pre-classified data a very active research topic in computer science
and has been researched for decades. When deciding on what classification technique to use for any
given problem, multiple aspects of the technique should be considered: how much training data
does the technique need? How long does training the classification model take? How accurate will
the classification model be? How fast can the model classify instances?

Depending on the task at hand, certain questions become more important than others, and
having a technique outperform another based on a single of these metrics can decide if it is used
or not. One simple yet effective classifier is the Naive Bayes classifier(NB). This classifier can be
represented using a Bayesian Network ([20], [21]): a probabilistic graphical model with a directed
graph, to establish probabilistic independencies between variables in the network, combined with
probability functions for each node in the graph, see Figure 1 for an example. Each node in the
network represents a variable and the associated probability function takes in the node’s parent
variables and outputs the probability distributions of the node’s possible values. The naive part
of Naive Bayes is that it is a specific type of Bayesian Network: it makes the assumption that all
feature variables are independent given the class. This means that Figure 1 is not a Naive Bayesian
Network, More is explained about Naive Bayes in section 2.2.

Some advantages that Naive Bayes has are that it requires a small training data-set to be accu-
rate in its predictions ([15]), can be learned fast from any data-set, and is fast with classifying once
learned ([8]). One of the big advantages in terms of learning speed compared to other classification
techniques, is that there is no need to search for the model structure, as the Naive Bayesian Net-
work always has the same structure adapted to the amount of variables, whereas other classification
techniques often have to learn a structure before learning the parameters.

This has lead to making NB a popular research topic within the field of classification. Re-
searchers have shown many useful cases where Naive Bayes performed good([12]), found explana-

2

Figure 1: a representation of a Bayesian Network as a directed graph with probability tables.
The edges in the graph show the dependency structure and the probability tables indicate the
probabilities of each value of each node and show how these probabilities are influenced by their
parent nodes.

tions for why it performed so good([15], [16], [22], [25]), and found variations of the model that
improved performance even further. One of these variations of Naive Bayes is called the Tree Aug-
mented Bayesian Network (TAN)([2], [7], [8], [13], [17]). TAN tries to improve Naive Bayes by
relaxing the independency assumption, but it is not a clear winner over NB, as can we show in
Table 1. More about TAN and how it compares to NB is explained in section 2.

The goal of this research is to find insight as to why the more simple technique Naive Bayes
sometimes performs better than the more elaborate technique Tree Augmented Naive Bayes. This
leads to the following research question:

Research question: What explains the difference between naive Bayesian classifiers and tree-
augmented Bayesian network classifiers?

Answering this question would allows researchers or data analysts to have an understanding of
which technique will perform better than the other before trying both and comparing their results.
To answer this research question, we will perform experiments to answer the following sub-questions,
which combined will answer our research question.

Research sub-question 1: How do the two classifiers compare?

We first looked for insight on this question by looking at the results of related works, which we
summarized in Table 1. In this table we see that TAN performs better than NB in most cases.
However, most experiments do not have a very clear winning technique, as the difference in accuracy
are rather small. Further insights from previous work is given in Section 2. We will discuss what
insights we have gained from each experiment on how the two classifiers compare in Section 3.1.

Research sub-question 2: Can performance differences be explained by dependencies in the
data?

3

Data-set NB TAN
adult 82.82 83.78
anneal 94.32 97.44
anneal.ORIG 87.53 89.08
audiology 71.23 71.66
australian 86.23 84.2
autos 64.83 75.5
balance-scale 91.36 91.36
breast 96.72 90.24
breast-cancer 72.06 71.01
breast-w 97.28 97.42
car 86.15 90
chess 87.23 92.07
cleve 81.79 74.60
colic 78.81 79.63
colic.ORIG 75.26 75.8
corral 85.88 96.06
credit-a 84.78 84.78
credit-g 76.3 75.3
crx 85.54 78.23
diabetes 74.94 75.66
DNA 94.27 93.59
flare 78.13 80.01
german 74.35 73.1
glass 70.49 61.92
glass2 79.17 77.92
heart 82.74 83.33
heart-c 84.14 82.45
heart-h 84.05 84.05
heart-statlog 83.7 82.96

Data-set NB TAN
hep 77.38 66.36
herpatitis 87.52 87.52
hypothyroid 92.79 93.35
ionosphere 83.95 90.32
iris 89.52 86.19
kr-vs-kp 87.89 95.5
labor 93.33 93.33
letter 78.14 80.25
lymph 85.67 86.38
lymphography 79.72 85.03
mofn-3-7-10 86.43 91.11
mushroom 95.57 99.83
nursery 90.31 92.23
pima 73.08 72.94
primary-tumor 46.89 47.5
satimage 75.38 87.2
segment 90.05 94.98
shuttle-small 98.34 99.53
sick 96.74 97.61
sonar 75.75 76.07
soybean 92.96 85.94
soybean-large 91.29 92.17
splice 95.36 95.45
vehicle 61.7 69.87
vote 90.12 92.14
vowel 79.04 92.42
waveform-21 77.89 78.38
waveform-5000 79.96 82.18
zoo 96.09 94.18

Table 1: Average accuracy between NB and TAN on different data-sets ([6], [8], [11], [14]). Out of
these 67 data-sets, TAN has a higher accuracy than NB on 42 data-sets, NB has a higher accuracy
on 10 of the data-sets, and both models tie on 15 of the data-sets when taking into account the
standard error given by the researches.

As will be explained in Section 3, these research questions will be answered by performing exper-
iments using different data-sets. These data-sets will be generated from either self-created Bayesian
networks with specific dependency properties or from real-world Bayesian networks. The experi-
ments using self-created Bayesian networks will help give insight into how dependency properties
in the data influences the performance of NB and TAN. Afterwards, these insights are tested on
real-world data to see if they hold in the real-world.

4

2 Preliminaries

This section gives further explanation about how Bayesian networks work for readers without
complete knowledge on this topic. The section will not explain all there is to know about Bayesian
networks, but should allow readers with a background in computer science to understand the rest
of this thesis. We will give specific detail on how Naive Bayesian networks and Tree Augmented
Bayesian networks work.

2.1 Bayesian Networks

As previously mentioned and showed in Figure 1, a Bayesian network is a compact representation
of a joint distribution by using a set of nodes which are connected by directed edges. Each node
represents a variable and contains the probability distribution for each combination of states of the
variables from which the node has an incoming edge. We call the node with an outgoing edge the
parent of the node to which the edge points, which is then called the child node. In Figure 1 we
show the probabilities of the Grass variable being either Wet or Dry depending on the state of
Rain and Sprinkler.

The direction of the edges in a Bayesian network can represent a causal relationship between the
nodes; however, this is not necessary. Knowing the value of a child node influences the probability
distribution of a parent node, without changing how the two variables depend on each other, whereas
this is not the case in a causal relationship.

The edges in a Bayesian network represent possible dependencies, which does not mean that
nodes that are not connected have to be independent. Two nodes are independent in a Bayesian
network when they are d-separated. We will not go into detail into how nodes can be d-separated
from each other, but in the case of Naive Bayes all feature variables are d-separated from each other
given the class variable, and in the case of Tree Augmented naive Bayesian networks the features
are d-separated from each other given the class variable and its parent variable. This allows for
easier computation of the probabilities in the network, which will be explained further later on,
while still making the variables dependent on each other when the class is not known, which is the
case in classification tasks. The edges in a Bayesian network are not allowed to form a cycle by
following the direction of the edges.

A Bayesian network calculates the probabilities of all unknown variables given the known vari-
ables. The known variables are often called evidence. The probabilities of each variable without any
evidence in the network are called the prior probabilities and the probabilities given the evidence
are called the posterior probabilities. Calculating the posterior probabilities is done by using the
probability distribution in each node, given its parent variables, and applying Bayes’ rule for the
child nodes, see Equation 1. The evidence does not have to be the known state of a variable’s
direct parents or children. The previously mentioned d-separation is used to know which proba-
bilities change when there is evidence for a variable in the Bayesian network, as a variable that is
d-separated from another variable has no influence on that variable.

P (Parent|Child) =
(Child|Parent)P (Parent)

P (Child)
(1)

Next we will explain in more detail how Naive Bayes works and is used for classification. After-
wards we will also explain how tree augmented Bayesian networks work and what is known about
its performance.

5

2.2 Naive Bayes

The Naive Bayes classifier ([12], [15], [16], [22], [23], [25]) is a classification model that uses a
Bayesian Network to calculate the probability that an instance has for every possible class it can
have, under the naive assumption that all features of the instance are independent given the class.
This leads to the dependency graph structure in Figure 2 when looking at the solid edges. It
is used for classification by classifying an instance as the class with the largest probability. The
independence assumption on the features of each instance gives the technique its name and is its
strength, because it makes the math for the conditional probabilities in the Bayesian network a lot
simpler.

To calculate the probability of an instance being a certain class wi given the combinations of
values x for the feature values it would be possible to learn the conditional probability distribution
of the class given the features P (wi|x), such as the table for Grass in Figure 1. However, the
joint distribution of the class and feature variables increases exponentially in size with the amount
of feature variables, which would make this calculation exponentially long. Therefore, we instead
use the Bayes’ rule, see equation 2, which allows us to calculate P (w|x) from the likelihood of the
features given the parent node P (x|w), and the probabilities of the classes P (w).

P (wi|x) =
P (x|wi)P (wi)∑c

j=1 P (wj)P (x|wj)
i = 1, ..., c (2)

P (x|wi) =

n∏
j=1

P (xj |wi) i = 1, ..., c (3)

This reduces the computation time to learn the probabilities in the model from data to O(n+
c×|x|), where n is the number of data points in the data-set, c is the number of different classes and
|x| the number of feature variables. This is the case because the frequencies of each class, feature
and likelihood of features can be found by going through the data-set once (O(n)), after which the
posterior probability P (w|x) can be calculated by filling in equation 2 for every class (O(c× |x|)).
To classify an instance, the model only has to calculate the probability of the class given the data,
which can be done in O(c× |x|) as previously mentioned.

Another advantage of dividing the large joint distribution is that the marginal probability dis-
tributions of each variable can be more accurately estimated from smaller amounts of data ([15]).
Because of this, Naive Bayes has proven itself to be a competitive classifier in terms of accuracy
with other state-of-the-art classifier techniques ([12], [16], [22]), even though the independency
assumption on which it is based often does not hold on real data-sets.

To explain what causes the NB classifier to perform good, despite its strong independence
assumption, researchers looked into experimental and theoretical approaches. It was found through
experimentation that NB performs good in both of the cases where the independency assumption
holds and where the features are fully dependent on each other ([22]), which means that when one
feature is assigned a value, all other features are determined in a deterministic way.

Further research showed that NB also performs good with inaccurate prior probability estimates
([23]). This research also mentions that entropy and mutual information of the features are often
used for estimating how well NB will perform and shows that entropy is the better predictor for
the probability of a wrong classification.

The understanding that Naive Bayes performs worse when the feature variables have strong
dependencies has lead to Kuncheva et al ([15]) and de Wachter ([25]) to do research on the bounds

6

Figure 2: a representation of a Bayesian Network as a directed graph. The solid lines form a Naive
Bayesian Network where all feature variables are not directly connected and independent given the
class, whereas by including the dotted lines a Tree Augmented Bayesian Network is created with
single dependencies among the feature variables.

on the error of the feature variable probabilities for Naive Bayesian networks with 2 and 3 feature
variables. Both show that their found bounds are largest when the features are fully dependent.
Other research that came from this understanding are researches into variants of NB that can
handle dependent features better than NB can. One such variant is called Tree Augmented Naive
Bayes.

2.3 Tree Augmented Naive Bayes

The idea for Tree Augmented Naive Bayes (TAN) is to use Naive Bayes, but allow some dependencies
among feature variables in the network, such that the posterior class probabilities are more accurate
when the features have dependencies on each other ([2], [7], [8], [13], [17]). The tree in Tree
Augmented Bayesian Network is the tree-like structure of dependencies that is added to the feature
variables. The tree structure of the original TAN classifier by Friedman et al ([11]) allowed for only
a single parent for each feature variable in the tree structure. Some later variations for TAN, such
as ETAN by Long et al [17]), relaxed this restriction by allowing any predefined amount of parents
for each feature variable in the tree structure, as long as the structure still satisfies the Bayesian
network restrictions.

This tree is found through a short structure searching algorithm ([11], [13]), see Algorithm
1. In this algorithm the class conditional mutual information between two features is calculated
using Equation 4. Mutual information is an indication of how much the uncertainty of a feature is
reduced by knowing the state of another feature ([9]), see Equation 5. The class conditional mutual
information is an indication of how much the uncertainty of a feature is reduced by knowing the
state of another feature and the value of the class variable. Friedman et al ([11]) prove in their
research that the tree structure that maximizes the log likelihood of the feature variables is found
by using the class conditional mutual information to determine the tree structure. An example of
such a TAN model can be seen in Figure 2 by looking at both the solid and dotted lines.

7

Algorithm 1 TAN

input: TrainingSet
CondMutInfo← Dictionary
for Feature X in TrainingSet do

for Feature Y in TrainingSet and Y ! = X do
CondMutInfo[(X,Y)]← CMI(X,Y |W)

end for
end for
Graph← FullConnectedGraph
Graph.Weights← CondMutInfo
Tree←MaxWeightSpanningTree(Graph)
DirectedTree← OutwardDirectionsFrom(TrainingSet.Features[0], T ree)
TAN ← NaiveBayesStructure
for Edge E in DirectedTree do

TAN.Edges.Append(E)
end for
Return: TAN

CMI(X,Y |W) =
∑
w

P (w)
∑
y

∑
x

P (x, y|w) log2(
P (x, y|w)

P (x|w)P (y|w)
) (4)

MI(X,Y) =
∑
y

∑
x

P (x, y) log2(
P (x, y)

P (x)P (y)
) (5)

Besides adding computing time for finding the additional tree structure, TAN also increases
computational workload in equations 2 and 3 ([17]). Because of the additional parent node that
all of the feature nodes have, besides the root of the tree, the probability functions get another
dimension, which increases the computation time of classification by a factor of the maximum
amount of possible values of a feature and increases the computational space of the model in
memory by an equal amount.

Although this additional setup time and the increased calculations when classifying are not
trivial, this relaxation is still computationally cheap compared to other classification models ([2],
[8], [11]), allowing TAN to be a competitive model to state-of-the-art classification techniques.

Not much is known on the exact behavior of TAN, such as how good or bad it can perform in
extreme cases, or what causes it to perform good or bad. Instead many of the research focus on new
variants of TAN, in order to improve the model’s performance even further ([2], [8], [13], [17]). Most
of these variants of TAN have the same idea supporting their success theoretically: extending the
model to catch more dependencies in the data, which leads to the model’s performance improving.

One such variant is called Average TAN (ATAN)([13]). It expands the structure searching step
by calculating a maximum weighted spanning tree for each feature variable, using that feature
variable as the root node. This results in multiple TAN models. When predicting, the average
probability of the class variable of all TAN models is used. Because the tree structure differs
between each model, the models simulate different dependencies, allowing the model to classify
instances as accurate or better than TAN.

8

Another variant is named Extended TAN (ETAN) ([17]). This variant expands the structure
searching step by building the tree structure in iterations, where each iteration adds a single arc
to the network, but instead of adding only one arc per node, two arcs are added per node. This
results in one model with many arcs between the feature variables. These added arcs also capture
different dependencies and result in a significant better performance than TAN in most cases.

2.4 Comparing NB and TAN

Since the inception of TAN it has been compared to NB, as it is an extension of the technique.
Most often this is done on classification accuracy, but sometimes other metrics are used, such as
zero-one loss or log-likelihood. Unfortunately, none of the researches on TAN dive as deep into
what causes TAN to perform good and what causes it to perform worse, as is done for NB.

Although some researches only denote the win/tie/loss ratios between NB, TAN and their
classification technique, many of them do provide their achieved accuracy on different data-sets.
We have made table 1 to show the average accuracy of different works for NB and TAN. In it we
can see that on average TAN has a higher accuracy on 36 out of 56 data-sets and NB has the higher
accuracy on 17 data-sets and their accuracy are equal on the 3 other data-sets. This shows that
although TAN performs better than NB on most of these data-sets, it is not a clear victory.

As mentioned in section 2.2, there exist proofs for the bounds on the error on NB, which are
largest for fully dependent variables. However, no such proofs exists as of now for TAN, as it is
mathematically harder to write a proof for all scenario’s, as the scenario’s scale exponentially with
the amount of dependencies within the network. This amount increases at an exponential rate for
TAN, due to the additional dependency between the variables.

3 Experiments

First I will give a general overview of how I worked to answer my research questions, before I go
into detail of every experiment, including their implementation, in the next chapter.

To answer sub-questions 1 and 2, experiments on generated data-sets are performed. The data-
sets are each time created from a Bayesian network (the truth). This way the predicted probabilities
of NB and TAN can be compared with the use of the Brier score.

The first of these experiments uses fully independent variables, see Section 3.4 for the detailed
implementation. This experiment can be referenced as a base case for results on completely random
data. My expectation was for NB and TAN to perform about equally bad, as both assume there
is a structure to the data, which is not present. I expected NB to perform slightly better than
TAN, because it has no dependencies between the feature variables, which makes it closer to the
non-existent structure of the data.

To also have a base case for when both NB and TAN perfectly represent the structure in the
data, experiments with data generated from NB and TAN networks were performed. See Section
3.3 for the details of this experiment. The expectation was for both models to perform very good on
these experiments, because their network structures either are exactly as the structure of the data,
or are very close to the structure of the data, because NB and TAN have very similar structures.
I expect that NB will perform slightly better on the data generated by NB networks and TAN to
perform slightly better on the data generated by TAN networks.

To answer sub-question 1, experiments with different structures needed to be performed in order
to find a pattern in the structures that cause either NB or TAN to outperform the other. To gain

9

insight into this, experiments with random Bayesian network structures were performed, see Section
3.4. The experiments also give insight in how NB and TAN perform on data generated from sparse
and dense networks. A pattern was found in the Bayesian networks that generated data-sets on
which TAN would outperform NB. To confirm this belief, three follow up experiments are used.

First, an extreme example of the pattern was tested using Bayesian networks with only 3 vari-
ables and two dependencies, see Section 3.5.1. Second, randomly generated Bayesian networks with
the found pattern are used to further test if the pattern is the cause for TAN to outperform NB.

Finally, to answer sub-question 2 and test the found pattern, an experiment was performed on
data-sets generated from real world Bayesian networks that have the desired property. Although the
previously mentioned experiments help understand what causes TAN to perform better or worse,
this experiment gives some insight in how realistic these theoretical experiments are.

3.1 Methodology

As mentioned before, I will answer the research questions through insights gained from experiments.
Each experiment will be comparing the performance of NB and TAN, trained on the same data-set
used for that experiment, with each other on accuracy, Brier score (Equation 6) ([5]), root mean
square error (RMSE, Equation 7) and average error of the posterior class probability of the data-
generating Bayesian network (Bayes error, Equation 8). Each experiment is repeated 100 times,
resulting in 100 values of these four performance metrics.

Each experiment will have different structure of the data-generating Bayesian network. The
details of the structure used will be described in the chapters of the experiments themselves, ac-
companied by an image showcasing the structure. Some experiments will use some randomness in
the structure of the data-generating network. In such cases the structure of the data-generating
network will be randomly generated each time the experiment is repeated.

The data-set used in each experiment consists of 2000 sampled data-points from the data-
generating Bayesian network. The data-set will be split 90%-10% into training- and test-set. The
training-set will be used to find the tree structure of the TAN model and estimating the likelihood
of each individual variable in both the NB and TAN models. The test-set will be used for prediction
and the performance of this prediction is measured and shown as the result of the experiment.

The data-generating Bayesian networks will have 10 feature variables and 1 class variable and all
variables will be binary. The High Mutual Information experiments in Section 3.5 are an exception
to this. How many feature variables are used and how many different values the class and feature
variables have are discussed in the details of these High Mutual Information experiments.

The structure for these Bayesian networks will differ between each experiment. All probabilities
in the data-generating Bayesian networks will be determined randomly using a uniform distribution.
Each experiment is repeated for 100 different data-sets, each generated from a different Bayesian
network with different probability distributions. NB and TAN are both trained and tested on the
same 100 data-sets, resulting in 100 data-points of each performance metric.

The experiments are coded in Python ([10]). The pgmpy ([1]) library is used for all probability
calculations using its implementation of Bayesian networks. The fit function is used to train the
Bayesian networks and the simulate function for generating data. The NumPy ([19]) library is used
for all complex mathematical functions, such as the square root and logarithm. It is also used for
the global random number generator, which uses the same seed for each experiment, but a different
state each time an experiment is repeated. The pandas ([18]) library is used for the data structures
used for the data-sets with all of its variables.

10

The Brier score ([5]) is calculated using equation 6, where PPred(W = 1|xi) is the probability
of the class being 1 given a combination of feature values x, c is the true value of the class in the
data-set and n = 200, as it is averaged over each prediction on the test-set. This results in the Brier
score being equal to the mean squared error of the prediction. A larger Brier score is worse than a
low Brier score, with a score of 1 being the worst case, which will happen if the model predicts a
probability of 1 for the incorrect class in the data. In contrast to accuracy, the Brier score can be
used to ascertain how uncertain a model is in its prediction, as it compares how close its prediction
is to the real occurrence. For example, a model that correctly classifies a full data-set with 100%
accuracy, but predicts every time a 51% chance for the correct class, will have a (0.51−1)2 = 0.2401
Brier score.

AverageBrierScore =
1

n

n∑
i=1

(PPred(W = 1|xi)− c)2 (6)

Because each data set will be generated by a Bayesian network, we will have access to the ”real”
probability of the class variable from the data-generating network given the evidence. To see how
well NB and TAN will be at predicting this probability, the Root Mean Square Error (RMSE)
of the class probability will be used for comparison, see equation 7. Where PPred(W = 1|xi) is
the predicted probability of the binary class being 1, PGen(W = 1|xi) is the probability of the
data-generating model of the binary class being 1 and n = 200.

RMSE =
1

n

n∑
i=1

√
(PPred(W = 1|xi)− PGen(W = 1|xi))2 (7)

Just as with the Brier score, a lower RMSE is better than a higher RMSE, with 1 being the
worst case scenario and 0 being the best case scenario. An example of when the RMSE might
give us insight that accuracy and the Brier score cannot give is when both the data-generating and
the predicting network have a PPred(W = 1|xi) of 50%, but in prediction each time the wrong
class is allocated. In this case the accuracy of the model would be 0%, its Brier score would be
(1− 0.5)2 = 0.25, but its RMSE would be 0, showing that the model has accurately estimated the
class probability.

To give insight in how uncertain the data-generating model is for each data point, the average
Bayes Error is measured, see equation 8. Here ci is the value of class which is 0 or 1, PGen(W = 1|xi)
is the probability of the class being 1, n = 200, and ABS() is a function which returns the positive
number of the value it is called on.

AverageBayesError =
1

n

n∑
i=1

ABS(c− PGen(W = 1|xi)) (8)

This makes the Bayes Error the average probability of the data-generating model for the incor-
rect class of the data-points in the data-set. An interpretation of the Bayes Error of a model would
be how well does the generative class probability reflect the class values in the data-set. A high
Bayes Error shows that the data-generating Bayesian network has a high error in the probability
of the class. This is an indication that a Bayesian network with a good estimation of the ”true”
class probability, indicated by a low RMSE, will likely have a low accuracy and a high Brier score,
because the true class probability was unlikely to generate the class values in the data-set.

If the class probability is well represented in the data-set, then the largest the Bayes Error
can be is 0.5, which is the case if the class probability is a 50/50 split. If the class probability is

11

any other distribution, then the Bayes Error should be lower. The Bayes Error being larger than
0.5 would indicate that the data-generating model is unlikely to generate the class values that are
present in the data-set. This means that the probabilities in the data-generating model are not well
represented in the data-set. Given our goal to approximate the ”true” model of the data using our
Bayesian network, this is problematic. This problem should not occur in large enough data-sets.

3.2 Experiment 1: Full independent variables

The first experiment uses a data-set generated by sampling from 11 different independent random
probability distributions. As previously mentioned, each probability in the distributions is a random
sample from a uniform distribution between 0 and 1. This experiment can help answer what depen-
dency structures cause NB or TAN to outperform each other, by showing how adding dependencies
in the predicting network that are not present in the data generation can influence performance.
This could be the worst case scenario for TAN, as TAN introduces more dependencies than NB.
However, it is also possible for the TAN networks to have all of these introduced dependencies be
very weak.

This experiment was repeated on 50 data-sets using 10-fold cross validation instead of the 100
data-sets without cross validation, resulting in 500 total training- and test-sets which were evaluated
on their performance metrics. The reason for this was the great variance that was noticed during
the testing of the experiment. After repeating the tests using cross validation the variance was
greatly reduced, allowing for a more clear analysis of the results.

3.2.1 Results

In Figure 3 the performance of NB and TAN are plotted against each other. We can see that the
differences in accuracy and Brier score between the models are small, showing that neither model
is much better than the other in being confident on their predictions. The two largest differences
in accuracy were split in favor of NB and TAN, both with a difference of 8%.

Figure 3: Difference per performance metric per generated data-set between Naive Bayes and TAN.
Each point shows the performance of a NB model and a TAN model trained and tested on the same
data-set. The grey line indicates NB and TAN to have equal performance, points above the line
indicate TAN scoring higher and points below the line indicate NB scoring higher.

12

Figure 4 shows the distribution of the performance of NB and TAN on each performance metric
as a box-plot where the line indicates the median, the coloured boxes show the first and third
quartiles, and the whiskers show the variability outside of the upper and lower quartiles. The
graphs for NB and TAN look almost identical, with the largest difference being TAN’s slightly
higher RMSE.

(a) (b)

Figure 4: Performance of NB and TAN on data-sets generated by Bayesian networks with only in-
dependent variables. Average metrics NB: 0.725 Accuracy, 0.182 Brier score, 0.025 RMSE. Average
metrics TAN: 0.724 Accuracy, 0.183 Brier score, 0.032 RMSE.

3.2.2 Discussion

The most clear difference that can be seen is when looking at the RMSE plot. Here we see that only
almost all RMSE scores of the TAN models were higher than those of the NB models, although
very slightly. Only 4 out of the 500 results were in favor of TAN. As the only difference between
the NB and TAN models are the added dependencies between the feature variables, these added
dependencies would have to be the cause of this notable trend.

Another interesting trend to observe is how different the RMSE behaves from the accuracy and
Brier score. The latter two show that on some data-sets both models perform very well, while the
models perform very bad on others. Whereas the RMSE would make us believe that all models
perform relatively well. This can be explained by looking at the Bayes Error in Figure 4. The
Bayes Error of the generating class probabilities are very high for these data-sets. This means that
the class probabilities are not well represented by the class values in the data-set. This leads to
incorrect classifications with estimated probabilities close to the real probabilities for the class. This
is also the explanation for both models to also have accuracies below 0.5. As even if all conditional
probabilities in the NB and TAN models would be identical to the independent probabilities of the
variables, if the class probability is close to 0.5, then the chance of making incorrect classifications
is still high due to variance.

The reason for the Bayes Error to be this high has to do with what the class probabilities look
like. All variables in the data-generating model are independent with random probabilities, thus
the probability of the most likely class is in the range [0.5, 1]. When this probability is 0.5, then the
Bayes Error will also be 0.5, whereas the Bayes Error would be 0 if this probability is 1. Because
this probability is uniformly distributed, the Bayes Error for this experiment is very high.

13

3.3 Experiment 2: Naive Bayes and TAN

The next two experiments can be used as base-cases to help answer what dependency structures
cause NB or TAN to outperform one another, as a NB and a TAN will be used to generate the
data-sets. These experiments will show how good these networks perform when they completely
match the generating network, which will be used as a base-case to compare to.

3.3.1 Results

Figure 5: Difference per performance metric per generated data-set between Naive Bayes and TAN
on the same data-sets.

In Figure 5 the performance of NB and TAN are plotted against each other on data generated
by a NB model. Note that the accuracy graph starts at 0.8, as the measured accuracies are all
rather high, the graph is more zoomed in than others. Figure 6 shows the performance of NB and
TAN on data generated by a TAN model.

Figure 6: Difference per performance metric per generated data-set between Naive Bayes and TAN
on the same data-sets. Average metrics NB: 0.957 Accuracy, 0.032 Brier score, 0.006 RMSE.
Average metrics TAN: 0.956 Accuracy, 0.032 Brier score, 0.008 RMSE.

14

(a) (b)

Figure 7: Performance of Naive Bayes and TAN on data-sets generated by Naive Bayesian networks.

Figure 7 shows the performance of NB and TAN on each performance metric for the NB-
generated data-set. In Figures 8 we show the performance of NB and TAN on the TAN-generated
data-set. By comparing the difference between the two figures, we see that the performance of both
NB and TAN is more varied on the TAN generated data-sets.

(a) (b)

Figure 8: Performance of Naive Bayes and TAN on data-sets generated by TAN networks. Average
metrics NB: 0.879 Accuracy, 0.088 Brier score, 0.103 RMSE. Average metrics TAN: 0.888 Accuracy,
0.080 Brier score, 0.086 RMSE.

3.3.2 Discussion

We see in Figure 5 NB and TAN perform very similarly, and when looking at the difference in
Accuracy, Brier score, or RMSE between the two models per individual experiment not a single
difference is statistically significant. This can be explained when thinking about how TAN differs
from NB: it has added dependencies between the feature variables, but if these dependencies are not
present in the data, then it will add dependencies with no significant influence on the probabilities
in the model. This, however, can not be said about data generated from a TAN model, as the
”true” model will have significant dependencies between the feature variables, which NB cannot
learn but TAN can.

In Figure 6 the performance of NB and TAN are plotted against each other on data generated by
a TAN model. Although the performance of NB and TAN still lies very close to each other in this

15

experiment, there seems to be more of a distinction than with the experiment with NB generated
data. TAN seems to be the better performing model in Figure 6, but the averages of the metrics
are very close to each other.

An interesting point to mention is that the biggest difference for Brier score and RMSE between
NB and TAN is from the same data-set. However, this data-set scores nearly identical on accuracy
between NB and TAN, with only a 0.05 difference in favor of TAN.

Overall all metrics are lower compared to the experiment with the NB generated data. This is
either caused by the more intricate interactions between the feature variables or the more inaccurate
representation of the class probabilities, as can be seen by the slightly higher Bayes Error in Figure
8 compared to Figure 7. The Bayes Error might on average become lower if the size of the data-sets
would be made larger. But as the Bayes Error is still far below 0.5, I believe the issue of the larger
Bayes Error is not significant enough.

3.4 Experiment 3: Random Bayesian Network

This experiment will use data-sets generated from Bayesian networks with random structures. These
random structures are created in three steps:

1. Given the probability of an edge between any two variables δ, create an edge between those
variables with probability δ.

2. Turn every edge into a directed edge to create a directed acyclic graph (DAG). The graph
is guaranteed acyclic by ordering the variables from class to feature variable A and then
alphabetically until the tenth feature variable J and then choosing the direction from the first
in the ordering to the latter in the ordering.

3. Create a Bayesian network from the DAG by filling the nodes with random probabilities
sampled from a uniform distribution between 0 and 1.

Examples of networks generated this way can be seen in Figure 9. As δ has a large influence
on how these networks are structured, the experiment is run with the following values of δ: 0.1,
0.5, 0.7, and 0.9. The thickness of the edges shows the mutual information (Equation 5) of the two
variables. Mutual information is a measure of how much the uncertainty of one variable decreases
by knowing the value of the other variable. High mutual information between variables means that
knowing the value of one of the variables gives high certainty of the value of the other variable. We
say that two variables with high mutual information have a strong influence on each other. Edges
with high mutual information are interesting to look at, because they have strong influence within
the Bayesian networks.

It is remarkable that most edges in the random networks, as can be seen in Figure 9, have very
low mutual information, as this means that most individual edges have very little influence on the
probability distributions. This can be seen by looking how thick the edge A → C is in Figure
9b, which has a mutual information of 0.633. This is caused by how the random probabilities
are generated and mutual information is calculated. To find the P (x, y) in Equation 5, all other
parent-variables of the child-variable are summed out. However, the parent-variable for which we are
calculating the mutual information has a uniformly random influence on each of these conditional
probabilities. With more parent-variables to sum over, this summation is more likely to cancel out
the influence a single parent has on the child-variable. It is therefore no surprise that the highest

16

(a) Example of a Random Net-
work with δ = 0.1

(b) Example of a Random Net-
work with δ = 0.5

(c) Example of a Random Net-
work with δ = 0.7

(d) Example of a Random Net-
work with δ = 0.9

Figure 9: Examples of Random networks generated with different values of δ. The thickness of the
edges represents the mutual information (Equation 5) between the variables.

mutual information shown is between a child-variable with only a single parent variable. How this
influences the outcome of each experiment is discussed separately for each experiment.

3.4.1 Random Networks with δ = 0.1

3.4.1.1 Results

In Figure 10 we see the performance of NB and TAN on the same data-sets plotted against each
other. We can see that the performance of NB and TAN is very similar for these networks. The
differences in some of the RMSE scores are relatively bigger than in Accuracy and Brier scores.
These outliers in RMSE correspond to the bigger differences in Brier score and Accuracy, all in
favor of TAN.

In Figure 11 we show the performance of NB and TAN on each performance metric.

3.4.1.2 Discussion

The performance of both NB and TAN in the experiment with δ = 0.1, see Figure 10, is very similar
to the performance on Independent Networks in Figure 3 when it comes to accuracy and Brier score.
This is likely due to the data-generating networks being very sparse, as is seen in Figure 9a.

In the experiment with independent variables, TAN always lost to NB on RMSE, which is
no longer the case here. This is likely caused by variables that are independent of the class,
but dependent on each other, in the data-generating model. Naive Bayes will only consider the

17

Figure 10: Difference per performance metric per generated data-set between Naive Bayes and TAN
on the same data-sets.

(a) (b)

Figure 11: Performance of Naive Bayes and TAN on data-sets generated by Random Bayesian
networks (δ = 0.1). Average metrics NB: 0.701 Accuracy, 0.188 Brier score, 0.045 RMSE Average
metrics TAN: 0.702 Accuracy, 0.187 Brier score, 0.047 RMSE.

patterns, that these variables create, to be connected to the class variable, whereas TAN can detect
the influence these variables have on each other and thereafter neglect the influence they have on
the class variable, as they are not connected to the class variable.

3.4.2 Random Networks with δ = 0.5

3.4.2.1 Results

Figure 12 shows the performance of NB and TAN on data-sets generated from random Bayesian
networks with δ = 0.5. The graph shows very similar results for NB and TAN. However, there are
some differentiating data-points, both in favor of NB and in favor of TAN. Most of the data-points
not on the equivalence line are in favor of TAN.

In Figure 13 we show the performance of NB and TAN on each performance metric.

18

Figure 12: Difference per performance metric per generated data-set between Naive Bayes and TAN
on the same data-sets.

(a) (b)

Figure 13: Performance of Naive Bayes and TAN on data-sets generated by Random Bayesian
networks (δ = 0.5). Average metrics NB: 0.771 Accuracy, 0.154 Brier score, 0.144 RMSE. Average
metrics TAN: 0.783 Accuracy, 0.149 Brier score, 0.133 RMSE.

3.4.2.2 Discussion

With a higher value of δ the overall performance of NB and TAN seem to still be similar, as can
be seen in Figure 12. As the data-generating graphs are less sparse, see Figure 9b, both models
perform better, as more features can be used to infer the probability of the class. Although the
difference in accuracy seems to be more spread out in Figure 12 than in Figure 10, there are still no
large differences in the metrics. The extreme outliers in RMSE have disappeared, supporting the
theory that they were the result of variables independent of the class variable, which is less likely
to be the case in these data-generating network.

3.4.3 Random Networks with δ = 0.7

3.4.3.1 Results

In Figure 14 we show the performance of NB and TAN on the same data-sets. We see that there
are no Brier score or RMSE results in favor of NB by a significant margin, whereas there three

19

Figure 14: Difference per performance metric per generated data-set between Naive Bayes and TAN
on the same data-sets.

Accuracy results in favor of NB over TAN. All other results are either a draw between the two
techniques, or in favor of TAN.

In Figure 15 we show the performance of NB and TAN on each performance metric.

(a) (b)

Figure 15: Performance of Naive Bayes and TAN on data-sets generated by Random Bayesian
networks (δ = 0.7). Average metrics NB: 0.751 Accuracy, 0.167 Brier score, 0.192 RMSE. Average
metrics TAN: 0.770 Accuracy, 0.156 Brier score, 0.171 RMSE.

3.4.3.2 Discussion

By increasing δ further to 0.7, the performance of NB and TAN does not seem to change as much as
expected, as can be seen in Figure 14 compared to Figure 12. The best performances of all statistics
have lowered, but the averages are about the same. There are however more data-sets where TAN
clearly outperforms NB. The largest outliers in accuracy, Brier score and RMSE are from the same
data-sets and the patterns in these networks are discussed more thoroughly in Section 3.4.5.

The network shown in Figure 9c generated the data-set which is the most in favor of TAN in
accuracy and Brier score. Although TAN also outperformed on RMSE on this data-set, it is not
the biggest difference for this metric. Not much stands out from this specific model. The class

20

variable is well connected to the other variables and no singular dependency is much stronger than
the other dependencies.

3.4.4 Random Networks with δ = 0.9

3.4.4.1 Results

Figure 16: Difference per performance metric per generated data-set between Naive Bayes and TAN
on the same data-sets.

Figure 16 shows the performance of NB and TAN on random Bayesian networks with δ = 0.9.
In the results we see that no single Brier score is significantly in favor of of NB, only one RMSE
score is in favor of NB, and only 3 Accuracy scores are in favor of NB. Most Accuracy and Brier
scores are not in favor of either technique, whereas most RMSE scores are in favor of TAN.

It is interesting to note that in this experiment, NB scored less than 0.5 Accuracy on two data-
sets. This means that the structure it learned from the data-set was detrimental to its performance
when compared to only knowing the probability of the binary class. In the case of a classifier only
knowing this single probability, its worse case scenario would have an expected Accuracy of 0.5,
which is the case if the class probability is 0.5.

In Figure 17 we show the performance of NB and TAN on each performance metric.

3.4.4.2 Discussion

The largest value of δ used in experiments is 0.9, as the structural variance decreases with larger
values of δ. A fully connected graph with δ = 1 is not a realistic Bayesian network, but as these
networks are very close to a fully connected graph, these networks can also be considered as not
realistic.

We can see the average performance of NB and TAN of the experiments with δ = 0.9 stay almost
the same compared to the experiments with δ = 0.7 by comparing Figures 14 and 16. Their Brier
scores and RMSE also show similar patterns, but there is a change when it comes to accuracy. The
highest measured accuracy for δ = 0.9 is higher than that for δ = 0.7, but also the lowest measured
accuracy is lower.

It was not expected for both NB and TAN to still perform this good in terms of the three
performance metrics. A likely reason for this is the aforementioned low mutual information between

21

(a) (b)

Figure 17: Performance of Naive Bayes and TAN on data-sets generated by Random Bayesian
networks (δ = 0.9). Average metrics NB: 0.776 Accuracy, 0.150 Brier score, 0.202 RMSE. Average
metrics TAN: 0.793 Accuracy, 0.141 Brier score, 0.182 RMSE.

the variables, which is even lower with the higher values of δ, as more parent nodes with random
probabilities lead to lower mutual information values. Because all these dependencies have low
impact on the probability distributions, both NB and TAN will be able to accurately classify the
classes, as not knowing these low impact influences on the class probability does not impact the
performance.

The higher accuracies can be attributed to the lower Bayes Error of the data-generating models
when comparing Figures 15 and 17. The lower accuracies, however, can not be attributed to the
Bayes Error. This shows that the increased amount of low impact dependencies in the networks do
make it harder for the more simple networks to perform well.

3.4.5 Structural patterns

Although the performance metrics of the experiments with random networks do show a difference
in performance between NB and TAN for different levels of connectedness of the data-generating
models, there is no clear best or worse case of connectedness. So instead of the varying levels of
connectedness, I started looking at the differences in the graph structure of the Bayesian networks
and the probability distributions in each data-generating network in each experiment. To visualize
this, all data-generating models were drawn with the width of the edges determined by the Mutual
Information between those two variables, see Figure 18 for some examples.

The examples in Figure 18 were not chosen randomly, but because they illustrate a trend
among the Bayesian networks that generated data-sets on which TAN outperformed NB on all
three performance metrics: at least two variables in the network have high mutual information
with each other. In most cases these variables do not include the class variable, but in Figure 18i
the high mutual information is between one feature variable and the class variable.

As previously mentioned, edges with high mutual information are not frequent in these networks.
This general infrequency combined with high frequency within the data-generating models on which
TAN outperforms NB leads me to believe this is a possible cause for TAN to outperform NB.

However, not all data-generating networks that generated data-sets on which TAN outperformed
NB contained this pattern. Nor did all data-generating networks that did contain this pattern result
in a data-set on which TAN outperformed NB on all three performance metrics. More experiments
were performed to confirm that the presence of at least two variables with high mutual information

22

(a) Example of a Random
Network with δ = 0.1

(b) Example of a Random
Network with δ = 0.5

(c) Example of a Random
Network with δ = 0.5

(d) Example of a Random
Network with δ = 0.7

(e) Example of a Random
Network with δ = 0.5

(f) Example of a Random
Network with δ = 0.5

(g) Example of a Random
Network with δ = 0.7

(h) Example of a Random
Network with δ = 0.9

(i) Example of a Random
Network with δ = 0.9

Figure 18: Examples of Random Bayesian networks where TAN outperformed NB on accuracy,
Brier score and RMSE. The thickness of each edges represent the mutual information between the
variables.

with each other results in TAN outperforming NB, which are described in the next section.

3.5 Experiment 4: High Mutual Information

The following three experiments are used to confirm that high mutual information between two
feature variables leads to TAN outperforming NB. First, an extreme case with Bayesian networks
of only three variables, which will also show how having a high mutual information between two
feature variables differs from having a high mutual information with the class variable. TAN is
expected to outperform NB with a high mutual information between two feature variables, as the
features with a high mutual information will be connected in the TAN model due to the algorithm
used to find the connections between the feature variables, see Algorithm 1.

The second experiment with high mutual information will use random Bayesian networks with
increased mutual information between at least two feature variables. By increasing the amount of

23

edges with high mutual information, we expect TAN to outperform NB. The last experiment will
show if this theory also holds on data generated by ”real world” Bayesian networks.

3.5.1 Three Variable Network

Figure 19: The structure of the Bayesian network used in this experiment, called the TVN structure.

The structure of the Bayesian networks used in this experiment is the same for the 500 times it
is repeated, which can be seen in Figure 19. The reason for repeating this experiment 500 times is
that, because of the networks only having three variables in the network, it takes considerably less
time than the experiments with 11 variables in the network. The probabilities for the network were
found using Algorithm 2, which was used for each of the 500 times this experiment was repeated.
The algorithm returns a single network using the structure in Figure 19, where each node is assigned
probabilities, such that the mutual information between nodes A and B and nodes B and C are
maximal, while the mutual information between nodes A and C are minimal. These properties will
show how having a node with a strong influence on the network separated by a single node affects
the classification of the class variable.

Each of the 500 networks are found using Algorithm 2. The algorithm tries 200 probability
distributions for node B and 200 for node C, for a total of 200 × 200 = 40.000 combinations of
probability distributions. The 200 probability distributions for each class are created by sampling
100 random probability distributions from a uniform distribution and the other 100 distributions
are created by flipping one half of the distributions around, for example: P (B|A) = 0.8 and
P (B|¬A) = 0.4, then the flipped distribution would be P (B|A) = 0.8 and P (B|¬A) = 1 − 0.4 =
0.6. In the algorithm this is called the ReverseNegClass function. This was done because the
mutual information between features is likely to increase when the difference between the conditional
probability given True and False increases. We are more likely to find a combination of probability
distributions with a high score by calculating the score for the different probability distributions.

Using the steps above, we find a Bayesian network with a high mutual information between
nodes A and B, and nodes B and C, while keeping the mutual information between nodes A and
C minimal. The chosen function for calculating the score was chosen for maximizing a balance
between the mutual information values that are desired to be high and the mutual information
that is desired to be low. We use square roots of the mutual information, because we prefer a
balance where MI(A,B) = 0.5 and MI(B,C) = 0.5 over MI(A,B) = 0.9 and MI(B,C) = 0.1.
Both mutual informations here sum to 1, but by taking the square root in the scoring function,
the option of both mutual informations being 0.5 is preferred. We wanted the mutual information
between nodes A and C to weigh the same as the other part of the scoring function, thus we also
take the root here and then double it.

Just like all previous experiments, a data-set the size of 2000 data-points is generated from
these Bayesian networks. These data-sets are also split into training-sets containing 90% of the
data-points and test-sets containing the remaining 10% of the data-points. However, where this
experiment differs from the previous experiments is that the training of NB and TAN is done twice

24

Algorithm 2 Tree Variable Probability Search

BestModel← Null
BestScore← 0
Model← TV NStructure
Model.A← 0.5
ProbabilitiesB ← List
ProbabilitiesC ← List
for i in 1..100 do

ProbabilitiesB.Append(Random.Uniform(0, 1, (2, 2))
ProbabilitiesC.Append(Random.Uniform(0, 1, (2, 2))

end for
for i in 1..100 do

ProbabilitiesB.Append(ReverseNegGiven(ProbabilitiesB[i]))
ProbabilitiesC.Append(ReverseNegGiven(ProbabilitiesC[i]))

end for
for Prob B in ProbabilitiesB do

Model.B ← B
for Prob C in ProbabilitiesC do

Model.C ← C
Score←

√
MI(A,B) +

√
MI(B,C)− 2×

√
MI(A,C)

if Score > BestScore then
BestModel←Model
BestScore← Score

end if
end for

end for
Return BestModel

for both: once where node B is the class and once where node C is the class. The experiment where
node B is the class variable is called the Class in Middle experiment, and the experiment where
node C is the class variable is called the Class on leaf experiment. If node A was chosen instead
of node C, the results would probably not differ much, because the directions of the arrows in the
network do not matter as the joint distribution stays the same.

By repeating the experiment for both the scenario where both edges with high mutual infor-
mation are connected to the class variable and the scenario where one of the edges is between two
feature variables, we can see how the separation of an edge with high mutual information influences
the performance of NB and TAN. The results of this experiment can be seen in Figure 20.

3.5.1.1 Results

Figure 20 shows the results of NB and TAN on the Tree Variable Networks, divided on having the
class variable in the middle or at the leaf node. This division for the plot was chosen as it provides
clear clusters of points on the graphs.

We can clearly see in Figure 20 that the Class on Leaf experiment’s performance is worse than
the Class in Middle experiment, both for NB and TAN. Another thing we can clearly see is that
TAN outperforms NB on the Class on Leaf experiment on all three performance metrics. And we

25

Figure 20: Difference per performance metric per generated data-set between Naive Bayes and TAN
on the same data-sets.

can also see that NB and TAN perform very similarly on the Class in Middle experiment, except
that NB outperforms TAN on the RMSE metric.

The Class on Leaf experiment shows that having two feature variables with high mutual infor-
mation leads to TAN outperforming NB on all three performance metrics in most cases. And in
these cases where TAN does not outperform NB, both models perform at least equally as good.

In Figure 21 we show the performance of NB and TAN on Class on Leaf generated data and
Class in Middle generated data. We can see that the Bayes Error is higher for the Class on Leaf
experiment.

3.5.1.2 Discussion

The clear difference in performance between the two experiments shows that having more strong
edges connected to the class variable has a positive influence on the performance of both NB and
TAN.

The better performance of TAN over NB in the Class on Leaf experiment can be attributed to
TAN having the data-generating network’s structure as a subset of its own structure: TAN has all
the edges in the TVN structure, but with an added edge between node A and node C. NB in this
experiment does not have the ”true” edge between nodes A and B.

A similar case can be made for why NB performs better than TAN in terms of RMSE in the
Class in Middle experiment. In this experiment, the NB structure is the same as the TVN structure:
the class is connected to the two feature variables and there are no other edges present. In this
experiment, TAN has an added edge between nodes A and C, which is not present in the data-
generating network. This leads to TAN being very accurate in performance, but making slightly
bigger mistakes in terms of the predicted probability in comparison to NB. But as the structure of
TAN still has the ”true” structure as a subset of its own structure, it might be able to learn the
class probabilities just as accurate as NB given a larger data-set.

26

(a) (b)

(c) (d)

Figure 21: Performance of Naive Bayes and TAN on data-sets generated by Three Variable Bayesian
networks. Average metrics NB on Class on Leaf : 0.848 Accuracy, 0.120 Brier score, 0.104 RMSE.
Average metrics NB on Class in Middle: 0.945 Accuracy, 0.044 Brier score, 0.005 RMSE. Average
metrics TAN on Class on Leaf : 0.873 Accuracy, 0.103 Brier score, 0.010 RMSE. Average metrics
TAN on Class in Middle: 0.945 Accuracy, 0.044 Brier score, 0.007 RMSE.

3.5.2 Mutual Information Boosted Random Bayesian Network

To find if the presence of high mutual information between feature variables also causes TAN to
outperform NB in more complex networks, random Bayesian networks with δ = 0.5 are used,
similarly to the experiments in Section 3.4.2. The reason for the selection of δ = 0.5 is that with
less parent variables, it becomes easier to find probability distributions that result in high mutual
information between two feature variables. This experiment was repeated 100 times, resulting in 100
different data-generating models and 100 different data-sets on which NB and TAN were trained.
There are however differences with the experiments in Section 3.4.2, which are as follows:

• Each network has at least one edge between two feature variables with a mutual information
of 0.5 or higher.

• The networks only have 5 feature variables.

• Only one of the feature variables is connected to the class variable. Making it similar to the
Class on Leaf experiment, but now with a larger network.

Examples of such networks can be found in Figure 22. Having only feature variable A connected
to the class allows for more feature variables to have a high mutual information with each other,

27

(a) Distance = 1 (b) Distance = 3 (c) Distance = 1 (d) Distance = 3

(e) Distance = 4 (f) Distance = 1 (g) Distance = 3 (h) Distance = 1

Figure 22: Examples of Random Bayesian networks with δ = 0.5 with at least one edge between
feature variables with mutual information of 0.5 or higher. The thickness of each edges represent
the mutual information between the variables.

as the features will have less possible parent variables. This also allows the experiment to better
test if it matters if the high mutual information feature variables are further away from the class
variable than in the previous experiment. If the class variable would be connected to more than
one feature variable, then the range of distances from the class variable would be reduced. The
minimal distance for this is 1, as at least one edge has to be traversed from the class node to arrive
at a feature variable. The maximal distance can be 4, as can be seen in Figure 22e. The direction
of the edges does not matter when computing the distance.

The amount of feature variables had to be reduced due to time constraints on the search for
probability distributions that have high mutual information.

Lastly, the network structures and probability distributions of the variables were found using
the algorithm in Algorithm 3.

Algorithm 3 Network Search

BestModel← Null
BestTotalMI ← 0
while BestModel = Null do

model← RandomModelConnected(δ = 0.5)
AllMI ← CalculateMutualInformations(model)
TotalMI ← Sum(AllMI)
BestFeatureMI ←MaxFeatureMI(model, AllMI)
if MaxFeatureMI ≥ 0.5 & TotalMI ≥ BestTotalMI then

BestModel← model
BestTotalMI ← TotalMI

end if
end while
Return BestModel

28

3.5.2.1 Results

Figure 23: Difference per performance metric per generated data-set between Naive Bayes and TAN
on the same data-sets.

Figure 23 shows the performance of NB and TAN on data-sets generated by Mutual Information
Boosted Bayesian networks. We see that there are some big differences in Accuracy, while most
points are near equal performance. For Brier score and RMSE we see that TAN almost always
outperforms NB.

In Figure 24 we show the distribution of the performance of NB and TAN on the data-sets. Here
we see that The average performance of both models are very close and the variability of Accuracy
and Brier score to also be very close. But it shows that the RMSE for TAN is lower than that of
NB.

(a) (b)

Figure 24: Performance of Naive Bayes and TAN on data-sets generated by Mutual Information
Boosted Bayesian networks (δ = 0.5). Average metrics NB: 0.848 Accuracy, 0.112 Brier score, 0.080
RMSE. Average metrics TAN: 0.862 Accuracy, 0.097 Brier score, 0.028 RMSE.

The distance from the class node to the closest feature variable with an edge that has a high
mutual information with another feature variable was measured to see if the position of the edge
with high mutual information influences how NB and TAN perform. To better visualize this in
Figure 25, the data-generating networks were divided into categories based on the performance
metrics of NB and TAN on the data-sets generated by the networks as follows:

29

• TAN wins all : all networks in this category generated data-sets on which TAN outperformed
NB on all three performance metrics. This category contained 22 networks.

• TAN wins two: all networks in this category generated data-sets on which TAN outperformed
NB on two of three performance metrics and the last performance metric was a draw, as the
result falls within the standard error. This category contained 24 networks.

• Draw : all networks in this category generated data-sets on which NB and TAN performed
equally good on at least two out of three performance metrics. The third performance metric
was allowed to be a win for TAN, as this was only the case for 2 networks. This category
contained 45 networks.

• NB wins one or more: all networks in this category generated data-sets on which NB outper-
formed TAN on at least one performance metric. This category has the least strict rules for
including networks, yet still only contained 9 networks.

Figure 25: Percentage of data-generating networks per distance from class node to closest feature
variable with an edge that has a high mutual information with another feature variable. Category
sizes: TAN wins all = 22 networks, TAN wins two = 24 networks, Draw = 45 networks, NB wins
one or more = 9 networks.

3.5.2.2 Discussion

As can be seen in Figures 23 and 25, TAN significantly outperformed NB in 46 out of 100 cases.
However, the results seem to be less in favor of TAN than the Class on Leaf experiment in Section
3.5.1. Figure 25 shows that the networks with the high mutual information edge closer to the class
variable are more likely to generate a data-set on which TAN outperforms NB. The combination
of the Class on Leaf experiment being more in favor of TAN than this experiment and the closer
high mutual information edges leading to better performance of TAN compared to NB, leads to
the belief that TAN is likely to outperform NB when there are feature variables with high mutual
information whose dependency properties are close with the class variable.

3.5.3 Real world network

All previous experiments have been performed on data-sets generated from Bayesian networks that
were created using some form of randomness in the network structure and probability distributions.

30

In order to extend the findings of how mutual information influences NB and TAN’s performances
to the real world, a similar experiment as the used experiments has been performed.

For this experiment three Bayesian networks are used for generating the data-sets: the Alarm
network ([3], see Figure 26a), the Child network ([24], see Figure 26b, and the Insurance network
([4], see Figure 26c). This allows us to be confident in the dependency properties that will be
present in the generated data-sets. In practice, an expert on the domain of a data-set would be able
to indicate some known dependency properties between the feature variables. These dependency
properties in combination with either predicted strength of edges by the domain expert, or by
calculating the mutual information from the data-set, would give similar insight on the dependency
properties in a data-set as knowing the exact data-generating Bayesian network gives.

For deciding which node in each of the networks would be used as the class variable two things
were considered: does the network have the desired dependency property of strong mutual informa-
tion edges close to the class and does the variable make sense to be the class given the context of
the network. This lead to the following choices for class variables: Hypovolemia in Alarm, Disease
in Child, and Accident in Insurance. Next I will explain why these nodes were chosen.

The Alarm network([3]) encodes medical knowledge about a patient to calculate the probability
of 8 different diagnoses: Hypovolemia, Left Ventricular Failure, Anaphylaxis, Insufficient Analgesia,
Pulm. Embolus, Intubation, Kinked Tube, and Disconnection. Given the context of the network,
these would be the variables that make the most sense to be the class variable. Of these variables,
only 4 show the desired dependency property: Hypovolemia, Left Ventricular Failure, Intubation,
and Kinked Tube. Of these variables, the variable with the least skewed marginal probability
distribution was chosen as class variable: Hypovolemia. The probability of Hypovolemia without
knowing the value of any feature variables is P (Hypovolemia = True) = 0.2 in the Alarm network.
The marignal probability of the Hypovolemia variable and the other chosen class variables can be
found in Figure 27.

The Child network([24]) is another network encoding medical knowledge to calculate the prob-
ability of different diseases of a child patient. These probabilities lie in the Disease node, which
also happens to show the desired dependency property. Therefore the Disease variable is chosen as
the class variable.

The Insurance network([4]) is used for estimating the expected claim cost for a car insurance
policyholder. This would make MedicalCost, LiabilityCost, or PropertyCost the most logical class
variable given the context. Of these variables, only the MedicalCost variable shows the desired
dependecy property. However, this variable has a very skewed likelihood with the probability
P (MedicalCost = Thousand) = 0.928, which would make the margin for error of the classification
task too small. Therefore another important variable in the network was chosen as class variable:
Accident. In this node the probabilities for how likely accidents with different levels of severity are,
which is important for estimating if a insurance policyholder will claim damages.

For the experiment, a data-set of 2000 data-points is generated from each of the three Bayesian
networks. Naive Bayes and TAN are trained on 90% of the data-set and tested on the remaining
10%.

3.5.3.1 Results

In Figure 28 we see the results of all three metrics in a single graph, including error bars indicating
the standard error of the means of each score. TAN outperforms NB on the Child and Insurance
data-sets on all three performance metrics with a significant margin. On the Alarm data-set neither

31

(a) The Alarm Bayesian network([3]). The
thickness of each edges represent the mu-
tual information between the variables in
the network.

(b) The Child Bayesian network([24]). The
thickness of each edges represent the mu-
tual information between the variables in
the network.

(c) The Insurance Bayesian network([4]).
The thickness of each edges represent the
mutual information between the variables
in the network.

Figure 26: The Alarm, Child and Insurance Bayesian networks. The thickness of each edges repre-
sent the mutual information between the variables. The yellow node indicates the class variable.

NB or TAN outperforms the other, as the difference in performance falls within the standard error
of the mean.

32

(a) The marginal distribution of the Hypovolemia
variable in the Alarm network([4]).

(b) The marginal distribution of the Disease variable
in the Child network([4])..

(c) The marginal distribution of the Accident variable
in the Insurance network([4]).

Figure 27: The marginal distribution of the Hypovolemia, Disease and Accident variables from the
Alarm, Child and Insurance Bayesian networks.

3.5.3.2 Discussion

TAN outperforming NB on two out of three data-sets helps support the belief that feature variables
with high mutual information help TAN outperform NB. TAN and NB performing equally as good
on one of the data-sets shows that feature variables with high mutual information do not always

33

Figure 28: Difference per performance metric per generated data-set between Naive Bayes and TAN
on the same data-sets. Error bars show the standard error of the mean for every statistic. Bayes
Errors: Alarm: 0.013, Child: 0.055, Insurance: 0.030.

lead to TAN outperforming NB.
Preferably this experiment would be repeated for more than three real world Bayesian networks.

Repeating a similar experiment with more networks would make the support for the found belief
stronger, which is a topic for future research. This is explained further in Section 4. Furthermore,
without the domain knowledge required for making assumptions about dependency properties in a
data-set, it was not possible to repeat the experiment for the data-sets present in Table 1.

4 Conclusion

The goal of this research is to explain the difference in performance between naive Bayesian clas-
sifiers and tree-augmented Bayesian network classifiers. We have explained that research on tree-
augmented Bayesian network classifiers do not focus on why these classifiers sometimes perform
better or worse than naive Bayesian classifiers. We have shown that in the related works and our
experiments that in most cases the TAN classifiers perform better than naive Bayesian classifiers.
Because of this, finding what causes the difference in performance between these classifiers is an
interesting topic.

In our experiments we analyzed the performance of naive Bayes and tree-augmented Bayesian
networks trained on data-sets generated by different Bayesian networks. First Bayesian networks
with random structures were used for this analysis. From this we have learned that both types of

34

classifiers work better if there is some structure within the data, as can be seen from the results
of the random structure experiment with δ = 0.5. When the structure in the data becomes more
complex, which is the case in the experiments with δ = 0.7 or 0.9, TAN outperforms NB more often
than with more simple structures. This answers our first sub-question: how do the two classifiers
compare?

By analyzing the networks on which TAN performed better than NB, we have found that
TAN is more likely to outperform NB when there are at least two feature variables with high
mutual information present in the network. We tested this hypothesis using experiments on data-
sets that were generated from Bayesian networks with this dependency pattern. We tested how
features with high mutual information affect the performance of NB and TAN when they are
directly and indirectly connected to the class variable in the data-generating Bayesian network.
The result of these experiments show that TAN is more capable of accurately estimating the class
probability using feature variables that are not directly correlated to the class variable. Afterwards,
we tested the hypothesis on data-sets generated by real-world Bayesian networks. The results of
this experiment show that feature variables with high mutual information makes TAN more likely
to outperform NB, but it is not a guarantee that TAN will outperform NB. This answers our second
sub-question: Can performance differences be explained by dependencies in the data?

We have given different hypotheses to answer our sub-questions, which combined can help
answer our research question: what explains the difference between naive Bayesian classifiers and
tree augmented Bayesian network classifiers?. We did not solve the answer completely and only the
future might tell if this ever will be the case. Future research on this research question could look
into why our hypothesis on the influence of at least two variables with high mutual information
in the data-generating Bayesian network does not always lead to TAN outperforming NB or what
other factors can help explain the difference in performance, such as the prior probability of the
class variable.

Another possible direction for future research is to look at the loss of information that features
contain about the class when assuming the Naive Bayes model, instead of mutual information. Rish
[23] has shown that there is a stronger correlation between the accuracy of Naive Bayes and this
loss of information. It is unknown if TAN has this same correlation between accuracy and the loss
of information that features contain about the class when assuming the TAN model, nor is it known
if this loss of information can be used to predict whether NB or TAN will outpeform the other.

Other research for better understanding the behavior of TAN would be repeating similar ex-
periments as de Wachter [25] for finding the worst case scenario of TAN. When repeating the
experiments of de Wachter, TAN is expected to perform much better on his Linked Networks, as
these use the same structure as a TAN model. However, how TAN will behave on the Complete
Networks that he used is unknown.

References

[1] Ankur Ankan. pgmpy. url: https://pgmpy.org/. (accessed 01/12/2022).

[2] A Bazila Banu and Ponniah Thirumalaikolundusubramanian. “Comparison of Bayes classifiers
for breast cancer classification”. In: Asian Pacific Journal of Cancer Prevention: APJCP
19.10 (2018), p. 2917.

35

https://pgmpy.org/

[3] Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. “The
ALARM monitoring system: A case study with two probabilistic inference techniques for
belief networks”. In: AIME 89. Springer, 1989, pp. 247–256.

[4] John Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. “Adaptive probabilistic
networks with hidden variables”. In: Machine Learning 29.2 (1997), pp. 213–244.

[5] Glenn W Brier et al. “Verification of forecasts expressed in terms of probability”. In: Monthly
weather review 78.1 (1950), pp. 1–3.

[6] Jesús Cerquides and Ramon López De Mántaras. “Tractable Bayesian learning of tree aug-
mented naıve Bayes models”. In: ICML. 2003, pp. 75–82.

[7] Shenglei Chen, Geoffrey I Webb, Linyuan Liu, and Xin Ma. “A novel selective naıve Bayes
algorithm”. In: Knowledge-Based Systems 192 (2020), p. 105361.

[8] Jie Cheng and Russell Greiner. “Comparing Bayesian network classifiers”. In: Uncertainty in
Artificial Inteligence, 1999 (1999).

[9] Imme Ebert-Uphoff. Measuring connection strengths and link strengths in discrete Bayesian
networks. Tech. rep. Georgia Institute of Technology, 2007.

[10] Python Software Foundation. Python. url: https://www.python.org/. (accessed 01/12/2022).

[11] Nir Friedman, Dan Geiger, and Moises Goldszmidt. “Bayesian network classifiers”. In: Ma-
chine learning 29.2 (1997), pp. 131–163.

[12] David J. Hand and Keming Yu. “Idiot’s Bayes: not so stupid after all?” In: International
Statistical Review / Revue Internationale de Statistique 69.3 (2001), pp. 385–398.

[13] Liangxiao Jiang, Zhihua Cai, Dianhong Wang, and Harry Zhang. “Improving tree augmented
naive Bayes for class probability estimation”. In:Knowledge-Based Systems 26 (2012), pp. 239–
245.

[14] Liangxiao Jiang, Dianhong Wang, Zhihua Cai, and Xuesong Yan. “Survey of improving naive
Bayes for classification”. In: Advanced Data Mining and Applications (2007), pp. 134–145.

[15] Ludmila Kuncheva and Zoe Hoare. “Error-dependency relationships for the Naıve Bayes clas-
sifier with binary features”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 30.4 (2008), pp. 735–740.

[16] Ludmila I Kuncheva. “On the optimality of naıve Bayes with dependent binary features”. In:
Pattern Recognition Letters 27.7 (2006), pp. 830–837.

[17] Yuguang Long, Limin Wang, and Minghui Sun. “Structure extension of tree-augmented naive
Bayes”. In: Entropy 21.8 (2019), p. 721.

[18] Inc. pandas via NumFOCUS. pandas: pandas is a fast, powerful, flexible and easy to use open
source data analysis and manipulation tool, built on top of the Python programming language.
url: https://pandas.pydata.org/. (accessed 01/12/2022).

[19] NumPy. NumPy The fundamental package for scientific computing with Python. url: https:
//numpy.org/. (accessed 01/12/2022).

[20] Judea Pearl. “Bayesian networks”. In: UCLA Department of Statistics Papers (2011).

[21] Judea Pearl. Bayesian networks: A model of self-activated memory for evidential reasoning.
Tech. rep. 1985.

36

https://www.python.org/
https://pandas.pydata.org/
https://numpy.org/
https://numpy.org/

[22] Irina Rish. “An empirical study of the naive Bayes classifier”. In: IJCAI 2001 workshop on
empirical methods in artificial intelligence 3.22 (2001), pp. 41–46.

[23] Irina Rish, Joseph Hellerstein, and Jayram Thathachar. “An analysis of data characteristics
that affect naive Bayes performance”. In: IBM TJ Watson Research Center 30 (2001), pp. 1–
8.

[24] David J Spiegelhalter. “Learning in probabilistic expert systems”. In: Bayesian statistics 4
(1992), pp. 447–465.

[25] Matthijs de Wachter. “On the errors introduced by the naive Bayes independence assump-
tion”. In: Master Thesis Artificial Intelligence of Utrecht University (2018).

37

	Introduction
	Preliminaries
	Bayesian Networks
	Naive Bayes
	Tree Augmented Naive Bayes
	Comparing NB and TAN

	Experiments
	Methodology
	Experiment 1: Full independent variables
	Results
	Discussion

	Experiment 2: Naive Bayes and TAN
	Results
	Discussion

	Experiment 3: Random Bayesian Network
	Random Networks with = 0.1
	Results
	Discussion

	Random Networks with = 0.5
	Results
	Discussion

	Random Networks with = 0.7
	Results
	Discussion

	Random Networks with = 0.9
	Results
	Discussion

	Structural patterns

	Experiment 4: High Mutual Information
	Three Variable Network
	Results
	Discussion

	Mutual Information Boosted Random Bayesian Network
	Results
	Discussion

	Real world network
	Results
	Discussion

	Conclusion

