
Utrecht University

Master Thesis Business Informatics

Aligning requirements and testing in RPA projects
Designing an RPA verification and validation method

Mees Mouwen
Department of Information and Computing Sciences

April 26, 2023

Supervisors:

Inge van de Weerd Utrecht University, Associate Professor
Hajo Reijers Utrecht University, Professor
Bo van den Oever Ciphix, RPA team-lead

Abstract
Context: Robotic process automation (RPA) is a developing field of process automation, but academic
research has not kept up with industry advancements creating an absence of a theoretical foundation for
objective reasoning. There is a lack of research regarding the alignment between requirement management
and testing practices within the RPA development life cycle (DLC).
Objectives: The objectives of the study are to investigate the current state of requirement management
and testing practices in RPA, identify their limitations, and propose a novel RPA DLC method that can
address the link between requirement management and testing for more effective RPA development.
Methods: To develop and evaluate the method, a design science study approach is employed, which
integrates both theoretical and practical input. The theoretical foundation of the study is established by
conducting a comprehensive multi-vocal literature review (MLR). The practical component of the research
methodology entails utilizing problem-centred interviews, a multiple-case study, and a naturalistic project
evaluation.
Results: The RPA verification and validation method (RPA-VV method) was designed as a result of
the MLR and a multiple-case study. The RPA-VV method is based on the W-model and provides an
effective way of integrating requirement management and testing practices in RPA projects, which can
help provide guidance in during the RPA DLC and improve communication and collaboration between
stakeholders. The validation results were promising with the method being deemed complete and very
useful, with clear visualisation of the RPA DLC. However, the evaluation showed that executing the RPA-
VV method in practice was difficult, causing problems with adherence to the method. Two main issues
were identified which were difficult communication with the client about their input and deliverables for
the project, and strict project planning. Despite providing clear guidelines and activities, deviations from
the method occurred due to these issues.
Conclusion: The RPA-VV method is a promising approach to align requirements and testing activities
in the RPA DLC, but integrating it into RPA projects is difficult. Future work should focus on how to
improve and properly integrate the RPA-VV method in RPA projects to overcome the identified issues.

Keywords: Robotic process automation, development life cycle, testing, requirement management,
W-model, RPA-VV method

1

Acknowledgement
This thesis marks the completion of my Master’s degree, and I would like to express my gratitude to those
who supported me throughout the journey. I am thankful to Ciphix, particularly Bo van den Oever, for
the continuous support and valuable feedback on my thesis. I would also like to acknowledge Inge van de
Weerd for her guidance, weekly meetings, and invaluable academic insights throughout the eight-month
research period. Finally, a special thanks to my girlfriend for her unwavering support and encouragement
during the long study sessions and for sharing this journey with me.

2

Contents
Abstract 1

Acknowledgement 2

Abbreviations 5

INTRODUCTION & RESEARCH DESIGN 7

1 Introduction 7
1.1 Problem statement . 7
1.2 Research objective . 8

2 Research design 10
2.1 Research phases . 10
2.2 Research methods . 11
2.3 Evaluation . 13
2.4 Threats to validity . 15

LITERATURE STUDY 18

3 Literature research protocol 18
3.1 Approach . 18
3.2 Conducting MLR . 18

4 Multi-vocal literature review 21
4.1 Development life cycle . 21
4.2 Requirement management . 23
4.3 RPA documentation . 26
4.4 Testing . 27
4.5 Discussion on testing methods and traceability . 35

METHOD DESIGN 39

5 Problem-centred interviews 39
5.1 Importance of analysis . 39
5.2 Responsibilities of the customer . 39
5.3 Struggles with testing . 40
5.4 Insights from interviews . 41

6 Solution objectives 42
6.1 First version of RPA method . 42

7 Multiple-case study approach 46
7.1 Overview . 46

8 Multiple-case study analysis 48
8.1 Within-case analysis . 48
8.2 Across-case analysis . 50

9 Improved RPA-VV method 53

3

10 Guidelines 57
10.1 Client input for the project . 57
10.2 Testing standardisation . 58
10.3 Discrepancies within production environment . 60
10.4 Documentation traceability . 61
10.5 Identifying documentation purpose . 63
10.6 Tooling potential for testing . 64

METHOD VALIDATION & EVALUATION 67

11 Validation 67
11.1 Approach . 67
11.2 Results . 67

12 Evaluation 70
12.1 Approach . 70
12.2 Project 1 results . 70
12.3 Project 2 results . 72
12.4 Discussion evaluation . 73

DISCUSSION & CONCLUSION 76

13 Discussion 76
13.1 Theoretical contributions . 76
13.2 Practical implications . 76
13.3 Limitations . 77
13.4 Future work . 77

14 Conclusion 79

15 References 81

APPENDICES 86

16 Appendix A 86
16.1 A1: Consent form problem-centered interviews . 86
16.2 A2: Problem-centered interview questions . 87

17 Appendix B 91
17.1 B1: Multiple-case study database . 91
17.2 B2: Case study protocol . 91
17.3 B3: Survey questions . 94
17.4 B4: Survey questions statistics . 97
17.5 B5: Consent form expert interviews . 98
17.6 B6: Expert interviews questions RPA-VV method . 99
17.7 B7: Expert interviews questions documentation and tools 100

18 Appendix C 108
18.1 C1: RPA VV-method PPD format . 108

19 Appendix D 109
19.1 D1: Consent form focus group . 109
19.2 D2: Focus group questions . 110

4

Abbreviations
DLC Development life cycle
E2E End-to-end
MBT Model-based testing
MLR Multi-vocal literature study
NFRs Non-functional requirements
PCI Problem-centred interview
PDD Process definition document
RM Requirement management
RPA Robotic process automation
RT Requirement traceability
SA Solution architect
SME Subject matter expert
SDD Solution design document
TDD Test-driven development
TPD Test plan document
UAT User acceptance test
RPA VV-method RPA verification & validation method

5

Introduction & Research design

6

1. Introduction
Robotic Process Automation (RPA) is a novel field in process management and plays a leading role in
digital transformation for companies looking to automate or optimize their processes (Syed et al., 2020).
RPA projects involve building software agents or robots that can automate repetitive and rule-based
tasks of a process, mimicking human interactions with digital systems through the UI or front-end of
applications (Hofmann et al., 2020; Willcocks et al., 2015). It is anticipated that RPA will be adopted
by organizations across different industries in the near future (Syed et al., 2020). This is due to the
numerous benefits that RPA offers to businesses, such as the non-stop operation of robots, which makes
them very efficient in their tasks, thereby saving time and cost (Syed et al., 2020). Furthermore, the
quality of the process can be improved since human error or missteps, for example, in data inputs are
removed. However, as RPA is still a new domain in automation, further research and improvement are
necessary (Cernat et al., 2020; Syed et al., 2020). Currently, RPA employs techniques from generic soft-
ware development, but their applicability for RPA has not always been extensively investigated (Cernat
et al., 2020). In the following paragraph, we discuss two aspects of generic software development, namely
requirement management and testing, and their usefulness in RPA development.

Requirement management (RM) is the transformation of customer needs into software specifications (Jiao
& Chen, 2006). These needs need to be defined in a structured format. Accurate requirements are impor-
tant for a satisfactory solution since it forms the basis for the further design, development, and testing of
the application (Jiao & Chen, 2006; Song, 2017). RM is important to understand the scope and target
of the project. Extensive studies have shown the relevance of careful assessment of requirements for the
success of a project (Jiao & Chen, 2006). Often, a poor understanding of requirements and inaccurate
assumptions have a big negative impact on design, development, and project time and cost (Jiao & Chen,
2006; Skoković & Rakić-Skoković, 2010).

Testing is an essential aspect of software development that validates system functionality and supports
quality assurance (Mařík et al., 2000; Sawant et al., 2012). Its aim is to uncover defects, but it can
only show their presence, not their absence (Ratilainen et al., 2019). Therefore, adequate time and ef-
fort should be dedicated to testing to uncover critical errors. Properly planned testing can significantly
enhance product quality, while poorly executed testing can harm the product (Ratilainen et al., 2019).
According to Mařík et al. (2000), testing is crucial to validate different phases of a development project
and should be integrated within the various stages such as analysis, design, and development.

As shown in the previous paragraph, both RM and testing are crucial for the development of any project
and have a big impact on the different phases of the development life cycle (DLC). However, RPA still
differs from normal software projects (Cernat et al., 2020), and thus how these topics are performed or
conducted in the RPA DLC is crucial for the maturity of the RPA domain.

1.1 Problem statement
The potential of the RPA field is significant, but its development lacks sound theoretical foundations for
objective reasoning (Syed et al., 2020). This creates a need for additional research in several areas of RPA
development. In terms of RM and testing in RPA, there are some observations to be made. RM in RPA
involves a thorough analysis of the process to be automated, including all process steps and potential
exceptions (Soybir & Schmidt, 2021). Mistakes in process analysis can lead to difficulties in other parts
of the RPA DLC, making a strong understanding of essential requirements crucial (Soybir & Schmidt,
2021). On the other hand, testing is the least researched topic in RPA, with only three identified papers
focusing only on automation testing (Enríquez et al., 2020). While RM and quality testing are typically
part of the DLC, their link is missing in most cases (Skoković & Rakić-Skoković, 2010). This is also true
for the most widely used RPA DLC method which is the waterfall method (Cewe et al., 2017; Tran &
Ho Tran Minh, 2018). The waterfall method lacks proper testing integration in all development phases as
suggested by Mařík et al. (2000). This is because the waterfall method has a sequential order of phases
with testing being one of the last phases.

7

The problem-centred interviews with RPA experts further supported the findings regarding the impor-
tance of comprehensive requirement analysis and documentation in RPA projects and highlighted the
absence of a standardized testing method among practitioners. These results indicate that RM and stan-
dardized testing practices are highly valued by both the academic literature and RPA practitioners and
that there is a lack of research in these areas for establishing a solid theoretical foundation. Notably, the
current most widely used RPA DLC does not address the connection between RM and testing. As such,
the development of a new RPA DLC method that can incorporate this linkage would be highly beneficial
for both academic research on RPA and RPA practitioners.

1.2 Research objective
The research is performed in collaboration between the Utrecht University1 and the RPA software com-
pany Ciphix2. The problem statement in section 1.1 stressed the importance of combining RM and testing
practices in a novel RPA DLC method. A combination of theoretical foundation and practical feedback
is used. A theoretical background is used to design an RPA DLC method. For this, the research performs
an extensive multi-vocal literature review (MLR) on existing RPA papers focused on RM, testing prac-
tices, and DLC methods. The findings from the literature study are combined with the insights gained
from the problem-centred interviews and the multiple-case study to design an RPA testing method. The
designed RPA method is validated and evaluated with RPA experts at Ciphix.

This study focuses on a design problem since there is a need for a novel RPA DLC method. Wieringa
(2014) described a design problem as a problem to design an artefact with certain requirements that can
achieve some stakeholder goals. The stakeholders in this context are the academic field of RPA and RPA
practitioners. The following research objective is formulated which describes the artefact to be designed.

Design a method that effectively supports the alignment between
requirement management and testing practices in the RPA

development life cycle

The following sub-questions have been formulated to reach this objective:

Sub Questions:

1. What development life cycle phases are relevant to align requirements with testing
practices?

The importance of RM and testing practices in RPA cannot be overstated as they are crucial to
determining project scope, designing, and developing the project, and ensuring all requirements are
met. As both RM and testing practices have an impact on multiple phases of a project, it is essen-
tial to research and incorporates them into a novel RPA DLC method that aligns the requirements
and testing activities. To achieve this, an MLR is conducted to explore the different phases that
benefit from this alignment and to develop a comprehensive RPA DLC method.

2. What methods or techniques focused on aligning requirements and testing practices
are suitable for RPA?

The aim of this sub-question is to gain knowledge of the various methods that exist for aligning
RM and testing practices. In order to achieve this, an extensive MLR is conducted. The focus of
the study is to identify the differences among the existing methods and to assess their suitability
for RPA. Based on the research question, MLR, and problem-centred interviews, requirements for
the RPA DLC are generated. These requirements are used to analyse the suitability of the different

1https://www.uu.nl/en retrieved on April 26, 2023
2https://ciphix.io/ retrieved on April 26, 2023

8

https://www.uu.nl/en
https://ciphix.io/

methods and to determine which method is most appropriate for RPA.

3. How should requirements and testing practices be formalized and documented to create
alignment between them?

To enable effective alignment between requirement management and testing practices in RPA
projects, it is crucial to formalise and document these practices appropriately. Proper documenta-
tion is essential in any DLC, and it should be given sufficient consideration in this research. This
sub-question aims to address how alignment between RM and testing practices can be incorporated
into the RPA method through the utilization of literature review and multiple-case study.

4. How can we design an effective RPA method that aligns requirement management and
testing practices?

The answers from the previous sub-questions are combined to design an RPA method that aligns
requirement management with testing practices. A quality assessment is performed with RPA ex-
perts validating and evaluating the RPA method.

5. How does the designed RPA method integrate with the current documentation and
tools used within RPA projects?

In order to assess the effectiveness and suitability of the RPA testing method designed in the previous
sub-question, it is important to evaluate its integration with the project environment, including
documentation and tool use. This evaluation provides a more comprehensive understanding of the
RPA testing method in practice. To achieve this, expert interviews are conducted to analyze and
evaluate the integration of the RPA method with its environment.

9

2. Research design
This study is set up as a design science research with an RPA testing method as an artefact. We follow
the design science research methodology created by Peffers et al. (2007). It consists of different phases
that are focused on creating and evaluating an artefact (i.e., method). This chapter first describes these
phases and the different research methods related to each phase. Secondly, the evaluation approach is
explained describing the evaluation strategy and quality assessment criteria on which the RPA testing
method is evaluated. Thirdly, the validity threats are discussed.

2.1 Research phases
The different phases of the design science research methodology from Peffers et al. (2007) are described
as follows:

Problem Identification Identify and justify the need for an RPA testing method
Solution Objectives Review literature & conduct expert interviews to asses RPA testing methods
Design & development Design & validate method that aligns requirements and testing practices
Demonstration & evaluation Apply and evaluate the method in a naturalistic case study
Communication Write the final version of the thesis

Figure 2.1: Research design phases and methods

In order to execute the different phases, different research methods are used. This is depicted in Figure
2.1. For the case studies, the different data collection methods used are also specified. The next section
describes what happens in these different phases.

Problem Identification

In the problem identification phase, we identify the problem and what value the newly designed artefact
can provide (Peffers et al., 2007). A multi-vocal literature review (MLR) is conducted to provide a
clear picture of the current research on RPA documentation, requirements, and testing to identify a gap.
Furthermore, an extended literature search is done to identify different testing methods that can align
requirements and testing practices. Besides the MLR, problem-centred expert interviews are conducted
to understand the limitations of RPA requirement management, requirements alignment with testing,
and RPA testing practices. The problem-centred interviews and the MLR form the building blocks for
the solution objectives.

Solution Objectives

From the problem-centred interviews, we gain some insights into crucial aspects of RPA projects. These
are part of the construction of the first iteration of the RPA testing method. Additionally, the MLR
identifies crucial aspects of testing methods. Together, the MLR and interview insights identify a suitable
RPA testing method that can align requirements and testing practices. This first iteration is used as the
initial method for the next phase.

10

Design & Development

The design & development phase consists of an extensive multiple-case study and design validation
interviews. The multiple-case study performs a thorough analysis of different RPA projects at Ciphix by
performing document & tool analysis and systematizing interviews. These two methods are described
in more detail in Section 2.2.3. The second step is the design validation interviews. Validation is aimed
at justifying the contribution of a method to stakeholders before implementation (Wieringa, 2014). The
design validation interviews are explained in more depth in Section 2.2.1. The aim of the multiple-case
study is to analyse the use of traceability within RPA projects and to understand their requirement
analysis, design, development, and testing procedures and standards. The case study should provide
insights into the procedure to generate guidelines for the different components of the RPA testing method.
The design validation interviews are focused on validating the RPA test method and its assisted guidelines.
Furthermore, the experts can generate feedback on the RPA testing method. The feedback can be used
to improve the RPA testing method. This phase leads to the redesigned and validated method that is
used in the demonstration and evaluation phase.

Demonstration & Evaluation

The created RPA method needs to be demonstrated. This is an essential part of design science research
and should confirm that the artefact (i.e., method) can solve the organizational problem (i.e., limited
testing standards and a lack of alignment between requirements and tests) (Peffers et al., 2007). For this,
the validation and evaluation approach by Wieringa (2014) is used. The goal of the validation is to assess
whether the RPA method is deemed appropriate and suitable for practical application (Wieringa, 2014).
The objective of the evaluation is to assess the effectiveness of the RPA method after its implementation
in a real-world project (Wieringa, 2014).

2.2 Research methods
This section discusses the various research methods used in the study. First, it describes the expert
interviews. Second, it explains the MLR. Third, it describes the validation focus group. Finally, the
section discusses the case study evaluation.

2.2.1 Expert interviews
There are a few individual types of expert interviews used in the research. The first is the problem-
centred interviews in the problem identification phase. The second is the systematizing expert interviews
conducted as part of the multiple-case study which is discussed in Section 2.2.2. For analysis purposes,
all interviews are recorded and transcribed. The following criteria are used to select participants for the
interviews:

• Participant has at least one year of working experience with RPA

• Participant is involved in the development of RPA with requirement management, design, and
testing (i.e., domain expert)

Problem-centred interviews

The problem-centred interviews use a mix of deductive and inductive reasoning for its interviews (Bogner
et al., 2009; Witzel & Reiter, 2012). Deductive means that the interviewer uses predetermined concepts
as a framework to guide the interview and understand these concepts to a greater extent (Witzel &
Reiter, 2012). On the other hand, inductive reasoning takes a more open approach without predetermined
concepts and the questions try to discover novel ideas or issues not discovered before. It requires structured
knowledge of the concepts while simultaneously being open and flexible in the face of different concept
necessities (Witzel & Reiter, 2012). This approach is chosen since the interviews aim to understand the
current state of requirement analysis, translating them into test cases and the test practices in general.
This is compared and evaluated against the findings from the literature study. Furthermore, the interviews
try to discover current struggles or inefficiencies within RPA projects.

11

2.2.2 Multi-vocal Literature review
RPA is a relatively new field and academic literature has been lacking (Enríquez et al., 2020; Syed et al.,
2020). RPA is application-oriented (Ng et al., 2021) and a growing group of practitioners is contributing
to RPA research through grey literature (Chugh et al., 2022). However, few systematic reviews of grey
literature for RPA are completed (Chugh et al., 2022). Therefore, with limited academic literature and
a group of practitioners contributing to grey literature, a combination of grey and white papers is used
for the literature study. This constitutes a multi-vocal literature review (MLR) (Garousi et al., 2019).
This combination provides insights into the ’state-of-the art’ and ’practice’ of RPA and should give a
full overview of the current developments within RPA research. The MLR structure provided by Garousi
et al. (2019) is used. A full explanation of the structure and how the MLR is executed is explained in
Chapter 3.

2.2.3 Multiple-case study design
For the design and development phase, a multiple-case study is used rather than a single case study since
it increases the completeness and generalizability of the results (Runeson & Höst, 2009). Additionally, a
case study allows studying RPA testing practices in a realistic setting which is an advantage for a design
science approach (Wieringa, 2014). For the multiple-case study, triangulation — combining multiple
sources of data (Runeson & Höst, 2009) — is used by performing a: document & tool analysis and
systematizing interviews. The document & tool analysis shows the current practices of RPA development
and the format of requirements and testing scenarios. Furthermore, this document & tool analysis is
used to understand the integration and contribution of the RPA testing method with the current use
of documentation and tools. The systematizing interviews are conducted with experts involved in the
case for a better understanding of the current testing practices and to pinpoint issues. The multiple-case
study is retrospective and observational in nature since finished projects are used and no changes are
made to these projects. For the case study four projects are selected according to the following criteria:

• Complexity of the case described by the number of process steps and number of applications used

High-complexity is more than 5 applications, more than 50 steps

Medium-complexity is between 3-5 applications, between 25-50 steps

Low-complexity is less than 3 applications, less than 25 steps

• Select 2 high and 2 low complexity cases

• Experts must differ for every case within the same complexity level

In total four cases are chosen with two in the high complexity group and two in the low complexity group.
This allows for a thorough analysis. We perform a within-case analysis and an across-case analysis (Ayres
et al., 2003). The within-case approach studies an single case in-depth. The across-case approach helps to
discover similarities and mismatches between cases which increases generalizability (Ayres et al., 2003).

Document & tool analysis

Document & tool analysis is used to gain understanding and develop knowledge of the current use of
documentation and tools within an RPA company. The analysed documents can take various forms but
in this research, it is limited to formal requirements, solutions, and testing documents. This excludes slide
decks, emails, or other informal documents. The document study is aimed at understanding the current
use of traceability within RPA project documentation and generating guidelines for good practices. The
tools are analysed to see how they are used in relation to the documentation. An evaluation is done on
the limitations and benefits of the documents and tools and how they integrate with the developed RPA
testing method. This evaluation is focused on but not limited to understanding the functionality and
completeness criteria specified in Table 2.1.

12

Systematizing interviews

The systematizing interviews are focused on the systematic retrieval of information and gaining access
to exclusive knowledge that the expert has (Bogner et al., 2009). These interviews are recorded and
transcribed for analysis purposes. In these interviews, the object of the study is not the expert itself,
but the information the expert can provide. A semi-structured interview is executed to first focus on
specific topics but also leave space for elaboration so that new concepts, issues, or theories can emerge
from the data (Bryman, 2016). The systematizing interviews have multiple purposes. Firstly, guidelines
for the RPA testing methods need to be provided. Secondly, the designed RPA-VV method needs to be
discussed and verified to provide additional feedback and the integration of the RPA-VV method with
the documentation and tools needs to be evaluated.

2.2.4 Validation focus group
The validation focus group is used to validate the RPA testing method. Validation is aimed at justifying
the contribution of the method to stakeholders before implementation (Wieringa, 2014). The method is
validated according to the criteria in Table 2.1. Additionally, the interviewees can still suggest changes
to the RPA testing method to improve its completeness and effectiveness. The focus group consists of
multiple solution architects (SAs) with some having already participated in the case study and some
being new to the designed RPA method. Convenience sampling is used since the total size of the group
of SAs is insufficient to exclude any from the focus group.

2.2.5 Naturalistic project evaluation
The naturalistic project evaluation consists of two projects to evaluate the RPA method. Evaluation
is the investigation of the method after implementation (Wieringa, 2014). Therefore, the RPA method
is applied in these two projects and focus groups with the project team are planned to evaluate the
method in this naturalistic setting. A naturalistic evaluation means exploring the performance in a real
environment (Venable et al., 2016) and in our case, the method is deployed in a real project at Ciphix.
The focus group aids in the evaluation by gathering relevant feedback on the quality of the method based
on the quality assessment criteria defined in Table 2.1. For the selection of the projects, a convenience
sampling approach is used. This means the case is selected on minimum time and effort to accommodate
the research restrictions (Shakir, 2002). This is done in consideration of the restricted time period in
which the evaluation needs to happen. Therefore we are limited to cases that start and end within this
specific time period.

2.3 Evaluation
We follow the four-step framework provided by Venable et al. (2016) to set up and explain our evaluation
approach. Their framework consists of the following four steps:

1. Explicate the goals of the evaluation

2. Choose the evaluation strategy or strategies

3. Determine the properties to evaluate

4. Design the individual evaluation episode(s)

Goals of evaluation

Venable et al. (2016) explain three goals for the evaluation of a method. One of the goals is to establish
the rigour of the method to determine how the method works in a real situation (Venable et al., 2016).
Reduce risk is a second important evaluation goal (Venable et al., 2016). This indicates to use of evaluation
early in the design process to identify areas of improvement and use the evaluation as support in the
development phase to increase the quality (Venable et al., 2016). efficiency is the final goal addressed
by (Venable et al., 2016). This considers the depth of the analysis while taking time and resources into
account. How these three goals are addressed is explained in the next section.

13

Evaluation strategy

The strategy that is followed in this research is called Human Risk & Effectiveness (Venable et al., 2016).
This is a suitable strategy if (1) there are resources available to evaluate in a real context and (2) the
artefact its utility and benefits over the long run need to be evaluated (Venable et al., 2016). When
connecting this to the before mentioned goals of evaluation, the rigour is applied by performing the
naturalistic evaluation project described in Section 2.2.5. To reduce Reduce risk, early problem-centred
interviews and a design validation focus group are incorporated into the research method. Considering
the efficiency and rigour together. The decision has been made to have an extensive case study to design
the method and a smaller but naturalistic evaluation. This can provide a well-researched and validated
method and evaluate how the method works in a real situation. This uses the full potential of efficiently
validating and evaluating the RPA testing method.

Properties to evaluate

The quality assessment criteria are based on the evaluation criteria by Prat et al. (2015). The quality
assessment criteria are defined in Table 2.1. The evaluation approach is described in depth in Section
2.3.1.

Evaluation episodes

These episodes are already discussed in-depth in Section 2.2, but for consistency are shortly mentioned
here. The first episode of is the problem-centred interviews to determine the issues within RPA projects
their requirements and testing and compare them with literature findings. The second episode is the
validation focus group to receive feedback on and validate the constructed RPA method. The final
evaluation episode is the naturalistic project evaluation which consists of applying the method in practice
and afocus group. This is the final episode that evaluates the RPA testing method in a naturalistic
setting.

2.3.1 Evaluation approach
The evaluation approach is based on the method evaluation criteria of Prat et al. (2015). Prat et al.
(2015) differentiate different aspects on which a method can be assessed. Three aspects are assessed
which are the method Structure, activity and environment. Environment is further categorised in people
and technology (Prat et al., 2015). These three categories assess how the method impacts and integrates
with the Business, people, and technology environment. Structure criteria assess the relation, hierarchy,
and dependence of different elements of the method (Prat et al., 2015). Activity criteria evaluate the
dynamics of the method by assessing the input, transformations, and outputs of the method (Prat et al.,
2015). All the criteria related to these aspects are described in Table 2.1 and are assessed within an
interview, questionnaire, or focus group. This provides a conclusion on the value and quality of the RPA
testing method.

14

Table 2.1: Evaluation criteria by Prat et al. (2015)
Criteria Aspect Description (Prat et al., 2015, pp. 266, 267)
Completeness Structure &

Activity
The degree to which the structure and activities of the arte-
fact contains all necessary elements and relationships be-
tween elements

Consistency Structure &
Activity

The degree of uniformity, standardization, and freedom
from contradiction among the elements of the structure and
activity of the artefact

Functionality Activity The capability of the artefact to provide functions which
meet stated and implied needs when the artefact is used
under specified conditions

Simplicity Structure &
Activity

The degree to which the structure and activities of the arte-
fact contain the minimal number of elements and relation-
ships between elements

Usefulness People
Environment

The degree to which the artefact positively impacts the task
performance of individuals

Ease of use People
Environment

The degree to which the use of the artefact by individuals
is free of effort

2.4 Threats to validity
The four types of validity threats described by Wohlin et al. (2012) are important to address to ensure
the rigour of the research. The four types are construct, internal, external, and reliability. How they are
addressed within the research design is explained next.

2.4.1 Internal validity
According to Wohlin et al. (2012), internal validity refers to the causal relationship between the inde-
pendent and dependent variables and is mainly concerned with the accuracy of the obtained results. In
this study, a systematic literature review was conducted to select a suitable method for the RPA DLC,
and seven requirements based on the literature study and problem-centred interviews were used for the
selection. Additionally, the multiple-case study had different complexity and solution architects (SAs)
as selection criteria for the included cases. However, convenience sampling was used for the selection of
participants in the validation and evaluation stages due to the relatively small size of the SA group and
the need for the evaluation to occur within a specific time frame. Despite this, the evaluation was carried
out in a naturalistic setting to determine the effectiveness of the RPA method in a real-life scenario.

2.4.2 External validity
The concern of external validity is to generalize the research findings beyond the study sample (Wohlin
et al., 2012). In this research, all participants were domain experts to ensure their understanding of
the topic under evaluation. However, since the research focused solely on the RPA domain, its direct
application to other domains is limited. Moreover, the sample size of the focus group was small, and the
experts were from one organization, which limits the generalizability to other populations. Nevertheless,
although the research focused on RPA organizations that outsource their services, it can still be applied
to organizations that develop their RPA solutions internally. In such cases, only the prerequisites of the
method that relate to the client need to be performed by the organization’s experts. Furthermore, the
research combined a theoretical foundation with practical evaluation, which enhances its suitability for
actual RPA projects and provides insight into the effect of the method on naturalistic RPA projects.

2.4.3 Construct validity
According to Wohlin et al. (2012), construct validity is concerned with the relationship between the theory
and observation and evaluates whether the measures used in the research actually measure what they
are intended to measure. To reduce this threat, the current study analysed multiple methods that can

15

help align requirements and testing. Seven requirements of the method were constructed based on the
strengths and weaknesses of the method found in the literature and through problem-centred interviews
with RPA experts. The selected method was further re-designed through a multiple-case study that used
data triangulation (Runeson & Höst, 2009). The validation focus group further improved the method and
analysed if the method was expected to be suitable for practice. Multiple criteria were selected to analyse
its suitability, and a final naturalistic project evaluation was conducted to analyse the effectiveness of the
method in practice, which also used criteria as measurements. However, the validation and evaluation
were limited within a time frame, and not all intended criteria were analysed, which reduced the construct
validity of the method.

2.4.4 Reliability
The reliability of research refers to the consistency and reproducibility of research findings (Wohlin et al.,
2012). This includes the data collection method, instruments used, and measurements. The research in
question has taken care to ensure reliability. A clear protocol or approach has been developed for all
research methods used, including an extensive literature study protocol and multiple-case study protocol.
Recordings have been made and transcribed for all interviews and focus groups. Data triangulation has
been employed in the multiple-case study to enhance reliability. Moreover, several qualitative criteria
selected by Prat et al. (2015) are applied to different research methods, and the criteria are qualitatively
analyzed with RPA experts. However, the feedback received from experts can be biased or influenced
by their own standards within RPA projects. To address this, the interviews are controlled with framed
questions for specific criteria, and multiple interviews with different experts are conducted.

16

Literature study

17

3. Literature research protocol
We perform a multi-vocalregu literature review (MLR) to investigate the current state-of-the-art for
testing and documentation practices for RPA. An MLR consists of a systematic review of grey and white
literature. This approach is chosen since RPA has a growing group of practitioners that contribute to
RPA research through grey literature (Chugh et al., 2022). The goals of the MLR can be explained by
the following points:

• Gain insights into the existing research of RPA requirements and testing by:

– Researching current testing methods of RPA
– Researching requirement management for RPA
– Researching RPA documentation related to requirements management and testing

• Research requirement traceability

• Identifying and evaluating testing methods on their suitability to align requirements and testing.

3.1 Approach
The MLR structure provided by Garousi et al. (2019) is followed. This consists of the following three
phases: Planning MLR, Conducting MLR, and reporting the review. The planning phase consists of
explaining the need for and goals of the MLR which is described in the previous section. The second
phase conducting MLR focuses on the search process through source selection, quality assessment, and
data extraction (Garousi et al., 2019). The last phase is focused on reporting the findings which is
important to ensure the usefulness to the target audience of what is reported (Garousi et al., 2019).

3.2 Conducting MLR
The goals of the MLR are mentioned above. To fulfil these goals, Garousi et al. (2019) specifies the
conducting MLR phase in which MLR questions need to be formulated. These form the basis of what we
want to discover during the MLR and should all be answered. The questions are as follows:

• What is the current most used development life cycle method for RPA?

• What are important aspects of testing?

• What testing methods are used for RPA?

• What is requirement tractability or alignment?

• How are process requirements defined or formatted in RPA projects?

• What methods can help in aligning requirements and testing practices?

• What documentation is used for the requirement, design, and testing phase in RPA projects?

From these MLR questions, the initial search terms were created. The search engine used is Google
Scholar for scientific publications and Google for grey literature. The initial search terms are:

"Software development life cycle" AND "Robotic process automation" OR RPA ; “Software
testing techniques” ; "Software testing methods" ; Testing of "robotic process automation" ;
"robotic process automation" AND requirements OR process definition ; "robotic process au-
tomation" AND Documentation OR Document ; "robotic process automation" OR RPA AND
“process definition document” OR “process design document” OR PDD; "robotic process au-
tomation" OR RPA AND “solution design document” OR SDD ; "robotic process automation"
OR RPA AND “test plan document” OR TPD ; “Effectiveness metrics” for software testing OR
Software “testing metrics” ; “Requirements traceability" OR "requirement alignment" AND
testing ;

18

While with these search terms, some papers on testing methods for RPA were found. The pool was still
limited. Therefore, the backward snowballing approach (Wohlin, 2014) was used to extend the pool with
relevant literature and explore mentioned topics in more depth. Additionally, the literature pool did
not include proper testing methods to align requirements and testing practices. Therefore, an extended
search was performed that focused on the different development or testing methods that could align
requirements and testing better. These extended terms include:

“Requirements-based testing” ; “Model-Based Testing” ; “Requirement traceability testing” ;
“Test Driven Development” ; “Waterfall model” AND testing ; "V-model" AND testing ;

Stopping criteria

When to stop searching is an important aspect of an MLR. Garousi et al. (2019) describe this as the
exhaustion-stopping criteria. For this MLR, we have chosen to stop at the last page of Google or Google
Scholar where any relevant literature was found based on the inclusion and exclusion criteria described
in the next section.

Selection criteria

All the papers that were found from the initial and extended search terms formed the initial literature
pool. The number of papers per topic for this pool is shown in 3.1. The next step was analysing the
relevance of these papers. This is done by reading the title and abstract of these papers and analysing
them based on the inclusion and exclusion criteria — and quality assessment criteria for grey literature.
These criteria are:

Inclusion criteria:

• Papers discussing testing techniques, types, and levels

• Papers discussing requirement management

• Papers discussing requirements traceability

• Papers discussing methods or approaches to align requirements and testing practices

• Papers discussing RPA documentation, development, requirements, or testing

Exclusion criteria:

• Written in a language other than English

• Papers discussing using RPA technology for testing software

• Papers using RPA in a different domain or field than RPA projects

• Non-organizational reports or slide decks such as news releases or specific product
brochures

The quality assessment criteria for the grey literature are based on guidelines provided by Garousi et al.
(2019):

19

Quality criteria:

Methodology:

Does the work cover a specific question?

Objectivity:

Does the work seem to be balanced in its presentation?

Novelty:

Does it enrich or add something unique to the research?

Does it strengthen or refute a current position?

This created a relevant pool of literature shown in Table 3.1. This has been further examined by a
full-text analysis and only papers that were helping in answering one of the MLR questions were selected.
These papers form the final pool of literature shown in Table 3.1 and are included in the MLR in Chapter
4.

Table 3.1: Literature review pools and result
Literature review step Concept # sources # scientific

publication
grey
literature

Initial pool RPA development life cycle 70 40 30
Testing 134 104 30
Requirements 30 20 10
Documentation 110 70 40
Alignment requirements & testing 30 30 0

Relevant pool RPA development life cycle 17 9 8
Testing 55 44 11
Requirements 9 6 3
Documentation 49 29 20
Alignment requirements & testing 13 13 0

Final pool RPA development life cycle 9 5 4
Testing 24 22 2
Requirements 8 6 2
Documentation 7 2 5
Alignment requirements & testing 5 5 0

20

4. Multi-vocal literature review
Based on the research protocol defined in Chapter 3, the MLR was conducted. All the MLR questions
formulated in Chapter 3 are answered in the different sections of this chapter. Firstly, what a development
life cycle (DLC) is and how RPA uses a DLC is discussed in Section 4.1. Secondly. requirement manage-
ment, requirement traceability, and how this is incorporated in RPA projects is specified in Section 4.2.
Thirdly, RPA documentation is explained in Section 4.3. Fourthly, in Section 4.4 testing is discussed by
focusing on general testing aspects, RPA testing, and testing methods that can help in aligning require-
ments and testing practices. Lastly, in Section 4.5 a discussion about the differences between the testing
methods is reported.

4.1 Development life cycle
This section first introduces the development life cycle (DLC) and different DLCs are explained. After,
the RPA DLCs described in the literature are discussed in detail. The latter section answers the MLR
question: What is the current most used development life cycle method for RPA?.

The development life cycle (DLC) or often referred to as the software development life cycle outlines each
step to analyse, create and deploy a —software— application (Servicenow, n.d.; Tran & Ho Tran Minh,
2018). Since RPA has some differences from standard software projects, the term DLC is used from here
on out. DLC is an important aspect of quality assurance for a project (Cernat et al., 2020). Tran and
Ho Tran Minh (2018) describe that the aim of DLC is to increase the quality of a development process.
Emorphis (2020) describes it as a holistic view of the various stages to make the implementation of an
application simple and systematic. Consulting (2021) adds that it can help in allocated resources and
management of the whole development cycle and should aim to provide full tractability of the process
from beginning to end.

There are different types of methods that fall under the DLC. These different methods include but are
not limited to Agile, DevOps, waterfall, and V-model (Servicenow, n.d.). Agile focuses strongly on
user input and experience working with quick cycles and incorporating feedback. DevOps is similar to
agile by gathering and incorporating feedback, its unique characteristic is that it has a team consisting of
developers, testers, and operational personnel that have close communication with each other(Servicenow,
n.d.). The Waterfall model is a linear development method completing each step consecutively from
planning to deployment. The V-model is similar to the waterfall model since it executes its phases
sequentially. However, it has an emphasis on verification within the planning and design phase and links
every phase with a type of testing for validation (Servicenow, n.d.).

4.1.1 Development life cycle for RPA
Since RPA is still a relatively new field its DLC is also still maturing (Cernat et al., 2020). However
currently, most of the DLC used for RPA are based on or follow a similar structure to the waterfall
model (Cewe et al., 2017; Tran & Ho Tran Minh, 2018). For RPA, the emphasis is of course on process
description and process analysis rather than software (Orynbayeva, 2019). Different approaches to the
RPA DLC are described in the literature and are shown in Table 4.1.

In Table 4.2 the different RPA DLCs have been grouped according to similarities within their phase
description. This shows a total of eight different phases described by all the authors. On average, RPA
DLC consists of six phases. Group 1 is the planning or discovery group which is described by Ghouse
and Sipos (2022), Emorphis (2020), and Orynbayeva (2019, #7). It focuses on understanding customer
demands, creating a project plan, and assigning a team. Group 2 focuses on requirements gathering
or analysis of the process. This phase analyses the full process and documents any exceptions, criteria,
or other important aspects that need to be understood of the process (Ghouse & Sipos, 2022; Montero
et al., 2019; Orynbayeva, 2019; Tran & Ho Tran Minh, 2018). Ghouse and Sipos (2022), Orynbayeva
(2019), and Tran and Ho Tran Minh (2018) specify on including a process description document (PDD)
here. Group 3 is the design phase that all authors except Reddy (2022) include. This phase describes

21

Table 4.1: Development life cycle of RPA according to different studies
Source # Author(s) Phases # of phases

1 (Ghouse & Sipos, 2022) Discovery, Design, Development, User accep-
tance test, deployment, execution of bots

6

2 (Montero et al., 2019) Analysis, Design, Development, Deployment,
Testing, Monitoring

6

3 (Tran & Ho Tran Minh,
2018)

Requirements gathering and Analysis, Design,
Implementation, Integration and testing, De-
ployment, Maintenance

6

4 (Emorphis, 2020) Discovery, Solution Design, Development,
User acceptance test, Deployment & mainte-
nance, execute bot, support & maintenance

7

5 (Reddy, 2022) Analysis, Development, Testing, Deployment,
Maintenance

5

6 (Orynbayeva, 2019, #6):
Blue Prism

Define process, Design, Development, Test-
ing, User acceptance test, Deployment, Main-
tenance

7

7 (Orynbayeva, 2019, #7):
UiPath

Planning, Analysis, Solution Design, Develop-
ment, Testing, Hyper-care

6

Table 4.2: Groups of RPA DLC phases
Group # Group source # Description

1 Planning, Discovery 1,4,7 Create project plan and assign team
2 Requirements gathering,

Analysis, Define process
1-3, 6, 7 Analyse process requirements

3 (Solution) Design 1-5, 7 Create full understanding and docu-
mentation of the design

4 Development, Coding,
Implementation

1-7 develop all functionality of the bot

5 User acceptance test, test-
ing, integration and test-
ing

1-7 Perform all tests on the bot

6 Deployment, Hyper-care 1-7 Deploy bot in a production environ-
ment to validate it can run successfully

7 Execution of bots 1,4 Describes that bot performs the process
8 Operation, Maintenance,

Support. Monitoring
2-6 Monitor to bot while running to iden-

tify any unforeseen issues. If they arise,
provide support to fix these issues

and documents the full functionality in a detailed document. This document is called the solution design
document (SDD) (Ghouse & Sipos, 2022). Group 4 is included by all authors which is the development
phase. This phase is crucial since without it no bot would be created. Overall all authors agree on this
phase. The only exception is Orynbayeva (2019, #6) which describes its development and testing phase
in parallel. Orynbayeva (2019, #6) only leaves the user acceptance test (UAT) as a separate testing
phase in its DLC. This brings us to the next phase which is the testing phase. All authors agree on the
inclusion of this phase in which all functionality is validated through testing. After testing is complete,
the sixth phase describes the deployment of the bot in the production environment. Orynbayeva (2019,
#7) calls this the hyper-care phase because this phase is still closely monitored to check if the bot runs
smoothly and without any issues in the production environment. Group 7 is only included by Emorphis
(2020) and Ghouse and Sipos (2022) described that the bot is live and performing its intended process
and producing output. The other authors assume that if the deployment phase is successful the bot is
ready to execute anyways. Group 8 is the last and is the maintenance and support phase. All unforeseen
issues that require maintenance or upgrades for the bot are handled in this phase (Ghouse & Sipos, 2022;

22

Montero et al., 2019).

4.2 Requirement management
This section answers the MLR questions: What is requirement traceability or alignment in Section 4.2.1
and How are process requirements defined or formatted in RPA projects in Section 4.2.2. Firstly, an intro-
duction is provided on requirement management usage and benefits. Secondly, requirements traceability
is discussed. Lastly, RPA requirements and the use of traceability within RPA projects are discussed.

Requirement management is the transformation of customer needs into the application specifications
(Jiao & Chen, 2006). These needs need to be defined in a structured format. Accurate requirements
are important since it forms the basis for the further design, development, and testing of the application
(Song, 2017). Requirement management is important to understand the scope and target of the project.
Extensive studies have shown the relevance of careful assessment of requirements for the success of a
project (Jiao & Chen, 2006). Often, a poor understanding of requirements and inaccurate assumptions
have a big negative impact on design, code quality, and project time and cost (Jiao & Chen, 2006).
Mogyorodi (2001) and Skoković and Rakić-Skoković (2010) describe that requirements are the main
cause of defects in projects. In total, 56% is due to requirements issues, 27% is due to issues in design,
and only 7% because of issues in the code. Of all requirement issues, about half are from poorly written
requirements, and the other half are from incomplete requirement specifications. Faults in requirements
lead to more work which in turn causes higher project costs and delays (Skoković & Rakić-Skoković,
2010). Mogyorodi (2001) describes three reasons why projects fail: (1) Requirements are incomplete, (2)
scope creep (i.e., requirements changes) happens too often and is not handled correctly, and (3) a lack of
customer or user input for the requirements. Fixing defects from requirements is often very costly since it
requires changes in the requirements, design, code, and test cases (Mogyorodi, 2001). The later a defect
is found the more costly it becomes. Mogyorodi (2001) shows the cost ratio related to the phase in which
an issue is found. This is depicted in Table 4.3.

Table 4.3: Cost ratio of defects found in different phases (Mogyorodi, 2001)
Phase in which defect was found Cost ratio
Requirements 1
Design 3-6
Coding 10
Unit/Integration testing 15-40
System/acceptance testing 30-70
Production 40-1000

Difficulties of requirement management

Jiao and Chen (2006) mention a few reasons why requirement gathering can be difficult. Firstly, re-
quirements from customers or often qualitative and imprecise due to their linguistic origin. Secondly,
requirements are negotiable which can create conflict with one another. This makes it necessary to make
trade-offs. Third and last, differences in semantics or terminology can make it more difficult to convey
the information of the requirements effectively. Additionally, this can lead to abstract terms for the
requirements which can lead to vague assumptions for the requirements (Jiao & Chen, 2006).

4.2.1 Requirement traceability
Requirement traceability (RT) is focused on being able to trace a requirement from creation in the analysis
phase until fulfilment in deployment (Torkar et al., 2012). This can help to link or align requirements to
other artefacts of the application such as design documentation, models, source code, test scenarios, and
test cases among others (Ziftci & Krüger, 2013). This can be helpful to assist stakeholders to find the
origin or rationale behind a requirement (Bouillon et al., 2013) and shows the impact of a requirement
on the project (Torkar et al., 2012). With RT, data can be linked between artefacts which can then

23

be monitored and controlled (Kirova et al., 2008). Barmi et al. (2011) mention that RT can be used in
different steps of the V-model that aid in requirements validation and verification.

Benefits and challenges of requirement traceability

There are some benefits and challenges related to RT. One benefit is that RT can help in change man-
agement throughout the DLC (Barmi et al., 2011; Kirova et al., 2008). For example, scope creep can
have a big impact on a project when it occurs but with RT an accurate response can be set in place
to see the impact on the project’s progress and apply needed changes. A second benefit is that it can
help with tracking requirement coverage and requirement validation through linked test cases (Barmi
et al., 2011). When a test fails it can be traced back to a specific functionality or code in the module
which can help understand and hopefully solve issues faster. Furthermore, this alignment can be used
for functional and non-functional requirements (Barmi et al., 2011). These benefits show how RT helps
to verify the consistency and completeness of requirements throughout the whole DLC and with this
improves an application’s quality (Kirova et al., 2008). Bouillon et al. (2013) conducted a survey with
practitioners that used RT in their DLC which showed the following:

• 80% agree that RT has expected development benefits.

• 60% agree that RT is important for the development process.

• 50% agree that RT its benefits out weight the cost.

Especially the last point is interesting since only half think that RT its benefits outweigh the cost. Torkar
et al. (2012) mention that one of the tricky parts of RT is to balance the benefits obtained and the effort
spent on RT. Finding this balance can be challenging due to a few reasons. Kirova et al. (2008) and
Torkar et al. (2012) mention that identifying dependencies or links between artefacts is done manually
which is very time-consuming and costly. Additionally, the level of granularity of requirements can be
tricky to be able to trace throughout the project (Kirova et al., 2008). There are still a wide variety of
implementation and standards for RT (Kirova et al., 2008) which can also be a reason why only half of
the practitioners think that the benefits outweigh the costs (Bouillon et al., 2013).

To balance the benefits and costs of RT as a business, it is important to choose a fitting RT strategy.
Different factors are of influence finding a fitting RT strategy. These business aspects are best described
by Kirova et al. (2008) and include Business, Industry, Development life cycle, Project, and Technology.
The business factor entails the business objectives and the commitment to quality standards. Also, the
complexity of the business structure and the collaborative nature of teams are part of this factor. The
second factor is industry and discusses the maturity of the industry or market has business entered. The
third factor is development life cycle and encompasses the maturity of the DLC in regards to established
processes, standards, and frameworks(Kirova et al., 2008). This also includes semantic information avail-
able for artefacts that are used within the DLC and the related documentation. The fourth factor is
the project which comprises the size and complexity of the projects and the team’s experience. The fifth
and final factor is technology which covers tools used by the team or organization (Kirova et al., 2008).
Useful tools that are often used include project management tools, documentation tools, testing tools,
and integrated development environment (Bouillon et al., 2013).

When a business understands the above-mentioned factors, a suitable RT approach can be chosen. Torkar
et al. (2012) describe multiple approaches of RT. These include but are not limited to the rule-based,
scenario-based, process-centred approaches and traceability matrices. Starting with the latter, traceability
matrices are used as visualization tool (Ziftci & Krüger, 2013) to define relationships between require-
ments and other artefacts such as design modules code, or tests (Torkar et al., 2012). These links are often
created manually. While it is a clear visualization of the alignment between requirements and other arte-
facts, Torkar et al. (2012) mention that traceability matrices can suffer from scalability and maintenance
problems. The rule-based RT approach comprises automatically generated traceability links using speci-
fied rules (Torkar et al., 2012). A rule can be requirement-to-object-model traceability to link artefacts in
different documents. Semantic tags can be used to link requirements to other artefacts. Scenario-based
RT uses scenarios to model system functionality and generates test cases from these scenarios (Torkar
et al., 2012). These generated test scenarios are linked with requirements and other parts of the code.

24

Another RT approach is the process-centred environment in which non-functional and functional require-
ments can be linked (Torkar et al., 2012). Traceability tasks need to be defined and checked with an
architectural assessment method. This can be combined with a method such as keywords and ontology
which provides the traceability between documents and models for the non-functional requirements. The
use of specific keywords throughout the whole DLC is important for this approach.

To gain the most benefit from RT, Uusitalo et al. (2008) describes five practices to align requirements
and testing practices. The first is Early test participation. This consists of involving testers in the
analysis phase of a project. This ensures that test planning is taken into account in the analysis. The
second practice is including testers in requirement reviews. This is beneficial since testers have different
viewpoints than requirement analysts, which can help to surface deficiencies or requirements that are
difficult to validate (Uusitalo et al., 2008). A third practice is trace tests to requirements. This is critical
because sometimes tests were not linked to any requirements or some requirements were not linked to
any test. This practice can improve test coverage and change management can be efficiently traced to
test cases. The fourth practice is linking testers with requirement owners. This is important because
documentation alone is not always enough. Person-to-person meetings can improve communication and
reduce assumptions made by testers. The fifth and last practice is achieve superior knowledge of the
application as a tester. This emphasizes the fact that testers need to fully understand the application
and its requirements to aid both designing test cases and performing testing (Uusitalo et al., 2008).

4.2.2 RPA requirements
Since RPA focuses on processes their requirements are analysed and formulated differently than other
software projects. The first step for RPA projects evaluates different processes on their suitability for
automation (Leeuwen, 2022; Tran & Ho Tran Minh, 2018). This is related to the planning phase de-
scribed in Table 4.2. For this, different criteria are checked. For example, if the process is rule-based and
structured, repetitive, currently manual, multiple systems are used (Leeuwen, 2022), and a standardized
process (Fernando, 2020). If a process is chosen, the requirements gathering starts. This requirement
gathering is often done via a group discussion (Tran & Ho Tran Minh, 2018) involving all stakeholders
(Leeuwen, 2022; Tran & Ho Tran Minh, 2018). These stakeholders include business analysts, solution
architects, and domain experts (Fernando, 2020). The stakeholders discuss the whole process and its
different steps are analysed (Kirchmer & Franz, 2019). Tran and Ho Tran Minh (2018) describe RPA
project requirements in two categories. The first is resource requirements and the second is validation
requirements. Resource requirements include the software applications used in the process, the RPA
platform used for the development and deployment of the bot, and a testing environment. The latter is
important to validate that the bot can run and find issues. The testing environment consists of all soft-
ware, hardware, and network components simulating the production environment (Tran & Ho Tran Minh,
2018). The validation requirements consist of the entire bot and its functionality. This is complete if all
happy and alternative scenarios from the process are defined including all known and unknown exceptions
(Tran & Ho Tran Minh, 2018). All the gathered requirements are written down in the process definition
document (PDD) in the form of the application requirements and the as-is process description (Fernando,
2020). The PDD is discussed in more detail in Section 4.3. It is important to understand the scope of
the project correctly. Asking the right questions during the stakeholder group discussion is crucial to
understand the full process scenarios and all manual steps (Harita, 2019). Every sub-task should be
discussed and connected to other tasks to form all the happy scenarios, alternative scenarios, and other
exceptions (Harita, 2019). If the whole process is understood correctly, optimization opportunities can
be discussed (Kirchmer & Franz, 2019) to improve how the bot performs the process (Jovanović et al.,
2018). This can be described in a detailed to-be process description in the PDD (Jovanović et al., 2018).
When all of this requirements gathering is complete, the whole end-to-end process and all exceptions
are properly documented so the scope and timeline of the project are clear (Harita, 2019). After this
phase, the project analysis is complete and everything is in place to start designing and developing the bot.

Requirement traceability is a technique used within general software development but is not commonly
used within RPA. No grey or white papers could be found on the topic. This shows a gap within the
field of RPA research. The closest resemblance to some form of traceability could be found in RPA
documentation. The different types of RPA documentation and the links between those documents are

25

described in Section 4.3

4.3 RPA documentation
This section answers the MLR question: What documentation is used for the requirement, design, and
testing phase in RPA projects? This research only discusses the Process Definition Document (PDD),
Solution Design Document (SDD), and Test Plan Document (TPD) since these are focused on the require-
ment, design, and testing phase of RPA projects. Choudhuri (2021) mentions that RPA documentation is
a crucial part of a project. They are essential for most steps in the DLC and ensure that key information
and knowledge are available for future developers and users. However, little academic research has been
conducted on RPA documentation. There are papers that mention the importance of documenting the
project in great detail (Goris, 2019) and that issues with having incomplete documentation occur in RPA
projects (Prucha, 2021). Nevertheless, no proper description of the elements included in RPA documen-
tation is written in academia. Therefore, the explanation of RPA documentation is mainly based on grey
literature.

Process definition document

The process definition document (PDD) outlines the sequential steps of the process from end-to-end
(Goris, 2019). This includes all tasks and deviations from the main process. In the creation of the
document, the business analyst or solution architect and subject matter expert (SME) (i.e., domain
expert) are involved (Bezemer, 2019). They come together in a group discussion to analyse and document
the process correctly. UiPath (2022) describes the following elements for the PDD:

Table 4.4: PDD components (UiPath, 2022)
PDD Element Description
Purpose of the document Outlines process to be automated and includes elements of the

document
Process key contacts Describes stakeholders and their contact details
As-Is process description Shows a model of the process overview and describes detailed pro-

cess steps with screenshots of UI elements
To-Be process description Expected design of process after changes or improvements
Application criteria Comprehensive list of all applications used and the environment

in which they run
In scope for project All activities and tasks included in the project that are automated
Out of scope for project All activities that are not included in the project
Business exceptions handling List of process exceptions and how they are handled. This includes

the solutions for known and unknown exceptions
Application error and exception handling list of application or environment exceptions and how they are

handled. This includes the solutions for known and unknown ex-
ceptions

Document approval Section that provides the PDD sign-off by stakeholders

Bezemer (2019) also describes some essentials that contribute to a high-quality PDD. Firstly, within
the PDD the process description should contain a high-level description and a step-by-step description
with screenshots (Bezemer, 2019). Secondly, models or flowcharts of the process should be properly
linked with the description (Bezemer, 2019). This is related to RT. Lastly, Bezemer (2019) stresses the
importance of properly documenting all the process scenarios and all the different exceptions thoroughly.
The PDD is the first documentation that is created for an RPA project and is crucial for the design and
the development of the bot(Choudhuri, 2021).

Test plan document

The test plan document (TPD) describes the what, when, how and more of a project’s testing (Choudary,
2020). The TPD includes all the process scenarios that can be formulated from the PDD steps. These

26

scenarios are used for the design in the SDD and tested after development. The TPD serves as a roadmap
for the design and the testing process to control the possible risks. Hamilton (2022) describes different
components that should be included in the TPD which are shown in Table 4.5

Table 4.5: TPD components (Hamilton, 2022)
TPD component Description
Scope Defines the features, FRs and NFRs that are (in-scope) or

are not (out of scope) tested
Quality objectives Description of the objectives that ensure testing quality and

define when the testing is done
Roles and responsibilities Detailed description of the roles and their task responsibil-

ities
Test methodology Defines the type of tests that need to be performed and

when in the DLC. It also describes how bugs need to be
tracked and handled

Test deliverables List of all test artefacts that are delivered (e.g. Test cases,
requirements traceability matrix, bug reports, test metrics,
etc.)

Resources & tools Mentions the hardware and software required for testing
(testing environment) and tools used (e.g. requirement
tracking tool, bug tracking tool, automation tool, etc.)

The TPD plays a crucial role in testing and can make or break a project (Choudary, 2020). Therefore,
a clear understanding of the components mentioned in Table 4.5 is important. Proper documentation
and understanding of every component for an RPA project can increase and ensure a project’s quality
(Hamilton, 2022).

Solution design document

The Solution Design Document (SDD) is crucial for every process that is being automated (Vinocha,
2022). The SDD prepares the solution with flows and design diagrams (Kumar, 2022). The SDD con-
tains the architectural design based on the process steps defined in the PDD and the process scenarios
defined in the TPD. These are translated to exact actions the bot is going to perform such as screen
recordings, clicking on keys, buttons, drop-downs, etc. (Kumar, 2022). The SDD is the blueprint for
the developers of the project (Vinocha, 2022) and allows for insights that could be missed without the
SDD (Choudhuri, 2021). The SDD shows how the applications are involved and how logical decision
exceptions are implemented (Choudhuri, 2021).

4.4 Testing
This section answers the MLR questions: What are important aspects of testing? in Section 4.4.1, what
testing methods are used for RPA? in Section 4.4.2, and w hat methods can help in aligning requirements
and testing practices? in Section 4.4.3. First, a background on testing is provided highlighting different
testing activities, types, and levels. Secondly, the testing for RPA is discussed and novel testing methods
are analysed. Thirdly, different testing methods that might be suitable for aligning requirements and
testing are mentioned. Finally, in Section 4.5, a discussion is provided highlighting the benefits and
limitations of the different testing methods in regard to their structure, traceability approach, and testing
procedure.

4.4.1 Testing background
Testing is an important part of any DLC. If testing is planned well it can increase the quality of the
product hugely but if testing is executed poorly it can harm the product or application (Ratilainen et al.,
2019). Testing aims to uncover defects and can show the presence of defects but does not show their
absence (Ratilainen et al., 2019). Therefore, it is important to spend enough time and effort on testing to

27

uncover errors. In Figure 4.1 the quantity of errors is depicted against the amount of testing where with
too little testing many bugs remain and with over-testing the cost of testing becomes extremely high.
Finding this optimum point of testing is important to ensure a high-quality application without spending
too many hours on testing (Jamil et al., 2016). Testing should be integrated within the development
process and is important to validate any DLC phase (Mařík et al., 2000).

Figure 4.1: Optimum effort for testing (Jamil et al., 2016)

Testing activities

The testing process is mentioned by Jamil et al. (2016) and Ratilainen et al. (2019). While both authors
cover the same topics, some differences in naming are used. For the example of these testing activities,
the naming of Ratilainen et al. (2019) is used. The activities consist of the following:

Table 4.6: Testing activities (Ratilainen et al., 2019)
Name Description

Test planning Goal is to develop, record, and communicate to stakeholders the scope of testing
and the approach in testing towards the testing target.

Test monitoring Monitors the testing phases and checks if it is going according to the test plan
and expected progress.

Test design Determines how the features need to be tested and designs the test scenarios
and cases.

Test execution Test procedures are performed, recorded and results are determined.
Test analysis Includes the reporting of issues and getting relevant incident information to

stakeholders so that issues can be resolved.

Goals of testing

There are multiple goals for testing. Ratilainen et al. (2019) and Sawant et al. (2012) mention three
main ones. These are (1) evaluate and validate requirements, (2) inform the quality of the project,
and (3) test to uncover issues. Sawant et al. (2012) add that to ensure quality and retain knowledge a
traceable document should be kept and tests should include valid and invalid conditions. Additionally,
both Ratilainen et al. (2019) and Sawant et al. (2012) add the importance of starting planning for testing
early in the DLC. Dave (2020) describes five pillars that are crucial for RPA testing. These are (1)
Requirement understanding, (2) Test data, (3) test scenarios and cases, (4) test execution, and (5) Defect
management. (1) requirements management is very important to perform the subsequent test activities.
After this step, the whole process and its requirements are clear and well-documented. (2) test data

28

is important for correct and complete test execution. Incorrect data leads to incorrect test results and
reports which can lead to defects being missed. This data needs to be relevant to the current process
that is being automated. (3) Test scenarios are created from the requirements while the test cases test
these scenarios with the test data. This pillar makes sure that the test can be properly executed and
that all requirements, rules, and exceptions are covered by the tests. (4) Execution performs the actual
testing and reports the issues found. The last pillar is (5) defect management which makes sure that the
defects found are actually fixed before a bot is deployed.

Testing techniques, types, and levels

There are different testing types and techniques to ensure the project’s quality and the project’s testing
objectives. Not all authors agree on the extent and difference between testing types or techniques. First of
all, Ratilainen et al. (2019) and Sawant et al. (2012) make a difference between dynamic and static testing
techniques. Static testing is described as a manual exploration early in the DLC (Sawant et al., 2012) in
which reviews or inspections are done on documents, requirements, code, or test plans (Ratilainen et al.,
2019). On the other hand, dynamic testing involves running test scripts with software (Ratilainen et al.,
2019) to check for correctness, performance or reliability within the application (Sawant et al., 2012).
The second distinction of testing techniques is made by Jamil et al. (2016) and Sawant et al. (2012)
who mention black box vs white box testing. Black box testing is focused on the functionality of the
application without knowing the internal structure (Jamil et al., 2016; Sawant et al., 2012). These tests
need to make sure that the application meets the specified requirements (Jamil et al., 2016) by verifying
and validating that the correct input is accepted and generates the correct output (Sawant et al., 2012).
White box testing is checking the system while being able to view the internal structure and code of the
application (Jamil et al., 2016; Sawant et al., 2012). This testing technique is very effective in testing the
application’s logical decisions, loops, and internal data structure (Jamil et al., 2016; Sawant et al., 2012).
These two techniques can be used within different testing types.

Not all authors agree on the extent of testing types. This paragraph describes the different testing types
mentioned by Jamil et al. (2016), Kaur and Singh (2014), and Ratilainen et al. (2019). Firstly, Kaur and
Singh (2014) and Ratilainen et al. (2019) both mention the functional and regression testing types. Func-
tional testing can be viewed as a black box technique and checks if the system operates as predetermined
by its requirements (Kaur & Singh, 2014; Ratilainen et al., 2019). It emphasizes the external behaviour
of the system and checks if the input provides the correct output (Kaur & Singh, 2014). It can be mea-
sured by test coverage of the required functionality of the system (Ratilainen et al., 2019). Regression
testing (i.e., change-related testing (Ratilainen et al., 2019)) is defined by testing the entire system after
an update to fix an error or if new functionality needs to be added. It needs to test to see if the errors are
fixed, the new functionality works properly, and all existing functionality still functions as before (Kaur
& Singh, 2014; Ratilainen et al., 2019). Ratilainen et al. (2019) also mention the non-functional testing
type. Non-functional tests target non-functional requirements (NFRs) such as stability, usability, perfor-
mance, security, reliability, robustness, and data integrity among others. Writing test cases for this often
requires sufficient knowledge and skill. Kaur and Singh (2014) also mention the testing types Random,
control-flow and data-flow testing. Random testing is a black-box testing technique that creates and
tests without structure. It is often rapidly done and limits the correlation due to its random nature. By
itself, random testing is not a good testing type (Kaur & Singh, 2014). Control-flow testing is useful for
white-box testing and assures that decisions and conditions within the code are executed. To execute all
decisions the application’s branches must be taken at least once. To execute all conditions, all decisions
and their related conditions need to be tried for every value for this condition (Kaur & Singh, 2014). This
means testing both the valid and invalid condition values. The last testing type discussed is data-flow
testing. Data-flow testing focuses on the variable usage and what value they have in every position of
the application. It can help to check if variables are defined correctly, used in the correct places and if
their values correspond to what is expected (Kaur & Singh, 2014). This testing type uses a white box
testing technique. From this paragraph, it is clear that many different testing types exist and that there
is no consensus yet on what their importance is.

When we look at different testing levels there are four different levels described by Ratilainen et al. (2019)
and Sawant et al. (2012). These four types are unit, integration, system, and acceptance testing. Unit

29

Table 4.7: Testing types
Testing type Description
Functional Test to check if the application has all previously

specified requirements
Regression Full application test to check if new features and old

features still function properly
Non-functional Test quality properties of application (e.g, stability,

robustness, usability, etc.)
Random Unstructured test case generation for rapid uncorre-

lated testing
Control-flow Test all conditions and branches of an application
Data-flow Test variable values though out the flow of the ap-

plication

Table 4.8: Testing levels
Testing level Description
Unit Test a single module in isolation
Integration Test integration of modules and their inter-

dependencies
System Test the whole application for internal and external

integrity including functional and non-functional re-
quirements

Acceptance Test readiness of the application together with the
customer or user. showcase all specified requirements
effortlessly

testing focuses on a single module. The module is tested in isolation from the rest of the application
to check if it has any errors and can perform its intended functionality (Ratilainen et al., 2019; Sawant
et al., 2012). The test cases are often written and executed by the developer within the development
environment and defects are fixed immediately (Ratilainen et al., 2019). It is usually seen as white-
box testing since the test execution includes evaluating the implementation of the code (Sawant et al.,
2012). Integration testing focuses on testing the integration of different modules together and interactions
between them (Ratilainen et al., 2019). It can help define and test the program’s structure and uncover
issues related to the program interfacing (Sawant et al., 2012). System testing, also called end-to-end
testing, is a test that happens when the whole application is finished. It tests each and every perspective
from the application from beginning to end (Jamil et al., 2016). It is the first check to see if it is compliant
with its specified requirements and the application is checked for correctness (Sawant et al., 2012). System
testing includes end-to-end tasks of the system and contains functional and non-functional requirements
to test (Ratilainen et al., 2019). With this, it is focused on gathering information on the whole quality
of the system. Furthermore, it is important that the test environment is as close as possible to the
production environment (Ratilainen et al., 2019). The last test level discussed is Acceptance testing or
user acceptance testing. It is used to determine the readiness of the application to be deployed and used
by end-users (Ratilainen et al., 2019). It is often carried out with the user or customer (Sawant et al.,
2012). Acceptance testing falls under black box testing since the user is not interested in its internal
structure but rather in it functioning properly. It should therefore be able to showcase all of its specified
requirements effortlessly. Finding a considerable number of errors in this phase is a big risk to deployment
since it should be the last testing phase to get the go-ahead from the customer to deploy the application
(Ratilainen et al., 2019).

4.4.2 RPA testing and waterfall model
Testing is a crucial phase in RPA development to ensure the quality of a project (Cernat et al., 2020).
When looking at what types of defects show up most in RPA projects we can put them into three main

30

categories: Application issues (42%), Infrastructure issues (28%), and Robot issues (24%) (Weishaar,
2022). Since RPA is a relatively new field, little research has been done on the best testing procedures
(Enríquez et al., 2020). Currently, most testing for RPA is still done manually (Cernat et al., 2020) and
according to the waterfall model approach (Cewe et al., 2017; Tran & Ho Tran Minh, 2018). The testing
phase is important to verify if functionality works as intended and if there are no deviations. According
to the waterfall model, testing is one of the last phases and occurs all at once after all the previous
phases are finished (Balaji & Murugaiyan, 2012; Ghouse & Sipos, 2022). This means that the full testing
of all hardware and software configurations are checked to see if it works as intended is checked after
development (Petersen et al., 2009).

When looking at RPA testing and the waterfall model some limitations can be discussed. Firstly, the
waterfall model is a step-by-step approach in which every phase is finished before the next starts. This
results in the fact that testing is not really integrated into the development process and if scope creep
happens during development it is more difficult to deal with (UiPath, n.d.). Secondly, the whole robot
is tested all at once at the end of the DLC which is a big effort. Because of this, priority is often given
to functional testing rather than non-functional (i.e., quality requirement testing) (Petersen et al., 2009).
Additionally, if unexpected issues arise, they are often harder to fix and lead to higher costs or schedule
overrun (Petersen et al., 2009). Thirdly, if development is delayed, in an effort to stay on schedule project
might compromise its testing efforts (Petersen et al., 2009). Moreover, insufficient testing can lead to
higher maintenance time and cost (UiPath, n.d.).

While very little research has been done on RPA testing there are some themes addressed in academic
literature. The papers published on RPA testing focus on creating testing environments or on different
testing method approaches. Jiménez-Ramírez et al. (2020) and Montero et al. (2019) focus on the fact
that a testing environment for RPA projects is not always available. A testing environment is necessary
to run fake applications to mimic the environment the robot runs on in production (Montero et al., 2019).
If there is a discrepancy between the test and production environment issues can leak through to pro-
duction (UiPath, n.d.). Additionally, without a test environment available, bots need to be tested in the
production environment which poses a high-risk (Jiménez-Ramírez et al., 2020). Jiménez-Ramírez et al.
(2020) and Montero et al. (2019) both propose to automatically generate a testing environment based
on a User-interface log (UI log). The UI log contains the interactions between humans and the system
(Montero et al., 2019). Therefore, this environment would mimic and present images of an application
screen based on the UI-log actions. One limitation of this approach is that there needs to be a complete
UI log available to be able to create this environment which is not always the case (Jiménez-Ramírez
et al., 2020; Montero et al., 2019). Other research on RPA testing focuses on applying a different testing
method. A paper by Cewe et al. (2017) focuses on using a test-driven development (TDD) approach.
They propose this because they describe a waterfall model as inefficient with much over-engineered de-
velopment and documentation (Cewe et al., 2017). TDD is an agile development approach in which
test cases are written before development. Every test case is written and developed until it is passed.
Only then a new test case is selected to be developed. This is where the name test-driven development
comes from. Currently, this testing approach is in the concept stage and has not been tested in a case
study or in practice (Cewe et al., 2017). Another approach focuses on automation testing with the use
of model-based testing (MBT) (Cernat et al., 2020). Currently, testing scenarios and cases are generated
and executed manually. Within MBT, a model is built that represents the application under test and this
model can automatically generate test cases and data. However, this research also only has a theoretical
foundation and has not been tested yet in practice. Cernat et al. (2020) describe a few limitations that
limit the research. Firstly, there is a lack of models and creating these models requires a lot of knowledge.
Secondly, it is difficult to integrate these models into the current testing tools that are used for RPA.
Cernat et al. (2020) are currently trying to develop an MBT tool themselves in a PhD project.

As this section shows, there is very limited research currently conducted on RPA testing and an RPA
literature study by Enríquez et al. (2020) showed that only 5% of the studies focused on testing. Therefore,
in the search for suitable testing approaches that can align requirements and testing practices, an extended
search has been conducted on testing approaches that could achieve this. This is described in detail in
the next section

31

4.4.3 Testing approaches to align requirements and testing
The systematic literature review identified a couple of methods and approaches that can help in the
alignment between requirements and RPA testing. Of course, Requirement traceability (RT) is part of
this but this has already been discussed in depth in Section 4.2.1. This section goes more in-depth into
the already defined method of TDD. While MBT is a testing method discussed in RPA literature, its
focus is mainly on automation testing and not focused on requirements traceability. Furthermore, Cernat
et al. (2020) pointed out limitations that are hard to address within the time scope of this research.
Therefore, it is not discussed in depth in this section. However, the Requirement-based testing (RBT)
method and the V-model is discussed since these are aimed at aligning requirements with testing.

Test driven development

Test-driven development (TDD) is focused on creating unit test cases prior to coding starts (George &
Williams, 2004; Janzen & Saiedian, 2005). This happens in small, rapid iterations in which the minimum
to pass a unit test is coded. After this, the next iteration of writing the unit test and coding the solution
is performed (Janzen & Saiedian, 2005). For TDD an important rule is that ’If you can’t write a test for
what you are about to code, then you should not even be thinking about coding’ (George & Williams,
2004, p. 337). TDD mainly focused on integrating testing first and then code. There is no clear model
or structure besides what is meant before which makes TDD more a testing and development technique
than a testing model (Janzen & Saiedian, 2005). TDD promotes a strong integration between testing and
development (George & Williams, 2004). This allows for continuous integration testing throughout the
project. George and Williams (2004) describes a couple of benefits of TDD. It allows for efficient coding
and high testability of the code. Measuring the code quality can be done by monitoring the number of
defects found, defects per test case, and effort required to fix defects. An experiment performed comparing
TDD with waterfall development showed that TDD had higher code quality and passed 18% more tests
but also took 16% longer for development (George & Williams, 2004). Nevertheless, while it is expected
that TDD increases test quality, according to Turhan et al. (2010) there is insufficient evidence from
industrial use. TDD is described extensively in literature but is used relatively little in practice (Turhan
et al., 2010).

George and Williams (2004) also describe some concerns of TDD. Firstly, there is a lack of upfront design
with TDD which can lead to a lack of conceptual integrity. Secondly, TDD is high-risk-reward. If it
works it can lead to time and cost savings, but if it fails there is no fallback on explicit design and
documentation. Third and Last, TDD requires the ability to create test cases by developers beforehand.
Furthermore, not all code structures are easy for TDD such as for graphical use interfaces (George &
Williams, 2004). This might limit its applicability for RPA.

Requirement-based testing

Requirement-based testing (RBT) tries to address the fact that incorrect or incomplete requirements are
often the root cause of project failure. So RBT tries to make sure that requirements are correct and
linked to testing so that they are properly validated (Mogyorodi, 2001). RBT tries to address two main
issues. Firstly, focusing on correct and complete requirements (Mogyorodi, 2001) to ensure a high quality
of requirements specification (Skoković & Rakić-Skoković, 2010). Secondly, the design of sufficient test
cases to meet the requirements and validate them (Skoković & Rakić-Skoković, 2010). The first addressed
issues should lead to early defect detection (Skoković & Rakić-Skoković, 2010). The earlier issues are
found the least costly they are according to Mogyorodi (2001) (see Table 4.3). RBT is closely related
to requirement traceability since it is focused on generating test scenarios and cases from a linked set
of requirements. This traceability is crucial to monitor progress and test coverage as well as managing
changes for requirements and related test cases (Skoković & Rakić-Skoković, 2010).

Skoković and Rakić-Skoković (2010) describe the different steps of RBT. These different steps focus
on verifying the requirements with stakeholders and generating test cases based on these requirements.
Furthermore, RBT focuses on the following testing activities: Define test completion criteria, Design
test cases and Verify test coverage (Skoković & Rakić-Skoković, 2010). To do this, requirements need to
be clearly written and testable. Mogyorodi (2001) mentions qualities of testable requirements such as

32

deterministic, traceable, correct, complete, lends itself to change control, feasible, logically consistent, and
non-redundant.. These qualities should be considered when writing down requirements in the analysis
phase. Lastly, Skoković and Rakić-Skoković (2010) mentions a few metrics for RBT such as Percentage of
requirements reviewed, Percentage of requirements with formal representation, and Percentage of formal
requirements covered by formal test cases. These metrics can provide insights into the effectiveness of the
requirements alignment with testing and the completeness of the testing phase.

Figure 4.2: V-model1
1 Source: https://www.geeksforgeeks.org/software-engineering-sdlc-v-model/

V-model and W-model

The V-Model or validation & verification model (Balaji & Murugaiyan, 2012) is a life-cycle project pro-
cess model (Johansson & Bucanac, 1999). It tries to reach project goals at the project level through the
different DLC phases. Every phase of the DLC verifies the previous one and all DLC phases are validated
with a specific testing type (Balaji & Murugaiyan, 2012). The V-model is similar to the waterfall model
since it relies on completing a step before moving on to the next one (Balaji & Murugaiyan, 2012). Every
phase in the V-model is linked with a type of test. For example, the requirements-gathering phase is val-
idated by the acceptance test. These phases and their linked test type are shown in Figure 4.2. Through
this structure, the V-model intends to discover issues as early as possible and have a closely integrated
testing phase that is aligned with different steps in the DLC (Shuping & Ling, 2008).

There are a couple of advantages and disadvantages described for the V-model. Balaji and Murugaiyan
(2012) mention the similarity to the waterfall model, testing involved in the requirements phase, and
the possibility of requirements change in any phase advantages for the V-model. (Regulwar et al., 2010)
mentions two advantages. Firstly that the V-model can find defects in the early stages which reduces
the costs to fix them. Secondly, since the V-model is project independent, it can be tailored to the
needs of specific projects. However, also some disadvantages are described for the V-model. Balaji and
Murugaiyan (2012) mention 3 disadvantages. Firstly that the V-model is very rigid and not flexible.
Secondly, if changes happen both requirements and test documents need to be updated. Thirdly, short
projects benefit less from the V-model since the V-model requires reviews at every stage. Johansson and
Bucanac (1999) mention that while the V-model covers DLC activities, they are described in quite an
abstract plain with little detail. Regulwar et al. (2010) mention that the V-model depicts a one-to-one

33

https://www.geeksforgeeks.org/software-engineering-sdlc-v-model/

relationship between documents and test activities which is not always the case. because of these dis-
advantages, many different variations or upgrades of the V-model have been proposed by different authors.

Shuping and Ling (2008) propose an upgrade to the V-model in which test stages are overlapping and
stresses the importance of the acceptance test. Regulwar et al. (2010) propose a different variation to
the V-model. This is called the W-model. The W-model still presents a standard DLC with every phase
linked with a test activity (Regulwar et al., 2010). The W-model is shown in Figure 4.3 and consists
of two V’s forming the W. The first V (shown in black) describes the phases and their documentation
going down and then the development for these phases. The second V (shown in red) starts with the
validation of the documentation going down and the verification of development with testing going up.
The function of the tests is to determine if the objectives of development are met and the deliverable meets
its requirements (Regulwar et al., 2010). Just like the V-model, the W-model is project independent and
can be adjusted if a project has different development stages. Regulwar et al. (2010, p. 135) mention that
the important thing about the W-model is that it "focuses specifically on the product risks of concern at
the point where testing can be most effective".

Figure 4.3: W-model1
1 Source: https://shiftasia.com/column/difference-between-v-model-and-w-model-in-software-testing/

34

https://shiftasia.com/column/difference-between-v-model-and-w-model-in-software-testing/

4.5 Discussion on testing methods and traceability
This section compares the different testing methods on their benefits and weaknesses. This forms the
foundation for the solution objectives in Section 6.1. All methods or techniques that have been discussed
in the MLR are included. This includes TDD, W-model, RBT, RT, MBT, and waterfall model. The V-
model has also been discussed but because of its great overlap with the W-model is not included. Also, the
MBT and the waterfall model have already shown limitations to be implemented but for completeness are
part of the discussion. The discussion focuses on which DLC phases each method includes, their approach
on traceability, and their procedure for testing.

4.5.1 Development life cycle phases
TDD is a 7-step process in which requirements are converted to test cases which are in turn coded and
implemented (Turhan et al., 2010). TDD does not have a clear design phase and mainly actually only
uses requirement analysis, testing and coding as phases. TDD has clear but not very detailed steps and
does not have a clear visual representation of its phases are procedures. Developers need a high under-
standing of the system they are coding to create test cases and code without a clear design (George &
Williams, 2004). TDD is considered an agile development process (Cewe et al., 2017). This is quite a
different approach than the waterfall model that is currently used for RPA (Tran & Ho Tran Minh, 2018).

The W-model incorporates multiple DLC phases including requirements analysis, design, development,
and testing (Regulwar et al., 2010). It has quite visual elements but these elements are not explained in
great detail leaving space for interpretation. The W-model tries to discover issues as early as possible in
the DLC (Shuping & Ling, 2008) which reduces the cost of fixing these issues significantly (Mogyorodi,
2001). Furthermore, the W-model is focused on linking different design steps with verification through
reviews and development with validation through different testing levels (Regulwar et al., 2010). This is
also the reason why the W-model is sometimes referred to as the verification and validation model(Balaji
& Murugaiyan, 2012). The W-model its phases and elements are visible in Figure 4.3. It is based on the
waterfall model since it also follows sequential steps in its phases and tries to complete a phase before
starting the next.

The RBT method consists of a 12-step process to align requirements with test cases (Skoković & Rakić-
Skoković, 2010). It is very detailed in its description of these steps but has no visual representation.
Since the RBT is only focused on aligning requirements with test cases, the DLC phases it covers are
simply requirement analysis and testing. The RBT method does include a clear explanation of differ-
ent reviews of the requirements. just like the W-model, RBT is focused on uncovering issues as early
as possible in the DLC (Skoković & Rakić-Skoković, 2010) which reduces its fixing cost (Mogyorodi, 2001).

RT is mainly focused on linking requirements with different artefacts in a project including artefacts for
design, development, and testing (Ziftci & Krüger, 2013). RT does not have a visual model of some sort,
it does focus on linking requirements to the other mentioned phases. Therefore it can be said that RT
includes the following DLC phases: requirements analysis, design, development, and testing. However, it
does not focus on how to perform these phases, it only focuses on traceability within these phases. For
RT, it is finding a balance between effort put into linking all project’s artefacts and the benefit gained
from this (Torkar et al., 2012)

MBT does not clearly specify different DLC phases. It is mainly focused on creating a model from
the application that is developed. This model automatically generates test cases (Cernat et al., 2020).
Because of this, it can be said that MBT only focuses on the testing phase. MBT does have a model
which can be visualized. However, for the construction of this model are no clear guidelines provided.

The waterfall model has been researched and described a lot in literature and because of this different
versions of the waterfall model exist. Nevertheless, the model at least includes an analysis, design,
development, testing, and maintenance phase. These phases are performed in a sequential order and the
next phase can only start if the previous one is finished. This means that the waterfall model cannot
handle scope creep well (UiPath, n.d.). The waterfall model provides clear visual elements of these phases

35

but does not include guidelines as support for these elements.

4.5.2 Traceability approach
Firstly, TDD uses little documentation for its requirement analysis, design, or coding (George & Williams,
2004) which is a big part of traceability (Ziftci & Krüger, 2013). However, TDD does use a structure in
which tests are created for a specific test case and from this code is built. This shows some link between
a requirement, test, and code. Nevertheless, no clear procedure for proper traceability is provided for
this. Therefore, no clear standpoint can be appointed for TDD and its use of traceability.

The traceability for the W-model is also unclear. The W-model has a clear structure going through
analysis and design with proper reviews in place as verification and a clear development structure with
link test level as validation (Regulwar et al., 2010). However, it does not specify linking requirements to
a spot in design or development. Therefore, the W-model cannot directly be categorized as a model that
includes traceability. It is unclear if these links within the model can include traceability aspects.

The RBT method is focused on creating links or traces from requirements to testing. It accomplishes
this through a clear structure of requirements reviews, test generation based on requirements, and met-
rics to verify to what extent the requirements are covered by tests (Skoković & Rakić-Skoković, 2010).
Therefore, it can be said that RBT uses traceability to align requirements to testing.

RT, just like RBT, has its main core focus on traceability. Compared to RBT, RT has a bigger scope since
it includes all artefacts related to design, development, and testing. Furthermore, RT explains different
techniques such as requirement traceability matrix (RTM), rule-based, and process-based approach(Torkar
et al., 2012). Simple naming tags can also be used as a traceability approach. Most of these techniques
need some form of tool to use them. However, further research should be done to identify the clear
advantages and disadvantages of these different techniques.

MBT has no clear relation with traceability. While MBT creates a model based on the developed system,
there is no procedure in place that checks if the model includes all the requirements or functionality. This
means that MBT does not include a traceability approach.

The waterfall model also has no relationship with traceability. The waterfall model only focuses on the
sequential phases of a software project but does not specify any relation or link between these phases.
Therefore it can be concluded with certainty that the waterfall model does not include requirement
traceability.

4.5.3 Testing procedure
TDD promotes a strong integration between testing and development through its unique and iterative
process of first creating test cases and then developing the code (George & Williams, 2004). TDD is
mainly focused on writing unit tests and does not address any other levels of testing.

The W-model includes 4 types of testing that are linked to different phases of development. These types
are unit, integration, system and acceptance testing. Figure 4.3 shows this. The W-model is the only
one that indicates these different levels of testing. The W-model also specifies to function of validation
of testing and their relation to different design and development steps. These different testing levels are
clearly defined in sequential order.

RBT is focused on converting requirements to tests which can be seen as functional and non-functional
testing (Ratilainen et al., 2019). RBT does not specify other types of testing nor distinguishes different
testing levels. RBT does specify quality attributes of requirements that make them more testable and
provides metrics to check if the tests adequately cover the requirements.

RT its main focus is on linking requirements to for example test cases. However, no standard way of
testing or any other guidelines on how to perform these test cases is provided. Also, no differentiation

36

between types or levels of testing is specified.

MBT is mainly focused on automatically generating test cases (Cernat et al., 2020) to test all the func-
tionality. Through this, it has integrated testing within its development process and a clear standardized
method for testing. However, Cernat et al. (2020) mentioned that their approach is still theoretical and
pointed out a few limitations. Firstly, there is a lack of knowledge of how to create proper models and no
tooling for this. Secondly, it is difficult to integrate these models into the current testing tools for RPA
(Cernat et al., 2020).

The waterfall model includes a testing phase at the end of a project. Before testing starts, development
has to be finished completely and all the testing happens in one go. This means that there is no integration
between testing and development or another phase that came before the testing phase. This can lead to
issues that are harder to fix (Petersen et al., 2009).

37

Method design

38

5. Problem-centred interviews
This chapter discusses problem-centred interviews. The problem-centred interviews were conducted with
two solution architects (SAs) and one head of support. The interviewees are labelled Interviewee SA1,
Interviewee SA2, and Interviewee Support1 respectively. They all signed a consent form which can be
found in Appendix A1 in Section 16.1. The interviews were focused on the current requirements, testing
practices in RPA, and the translation of these requirements into scenarios. The questions can be found
in Appendix A2 in Section 16.2. The results are summarized in Section 5 and emphasize three main
categories for which problems were discovered. These categories are importance of requirement analysis,
responsibilities of customer, and struggles with testing. Within these three categories, multiple issues were
highlighted, which are discussed in the next sections. The insights from these interviews are addressed
in the last section and shown in Table 5.4

5.1 Importance of analysis

5.1.1 Discover all scenarios and exceptions in the analysis phase
Discover all scenarios and exceptions in the analysis phase is important to have a complete picture of
what is in or out of scope for the project. Interviewee SA1 mentioned that "it is important to ask difficult
questions [about the process] so that step by step all exceptions are explained". "The more detail in the
analysis phase about exceptions the easier development" —Interviewee SA1. All exceptions define what
scenarios exist within the process. "We with the client need to define a scenario for every flow through the
process and every business rule exception is a scenario" —Interviewee SA1. It is important to understand
all scenarios that should be developed. "If exceptions are discovered later this means that more scenarios
might need to be incorporated. These exceptions then need to be discussed with the stakeholders to see
if they are in or out of the scope of the project. If they are considered in scope, scope creep occurs.

5.1.2 Scope creep
Scope creep means that changes are made to the requirements or scenarios that are implemented in the
project. "If exceptions are taken into account it is a form of scope creep" —Interviewee SA1. "Scope
creep can be an issue" —Interviewee SA2. This can cause delays in development and testing for the
project. For example, Interviewee SA2 mentioned that "a lot of changes were integrated that conflicted
with the original code".

5.2 Responsibilities of the customer
The customer plays a big role in the success of a project. They are responsible for a clear description of
the process, signing-off project documents, and proving correct and complete test data and environment.
Issues with their responsibility are discussed.

5.2.1 Issues in the analysis phase
Issues in the analysis phase can be caused because of incomplete descriptions of the process or disagree-
ments between subject matter experts (SMEs). One interviewee gave a clear reason why an incomplete
process description was provided. "The process was discussed by a small group of SMEs that did not
discuss all scenarios" —Interviewee SA2. This means that exceptions to the process were missed in the
analysis phase. Another interviewee pointed out an issue that was caused because of a disagreement
between SMEs about the process steps. "Last project there was a lot of discussion about the different
process steps and how they are performed. The explanation of the process was vague. [...] If they don’t
agree with how their own process is performed they need to have a discussion because we cannot automate
it then" —Interviewee SA1.

39

5.2.2 Proper document sign-off with customer
Proper document sign-off with customer was something that the interviewees missed. This was related
to customers not checking documentation thoroughly or claiming that documentation was changed after
sign-off. The SA translates the requirements into process scenarios. However, the customer does not
always take the time or effort to check if this is done correctly. "Most of the time we translate it and the
business says it looks good without actually reading or understanding it. Maybe it is a bit complicated
or they are not invested enough. Sometimes you see they don’t care" —Interviewee SA2. The customers
are the experts in the process and if they do not check the documentation it can cause issues later in
development. Another issue is that documentation is currently signed off online by the customer and
this online document can still change. This causes that "we are sometimes accused that the document
changed after the customer signed it off. [...] So basically an official sign with the client is something I
miss" —Interviewee SA2.

5.2.3 Issues with providing test infrastructure, test applications, or relevant
test data

Issues with providing test infrastructure, test applications, or relevant test data can have a big impact on
the project’s quality and success. First of all, the customer is responsible to provide relevant test data
but this does not always happen. "You always ask for relevant and up-to-date test data but this is not
always the case. The test data should be the same as in production" —Interviewee SA1. Another issue
can be if the customer provides incorrect test data for a specific scenario. "Last project, the client needed
to provide a set of emails that contained specific data that the robot searched on. However, the scenarios
defined (happy flow) ended in business rules exceptions because of this incorrect data" —Interviewee
SA1. This can cause delays in testing. The last issue discussed is related to the bot infrastructure
and applications. The bot runs on system infrastructures and uses applications. Understanding how
the applications function is quite important because "we are automating through the user interface of
applications" —Interviewee SA1. The applications and their version is discussed at the beginning of
the analyses phase. "We need to know what version of the application is used in the process and we
need to document on which version we build the bot" —Interviewee SA2. To test if the but functions
correctly, a test environment consists of the system infrastructure and applications the bot uses. All
interviewees mentioned that there can be issues with the test environment. The interviewees all gave the
same reason which was best summarized by Interviewee Support1. The "test environment is not provided
by the customer or the test environment is not the same as the production environment" —Interviewee
Support1. If the test environment is not the same, this means that the version of applications on which
the bot is tested does not match the version on which the bot runs in production. All the above-mentioned
issues can cause struggles with testing which is discussed in the next section.

5.3 Struggles with testing

5.3.1 Incorrect test data or, test infrastructure. or test applications
Incorrect test data or, test infrastructure. or test applications can cause issues for testing. If the customer
does not provide relevant test data it is possible that issues only show up after deployment. "Exceptions
that did not occur in the test data will show up in production" —Interviewee SA1. Considering the
test environment, there were two issues that could occur. One was no correlation with the production
environment and two was no test environment available at all. For the first, "if the test and production
environment do not correlate we can pass a test in the test environment but still fail in the production
environment" —Interviewee Support1. This means that the provided test applications are different from
the applications on which the bot runs. This can result in issues only being discovered after deployment.
If no test environment is available at all, development and testing need to happen in the production
environment which is a high risk. "Testing in production feels high risk because you don’t know what
connections are in place and what the consequences are if you change something" —Interviewee SA2.

40

5.3.2 Lack of testing knowledge and traceability
Lack of testing knowledge and traceability is another struggle that the interviewees pointed out. "In
general we don’t have a lot of knowledge about testing" —Interviewee SA1. Interviewee SA2 mentioned
that a clear standard for testing is missing. "I want a more standardized way of testing and going through
a testing pipeline" —Interviewee SA2. Currently, no specific technique is used to go from requirements
to the process scenarios that need to be developed and tested. "No technique is used to set up or define
the scenarios. Use common sense" —Interviewee SA2. Furthermore, Interviewee SA2 mentioned that
testing could be more integrated into the development. "I would like to see in our development framework
a standard form of testing so we integrate testing more into development" —Interviewee SA2. Lastly,
Interviewee SA1 mentioned that there are some traceability links in the documentation but these are
not complete. "All scenarios are listed in the TPD. However, the scenarios are not linked to specific
steps in the PDD. On a higher level though, the scenarios are linked to the design and all scenarios are
tested" —Interviewee SA1. Therefore, a better understanding of traceability and its usefulness should
be researched.

5.4 Insights from interviews
From the issues described in the previous three sections, a few insights have been gained that help define
the solution objectives for the RPA testing method in Chapter 6. The insights are described in Table 5.1.

Table 5.1: Insights from problem-centred interviews
Insight Description
Importance process analysis A complete and thorough process analysis is important to under-

stand the whole process and to specify all possible scenarios and
exceptions of the process (i.e., main scenario and exception flow
scenarios). (Section 5.1.1 and 5.2.1)

Importance infrastructure and applica-
tion specifications

A robot needs to run on hardware infrastructure and software
applications. These need to be clearly specified and a test envi-
ronment needs to be provided for proper testing. (Section 5.2.3
and 5.3.1)

Importance of customer reviews and
sign-off

All insights mentioned above need customer input. Therefore,
it is important to have a thorough and proper review with the
customer and an official documentation sign-off. (Section 5.2.2)

A better understanding of document
traceability

Traceability within and between documentation is used but this
is not consistent throughout all documents. Its applicability and
usefulness for RPA need to be researched in more depth. (Section
5.3.2)

No clear standard for testing There is a lack of testing knowledge or standards for testing. (Sec-
tion 5.3.2)

41

6. Solution objectives
This chapter focuses on creating the first iteration of the RPA testing method. This first iteration is
based on the problem-centered interviews from Chapter 5 and the literature study in Chapter 4.

6.1 First version of RPA method
Based on the main research question, the insights from Chapter 5, and the discussion in Section 4.5, the
first version of the RPA testing method is formulated. This section explains the reasoning and selection
process that led to the first version of the RPA testing method.

6.1.1 RPA method selection process
Requirements of the RPA method

Table 6.1 outlines the seven requirements used to establish the RPA DLC method. These requirements
were formulated based on findings from the problem-centred interviews and MLR. The requirements
address issues such as specifying the inclusion and exclusion of DLC phases, traceability, multiple re-
quirements focused on testing, visual elements, and clear guidelines. Further details on each of these
requirements can be found in Table 6.1.

Table 6.1: Requirements for RPA method
Requirement # Requirement name Description

1 RPA DLC phases The RPA method should include all the DLC phases that
are related to requirement management or testing

2 Requirement traceability The RPA method should be able to trace requirements
throughout the included DLC phases and align them with
test scenarios

3 Integrated static testing The RPA method should verify the requirements and design
through proper reviews of the requirements and design with
the customer

4 Integrated dynamic test-
ing

The RPA method should validate the requirements, design,
and code through proper testing

5 Standardized testing The RPA method should include testing standards
6 Visual elements The RPA method should have clear visual elements that

are easy to read and understand
7 Clear guidelines The RPA method should have clear guidelines for each el-

ement to explain them in detail and describe the activities
that need to be performed.

RPA DLC phases in scope for the RPA method

To be able to meet Requirement 1, the different DLC phases that are in and out of scope need to be de-
termined. To determine which phases are in scope we looked at the research question and the description
of the different phases. All phases that contributed or benefited from requirement management, require-
ments traceability, or testing were included. Table 6.2 shows all the eight RPA DLC phases mentioned in
Table 4.2 and specifies whether a phase is considered in or out of scope. The Table shows that five phases
are considered in scope and three are considered out of scope. The included DLC phases are Requirement
management. Design, Development, Testing and Hyper-care. This means that these five phases form the
basis of Requirement 1.

42

Table 6.2: DLC phases included in the RPA method
Phase In/Out of scope Reasoning

Planning Out of scope Focused on the project plan and process selection
rather than requirements or testing

Requirement analysis In scope Requirement analysis is an essential part of the Re-
search question

Design In scope Design is constructed from the requirements. Re-
quirement traceability is important to include within
the design. This can verify if all the specified require-
ments or included in the solution design

Development In scope Consists of implementing the specified requirements.
Requirement traceability can also be applied in the
code. Testing its main purpose is to validate that
the developed process works and has the intended
functional requirements

Testing In scope Testing is an essential part of the RQ
Hyper-care In scope Essential part of analysing if requirements and ex-

ceptions are incorporated and work correctly in the
production environment

Execution of bots Out of scope Only describes the bot going live and is not part of
the research question

Support & maintenance Out of scope Support is not related to requirement analyses or
management and their job description falls out of
the scope of this research.

RPA method selection

To decide which method or methods are selected to base the RPA testing method on, a comparison
is made between all of them. This comparison is shown in Table 6.3. The method that addresses the
most requirements from Table 6.1 is selected. All methods discussed in this research are included in the
comparison. The requirements are answered using Chapter 4 and specifically the discussion in Section
4.5.

Table 6.3: Comparison of methods
Table 6.1 re-
quirements

TDD W-model RBT RT MBT Waterfall Legend:

1 ? + - + - + + = Requirement addressed
2 ? ? + + - - - = Requirement not addressed
3 - + + - - - ? = Requirement insufficiently ad-

dressed
4 + + + - + ?
5 + + - - + +
6 - + - - + +
7 - - + + ? -

Overall, the W-model scores best across all metrics. It only scored a ’-’ on Requirement 7 and a ’?’ on
Requirement 2 (i.e., traceability). Since no other method or technique scored positive on as many re-
quirements, the W-model is the main component of the solution objective for the RPA method. However,
to fulfil all requirements, the W-model needs to be extended to adhere to all requirements. This means
that the role of documentation within the RPA DLC is an essential part of the RPA method to analyse
how traceability can be included. Furthermore, the multiple-case study should result in guidelines that
can support the RPA method.

43

6.1.2 RPA Verification and Validation method
The W-method is also called the verification and validation model because of its approach to verifying
the requirements and design with reviews and validating the development with testing. These are also
two requirements of the RPA method (Requirements 3 and 4) shown in Table 6.1. Since the focus of the
RPA testing method lies on this verification and validation, the developed RPA method is called RPA
Verification and Validation method (RPA VV-method). Based on the elements of the W-model, the first
iteration of the RPA VV-method is created. The first version of the RPA VV-method is shown in Figure
6.1. The RPA VV-method shows a few modifications on the W-model. The W-model and its elements
have been converted to RPA elements. These elements and their purpose can be seen in Table 6.4. These
elements are based on the problem-centred interview insights shown in Table 5.4 and the MLR in Chapter
4. The RPA VV-method focuses strongly on verification and validation. This is visualized in Figure 6.1
by the arrows between for example requirement analysis and review requirements as verification, and
validate bot and UAT as validation. Furthermore, the sequential steps going toward coding and from
coding the different development steps are visualized by the bigger arrows. This is the RPA-VV method
that is used for the interviews during the multiple-case study in Chapter 2.2.3.

Figure 6.1: First version of the RPA verification and validation method

44

Table 6.4: RPA VV-method components
RPA VV-method

component
Description

Requirement analysis First analysis of process
Infrastructure and application
specifications

Clarify and document infrastructure and applications specifications such as
their version and test environment availability

Define scenarios Define process scenarios of the process based on requirements
Design solution Design solution based on scenarios and system specifications
Review requirements Verify process requirements together with customer
Review system specifications Verify process specification with customer and sign-off PDD
Review scenarios Verify scenarios with the customer on correctness and completeness and sign-

off TPD
Review solution design Verify solution with the customer and sign-off SDD
Coding Start coding the solution
Build workflows Develop a single task in a workflow
Build process scenarios Integrate all workflows of a scenario
Build bot Integrate all scenarios of the process
Validate bot Validate that the bot has all specified functionality
Deploy bot Deploy bot in production environment
Unit testing Test every workflow individually
Integration testing Test that the integration of different workflows of a scenario work correctly
End-to-End testing Test the entire process with all its different scenarios applications, and infras-

tructure
UAT Test all the process scenarios together with the customer
Hyper-care Monitor that the bot works correctly in the production environment and can

complete all the scenarios successfully

45

7. Multiple-case study approach
The aim of the multiple-case study is to obtain technical and processual knowledge about the RPA
development life cycle (DLC). Additionally, we intend to fully understand the use of documentation and
tools within the RPA DLC. This chapter explains the approach that is taken for the multiple-case study.
Below, an overview is provided of the objectives, the different analysis methods, and the criteria that are
used for this analysis. A more extensive case study protocol is provided in Appendix B2 (17.2). The case
study protocol explains how the cases are selected for the multiple-case study and which documentation
and tools are included.

7.1 Overview
The multiple-case study consists of four projects that are described in Table 7.2. These four projects
are analyzed through three different methods. The first is a thorough documentation and tool analysis,
which is retrospective. The second method is a survey with the solution architects, and the third method
is multiple systematic expert interviews. The interviews are aimed at gaining a better understanding
of the RPA DLC and a deeper understanding of the use of documentation and tools. The result of the
multiple-case study is best described by the following two objectives shown in table 7.1.

Table 7.1: Objectives description
Objective Sources Result Chapter
Improve and modify the activities of the RPA-VV
method.

Systematic expert interviews Chapter 9

Generate guidelines for the RPA-VV method and
RPA project documentation.

All analyses methods Chapter 10

Table 7.2: Case description
Case # Case name Department Complexity level Duration

1 Car rental reservation Customer service Low 18-04-2022 until 13-05-2022
2 XDM Import Healthcare High 19-07-2021 until 28-08-2021
3 Downloading From Sap Supply chain Low 04-07-2022 until 29-07-2022
4 RVO requests Recruitment High 02-05-2022 until 01-07-2022

7.1.1 Criteria
The documentation and tools are analysed based on the criteria described in Table 7.3. These criteria
are incorporated within the survey and form the basis of the results section in Chapter 8.

Table 7.3: Documentation & tool analysis criteria
Criteria Document analysis Tool analysis

Completeness Included NOT included
Consistency Included NOT included
Functionality NOT included Included
Usefulness Included Included
Ease of use Included Included

7.1.2 Different analysis methods
This section describes the approach for the three different methods that are used within the multiple-case
study in more depth.

46

Document and tool analysis

The document and tool analysis focused on the different tools and documents included in every project.
The goal of this analysis was to fully understand the purpose of all documents and tools used within the
RPA DLC and analyze their use based on the criteria described in Table 7.3. Only completeness and
consistency could be analyzed in this method since ease of use and usefulness can only be judged by the
practitioners themselves. Thus, the other two analysis methods were required for this. Which tools and
documents are included is shown in the case study protocol in Appendix B2 in Section 17.2. Since the
projects are already completed, this analysis is retrospective in nature. The insights from the document
and tool analysis are written down in Chapter 8 in a within- and across-case section. Furthermore,
the results are used as inspiration for the systematic expert interviews and form the foundation for the
guidelines in Chapter 10.

Survey

The aim of the survey was to obtain expert opinions on the use of documentation and tools in RPA
projects. To assess the documentation and tools, a set of criteria outlined in Table 7.3 were used, and
sixty-two questions were asked. The survey paid particular attention to the usefulness and ease of use of
the documentation and tools, as these aspects could not be evaluated by analyzing the documents and
tools alone. The survey questions can be found in Appendix B3, Section 17.3. A total of five RPA experts
were interviewed, and the survey responses are presented in Appendix B4 (17.5). Some of the insights of
the survey are discussed in the across-case analysis in Section 8.2. Additionally, the survey results served
as a reference for the systematic expert interviews and laid the groundwork for the guidelines presented
in Chapter 10.

Systematizing expert interviews

Several expert interviews were conducted as part of the multiple-case study. The interviews consisted
of two parts with the solution architects of the different projects within the multiple-case study as
participants. The interview database is available in Appendix B1, Section 17.1.1. The first part of
the interviews focused on comparing the RPA development life cycle (DLC) with the RPA-VV method
proposed in Section 6.1, using the initial iteration of the RPA-VV method visible in Figure 6.1. The
interviews were conducted with four participants as shown in Table 17.1. All participants filled in the
consent form shown in Appendix B5 in Section 17.5. The interview lasted for an hour and all the different
phases were discussed in a structured manner. The interview questions can be found in Appendix
B6 in Section 17.6. The second part of the interview involved a thorough investigation of the use of
documentation and tools within the RPA DLC. The interview lasted for thirty minutes, and the questions
were modified according to the results of the document analysis and survey responses. Therefore, the
interview questions were adjusted for all five Interviewees as shown in Table 17.1. Their interview
questions are available in Appendix B7 in Section 17.7. Some of the insights from these interviews are
described in Chapter 8. The interviews were transcribed and coded using Nvivo1. The coding was based
on the following themes: prerequisites DLC phase, essential activities, roles involved, and definition of
completeness for a DLC phase. These themes have led to improvements in the RPA-VV method described
in Chapter 9. Additionally, these interviews, together with the results of the document and tool analysis
and the survey, provide support for the guidelines in Chapter 10.

1https://lumivero.com/products/nvivo/ retrieved on April 26, 2023

47

https://lumivero.com/products/nvivo/

8. Multiple-case study analysis
This chapter describes the different analyses from the multiple-case study. Both the within-case analysis
and across-case analysis in Sections 8.1 and 8.2 are discussed respectively. Both the document and tool
analysis and the survey have contributed to these results. The within-case analysis closely examines three
different pieces of documentation found in one project, namely PDD, SDD, and TPD. The across-case
analysis, on the other hand, compares identical documents from different cases and covers the usage of
tools in projects. The tool analysis includes UiPath Studio, Azure DevOps, and Monday.com. Although
UiPath Studio is used for testing and development, it could not be incorporated because access could not
be given. Hence, the across-case analysis only provides a small introduction to the tool itself. Furthermore,
access could not be granted to the Azure DevOps environment of Cases 3 and 4 since it was hosted on
a private server of the customer. Thus, only Cases 1 and 2 are included in the across-case analysis for
Azure DevOps. Lastly, the limitations of the study and potential future work are discussed.

8.1 Within-case analysis
Below is a discussion of the four cases and their within-case analysis. The within-case analysis dives into
a single case to understand the use of the documentation within that case (Ayres et al., 2003). The PDD,
SDD, and TPD are analysed for every case on their completeness and consistency. The ease of use and
usefulness are also part of the document analysis but could not be judged solely on the documentation.
Therefore, only the completeness and consistency are discussed in this section. The different documents
that are analysed are given a database number. This is added to Appendix B1 (17.2). A Summary of
the completeness and consistency of the within-case analysis is shown in Table 8.1. They are categorized
in high, medium, and low. They were categorized as high if no more than one discrepancy was found.
Medium if between two and five discrepancies were found. If more than five discrepancies were found they
were categorized as low. A more extensive explanation of the four cases and their results are described
in the following sections.

Table 8.1: Insights document and tool analysis
Case Document Completeness Consistency

Case 1
PDD High Medium
SDD Low Medium
TPD Medium Medium

Case 2
PDD High Medium
SDD High Medium
TPD Absent N.A

Case 3
PDD High Low
SDD High Low
TPD Absent N.A

Case 4
PDD High Medium
SDD High Low
TPD High Medium

Case 1: Car rental reservation
Case introduction

Case 1 is about automating the car rental process of a customer service centre. Data fields had to be
copied back and forth between the two applications that were used in the process. The bot was attended,
which means that the user can interact with the bot and activate it as needed. Due to the fact that
there were just two applications and 10 steps in the process, it was classified as low complexity. Five
business-rule exceptions (BE) were displayed in the PDD, while seven test cases were in the TPD. Three
documents, the PDD (D1), SDD (D2), and TPD (D3), are relevant to this case.

48

Results

The PDD (D1) is entirely filled out in regard to completeness. The SDD (D2) and TPD (D3), however,
lacked certain components. In the TPD, the test data and test results were absent, whereas for the SDD
(D2), only the solution design was present and all other components were absent. This demonstrates
that not all of the documentation for this case was complete.

Regarding consistency, a standardized format was used throughout all of the documents. However, several
discrepancies or missing linkages between the PDD (D1), SDD (D2), and TPD (D3) were found. The
various scenarios and exceptions that are part of a project are listed in the PDD (D1). All of these should
have been tested, but the TPD lacked several scenarios (D3). This demonstrates that the information
is not always consistent across documents. Also, the solution diagram in the SDD (D2) included the
exceptions that were specified in the PDD (D1). Yet, their names were different in the documents, which
was another discrepancy discovered.

Case 2: XDM Import
Case introduction

Case 2 involved an automated process for importing XDM photos into the HIX application. For this, it
had to discover the relevant patient in Hix, create a file and upload the images into it. The process was
regarded to be complicated. Although there are only nineteen process stages and one application, there
are numerous decision points that can result in different process flows. There was a two-week delay in
the project. The PDD (D6), SDD (D7), and TPD (D8) are the related case documents.

Results

We discovered that the PDD (D6) and SDD (D7) for Case 2 are both nearly complete when evaluating
how detailed the documentation is. Compared to the template, just one PDD element and two SDD
elements were missing. The SDD also has a substantial appendix with a list of the solution diagram
components and information on their variables (D7). For Case 2, the TPD (D8) was completely blank.
This indicates that it is incomplete and that nothing regarding consistency can be said.

Several problems could be found when the consistency between the PDD and SDD is taken into account.
The PDD appeared to describe different process steps than those depicted in the SDD. As a result, the
consistency is considered to be limited (D6, D7).

Case 3: Downloading from SAP
Case introduction

Case 3 involves a process that downloads three different files of transactions from SAP. It was classified
as a low-complexity project since it only includes eight steps, uses one application and has no decision
points indicating different flows. The documentation of this case is as follows: PDD (D11), SDD (D12),
and TPD (D13).

Results

The PDD (D11) and SDD (D12) are both rather well filled up when completeness is taken into account.
The PDD lacked the prerequisite component but this could be because there were no prerequisites for this
project (D11). The SDD only lacked the debugging tips components, which might have been because
there weren’t any for this project as well. As a result, it can be argued that the PDD (D11) and SDD
(D12) are very full. The TPD (D13) is entirely blank and thus incomplete.

Upon examining the consistency of the documentation, we were unable to locate any discrepancies within
either the PDD (D11) or SDD (D12). However, there were multiple contradictions between them. First
off, the PDD and SDD used different naming conventions for the same exceptions, making it challenging

49

to identify their connection. This was the case for four of the exceptions. Moreover, the PDD and SDD
both specified the robot’s start time, although they did so at 6 AM and 7 AM, respectively (D11, D12).

Case 4: RVO requests
Case introduction

RVO queries are automated by Case 4. Employees currently spend too much time on this repetitious
work, which is why an RPA project was chosen for it. Case 4 is categorized as a high-complexity process
since it makes use of three applications, has 31 phases in the process, and has five exceptions that must
be taken into account. The PDD (D15), SDD (D16), and TPD (D17) are the documents relevant to this
case.

Results

The PDD (D15) is pretty elaborately filled in when completeness is taken into account. Each component
is filled in with thorough documentation of all the process phases, exceptions, and input data. The SDD
(D16) also had a comprehensive solution diagram and almost all components were filled in. The environ-
mental details and debugging tips were the only components that were empty. Moreover, the TPD (D17)
was largely filled in. A comprehensive list of all the exceptions that were encountered during develop-
ment was documented, and sixteen test scenarios were included and tested. Also, a concise description
of the various input data was given. The UAT and hypercare data were the only things that were missing.

No inconsistencies were observed in the PDD (D15) or TPD (D17), but some inconsistencies were dis-
covered in the SDD (D16). Similar exceptions were categorized as system exceptions and business rule
exceptions (BRE). Moreover, although there were two alternative catches for the BRE described, only
one was shown in the solution diagram. After comparing the three papers for consistency, we found that
the PDD (D15) and SDD (D16) have different naming practices. Also, we were unable to discover the
BREs in the SDD that were indicated in the PDD. Moreover, differing naming standards between the
identical cases in the PDD (D15) and TPD (D17) were found.

8.2 Across-case analysis
This section discusses the across-case analysis. It is divided into a documentation and tool part. The doc-
umentation part focuses on the difference between the documents and includes all previously mentioned
documentation (D1-D3, D6-D8, D11-D13, D15-D17). The tool analysis includes all the tools for all cases
which are Monday.com (D4, D9, D14, D18) and Azure DevOps (D5, D10). For the tool analysis, a short
introduction of the tools is provided and their functionality for the RPA DLC is explained. Furthermore,
the results of the survey are shortly addressed.

8.2.1 Documentation
We discovered a significant disparity in the degree of completeness when we take all the cases into account.
The only document that was persistently complete was the PDD which is shown in Table 8.1. This can
be related to its usefulness which score a 4.2 in the survey which is high. These results are shown in
Table 8.2. While all cases use the same standardized format, this was not used to the same extent. Cases
1 and 4 were overall filled in the best with the other two projects missing the entire TPD. The TPD
and SDD were filled in the worst while this did differ widely per case. The SDD completeness ranged
from low to high and the TPD form absent, to medium, to high. Especially the fact that the TPD was
absent in two cases is apparent since its usefulness in the survey scored a 4.2 which is high. This is shown
in Table 8.2. For the SDD, the only elements that were always filled in were the solution diagram and
environmental details. When considering completeness, this big difference between cases is quite apparent.

All cases showed a form of inconsistency within their documentation. This was mainly clear in the differ-
ent scenarios or exceptions mentioned for a robot in the PDD, SDD and TPD that used different words

50

to describe them. This made it difficult or impossible to link these scenarios or exceptions together be-
tween the documents. Other reasons for this inconsistency were missing or additional scenarios. Another
inconsistency found was how the process steps in the PDD were documented. The main differences were
the details mentioned for every process step and the format of how alternative scenarios were written
down.

When considering the usefulness and ease of use in Table 7.3 we can see that the usefulness of all
documents is relatively high. Only the SDD scored a 3.3 with a high standard deviation suggesting that
the participants did not fully agree on the usefulness of the SDD. The ease of use had a medium score
between 2.9 for the SDD and 3.8 for the PDD. However, all had a high standard deviation above 1
indicating that also for the ease of use, the participants did not fully agree with each other.

Table 8.2: Documentation survey statistic
Criteria PDD SDD TPD

Usefulness Mean 4.2 3.3 4.2
Standard deviation 0.8 1.2 0.7

Ease of use Mean 3.8 2.9 3.7
Standard deviation 1.2 1.3 1.1

8.2.2 Tools
Monday.com1 is a tool for project planning and team communication and offers a range of features, in-
cluding the ability to create tasks, assign owners, and change task statuses. For each of the several stages
of the development life cycle, a common template is utilized inside the cases, and the essential tasks are
listed here. This template is used for all projects.

We discovered that not every case made full use of the tool. Case 1 made the most of the tool possible
across all projects. The majority of the tasks had their status changed to "done" and sub-tasks had
been added for the development sprint with all the different workflows of the process. Code reviews
were additionally incorporated for all workflows. Cases 2 and 3 made the least use of the tool and had a
lot of unassigned, open, or incomplete tasks on the project planning template. Moreover, no tasks were
established for the various workflows, and no code review was found. This suggests that either they are
not carried out or Monday.com is not used for its stated project planning purpose. The project planning
template was used in Case 4 and the majority of the tasks at the start of the development life cycle were
completed. Several jobs were missing in the later phases, and no more code reviews were performed.
Generally, we can claim that the completeness is limited and that the amount of use of Monday.com
varies greatly from case to case. This is confirmed with the survey results shown in Table 8.3 that showed
a relatively high score for Monday.com but also a high standard deviation.

Table 8.3: Tool survey statistic
UiPath studio Azure DevOps Monday.com

Functionality Mean 4 4.6 4
Standard deviation 0.9 0.6 1.3

Usefulness Mean 4.4 4.1 4.1
Standard deviation 0.8 0.9 1.2

Ease of use Mean 3.9 4.4 4
Standard deviation 0.9 0.5 1

Using Azure DevOps2, the various project team members can work closely together on the development
of the project. Because it is a cloud service, anyone with access to the drive can access the data from
any location. Among other things, it provides pipelines, test plan functionality, and code management.

1https://monday.com/ retrieved on April 26, 2023
2https://azure.microsoft.com/en-us/products/devops/ retrieved on April 26, 2023

51

https://monday.com/
https://azure.microsoft.com/en-us/products/devops/

It is only utilized in cases for its code management capabilities to save and manage the robot. To do
this, several repositories for the project its data, frameworks, and different applications are used (D5,
D10). Case 1 (D5) appeared to be better organized than Case 2 (D10) since Case 2 contained numerous
code fragments and test cases that were commented out. This is regarded to be bad practice (Pham &
Yang, 2020). This reveals some inconsistency between the two cases. Considering the completeness, the
tool its code management functionality is adequately utilized. But, in general, projects do not use the
full capabilities of the feature within the tool. This is supported by the survey results of survey question
fifty-two shown in Appendix B5 in Table 17.5 that asked if the tool should be used for more functionality.
Overall, Azure DevOps scored high on their functionality, usefulness, and ease of use which is shown in
Table 8.3.

UiPath studio3 offers advanced automation software to build robots. Additionally, it offers a wide range
of tools to manage and test them. It offers testing functionality in the form of generating test cases
for workflows and a test management tool that offers more testing functionality. Nevertheless, from the
interviews, it was apparent that this test management tool is not used —Interviewee 2B. Within projects
only the development is used and the workflows are run as a form of testing. This limited the insights
into testing since no record in the form of a test case is generated. Nevertheless, UiPath studio scored
high in functionality, usefulness and ease of use with standard deviations under the 1 shown in Table 8.3.

3https://www.uipath.com/product/studio retrieved on April 26, 2023

52

https://www.uipath.com/product/studio

9. Improved RPA-VV method
Through the systematizing expert interviews, it was determined that the first iteration of the RPA-VV
method in Figure 6.1 needed a few changes. There were two main issues that needed attention. The first
was that the W-model structure shown in Figure 6.1 is not suitable for the RPA development life cycle.
The second issue was related to the names of the activities within the first iteration RPA-VV method.
The following section further explains the two issues and present their solution.

W-model structure not suitable for the RPA development life cycle

The original W-model itself is structured in the form of a ‘W’ as can be seen in Figure 4.3 since it links
the first phase of requirements to the last phase of acceptance testing. However, during the interviews, it
was apparent that this link does not exist as clearly for RPA. A second reason why the W-model structure
has limited benefits for RPA is that within the RPA development life cycle (DLC) there are essential de-
liverables that are crucial for different phases of the project. "There are prerequisites or deliverables from
previous activities that should be finished before we continue with the project" — Interviewee 1A. Some
were already incorporated in the first iteration of the RPA-VV method in Figure 6.1, such as ’Sign-off
PDD’. Nevertheless, during the interviews, it became clear that there were more essential deliverables
that should be included. The structure of the W-model is not suitable for including a full list of these
deliverables. Lastly, the W-model has no formatting rules specified which limits adding additional ac-
tivities or deliverables to the model in a well-ordered manner. Therefore, with limited reason to use the
W-model structure and with the necessity to include deliverables a different modelling format is needed.

To incorporate the deliverables of the RPA development life cycle within the RPA-VV method, we have
opted to use the process-deliverable diagram by van de Weerd and Brinkkemper (2009). The original
process-deliverable diagram shows the development life cycle on the left with its phases and activities.
The related deliverables are visible on the right. This structure can be seen in Appendix C1 (18.1).
Nevertheless, while the deliverables are essential for the RPA DLC, the relation between an activity and
deliverables is difficult to see. Since the RPA-VV method should be used by RPA practitioners we have
decided to simplify the structure of the process-deliverable diagram. The phases and activities are still
the same but the deliverables have been replaced with a checklist. These checklist items resemble the
deliverables and need to be checked off to finish an activity. This structure is used for the RPA-VV
method that is used in the validation and evaluation and can be viewed in Figure 9.

Ambiguous names for the activities in the RPA-VV method

The second issue was that the names of the different activities were too ambiguous to derive their intended
functionality. The names of components for the first iteration of the RPA-VV method shown in Figure
6.1 were based on the W-model itself and literature found on the RPA DLC. However, the Interviewees
had different interpretations of what activities were part of which component. "Build a bot and validate
bot are not very clear names for these phases of the project." — Interviewee 2A. To reduce the different
interpretations of the phases and activities, names are adjusted to suggestions made my the experts
during the interviews. Additionally, descriptions are beneficial to learn the details of an item (Williams
& Lombrozo, 2010). Therefore, Table 9.1 and 9.2 are added to explain all the details of the different
activities of the RPA-VV method.

53

T
ab

le
9.

1:
A

ct
iv

it
y

n
r.

D
el

iv
er

ab
le

C
om

p
on

en
t

n
am

e
D

es
cr

ip
ti

on
In

te
rv

ie
w

ee

C
.1

C
lie

nt
pr

ov
id

ed
ac

ce
ss

to
pr

oc
es

s
in

fr
as

tr
uc

tu
re

P
ro

vi
de

ac
ce

ss
to

pr
oc

es
s

in
fr

as
tr

uc
-

tu
re

P
ro

vi
de

ac
co

un
ts

w
it

h
th

e
co

rr
ec

t
ri

gh
ts

to
ac

ce
ss

ap
pl

ic
at

io
ns

an
d

en
vi

ro
nm

en
ts

su
ch

as
da

ta
ba

se
s

[1
A

,3
A

,4
A

]

C
.2

C
lie

nt
se

nt
pr

oc
es

s
st

ep
s

an
d

ex
ce

pt
io

ns
F
ill

in
pr

oc
es

s
st

ep
s

an
d

ex
ce

pt
io

ns
C

lie
nt

al
ig

ns
it

se
lf

on
th

e
pr

oc
es

s
st

ep
s

an
d

do
cu

m
en

ts
th

e
pr

oc
es

s
st

ep
s

an
d

ex
ce

pt
io

ns
.

[1
A

,2
A

,4
A

]

1.
1

A
na

ly
se

te
ch

ni
ca

l
re

qu
ir

em
en

ts
w

it
h

cl
ie

nt

C
lie

nt
pr

ov
id

es
in

si
gh

ts
in

to
al

l
te

ch
ni

ca
l

re
-

qu
ir

em
en

ts
su

ch
as

ap
pl

ic
at

io
ns

an
d

en
vi

ro
n-

m
en

ts

[1
A

,3
A

,4
A

]

1.
2

R
ev

ie
w

te
ch

ni
ca

l
re

qu
ir

em
en

ts
V

er
ify

th
at

ac
ce

ss
is

gr
an

te
d

to
ap

pl
ic

at
io

ns
an

d
un

de
rs

ta
nd

ho
w

pr
oc

es
s

st
ep

s
ar

e
pe

r-
fo

rm
ed

in
th

e
ap

pl
ic

at
io

n

[2
A

-
4A

]

2.
1

A
na

ly
se

pr
oc

es
s

w
it

h
cl

ie
nt

C
lie

nt
pr

ov
id

es
in

si
gh

ts
in

to
al

lt
he

st
ep

s
an

d
pr

oc
es

s
ex

ce
pt

io
ns

th
at

ne
ed

to
be

au
to

m
at

ed
.

[1
A

-
4A

]

2.
2

SA
fin

al
is

ed
lis

t
of

pr
oc

es
s

st
ep

s
an

d
ex

ce
pt

io
ns

F
in

al
is

e
pr

oc
es

s
st

ep
s

an
d

ex
ce

p-
ti

on
s

F
ill

in
P

D
D

w
it

h
al

l
pr

ev
io

us
ly

ga
th

er
ed

in
-

fo
rm

at
io

n
ab

ou
t

th
e

pr
oc

es
s

[1
A

,2
A

,4
A

]

2.
3

C
lie

nt
si

gn
ed

-o
ff

P
D

D
R

ev
ie

w
pr

oc
es

s
w

it
h

cl
ie

nt
V

er
ify

w
it

h
cl

ie
nt

th
at

pr
oc

es
s

st
ep

s
an

d
ex

-
ce

pt
io

ns
ar

e
un

de
rs

to
od

an
d

do
cu

m
en

te
d

co
r-

re
ct

ly
an

d
si

gn
-o

ff
P

D
D

[1
A

,3
A

,4
A

]

3.
1

D
efi

ne
sc

en
ar

io
s

D
efi

ne
a

lis
t

of
sc

en
ar

io
s

w
hi

ch
in

cl
ud

es
al

l
ha

pp
y

flo
w

s,
al

te
rn

at
iv

e
flo

w
s,

an
d

ex
ce

pt
io

ns
.

[1
A

,2
A

,3
A

,4
A

]

3.
2

C
lie

nt
si

gn
ed

-o
ff

lis
t

pr
o-

ce
ss

sc
en

ar
io

s
R

ev
ie

w
sc

en
ar

io
s

w
it

h
cl

ie
nt

C
lie

nt
re

vi
ew

s
an

d
ch

ec
ks

if
th

e
lis

t
of

sc
en

ar
-

io
s

is
co

m
pl

et
e

an
d

pr
ov

id
es

fe
ed

ba
ck

.
T

he
cl

ie
nt

si
gn

s-
off

th
e

lis
t

[1
A

,2
A

,3
A

]

4.
1

D
es

ig
n

so
lu

ti
on

C
re

at
e

th
e

te
ch

ni
ca

l
bl

ue
pr

in
t

of
ho

w
th

e
ro

bo
t

w
ill

au
to

m
at

e
th

e
pr

oc
es

s
[1

A
,2

A
,3

A
,4

A
]

4.
2

C
lie

nt
si

gn
ed

-o
ff

so
lu

ti
on

de
si

gn
R

ev
ie

w
so

lu
ti

on
de

-
si

gn
w

it
h

cl
ie

nt
V

er
ify

th
e

so
lu

ti
on

di
ag

ra
m

w
it

h
th

e
cl

ie
nt

to
ch

ec
k

if
th

e
in

pu
t

an
d

ou
tp

ut
is

co
rr

ec
t

an
d

st
ep

s
in

be
tw

ee
n

ar
e

co
rr

ec
t.

[1
A

-
4A

]

C
.3

C
lie

nt
pr

ov
id

ed
te

st
da

ta
fo

r
al

ls
ce

na
ri

os
G

at
he

r
te

st
da

ta
P

ro
vi

de
te

st
da

ta
fo

r
al

ls
ce

na
ri

os
[1

A
-

4A
]

5.
1

D
ev

el
op

er
F
in

is
he

d
W

or
k-

flo
w

B
ui

ld
w

or
kfl

ow
D

ev
el

op
th

e
di

ffe
re

nt
w

or
kfl

ow
s

fr
om

th
e

de
-

si
gn

on
e

by
on

e
[1

A
,2

A
]

5.
2

W
or

kfl
ow

un
it

te
st

D
eb

ug
th

e
w

or
kfl

ow
an

d
m

ak
e

su
re

it
ca

n
pe

r-
fo

rm
al

li
ts

re
qu

ir
ed

ac
ti

on
s

[1
A

,2
A

]

5.
3

SA
pr

ov
id

ed
fe

ed
ba

ck
on

W
or

kfl
ow

P
er

fo
rm

w
or

kfl
ow

co
de

re
vi

ew
R

ev
ie

w
th

e
w

or
kfl

ow
an

d
ve

ri
fy

it
ad

he
re

s
to

th
e

en
gi

ne
er

in
g

pr
in

ci
pl

es
[2

A
,3

A
]

55

T
ab

le
9.

2:
A

ct
iv

it
y

n
r.

D
el

iv
er

ab
le

C
om

p
on

en
t

n
am

e
D

es
cr

ip
ti

on
In

te
rv

ie
w

ee

6.
1

D
ev

el
op

er
In

te
gr

at
ed

w
or

kfl
ow

s
In

te
gr

at
e

w
or

kfl
ow

s
C

om
bi

ne
a

se
t

of
w

or
kfl

ow
s

to
ge

th
er

[1
A

-
4A

]

6.
2

W
or

kfl
ow

s
in

te
gr

a-
ti

on
te

st
T
es

t
if

w
or

kfl
ow

s
ar

e
in

te
gr

at
ed

co
rr

ec
tl

y
an

d
de

bu
g

if
ne

ce
ss

ar
y

[1
A

,2
A

]

7.
1

P
ro

ce
ss

sc
en

ar
io

pa
ss

ed
de

ve
lo

pm
en

t
da

ta
Sc

en
ar

io
en

d-
to

-
en

d
te

st
T
es

t
if

a
pr

oc
es

s
sc

en
ar

io
ca

n
ru

n
an

d
pr

od
uc

e
th

e
ex

pe
ct

ed
ou

tc
om

e

[1
A

-
4A

]

8.
1

SA
pr

ov
id

ed
fe

ed
ba

ck
on

en
ti

re
so

lu
ti

on
P
er

fo
rm

fin
al

co
de

re
vi

ew
R

ev
ie

w
th

e
en

ti
re

so
lu

ti
on

an
d

gi
ve

fe
ed

ba
ck

if
ne

ce
ss

ar
y

[1
A

-
4A

]

C
.4

C
lie

nt
pr

ov
id

ed
U

A
T

da
ta

fo
r

al
ls

ce
na

ri
os

G
at

he
r

U
A

T
da

ta
C

lie
nt

ga
th

er
s

da
ta

fo
r

al
l

th
e

te
st

sc
en

ar
io

s
th

at
ar

e
pe

rf
or

m
ed

du
ri

ng
th

e
U

A
T

[1
A

-
4A

]

8.
2

A
ll

sc
en

ar
io

s
ar

e
pa

ss
ed

du
ri

ng
th

e
U

A
T

w
as

su
c-

ce
ss

fu
l

an
d

cl
ie

nt
si

gn
ed

-
off

T
P

D

U
A

T
w

it
h

SA
&

C
lie

nt
Sh

ow
ca

se
to

th
e

cl
ie

nt
th

at
th

e
ro

bo
t

ca
n

pe
r-

fo
rm

al
ls

ce
na

ri
os

[1
A

-
4A

]

9.
1

D
ep

lo
y

bo
t

M
ov

e
ro

bo
t

to
th

e
pr

od
uc

ti
on

en
vi

ro
nm

en
t

an
d

ch
ec

k
if

th
e

ro
bo

t
ca

n
ca

n
fu

nc
ti

on
co

r-
re

ct
ly

in
de

bu
g

m
od

e

[1
A

-
4A

]

9.
2

F
ir

st
ru

n
w

it
h

th
e

in
it

ia
l-

is
at

io
n

te
st

m
od

e
pa

ss
ed

su
cc

es
sf

ul
ly

9.
3

A
ll

sc
en

ar
io

s
ar

e
pa

ss
ed

in
hy

pe
rc

ar
e

an
d

po
ss

i-
bl

e
ne

w
sc

en
ar

io
s

ar
e

di
s-

cu
ss

ed
w

it
h

th
e

cl
ie

nt
.

H
yp

er
ca

re
w

it
h

cl
ie

nt
Le

t
th

e
ro

bo
t

ru
n

on
pr

od
uc

ti
on

an
d

va
lid

at
e

it
ca

n
pe

rf
or

m
al

l
sc

en
ar

io
s

co
rr

ec
tl

y.
D

eb
ug

if
ne

ce
ss

ar
y

[1
A

-
4A

]

56

10. Guidelines
This chapter focuses on the insights gained from the different parts of this research including the problem-
centred interviews and multiple-case study. The multiple case study consists the documentation and tool
analysis, survey, and systematic interviews. This chapter includes nine issues that were discovered. These
issues are described and supported by at least one guideline. A guideline is a specific statement of in-
structions and can be understood as a statement to offer advice or to plan a course of action about how
to reduce the negative impact of the issue (Vanclay, 2003).

The following sections include a description of issues and related guidelines. The sections are aimed at
addressing two distinct aspects of the research. Specifically, Sections 10.1, 10.2, and 10.3 focus on issues
discovered during various activities of the RPA development life cycle. The guidelines provided in these
sections offer courses of action or advice to minimize the negative effects of these issues. Notably, these
guidelines are also integrated into the RPA-VV method. On the other hand, Sections 10.4, 10.5, and
10.6 describe issues related to the documentation and tooling employed in the RPA development life
cycle. The related guidelines serve as advice and are not integrated into the RPA-VV method. Each
section is structured such that the underlying reasoning behind the issues is first outlined, followed by the
formulation of different guidelines with related sources and an illustrative quote. In cases where further
explanations or instructions are necessary, they are also provided.

10.1 Client input for the project

Issue I: The quality and success of an RPA project are limited without the
client’s input in the form of multiple contact points and deliverables.
In the RPA development process, the client plays a crucial role in ensuring project success due to their
extensive process knowledge. Multiple points of contact with the client occur throughout the project,
beginning with the analysis phase where the client acts as the process expert. As stated by Interviewee 4A,
"The client showcases the process of what we are going to automate. [...] We try to discover everything
we do not know and they do know." This reinforces the significance of a comprehensive analysis phase,
which was also emphasized in problem-centred interviews. Additionally, the client is responsible for
providing crucial deliverables, such as test data, which are necessary for project progress. According to
Interviewee 3B, incomplete or missing deliverables can impede project progress, "We need enough test
data to test everything. Sometimes the customer does not have data prepared and this can be an issue
for testing." Discussions, reviews, and deliverables are among the various contact points with the client
and are essential for project quality and success. Guidelines 3, 4, and 5 outline the necessary steps to
establish effective communication and collaboration with the client.

Guideline 1: Clear communication with the client is important since their subject matter
experts and process owner are closely involved in all project phases.

Expert interviews Interviewees 1A-4A
Illustrative quote "There needs to be a minimum of one subject matter expert (SME) and one

project owner present. The client needs to provide an SME that knows the pro-
cess well and is aligned with the other SME’s [...]. "They are involved in the
analyses phase [...], reviewing process scenarios [...], and important for the UAT"
— Interviewee 1A.

The subject matter expert (SME) and product owner are closely involved throughout the DLC. Their
role is crucial within the analyse phase which is shown in the RPA-VV method in Figure 9 by their
involvement in Activities 1.1 and 2.1. Additionally, when issues arise during the project they should
serve as the contact point for discussion. From here on out they are called ’client’. Guidelines 4 and 5
explain multiple important tasks within the RPA DLC that the client has.

57

Guideline 2: The client needs to verify and validate deliverables through reviews and official
sign-offs.

Expert interviews Interviewees 1A-4A, 1B, SA1, SA2
Illustrative quote “We challenge the client to describe all scenarios and verify all scenarios are com-

plete. Their input can be beneficial, If it is clear for them it can improve the
quality” — Interviewee 1B.

The RPA-VV method utilizes proper static and dynamic testing to achieve verification and validation.
The involvement of the client, as the process expert, is crucial to effectively verify and validate the
project deliverables. Verification ensures the accuracy of the design while validation assesses whether
the delivered product meets the actual needs and expectations. The verification is carried out through
reviews, in which the client actively participates. The RPA-VV method features three reviews that are
conducted with the client to verify the process steps (Activity 2.3), process scenarios (Activity 3.2), and
solution design (Activity 4.2), as presented in Figure 9. In addition, the client is involved in validating
the robot’s performance during User Acceptance Testing (Activity 8.3) and Hypercare (Activity 9.3).
Formal sign-off by the client is required during these reviews to ensure the successful completion of these
activities, as indicated in the RPA-VV method’s checklist items. Timely planning of these client contact
points is essential to avoid any potential oversight and to enable the incorporation of feedback into the
project.

Guideline 3: The client is responsible to deliver one test data set for development and one
data set for the user acceptance test. The data set should contain the data for all process
scenarios.

Expert interviews Interviewees 1A-4A
Illustrative quote "We need to make sure we have a list of all the test scenarios present because we

need test data for every one of those scenarios" — Interviewee 1A.

Test data plays a crucial role in dynamic testing activities during development. Given that the client is
the owner and expert of the process, they are responsible for providing the necessary data related to the
process. Specifically, the client should gather a data set that covers all the scenarios agreed upon during
the review of the process scenarios (Activity 3.2). It is imperative to obtain data for all scenarios to
ensure that they are covered by test cases and thoroughly tested. Early in the development life cycle, the
client should be informed about their role in providing test data, allowing them enough time to gather all
the required data. The client needs to gather two sets of data, one for development purposes which forms
the basis for unit, integration, and end-to-end tests. Since the robot is developed using the first data
set, a second data set is necessary for user acceptance testing to verify that the robot can also function
correctly with different data.

10.2 Testing standardisation

Issue II: There is a limited overview of what is tested and no clear standardi-
sation for testing practices during development
Dynamic testing is performed mainly by developers during projects and the Interviewees had little un-
derstanding of the extent of testing performed by the developers. "We should be doing testing such as
integration testing but this is often in the hands of the developer. It is difficult to check if this happens"
— Interviewee 4A. This also shows that integration testing as one of the four different testing levels is not
always performed. Furthermore, not all Interviewees understood the correct meaning of the four different
levels of testing. "We should unit test all scenarios" — Interviewee 3A. A unit is the smallest part of
the code while scenarios are often way bigger. This shows a lack of understanding and standardisation
for dynamic testing. Additionally, a lack of standardisation was also visible in the way code reviews
were performed. No Interviewee had the same interpretation of how big the size of the code should be
under review. Interviewee 2A mentioned "review the workflow to provide feedback" while Interviewee
4A stated, "code review is mainly done once during a sprint". Therefore, the following guidelines are
formulated to create a more standardised format for code reviews and dynamic testing.

58

Guideline 4: The different granularity levels within RPA development need to be aligned
with their own level of testing.

Literature (Ratilainen et al., 2019; Sawant et al., 2012; Shuping & Ling, 2008)
Illustrative quote "Test levels are instances of a test process performed to relation of development

level. [...] Every test level is suitable for different stages of development from
individual components to a system ready for production (Ratilainen et al., 2019,
p. 22).

In the RPA-VV method shown in Figure 9, dynamic testing is a central activity, with the levels of testing
being fundamental. These levels include unit testing (Activity 5.2), integration testing (Activity 6.2),
end-to-end testing (Activity 7.1), and user acceptance testing (Activity 8.3). In the case of RPA, there is
an additional critical level of testing called hypercare (Activity 9.3) that takes place during the deploy-
ment phase. As noted in a previous study (Ratilainen et al., 2019), each level of testing is related to a
specific development state.

For RPA, the first level of testing, Unit testing, is associated with a single workflow of the robot, such
as opening applications, converting an IBAN, or creating an invoice. The next level, Integration testing,
validates that these sets of workflows can function together and that different variables can be passed
between workflows. The third level, End-to-end testing, checks if the robot can use the input data and
correctly convert it to the expected output when an entire scenario of the process is finished. The fourth
level, User acceptance testing (UAT), involves testing the robot with a new data set in the presence of the
client to showcase its ability to perform all process scenarios. Upon successful completion of the UAT,
the robot is ready for deployment on the production environment, and the final testing level, Hypercare,
requires the robot to perform all process scenarios with real-time production data. All five levels of
dynamic testing are critical for ensuring the proper and high-quality completion of the RPA project. To
ensure that all levels of testing are performed correctly and to establish a standardised way of working,
clear communication between the solution architect and developer is crucial. They should discuss how
the testing will be performed and what is expected from the test cases.

Guideline 5: The primary code review should be performed on the granularity level of
workflows.

Literature (Bosu et al., 2015)
Illustrative quote "Review effectiveness decreases with the number of files in the change set. [...]

We recommend that developers submit smaller and incremental changes whenever
possible, in contrast to waiting for a large feature to be completed." (Bosu et al.,
2015, p. 10)

During the development process, static testing plays a crucial role in ensuring the implementation of the
best possible solution and adherence to engineering principles established by the organization. This is
done through code reviews. As highlighted by Bosu et al. (2015), smaller code chunks submitted for
review lead to more effective and useful code reviews. Hence, the RPA-VV method includes two code
reviews, as depicted in Figure 9, to enhance the quality of the development process. The first code review,
conducted at the workflow level, is depicted in Activity 5.3, while the second and final review is conducted
in Activity 8.1 to ensure the final product is thoroughly inspected and prepared for UAT.

Guideline 6: The handling of application exceptions and the reporting of the robot are
their own test scenario and should be included in the end-to-end, user acceptance test, and
hypercare.

Expert interviews Interviewee 1A-4A
Illustrative quote "We need to make sure that all scenarios are included in the robot with correct

input, output, and that all reporting is included — Interviewee 1A.

In addition to the typical process scenarios and business exceptions that a robot executes, there are two
other important components of the robot that require validation through testing. The first component
concerns the applications utilized by the robot, as unexpected errors may arise, such as a frozen page,
which must be handled appropriately by the robot. Hence, these applications should have their own

59

test scenarios. Furthermore, the robot generates reports for the client when issues occur or to provide
information about all cases handled during a specific time period. Such reporting constitutes an essential
part of the robot, necessitating its own test scenario. Thus, these components are tested and incorporated
into various testing levels, which are further elaborated in Guideline 9.

Guideline 7: All the scenarios discussed in the design phase and encountered during devel-
opment should be tested during end-to-end, user acceptance testing (UAT), and hypercare.
The scenarios need to be officially signed off in the Test plan document during all three
testing activities.

Expert interviews Interviewee 1A-4A
Illustrative quote "Developer is performing an end-to-end test of the entire solution. This involves

all scenarios. [...] We let the robot perform all the scenarios live in an acceptance
environment [during the UAT]. Then the client can provide feedback on how the
robot performs every scenario. Different parts of the TPD are marked that all
scenarios are tested." — Interviewee 1A.

As previously discussed, the scenarios of the project play a central role in what is tested and validated.
Three moments arise in which all the process scenarios are tested. These include the end-to-end test
(Activity 7.1), the user acceptance test (UAT) (Activity 8.3), and the hypercare (Activity 9.3). It
is crucial that all scenarios discussed, as well as any possible additional scenarios encountered during
development, are included in these tests. Throughout all three stages, the tests should be meticulously
documented in the test plan document (TPD) and signed off. The UAT, being the final test before
deployment, occurs together with the client. Here, the client validates that the robot has the correct
functionality and signs off the TPD. Subsequently, the hypercare is performed, and again, all scenarios
are documented in the TPD and signed off by the client.

10.3 Discrepancies within production environment

Issue III: Discrepancies between test and production environment are common
during deployment
During deployment, the robot interacts with the production environment and utilizes real-time data for
the first time. However, there may be discrepancies between the acceptance and production environ-
ment, and the data may include scenarios not previously encountered during testing. As Interviewee 3B
stated, "It is always possible that there are some discrepancies [between the acceptance and production
environment.] That is why we have the hypercare period". In addition, Interviewee 3B emphasized the
importance of hypercare, stating that "Often the data is the main cause why a robot fails." Guidelines
10 and 11 are developed to address these issues and provide support during the hypercare period.

Guideline 8: The first run on the production environment needs to happen with the initial-
isation test mode.

Expert interviews Interviewee 1A,1B,3A,4A
Illustrative quote "We want to start the first run in the form of test mode in which we don’t make

any alterations. Also here we start with only opening and closing the applications
in production." — Interviewee 1B.

During the first run of the robot in the production environment, it is crucial to use the initialization
test mode. This mode helps to identify any discrepancies or issues that may occur unexpectedly and
enables the prompt resolution of these issues. The initialization test mode involves a basic test that
checks whether the robot can correctly open and close applications in the production environment. If the
developer and solution architect are confident in the robot’s performance, the hypercare period begins
to ensure that the robot can handle all data and scenarios in the production environment. Guideline 11
provides further details on this aspect.

60

Guideline 9: All the scenarios not encountered and possible new scenarios that are encoun-
tered during the hypercare need to be discussed with the client and clear instructions on
how they are handled should be agreed upon.

Expert interviews Interviewee 1A-4A, 1B, 3B, 4B
Illustrative quote "We need to pass all scenarios. If not all scenarios were touched, we ask if we

can run them with fake data. We need to specify the action we will take if these
scenarios show up. Otherwise, those scenarios will not be taken into support for
example." — Interviewee 4B.

Illustrative quote "If exceptions still occur in this phase, we discuss with the client what to do in
those scenarios. If they are minor we can perform them. If an entirely different
scenario pops up, we might need to change the scope of the project and extend
it." — Interviewee 1A.

During hypercare, the robot interacts with real-time data for the first time, making it the final validation
stage for ensuring that input data is accurately transformed into the required output. Thus, it is imper-
ative to verify that all scenarios are covered and that the robot can handle all the required scenarios.
In the event that some scenarios are not tested, it is necessary to consult with the client and determine
whether the hypercare period should be extended or if these scenarios should be addressed in a support
role. Furthermore, new, unforeseen scenarios may arise during hypercare, necessitating communication
with the client to determine whether to include these scenarios in the project’s scope or whether the
robot’s inability to handle these scenarios will be accepted. It is also essential to collaborate with the
client to establish a protocol for addressing any unforeseen issues that may arise.

10.4 Documentation traceability

Issue IV: There is no clear traceability between different deliverables of the
development life cycle phases
Within RPA projects there is a clear flow from the process steps and exceptions and retrieving the process
scenarios from them. This in turn needs to be translated into a design that can be automated and tested.
Interviewees confirmed the link between elements of different documentation but specified that this was
not always consistently documented. "Inconsistency is mostly based on the way certain scenarios are
formulated. Sometimes we use different wording, or there is a discrepancy between alternative flow,
happy flow, business or system exceptions. [...] So specifically the wording between the PDD and TPD as
in how the scenarios are described." — Interviewee 1B. Additionally, this link could also not be found in
the document analysis during the multiple-case study. The documentation was either incomplete or had
inconsistencies between the PDD, SDD, and TPD. This is shown in Chapter 8. During the validation, it
was mentioned that the code of a project is also not aligned with the scenarios which could be beneficial.
Guidelines 12, 13, and 14 are formulated to help with this issue. They are suggestions on how to improve
RPA documentation and are not incorporated within the RPA-VV method.

Guideline 10: There needs to be a standard format how to document happy flows, happy
flow alternatives, and exceptions.

Case studies Case 1-4
Expert interviews Interviewee 1B-5B
Illustrative quote "Exceptions are documented in their own column but what is often missing is the

action that should be taken if it occurs. [...] Currently, there is no clear standard
for how we document happy flow alternatives. The solution architect can use their
own implementation. A possible solution is incorporating some visualisation of
the different alternative flows" — Interviewee 5B.

The process of RPA development involves a main flow from the beginning to the end, which is commonly
known as the happy flow. However, when decision points lead to different outcomes or require different
steps, it is called a happy flow alternative. Additionally, exceptions can arise unexpectedly or due to
process rules, which can cause the process to terminate before reaching the end. It is important to

61

document all these happy flows, happy flow alternatives, and exceptions in a standardized format within
the PDD. Currently, there are some missing elements in the standardization, as the illustrative quote
shows. Developing a standardized format for documenting these components is crucial not only for
ensuring consistency but also for linking them to test cases, as elaborated in Guideline 11.

Guideline 11: All the happy flows, happy flow alternatives, and exceptions are linked to
one test scenario and should be documented correctly and logged in the project code.

Literature (Torkar et al., 2012)
Case studies Case 1-4
Expert interviews Interviewee 1B-5B
Illustrative quote "There is a one-to-one relation between a happy flow and test scenario, happy flow

alternative and a test scenario, and a business rule exception and a test scenario"
— Interviewee 1B.

Within the case studies it was clear that there was an inconsistency between different project documen-
tation. For example, the wording of an exception in the PDD was different than the test scenario in the
TPD. As the illustrative quote mentions there is a clear link between the different scenarios from the
design phase and the test scenarios that form the validation. To accomplish this traceability, the differ-
ent process steps and exceptions in the PDD should be aligned with the test scenarios mentioned in the
TPD. To achieve this alignment different traceability techniques mentioned by Torkar et al. (2012) could
be used. Examples are using the same description for a scenario, using ID tagging for every scenario,
or using different traceability tools. Another form of traceability can be between the scenarios in the
documentation and the code workflows themselves. If scenarios are mentioned in the logging of the robot
the code is aligned with the documentation. By implementing traceability within the documentation
and code, all phases of the project are aligned and the process scenarios are linked and traceable during
design, development, and testing. This allows for an easy overview of what is going right and what is
going wrong in different phases of the project. Additionally, if this traceability is correctly implemented
it should provide the possibility to use metrics such as test coverage. This measures how many flows or
exceptions are tested by a test case and can provide a quick overview of what parts of the design still
need to be tested.

Guideline 12: There needs to be a form of traceability implemented between the process
steps in the PDD and the solution design in the SDD.

Case studies Case 1-4
Expert interviews Interviewee 1B-5B
Illustrative quote "We write down which steps from the PDD are part of a component (workflow)

within the SDD solution diagram. This is a new way of working which is why
it was not present in the cases you analysed. Numbering is important because
multiple steps in the PDD can become one workflow in the SDD, but sometimes
multiple workflows are needed to describe one step in the PDD" — Interviewee
1B.

During the document analysis of the multiple-case study, we did not encounter any clear link between
the PDD process steps and the solution design components in the SDD. Nevertheless, it was mentioned
by multiple interviewees that linking them was a preferred way of working. While there is a difference
in granularity between the process steps and design components, they are describing the same process
and can be linked as such. As the illustrative quote shows, multiple steps can be one component or
vice versa. The Interviewees further mentioned that adding this traceability could also benefit support
understanding the documentation better."We hear from support that they don’t understand the process
or it is not consistent. This is very inconvenient for support" — Interviewee 4B.

62

10.5 Identifying documentation purpose

Issue V: The project documentation is important for multiple stakeholders
but is not always completely filled in or is inconsistent.
High-quality documentation plays a crucial role for different stakeholders such as the project team, the
client, and the support team. However, an analysis of the project documentation and the survey revealed
that the documentation was often incomplete and inconsistent. During the interviews when asked why the
documentation was not always complete, it was mentioned that it was mainly due to the behaviour of the
project team. "It is a human task to fill them in. [...] Currently, it is mainly a behavioural reason why it is
not filled in rather than that it is not essential." — Interviewee 1B. This shows that while documentation
is essential for different stakeholders, this is often not filled in to assist the needs of all stakeholders.
This was mentioned during the interviews for support since they are not part of the project and the
documentation is crucial for them to understand how the robot works. "Often we hear from support
that they do not understand the process or it is not consistent. This is very inconvenient for support."
— Interviewee 4B. Another issue mentioned was scope creep which was already mentioned during the
problem-centred interviews. Scope creep can require new scenarios to be added to the robot which should
also be included in the documentation. Scope creep happens regularly but no clear standardisation is in
place on how to deal with scope creep or how to update documentation. Guidelines 15 and 16 provide
help to deal with the above-mentioned issues. They are not incorporated in the RPA-VV method.

Guideline 13: The elements of documentation that are essential for the project team, client,
and later for support need to be identified and updated accordingly.

Case study Case 1-4 and survey
Expert interviews Interviewee 1B-5B
Illustrative quote “The priority is always a robot with good proper documentation. This provides

proper documentation that verifies the bot works and helps support after the
project is handed over” — Interviewee 4B.

Illustrative quote “The PDD is important for the project team and the client. It is important to
have a high-quality project. [...] The SDD is mainly for the project team and
used for development" — Interviewee 3B.

As evidenced by the illustrative quote, high-quality documentation is crucial for ensuring a highly qual-
itative robot that is verifiable through its documentation. However, the effort required to fill in doc-
umentation can be significant, so it is vital to identify which parts of the documentation are essential
for different stakeholders and where they should be recorded. The PDD is crucial for understanding the
process and verifying whether it is correctly interpreted by the client. Different sections of the PDD are
crucial for different groups, as noted by Interviewee 4B. The survey results in Appendix B3 in Section
17.5 showed that all interviewees found the PDD important for the client and for the project team itself.
The SDD is mainly internal to create the solution and understand what needs to be developed. The
survey shows that the SDD is difficult to understand for the client. The use of the SDD was mainly for
the project team. "The SDD is mainly used internally. It is important for development" — Interviewee
3B. The TPD documents all testing and can later be used to verify the robot has been tested properly
and functions as intended. "TPD is the only proof the robot is working. [...] The TPD provides proper
documentation that verifies the bot works." — Interviewee 4B. The survey also showed that the TPD is
important for the client and the project team itself. During the interviews, it was clear that documen-
tation is important for different stakeholders and that a standardisation of how documentation is filled
in needs to be created. Clear communication between all stakeholders is important so it is understood
which parts of the documentation are crucial for whom and when these should be documented.

63

Guideline 14: The client needs to be informed when scope creep occurs and clear commu-
nication is required on how to proceed. If the scope creep is accepted the documentation
needs to be updated accordingly.

Expert interviews Interviewee 1B-5B
Illustrative quote "With scope creep, my preference is to adjust all documents. Also because if

the robot does not work the PDD is used to see how the process is performed
manually" — Interviewee 2B.

In order to address the issues related to scope creep, it is crucial to establish standard procedures for
dealing with it. Interviewees identified two important aspects in this regard. First, communication with
the client is crucial to determine whether the requested changes can be easily incorporated or whether
additional development time will be required. As Interviewee 3B noted, "There should be some discussion
with the client to see if this is easy [to implement] or more development time is needed." Second, if changes
are made, updating the documentation should be standard practice. As Interviewee 1B explained, "The
ideal situation is that if a scope creep happens, all documents are updated accordingly." This highlights
the importance of close communication with the client and keeping documentation up to date. By
establishing clear procedures and communication channels for dealing with scope creep, the potential
issues related to it can be minimized.

10.6 Tooling potential for testing

Issue VI: There is limited use of tooling for testing.
From the literature, we found that testing for RPA is still a manual and laborious task (Cernat et al.,
2020). This was confirmed again by the interviews conducted. "All scenarios possible are defined and
tested manually. [...] We don’t use advanced tooling to check or review this." — Interviewee 2B. Multiple
Interviewees mentioned that the use of tooling for testing is still limited for RPA. Manual testing increases
the time and effort to create and record the results of test cases (Cernat et al., 2020). This shows that
there is potential to increase the quality of the testing for RPA. Guidelines 17 and 18 specify how this
potential could be reached. These guidelines are not incorporated in the RPA-VV method.

Guideline 15: The use of tools for testing ensures more rigorous testing and allows to
incorporation of testing metrics such as test coverage of the robot.

Case study Survey
Expert interviews Interviewee 1B, 2B, 4B, SA2
Illustrative quote "UiPath has more tools such as a test suite, apps, actions centre, and automation

hub. So many options are still available within UiPath" — Interviewee 4B.

As the illustrative quote shows, there are still multiple tools possible to increase to verification and
validation of the robot through testing. Multiple Interviewees would increase the use of tools to support
testing. Already during the problem-centred Interviewees the need for this was mentioned. "I would
like to see in our development framework a standard form of testing so we integrate testing more into
development" — Interviewee SA2. Guideline 13 already mentioned the need for traceability between
process flows and test cases. Guideline 17 adds to this by using tools that can also show how much of the
code is covered by test cases. This makes testing more rigorous and increases the validation of the robot.
If not all code is covered, new test cases can be written to verify all code has been passed successfully.

Guideline 16: Generic test cases such as application or system exception handling that
have a high potential for automation should be identified.

Literature (Cernat et al., 2020; Montero et al., 2019)
Expert interviews Interviewee 1B, 2B, 4B
Illustrative quote "We perform a lot of manual testing for the robots in Uipath studio. But there

might be some more generic testing which we can do within a pipeline making
sure all required elements are there. Additionally, actions you need to take before
you go to production can be more automated with a pipeline" — Interviewee 1B.

64

Two articles on RPA already focused on automation testing. Nevertheless, these techniques focused on
full automation through difficult techniques such as creating a model under test (Cernat et al., 2020) or
developing a test environment (Montero et al., 2019). The former has a very high learning curve and
requires experienced programmers. There are also still difficulties mentioned in the paper to transform
the model towards a testing tool. The latter RPA testing paper focuses on generating a test environment
for all the applications that the robot runs on. However, with the number of different applications used
for every new robot that is built, this would add a big load on the development team for every project.
Additionally, the solution by Montero et al. (2019) requires a log of the steps of the process which is often
not available.

Nevertheless, the Interviewees mentioned possible generic tests that are useful for any robot that is being
developed. Examples are opening and closing applications or handling unexpected issues with these
applications. Generic test cases could be written and added to a pipeline to automatically test every
robot under development. This would automate a part of the testing of the robot. Further possible
generic tests should be identified to increase the benefit those testing pipelines could provide.

65

Method validation & evaluation

66

11. Validation
The first part of the assessment is the validation of the RPA-VV method and guidelines. Firstly, the
approach to the validation focus group is explained in Section 11.1. Secondly, the results are described
in Section 11.2 and an overview of the results is provided in Table 11.2. A list of the descriptions of the
guidelines can be found in Table 11.1

11.1 Approach
The validation is meant to validate whether the RPA-VV method and guidelines are deemed to be suitable
for the RPA DLC and applicable in practice (Wieringa, 2014). The focus group consisted of four RPA
solution architects. Half of them were already interviewed during the multiple-case study, and the other
half were new and had never seen the RPA-VV method before. During the focus group, every phase and
its related guidelines were analyzed one by one. A discussion between the participants was started by
asking questions related to one of the criteria. The criteria included in this validation were simplicity,
completeness, usefulness, and ease of use. Simplicity was validated by asking if the phase or guideline
was clearly written down and if changes to the description could be made. The other criteria were also
tested by asking questions relating to the criteria. These questions can be found in Appendix D2 in
Section 19.2.

11.2 Results
In general, the RPA-VV method and guidelines were received well. Especially, the visual representation
of the RPA DLC was deemed useful. Participants mentioned that it provides a quick overview of the
different activities in each phase, deliverables, and testing activities. Table 11.2 shows the results of the
validation focus group for each phase and guideline. It specifies whether the group deemed the phase or
guideline to be complete, how easy they expected it to perform, whether the group thought the guideline
or phase was useful to perform during the RPA DLC, and if there were any important comments given
about the phase or guideline.

Foremost, the usefulness of all phases and guidelines was confirmed by the group. Nevertheless, the
dominant concern was the ease of use in applying the method and guidelines in practice. They either
mentioned some important notion that is necessary to perform the guideline or method correctly or some
difficulties in performing them. These do not disqualify the guidelines or phases but show that in practice,
it might be difficult to perform. Therefore, the evaluation is important to again check if this ease of use
is indeed a limitation of the RPA-VV method and the guidelines

67

Table 11.1: Description of all guidelines
Guideline Description
Guideline 1 Clear communication with the client is important since their sub-

ject matter experts and process owner are closely involved in all
project phases.

Guideline 2 The client needs to verify and validate deliverables through re-
views and official sign-offs.

Guideline 3 The client is responsible to deliver one test data set for develop-
ment and one data set for the user acceptance test. The data set
should contain the data for all process scenarios.

Guideline 4 The different granularity levels within RPA development need to
be aligned with their own level of testing.

Guideline 5 The primary code review should be performed on the granularity
level of workflows.

Guideline 6 The handling of application exceptions and the reporting of the
robot are their own test scenario and should be included in the
end-to-end, user acceptance test, and hypercare.

Guideline 7 All the scenarios discussed in the design phase and encountered
during development should be tested during end-to-end, user ac-
ceptance testing (UAT), and hypercare. The scenarios need to
be officially signed off in the Test plan document during all three
testing activities.

Guideline 8 The first run on the production environment needs to happen with
the initialisation test mode.

Guideline 9 All the scenarios not encountered and possible new scenarios that
are encountered during the hypercare need to be discussed with
the client and clear instructions on how they are handled should
be agreed upon.

Guideline 10 There needs to be a standard format how to document happy
flows, happy flow alternatives, and exceptions.

Guideline 11 All the happy flows, happy flow alternatives, and exceptions are
linked to one test scenario and should be documented correctly
and logged in the project code.

Guideline 12 There needs to be a form of traceability implemented between the
process steps in the PDD and the solution design in the SDD.

Guideline 13 The elements of documentation that are essential for the project
team, client, and later for support need to be identified and up-
dated accordingly.

Guideline 14 The client needs to be informed when scope creep occurs and clear
communication is required on how to proceed. If the scope creep
is accepted the documentation needs to be updated accordingly.

Guideline 15 The use of tools for testing ensures more rigorous testing and
allows for the incorporation of testing metrics such as test coverage
of the robot.

Guideline 16 Generic test cases such as application or system exception han-
dling that have a high potential for automation should be identi-
fied.

68

Table 11.2: Results of validation focus group
Phase/
Guideline

Complete Ease of use Useful Comment from focus group participants

Guideline 1 Yes Medium Yes
Prerequisite
analysis

Yes Medium Yes Applications or process steps are not always made
available before analysis. While preferred, the anal-
ysis phase can still proceed.

Analysis
phase

Yes High Yes

Design phase Yes High Yes
Guideline 2 Yes Medium Yes Important to organise and take the time for these

reviews with the client.
Prerequisite
development

Yes Low Yes Difficult for client to gather all data points

Guideline 3 Yes Low Yes Important to emphasize early in the DLC that test
data is crucial and the client needs to gather this.

Development
phase

Yes Medium Yes

Guideline 4 Yes Medium Yes Clear communication between the Solution architect
and developer about expectations and approach of
testing is crucial.

Guideline 5 Yes High Yes Workflow level is useful but also the final code review
is important to check the stability and robustness of
the entire robot.

Guideline 6 Yes Medium Yes The reporting of the robot is a critical element, but
it is currently receiving insufficient attention.

Guideline 7 No Medium Yes Include hypercare in the Guideline. Additionally,
documentation is often missing or not documented
for all test activities. Also, some scenarios can only
be tested on production.

Prerequisite
UAT

Yes Medium Yes

Deployment
phase

No Medium Yes Deploying is separate from actually testing and run-
ning the robot. Therefore, deploying and the initiali-
sation test (activity 9.2) needs to be its own activity.

Guideline 8 Yes High Yes Formulation of the guideline is vague and has been
improved to initialisation test.

Guideline 9 Yes Medium Yes Need to specify the differences between predefined
scenarios that are not encountered and new scenar-
ios. Both should be communicated with the client.

Guideline 10 Yes Medium Yes
Guideline 11 No Medium Yes Guideline needs to include process scenarios in the

logging of the project code.
Guideline 12 Yes Low Yes PDD shows the as-is by humans while SDD shows

the to-be of the robot. This can differ, making it
difficult to link steps or components together.

Guideline 13 Yes Medium Yes Important to agree on when parts of the document
need to be updated and for whom.

Guideline 14 Yes Medium Yes There should be clear communication between the
team and the client about how scope creep impacts
the project and thus the documentation.

Guideline 15 Yes Medium Yes
Guideline 16 Yes Low Yes System exceptions are often difficult to test since

they are unknown exceptions.

69

12. Evaluation
It is important to note that the evaluation included fewer guidelines than the validation. Guidelines 10
to 16, which focus on the use of documentation and tools and offer advice on changing or enriching the
standardized format used in projects, were excluded from the evaluation. These guidelines were excluded
as it was out of the scope of the project to create a standardized format for projects.

This chapter elaborates on the second part of the assessment, which is the evaluation of the RPA-VV
method. Firstly, the approach taken in the evaluation projects is explained in Section 12.1. Secondly,
the evaluation of both projects is described in Sections 12.2 and 12.3 respectively. Lastly, the findings
and differences between the evaluation of the projects are discussed briefly in Section 12.4.

12.1 Approach
The evaluation encompassed the practical evaluation of the RPA-VV method and guidelines through two
projects. Due to the specific time constraints, the projects were selected through convenience sampling.
Focus group sessions were held weekly with all team members to provide explanations of the method
and related guidelines, and evaluate the previous phase. The criteria included in the evaluation were
completeness and ease of use. Completeness is now measuring to which extent the phase or guidelines
was completed rather than if the phase or guideline was missing any activities. Both projects had their
first focus group session during the analysis phase, which meant that no support or advice could be offered
by the method for the prerequisite phase. Furthermore, both projects had scheduled the review of the
analysis and design phase together during the prerequisite phase, which could not be adjusted due to the
project timeline. The second project faced delays due to the absence of test data and the unavailability
of key stakeholders during a holiday period, which resulted in the delay in performing everything from
UAT onward during the evaluation. These limitations impose restrictions on the complete evaluation of
the RPA-VV method in practice. Nevertheless, the evaluation uncovered noteworthy results pertaining
to the issues confronted by the projects during the DLC.

12.2 Project 1 results
This section shows the results of the evaluation of the first project. A description of the guidelines can be
found in Table 11.1. Table 12.1 provides an overview of the results of the project. The different phases
and guidelines are described in order of when they occur in the DLC. The Table shows to what extent
the project team performed each phase or guideline and if they found it easy to perform. This is shown
in two columns which are ’completed’ and ’ease of use’ respectively.

The following paragraphs present a detailed account of the results of the focus groups which are the
foundation of the obtained values presented in Table 12.1. The various phases and guidelines are expli-
cated, highlighting how the team executed them and any potential challenges encountered. The following
paragraphs correspond to the respective phases and guidelines displayed in the table. Additionally, where
feasible, the rationale or noteworthy observations related to the implementation of a particular guideline
or RPA-VV phase are provided.

Guideline 1 emphasizes the importance of involving all stakeholders throughout the various project phases.
However, the project team encountered issues due to unclear responsibility for deliverables, resulting in
delays. To improve performance, clear communication with stakeholders is necessary to emphasize the
importance of deliverables and who is responsible for them. Unfortunately, the project team found it diffi-
cult to ensure the timely delivery of deliverables, as evidenced by the poor performance of the prerequisite
phase. Specifically, the team had not received a process overview or any applications, which are prerequi-
sites for this phase. Consequently, the team was ill-prepared for what to expect in the subsequent stages
of the project. The team stated that while it is preferred to have both deliverables before the analysis
phase, the analysis phase can still proceed without them, albeit requiring a different approach. In such
instances, the missing deliverables must be tackled during the analysis phase. Regrettably, inadequate

70

Table 12.1: Project 1 result overview
Phase or guideline Completed Ease of use
Guideline 1 Partly Low
Prerequisite analysis No Low
Analysis phase Partly Medium
Design phase Yes Low
Guideline 2 Yes Low
Prerequisite development No Low
Guideline 3 Partly Low
Development phase Partly Medium
Guideline 4 Partly Medium
Guideline 5 Yes High
Guideline 6 Yes Medium
Guideline 7 Partly Medium
Prerequisite UAT Yes Medium
Deployment phase Yes Medium
Guideline 8 yes High
Guideline 9 Partly Low

communication and unclear deadlines resulted in restricted access to the infrastructure and test data,
which was only granted during the development phase.

The completion of the analysis phase was only partial, as the review of process steps had been post-
poned until the design phase. Although the design phase had been entirely executed, it presented some
challenges for the project due to the combination of the analysis and design phase reviews into a single
session at the end of the design phase. During this meeting, it was discovered that certain steps and
scenarios were missing, necessitating changes to the documents even though the design phase had already
concluded. Guideline 2 highlights the importance of organising meetings to validate different deliverables
of the analysis and design phase, which had been performed. However, the method used resulted in issues,
as previously described by the team. Ideally, as mentioned by the team, it would have been preferable to
validate the process steps and scenarios before finalising the design. This gives the project team to make
any necessary changes and the client to gather the test data required at the beginning of development.

Guideline 3 emphasizes the importance of test data in the development phase, which is also reflected in the
RPA-VV method in the prerequisite development phase. However, the project team encountered a delay
in receiving the test data and access to the required applications, further underscoring the communication
issues with the client and their deliverables. In response, the team suggested starting the process early
and emphasizing the necessity of test data before commencing the development phase. Additionally, if
the process steps and scenarios are reviewed during the analysis phase, the same meeting can be utilized
to finalize the data set, streamlining the development process.

Due to the strict project plan, the development phase commenced before the delivery of the test data,
leading to a challenging and brief development phase. Guideline 4 emphasizes the importance of testing
code on various levels, but only unit testing was conducted, with integration testing delayed until the
end of the development phase. This resulted in integration and end-to-end testing being combined, lead-
ing to multiple bugs requiring significant time spent on debugging. This highlights the importance of
performing integration testing for every workflow added to the robot to avoid delays. Despite the delay
in user acceptance testing (UAT) due to the extra time required for testing, all scenarios were tested
successfully, complying with Guideline 6, which emphasizes testing all scenarios. Guideline 5 stresses the
need to conduct code reviews on individual workflow levels, and this was performed, providing developers
with useful insights. However, Guideline 7 was partially implemented. While the end-to-end and UAT
were successful, the hypercare phase was challenging. The deployment phase is explained in the next
paragraph to address this issue.

71

The deployment phase is the final phase. The current project revealed a number of discrepancies be-
tween the test and production environments, thereby highlighting the significance of the hypercare phase.
Guideline 8, which necessitates verification of the robot’s functionality during its first run in the produc-
tion environment, assumes utmost importance in this regard. Moreover, any discrepancies that persist
within the process scenarios should also be duly validated. Both Guidelines 7 and 9 recommend the per-
formance of all scenarios during the hypercare phase. During the evaluation phase of the project, it was
noted that the project team faced challenges in verifying the successful completion of all scenarios. The
lack of a clear verification method hindered their ability to confirm the passing of all scenarios. Although
no issues were detected during the hypercare phase, it is unclear whether the untested scenarios could
have revealed potential issues.

12.3 Project 2 results
This section shows the results of the evaluation of the second project. A description of the guidelines
can be found in Table 11.1. Table 12.2 provides an overview of the results of the project. The different
phases and guidelines are described in order of when they occur in the DLC. The table shows to what
extent the project team performed each phase or guideline and if they found it easy to perform. This is
shown in two columns which are ’completed’ and ’ease of use’ respectively.

Table 12.2: Project 2 result overview
Phase or guideline Completed Ease of use
Guideline 1 Yes Medium
Prerequisite analysis No Low
Analysis phase Partly Medium
Design phase Yes Low
Guideline 2 Yes Medium
prerequisite development No Low
Guideline 3 Partly Low
Guideline 4 Partly Low
Development phase Partly Medium
Guideline 5 Yes High
Guideline 6 No N.A
Guideline 7 No N.A
Prerequisite UAT No N.A
Guideline 8 No N.A
Guideline 9 No N.A

The following paragraphs provide a comprehensive overview of the results obtained from the focus groups,
which served as the basis for the values presented in Table 12.2. The discussion covers the different phases
and guidelines, with an emphasis on the team’s execution strategy and any challenges that emerged. Each
paragraph corresponds to the specific phase or guideline listed in the table. Furthermore, whenever pos-
sible, the reasoning or noteworthy observations related to the implementation of a particular guideline
or RPA-VV phase are provided.

Guideline 1 underscores the significance of involving all stakeholders throughout the various project
phases. In the context of Project 2, stakeholder involvement was carried out successfully. However, there
were some minor difficulties encountered, particularly with regard to test data, which is discussed in
further detail later. Moreover, there were a few deviations from the usual project execution process. No-
tably, during the prerequisite phase, it was discovered that development and testing had to be conducted
in the production environment, an arrangement which is not ideal but was deemed acceptable for the
project. Additionally, the step-by-step process overview, which is a key deliverable of this phase, was
not initially provided. Nonetheless, the project team reported that it is acceptable as long as the process
overview is created during the analysis phase. Fortunately, this was the case for Project 2.

72

The analysis phase proceeded relatively smoothly, although the reviews for both the analysis and design
phases were combined, resulting in a review of the process steps, process scenarios, and solution design
simultaneously during the design phase. This review revealed several issues, which necessitated changes
to all of the documentation, leading to a delay in the project timeline. Guideline 2 emphasizes the im-
portance of conducting separate reviews for each of these deliverables, but the project team expressed
a preference for combining the reviews for the process steps (PDD) and process scenarios (TPD) since
they are closely linked. The solution design, which represents the technical blueprint for the automated
process, is less relevant for the client and should be reviewed after the PDD and TPD have been validated.
Unfortunately, due to the delays caused by the changes required in the design phase, the development
phase had to commence while the design phase was still ongoing, resulting in a significant overlap between
these two critical phases of the project.

In accordance with Guideline 3, it is crucial to provide a comprehensive dataset for the development
phase that includes data for all possible scenarios. The prerequisite development phase also aims to
provide test data for the development phase, as emphasized in Guideline 3. However, this aspect did not
proceed smoothly in Project 2. Development had already begun prior to the delivery of the dataset, and
when it was eventually received, it contained incorrect formats, resulting in additional complications. As
a result, the development phase was prolonged, and progress was hindered. Guideline 4 stresses the need
to conduct testing at different testing levels. While the developer attempted to adhere to this guideline,
the unavailability of testing data made it extremely challenging to test a workflow. Despite successful
unit testing and integration testing for each added workflow to the process flow, some integration tests
could only be performed once due to the absence of test data. On another note, Guideline 5 focuses on
the review of individual workflows. Both members of the project team found it useful to respectively
receive and provide feedback on every workflow. Nevertheless, the delay in the development phase in
terms of test data meant that no end-to-end testing was possible, and the UAT had to be postponed.
Consequently, the evaluation did not include the end-to-end testing and UAT, and Guidelines 6 to 9,
which focus on the delayed phases, could not be evaluated either.

12.4 Discussion evaluation
Although the visual representation of the RPA-VV method was positively received in the evaluation, as
it enabled the easy identification of critical deliverables or testing activities within the RPA DLC, the
overall assessment was challenging. Despite both projects being classified as simple processes, the project
teams found them to be the most chaotic during their time as RPA experts. Nevertheless, the chaotic
environment provided an interesting setting to evaluate the RPA-VV method. However, the validation
identified the primary concern regarding the ease of use of the method, which was confirmed in the
evaluation. In both projects, most phases and guidelines were only partially or not completed, with only
a few phases being fully completed. Even for the fully completed phases, their ease of use was often low,
resulting in extended or overlapping phases. In the next section, we discuss the progression of the various
testing activities in the projects, followed by a discussion of two factors that contributed to deviations
from the RPA-VV method and guidelines.

Impact on testing activities

The RPA-VV method consists of a few static and dynamic testing activities. Static testing is performed
through client reviews during the analysis and design phases and can lead to issues if all reviews are
conducted at the end of the design phase. Both projects experienced challenges in this regard and
recommended improvements. These are discussed in the next paragraph. Code review, another static
testing activity, was conducted in accordance with the RPA-VV method and proved successful in both
projects. Dynamic testing activities take place during development and deployment but were impeded
by a lack of testing data during the development phase. Project 1 omitted the integration test, which
led to increased debugging at the end of the project. However, the other dynamic testing activities
were executed correctly and were successful. Notably, Project 1 could not confirm that all scenarios
were tested during hypercare, highlighting the importance of maintaining traceability between scenario
documentation and code, as per Guideline 11 of the RPA-VV method. Although not evaluated, it is worth
noting that Guideline 11 addresses an issue experienced during this phase. Project 2 also experienced

73

a delay due to missing test data, but the unit and integration tests were conducted satisfactorily. As a
result, the other dynamic testing activities were not performed within the evaluation time frame.

Factors contributing to deviations from the RPA-VV method and Guidelines

In both projects, deviations from the RPA-VV method and guidelines were observed, primarily due to
two factors: project planning and client contact points and deliverables. The project phases were planned
with stringent timelines assigned to each phase before the project’s initiation. Thus, if the deliverables
were not met within the given timeline, the subsequent phase would still begin as scheduled. This often
resulted in deviations from the RPA-VV method. For instance, both project teams combined all the
reviews during the more nuanced analysis and design phase. Although the RPA-VV method separates
the reviews, the project teams preferred to integrate process steps and scenarios in one meeting, con-
sidering their closely related nature. Together, these steps form the technical blueprint of automation
and require review at a later stage, which is the final review in the RPA-VV method. This highlights
the more progressive but intertwined nature of these phases, indicating an area for improvement in the
RPA-VV method. Another instance where strict planning resulted in deviations was the lack of testing
data delivered while the development phase was already underway. The impact of this deviation has been
elucidated in the previous paragraph.

The intertwined reviews and the missing testing data are interrelated with the second factor, which
concerns the contact points and deliverables of the client during the project. The three reviews are
contact points with the client and should be organised with their importance in mind. Furthermore,
the lack of testing data provided by the client during the development phase had a significant impact
on the project’s progress, as previously discussed. Therefore, it is recommended that the importance of
test data be emphasized to the client in the RPA-VV method, as it has a substantial influence on the
development phase. It is worth noting that the RPA-VV method already incorporates the involvement
of the client in the various phases of the project, as specified in Guideline 1. Moreover, the method
places a significant emphasis on test data with two separate prerequisite activities, as well as Guideline 3,
which further underscores its significance. However, there appears to be no explicit connection between
missing activities or guidelines and the deviations observed in the projects. Thus, it is suggested that
the deviations are linked to the project outcomes themselves.

In conclusion, the usage of the RPA-VV method becomes challenging due to the strict planning and tight
timelines. The projects highlighted the importance of client contact points and deliverables, as well as
the intertwined nature of the analysis and design phases which can be improved in the RPA-VV method.
Furthermore, it is recommended that client reviews be planned and communicated clearly and that the
significance of test data be emphasized to the client. The RPA-VV method already emphasizes client
involvement and test data, but deviations may still occur due to project outcomes. Therefore, clear
communication with the client throughout the project is crucial.

74

Discussion & Conclusion

75

13. Discussion
The RPA-VV method is a structured approach to verify and validate the different phases and deliverables
of the development life cycle (DLC) of RPA projects. The focus of this method is on linking the different
activities of an RPA DLC phase to different testing activities. This approach ensures that the RPA
process analysis and design undergo verification, while the development and deployment are validated,
to ensure adherence to expectations. The RPA-VV method provides guidelines to support the different
phases, activities, and deliverables.

The discussion chapter of this research project offers a thorough analysis and interpretation of the findings.
It begins by emphasizing the theoretical contributions of the study, followed by an exploration of the
practical implications. After that, the limitations of the study are discussed before moving on to a final
section that outlines potential avenues for future research.

13.1 Theoretical contributions
The significance of RPA in practice is rapidly increasing, yet the academic research in this area is still
in its early stages, with only a few years of notable contributions (Syed et al., 2020). A gap in the
academic research for RPA was identified by highlighting two critical parts of software development,
namely requirement management (RM) and testing activities, and relating them to RPA implementation.
These topics are barely covered in the field of academic research on RPA (Enríquez et al., 2020). Although
research has highlighted the significance of alignment between RM and testing in standard software
development life cycles (Skoković & Rakić-Skoković, 2010), this alignment is often missing. This is also
the case for RPA, where the main DLC described is the waterfall method (Cewe et al., 2017). The
waterfall method only addresses the analysis and testing phases without addressing their relationship or
how RM influences the different phases of the DLC. Therefore, this research aimed to fill this gap by
researching novel DLC methods that address the alignment between RM and testing and applying these
methods to the RPA DLC. According to Syed et al. (2020), there is a lack of theoretical foundations
for objective reasoning in the domain of RPA. Additionally, problem-centred interviews conducted with
RPA practitioners indicated the significance of the analysis phase and the lack of a standardized testing
approach. Therefore, the research methodology was structured to effectively combine theory and practice.
The theoretical foundation was established through a comparative analysis of different methods and
techniques that focused on both requirements management (RM) and testing. The W-model (Regulwar
et al., 2010), which is widely supported and extensively described in the literature, was selected and is
applied to the RPA DLC. It was combined with practical feedback to further develop and evaluate the
suitability and effectiveness of the RPA-VV method in practice. Through this approach, the methodology
contributes to both the academic and practical aspects of RPA research.

13.2 Practical implications
The RPA-VV method and its guidelines provide a clear visual overview of the RPA DLC to help RPA
teams create structure within their projects. It clearly defines the different deliverables of a phase and
links different testing activities to every phase to properly verify the analysis of a process and validate its
implementation. Firstly, this standardisation can improve the quality of RPA projects and ensures that
deliverables are properly verified and validated. Additionally, it can be used to inform both RPA solution
architects and developers on how the RPA DLC should look. This can help to monitor adherence to the
standardised format during the project. Secondly, the RPA-VV method can be used to inform clients
of their responsibilities within the project such as verification reviews and how the project will use their
crucial deliverables such as test data. This allows the client to have a better understanding of their role
in the project, resulting in a smoother collaboration between the client and the RPA organization.

While the RPA-VV method is developed for RPA organizations that outsource their services, organi-
zations that build their RPA in-house can also use the RPA-VV method. However, the guidelines and
phases that are focused on the client should be adjusted to how this works within their organization. It

76

should be noted that the practical implications of the RPA-VV method are currently still limited due
to the strict planning of projects. This will be further discussed in the limitations and future work in
Section 13.3.

13.3 Limitations
There are several limitations to this research project that should be considered when interpreting the
results. Firstly, the small sample size of the case study, which only included four projects, may reduce the
generalizability of the results. Additionally, all participants in the study were experts from a single RPA
organization, which could introduce some bias and conflict of interest. Moreover, the developers were not
included in the case study and validation, and their input could have been beneficial in the earlier stages
of the process. Secondly, time constraints were a significant limitation of the research project. Although
sufficient time was allotted for the academic research, the scope of the study was still limited, and the
evaluation had to be cut short. As a result, the projects could not be fully evaluated, making it difficult
to determine the applicability of the RPA-VV method for RPA projects. Moreover, not all assessments
were done using the same criteria, which may have affected the accuracy of the results. The limited time
for the interviews and focus groups forced us to only analyze the most important criteria, which limits
the construct validity of the research. Finally, the guidelines regarding the use of documentation and
tools were not included in the evaluation due to the need to change the format and use of standardized
documents. This restriction creates a limitation since creating a new standardization is a research project
on its own. Therefore, the applicability of these guidelines in practice is not evaluated.

Several limitations of the RPA-VV method were revealed in the evaluation phase which must be consid-
ered. The first identified limitation relates to the ease of use of the RPA-VV method, as project teams
encountered difficulties in utilizing it during the evaluation phase. This highlights the need for further
refinement to improve the method’s usability. Additionally, while the RPA-VV method aims to address
different deliverables and includes contact points with the client, it may conflict with the strict planning
of RPA projects. Unforeseen issues or changes that arise during project execution can result in deviations
from the method its guidelines and phases, which may compromise project quality. The second limitation
identified relates to the role of the client in executing the RPA-VV method. The guidelines of the method
do not explicitly state the role of the client, and they were not included in the evaluation of the RPA-VV
method. This may have contributed to the challenges encountered during the evaluation. Finally, al-
though the RPA-VV method was explained and evaluated, no clear training or further instructions were
provided for the implementation of its phases or guidelines. This suggests that additional support may
be necessary for project teams to implement the method correctly within their projects.

13.4 Future work
Considering the limitations of the research, there are a few areas future work could focus on. These
are separated into improvements for the research projects and possible improvements for the RPA-VV
method. Improvements for the research project include a larger and more diverse sample size to increase
the generalizability and reduce possible biases in the results. This could involve collaborating with multi-
ple RPA organizations to obtain a more comprehensive understanding of the effectiveness of the RPA-VV
method. In addition, involving developers in the case study and validation process would enhance the
contribution of various stakeholders to the RPA-VV method, potentially improving its practical applica-
bility and identifying areas for further improvement. Furthermore, involving clients in the execution of
the RPA-VV method and evaluation can improve the quality of the project. These areas of future work
can be combined with a more extensive evaluation of the RPA-VV method to fully assess the applicability
and effectiveness of the RPA-VV method for RPA projects.

Areas for future work on the RPA-VV method may include exploring how to balance the structured
approach of the RPA-VV method with the need for project planning. Further research is needed to
better understand how practitioners can effectively use the RPA-VV method to make it more suitable
for practical implementation. This research could involve identifying potential solutions for unexpected
issues and changes that may arise during project execution while maintaining the quality of the final

77

product. Additionally, future research includes providing clearer training and support for project teams
and clients that could help address issues with the implementation of the RPA-VV method. Especially
focusing on the guidelines and how they support the implementation of the RPA-VV method. This
could result in the development of additional guidelines or clear instructions on how to use the RPA-VV
method. Other potential areas of research could evaluate the applicability of the guidelines focused on
the documentation and tools used within the RPA DLC in practice.

78

14. Conclusion
Robotic process automation (RPA) is a relatively new field within process management (Hofmann et al.,
2020) with limited academic research on requirement management (RM) and testing within the RPA
projects and no research focused on integrating different testing activities within the RPA development
life cycle (DLC). Therefore, a design science research project has been conducted to develop a method
that can align process requirements with testing activities throughout the RPA DLC. The research re-
sulted in the RPA-VV method which fills the research gap. The method emphasizes the importance of
testing throughout the entire process, ensuring that the final RPA solution meets the business require-
ments and functions correctly. It applied static and dynamic testing activities in a structured manner
through the different RPA DLC phases to ensure proper verification and validation of different DLC
phases and deliverables. The different sub-questions are answered one by one in the next paragraphs.

In order to address sub-question 1, it was necessary to identify the relevant phases of the development
life cycle (DLC) that align requirements with testing practices. This was achieved through a combination
of a multi-vocal literature review (MLR) and problem-centred interviews (PCIs). The literature review
identified eight RPA DLC phases, out of which five were deemed essential for an effective RPA method
that aligns requirements with testing practices. These phases include analysis, design, development, test-
ing, and hypercare.

Sub-question 2 of the study aimed to identify suitable methods or techniques to align requirements and
testing practices. To address this, the study compared six different methods or techniques found in the
literature and evaluated their suitability. Among these methods, the W-model was found to be the most
suitable. This led to the process of transforming the W-model suitable for the RPA DLC, which resulted
in the first iteration of the RPA-VV method depicted in Figure 6.1.

Sub-questions 3 of the research aimed to investigate how to formalize and document requirements and
testing practices to create alignment between them. To achieve this, the study developed three guide-
lines that focused on traceability within documentation and other DLC artefacts. The validation focus
group confirmed the usefulness of the guidelines, but their ease of use scored low to medium. This result
indicates that the guidelines were relatively difficult to perform, mainly because a standard format of the
documentation needs to be established. Therefore, the focus group expected a challenging implementa-
tion without the standardized format. Future research could focus on developing tools or templates that
support traceability within the documentation process and ensure adherence to the standardized format.

Sub-question 4 focused on creating, validating, and evaluating the effectiveness of the RPA-VV method.
This study involved a synthesis of theoretical and practical perspectives through an MLR and a multiple-
case study. The RPA-VV method was developed with the goal of fulfilling seven requirements, which are
outlined in Chapter 6. While the W-model covered most of these requirements, there were two important
ones that were not addressed — traceability and clear guidelines. To still meet these requirements, the
RPA-VV method was designed to include various documentation deliverables that enable traceability and
guidelines that support its use. After the multiple case study, two issues were identified with the RPA-VV
method: its format and ambiguous activity names. The activity names were revised, and the format was
changed to the process-deliverables format proposed by van de Weerd and Brinkkemper (2009). This
structured format enabled the linking of activities to specific deliverables, which is essential for the RPA
DLC. The enhanced version of the RPA-VV method is presented in Figure 9, and the associated guidelines
are outlined in Chapter 10. The effectiveness of the RPA-VV method was analyzed through validation
and evaluation. The validation indicated that all phases and guidelines were deemed useful for the RPA
DLC but the execution was expected to be difficult. The evaluation revealed two main issues: strict
project planning causing deviations and difficulties with client involvement and deliverables. The eval-
uation was limited due to deviations from the RPA-VV method and an incomplete assessment. Future
research could focus on how to effectively execute the structured approach of the RPA-VV method in
project planning and handling issues with deliverables.

The fifth and final sub-question examines the integration of the RPA-VV method with current documen-

79

tation and tools used in the RPA DLC. The RPA-VV method outlines the delivery of documentation in
each phase, and guidelines in Chapter 10 focus on the use of documentation and tools. While tools are
not directly addressed, recommendations are provided in the guidelines. Due to the variability of tools
used in RPA projects, broad guidelines concentrate on their potential rather than integrating a specific
tool. The usefulness of these guidelines was validated but not evaluated, offering opportunities for future
research to assess their effectiveness in practice.

In conclusion, the RPA-VV method provides a structured and clear approach to testing and verifying
and validating the DLC phases and deliverables within RPA projects. It offers a structured method
that identifies the different testing activities, including static and dynamic testing, to be conducted
in each phase of the RPA project. Moreover, the method includes guidelines to support the different
phases. While the method has shown promising results in terms of its potential for RPA projects, further
research is required to examine its practical applications. Future work should focus on how to execute
the structured approach of the RPA-VV method in relation to project planning, how to deal with issues
if things are not delivered, and how this relates to planning. Additionally, research should explore the
integration between the RPA-VV method and current documentation and tools used within the RPA
DLC. Ultimately, such research efforts will enable practitioners to gain a better understanding of how the
RPA-VV method can be applied in practice, ensuring that RPA project deliverables are properly verified
and validated.

80

15. References
Ayres, L., Kavanaugh, K., & Knafl, K. A. (2003). Within-case and across-case approaches to qualitative

data analysis. Qualitative health research, 13 (6), 871–883.
Balaji, S., & Murugaiyan, M. S. (2012). Waterfall vs. v-model vs. agile: A comparative study on sdlc.

International Journal of Information Technology and Business Management, 2 (1), 26–30.
Barmi, Z. A., Ebrahimi, A. H., & Feldt, R. (2011). Alignment of requirements specification and testing:

A systematic mapping study. 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops, 476–485.

Bezemer, B. (2019). What makes good process documentation for rpa? [Accessed: 7-11-2022]. https :
//www.linkedin.com/pulse/what-makes-good-process-documentation-rpa-bastiaan-bezemer

Bogner, A., Littig, B., & Menz, W. (2009). Interviewing experts. Springer.
Bosu, A., Greiler, M., & Bird, C. (2015). Characteristics of useful code reviews: An empirical study at

microsoft. 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories, 146–156.
Bouillon, E., Mäder, P., & Philippow, I. (2013). A survey on usage scenarios for requirements traceabil-

ity in practice. International Working Conference on Requirements Engineering: Foundation for
Software Quality, 158–173.

Bryman, A. (2016). Social research methods. Oxford university press.
Cernat, M., Staicu, A. N., & Stefanescu, A. (2020). Towards automated testing of rpa implementations.

Proceedings of the 11th ACM SIGSOFT International Workshop on Automating TEST Case
Design, Selection, and Evaluation, 21–24.

Cewe, C., Koch, D., & Mertens, R. (2017). Minimal effort requirements engineering for robotic process
automation with test driven development and screen recording. International Conference on
Business Process Management, 642–648.

Choudary, A. (2020). How to write a good test plan in software testing? [Accessed: 7-11-2022]. https:
//www.edureka.co/blog/test-plan-in-software-testing/

Choudhuri, A. (2021). What are pdd and sdd in rpa? [Accessed: 7-11-2022]. https://www.probegroup.
com.au/blog/what-are-pdd-and-sdd-in-rpa#:~:text=An%5C%20acronym%5C%20for%5C%
20Solution%5C%20Design,%5C%27to%5C%2Dbe%5C%27%5C%20process

Chugh, R., Macht, S., & Hossain, R. (2022). Robotic process automation: A review of organizational grey
literature. International Journal of Information Systems and Project Management, 10 (1), 5–26.

Consulting, K. (2021). Business case: Automation of software development life cycle. https://kvalito.ch/
project/business-case-automation-of-software-development-life-cycle/

Dave, K. (2020). The five pillars of a successful rpa test plan. https://www.mindfieldsglobal.com/blog/
rpa-testing

Döringer, S. (2021). ‘the problem-centred expert interview’. combining qualitative interviewing approaches
for investigating implicit expert knowledge. International Journal of Social Research Methodol-
ogy, 24 (3), 265–278.

Emorphis, T. (2020). Robotic process automation: Stages of rpa life-cycle. https : / / medium . com /
emorphis-technologies/robotic-process-automation-stages-of-rpa-life-cycle-e0f8180a11d6

Enríquez, J. G., Jiménez-Ramírez, A., Domínguez-Mayo, F. J., & Garcia-Garcia, J. (2020). Robotic
process automation: A scientific and industrial systematic mapping study. IEEE Access, 8, 39113–
39129.

Fernando, L. (2020). Approach for effective process discovery on rpa projects [Accessed: 7-11-2022]. https:
//lahirufernando90.medium.com/approach- for- effective- process- discovery- on- rpa- projects-
9306dad35914

Garousi, V., Felderer, M., & Mäntylä, M. V. (2019). Guidelines for including grey literature and conduct-
ing multivocal literature reviews in software engineering. Information and Software Technology,
106, 101–121.

George, B., & Williams, L. (2004). A structured experiment of test-driven development. Information and
software Technology, 46 (5), 337–342.

Ghouse, A., & Sipos, C. (2022). Rpa progression throughout years and futuristic aspects of rpa. Pollack
Periodica, 17 (1), 30–35.

Goris, V. (2019). Robotic process automation an assesment of process discovery techniques with the purpose
of finding rpa eligible processes.

81

https://www.linkedin.com/pulse/what-makes-good-process-documentation-rpa-bastiaan-bezemer
https://www.linkedin.com/pulse/what-makes-good-process-documentation-rpa-bastiaan-bezemer
https://www.edureka.co/blog/test-plan-in-software-testing/
https://www.edureka.co/blog/test-plan-in-software-testing/
https://www.probegroup.com.au/blog/what-are-pdd-and-sdd-in-rpa#:~:text=An%5C%20acronym%5C%20for%5C%20Solution%5C%20Design,%5C%27to%5C%2Dbe%5C%27%5C%20process
https://www.probegroup.com.au/blog/what-are-pdd-and-sdd-in-rpa#:~:text=An%5C%20acronym%5C%20for%5C%20Solution%5C%20Design,%5C%27to%5C%2Dbe%5C%27%5C%20process
https://www.probegroup.com.au/blog/what-are-pdd-and-sdd-in-rpa#:~:text=An%5C%20acronym%5C%20for%5C%20Solution%5C%20Design,%5C%27to%5C%2Dbe%5C%27%5C%20process
https://kvalito.ch/project/business-case-automation-of-software-development-life-cycle/
https://kvalito.ch/project/business-case-automation-of-software-development-life-cycle/
https://www.mindfieldsglobal.com/blog/rpa-testing
https://www.mindfieldsglobal.com/blog/rpa-testing
https://medium.com/emorphis-technologies/robotic-process-automation-stages-of-rpa-life-cycle-e0f8180a11d6
https://medium.com/emorphis-technologies/robotic-process-automation-stages-of-rpa-life-cycle-e0f8180a11d6
https://lahirufernando90.medium.com/approach-for-effective-process-discovery-on-rpa-projects-9306dad35914
https://lahirufernando90.medium.com/approach-for-effective-process-discovery-on-rpa-projects-9306dad35914
https://lahirufernando90.medium.com/approach-for-effective-process-discovery-on-rpa-projects-9306dad35914

Hamilton, T. (2022). Test plan template: Sample document with web application example [Accessed:
7-11-2022]. https://www.guru99.com/test-plan-for-project.html

Harita, P. (2019). Quick guide on requirement gathering phase in an rpa project [Accessed: 7-11-2022].
https://skcript.com/svr/quick-guide-on-requirement-gathering-phase-in-an-rpa-project/

Hofmann, P., Samp, C., & Urbach, N. (2020). Robotic process automation. Electronic Markets, 30 (1),
99–106.

Jamil, M. A., Arif, M., Abubakar, N. S. A., & Ahmad, A. (2016). Software testing techniques: A literature
review. 2016 6th international conference on information and communication technology for the
Muslim world (ICT4M), 177–182.

Janzen, D., & Saiedian, H. (2005). Test-driven development concepts, taxonomy, and future direction.
Computer, 38 (9), 43–50.

Jiao, J., & Chen, C.-H. (2006). Customer requirement management in product development: A review of
research issues. Concurrent Engineering, 14 (3), 173–185.

Jiménez-Ramírez, A., Chacón-Montero, J., Wojdynsky, T., & Gonzalez Enriquez, J. (2020). Automated
testing in robotic process automation projects. Journal of Software: Evolution and Process, e2259.

Johansson, C., & Bucanac, C. (1999). The v-model. IDE, University Of Karlskrona, Ronneby.
Jovanović, S. Z., Ðurić, J. S., & Šibalija, T. V. (2018). Robotic process automation: Overview and

opportunities. International Journal Advanced Quality, 46 (3-4), 34–39.
Kaur, M., & Singh, R. (2014). A review of software testing techniques. International Journal of Electronic

and Electrical Engineering, 7 (5), 463–474.
Kirchmer, M., & Franz, P. (2019). Value-driven robotic process automation (rpa). International Sympo-

sium on Business Modeling and Software Design, 31–46.
Kirova, V., Kirby, N., Kothari, D., & Childress, G. (2008). Effective requirements traceability: Models,

tools, and practices. Bell Labs technical journal, 12 (4), 143–157.
Kumar, R. (2022). Rpa process identification (part4)-solution design document (sdd) [Accessed: 7-11-

2022]. https : //www. linkedin . com/pulse/ rpa - process - identification - part4 - solution - design -
document-rahul-kumar

Leeuwen, T. (2022). Project management methodology for robotic process automation implementation
(B.S. thesis). University of Twente.

Mařík, V., Král, L., & Mařík, R. (2000). Software testing & diagnostics: Theory & practice. International
Conference on Current Trends in Theory and Practice of Computer Science, 88–114.

Mogyorodi, G. (2001). Requirements-based testing: An overview. Proceedings 39th International Con-
ference and Exhibition on Technology of Object-Oriented Languages and Systems. TOOLS 39,
286–295.

Montero, J. C., Ramirez, A. J., & Enríquez, J. G. (2019). Towards a method for automated testing in
robotic process automation projects. 2019 IEEE/ACM 14th International Workshop on Automa-
tion of Software Test (AST), 42–47.

Ng, K. K., Chen, C.-H., Lee, C. K., Jiao, J. R., & Yang, Z.-X. (2021). A systematic literature review on
intelligent automation: Aligning concepts from theory, practice, and future perspectives. Advanced
Engineering Informatics, 47, 101246.

Orynbayeva, A. (2019). A governance model for managing robotics process automation (rpa).
Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science research

methodology for information systems research. Journal of management information systems,
24 (3), 45–77.

Petersen, K., Wohlin, C., & Baca, D. (2009). The waterfall model in large-scale development. International
Conference on Product-Focused Software Process Improvement, 386–400.

Pham, T. M. T., & Yang, J. (2020). The secret life of commented-out source code. Proceedings of the
28th International Conference on Program Comprehension, 308–318.

Prat, N., Comyn-Wattiau, I., & Akoka, J. (2015). A taxonomy of evaluation methods for information
systems artifacts. Journal of Management Information Systems, 32 (3), 229–267.

Prucha, P. (2021). Aspect optimalization of robotic process automation. CEUR Workshop Proceedings.
Ratilainen, T., et al. (2019). Guidelines for creating a testing process for a software-case study of com-

paring testing of two different size of slot game projects.
Reddy, G. (2022). Introduction to robotic process automation. https://www.gcreddy.com/2022/01/

introduction-to-robotic-process.html

82

https://www.guru99.com/test-plan-for-project.html
https://skcript.com/svr/quick-guide-on-requirement-gathering-phase-in-an-rpa-project/
https://www.linkedin.com/pulse/rpa-process-identification-part4-solution-design-document-rahul-kumar
https://www.linkedin.com/pulse/rpa-process-identification-part4-solution-design-document-rahul-kumar
https://www.gcreddy.com/2022/01/introduction-to-robotic-process.html
https://www.gcreddy.com/2022/01/introduction-to-robotic-process.html

Regulwar, G. B., Deshmukh, P., Tugnayat, R., Jawandhiya, P., & Gulhane, V. (2010). Variations in
v model for software development. International Journal of Advanced Research in Computer
Science, 1 (2), 134–135.

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in software
engineering. Empirical software engineering, 14 (2), 131–164.

Sawant, A. A., Bari, P. H., & Chawan, P. (2012). Software testing techniques and strategies. International
Journal of Engineering Research and Applications (IJERA), 2 (3), 980–986.

Servicenow. (n.d.). What is the software development life cycle. https://www.servicenow.com/products/
devops/what-is-sdlc.html

Shakir, M. (2002). The selection of case studies: Strategies and their applications to is implementation
case studies.

Shuping, L., & Ling, P. (2008). The research of v model in testing embedded software. 2008 International
Conference on Computer Science and Information Technology, 463–466.

Skoković, P., & Rakić-Skoković, M. (2010). Requirements-based testing process in practice. International
Journal of Industrial Engineering and Management (IJIEM), 1 (4), 155–161.

Song, W. (2017). Requirement management for product-service systems: Status review and future trends.
Computers in Industry, 85, 11–22.

Soybir, S., & Schmidt, C. (2021). Project management and rpa. The Digital Journey of Banking and
Insurance, Volume I: Disruption and DNA, 289–305.

Syed, R., Suriadi, S., Adams, M., Bandara, W., Leemans, S. J., Ouyang, C., ter Hofstede, A. H., van de
Weerd, I., Wynn, M. T., & Reijers, H. A. (2020). Robotic process automation: Contemporary
themes and challenges. Computers in Industry, 115, 103162.

Torkar, R., Gorschek, T., Feldt, R., Svahnberg, M., Raja, U. A., & Kamran, K. (2012). Requirements
traceability: A systematic review and industry case study. International Journal of Software
Engineering and Knowledge Engineering, 22 (03), 385–433.

Tran, D., & Ho Tran Minh, T. (2018). Workflow methodology development of rpa solution for a vietnamese
bank: A case study of korkia oy.

Turhan, B., Layman, L., Diep, M., Erdogmus, H., & Shull, F. (2010). How effective is test-driven devel-
opment. Making Software: What Really Works, and Why We Believe It, 207–217.

UiPath. (n.d.). Continuous automation, continuous testing. https ://start .uipath .com/rs/995-XLT-
886/images/Ui_200904_ScalingAutomation-Ebook-v2.pdf

UiPath. (2022). Process definition document (pdd) [Accessed: 7-11-2022]. https://rpalearners.com/wp-
content/uploads/2022/03/Process-Definition-Document-PDD.docx

Uusitalo, E. J., Komssi, M., Kauppinen, M., & Davis, A. M. (2008). Linking requirements and testing in
practice. 2008 16th IEEE International Requirements Engineering Conference, 265–270.

van de Weerd, I., & Brinkkemper, S. (2009). Meta-modeling for situational analysis and design methods.
In Handbook of research on modern systems analysis and design technologies and applications
(pp. 35–54). IGI Global.

Vanclay, F. (2003). International principles for social impact assessment. Impact assessment and project
appraisal, 21 (1), 5–12.

Venable, J., Pries-Heje, J., & Baskerville, R. (2016). Feds: A framework for evaluation in design science
research. European journal of information systems, 25 (1), 77–89.

Vinocha, T. (2022). What is pdd & sdd in rpa? the two most crucial blueprints in robotics process
automation [Accessed: 7-11-2022]. https://www.guvi.in/blog/what-is-pdd-sdd-in-rpa/

Weishaar, G. (2022). Uipath testing summit. https ://www.uipath.com/events/testing- automation-
summit

Wieringa, R. J. (2014). Design science methodology for information systems and software engineering.
Springer.

Willcocks, L. P., Lacity, M., & Craig, A. (2015). The it function and robotic process automation. The
London School of Economics; Political Science.

Williams, J. J., & Lombrozo, T. (2010). The role of explanation in discovery and generalization: Evidence
from category learning. Cognitive science, 34 (5), 776–806.

Witzel, A., & Reiter, H. (2012). The problem-centred interview. Sage.
Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in software

engineering. Proceedings of the 18th international conference on evaluation and assessment in
software engineering, 1–10.

83

https://www.servicenow.com/products/devops/what-is-sdlc.html
https://www.servicenow.com/products/devops/what-is-sdlc.html
https://start.uipath.com/rs/995-XLT-886/images/Ui_200904_ScalingAutomation-Ebook-v2.pdf
https://start.uipath.com/rs/995-XLT-886/images/Ui_200904_ScalingAutomation-Ebook-v2.pdf
https://rpalearners.com/wp-content/uploads/2022/03/Process-Definition-Document-PDD.docx
https://rpalearners.com/wp-content/uploads/2022/03/Process-Definition-Document-PDD.docx
https://www.guvi.in/blog/what-is-pdd-sdd-in-rpa/
https://www.uipath.com/events/testing-automation-summit
https://www.uipath.com/events/testing-automation-summit

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation
in software engineering. Springer Science & Business Media. https://doi.org/https://doi.org/10.
1007/978-3-642-29044-2

Ziftci, C., & Krüger, I. (2013). Test intents: Enhancing the semantics of requirements traceability links in
test cases. Proceedings of the 28th Annual ACM Symposium on Applied Computing, 1272–1277.

84

https://doi.org/https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/https://doi.org/10.1007/978-3-642-29044-2

Appendices

85

.

Consent Form Problem-centered interviews
October 2022

By completing this form, you give us permission to use this interview for academic purposes and
potential publications. Thank you for helping.

Research Title: Aligning requirements and test scenarios in an RPA testing
method

Researcher: Mees Mouwen
Objective: This interview is meant to understand the requirement analyses,

translate requirements to testing, and the testing phase itself.
Further questions about the documentation of these practices are
done. The questions are aimed at uncovering issues that are oc-
curring in these practices

Participation period 60 minutes
Risk of participation We foresee no risk of participation. The participant is free to

withdraw at any moment
Tools used The interview will be audio recorded.
Data protection: The data will only be used within the context of this research and

shall not be shared with any other parties that are not already
involved (Ciphix & University Utrecht). All personal data will be
anonymized in (potential) publication

Personal Information

Full name
Team
Function
Email

Agreement

I have read and understood the conditions for participating in this research. I understand that my par-
ticipation is voluntary and that I am free to withdraw at any time without giving any reason. I declare
the above to be true and agree to participate by signing this consent form.

Signature Date:

1

16. Appendix A
16.1 A1: Consent form problem-centered interviews

Support interview questions:

General support issues:
1. Are there levels of severity of the issue?
2. What type of issues arises most?
3. Who addresses support issues first? You or the customer?

Types of issues that cause maintenance:
4. How often are exceptions the cause of issues?
5. How often are infrastructure or applications the cause of issues
6. How often are Issues in the code or data the cause for maintenance?

.

Testing practices after maintenance:
7. What types of tests are performed after maintenance?

a. Are these tests already available or made by you?
b. Do you ever need to create new test scenarios?

8. Is a testing environment always available?
9. Is a testing verison of the bot available?
10. How do you experience the testing process as support?
11. How would your ideal testing situation for support look like?

16.2 A2: Problem-centered interview questions

Solution architect interview questions:

1. How much experience do you have with RPA development or architecture in
years?

2. How complex would je describe your last project in terms of size and difficulty
(low, meduim, high)?

Requirements or process analysis
3. What steps are taken to gather a process requirements?
4. How much time was taken to gather the process steps or analyse the process?
5. Is testability already taken into consideration when writing down the

requirements?
6. How are stakeholders incorporated in the process selection and analysis of the

process?
7. What are issues do you (sometimes) encounter in this requirements analysis

What types of requirements are gathered?
8. What is the difference between het as-is process en to-be process?
9. How important are the completion criteria?
10. How important are the application criteria?

a. Can the application be a reason to decide a process is not suitable?
b. How do the applications (used in the process) play a role in the testing

phase?

Exceptions in process
11. How do you decide what the exceptions are of the process and which to include

in development?
12. What is done if (difficult/many) exceptions show up in process analysis phase?
13. What if exceptions show up in the development phase?
14. How are exception documented?

Abstraction level of process steps:
15. To what extent is the abstraction level of requirements taken into account?

Documentation for requirements
16. How are requirements documented?
17. How do you feel about the structure of the PDD?

a. Are there aspects that work very well?
b. Which aspects do you sometimes struggle with?
c. Are there aspects you think are missing from the PDD?

Requirements to test scenarios:
18. How are requirements translated to test scenarios?

a. When in the project cycle is this done?
b. What technique or method is used to do this?
c. What is the role of the PDD in this translation?

19. Are you experiencing any difficulties in this translation?

Testing procedure:
20. What types of tests are performed before the bot goes live?

a. When in development process are these tests performed?
21. How much time did you spend on testing in your last project not taking unit

testing into account?
a. Are you happy with how the current testing phase looks? Is it efficient?
b. Was this standard compared to other projects
c. How would your ideal testing phase look like?
d. Did you experience any difficulties in your last testing phase?

22. Are there standard test scenarios or test cases for re-used components?

Test generation and documentation
23. How are test cases created?
24. Is testing data always provided or sometimes made by hand?
25. How do you go from test data to a test case?
26. How are test scenarios and cases documented?
27. How are issue logs documented and saved?

a. Is testing stopped if an issue arises?
28. Are there often still issues uncovered in the UAT?

a. How do you think you can minimize issues here?
29. Hyper-care phase are still issues uncovered?

a. How do you think you can minimize issues here?

Environment:
30. Is a bot version created where the code is organised for testing?

a. Are logging modules added to the bot for testing?
b. Are (testing) bots with logging modules kept and saved after testing?

31. Is a testing environment always provided?

Effectiveness of testing:
32. Is checked/documented how much of the bot’s functionality is covered by a test

case?
33. How would you determine if a testing phase is effective?

System / application exceptions:
34. How are issues handled that are related to incorrect data, loss of connection, or

page not loading or working?
a. Are there standard test cases for this?

35. How is tested for these exceptions?

Tools:
36. Are specific tools used for testing?
37. Have you used Uipath test suite before?

Other
38. Are there any other this things that are missing or not going well currently in the

requirement analysis phase, testing phase, or documentation?

17. Appendix B
17.1 B1: Multiple-case study database

17.1.1 Interview database

Table 17.1: Systematic interviews
Database nr. Purpose Role interviewee

1A Method RPA teamlead
2A Method Solution architect
3A Method Solution architect
4A Method Solution architect
1B Documentation RPA teamlead
2B Documentation Solution architect
3B Documentation Solution architect
4B Documentation Solution architect
5B Documentation Solution architect

17.1.2 Document database

Table 17.2: Documents and tools used in the multiple-case study
Database nr. Case Document or tool Type Function

D1 1 Document PDD Process description
D2 1 Document SDD Solution design
D3 1 Document TPD Test plan
D4 1 Tool Monday.com Project planning
D5 1 Tool Azure DevOps Code management
D6 2 Document PDD Process description
D7 2 Document SDD Solution design
D8 2 Document TPD Test plan
D9 2 Tool Monday.com Project planning
D10 2 Tool Azure DevOps Code management
D11 3 Document PDD Process description
D12 3 Document SDD Solution design
D13 3 Document TPD Test plan
D14 3 Tool Monday.com Project planning
D15 4 Document PDD Process description
D16 4 Document SDD Solution design
D17 4 Document TPD Test plan
D18 4 Tool Monday.com Project planning

17.2 B2: Case study protocol

Field procedures
Project selection procedure

The first criterion for the selection of the projects is that the solution architects for all four cases must
differ. This is to have a more general view of the working method of different solution architects. The
second and last criterion is that the two low-complexity and two high-complexity cases are selected.

91

This selection allows for an analysis of two similar complexity projects and low plus one high complexity
projects. This creates a more robust analysis of the projects. The different levels of complexity are shown
below.

High-complexity is more than 5 applications, more than 50 steps

Medium-complexity is between 3-5 applications, between 25-50 steps

Low-complexity is less than 3 applications, less than 25 steps

Case study procedure

The multiple-case study consists of four cases in total. For all cases, a document and tool analysis, survey,
and systematic expert interviews are performed. The four cases are analysed in pairs of two iterations
as shown below. The reason for performing the case study two iteration is because this allows the first
iteration to provide feedback on the survey and interviews which can then be improved if necessary.

1. Document and tool analysis case 1 + 2

2. Survey and systematic expert interviews with experts from 1 + 2

3. Document and tool analysis case 3 + 4

4. Survey and systematic expert interviews with experts from case 3 + 4

Documentation and tool sources

To analyse the different RPA DLC phase and answers the case study objectives, different project docu-
mentation and tools are included in the multiple-case study. The included documentation is described in
table 17.3 and the included tools are described in table 17.4.

Table 17.3: Documentation
Document Description
PDD Describes process and infrastructure requirements, and other conditions neces-

sary for the robot
SDD Describes the design of the robot and other solutions components
TPD Describes the test plan, test scenarios, test data, and test results

Table 17.4: Tools
Tool Function
Monday.com Project management
Uipath studio Development & Testing
Azure DevOps Code management

Process
Data collection methods

To have a solid foundation of data and a logical path to our conclusion, there are a few things that we
implement. Firstly, we use multiple sources of evidence to allow for data triangulation (Runeson & Höst,
2009). These sources of evidence include documentation and tool analysis, surveys, and systematizing
expert interviews. Secondly, we create a case study database consisting of notes about project documen-
tation and tools, case study documents such as survey responses and interview questions, and transcripts
from the interviews. With this, we create a chain of evidence that allows us to trace our findings to our
case study.

92

Analysing evidence

The case study exists of three methods of data collection as mentioned above. These are documentation
and tool analysis, surveys, and systematizing expert interviews. All data from these methods is gathered
and added to the case study database. The cases are evaluated based on a within-case analysis and an
across-case analysis. The documentation and tool analysis and the survey are deductive in nature since
they are analysed based on specific criteria mentioned in table 7.3. The systematizing expert interviews
are structured to allow for data comparability (Döringer, 2021). The aim of these interviews are to gain
insight in the processual structure of the RPA DLC in practice.

Reporting

The results of the multiple case study are written in Chapter 8 and consists of:

• One report discussing the insights gained from the systematizing interviews

• Four single-case reports discussing the within case-analysis

• One multiple-case report discussing the across-case analysis including the survey

93

Survey questions documentation

PDD:
Completeness

1. PDD contains all necessary elements in regard to process requirements
2. Not all elements of the PDD are essential or necessary to be documented
3. PDD is always completely filled out

Consistency:
4. We use a standardized format to fill out the PDD
5. I have experienced inconsistencies between different PDDs
6. PDD information is consistent with the SDD
7. PDD information is consistent with the TPD
8. I have experienced difficulties in a project due to inconsistencies in the PDD

Usefulness:
9. PDD has a positive impact on the tasks I perform during the project
10. The PDD has a positive impact on the client’s understanding of the process

requirements
11. The PDD has a positive impact on the client’s input for the project
12. The usefulness of the PDD is the same for every project

Ease of use:
13. I believe that the PDD is easy to understand for developers
14. I believe that the PDD is easy to understand for clients
15. It does not take a lot of effort to fill out the PDD

SDD
Completeness

16. SDD contains all necessary elements in regard to the solution design
17. Not all elements of the SDD are essential or necessary to be documented
18. SDD is always completely filled out

Consistency:
19. We use a standardized format to fill out the SDD
20. I have experienced inconsistencies between different SDDs
21. SDD information is consistent with the PDD

17.3 B3: Survey questions

22. SDD information is consistent with the TPD
23. I have experienced difficulties in a project due to inconsistencies in the SDD

Usefulness:
24. SDD has a positive impact on the tasks I perform during the project
25. The SDD has a positive impact on the client’s understanding of the design
26. The SDD has a positive impact on the client’s input for the project
27. The usefulness of the SDD is the same for every project

Ease of use:
28. I believe that the SDD is easy to understand for developers
29. I believe that the SDD is easy to understand for clients
30. It does not take a lot of effort to fill out the SDD

TPD
Completeness

31. TPD contains all necessary elements in regard to testing
32. Not all elements of the TPD are essential or necessary to be documented
33. TPD is always completely filled out

Consistency:
34. We use a standardized format to fill out TPD
35. I have experienced inconsistencies between different TPDs
36. TPD information is consistent with the PDD
37. TPD information is consistent with the SDD
38. I have experienced difficulties in a project due to inconsistencies in the TPD

Usefulness:
39. The TPD has a positive impact on the tasks I perform during the project
40. The TPD has a positive impact on the client’s understanding of the testing phase
41. The TPD has a positive impact on the client’s input for the project
42. The usefulness of the TPD is the same for every project

Ease of use:
43. I believe that the TPD is easy to understand for developers
44. I believe that the TPD is easy to understand for clients
45. It does not take a lot of effort to fill out the TPD

Survey questions tools

Monday.com
Functionality:

46. Monday.com has all the functionality I need for project planning

Usefulness:
47. Monday.com has a positive impact on my ability to perform my project responsibilities
48. The usefulness of Monday.com is the same for every project

Ease of use:
49. Monday.com is easy to use for project planning
50. Writing down tasks on Monday.com does not require a lot of effort

AzureDevops:
Functionality:

51. AzureDevOps has all the functionality I need for code management
52. I would use the functionality of AzureDevOps for more than code management

Usefulness:
53. Azure DevOps has a positive impact on my ability to perform my project responsibilities
54. The usefulness of Azure DevOps is the same for every project

Ease of use:
55. Azure DevOps is easy to use for code management
56. Saving and maintaining in code Azure DevOps does not require a lot of effort

UiPath Studio:
Functionality:

57. UiPath Studio has all the functionality I need for testing
58. I would use the functionality of UiPath studio for more than development and testing

Usefulness:
59. UiPath studio has a positive impact on my ability to perform my project responsibilities
60. The usefulness of UiPath studio is the same for every project

Ease of use:
61. UiPath studio is easy to use for testing
62. Creating and running test cases in UiPath studio does not require a lot of effort

17.4 B4: Survey questions statistics

Table 17.5: Statistics all survey questions
5 Strongly agree
4 Agree
3 Neither agree nor disagree
2 Disagree
1 Strongly disagree
Question Mean Standard deviation Question Mean Standard deviation

1 4.6 0.5 32 2.6 1.3
2 3.6 1.5 33 2.6 0.9
3 2.6 0.9 34 3.8 0.8
4 4.4 0.5 35 4 1.2
5 4.2 0.44 36 3.4 0.5
6 3 1 37 3.8 0.4
7 3.4 0.9 38 3 1
8 3.2 0.8 39 4.4 0.5
9 4.2 0.8 40 4.6 0.5
10 4.8 0.4 41 4.2 0.8
11 4.2 0.8 42 3.6 0.9
12 3.6 1.1 43 4.4 0.9
13 4.8 0.4 44 4.2 0.8
14 4.2 0.4 45 2.6 0.9
15 2.4 1.1 46 4 1.4
16 3.8 0.4 47 4.4 0.9
17 4 0.7 48 3.8 1.6
18 1.8 0.8 49 4 1.4
19 4.4 0.5 50 4 1
20 3.6 0.9 51 4.8 0.4
21 3 1 52 4.4 0.9
22 3.4 0.9 53 4.2 0.8
23 3 1 54 4 1.2
24 4.4 0.5 55 4.4 0.5
25 2.8 1.1 56 4.4 0.5
26 3 1.6 57 4.4 0.5
27 3 1.4 58 3.6 1.1
28 4.6 0.5 59 4.4 0.9
29 2 0 60 4.4 0.9
30 2 0.7 61 4.4 0.9
31 3.8 0.4 62 3.4 0.5

97

.

Consent Form Survey and systematizing interview
January 2022

By completing this form, you give us permission to use the interview and response to the survey for
academic purposes and potential publications. Thank you for helping.

Research Title: Aligning requirements and test scenarios in an RPA testing
method.

Researcher: Mees Mouwen.
Objective: The survey is aimed at deductively analyzing the use of documen-

tation and tools within Ciphix through different criteria. This
is done by providing different statements which can be answered
based on a Likert scale. The interview is focused on improving the
RPA VV-method by understanding the current working process
within Ciphix in regard to the RPA development life cycle (DLC).
The interview will use the RPA VV-method to discuss if certain
tasks or activities are included in the DLC and how important
they are according to the experts.

Participation period 30 minutes (survey) & 60 minutes (interview).
Risk of participation We foresee no risk of participation. The participant is free to

withdraw at any moment.
Tools used Google Forms is used the create and conduct the survey. The

interview will be audio recorded.
Data protection: The data will only be used within the context of this research and

shall not be shared with any other parties that are not already
involved (Ciphix & University Utrecht). All personal data will be
anonymized in the thesis report and (potential) publication.

Personal Information

Full name
Team
Function
Email

Agreement

I have read and understood the conditions for participating in this research. I understand that my par-
ticipation is voluntary and that I am free to withdraw at any time without giving any reason. I declare
the above to be true and agree to participate by signing this consent form.

Signature Date:

17.5 B5: Consent form expert interviews

RPA VV-method interview: (+-60 min)

Component per component:
1. What do you think this component entails, please describe in aprox. 10 words?

a. Is this already performed in RPA projects?

Current projects / how would it be incorporated?
2. In your current projects, what are essential tasks or practices that should be

performed relating to this phase?
3. What should you keep in mind or not forget when performing these tasks?

a. Is there a specific order in the tasks?
4. Are there prerequisites before you can perform these tasks?
5. What roles should are involved now in these tasks?
6. When would you consider this phase to be complete?
7. How is this phase related to documentation and tools used in RPA projects?

Component
8. Is this component in the correct place in the method?
9. How would you improve the name of the component to better encompass the

description of the phases tasks better?
– - - - —--- - – - - - - - - - - - - – - – - - – - - - - - - - - - - - – - - - - - – - - - - – - – – -

10. Anything missing from the Method that you believe is essential for the
development of the bot?

17.6 B6: Expert interviews questions RPA-VV method

Systematizing expert interviews: documentation

1. Interviewee 1B:

1. You say that there is consistency between PDD and SDD; SDD and TPD but you say
neither agree or disagree with consistency PDD and TPD? HOW COME THEY ARE
NOT CONISTENT.

a. Differences between TPD and PDD? →What would be the reason you think? →
why easier to be consistent between SDD and other documents?

b. Should there be consistency between these documents?
i. What elements are most important to be consistent with each other?

c. Record changes or inconsistencies of the documentation when it is already
signed off? → Write down notes in SDD if changes need to happen after signing
off PDD? → if this results in new scenario also adjust TPD

i. Flow from PDD to draft SDD TPD scenarios → finish SDD, record
differences with PDD, and adjust TPD scenarios?

2. Scope creep / scope change? → how to deal with it? Where is it documented? Adjust
test scenarios?

3. Is there a standard format for how to document alternative happy flows in PDD?, AE,
and BE in the PDD?

From document analyses: Related to traceability:
4. Are BE to test scenario 1:1 relation?

a. Essential to have?
5. Are AE to test scenario 1:1 relation?

a. Where are AE documented?
6. Are alternative flows to test scenarios 1:1 relation?

a. Essential?
b. Where documented?

7. Is this also always the case?
a. Exceptions when they are not a test scenario or not a BE/AE/ APF?

8. Labeling BE/AE, A happy-flow in PDD, beneficial to create test scenarios in TPD
i. BE → A happy flow
ii. Do you ever want to test AE?

17.7 B7: Expert interviews questions documentation and tools

9. TPD → All elements are essential → but not always filled out and it takes a lot of effort.
a. Effort the reason or other reasons it is not filled out?
b. What can reduce the effort?
c. Do you think this effort is required to have a high quality robot all the time?
d. What can help to always have all essential information ready for the TPD?

10. SDD→ Strongly agree to: not all SDD elements are essential →Internally or
externally?... also not completely filled out → related to project complexity?

a. Should SDD be simplified or should the focus lie somewhere else?
11. PDD → not all elements are essential?

a. How come?

12. All documents take a lot of effort to fill out → this acceptable / essential?
a. What is the reason why things are skipped?

i. less important or to much effort?

13. Q52: What functionality of Azure do you think can be beneficial for RPA projects?

14. Deal with Discrepancies with an acceptance environment?

__

2. Interviewee 2B

PDD:→ All elements are essential (strongly agree), But not always completely filled out,
a. Why is it not always filled out?
b. PDD Takes a lot of effort to fill out (strongly agree)

i. This reason why they are not filled out?
ii. How can this be solved?

c. Issues due to inconsistencies in the PDD
i. → elaborate?
ii. → how can this be solved?

SDD: Not all elements are essential (agree), not completely filled out (agree) , and takes a lot of
effort (Agree)!

iii. Not being essential the reason why not filled out?
1. Other reasons?

iv. Anything changed about the effort? Can things be left out?
TPD: All elements are essential (strongly agree), TPD is always completely filled out (Agree),
take a lot of effort (agree)

v. SA’s and developer should put effort in to completely fill it out?
vi. Not all projects (XDM import), exceptions?

1. How did this happen
vii. Q38: Issues due to inconsistencies in the TPD?

1. Elaborate?

Consistencies:
1. PDD & SDD (neither agree nor disagree)⇒ SDD & PDD are consistent

(Agree)
2. PDD & TPD (Agree)

a. Always?
3. SDD & TPD (Agree)
4. Are they indeed always consistent? Or should they be consistent?
5. What is the reasons when they are not?

d. Should differences or inconsistencies between the PDD and SDD be recorded?
i. Labeling between documents to keep them consistent?

1. Already done?
ii. PDD → SDD is done? → numbering steps of PDD?
iii. Consistency between PDD and TPD?

e. Is there a standard format for how to document alternative happy flows in PDD?,
AE, and BE in the PDD?

From document analyses: Related to traceability:
2. Are BE to test scenario 1:1 relation?

a. Essential to have?
3. Are AE to test scenario 1:1 relation?

a. Where are AE documented?
4. Are alternative flows to test scenarios 1:1 relation?

5. Is this also always the case?
a. Exceptions when they are not a test scenario or not a BE/AE/ AHF?

6. Scope creep / scope change? → how to deal with it? Where is it documented?
Adjust test scenarios?

7. Deal with Discrepancies with an acceptance environment?

8. Q27:Why do you think the usefulness of the SDD is not the same for every
project?

9. Q52: What functionality of Azure do you think can be beneficial for RPA projects?

10. Q58:What would you use UIPath studio for besides coding and testing?

__

3. Interviewee 3B

1. PDD
a. Experienced issues in the PDD due to Inconsistencies

i. Type of inconsistencies?
ii. Issues?

b. Effort worth it fill out PDD?
i. Increases quality? Of the project?
ii. NOT all elements are essential?
iii. Internal or external?

2. SDD
a. Experienced issues in the SDD due to Inconsistencies

i. Type of inconsistencies?
ii. Issues?

b. Effort worth it fill out SDD
i. Increases quality? Of the project?
ii. NOT all elements are essential?
iii. Internal or external?

3. TPD
a. How important is the TPD? → Do agree it has a positive impact → skipped in

case 2.
i. Was this an exception?

1. Why?
2. Where did you keep track of the testing phase and test scenarios?

b. Effort worth it fill out TPD
i. Increases quality? Of the project?
ii. NOT all elements are essential?
iii. Internal or external?

4. All docs:
a. How important is consistency between documents?

i. PDD is neither consistent nor inconsistent with SDD and TPD → why do
you think that?

1. Should they be?
ii. What happens when a new scenario is found in development? (scope

creep)
b. Which documentation is more internal/ which is important for the client?

i. Which aspects of the documents

5. Other:
a. Standard format how you Document HF HFA, and BRE in de PDD?

1. Certain wording used?
ii. Standard format for those in the SDD?
iii. HF 1:1 test scenario
iv. BE 1:1 test scenario
v. HFA 1:1 test scenario
vi. AE / SE (system exception) 1:1 test scenario?

b. Is there currently a method used to translate these to test scenarios?
i. Can they be easily referred back to?

1. Link between Test scenario to a BRE or HFA?

c. BRE in SDD & BE in PDD → reason for this difference?

d. How do you currently deal with discrepancies between acceptance and
production environment?

__

4. Interviewee 4B:

1. PDD
a. Experienced inconsistency with PDD

i. What type of inconsistencies?
ii. What issues?

b. PDD takes a lot of effort
i. Necessary to high quality project?
ii. Importance project team, client, support?

c. Not all elements necessary to be documented in PDD
i. How is this related?

2. SDD
a. Experienced inconsistency with SDD

i. What type of inconsistencies?
ii. What issues?

b. SDD takes a lot of effort
i. Necessary to high quality project?
ii. Importance project team, client, support?

c. Not all elements necessary to be documented in SDD
i. How is this related?

3. TPD
a. All elements are important for TPD → tpd was filled in the worst overal

i. Why TPD is important, and PDD and SDD unessential elements?
ii. Importance project team, client, support?
iii. WHy is this filled in the worst?

b. Effort worth it for the TPD for project quality?
i. Important for project team, client, support?

4. Doc interactions
a. PDD is not consistent with the SDD

i. What makes them inconsistent with each other?
ii. Is there some form of labeling for traceability between PDD and SDD?

b. PDD consistent with TPD
i. How come?
ii. Is there some labeling for traceability between PDD and TPD?
iii. Is there a clear link currently between this flows or exceptions and test

scenarios?
iv. How can you make this more clear?

5. Would labeling flows be beneficial?
a. HF 1:1 test scenario
b. BE 1:1 test scenario
c. HFA 1:1 test scenario
d. How deal with: AE / SE (system exception) 1:1 test scenario?

6. Standard format how HF, HFA, BE are documented?

7. How important is consistency between documents?
a. How important is alignment/ traceability between documents?

8. Test data
a. When is test data currently delivered in projects?
b. What are the biggest issues you encounter with test data?

9. Usefulness is not the same for every project of the SDD
a. Why only SDD not the same for every project compared to PDD and TPD?
b. When are documents more / less useful in your opinion?

10. Monday not enough for project planning
a. What functionality are you missing for project planning?
b. What would you use Azure DevOps for?
c. What use UiPath studio for?

11. BRE in SDD and BE in PDD?

__

5. Interviewee 5B

PDD
1. Hoe belangrijk is het invullen van PDD
2. Kost dit veel tijd en moeite?
3. Wordt het dus ook altijd goed ingevuld?

4. Very extensive → multiple decisions (HFA) & BE → multiple applications
a. Standard format for HFA? For BE

5. Should HFA (happy flow alternatives) be mentioned within the PDD?
a. Are they?
b. What format would you prefer?
c. Zijn ze labeled?

6. Betere link tussen:
a. BE 1:1 test scenario
b. HFA 1:1 test scenario
c. AE / SE (system exception) 1:1 test scenario?

i. Verschil AE en SE?
a.

7. Is there a difference between BE (PDD) and BRE(SDD)
i. Reason why this is the case?

SDD:
8. Hoe belangrijk is het invullen van PDD
9. Kost dit veel tijd en moeite?
10. Wordt het dus ook altijd goed ingevuld?

11. Zijn de BRE in SDD pas ontdekt door development en in de test data? → cannot be
found in PDD

a. Waar zijn de BE van de PDD gebleven?
12. 2 types of BRE mentioned in SDD? Why?
13. Use a AE, which seems similar to the BRE → why is it AE, and not BRE?

TPD:
14. Hoe belangrijk is het invullen van PDD
15. Kost dit veel tijd en moeite?
16. Wordt het dus ook altijd goed ingevuld?

17. TC12). Images in PDF → can I find this in SDD or PDD?
a. When was it added?

18. TC3). Why is Myler here its own test scenario while in PDD its mentioned as the same
email and I believe scenario?

a. Data also missing for myler?
19. The exceptions table in TPD → What exactly is this?

a. Is it found during development or UAT?
b. Wordt dit altijd bijgehouden?

20. Hoe zij je HFA noemen die alleen ontstaan als andere data er is maar niet een andere
scenario worden?

a. Waar hoort dit nog meer gedocumenteerd te worden?

Consistency:
21. Denk je dat consistency tussen PDD en SDD belangrijk is?
22. SDD en TPD?
23. PDD en TPD?

Test data:
24. Process data op dit moment goed gedocumenteerd?

a. Mis je hier iets?

Acceptance environment:
25. In dit project nog problemen hervonden door verschil in acceptatie en productie

environment?

__

18. Appendix C
18.1 C1: RPA VV-method PPD format

108

.

Consent Form focus group
March/April 2023

By completing this form, you give us permission to use focus group for academic purposes. Thank you
for participating!

Research Title: Aligning requirements and testing in RPA projects. Designing an
RPA verification and validation method.

Researcher: Mees Mouwen.
Objective: The focus group is aimed at validating the RPA-VV method and

guidelines through different criteria. All guidelines will be pre-
sented and questions are provided to start a discussion between
the participants.

Participation period 60 minutes
Risk of participation We foresee no risk of participation. The participant is free to

withdraw at any moment.
Tools used The focus group will be audio recorded.
Data protection: The data will only be used within the context of this research and

shall not be shared with any other parties that are not already
involved (Ciphix & University Utrecht). All personal data will be
anonymized in the thesis report and (potential) publication.

Personal Information

Full name
Team
Function

Agreement

I have read and understood the conditions for participating in this research. I understand that my par-
ticipation is voluntary and that I am free to withdraw at any time without giving any reason. I declare
the above to be true and agree to participate by signing this consent form.

Signature Date:

19. Appendix D
19.1 D1: Consent form focus group

A. Vragen phases RPA methode:
Simplicity

1. Is de fase duidelijk te begrijpen?
Usefulness

1. Zijn deze activiteiten en deliverables belangrijk om uit te voeren tijdens de RPA
development life cycle?

a. Zo niet, waarom zou je het niet uitvoeren?
Completeness

2. Zijn er essentiële activiteiten of deliverables die ontbreken?
a. Zo ja, wat mist er?

B. Vragen voor alle Guidelines:
Simplicity

1. Is de fase duidelijk te begrijpen?
Usefulness

3. Zal het toepassen van de guideline de qualiteit van RPA development life cycle
verbeteren?

a. Zo niet, waarom is hij niet nuttig?
Ease of use

4. Is de guideline makkelijk om uit te voeren? Of zie je obstakels tijdens het uitvoeren
hiervan?

C. Vragen voor alle issues:
Completeness

5. Mist er een guideline die kan helpen met de issue?
a. Zo ja, hoe zou je dit omschrijven?

__

D. Afsluitende vraag:

Functionality
6. Geeft de methode steun om door de RPA development life cycle te gaan? Zou je the

methode in de RPA implementatie standaarden verwerken?

19.2 D2: Focus group questions

	Abstract
	Acknowledgement
	Abbreviations
	 LightBlue INTRODUCTION & RESEARCH DESIGN
	Introduction
	Problem statement
	Research objective

	Research design
	Research phases
	Research methods
	Evaluation
	Threats to validity

	LightBlue LITERATURE STUDY
	Literature research protocol
	Approach
	Conducting MLR

	Multi-vocal literature review
	Development life cycle
	Requirement management
	RPA documentation
	Testing
	Discussion on testing methods and traceability

	LightBlue METHOD DESIGN
	Problem-centred interviews
	Importance of analysis
	Responsibilities of the customer
	Struggles with testing
	Insights from interviews

	Solution objectives
	First version of RPA method

	Multiple-case study approach
	Overview

	Multiple-case study analysis
	Within-case analysis
	Across-case analysis

	Improved RPA-VV method
	Guidelines
	Client input for the project
	Testing standardisation
	Discrepancies within production environment
	Documentation traceability
	Identifying documentation purpose
	Tooling potential for testing

	LightBlue METHOD VALIDATION & EVALUATION
	Validation
	Approach
	Results

	Evaluation
	Approach
	Project 1 results
	Project 2 results
	Discussion evaluation

	 LightBlue DISCUSSION & CONCLUSION
	Discussion
	Theoretical contributions
	Practical implications
	Limitations
	Future work

	Conclusion
	References

	APPENDICES
	Appendix A
	A1: Consent form problem-centered interviews
	A2: Problem-centered interview questions

	Appendix B
	B1: Multiple-case study database
	B2: Case study protocol
	B3: Survey questions
	B4: Survey questions statistics
	B5: Consent form expert interviews
	B6: Expert interviews questions RPA-VV method
	B7: Expert interviews questions documentation and tools

	Appendix C
	C1: RPA VV-method PPD format

	Appendix D
	D1: Consent form focus group
	D2: Focus group questions

