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Plain language summary 

Het ontdekken van welke genetische afwijkingen invloed hebben op fysieke eigenschappen 

(bijvoorbeeld oogkleur, haarkleur en lengte) en ziektes (bijvoorbeeld kanker, diabetes en 

kleurenblindheid) is een van de belangrijkste doelen van de genetica. Een 

onderzoeksmethode die genetische afwijkingen aan fysieke eigenschappen kan linken is een 

genome-wide association study, of GWAS in het kort. Tijdens een GWAS vergelijken 

wetenschappers de genetische eigenschappen van mensen die een bepaalde fysieke 

eigenschap of ziekte hebben met de genetische eigenschappen van mensen die dit niet 

hebben. Door de genetische eigenschappen van duizenden mensen met elkaar te 

vergelijken, kunnen genetische eigenschappen ontdekt worden die vaker voorkomen bij 

mensen die een bepaalde fysieke eigenschap of ziekte hebben. Dit hoeft overigens nog niet 

te betekenen dat mensen die een bepaalde genetische eigenschap hebben ook echt die 

fysieke eigenschap of ziekte hebben of in de toekomst krijgen, vaak geeft dit alleen aan dat 

er een verhoogde kans bestaat. Andere factoren zoals leefstijl, de omgeving waarin je je 

bevindt of andere genetische eigenschappen kunnen de kans verhogen of verlagen voor het 

ontwikkelen van fysieke eigenschappen of ziektes. 

Net zoals bij mensen kunnen we GWAS ook voor bacteriën gebruiken. Het principe blijft 

hetzelfde; wetenschappers vergelijken de genetische eigenschappen van twee groepen 

bacteriën, één groep die een bepaalde eigenschap heeft en één groep die deze eigenschap 

niet heeft. Het doel is dan, net zoals bij menselijke GWAS, om genetische eigenschappen te 

vinden die wel voorkomen bij de groep met het onderzochte eigenschap maar niet bij de 

groep die dit eigenschap niet heeft. De eigenschappen die voor bacteriële GWAS interessant 

zijn bestaan bijvoorbeeld uit genen die resistentie tegen antibiotica veroorzaken, genen die 

zorgen dat bacteriën stoffen aanmaken waardoor mensen ziek worden en genen die zorgen 

dat bacteriën kunnen overleven in organismen. Als we weten hoe deze eigenschappen 

ontstaan, kunnen wetenschappers medicijnen ontwikkelen die specifiek gericht zijn op hoe 

deze genetische eigenschappen werken. 

De technieken en computerprogramma’s die gebruikt worden bij menselijke GWAS kunnen 

niet gebruikt worden voor bacteriële GWAS. Dit komt door de genetische verschillen tussen 

mensen en bacteriën. Daarom zijn er nieuwe technieken en computerprogramma’s 

ontwikkeld waarmee wetenschappers wel GWAS met bacteriën kunnen uitvoeren. Deze 

computerprogramma’s werken bijvoorbeeld met wiskundige modellen, bacteriële 

stambomen en machine learning. 

Naast bacteriële GWAS zijn er nog andere methoden die gebruikt kunnen worden om de link 

tussen bepaalde genetische eigenschappen en bijvoorbeeld antibiotica resistentie aan te 

tonen. Deze methoden die we hier behandelen heten Tn-seq en genome-scale metabolic 

models (GSMMs). Tn-seq werkt door veel kleine stukjes DNA in het DNA van bacteriën te 

knippen en plakken, waardoor deze kleine stukjes DNA tussen genen komen die nodig zijn 

voor het groeien op bepaalde voedingsbodems. Door de groei van de aangepaste bacteriën 

te vergelijken met niet-aangepaste bacteriën kunnen wetenschappers ontdekken welke 

genen ervoor zorgen dat bacteriën kunnen groeien op de voedingsbodem.  

 



GSMMs werken door wiskundige modellen van bacteriële stofwisseling te maken, waardoor 

gaten tussen voedingsstoffen kunnen worden opgevuld door te voorspellen welke genen 

ervoor kunnen zorgen dat een bepaalde voedingsstof naar een andere kan worden omgezet. 

Ook kan je in deze modellen bepaalde genen uitzetten, waardoor je met de computer de 

effecten kan voorspellen op de bacterie wanneer deze dit gen niet zou hebben. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

Genome-wide association studies (GWAS) have proven to be a successful method for 

identifying associations between human genotypes and phenotypes. Due to advances in 

sequencing technologies and the subsequent growth of bacterial datasets, bacterial GWAS is 

increasingly becoming a viable research method for identifying bacterial genotype-

phenotype associations. However, bacterial GWAS cannot be performed using established 

methods used in human GWAS due to genomic differences. Specialized software to perform 

bacterial GWAS has been developed, utilizing regression models, phylogenetic trees, and 

machine learning to overcome the unique genomic challenges. Here, we will discuss these 

challenges of bacterial GWAS, the software methods that have been developed and our 

recommendations on their usage, and discuss alternative methods for identifying genotype-

phenotype associations in bacteria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

One of the major goals of genetics is linking phenotypic traits, such as eye color, height, and 

genetic diseases to the genes that affect them. Genome-wide association studies (GWAS) 

enable researchers to determine the underlying genetic variations of the phenotype of 

interest by analyzing a significant number of genetic variants (usually 103 to 106 for human 

GWAS) (Bush & Moore, 2012). The genetic variants examined for human GWAS are usually 

single nucleotide polymorphisms (SNPs), captured with genotyping microarrays designed to 

assay SNPs over the entire human genome, or identified using whole genome sequencing 

(WGS) data (Hasin et al., 2017).  

In 2005, Klein et al. conducted the first successful GWAS, which established a link between 

age-related macular degeneration (AMD) and the CFH gene (Klein et al., 2005). Their study 

discovered that individuals who were homozygous for the risk allele had a 7.4-fold increased 

risk of developing AMD. Since then, GWAS successfully identified hundreds of other genetic 

variants for human diseases and traits, such as 45 loci associated with lung cancer (Bossé & 

Amos, 2018) and a variety of loci associated with skin and hair pigmentation (Pavan & Sturm, 

2019).  

Due to recent advances in DNA sequencing technologies, the cost-effectiveness of WGS of 

bacterial genomes has significantly improved, which resulted in a steep growth of available 

data on bacterial genomes (Kumar et al., 2019). Powered by this growth of data, bacterial 

GWAS offers exciting new opportunities for discovering the genetic causes of various 

relevant bacterial phenotypes, such as antimicrobial resistance, virulence, and host 

specificity. The discoveries of these genetic causes might lead to the identification of targets 

for vaccine and drug development. Furthermore, bacterial GWAS could also assist with 

tracking the spread of pathogenic bacteria within populations, for example during 

nosocomial outbreaks (Power et al., 2017). 

Bacterial GWAS has not yet been as successful as human GWAS, which can be contributed to 

a number of factors (San et al., 2020). First, bacterial genomes are in strong linkage 

disequilibrium due to clonal reproduction as opposed to sexual reproduction where 

recombination occurs in every generation. Due to this strong linkage disequilibrium, true 

causal genetic variants are harder to detect (Chen & Shapiro, 2015; Read & Massey, 2014). 

Second, mutations occurring in ancestral branches can appear as causal in GWAS along with 

the true causal variant (Lees, 2017). Finally, designing genotyping microarrays for bacteria is 

challenging because of the significant genomic variation, even among strains of the same 

species (McInerney et al., 2017). However, the advent of next generation sequencing (NGS) 

and subsequent decrease of costs of WGS have overcome this obstacle, but prior to this, 

bacterial GWAS had an incredibly limited scope. (Read & Massey, 2014). 

In this review, we will explore the differences between human GWAS and bacterial GWAS 

and discuss current methods and development of accompanying software for bacterial 

GWAS. Additionally, we will discuss the statistical principles of GWAS and how these were 

altered to consider the unique properties of bacterial GWAS.  

 



Unique challenges of bacterial GWAS 

The basic concept of both human GWAS and bacterial GWAS is the same: linking phenotypic 

traits, discrete (e.g. antibiotic resistance/sensitivity, eye color) or continuous (e.g. height), to 

genotypic variations. Human GWAS mainly use identification of (a group of) SNPs related to 

a phenotype of interest (Horwitz et al., 2019), but in bacterial GWAS, using just SNPs will not 

always account for all genetic variation. The genes in a set of bacterial genomes can be 

divided into two groups: the core genome, consisting of genes that are shared between all 

genomes, and the accessory genome, consisting of genes that are only present in a subset of 

the genomes (Lees et al., 2020). Genes that belong to the core genome are responsible for 

basic functions, such as cell growth or replication. Genes belonging to the accessory genome 

are responsible for specialization of niche environments, virulence and antibiotic resistance, 

among others (Kim et al., 2020). Thus, the presence or absence of certain genes in the 

accessory genome can have a major impact on the phenotype of bacteria which cannot be 

detected by SNPs alone. 

In addition to the bacterial core- and accessory genome, another factor that has to be taken 

into consideration in bacterial GWAS methods is linkage disequilibrium. In eukaryotes, 

recombination of DNA occurs due to crossing-over events of a pair of homologous 

chromosomes during meiosis (Hillers et al., 2017). Since bacterial reproduction occurs 

clonally, no crossing-over events take place, resulting in complete linkage disequilibrium 

across the entire bacterial chromosome, if considering only bacterial reproduction.  

Although crossing-over recombination events do not occur in bacteria, other types of 

recombination events unrelated to reproduction can take place in bacteria. These 

recombination events are transduction (transportation of DNA fragments from one 

bacterium to another by a bacteriophage), transformation (the process of incorporating 

foreign DNA from the environment in the bacterial genome), and conjugation (direct DNA 

transfer between bacterial cells) (Louha et al., 2021). Like eukaryotic recombination, 

bacterial recombination breaks the linkage but leaves behind a vastly different linkage 

pattern (Chen & Shapiro, 2015). In eukaryotes, only the region around a point of reference is 

in strong linkage disequilibrium, while in bacteria the entire chromosome is in linkage 

disequilibrium with ‘patches’ scattered throughout the chromosome from aforementioned 

bacterial recombination events (Fig. 1) (Chen & Shapiro, 2015). The distinction between 

eukaryotic and prokaryotic linkage is important for GWAS since genomic variants in regions 

that are in linkage disequilibrium with the causal genomic variant of a trait will also be 

detected as statistically significant for the trait. For human GWAS, these regions are often 

limited to a small region around the true causal genomic variant, but for bacterial GWAS 

these regions could be on the opposite side of the bacterial chromosome. Consequently, 

these distant regions obscure the location of the true causal genomic variant. 



 

Figure 1. An example of an eukaryotic chromosome (A) and a bacterial chromosome (B). The arrow denotes the point of 
reference, for example a SNP. On the eukaryotic chromosome, we see that only a small DNA sequence around the point of 
reference, colored yellow, is in linkage disequilibrium relative to the point of reference. On the bacterial chromosome, we see 
that the entire chromosome is in linkage disequilibrium relative to the point of reference, with exceptions of the DNA 
sequences colored orange and red. These DNA sequencing could be genes acquired from for example transduction events. 

The third factor, population structure, is closely related to the effects of linkage 

disequilibrium and clonal reproduction. A de novo mutation occurring on an ancestral branch 

of a subpopulation, which is the causal variant of a certain phenotype, will occur in the 

majority of subsequent strains due to clonal reproduction (Collins & Didelot, 2018). The true 

causal mutation will be positively associated with the phenotype, however, all other 

mutations that occurred on the ancestral branch will be positively associated with the 

phenotype as well (Lees, 2017) (Fig. 2). Due to strong linkage disequilibrium, these non-

causal variants can be scattered over the entire genome. 

 

Figure 2. [Image source: (Vishnoi et al., 2010)] Phylogenetic tree of E. coli showing two mutations on the ancestral branch of 
four strains. Consider the yellow mutation causative of a certain phenotype and the blue mutation a silent mutation. Since 
both mutations do not occur in the remaining E. coli strains, a naïve GWAS will consider both mutations to be causative of 
the given phenotype. 



Bacterial GWAS software and methodology 

To overcome the challenges presented in the previous segment, various methods and 

software incorporating these methods were developed. This software can be loosely defined 

into three categories: phylogenetic, non-phylogenetic, and machine learning-based software 

(San et al., 2020). 

Phylogenetic methods 

As the name suggests, phylogenetic methods depend on a phylogenetic tree (either 

provided by the user or constructed by the software), genetic data (e.g. a file containing 

gene presence/absence for each bacterial sample) and phenotypic data on each bacterial 

sample. 

One example of a software package that integrates the phylogenetic method is Scoary 

(Brynildsrud et al., 2016). Scoary uses the gene presence-absence file from Roary (Page et 

al., 2015) to find associations between the observed phenotype and the pan-genome of the 

dataset. The software corrects the effects of population structure by implementing a 

pairwise comparison algorithm. The pairwise algorithm searches the phylogenetic tree to 

find the maximum number of genotypic and phenotypic contrasting pairs (e.g. positive for a 

certain gene and trait vs. negative for a certain gene and trait) that do not intersect with a 

non-contrasting individual. Effectively, finding the maximum number of contrasting pairs 

determines the minimum number of independent emergences of a certain genotype-

phenotype combination. This method solves the problem of finding a strong correlation 

between a certain gene and trait due to population structure, since the emphasis is no 

longer on the number of times a trait correlates with a gene but instead the number of times 

a trait and a gene have emerged independently from each other (Fig. 3). Scoary validates the 

results using a permutation test, by switching the phenotype labels and calculating the 

maximum number of contrasting pairs for each permutation. According to the author’s own 

benchmarks, Scoary was able to correctly identify an association between the cfr gene and 

resistance to the antibiotic linezolid, as well as an association to the two plasmid genes pinE 

and cueR. Compared to PLINK (Purcell et al., 2007), which was developed for human GWAS, 

Scoary performed better in 7/12 power test comparisons using simulated data, equal in 

three, and slightly worse in two. Scoary has both a command line implementation and a 

graphical user interface, making it a viable choice for users that are not too familiar with the 

command line. However, Scoary is not ideal when analyzing continuous traits since these 

require binning into distinct categories. 



 

Figure 3. Example of pairwise comparisons. Both phylogenetic trees have the same number of 1-1 and 0-0 gene-trait 
associations, so a naïve method (e.g. a Fisher’s exact test) would assume that both gene-trait associations would be highly 
significant (p-value 2.8E-6). However, phylogenetic tree A suggests that lineage-specific factors could play a role in the 
association between the gene and the trait, which violates the randomness requirement of the Fisher’s exact test. For 
phylogenetic tree A the most parsimonious scenario is a single gene and trait introduction/loss in the root branch. This is 
illustrated by the pairwise comparison algorithm, which finds one contrasting gene-trait pair. Phylogenetic tree B has ten 
contrasting gene-trait pairs, which indicates a minimum of ten transitions between 1-1 and 0-0 gene-trait associations in the 
evolutionary history. This makes the association between this particular gene-trait association more convincing compared to 
phylogenetic tree A (Brynildsrud et al., 2016). 

Another example of a software package that uses phylogeny is TreeWAS (Collins & Didelot, 

2018). TreeWAS is able to construct the phylogenetic tree, however the authors recommend 

integrating ClonalFrameML (Didelot & Wilson, 2015) into TreeWAS and constructing the 

phylogenetic tree with ClonalFrameML. ClonalFrameML can produce more accurate 

phylogenetic trees, especially when analyzing species with a high recombination rate. Using 

the phylogenetic tree and the Fitch parsimony algorithm, the distribution of homoplasy in 

the tree is calculated. Using the input data, a simulated dataset is created to acquire a null 

distribution, after which the associations between genotype and phenotype are compared 

to those in the simulated dataset to identify significant hits.  

 

 

 

 

 



The authors benchmarked their software on data from Neisseria meningitidis to identify 

penicillin resistance and invasive disease-associated variants. Penicillin resistance was 

measured both discretely (resistant vs. susceptible, categorized according to the minimum 

inhibitory concentration (MIC)) and continuously (by defining the ranks of the MIC values). 

For the discrete analysis, no significant genes were identified in the accessory genome, but 

162 significant SNPs were identified in the core genome. These SNPs were all located in a 

known penicillin resistance gene (penA) (Matsuda et al., 2021). For the continuous analysis, 

30 significant SNPs were identified. The majority of these SNPs were located in the penA 

gene, but the SNPs were also identified in three additional genes. These genes were not 

essential for antibiotic resistance, however, in the presence of antibiotics it has been shown 

that genes not associated with antibiotic resistance can still give a slight selective advantage 

(Read & Massey, 2014). For the analysis of invasive disease-associated variants, TreeWAS 

identified 12 genes and 7 SNPs, which the authors confirmed to be associated with invasive 

disease in N. meningitidis. The results conclude that TreeWAS is a powerful software 

package that is able to identify loci and genes associated with complex phenotypes, however 

a limit of the software is the implementation of TreeWAS in R. This requires users to have a 

basic understanding of R to successfully run the software.  

Non-phylogenetic methods 

Software packages that do not include phylogenetic trees often requires sequencing data 

(either raw reads or assemblies) to be provided to the software, use some sort of 

dimensionality reduction to control population structure and use a regression model to 

evaluate associations between phenotype and genotype.  

Pyseer (Lees et al., 2018), an upgrade and reimplementation of SEER (Lees et al., 2016) in 

Python, calculates a pairwise distance matrix from the supplied genome assemblies using 

Mash (Ondov et al., 2016) and performs multi-dimensional scaling to control population 

structure. The program extracts k-mers of variable length from the genome assemblies and 

analyses their association with the phenotype of interest by fitting each k-mer to a 

generalized linear model. Alternatively, a linear mixed model can be used that is able to 

control population structure, but this method is computationally more expensive. Interactive 

visualizations of the results can be generated using Phandango (Hadfield et al., 2018). Saber 

& Shapiro benchmarked the linear mixed model of Pyseer using simulated genomes and 

phenotypes (Saber & Shapiro, 2020). In their benchmark, Pyseer was outclassed by other 

software on controlling false positives, but performed well when tasked with identifying 

genetic variants with low effect sizes. The linear mixed model of Pyseer performed about 

equal to other methods when tasked to detect genetic variants in simulated genomes with a 

low amount of linkage disequilibrium, but did not perform well when given samples with 

moderate or high linkage disequilibrium. However, the performance was still comparable to 

other methods since all software had issues with moderate and high linkage disequilibrium 

samples. Pyseer is easy to install via conda, but features no graphical user interface, thus the 

user has to have a basic understanding of the command line to execute the necessary 

commands. 



HAWK (Rahman et al., 2018) uses sequencing reads to count k-mers of length 31 (longest k-

mer that can be efficiently analyzed on 64-bit processors) using Jellyfish (Marçais & 

Kingsford, 2011). Population structure is controlled using a binary matrix and principal 

component analysis. The software counts the frequency each k-mer appears in the dataset, 

which are assumed to be Poisson distributed, to calculate the significance of each k-mer. 

Further correction of population structure and other confounding factors is done using a 

logistic regression method for discrete phenotypes and linear regression for continuous 

phenotypes. The k-mers that were found to be associated with the phenotype of interest are 

assembled using ABySS (Simpson et al., 2009) to acquire a larger sequence for the associated 

genomic region instead of multiple individual k-mers. These sequences can subsequently be 

analyzed by mapping them to a high-quality reference genome.  

The authors benchmarked their software on data from Escherichia coli, with the goal of 

detecting genetics variants associated with ampicillin resistance. They found 5047 k-mers, 

which resulted in 16 sequences after assembly, to be significantly associated with ampicillin 

resistance. The obtained sequences mapped to several E. coli strains known for ampicillin 

resistance, and the strongest associations of the k-mers were found in the blaTEM-1 gene, 

which is also known for conferring ampicillin resistance. Both installing and executing HAWK 

requires basic understanding of the command line, making it not ideal for novice users. 

HAWK implemented multi-threading support to speed up the analysis. 

Machine learning methods 

Software utilizing machine learning algorithms often requires, like non-phylogenetic 

methods, the user to supply sequencing reads or assembled genomes of the dataset to be 

analyzed. Most machine learning algorithms convert the supplied genomic and phenotype 

data to a vector, which is used for training the algorithm. 

Kover (Drouin et al., 2016, 2019) is based on the set covering machine algorithm and 

adapted for genomic data. While most other non-machine learning methods separate 

feature selection and modeling, Kover integrates both steps in one, improving feature 

selection. The set covering machine algorithm also allows for multivariate testing, i.e. 

combinations of features that, together, can predict the phenotype of interest. The 

algorithm is trained using a set of genomes, which produces a set of rules that detect the 

presence or absence of k-mers in a genome. The rules are subsequently aggregated to form 

a prediction. The authors benchmarked Kover on datasets from Clostridium difficile, 

Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Streptococcus pneumoniae. 

Isoniazid and rifampicin resistance was identified in M. tuberculosis, erythromycin resistance 

in S. pneumoniae and azithromycin, clindamycin, and clarithromycin resistance in C. difficile. 

Analysis of the results revealed the genomic locations to be associated to the respective 

antibiotic. However, a third party benchmark by Verschuuren et al., also focused on 

identifying antibiotic phenotypes, noted that the performance of Kover was not accurate 

enough to pass the criteria of the U.S. Food and Drug Administration (FDA) (Verschuuren et 

al., 2022). Installation of Kover requires the user to install a number of dependencies 

themselves. 



PhenotypeSeeker (Aun et al., 2018) consists of two modules, ‘PhenotypeSeeker modeling’, 

which takes the genome assemblies or raw sequencing data to build the prediction model, 

and ‘PhenotypeSeeker prediction’, which uses the generated prediction model to conduct 

phenotype predictions on input data. The modeling module counts all possible k-mers from 

the input data using GenomeTester4 (Kaplinski et al., 2015). Welch’s two-sample t-test 

(continuous phenotypes) or a chi-square test (discrete phenotypes) are used for selecting k-

mers that are used for the model. Population structure correction can be performed by 

supplying the software with a pairwise distance matrix of the input data constructed by 

Mash (Ondov et al., 2016). The prediction module subsequently searches the input data for 

k-mers that are present in the model from ‘PhenotypeSeeker modeling.’ Predictions are 

made using the presence or absence of certain k-mers in the input data.  

The software was benchmarked by the authors on a Pseudomonas aeruginosa dataset, with 

corresponding phenotype data on ciprofloxacin resistance measured by the MIC. A discrete 

model and a continuous model were constructed using the MIC data. Both models identified 

k-mers that were associated with mutations in quinolone resistance regions of the parC and 

gyrA genes. These genes encode target proteins for ciprofloxacin, and mutations in these 

regions are known to decrease sensitivity to quinolone antibiotics, such as ciprofloxacin (Jalal 

& Wretlind, 1998). The authors also compared their software with SEER (Lees et al., 2016) 

and Kover (Drouin et al., 2016). SEER was only able to detect the mutations in gyrA and parC 

in discrete phenotype mode, as the k-mers in continuous phenotype mode did not pass the 

p-value filtering step of SEER. Kover was able to detect the gyrA mutation, but not the parC 

mutation. PhenotypeSeeker was significantly faster compared to SEER and Kover, only taking 

3.5 hours for the entire analysis vs 14 hours for Kover and 15 hours for SEER. Installation of 

PhenotypeSeeker requires basic understanding of the command line, but an online variant is 

available including 15 pre-trained models for clinically relevant bacteria. 

 

 

 

 

 

 

 

 

 

 

 

 



Statistics and additional factors to consider 

In addition to factors like population structure and linkage disequilibrium, multiple testing is 

an intrinsic source of false positives in both human GWAS and bacterial GWAS (San et al., 

2020) (Dudbridge & Gusnanto, 2008). A p-value of P≤0.05 is usually considered to be 

statistically significant, however, with the thousands of genetic variants analyzed in a typical 

GWAS this p-value will lead to dozens of false positives purely by chance. This is why, for 

humans, a genome-wide significance threshold of P<5E-8 is typically used, based on the 

Bonferroni significance threshold for the number of SNPs that were normally analyzed 

during (early) human GWAS (Dudbridge & Gusnanto, 2008). The Bonferroni correction for 

multiple testing is utilized in some software packages previously mentioned (SEER and 

Scoary), but is often too stringent since the method assumes that genetic variants are 

independent, which is not the case due to linkage disequilibrium (Power et al., 2017). An 

alternative, less stringent method for multiple testing correction is the Benjamin Hochberg 

false discovery rate, implemented by Scoary and TreeWAS, but this method has also been 

found to be too stringent in some cases were tested genetic variants are not independent 

(San et al., 2020). The permutation test is a good alternative that does not suffer from 

stringency issues, but this test cannot be used in combination with linear mixed model-based 

methods and is computationally expensive (Joo et al., 2016).  

Considering the aforementioned factors, replication of a found association using an 

independent cohort is considered to be the gold standard (Chanock et al., 2007). Replication 

of results does not only aid in avoiding false positives, but it also allows accurate estimation 

of the effect size of the found variation due to increased statistical power (Power et al., 

2017). Another more time consuming and expensive way to eliminate false positives unique 

to bacterial GWAS is testing identified genetic variants in vitro. By creating carriers of the 

identified genetic variant, researchers are able to observe the exact function of the variant 

to get a more detailed understanding than what can be done in silico (Power et al., 2017). 

However, possible unknown effects from the interaction of the identified genetic variant 

with other genetic variants (epistasis) limit this method somewhat (Power et al., 2017). 

Calculating statistical power to ensure that the sample size is large enough to detect 

statistically significant genetic variants is an important aspect for any GWAS. For human 

GWAS, common statistical methods have been developed to calculate power, but this is not 

possible for bacterial GWAS due to major differences in population structure, recombination 

rates and homoplasy between bacterial species (Coll et al., 2022). Other variables more 

related to the genetic variants itself instead of the bacterial population are their minor allele 

frequencies and effect sizes (Coll et al., 2022). However, low effect size is usually not a 

significant problem when performing bacterial GWAS, since most genetic variants are under 

strong natural selection compared to human genetic variants, thus increasing their effect 

size and decreasing the need for large sample sizes (San et al., 2020). While developing a 

“one-size-fits-all” statistical method to calculate power for bacterial GWAS is not possible, 

Coll et al. developed two methods that utilize the samples used in a GWAS, which are both 

implemented in their software packages PowerBacGWAS (Coll et al., 2022). The first method 

uses a known genotype-phenotype relationship and subsampling of the original dataset. 

Apart from the reduced sample size, allele frequency and effect sizes are also reduced. 



Because the genotype-phenotype relationship is known, a calculation can be made at which 

subsample size the known association can still be found. In the second method, phenotypes 

are simulated within a range of parameters (minor allele frequency, effect size and sample 

size) and a GWAS is performed on the simulated data. Based on the simulated phenotypes 

that are found, the minimum sample size can be calculated to find all simulated genotype-

phenotype relationships. Because the bacterial genomes are not simulated or modified in 

both methods, PowerBacGWAS can be effectively used to calculate minimum sample size for 

unique datasets (Coll et al., 2022). 

The results of GWAS are typically presented in Manhattan plots. These plots show each 

analyzed genetic variant, ordered according to the genomic position of the variants, on the  

x-axis and the associated -log10 transformed p-values of each variant on the y-axis 

(Uffelmann et al., 2021). In most cases, a horizontal line marks the genome-wide significance 

threshold above which identified genetic variants are statistically significant. Usually, the 

statistically significant variants are annotated with the gene or intergenic region they are 

located on, as shown in Fig. 4, were the CRyPTIC consortium analyzed the resistance of 

Mycobacterium tuberculosis to 13 antibiotics using 10,228 genomes (The CRyPTIC 

Consortium, 2022). 



 

Figure 4. Manhattan plots of oligopeptide-containing regions that are associated with the minimum inhibitory concentration 
(MIC) of M. tuberculosis across 13 antibiotics. Oligopeptides that increase the MIC are colored orange and oligopeptides 
that decrease the MIC are colored blue, with increased color intensity for higher effect sizes. The Bonferroni-corrected 
significance threshold is indicated with black dashed lines, and the most significant genes are annotated in the plots (full 
gene names can be found in Table 1 in the original article) (The CRyPTIC Consortium, 2022) 



Alternative methods for bacterial GWAS 

While (bacterial) GWAS are a powerful tool to find associations between genotype and 

phenotype, they are not without flaws. Fortunately, other methods exist to find associations 

between genotype and phenotype in cases where a GWAS is insufficient or impractical. In 

this section, transposon insertion sequencing (Tn-seq) and genome-scale metabolic models 

(GSMMs) will be briefly discussed. 

Tn-seq 

The basic premise of Tn-seq is random genome-wide disruptions of loci by inserting 

transposons in a bacterial population and subsequently detecting mutants with transposons 

at precise insertion sites by deep sequencing (Mahmutovic et al., 2020). There are a number 

of different methods available, such as HITS (Gawronski et al., 2009), TraDIS (Langridge et al., 

2009), IN-seq (Goodman et al., 2009), and Tn-seq (van Opijnen et al., 2009), but these are 

collectively known as Tn-seq (Burby et al., 2016). The main distinction between these 

methods is the protocol to amplify the transposon-genome junction for identification of 

transposon sites (Mahmutovic et al., 2020). As such, the basic steps taken in a Tn-seq 

experiment are comparable: random insertion of transposons, growth of mutant cells and 

wild-type cells in a selective environment, preparing the transposon-genome junction, 

sequencing, and data analysis (Mahmutovic et al., 2020). 

There are two common data analysis methods for Tn-seq: calculating mutant fitness and 

calculating the ratio of mutant abundance for each locus. To calculate the mutant fitness, 

exponential growth data of the mutant strain and wild-type strain are collected and the 

relative population expansion of the mutant strain relative to the wild-type strain is 

calculated (Burby et al., 2016). Thus, a mutant strain and wild-type strain that grow at the 

same rate would result in the mutant strain having a fitness level of 1, and for a mutant 

strain that has an increased rate of growth compared to the wild-type strain the fitness level 

would be >1. The population expansion is estimated by determining the number of viable 

cells present before and after the experiment, after which the fitness value is calculated for 

every insertion mutant (van Opijnen et al., 2009). Since most loci will have multiple different 

insertion mutants spread over the population (i.e. transposons inserted in different regions 

of a locus), fitness values are averaged for each insertion mutant within a certain locus to 

estimate the fitness of a mutant that lacks gene(s) on this locus. (Burby et al., 2016).  

Calculating mutant abundance for each gene is done by mapping the sequence reads of the 

Tn-seq experiment to the genome. By mapped the sequence reads to the genome, 

transposon insertion sites can be identified and tallied based on the locus they were located 

on (Mahmutovic et al., 2020). If a transposon insertion occurred on a site essential for 

survival in the tested environment, none or a limited number of sequencing reads will map 

to that site since the mutant population would have had a significant growth defect 

compared to the wild-type population. Consequently, when the transposon insertion 

resulted in a competitive advantage the number of mapped reads to the genome for a 

specific site would be higher compared to the wild-type strain (Mahmutovic et al., 2020). 

 



Genome-scale metabolic models 

Genome-scale metabolic models (GSMMs) are mathematic models that describe metabolic 

reactions in an organism using gene-protein reaction associations. These gene-protein 

reactions rely on accurate genome annotation data and experimentally obtained 

information to predict genes to fill in the gaps in metabolic pathways that are partially 

known or even predict entire metabolic pathways (Gu et al., 2019; Kotera & Goto, 2016). 

Construction of GSMMs includes four steps: 1) construction of the draft model, 2) 

refinement of the model, 3) model mathematization, and 4) verification of the model (Ye et 

al., 2022). Software to automatically construct GSMMs include RAVEN Toolbox (Wang et al., 

2018) and Merlin (Dias et al., 2015), among others.  

First-generation GSMMs constrained the simulation of the predicted metabolic pathway 

using the substrate uptake rate, but this had some drawbacks. For example, when the 

effects of increasing the rate of glucose uptake on cell growth was simulated, cell growth 

kept increasing, above what has been shown experimentally (Ye et al., 2022). Next-

generation GSMMs integrated additional data in the models, such as transcriptomics, 

proteomics, metabolomics, and thermodynamics, to improve prediction accuracy (Ye et al., 

2022). This integration of data allowed usage of additional parameters to simulate metabolic 

pathways, such as maximal growth rate, extracellular secretion rate and flux distribution (Ye 

et al., 2022). Using next-generation GSMM methods, Ye et al. improved the first-generation 

based iJO1366 GSMM for Escherichia coli and compared both models to experimental 

phenotype results from 24 cultures. They found that the Pearson correlation coefficient of 

the new model, iML1515, was significantly higher, increasing from 0.20 (p-value 0.49) to 

0.50 (p-value 0.07) (Ye et al., 2020). Consequently, the phenotype prediction accuracy 

increased from 89.8% for the iJO1366 model to 93.4% for the iML1515 model (Ye et al., 

2020). 

Although phenotype prediction using GSMMs can be useful for industrial applications, such 

as the calculation of maximum growth rate and optimal substrate conditions for product 

production, it does not provide direct insight on genotype-phenotype relationships. For this 

task, researchers have developed single-gene deletion algorithms for GSMMs to determine 

the essentiality of specific genes or identify previously unknown enzyme functions under 

certain growth conditions (Ye et al., 2022). For example, a study by Guzmán et al. 

investigated a set of genes that were experimentally proven to be nonessential, but the E. 

coli GSMM iJO1366 predicted this set of genes to be essential (Guzmán et al., 2015). Guzmán 

et al. hypothesized that an unknown reaction may explain why nonessential genes became 

essential in the GSMM. Based on sequence homology analysis identifying high-confidence 

candidate isozymes, the aspC, argD, and gltA genes were chosen for further investigation 

from the set of ‘false negative’ genes. In an E. coli model, knocking out the previously 

mentioned genes revealed that the loss of aspartate aminotransferase, encoded by aspC, 

could be compensated by tyrosine aminotransferase, encoded by tyrB (Guzmán et al., 2015). 

Using the same knockout approach, potential isozymes that could function as alternative 

reaction enzymes to those encoded by argD and gltA were also identified.  

 



Discussion 

In the discussion, we will provide our suggested guidelines for the bacterial GWAS methods 

discussed earlier. Additionally, we will discuss the advantages and disadvantages of Tn-seq 

and genome-wide metabolic models (GSMMs) compared to bacterial GWAS. 

First, it is important to consider the type of genetic variation that drives the phenotype of 

interest. If this is not known a priori, our recommendation is to use software utilizing k-mers 

(Pyseer, HAWK, Kover, and PhenotypeSeeker are examples discussed in this paper) since 

these methods are able to identify all genetic variants (San et al., 2020). However, using k-

mers comes with certain drawbacks. These drawbacks include increased computational 

burden, especially for longer k-mers, and a higher likelihood of overfitting in machine 

learning-based methods due to the high number of genomic features that k-mers represent 

(Aun et al., 2018; Drouin et al., 2016). In addition, the majority of k-mers are uninformative, 

occur simultaneously, are highly correlated, and cannot be used for phenotype prediction 

(Drouin et al., 2016; San et al., 2020). To alleviate this problem, Pyseer and HAWK offer 

support for collapsing k-mers into unitigs, or uniquely assembleable contigs. In case genetic 

variation is known a priori, Scoary and TreeWAS can be used (in addition to the previously 

mentioned software), unless the analyzed bacterium has a high recombination rate. In such 

cases, we would not recommend using phylogenetic methods as the effects of 

recombination can decrease their effectiveness and power to detect associations (San et al., 

2020). 

The choice of k-mer length is an important parameter in k-mer-based software packages, 

since it can significantly affect the accuracy and computational burden; longer k-mer lengths 

increase accuracy at the expense of significantly increased processor and memory usage 

(Aun et al., 2018). However, excessively large k-mers will generate highly specific k-mers that 

are only present in a few genomes (Drouin et al., 2016). Drouin et al., the authors of Kover, 

recommend using shorter k-mers for bacteria with high recombination rates and longer k-

mers for bacteria with low recombination rates, with k = 31 as a default value (Drouin et al., 

2016). Aun et al. benchmarked PhenotypeSeeker using k-mers ranging in length up to 32. 

The authors recommend a k-mer length of 13 based on their findings that such k-mers were 

able to detect mutations in the parC and gyrA genes in the previously discussed 

Pseudomonas aeruginosa ciprofloxacin dataset. However, the authors do not entirely rule 

out longer k-mer lengths in certain situations (Aun et al., 2018). Jaillard et al., authors of the 

software package DBGWAS (not discussed in this paper), recommend a minimum k-mer 

length of 11 and a maximum k-mer length of 100, with the optimal k-mer length for their 

investigated dataset being 31 (Jaillard et al., 2018). Based on the literature, we recommend 

users to experiment with k-mer lengths ranging from 11 to 100, starting at k = 31 and 

decreasing or increasing based on recombination rate of the investigated bacterium. 

Bacterial GWAS and Tn-seq are approaches that can both identify genes associated with 

bacterial phenotypes, but with vastly different methodologies. Compared to bacterial GWAS, 

Tn-seq does not suffer from the effects of linkage disequilibrium and population structure. 

Furthermore, Tn-seq can be used in cases where high-quality genotype-phenotype 

association data is not available or in cases with an insufficient number of genomes to satisfy 



statistical power requirements. However, Tn-seq has some disadvantages that must be 

taken into consideration. Compared to bacterial GWAS, Tn-seq may not be able to capture 

the full range of genetic variants that contribute to bacterial phenotypes (e.g. SNPs with low 

effect sizes) and is limited by genes that can be disrupted by transposon insertion (Kobras et 

al., 2021). Additionally, sources of false-positive and false-negative results include random 

birth-death processes and the effects of sampling events/population bottlenecks 

(Mahmutovic et al., 2020). Tn-seq cannot be used on all bacteria; some species have 

mechanisms that prevent uptake of foreign DNA, which makes it difficult to insert 

transposons (Wetmore et al., 2015). Therefore, the selection between bacterial GWAS and 

Tn-seq should be considered on a case-by-case basis, also taking into account the 

laboratory’s capabilities and preferences. However, it should be noted that combining both 

methods would provide more robust evidence for testing genotype-phenotype associations. 

GSMMs can, in some cases, also act as an alternative or complement bacterial GWAS. Like 

Tn-seq, GSMMs are not negatively affected by linkage disequilibrium and population 

structure. GSMMs are useful for predicting metabolic pathways and genes essential for 

growth in specific conditions by performing in silico gene knockout experiments (Gu et al., 

2019; Ye et al., 2022). Furthermore, GSMMs can be used to optimize production of 

chemicals by disabling redundant or competing metabolic pathways (Gu et al., 2019). The 

potential applications of GSMMs are diverse, but their utility is limited by the availability of 

high-quality models. Although GSMMs are available for thousands of bacterial species and 

new models can be generated with software packages, manually curated models are only 

available for model organisms that have scientific, industrial, or medical value (Gu et al., 

2019). Additionally, GSMMs focus solely on metabolic pathways which may not capture all 

relevant genetic variants affecting phenotypes (Ye et al., 2022). Therefore, it is worth 

considering to validate the results of a bacterial GWAS on an organism with high-quality 

GSMM(s) available by performing additional in silico experiments, such as a gene knockout 

experiment, to confirm the impact of identified genes on the phenotype.  
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