
Thesis

The Multiplicative Weights Method in

Quantum Computing

Freek Henstra

Supervised by:

Ronald de Wolf,
Erik Jan van Leeuwen,
Tristan van Leeuwen

February, 2023

Contents

1 Introduction 3

2 The multiplicative weights method 4
2.1 Stock market example . 4
2.2 General setting . 5
2.3 Algorithm & analysis . 6
2.4 Alternative update rule . 9
2.5 Matrix multiplicative weights . 11

3 Quantum Computing 14
3.1 Preliminaries . 14
3.2 Amplitude amplification . 15
3.3 Other subroutines . 17

4 Boosting 19
4.1 Machine learning preliminaries 19
4.2 Basic booster . 22
4.3 AdaBoost . 25
4.4 SmoothBoost . 25
4.5 Quantum AdaBoost . 28
4.6 Quantum SmoothBoost . 29
4.7 Monte Carlo SmoothBoost . 31

5 Linear programs and semidefinite programs 37
5.1 Linear programs . 37

5.1.1 Basic LP solver . 38
5.1.2 Zero-sum games . 40
5.1.3 Deterministic zero-sum LP solver 41
5.1.4 Zero-sum LP solvers using sampling 43
5.1.5 Comparison . 47
5.1.6 Quantum zero-sum LP solvers 48

5.2 Semidefinite programs . 48
5.2.1 Basic SDP solver . 49
5.2.2 Deterministic zero-sum SDP solver 49

1

5.2.3 Zero-sum SDP solver using sampling 52
5.2.4 Reduction . 54
5.2.5 Quantum SDP solvers . 55
5.2.6 Quantum zero-sum SDP solver 56

6 Conclusion 57

A Code 61

2

Chapter 1

Introduction

Meta-algorithms like dynamic programming and divide-and-conquer provide
a general template for a large variety of algorithms. A lesser-known meta-
algorithm is the multiplicative weights method, in which a set of weights is
maintained that are updated iteratively by the multiplicative update rule. Al-
gorithms with this general structure have been independently developed across
many fields and for many applications. Even the analyses tend to follow a
similar pattern. A survey by Arora, Hazan and Kale [6] compiles many such
instances.

As the development of quantum computers progresses, the question of what
improvements quantum computing can offer over classical computing becomes
ever more relevant. Many quantum algorithms have been developed that signif-
icantly outperform the best possible classical algorithms. The most impressive
example is Shor’s algorithm [20], which provides an exponential speed-up for in-
teger factorization. This threatens the security of RSA encryption, which relies
on the complexity of integer factorization.

A few recent results [16, 4, 5] suggest that algorithms that follow the mul-
tiplicative weights method are well-suited for quantization. These results use
quantum subroutines to speed up classical multiplicative weights algorithms.
This space of quantum multiplicative weights algorithms is still fairly unex-
plored. The goal of this thesis is to explore this space further, in hopes of
finding new quantum speed-ups.

In Chapter 2, we will explain the multiplicative weights method and several
variants of it. Chapter 3 will give a brief overview of quantum computing and
some of the subroutines we will come across in this thesis. In Chapters 4 and
5, we explore how the multiplicative weights method and quantum computing
are used in specific applications, including some new results. In Chapter 4 we
will take a look at various boosting algorithms, which are used in the field of
machine learning. In Chapter 5, we take a look at solvers for linear programs
and the more general semidefinite programs. Chapter 6 concludes the thesis.

3

Chapter 2

The multiplicative weights
method

2.1 Stock market example

In order to best illustrate the setting for the multiplicative weights method, we
will consider the example of a simplified stock market from the survey by Arora
et al. [6]. Suppose that we are following a single stock of interest. At the end
of each day, the price of the stock either increases or decreases. At the start of
the trading day, we can make a prediction of which of the two will happen. If
we predict this correctly, we make a profit. If our prediction is wrong, however,
we make a loss.

Without any information, we can only guess what will happen. Luckily, there
are n experts, each of which publicly makes their own prediction of whether the
stock price will increase or decrease on that day. We might be able to use the
predictions of these experts to make a more informed prediction ourselves.

Each day goes as follows. First, the n experts make their predictions. Next,
we make a prediction. Finally, it is revealed what happened to the stock price.
Based on our prediction and the behavior of the stock, we either make or lose
money. We repeat this process for T days. Our goal is to maximize our profit.
In other words, we want to maximize the number of correct predictions over all
T days.

A simple strategy would be to always follow the prediction made by the
majority of experts on that day, but this does not necessarily lead to correct
predictions. There are no guarantees on the accuracy of the experts’ predictions.
In fact, it is perfectly possible for an expert to get every single prediction wrong.
If this holds for the majority of experts, the above strategy also gets every
prediction wrong.

As the days go on, we learn more about the experts. For each expert, we
know exactly how many of their predictions were correct. In order to find a
better strategy, we need to use this knowledge for future predictions. It makes

4

sense to believe more in the experts that have been the most successful thus far:
we give their predictions more weight.

This is the concept at the heart of the multiplicative weights method. We
assign a weight to each of the experts. At first, each of the experts has the same
weight. At the end of each day, when we find out what happened to the stock
price, we increase the weight of each expert that predicted it correctly, while
decreasing the weight of each expert that was incorrect. We can then base our
prediction on the weighted majority.

This approach seems like an improvement over the previous strategy: even
when a majority of experts has bad predictions, we gravitate towards the “good”
experts. However, this approach also has weaknesses. The “good” experts are in
no way guaranteed to continue giving good predictions. We can really only know
which experts are good when all T days have passed. Until then, the experts’
performance can be misleading. As such, this strategy will not necessarily point
us in the right direction.

As a matter of fact, both the experts’ predictions and the change in stock
price can be chosen adversarially. Although this should not occur in an actual
stock market, an adversary could manipulate the stock in such a way that we
never get any prediction correct. It seems impossible to have any guarantees on
our performance when such scenarios are possible.

Despite these apparent weaknesses, the multiplicative weights method is
surprisingly effective. The catch is that we do not measure the performance in
a vacuum, but we compare it to that of the best expert. As we will see in the
next section, the multiplicative weights method does not perform much worse
than the best expert in hindsight. This means that an adversary cannot ensure
we perform badly, without also making every expert perform nearly as badly.
This is a surprisingly strong result, considering how easy it is for an adversary
to just make all our predictions wrong.

2.2 General setting

In the general setting, it is not entirely accurate to use the term “expert”. As
we will see in the applications discussed later on, the notion of having access to
various expert opinions is usually missing entirely. Instead, we will use the term
“constraint”, which generalizes much better to other applications. In the stock
market example, the analysis will show that we do not perform much worse
than the best expert. Equivalently, we can say that it holds for every expert
that our performance is not much worse than theirs. This can be seen as a set
of n constraints that we would like to satisfy, one for each expert.

As in the stock market example, we have n constraints and we run the
algorithm for T iterations. In the stock market example, the result of each
iteration was binary: we either predict the stock correctly or incorrectly. In the
general setting, however, the result of one iteration t is given by a cost vector

m(t) ∈ [−1, 1]n, which assigns a cost m
(t)
i to each constraint i. We keep track of

the weights in a weight vector w(t) ∈ Rn
≥0. These weights are used to compute

5

the probability distribution p(t) = w(t)/Φ(t), where Φ(t) =
∑n

i=1 w
(t)
i .

Since each constraint has its own cost, we do not have a binary choice like

before. Instead, we choose a constraint i and incur the same cost m
(t)
i in itera-

tion t. This choice is made at random based on the distribution p(t). In order to
still fit this into a stock market setting, we can assume there are multiple stocks
of interest, and the experts each recommend a certain investment strategy. The

cost m
(t)
i is then the loss made from the investment if the strategy of expert i

is followed, which is negative if profit is made.
Unfortunately, even this is not general enough. In many applications, the

distribution p(t) is not used to choose one of the constraints at random, but it
is instead fed into an “oracle” once per iteration. An oracle is a subroutine that
usually outputs some intermediate solution. The type of solution depends on
the application. The purpose of the distribution p(t) is generally to guide the
oracle towards certain constraints, particularly those with higher weights. As
magical as it sounds, this oracle is usually a relatively simple subroutine that
solves a much easier problem than the full algorithm is intended to solve.

In the stock market example, all the “oracle” has to do is pick one of the
experts. Note that this choice does not impact the cost vector m(t) in any way,
only the cost you incur. In the general setting, however, the result of the oracle
can, and usually does, impact the cost vector m(t).

2.3 Algorithm & analysis

Algorithm 2.1: The multiplicative weights method

1 Fix η ≤ 1
2 . Set weight w

(1)
i := 1,∀i ∈ [n].

2 for t = 1, 2, . . . , T do
3 Feed into the oracle the distribution p(t) = w(t)/Φ(t), where

Φ(t) =
∑n

i=1 w
(t)
i .

4 Observe cost vector m(t) ∈ [−1, 1]n.

5 Update weights: w
(t+1)
i := w

(t)
i exp(−ηm(t)

i),∀i ∈ [n].

Algorithm 2.1 is our generalization of the multiplicative weights method. In
particular, it is the Hedge algorithm by Freund and Schapire [13]. The stan-
dard multiplicative weights method in [6] uses a different update rule, namely

w
(t+1)
i := w

(t)
i (1 − ηm

(t)
i). For small η, the difference between the two update

rules is small, but it does lead to a different analysis and a slightly different
theorem. Most applications we will look at, use the update rule of the Hedge
algorithm, so we will view that as the standard form.

One change we have made to the formulation of the algorithm compared to
[6] is that we refer the oracle instead of sticking to the stock market example
where a decision is made in each iteration. This allows most of the applications
to more closely fit this framework.

6

In step 5 of the algorithm, we see the multiplicative update rule, which

is where the “multiplicative” in the name comes from. Each weight w
(t)
i is

multiplied by a factor exp(−ηm(t)
i). The parameter η ≤ 1

2 determines by how
much the weights change each iteration. We will see later how it can be chosen
optimally. As expected, a positive loss decreases the weight while a negative
loss increases the weight.

While the algorithm does not specify a final output, the weight vector w(t)

can be seen as the output of iteration t, often alongside an output from the ora-
cle. Usually, the final output is some combination of the intermediate solutions
returned by the oracle over all T iterations. In the stock market example, we
have a separate output for every iteration, namely the expert we choose.

Theorem 2.1 gives us the n constraints that are satisfied after all T iterations
of the multiplicative weights method, with regards to the cost vectors m(t) and
distributions p(t).

Theorem 2.1 (Theorem 2.3 in [6]). The multiplicative weights method guaran-
tees that after T rounds, for every i ∈ [n], we have

T∑
t=1

m(t) · p(t) ≤
T∑

t=1

m
(t)
i + η

T∑
t=1

(m(t))2 · p(t) + lnn

η
,

where (m(t))2 is the vector obtained by taking the coordinate-wise square of m(t).

Proof. The proof follows from analyzing the sum of weights Φ(t). In particular,
we will give an upper bound and n lower bounds for Φ(T+1). Combining these
bounds will result in the inequalities in the theorem. We use the fact that
exp(−ηx) ≤ 1− ηx+ η2x2 if |ηx| ≤ 1. We obtain

Φ(t+1) =

n∑
i=1

w
(t+1)
i

=

n∑
i=1

w
(t)
i exp(−ηm(t)

i)

≤ Φ(t)
n∑

i=1

p
(t)
i (1− ηm

(t)
i − η2(m

(t)
i)2)

= Φ(t)
(
1− ηm(t) · p(t) + η2(m(t)) · p(t)

)
≤ Φ(t) exp

(
−ηm(t) · p(t) + η2(m(t)) · p(t)

)
.

For the last inequality, we use the fact that 1 + x ≤ ex = exp(x) for all x. By

7

induction, after T iterations, we have

Φ(T+1) ≤ Φ(1)
T∏

t=1

exp
(
−ηm(t) · p(t) + η2(m(t)) · p(t)

)
= n · exp

(
−η

T∑
t=1

m(t) · p(t) + η2
T∑

t=1

(m(t)) · p(t)
)
,

which is the upper bound. For the lower bounds, we have for all constraints
i ∈ [n],

Φ(T+1) ≥ w
(T+1)
i =

T∏
t=1

exp(−ηm(t)
i) = exp

(
−η

T∑
t=1

m
(t)
i

)
.

Taking the logarithm and dividing by η in the upper bound and the lower
bounds, we get, for all i ∈ [n],

−
T∑

t=1

m
(t)
i ≤ lnn

η
−

T∑
t=1

m(t) · p(t) + η

T∑
t=1

(m(t))2 · p(t),

and thus
T∑

t=1

m(t) · p(t) ≤
T∑

t=1

m
(t)
i + η

T∑
t=1

(m(t))2 · p(t) + lnn

η
.

The interpretation of this theorem changes drastically depending on the
setting. For now, we will assume the stock market example, which allows for a
fairly simple interpretation.

Note that for all iterations t, the expected cost is m(t) · p(t). This means
the left-hand side is simply the total expected cost over all T iterations. The
theorem therefore gives n upper bounds for the total cost, which is great since
minimizing it was our goal.

On the right-hand side, the first term is the total cost of expert i. The last
two terms together form the loss, the amount by which we do worse than the
i-th expert. Note that we can pick η such that this loss is minimal. For example,
in the case of binary costs m(t) ∈ {−1, 1}n for all iterations t, we minimize the
loss by picking η =

√
ln(n)/T , after which the loss becomes 2

√
T lnn.

Note that the inequality holds for all experts i, so this even holds for the
best expert: the one with the lowest total cost. The loss grows sublinearly with
respect to the number of iterations T . This means that the loss per iteration
goes to 0 with T .

All in all, this theorem implies that you will not perform much worse than
even the best expert, despite not knowing who the best expert is until most (if
not all) iterations have passed and despite the fact that an adversary can choose
the cost vectors. With such an oddly strong result, it is not too surprising that
this meta-algorithm has been rediscovered as many times as it has, especially
considering its simplicity.

8

2.4 Alternative update rule

As we mentioned previously, the standard multiplicative weights method in [6]
uses a different update rule.

Algorithm 2.2: The multiplicative weights method

1 Fix η ≤ 1
2 . Set weight w

(1)
i := 1,∀i ∈ [n].

2 for t = 1, 2, . . . , T do
3 Feed into the oracle the distribution p(t) = w(t)/Φ(t), where

Φ(t) =
∑n

i=1 w
(t)
i .

4 Observe cost vector m(t) ∈ [−1, 1]n.

5 Update weights: w
(t+1)
i := w

(t)
i (1− ηm

(t)
i),∀i ∈ [n].

We see the different update rule in line 5, where instead of multiplying the

previous weight by the exponential factor exp(−ηm(t)
i), we multiply it by the

additive factor (1−ηm(t)
i). While this difference is small for small η, the resulting

theorem does differ slightly. There is one instance later on where we need this
specific theorem.

Theorem 2.2 (Theorem 2.1 in [6]). The multiplicative weights method guaran-
tees that after T rounds, for every i ∈ [n], we have

T∑
t=1

m(t) · p(t) ≤
T∑

t=1

m
(t)
i + η

T∑
t=1

|m(t)
i |+ lnn

η
.

Proof. The proof follows from analyzing the sum of weights Φ(t). In particular,
we will give an upper bound and n lower bounds for Φ(T+1). Combining these
bounds will result in the inequalities in the theorem. First, we have

Φ(t+1) =

n∑
i=1

w
(t+1)
i

=

n∑
i=1

w
(t)
i (1− ηm

(t)
i)

=

n∑
i=1

w
(t)
i −

n∑
i=1

ηw
(t)
i m

(t)
i

= Φ(t) −
n∑

i=1

ηp
(t)
i Φ(t)m

(t)
i

= Φ(t) − ηΦ(t)
n∑

i=1

m
(t)
i p

(t)
i

= Φ(t)(1− ηm(t) · p(t))
≤ Φ(t) exp(−ηm(t) · p(t)).

9

For the last inequality, we use the fact that 1 + x ≤ ex = exp(x) for all x. By
induction, after T iterations, we have

Φ(T+1) ≤ Φ(1) exp

(
−η

T∑
t=1

m(t) · p(t)
)

= n · exp

(
−η

T∑
t=1

m(t) · p(t)
)
,

which is the upper bound. Next, we use the following facts, which follow from
the convexity of the exponential function:

(1− η)x ≤ (1− ηx) if x ∈ [0, 1],

(1 + η)−x ≤ (1− ηx) if x ∈ [−1, 0].

Since the costs m
(t)
i ∈ [−1, 1] are bounded, we have for all constraints i ∈ [n],

Φ(T+1) ≥ w
(T+1)
i =

T∏
t=1

(1− ηm(t)
i) ≥ (1− η)

∑
t:m

(t)
i

≥0
m

(t)
i · (1+ η)

−
∑

t:m
(t)
i

<0
m

(t)
i
.

These are the n lower bounds. Taking logarithms in the upper bound and the
lower bounds, we get, for all i ∈ [n],

lnn− η

T∑
t=1

m(t) · p(t) ≥
∑

t:m
(t)
i ≥0

m
(t)
i ln(1− η)−

∑
t:m

(t)
i <0

m
(t)
i ln(1 + η),

−η
T∑

t=1

m(t) · p(t) ≥
∑

t:m
(t)
i ≥0

m
(t)
i ln(1− η)−

∑
t:m

(t)
i <0

m
(t)
i ln(1 + η)− lnn,

T∑
t=1

m(t) · p(t) ≤ 1

η

∑
t:m

(t)
i ≥0

m
(t)
i ln

1

1− η
+

1

η

∑
t:m

(t)
i <0

m
(t)
i ln(1 + η) +

lnn

η
.

Next, we use the facts that

ln

(
1

1− η

)
≤ η + η2,

ln(1 + η) ≥ η − η2

10

for η ≤ 1
2 . We get, for all i ∈ [n],

T∑
t=1

m(t) · p(t) ≤ 1

η

∑
t:m

(t)
i ≥0

m
(t)
i ln

1

1− η
+

1

η

∑
t:m

(t)
i <0

m
(t)
i ln(1 + η) +

lnn

η

≤ 1

η

∑
t:m

(t)
i ≥0

m
(t)
i (η + η2) +

1

η

∑
t:m

(t)
i <0

m
(t)
i (η − η2) +

lnn

η

=

T∑
t=1

m
(t)
i + η

∑
t:m

(t)
i ≥0

m
(t)
i − η

∑
t:m

(t)
i <0

m
(t)
i +

lnn

η

=

T∑
t=1

m
(t)
i + η

T∑
t=1

|m(t)
i |+ lnn

η
.

2.5 Matrix multiplicative weights

Another notable variation is the matrix multiplicative weights method. In this
variant, we keep track of a weight matrix instead of simply a vector of weights.

Algorithm 2.3: The matrix multiplicative weights algorithm

1 Fix η ≤ 1
2 . Set weight matrix W (1) := In.

2 for t = 1, 2, . . . , T do
3 Feed into the oracle the density matrix ρ(t) =W (t)/Φ(t), where

Φ(t) = Tr
(
W (t)

)
.

4 Observe cost matrix M (t).

5 Update weight matrix: W (t+1) := exp(−η
∑t

τ=1M
(τ)).

A real symmetric matrix X is positive semidefinite if all its eigenvalues are
non-negative, which implies that v⊤Xv ≥ 0 for any real vector v. Note that we
can extend this definition to complex Hermitian matrices, but for the remainder
of this thesis we will consider only real matrices. A density matrix is a positive
semidefinite, symmetric matrix of trace one.

We assume all cost matrices M (t) ∈ Rn×n are symmetric and have eigenval-
ues in [−1, 1]. In the multiplicative weights method, the cost vector assigned
a cost to each constraint. In the matrix multiplicative weights method, a unit
vector v ∈ Sn−1 is assigned cost v⊤M (t)v ∈ [−1, 1] in iteration t. The exponent
in the update rule is the matrix exponential eX =

∑∞
k=0

1
k!X

k. While it shares
many properties with the regular exponential function, it does not generally
hold that exp(X+Y) = exp(X) exp(Y). This is also why the update rule is not
written recursively. The following result does hold.

11

Theorem 2.3 (Golden-Thompson inequality [12]). For symmetric matrices
X,Y , it holds that

Tr (exp(X + Y)) ≤ Tr (exp(X) exp(Y))

The matrix exponential is always positive semidefinite if the matrix in the
exponent is symmetric. Since ρ(t) is the normalized weight matrix W (t), it
follows that ρ(t) is indeed a density matrix.

Theorem 2.4 (Theorem 5.1 in [6]). The matrix multiplicative weights method
guarantees that after T rounds, for all v ∈ Sn−1, we have

T∑
t=1

Tr
(
M (t)ρ(t)

)
≤

T∑
t=1

v⊤M (t)v + η

T∑
t=1

Tr
(
(M (t))2ρ(t)

)
+

lnn

η
.

Proof. The proof follows from analyzing the sum of weights Φ(t). In particu-
lar, we will give an upper bound and n lower bounds for Φ(T+1). Combining
these bounds will result in the inequalities in the theorem. Using the Golden-
Thompson inequality, we obtain

Φ(t+1) = Tr
(
W (t+1)

)
= Tr

(
exp

(
−η

t∑
τ=1

M (τ)

))

= Tr

(
exp

(
−η

t−1∑
τ=1

M (τ) − ηM (t)

))
≤ Tr

(
W (t) exp(−ηM (t))

)
= Tr

(
W (t) −W (t)(I − exp(−ηM (t)))

)
= Φ(t) − Φ(t)Tr

(
ρ(t)(I − exp(ηM (t)))

)
= Φ(t)

(
1− Tr

(
ρ(t)(I − exp(ηM (t)))

))
≤ Φ(t) exp

(
−Tr

(
ρ(t)(I − exp(ηM (t)))

))
.

For the last inequality, we used the fact that 1 + x ≤ ex = exp(x) for all x. We
define a rest matrix R via

I − exp(−ηM (t)) = ηM (t) − η2(M (t))2 +R,

which means that R = I − exp(−ηM (t))− ηM (t) + η2(M (t))2. We use the fact
that exp(−ηX) ⪯ I − ηX + η2X2 if ||ηX|| ≤ 1, which implies that R ⪰ 0.

12

Substituting this and using induction, after T iterations, we have

Φ(T+1) ≤ Φ(1)
T∏

t=1

exp
(
−Tr

(
ρ(t)(ηM (t) − η2(M (t))2)

)
− Tr

(
ρ(t)R

))
≤ n · exp

(
−

T∑
t=1

Tr
(
ρ(t)(ηM (t) − η2(M (t))2)

))
.

For the last inequality, we removed the term Tr
(
p(t)R

)
using the fact that

Tr (XY) ≥ 0 if X,Y ⪰ 0. We now have the upper bound and move on to
the lower bounds. Let λ1(X) ≥ . . . ≥ λn(X) denote the eigenvalues of X in
decreasing order. Note that Tr (exp(X)) =

∑n
k=1 exp(λk(X)) ≥ exp(λ1(X)).

We have

Φ(T+1) = Tr
(
W (T+1)

)
= Tr

(
exp

(
−η

T∑
t=1

M (t)

))

≥ exp

(
λ1

(
−η

T∑
t=1

M (t)

))
.

Now, for all unit vectors v ∈ Sn−1, it holds that

λ1

(
−η

T∑
t=1

M (t)

)
≥ v⊤

(
−η

T∑
t=1

M (t)

)
v = −η

T∑
t=1

v⊤M (t)v.

Hence, for all unit vectors v ∈ Sn−1, we obtain the lower bound

Φ(T+1) ≥ exp

(
−η

T∑
t=1

v⊤M (t)v

)
.

Taking the logarithm and dividing by η in the upper bound and the lower
bounds, we get, for all unit vectors v ∈ Sn−1,

−
T∑

t=1

v⊤M (t)v ≤ lnn

η
−

T∑
t=1

Tr
(
ρ(t)(M (t) − η(M (t))2)

)
,

and thus

T∑
t=1

Tr
(
M (t)ρ(t)

)
≤

T∑
t=1

v⊤M (t)v + η

T∑
t=1

Tr
(
(M (t))2ρ(t)

)
+

lnn

η
.

13

Chapter 3

Quantum Computing

There are many quantum algorithms with better running times than possible
with classical computers. By using such algorithms as subroutines within mul-
tiplicative weights, as well as some other techniques, quantum speed-ups can
be achieved. This section aims to give a brief overview of quantum computing,
starting with preliminaries and followed up by various relevant subroutines. We
will mostly follow the content of the course Quantum Computing by de Wolf
[22]. For a more complete overview, we refer to these lecture notes.

3.1 Preliminaries

In a classical computer, a system can be in one state at a time. Suppose we have
two bits, then we have four possible states: |00⟩ , |01⟩ , |10⟩ , |11⟩. We can view
these as integers and write them as |0⟩ , |1⟩ , |2⟩ , |3⟩ instead, respectively. In a
quantum computer, a pure quantum state |ϕ⟩ that uses two qubits (quantum
bits) can assume a superposition of these classical states:

|ϕ⟩ = α0 |0⟩+ α1 |1⟩+ α2 |2⟩+ α3 |3⟩ ,

where each αi is a complex number known as the amplitude of |i⟩. Due to
this, even a pure quantum state of only one qubit could assume infinitely many
different superpositions. This sounds very promising, but there is one major
drawback: when a quantum state is measured, it collapses back into a classical
state. If a measurement is done in the computational basis, it collapses into
state |i⟩ with probability |αi|2.

If we have two quantum systems with Hilbert spaces H1 and H2, then we can
combine the quantum systems by taking the tensor product of the two spaces:
H1 ⊗H2. For states, the tensor symbol can often be left out. For example, the
classical states |1⟩ ⊗ |1⟩, |1⟩ |1⟩, |11⟩ and |3⟩ are all equal.

If a quantum state |ϕ⟩ can be written as the tensor product of two states
|ϕ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩, then it is separable. Otherwise, it is called entangled. An
example of an entangled state is |ϕ⟩ = 1√

2
|0⟩ |0⟩+ 1√

2
|1⟩ |1⟩. If we measure the

14

qubit in the first register, the outcome could be 0 or 1, each with probability 1/2.
If the outcome is 0, then the state collapses to |0⟩ |0⟩. Hence, this guarantees
that measuring the qubit in the second register will also have outcome 0. If a
state is separable, then we can measure one half without affecting the other half
in any way.

We can apply various unitary operations without the state collapsing. If we
view a pure quantum state as an N -dimensional vector of amplitudes, then the
unitary operation can be seen as a unitary N × N matrix that is multiplied
with the vector. Smaller unitaries are known as quantum gates, which can be
combined into a larger quantum circuit. The most common 1-qubit unitaries
are

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
, H = 1√

2

[
1 1
1 −1

]
.

The gate H is known as the Hadamard transform, and does the following.

H |0⟩ = 1√
2
(|0⟩+ |1⟩),

H |1⟩ = 1√
2
(|0⟩ − |1⟩).

Both of the above resulting states obtain outcomes 0 and 1 with equal probabil-
ity when measured. However, when we apply H to the superposition 1√

2
(|0⟩+

|1⟩), we obtain

H

(
1√
2
(|0⟩+ |1⟩)

)
=

1√
2
(H |0⟩+H |1⟩) = 1

2
(|0⟩+ |1⟩+ |0⟩ − |1⟩) = |0⟩ .

This phenomenon is known as interference, since the amplitudes for |1⟩ can-
cel each other out. The Hadamard transform is commonly used in quantum
algorithms due to this.

A common type of unitary operation is the query. Given some N -bit input
x = (x0, . . . , xN−1) ∈ {0, 1}N , where N = 2n, the unitary operation

Ox : |i, 0⟩ 7→ |i, xi⟩

reads the first n qubits of the quantum state, queries the input at the corre-
sponding index, and places this in the final qubit of the state. These queries
work on any pure quantum state, so we can query a superposition of indices at
once, although measuring would still only result in one bit of the input.

3.2 Amplitude amplification

Suppose we have an m-qubit unitary A such that

A |0m⟩ = √
p |ϕ0⟩ |0⟩+

√
1− p |ϕ1⟩ |1⟩ .

15

Suppose that |ϕ0⟩ is the state we want to obtain, which we call the “good
state”, while |ϕ1⟩ is the “bad state”. We start with the state |U⟩ := A |0m⟩. If
we measure the final qubit of |U⟩ immediately, then the outcome will be 0 with
probability p. If the outcome is indeed 0, we know that the remaining state is
|ϕ0⟩ as desired. We can simply repeat this process until we get the good state,
which takes expected O(1/p) attempts. With amplitude amplification [10], we
can do better.

As the name implies, we can amplify the amplitude of the good state and
thereby increase the probability of getting outcome 0 from the measurement.
Note that due to the final qubit, the states |G⟩ := |ϕ0⟩ |0⟩ and |B⟩ := |ϕ1⟩ |1⟩
are orthogonal. If we view |B⟩ as the x-axis and |G⟩ as the y-axis, then |U⟩ =√
p |G⟩+

√
1− p |B⟩ is in between, with an angle of θ = arcsin

√
p between |U⟩

and |B⟩. If we rotate the state |U⟩ towards |G⟩, then we obtain a new state
with a greater amplitude on |G⟩.

Suppose we have a unitary RG that puts a “−” in front of |G⟩ but leaves
|B⟩ alone. This circuit can be seen as a reflection through |B⟩. Next, suppose
we have a unitary R0 that puts a “−” in front of all basis states except for
|0m⟩. Then we can implement a reflection through |U⟩ as AR0A

−1. The com-
bined circuit AR0A

−1RG rotates the state counterclockwise by 2θ. After k such
rotations, we will have the state

sin((2k + 1)θ) |G⟩+ cos((2k + 1)θ) |B⟩ .

If (2k+1)θ ≈ π/2, then the state |G⟩ will have an amplitude close to 1. To get
to this point, we need O(1/

√
p) rotations. If we know p, we know how many

rotations to use. As the result below shows, a lower bound on p is also sufficient
to use amplitude amplification. This is done using decreasing guesses for the
value of p.

Theorem 3.1 (Amplitude amplification, Theorem 6 in [16]). Suppose we have
an m-qubit unitary A such that

A |0m⟩ = √
p |ϕ0⟩ |0⟩+

√
1− p |ϕ1⟩ |1⟩ ,

and we know a lower bound p′ on p. Then there exists a quantum algorithm V
using O

(
1/
√
p′
)
applications of A and A−1, and Õ

(
1/
√
p′
)
other gates, such

that
V |0m⟩ =

√
b |ϕ0⟩ |0⟩+

√
1− b |ϕ1⟩ |1⟩ ,

where b ∈ [1/2, 1].

Note that the notation Õ(x) := O(x ·polylog(x)) ignores logarithmic factors.
A good example of amplitude amplification is Grover’s algorithm [15]. In fact,
Grover’s algorithm is what inspired the more general amplitude amplification.

Let N = 2n and suppose we are given an arbitrary x ∈ {0, 1}N . We want
to find an index i such that xi = 1 and if no such index exists, output “no
solutions”. Let t be the number of solutions in x. A classical algorithm requires
Θ(N) queries, or Θ(N/t) with success probability ≥ 2/3. In particular, if there

16

are no solutions, then we need to query every single index to be able to guarantee
this. A randomized classical algorithm

In this case, the good and bad states are

|G⟩ = 1√
t

∑
i:xi=1

|i⟩ and |B⟩ = 1√
N − t

∑
i:xi=0

|i⟩ .

Measuring |G⟩ would result in an outcome i such that xi = 1. Note that the
good and bad states do not need to end in |0⟩ and |1⟩ here, because the states
are already orthogonal and we do not need to obtain the quantum state |G⟩: a
measurement is sufficient.

Grover’s algorithm is a special case of amplitude amplification where A =
H⊗n and RG = Ox,±, where Ox,± |i⟩ = (−1)xi |i⟩ is a type of query for x.

Grover’s algorithm uses O(
√
N) queries in general, or O(

√
N/t) if t is known.

3.3 Other subroutines

Theorem 3.2 (Amplitude estimation, Theorem 2.5 in [7]). There is a quantum
algorithm A that satisfies the following: given access to a unitary U such that
U |0⟩ = |ψ⟩ where |ψ⟩ =

√
p |ψ0⟩ +

√
1− p |ψ1⟩ and |ψ0⟩ , |ψ1⟩ are orthogonal

quantum states, A makes M queries to U and U−1 and with probability ≥ 2/3
outputs p̃ such that

|p̃− p| ≤ 2π

√
p(1− p)

M
+

π2

M2
.

Amplitude estimation starts with a similar setup to amplitude amplifica-
tion, but instead of amplifying the amplitude, it computes an estimation of the
amplitude.

Theorem 3.3 (Approximate counting, Theorem 7 in [16]). Suppose we have

query access to a string z ∈ [0, 1]N , with sum s =
∑N

i=1 zi ≥ 1. There exists a

quantum algorithm that uses O
(

1
ε

√
N log(1/δ)

)
queries and Õ

(
1
ε

√
N log(1/δ)

)
other operations, and that outputs, with probability ≥ 1 − δ, an s̃ such that
(1− ε)s ≤ s̃ ≤ (1 + ε)s.

With approximate counting [11], we can compute a sum approximately in
sublinear time. This is a very useful for finding quantum speed-ups, since it can
bypass certain linear-time steps that are unavoidable in the classical case.

Definition 3.1 (Gibbs sampler, Definition 4.11 in [2]). A θ-precise Gibbs sam-
pler for the input matrices A0, . . . , Am is a unitary that takes as input a data
structure storing a vector y ∈ Rm+1

≥0 and creates as output a θ-approximation in
trace distance of the Gibbs state

exp

−
m∑
j=0

yjAj

 /Tr

exp

−
m∑
j=0

yjAj

 .

17

Here, the trace distance between two density matrices ρ1, ρ2 is T (ρ1, ρ2) =
1
2 ∥ρ1 − ρ2∥1. Gibbs samplers are used to prepare quantum Gibbs states. Var-
ious different Gibbs samplers exist. The density matrix ρ in the matrix multi-
plicative weights algorithm is a Gibbs state, so that is one instance where it can
be useful.

Theorem 3.4 (Trace estimation, Corollary 14 in [5]). Let A,H ∈ Rn×n be
symmetric matrices such that ||A|| ≤ 1 and ||H|| ≤ K for a known bound
K ∈ R+. Assume A is s-sparse and H is d-sparse with s ≤ d. An additive
θ-approximation of

Tr (Aρ) =
A exp(−H)

Tr (exp(−H))

can be computed using Õ
(√

ndK
θ

)
queries to A and H, while using the same

order of gates.

Computing this kind of trace value otherwise would require expensive matrix
multiplication, so this is a fairly powerful result.

18

Chapter 4

Boosting

One of the application of the multiplicative weights method is boosting. In
machine learning, a boosting algorithm is an algorithm that turns a “weak
learner” into a “strong learner” through repeated calls of the weak learner. In
order to explain this in more detail, we first need to go over some machine
learning preliminaries.

In this chapter, we cover various boosting algorithms from different papers.
These papers all differ in notation and some assumptions. We present these
algorithms consistent with each other with our own notation and assumptions,
so be aware of this when reading the referenced papers. This chapter aligns
most closely with [16], which also explains most of the algorithms below.

4.1 Machine learning preliminaries

We can analyze machine learning using the PAC learning framework [21]. Sup-
pose we have a domain X and there is some unknown target function f : X →
{−1, 1}, that is part of a known concept class C. For instance, the domain X
could be the set of all images of a certain height and width, and a possible
target function f could be a function that returns 1 if the image depicts a dog,
and -1 otherwise. Since f has two possible outcomes, it is also called a binary
classifier.

Given a sample S = ((x1, f(x1)), . . . , (xn, f(xn))) ∈ (X × {−1, 1})n of n la-
beled examples generated i.i.d. from an unknown distribution D on X , a learner
is an algorithm that outputs a hypothesis h : X → {−1, 1}. This hypothe-
sis is intended to be an approximation of the target function f . The set of
all hypotheses that a learner can output is known as said learner’s hypothesis
class H. We assume for the remainder of this chapter that any hypothesis h can
be evaluated in constant time.

In order to measure how closely a hypothesis approximates a target function,
we define two types of errors.

Definition 4.1. The generalization error of a hypothesis h : X → {−1, 1} w.r.t.

19

the target function f : X → {−1, 1} under distribution D is

err(h, f,D) = Px∼D[h(x) ̸= f(x)].

This is essentially the true error, and therefore the error we would like to
be small. However, the learner cannot compute this error, because the distri-
bution D is unknown.

Definition 4.2. The empirical error of a hypothesis h : X → {−1, 1} w.r.t.
sample S = ((x1, f(x1)), . . . , (xn, f(xn))) is

êrr(h, S) =
1

n

n∑
i=1

[h(xi) ̸= f(xi)].

The notation [.] in the summation is the Iverson bracket. It takes value 1 if
the statement between the brackets is true, and value 0 otherwise. The empirical
error is simply the fraction of errors that h makes on the sample set S. Unlike
the generalization error, the empirical error can be computed from the sample
set and h.

We want the hypothesis h to be probably approximately correct (PAC). This
phrase is what the PAC-learning framework is named after. This framework is
used to analyze the effectiveness of learning algorithms.

Definition 4.3. An (ε, δ)-PAC learner for a concept class C with hypothesis
class H and sample complexity n, is an algorithm that, for all target functions
f ∈ C and all distributions D on X , takes as input a sample
S = ((x1, f(x1)), . . . , (xn, f(xn))) generated i.i.d. from D, and outputs a hy-
pothesis h ∈ H such that

P[err(h, f,D) ≤ ε] ≥ 1− δ,

where the probability is taken over the sample and any randomness within the
algorithm.

A γ-weak learner is a (12 −γ, 0)-PAC learner, where γ is small. Setting δ = 0
here is purely for convenience, but not strictly necessary. Since we are working
with binary classifiers, setting ε = 1

2−γ means the weak learner is not necessarily
much better than a learner that simply outputs a random classification. We
want to turn such a weak learner into a strong learner, which is an (ε, δ)-PAC
learner, where both ε and δ are small. A booster is an algorithm that can turn
a weak learner into a strong learner.

A booster uses a weak learner W, as well as the sample set S and should
with probability ≥ 1 − δ output a hypothesis with generalization error ≤ ε.
Essentially, this means that a boosting algorithm equipped with a weak learner
is a strong learner. Boosting is an iterative process that repeatedly runs the
weak learner. Since we only have one sample S, resampling is used to generate
a new sample from the original sample S in each iteration. The distribution
used for this resampling also changes in each iteration.

20

We can analyze boosting algorithms to show that the empirical error of
their final hypothesis h on the sample S is likely to be small, but this does not
guarantee that the generalization error is small as well. Intuitively, the larger
the sample S is, the more representative it will be of the original distribution D.
If the sample S is very representative of D, then the difference between the
empirical error and generalization error should be small. What we want to
know, is how large we need to choose n, the size of S, to ensure that the
generalization error is small with high probability.

How large we choose n is partially dependent on the variables ε and δ of the
desired strong learner. This does not yet capture how difficult it is to learn the
concept class C. Hence, it would make sense to analyze the complexity of C.
However, we can actually bypass this and only analyze the weak learner W.
This is because W already has certain assumed performance guarantees specif-
ically on the concept class C. If C is very complex, then the weak learner will
require a certain level of complexity as well. We can analyze this using Vapnik-
Chervonenkis theory (VC-theory) [19].

VC-theory introduces the VC-dimension, a measure of complexity of a hy-
pothesis class. We say that a hypothesis class H shatters a set A ⊆ X of d
points if for all 2d labelings ℓ : A → {−1, 1}, there exists a hypothesis h ∈ H
such that h(x) = ℓ(x) for all x ∈ A. The VC-dimension of a hypothesis class H
is the size of a largest set A that is shattered by H.

For example, consider the domain X = R. Let H1 = {hθ : θ ∈ R}, where
hθ(x) = 1 if x ≥ θ and hθ(x) = −1 otherwise. Then H1 shatters every set of
size 1. For every set of size 2, however, there is no hypothesis that maps the left
point to 1 and the right point to −1. Hence the VC-dimension of H1 is 1. Now
let H2 = {h(a,b) : a, b ∈ R}, where h(a,b)(x) = 1 if x ∈ [a, b] and h(a,b)(x) = −1
otherwise. Then H2 shatters every set of size 2, because we can find intervals
that contain either, neither or both of the points. However, it does not shatter
any set of size 3, because there is no interval that contains the two outer points
but not the point in between.

In the following theorem, we find an upper bound on the probability that
there exists a hypothesis for which the generalization error and empirical error
are far apart. If we choose n sufficiently large, this means that the generalization
error and empirical error are close with high probability, for every hypothesis.

Theorem 4.1 (Theorem 2.5 in [17]). Let H be a hypothesis class of finite VC-
dimension d. Let S = ((x1, f(x1)), . . . , (xn, f(xn))) be a sample generated i.i.d.
from some distribution D with target function f ∈ C. Then for every κ > 0 it
holds that

P[∃h ∈ H : err(h, f,D) > êrr(h, S) + κ] ≤ 8
(en
d

)d
exp

(
−nκ2

32

)
.

It follows that if we set

n = O

(
d ln(d/(δε)) + ln(1/δ)

κ2

)
,

21

with a sufficiently large constant for n, then we will obtain with probability ≥
1 − δ, a sample S such that each hypothesis h ∈ H has generalization error at
most κ bigger than its empirical error on S. We would like for the generalization
error to be ≤ ε with probability ≥ 1− δ, so we should pick κ accordingly. If we
can get the empirical error all the way down to 0, then we can set κ = ε to get
the desired result. Alternatively, we could ensure that the empirical error is ≤ ε

2
and set κ = ε

2 . Since we defined a weak learner to have δ = 0 for convenience,
we can achieve a sufficiently low empirical error with probability 1, as we will
see in the upcoming sections. If we instead use a weak learner with δ > 0, then
we can only guarantee a sufficiently low empirical error with high probability.
Since we run the weak learner many times, we would need the δ of the weak
learner to be so small that there is still a high probability that it never fails in
any of the runs. Luckily, lowering the δ of the weak learner is usually not that
costly.

Since the above expression for n is a bit complicated, we would like to sim-
plify it a bit. Unfortunately, simply using the Õ-notation to ignore logarithmic
factors does not work, because δ only occurs within the logarithms. This also
means lowering the δ of the strong learner has little impact, so we will assume
from now on that δ is constant, say δ = 0.01. Since we will always either have
κ = ε or κ = ε

2 , we can rewrite the previous expression as

n = Õ

(
d

ε2

)
.

4.2 Basic booster

As previously mentioned, boosting uses the multiplicative weights method. Be-
fore we move on to established boosting algorithms, which deviate somewhat
from the multiplicative weights framework, we will first construct a basic boost-
ing algorithm from the multiplicative weights method as defined in Algorithm 2.1.

As the notation suggests, the n examples in the sample correspond to the n
constraints in the multiplicative weights method. Unlike the stock market exam-
ple from Section 2.1, this application has a proper oracle: the weak learner W.
It is called in each iteration t with distribution p(t) and returns an intermediate

solution: a hypothesis h(t) ∈ HW . The cost m
(t)
i of an example xi is based on

whether the hypothesis h(t) gets this example right or wrong. The most obvious
option for the final hypothesis is simply a majority vote among the intermediate
hypotheses h(t).

The cost vector m(t) is defined somewhat counter-intuitively, especially com-
ing from the stock market example. If the hypothesis h(t) gets the example right,
the cost is positive. Otherwise, the cost is negative. This means we decrease the
weights of the examples we get right, while increasing the weights of examples
we get wrong. The reason is that we want the weak learner to focus more on the
examples it tends to get wrong. Where we previously guided the algorithm to
the best experts, we are now guiding it to the hardest examples. This strategy
works well when studying for exams too. If you are struggling with a particular

22

Algorithm 4.1: Basic multiplicative weights booster

Input: γ-weak learner W with sample complexity nW ,
sample S ∈ (X × {−1, 1})n.

Output: hypothesis h : X → {−1, 1}.
1 Fix η ≤ 1

2 . Set weight w
(1)
i := 1, for all i ∈ [n].

2 for t = 1, 2, . . . , T do

3 Compute Φ(t) =
∑n

i=1 w
(t)
i .

4 Prepare nW i.i.d. examples from S with respect to p(t) = w(t)/Φ(t).

5 Feed the nW examples to W to obtain h(t).

6 For all i ∈ [n], define cost m
(t)
i = h(t)(xi)f(xi).

7 Update weights: w
(t+1)
i := w

(t)
i exp(−ηm(t)

i),∀i ∈ [n].

8 Output h = sign
(∑T

t=1 h
(t)
)
.

type of question, it is more worthwhile to practice that type of question, rather
than a type of question you are already good at.

Theorem 4.2. Let W be a γ-weak learner with sample complexity nW for con-
cept class C, with hypothesis class HW . Given a sample S ∈ (X × {−1, 1})n,
after T > lnn

γ2 rounds of Algorithm 4.1, with probability 1, we have êrr(h, S) = 0.
This algorithm has time complexity

O(T (W + n+ nW lnn)) = Õ

(
W + n+ nW

γ2

)
,

where W is the time complexity of the weak learner W.

Proof. Since Algorithm 4.1 is an instance of the multiplicative weights method,
we can use Theorem 2.1. The weak learner uses the distribution p(t) in itera-
tion t. By the definition of a γ-weak learner, we have that P[err(h(t), f, p(t)) ≤
1
2 − γ] = 1, where the probability is taken over the sample and any randomness
within the algorithm. Since a strong learner does not need to always have small
error, we can safely condition on the event that err(h(t), f, p(t)) ≤ 1

2 − γ, which

occurs almost surely. Then we have Pi∼p(t) [h(t)(xi) ̸= f(xi)] ≤ 1
2 − γ. It follows

that

m(t) · p(t) = Ei∼p(t)m
(t)
i ≥ 1 ·

(
1

2
+ γ

)
− 1 ·

(
1

2
− γ

)
= 2γ.

Note that we have binary costs. As mentioned in Section 2.3, this means that
we minimize the loss on the right-hand side by picking η =

√
ln(n)/T . It follows

that after T rounds, we have for all i ∈ [n]

2γT ≤
T∑

t=1

m(t) ·p(t) ≤
T∑

t=1

m
(t)
i +η

T∑
t=1

(m
(t)
i)2 ·p(t)+ lnn

η
=

T∑
t=1

m
(t)
i +2

√
T lnn,

23

and thus,
T∑

t=1

m
(t)
i ≥ 2γT − 2

√
T lnn.

Note that the sign of the sum on the left-hand side in the above equation
indicates whether the final hypothesis h correctly predicts example xi. Hence,
if we pick the number of iterations T such that the right-hand side is positive,
then it is guaranteed that h will correctly predict all examples in the sample S.
It follows that T > lnn

γ2 iterations are sufficient.
We will now analyze the time complexity of this algorithm. This depends

on how line 4 is implemented. An example can be prepared by first generating
a random number r uniformly from [0, 1]. Then, find the lowest i such that∑i

j=1 p
(t)
j ≥ r and pick the corresponding xi as example. This is done in O(n)

time. However, we need to prepare nW examples every iteration, so this can

become quite costly. If we precompute the partial sums
∑i

j=1 p
(t)
j for all i once

per iteration in O(n) time, then we can find the lowest i such that
∑i

j=1 p
(t)
j ≥ r

using binary search in O(lnn) time. This means line 4 can be implemented to
run in O(n+ nW lnn) = Õ(n+ nW) time. Lines 3, 6 and 7 of the algorithm all
cost O(n) time. In total, the time complexity is

O(T (W + n+ nW lnn)) = Õ

(
W + n+ nW

γ2

)
.

We have now shown that Algorithm 4.1 achieves an empirical error of 0, but
we would like to also achieve a small generalization error.

Theorem 4.3. Let W be a γ-weak learner with sample complexity nW for con-
cept class C, with hypothesis class HW of VC-dimension d. Given a sample set

S ∈ (X × {−1, 1})n of size n = Õ
(

d
ε2γ2

)
with a sufficiently large constant,

with T > lnn
γ2 iterations, Algorithm 4.1 is an (ε, δ)-PAC learner for C. This

algorithm has time complexity

Õ

(
W + nW

γ2
+

d

ε2γ4

)
.

Proof. Note that the hypothesis returned by our boosting algorithm (the strong
learner) is the sign of a linear combination of hypotheses from the weak learner.
It can be shown using VC-theory that the VC-dimension of the hypothesis class
of the strong learner is then O(dT ln(dT)) [19, Lemma 10.3]. It follows from

Theorem 4.1 that n = Õ
(
dT
ε2

)
= Õ

(
d

ε2γ2

)
with a sufficiently large constant is

sufficient to obtain with probability at least 1−δ a hypothesis with generalization
error at most ε bigger than the empirical error on S, which is 0 as shown in
Theorem 4.2. It follows that Algorithm 4.1 is an (ε, δ)-PAC learner for C, and
the time complexity follows from substituting n = Õ

(
d

ε2γ2

)
in the complexity

given in Theorem 4.2.

24

4.3 AdaBoost

One of the most commonly used boosting algorithms is Freund and Schapire’s
AdaBoost [13], short for Adaptive Boosting. The first lines of the algorithm
match those of the Algorithm 4.1, but things change starting with line 6.

Algorithm 4.2: AdaBoost

Input: γ-weak learner W with sample complexity nW ,
sample S ∈ (X × {−1, 1})n.

Output: hypothesis h : X → {−1, 1}.
1 Initialize weight vector w

(1)
i = 1 for all i ∈ [n].

2 for t = 1, . . . , T do

3 Compute Φ(t) =
∑n

i=1 w
(t)
i .

4 Prepare nW i.i.d. examples from S with respect to p(t) = w(t)/Φ(t).

5 Feed the nW examples to W to obtain h(t).

6 Compute ε(t) = Pi∼p(t) [h(t)(xi) ̸= f(xi)], set α
(t) = 1

2 ln
(

1−ε(t)

ε(t)

)
.

7 For all i ∈ [n], set w
(t+1)
i =

{
w

(t)
i · e−α(t)

, if h(t)(xi) = f(xi),

w
(t)
i · eα(t)

, if h(t)(xi) ̸= f(xi).

8 Output h = sign
(∑T

t=1 α
(t)h(t)

)
.

In line 6, we compute the error ε(t) of the hypothesis h(t), which can be
done exactly since it is weighted according to the known distribution p(t). Since
h(t) was generated by a weak learner with δ = 0, we know that ε(t) < 1

2 . This

implies that α(t) > 0. This α(t) increases as the error decreases, and is used
both when updating the weights, as well as in the final output. This means that
iterations where h(t) has small error have a greater impact on the weights as
well as on the final output.

Due to these changes, our earlier analysis of the multiplicative weights
method does not apply here. We omit the proof, but it is shown in [13] that
AdaBoost achieves empirical error ≤ κ for T ≈ 1

2γ2 ln
1
κ iterations. Since κ is

only present in a logarithmic factor, we can set κ < 1
n to achieve empirical error

0 with minimal additional costs. It also suffices to have sample size n = Õ
(
dT
ε2

)
as before. Since all differences with Algorithm 4.1 are in steps that take O(n)
time in both algorithms, the time complexity is again

O(T (W + n+ nW lnn)) = Õ

(
W + n+ nW

γ2

)
= Õ

(
W + nW

γ2
+

d

ε2γ4

)
.

4.4 SmoothBoost

The SmoothBoost algorithm by Servedio [18] was made with the purpose of
being more tolerant to malicious noise, which means that a fraction of the

25

labels are flipped by an adversary. It achieves this tolerance by ensuring the
distributions it generates are “smooth”.

Algorithm 4.3: SmoothBoost

Input: γ-weak learner W with sample complexity nW ,
sample S ∈ (X × {−1, 1})n, κ ∈ (0, 1), θ ∈ [0, 1/2).

Output: hypothesis h : X → {−1, 1}.
1 Initialize t = 1, N

(0)
i = 0, w

(1)
i = 1 for all i ∈ [n].

2 while true do

3 Compute Φ(t) =
∑n

i=1 w
(t)
i .

4 If Φ(t) < κn, then T = t− 1, return h = sign
(∑T

t=1 h
(t)
)
, terminate.

5 Prepare nW i.i.d. examples from S with respect to p(t) = w(t)/Φ(t).

6 Feed the nW examples to W to obtain h(t).

7 For all i ∈ [n], set N
(t)
i = N

(t−1)
i + h(t)(xi)f(xi)− θ,

w
(t+1)
i =

{
1, if N

(t)
i < 0,

(1− γ)N
(t)
i /2, if N

(t)
i ≥ 0.

8 t = t+ 1.

9 Output h = sign
(∑T

t=1 h
(t)
)
.

Unlike the previous two algorithms, SmoothBoost does not run for a set
number of iterations T , but instead has an exit condition: the algorithm ter-
minates when the sum of the weights is sufficiently small. The updating of the
weights is handled differently as well. Unlike AdaBoost, however, the output is
still simply a majority vote.

In line 7, a new vector N
(t)
i is introduced. This vector can be rewritten as

N
(t)
i =

(
t∑

τ=1

h(τ)(xi)f(xi)

)
− θt.

The term in parentheses is simply the number of correct classifications of ex-
ample i minus the number of incorrect classifications of i, by the hypotheses

h(τ) up to iteration t. Hence, if N
(t)
i ≥ 0, the example i is mostly being classi-

fied correctly. If we look at the weights w
(t)
i , then we can see that the weight

decreases in this case, but it is otherwise exactly 1.

Lemma 4.1 (Lemma 1 in [18]). For all iterations 1 ≤ t ≤ T of SmoothBoost,

it holds that maxi∈[n] p
(t)
i ≤ 1

κn .

Proof. As long as the exit condition has not been satisfied at iteration t, it

holds that Φ(t) ≥ κn. Since it holds for all weights that w
(t)
i ≤ 1, we have

p
(t)
i = w

(t)
i /Φ(t) ≤ 1

κn for all i ∈ [n].

26

Lemma 4.1 shows the smoothness property the algorithm is named after.
The main purpose of this property is making the algorithm more resistant to
malicious noise. Algorithms such as AdaBoost have a tendency to assign too
much weight to noisy examples in the sample S, which can result in poor per-
formance. The smoothness property limits to what extent this can occur. This
tolerance to malicious noise is not relevant to this thesis, but we will see some
other useful consequences of the smoothness property in the upcoming sections.

Theorem 4.4 (Theorem 2 in [18]). If SmoothBoost terminates, then the hy-
pothesis h it returns has empirical error êrr(h, S) ≤ κ.

Proof. If h(xi) ̸= f(xi), then this implies that the majority vote is wrong on

example xi. Therefore, N
(T)
i < 0 and thus w

(T+1)
i = 1. It follows that the

number of errors of the hypothesis h is at most
∑n

i=1 w
(T+1)
i = Φ(T+1), which

is less than κn due to the exit condition. It follows that êrr(h, S) < κ.

The proof of Theorem 4.4 is very simple due to the exit condition, which es-
sentially checks whether the empirical error is sufficiently low. However, proving
that SmoothBoost indeed terminates and finding a bound on T is significantly
more difficult. We will not give the full proof here, but we will need some of the
steps for later, so we will start from the following lemma.

Lemma 4.2. If θ = γ
2+γ and it holds for all t that err(h(t), f, p(t)) ≤ 1

2 − γ,
then

2n

γ
√
1− γ

> γ

T∑
t=1

Φ(t).

Proof. This follows from combining the bounds in Lemma 4 and Lemma 5 in
[18].

Theorem 4.5 (Theorem 3 in [18]). If θ = γ
2+γ and it holds for all t that

err(h(t), f, p(t)) ≤ 1
2 − γ, then SmoothBoost terminates in T < 2

κγ2
√
1−γ

itera-
tions.

Proof. For 1 ≤ t ≤ T , the exit condition has not yet been satisfied. Therefore
we have Φ(t) ≥ κn and thus γ

∑T
t=1 Φ

(t) ≥ γκnT . By combining this with
Lemma 4.2, we obtain T < 2

κγ2
√
1−γ

.

The parameter θ gives a threshold of what margin of correct classifications is
required before the weights can be lowered. In other words, with a higher θ, more
of a consensus between the hypotheses is required than simply a majority. If
malicious noise is not a concern, then we can also set θ = 0 to get a slightly better
bound on T , without affecting any theoretical results relevant to this thesis. This
new bound does not affect the time complexity, however. Recall that the second
condition in Lemma 4.2 and Theorem 4.5 holds with probability 1.

27

Theorem 4.6. Let W be a γ-weak learner with sample complexity nW for con-
cept class C, with hypothesis class HW of VC-dimension d. Given a sample

set S ∈ (X × {−1, 1})n of size n = Õ
(

d
ε2γ2

)
with a sufficiently large constant,

SmoothBoost is an (ε, δ)-PAC learner for C. This algorithm has time complexity

Õ

(
W + nW

γ2
+

d

ε2γ4

)
.

Proof. Unfortunately, setting κ < 1
n as we did with AdaBoost is too costly here,

due to the polynomial dependence on 1
κ . Instead, we will set κ = ε

2 and choose

n = Õ
(

d
ε2γ2

)
such that the generalization error is at most ε

2 higher than the

empirical error with probability at least 1− δ, as according to Theorem 4.1.
By Theorem 4.4, we have empirical error at most ε

2 , and thus generalization
error at most ε with probability at least 1−δ. The time complexity per iteration

is the same as the previous boosting algorithms, but we now need T = O
(

1
εγ2

)
iterations, as shown in Theorem 4.5. The total time complexity is therefore

O(T (W + n+ nW lnn)) = Õ

(
W + n+ nW

εγ2

)
= Õ

(
W + nW
εγ2

+
d

ε4γ4

)
.

4.5 Quantum AdaBoost

A quantum version of the AdaBoost algorithm was developed by Arunachalam
and Maity [7]. A quantum booster can use either a classical weak learner, or
a quantum weak learner, which can take quantum examples. In the previous
classical boosting algorithms, each iteration had several steps that required O(n)
time. Using various quantum subroutines, these steps are made to run in O(

√
n)

time instead. Quantum AdaBoost achieves a time complexity of

Õ

(
(W + nW)1.5

√
n

γ10

)
= Õ

(
(W + nW)1.5

√
d

γ11

)
,

where ε, δ are both assumed to be constant. Compared to classical AdaBoost,

which under the same assumptions has a total cost of Õ
(

W+nW
γ2 + d

γ4

)
, the

quantum version has a sublinear dependence on the sample size n and thus
also d. While this is a big improvement, the dependence on γ is much worse
than before. The main reason for this is that the error εt, which is approximated
using a modified version of amplitude estimation, is used both in updating the
weights and in the final output. The approximation error propagates through
the algorithm, which has to take extra steps to ensure correctness, resulting in
a more complicated algorithm with a bad dependence on γ. As we will see next,
Quantum AdaBoost is outperformed by a much simpler algorithm, so we will
not go into any further detail.

28

4.6 Quantum SmoothBoost

A quantum version of the SmoothBoost algorithm was developed by Izdebski
and de Wolf [16]. As with Quantum AdaBoost, the goal is to achieve a sublinear
dependence on n and thus d. Thanks to various properties of SmoothBoost, the
quantization goes much more smoothly than it did with AdaBoost. The result
is a much simpler algorithm with a much better dependence on γ than Quantum
AdaBoost.

Algorithm 4.4: Quantum SmoothBoost

Input: γ-weak (quantum) learner W with sample complexity nW ,
sample S ∈ (X × {−1, 1})n, κ ∈ (0, 1), θ ∈ [0, 1/2).

Output: hypothesis h : X → {−1, 1}.
1 Initialize t = 1, N

(0)
i = 0, w

(1)
i = 1 for all i ∈ [n].

2 while true do

3 Compute an estimate Φ̃(t) of Φ(t) =
∑n

i=1 w
(t)
i using quantum

approximate counting, where N
(t)
i =

(∑t
τ=1 h

(τ)(xi)f(xi)
)
− θt,

w
(t+1)
i =

{
1, if N

(t)
i < 0,

(1− γ)N
(t)
i /2, if N

(t)
i ≥ 0.

4 If Φ̃(t) < κn, then T = t− 1, return h = sign
(∑T

t=1 h
(t)
)
, terminate.

5 Prepare nW copies of
∣∣p(t)〉 =∑n

i=1

√
p
(t)
i |i, f(xi)⟩, where

p(t) = w(t)/Φ(t).
6 Feed the nW examples to W to obtain h(t).
7 t = t+ 1.

8 Output h = sign
(∑T

t=1 h
(t)
)
.

In order to achieve the sublinear dependence on n, we follow the approach
of Quantum AdaBoost and compute the weights on demand whenever they are

needed, as can be seen in line 3. Computing a weight w
(t)
i on demand can be

done in O(t) = O(T) time, since the required N
(t)
i is a sum over t elements.

Normally, we need to know all n weights of an iteration to compute the sum Φ(t)

in line 3. However, using quantum approximate counting (Theorem 3.3), we can
instead compute an estimate Φ̃(t) of Φ(t) in Õ(T

√
n) time. We can ensure that

with high probability, quantum approximate counting outputs an estimate Φ̃(t)

such that 0.9Φ(t) ≤ Φ̃(t) ≤ 1.1Φ(t).
Instead of preparing nW examples sampled from S, we now prepare W

identical quantum states, that contain the entire sample in superposition. This
allows the use of a quantum weak learner that takes such a quantum state as
input, but we can also use a classical weak learner as before, by measuring in the
computational basis. Generating these quantum states is done using amplitude
amplification, and is much cheaper than it was in quantum AdaBoost, due to

29

the smoothness property. Preparing one copy of
∣∣p(t)〉 can be done in Õ

(
T√
κ

)
time.

In total, Quantum SmoothBoost runs O(TnW) quantum subroutines that
each have a probability of failing. With an extra cost factor log(TnW), we can
reduce the error probability to be ≪ 1/(TnW), so that, by the union bound,
the probability that one of them fails is small. In particular, we want this
probability to be at most δ

2 .
Notably, the core of Quantum SmoothBoost is identical to that of Smooth-

Boost. Given the same input, if W is a deterministic classical weak learner, the
weights will be exactly the same in both algorithms. This is very different from
Quantum AdaBoost, which has to approximate the errors ε(t) that are used to
update the weights. This causes the approximation errors to propagate through
the algorithm, which is the primary cause of all the complications in Quantum
AdaBoost.

Because the core of the algorithm remains the same, we only need to slightly
adjust the proofs to accommodate for the estimate Φ̃(t). Lemma 4.2 is unaffected
by this change. We will present the three theorems from before, adjusted for
this new context.

Lemma 4.3. For all iterations 1 ≤ t ≤ T of Quantum SmoothBoost, it holds

that maxi∈[n] p
(t)
i ≤ 1.1

κn , assuming all quantum subroutines succeed.

Proof. As long as the exit condition has not been satisfied at iteration t, it
holds that Φ̃(t) ≥ κn. If quantum approximate counting succeeds, then we have
1.1Φ(t) ≥ Φ̃(t). It follows that Φ(t) ≥ κn

1.1 . Since it holds for all weights that

w
(t)
i ≤ 1, we have p

(t)
i = w

(t)
i /Φ(t) ≤ 1.1

κn for all i ∈ [n].

Theorem 4.7. If Quantum SmoothBoost terminates, then the hypothesis h it
returns has empirical error êrr(h, S) ≤ κ

0.9 , assuming all quantum subroutines
succeed.

Proof. If h(xi) ̸= f(xi), then this implies that the majority vote is wrong on

example xi. Therefore, N
(T)
i < 0 and thus w

(T+1)
i = 1. It follows that the

number of errors of the hypothesis h is at most
∑n

i=1 w
(T+1)
i = Φ(T+1). If

quantum approximate counting succeeds, it holds that 0.9Φ(T+1) ≤ Φ̃(T+1).
Due to the exit condition, we have Φ̃(T+1) < κn and thus the number of errors
of h is at most κn

0.9 . It follows that êrr(h, S) <
κ
0.9 .

Theorem 4.8. If θ = γ
2+γ and it holds for all t that err(h(t), f, p(t)) ≤ 1

2 − γ,

then Quantum SmoothBoost terminates in T < 2.2
κγ2

√
1−γ

, assuming all quantum

subroutines succeed.

Proof. For 1 ≤ t ≤ T , the exit condition has not yet been satisfied. Therefore we
have Φ̃(t) ≥ κn. If quantum approximate counting succeeds, we have 1.1Φ(t) ≥
Φ̃(t). Thus we have 1.1γ

∑T
t=1 Φ

(t) ≥ γκnT . By combining this with Lemma 4.2,
we obtain T < 2.2

κγ2
√
1−γ

.

30

Theorem 4.9. Let W be a γ-weak learner with sample complexity nW for con-
cept class C, with hypothesis class HW of VC-dimension d. Given a sample set

S ∈ (X × {−1, 1})n of size n = Õ
(

d
ε2γ2

)
with a sufficiently large constant,

Quantum SmoothBoost is an (ε, δ)-PAC learner for C. This algorithm has time
complexity

Õ

(
W

εγ2
+

nW
ε2.5γ4

+

√
d

ε3.5γ5

)
.

Proof. As with SmoothBoost, we want empirical error ≤ ε
2 , so we set κ =

0.45ε. We choose n = Õ
(

d
ε2γ2

)
such that the generalization error is at most ε

2

higher than the empirical error with probability at least 1− δ
2 , as according to

Theorem 4.1. Since we also assumed the quantum subroutines all succeed with
probability at least 1− δ

2 , it follows from the union bound that the total error
probability is at most δ.

By Theorem 4.7, we have empirical error at most ε
2 , and thus generalization

error at most ε with probability at least 1−δ. Approximating Φ̃(t) costs Õ(T
√
n)

time by Theorem 3.3. As explained in Section 4.1 of [16], preparing one copy

of
∣∣p(t)〉 costs Õ(T/

√
ε). As shown in Theorem 4.8, we still use T = O

(
1

εγ2

)
iterations. It follows that the total time complexity of Quantum SmoothBoost
is

Õ

(
T

(
W +

TnW√
ε

+ T
√
n

))
= Õ

(
W

εγ2
+

nW
ε2.5γ4

+

√
n

ε2γ4

)
= Õ

(
W

εγ2
+

nW
ε2.5γ4

+

√
d

ε3.5γ5

)
.

As with quantum AdaBoost, we have a sublinear dependence on the sample
size n and thus d, which is a great quantum speed-up. While the dependence on
γ is still slightly worse than in the classical algorithm, it is a huge improvement
over Quantum AdaBoost.

4.7 Monte Carlo SmoothBoost

In this section, we present our own boosting algorithm, which we call Monte
Carlo SmoothBoost, named after its usage of the Monte Carlo method. The al-
gorithm is based closely on Quantum SmoothBoost, but it is classical. Despite
this, it achieves not only a sublinear dependence on n, but even a logarithmic
dependence on n, which is a significant improvement over the quantum boost-
ing algorithms. This seems too good to be true, since this seems to imply a
logarithmic dependence on the VC-dimension d, even though d indicates the
complexity of the problem. We will see later why this implication is false.

31

There are two key differences between Quantum SmoothBoost and Monte
Carlo SmoothBoost. Instead of quantum approximate counting, Monte Carlo
SmoothBoost uses the Monte Carlo method to compute the estimate Φ(t). Sec-
ondly, it prepares nW i.i.d. examples instead of copies of a quantum state. How-
ever, it does not use the same binary search approach we saw in the classical
algorithms. Instead, it uses rejection sampling, which we will explain later.

Algorithm 4.5: Monte Carlo SmoothBoost

Input: γ-weak learner W with sample complexity nW ,
sample S ∈ (X × {−1, 1})n, κ ∈ (0, 1), θ ∈ [0, 1/2).

Output: hypothesis h : X → {−1, 1}.
1 Initialize t = 1, N

(0)
i = 0, w

(1)
i = 1 for all i ∈ [n].

2 while true do

3 Compute an estimate Φ̃(t) of Φ(t) =
∑n

i=1 w
(t)
i using the Monte

Carlo method, where N
(t)
i =

(∑t
τ=1 h

(τ)(xi)f(xi)
)
− θt,

w
(t+1)
i =

{
1, if N

(t)
i < 0,

(1− γ)N
(t)
i /2, if N

(t)
i ≥ 0.

4 If Φ̃(t) < κn, then T = t− 1, return h = sign
(∑T

t=1 h
(t)
)
, terminate.

5 Prepare nW i.i.d. examples from S with respect to p(t) = w(t)/Φ(t).

6 Feed the nW examples to W to obtain h(t).
7 t = t+ 1.

8 Output h = sign
(∑T

t=1 h
(t)
)
.

In step 3 of Quantum SmoothBoost, we use approximate counting to com-
pute an estimate s̃ of s =

∑n
i=1M

t
i , which is needed to check the exit condition

of the algorithm. If 1
1.1s ≤ s̃ ≤ 1.1s (with high probability), then we can use

the logic of Quantum SmoothBoost to prove the algorithm works. The idea is
to use the Monte Carlo method to estimate s, which does not require quantum
computing.

In line 3, the Monte Carlo method is implemented as follows. We sample
j1, . . . , jℓ i.i.d. uniformly from {1, . . . , n}. Then we can estimate Φ(t) by

Φ̃(t) =
n

ℓ

ℓ∑
k=1

w
(t)
jk
.

To analyze this estimator, we will use Hoeffding’s inequality.

Theorem 4.10 (Hoeffding’s inequality). Let X1, . . . , Xn be independent ran-
dom variables such that ai ≤ Xi ≤ bi. Let Sn :=

∑n
i=1Xi be the sum of the

random variables. Then, for all t > 0, it holds that

P(|Sn − E[Sn]| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

32

Theorem 4.11. Let δ > 0 and κ > 0, and let Tu ≥ T be an upper bound on
the number of iterations of Monte Carlo SmoothBoost. The estimator Φ̃(t) =
n
ℓ

∑ℓ
k=1 w

(t)
jk

is an unbiased estimator of Φ(t), and for ℓ ≥ 50
κ2 ln

(
2Tu

δ

)
, with

probability at least 1 − δ, it holds that |Φ̃(t) − Φ(t)| < 0.1κn for all iterations
1 ≤ t ≤ T . This estimation can be computed in Õ

(
T lnn
κ2

)
time.

Proof. We have

E[Φ̃(t)] =
n

ℓ
· ℓ · Φ

(t)

n
= Φ(t),

so the estimate is unbiased. It follows from Hoeffding’s theorem that for all
η > 0, we have

P(|Φ̃(t) − Φ(t)| ≥ η) ≤ 2 exp

(
− 2η2∑ℓ

k=1
n2

ℓ2

)
= 2 exp

(
−2ℓη2

n2

)
.

We will set η = 0.1κn, which yields

P(|Φ̃(t) − Φ(t)| ≥ 0.1κn) ≤ 2e−0.02ℓκ2

.

We want the total error probability over all T iterations to be at most δ, which
we can achieve by setting ℓ large enough such that the above error probability is
upper bounded by δ/T . Then, by the union bound, the total error probability
is at most δ. However, we do not know T ahead of time. In the upcoming
Theorem 4.13, we obtain an upper bound on the number of iterations T . If
we denote this upper bound by Tu, then it suffices to upper bound the error
probability by δ/Tu ≤ δ/T . Hence it suffices to pick ℓ such that

2e−0.02ℓκ2

≤ δ

Tu
,

e−0.02ℓκ2

≤ δ

2Tu
,

−0.02ℓκ2 ≤ ln

(
δ

2Tu

)
,

ℓ ≥ 50

κ2
ln

(
2Tu
δ

)
.

Note that the Monte Carlo method runs in O(ℓT lnn) = Õ
(
T lnn
κ2

)
time. Here,

δ is hidden since it is assumed constant, but the dependence on δ is logarithmic,
so we can cheaply lower δ. The logarithmic dependence on n here follows from
the fact that we need log2 n bits to work with indices in [n]. Note that now
|Φ̃(t) − Φ(t)| < 0.1κn with probability δ/Tu. By the union bound, it holds that
with probability at least 1 − δ, the bound |Φ̃(t) − Φ(t)| < 0.1κn holds for all
1 ≤ t ≤ T ≤ Tu.

While this is not the same guarantee as we got from quantum approximate
counting with Quantum SmoothBoost, it is enough to prove the same properties
as the two SmoothBoost algorithms. Again, the core of the algorithm is the same
as the two previous SmoothBoost algorithms, so Lemma 4.2 still holds.

33

Lemma 4.4. For all iterations 1 ≤ t ≤ T of Monte Carlo SmoothBoost, it

holds that maxi∈[n] p
(t)
i < 1

0.9κn , assuming the estimation never fails.

Proof. As long as the exit condition has not been satisfied at iteration t, it
holds that Φ̃(t) ≥ κn. If the estimation succeeds, we have Φ(t) + 0.1κn > Φ̃(t).

It follows that Φ(t) > 0.9κn. Since it holds for all weights that w
(t)
i ≤ 1, we

have p
(t)
i = w

(t)
i /Φ(t) ≤ 1

0.9κn for all i ∈ [n].

Theorem 4.12. If Monte Carlo SmoothBoost terminates, then the hypothesis
h it returns has empirical error êrr(h, S) ≤ 1.1κ, assuming the estimation never
fails.

Proof. If h(xi) ̸= f(xi), then this implies that the majority vote is wrong on

example xi. Therefore, N
(T)
i < 0 and thus w

(T+1)
i = 1. It follows that the

number of errors of the hypothesis h is at most
∑n

i=1 w
(T+1)
i = Φ(T+1). If the

estimation succeeds, Φ(T+1) − 0.1κn ≤ Φ̃(T+1). Due to the exit condition, we
have Φ̃(T+1) < κn and thus Φ(T+1) < 1.1κn. Hence the number of errors of h
is at most 1.1κn. It follows that êrr(h, S) < 1.1κ.

Theorem 4.13. If θ = γ
2+γ and it holds for all t that err(h(t), f, p(t)) ≤ 1

2 −
γ, then Monte Carlo SmoothBoost terminates in T < 1

0.45κγ2
√
1−γ

iterations,

assuming the estimation never fails.

Proof. For 1 ≤ t ≤ T , the exit condition has not yet been satisfied. Therefore
we have Φ̃(t) ≥ κn. With high probability, we have Φ(t)+0.1κn > Φ̃(t) and thus
Φ(t) > 0.9κn. Thus we have γ

∑T
t=1 Φ

(t) > 0.9γκnT . By combining this with
Lemma 4.2, we obtain T < 1

0.45κγ2
√
1−γ

.

In previous classical algorithms, we used binary search to efficiently prepare
examples from S. However, this required a precomputation that took O(n) time,
which we would like to avoid. Instead, we can prepare examples using rejection

sampling as follows. We first sample i ∈ [n] uniformly. With probability w
(t)
i , we

output xi. Otherwise, we reject it and restart the process. Since the probability

of sampling an example xi is proportional to w
(t)
i , it follows that the example

is indeed sampled according to the distribution p(t) as desired. Note that we do
not need to compute Φ(t), even though it is used in the definition of p(t).

Theorem 4.14. The expected number of repetitions before rejection sampling
from p(t) in line 5 of Monte Carlo SmoothBoost terminates, is O

(
1
κ

)
, assuming

the estimation never fails.

Proof. We know that the exit condition of the algorithm has not been satisfied in
line 5, so it holds that Φ̃(t) ≥ κn. With high probability, we have Φ(t)+0.1κn >
Φ̃(t). It follows that Φ(t) > 0.9κn. The probability that we do accept the first

sample is thus Φ(t)

n > 0.9κ. It follows that the expected number of repetitions
before rejection sampling terminates is O

(
1
κ

)
= O

(
1
ε

)
.

34

Theorem 4.15. Let W be a γ-weak learner with sample complexity nW for
concept class C, with hypothesis class HW of VC-dimension d. Given a sample

set S ∈ (X × {−1, 1})n of size n = Õ
(

d
ε2γ2

)
with a sufficiently large constant,

Monte Carlo SmoothBoost is an (ε, δ)-PAC learner for C. This algorithm has
time complexity

Õ

(
W

εγ2
+

nW
ε3γ4

+
ln d

ε4γ4

)
.

Proof. This time around, we set κ = ε
2.2 to achieve an empirical error ≤ ε

2 . We

choose n = Õ
(

d
ε2γ2

)
such that the generalization error is at most ε

2 higher than

the empirical error with probability at least 1− δ
2 , as according to Theorem 4.1.

By Theorem 4.11, we can run the estimator for long enough to ensure that with
probability at least 1 − δ

2 , it holds that |Φ̃(t) − Φ(t)| < 0.1κn for all iterations
1 ≤ t ≤ T . It follows from the union bound that the total error probability is
now at most δ.

By Theorem 4.12, we have empirical error at most ε
2 , and thus general-

ization error at most ε with probability at least 1 − δ. Approximating Φ̃(t)

costs Õ
(
T lnn
ε2

)
time by Theorem 4.11. As shown in Theorem 4.13, we still use

T = O
(

1
εγ2

)
iterations. It follows that the total time complexity of Quantum

SmoothBoost is

Õ

(
T

(
W +

TnW
ε

+
T lnn

ε2

))
= Õ

(
W

εγ2
+

nW
ε3γ4

+
lnn

ε4γ4

)
= Õ

(
W

εγ2
+

nW
ε3γ4

+
ln d

ε4γ4

)
.

If we assume ε to be constant, Monte Carlo SmoothBoost is a strict improve-
ment over both quantum algorithms. It is not a strict improvement over the
classical algorithms, but the dependence on γ is similar if the time complexity
is expressed in d instead of n, with only the second term having a significantly
worse dependence on γ.

This result is quite surprising at first glance. It suggests that the VC-
dimension d has very little impact on the time complexity of the boosting al-
gorithm, even though the VC-dimension should indicate the difficulty of the
learning problem. If we significantly increase the complexity of the concept
class C and the hypothesis class H, then we should intuitively see a significant
increase in time complexity of the boosting algorithm. Yet this does not appear
to be the case with Monte Carlo SmoothBoost.

The likely cause of this discrepancy, is that this seemingly missing complex-
ity is hiding in the sample complexity nW and the time complexity W of the
weak learner W. After all, the weak learner is defined as a PAC-learner for a
specific concept class C and hypothesis class HW . Assuming the existence of a
weak learner is what allows us to express the complexity of boosting algorithms

35

without any dependence on the complexity of C. A more complex concept class
would simply require a more complex hypothesis class in order for a weak learner
to exist in the first place. We can see the dependence on the complexity of H
through its VC-dimension d. However, the impact of the complexity of H on
nW and W is invisible in this analysis. Hence, the fact that the dependence
on d is logarithmic in the time complexity of Monte Carlo SmoothBoost, is not
necessarily that significant.

Suppose we know that a strong learner requires Ω(N) samples. If we use a
boosting algorithm that uses T iterations with a weak learner W that requires
nW samples, then we obtain a strong learner that uses TnW samples. Hence,
we know that TnW ≥ N and thus nW ≥ N/T . Note that T is chosen only based
on ε and γ in the boosting algorithms we have seen. If we consider ε and γ to
be constants, it follows that the weak learner requires nW = Ω(N) samples as
well. This further suggests that much of the complexity is hidden in the weak
learner.

The main accomplishment of the quantum boosting algorithms we have seen,
is the sublinear dependence on n. Due to what we just discussed, this unfortu-
nately does not imply a better dependence on the VC-dimension d, since both
nW and W depend on d as well. With Monte Carlo SmoothBoost having only
a logarithmic dependence on n, the only advantage of using quantization in
boosting algorithms is shown to be even more insignificant, since a classical
algorithm can do even better. Existing classical boosting algorithms such as
AdaBoost still have the best dependence on ε and γ, which likely outweighs a
better dependence on n in most cases.

36

Chapter 5

Linear programs and
semidefinite programs

Another application of the multiplicative weights method is solving linear pro-
grams (LPs) and the more general semidefinite programs (SDPs). In both of
these types of problem, there is an objective function that needs to be minimized
or maximized by tweaking a set of variables subject to a number of constraints.

5.1 Linear programs

In an LP, there is a linear objective function that we aim to maximize, subject
to a number of linear constraints. We will write the standard form of an LP as
follows.

max c⊤x

s.t. Ax ≤ b,

x ≥ 0.

Here x ∈ Rm is the vector of variables over which we maximize. The vectors
b ∈ Rn, c ∈ Rm and the constraint matrix A ∈ Rn×m are given. We can view
the second line in the problem definition as a set of n linear constraints. For
every i ∈ [n], x is subject to the constraint Aix ≤ bi, where Ai denotes the i-th
row of A.

Since the multiplicative weights method is iterative and generally closes in
on the solution to a problem, rather than finding an exact solution, we will
relax the problem. The first step of the relaxation is to turn the LP from a
maximization problem into a feasibility problem. That is, for some α ∈ R, we
want to find x ≥ 0, subject to Ax ≤ b, such that c⊤x ≥ α. Note that the
constraint c⊤x ≥ α is simply another linear constraint and it can therefore be
absorbed into A and b. If we know an upper bound for the maximum, then

37

we can use a binary search over the value of α to find a solution x such that
c⊤x is arbitrarily close to the maximum. The number of times we need to solve
the feasibility problem to approximate the maximization problem is logarithmic
with respect to the desired precision.

The second step of the relaxation is to allow solutions x that only approxi-
mately satisfy the constraints. For a given ε > 0, we consider the constraints to
be sufficiently satisfied if for all i ∈ [n], we have Aix ≤ bi + ε. Such an x ∈ Rm

is an approximate solution to the LP. This in itself is not much of a relaxation,
since we could simply absorb the ε into the vector b to obtain a problem of
the same format as before. The difference is that we do not necessarily require
finding an approximate solution even if one exists. If there exists a solution to
the feasibility problem, then we must find at least an approximate solution. If
the feasibility problem has no solution, however, then we are allowed to either
find an approximate solution or simply return nothing. The final relaxed form
of an LP can be written as follows.

if ∃x ≥ 0

s.t. Ax ≤ b,

then find x ≥ 0

s.t. Aix ≤ bi + ε,∀i ∈ [n].

Note that the above problem definition does not specify what to return in
case there exists no solution x ≥ 0 such that Ax ≤ b. As long as it does
not return an infeasible approximate solution x, any output is acceptable. If
an algorithm correctly solves the problem and does not return an approximate
solution x, then this proves that the feasibility problem has no solution. The
actual proof can then be derived from the proof that the algorithm functions as
intended.

5.1.1 Basic LP solver

The first algorithm we will look at is a direct application of the multiplicative
weights method as defined in Algorithm 2.2, with the alternative update rule.
The choice for the n constraints in the multiplicative weights method is easy,
since the LP we want to solve has n constraints as well.

Similar to the boosting algorithms, we have an oracle that outputs interme-
diate solutions. In iteration t, the oracle outputs x(t) ∈ Rm. Since the entire
point of the algorithm is to find a feasible approximate solution, we cannot
expect these intermediate solutions to be feasible. Instead, the oracle solves
a different problem, based on the probability distribution p(t) over the n con-
straints. The problem is to find x ≥ 0 such that p(t)⊤Ax ≤ p(t)⊤b. If such a
solution exists, then the oracle returns a solution x(t). Otherwise, it returns
nothing. Since this problem is just a single linear constraint, it is much simpler
to solve than the LP. Depending on the type of LP, different oracles might be
convenient.

38

Note that if there exists an x ∈ Rm that satisfies Ax ≤ b, then it also satisfies
p(t)⊤Ax ≤ p(t)⊤b. By contraposition, if the oracle fails to find a solution, then
the original LP also has no solution. This means that we can end the algorithm
as soon as the oracle fails to find a solution.

The cost vector is c(t) := b − Ax(t). Note that this has no relation to the
vector c from the standard form of the unrelaxed LP. The cost c

(t)
i = bi−Aix

(t)

can be seen as the margin by which the i-th constraint is satisfied by x(t). A
positive cost implies that the constraint is satisfied, while a negative cost implies
that it is not. As with the boosting algorithms, this seems somewhat backwards,
but the reason is that we want the algorithm to focus on constraints that are
not yet satisfied. Such constraints will have their weights increased.

Another assumption we need to make about the oracle is that this cost has
an upper and lower bound. We will assume that for any intermediate solution
x(t), it holds that b−Ax(t) ∈ [−1, 1]n, and thus c(t) ∈ [−1, 1]n as desired. If the
oracle has larger (finite) bounds, then we can simply scale A and b accordingly.

The oracle does not need to satisfy all constraints. However, for any un-
satisfied constraints, there should be other constraints that make up for it by
being satisfied by a large enough margin. Constraints with larger weights con-
tribute more, both positively and negatively, and are therefore more important
to satisfy, preferably by a large margin.

The output of the algorithm is simply the average x̄ := 1
T

∑T
t=1 x

(t) of the
intermediate solutions returned by the oracle.

Algorithm 5.1: Basic multiplicative weights LP algorithm

1 Fix η ≤ 1
2 . Set weight w

(1)
i := 1,∀i ∈ [n].

2 for t = 1, 2, . . . , T do
3 Feed into the oracle the distribution p(t) = w(t)/Φ(t), where

Φ(t) =
∑n

i=1 w
(t)
i , to obtain x(t). If the oracle returns nothing, then

terminate.
4 For all i ∈ [n], define cost c

(t)
i = bi −Aix

(t).

5 Update weights: w
(t+1)
i := w

(t)
i (1− ηc

(t)
i),∀i ∈ [n].

6 Output x̄ = 1
T

∑T
t=1 x

(t).

Theorem 5.1. If there exists a solution x ≥ 0 such that Ax ≤ b, then Algo-

rithm 5.1 with η =
√

lnn
2T and T = ⌈8 ln(n)/ε2⌉ returns an approximate solution

x̄ such that Ax̄ ≤ b+ ε.

Proof. Note that the oracle will never fail to find a solution if the original LP has
a solution. Hence, we can assume the algorithm does not terminate early and
outputs a solution x̄. Since we are using the multiplicative weights method with
the alternative update rule, Theorem 2.2 applies to this algorithm. Working

39

out the left-hand side of the inequality in Theorem 2.1, we get

T∑
t=1

c(t) · p(t) =
T∑

t=1

(
b−Ax(t)

)
· p(t) =

T∑
t=1

(
p(t)

⊤
b− p(t)

⊤
Ax(t)

)
≥ 0,

where the last inequality follows directly from the fact that the oracle gives a

solution x(t) such that p(t)
⊤
b− p(t)

⊤
Ax(t) ≥ 0.

It now follows from Theorem 2.1 that after T rounds, for all i ∈ [n], we have

0 ≤
T∑

t=1

c
(t)
i + η

T∑
t=1

|c(t)i |+ lnn

η

= (1 + η)
T∑

t=1

c
(t)
i + 2η

T∑
t:c

(t)
i <0

|c(t)i |+ lnn

η

≤ (1 + η)

T∑
t=1

(bi −Aix
(t)) + 2ηT +

lnn

η
.

We choose η =
√

lnn
2T such that the final two terms each become

√
2T lnn.

Dividing by T and substituting x̄ = 1
T

∑T
t=1 x

(t), we find

0 ≤ (1 + η)
1

T

T∑
t=1

(bi −Aix
(t)) +

2
√
2T lnn

T
= (1 + η)(bi −Aix̄) +

√
8 lnn

T
.

For T ≥ ⌈8 ln(n)/ε2⌉, we find

0 ≤ (1 + η)(bi −Aix̄) + ε.

It follows that (1 + η)Aix̄ ≤ (1 + η)bi + ε and hence Aix̄ ≤ bi + ε. This holds
for all i ∈ [n], so we find that x̄ is a solution to the relaxed problem.

5.1.2 Zero-sum games

The notion that zero-sum games and LPs are equivalent was proven in [1].
Hence, we can also solve LPs by solving the corresponding zero-sum games.

In a zero-sum game, two players that we call Alice and Bob each have a
finite number of pure strategies. Alice has m moves, while Bob has n. After
both players select a move, the payoff is determined based on the payoff matrix
A ∈ [−1, 1]m×n. In particular, if Alice plays i ∈ [m] and Bob plays j ∈ [n], then
Alice receives payoff Aij , while Bob receives −Aij . The sum of these payoffs is
always zero, hence the name zero-sum game.

Instead of a pure strategy, Alice and Bob can also use a randomized strategy,
which is a probability distribution over the moves. If Alice uses the strategy
p ∈ ∆m and Bob uses q ∈ ∆n, then the expected payoff for Alice is p⊤Aq.

In order to solve a zero-sum game, we need to find a Nash equilibrium.

40

Definition 5.1. A Nash equilibrium is a pair of strategies (p, q) such that, for
all i ∈ [m] and for all j ∈ [n],

e⊤i Aq ≤ p⊤Aq ≤ p⊤Aej .

The first inequality implies that any pure strategy i ∈ [n] that Alice chooses
does not strictly improve her expected payoff if Bob sticks to his strategy q.
It follows that no randomized strategy can improve her expected payoff either.
The second inequality similarly implies that Bob cannot improve his expected
payoff as long as Alice sticks to her strategy p.

Just as with the multiplicative weights algorithm for LPs, we will not find an
exact solution to the zero-sum game. Instead, we will consider an approximate
Nash equilibrium to be sufficient.

Definition 5.2. For a given ε > 0, a ε-Nash equilibrium is a strategy pair (p, q)
such that for all i ∈ [m] and for all j ∈ [m],

e⊤i Aq − ε ≤ p⊤Aq ≤ p⊤Aej + ε.

This means that both Alice and Bob can improve their expected payoff by
no more than ε if their opponent does not change strategies.

The approach of solving zero-sum games to solve LPs is used by Grigoriadis
and Khachiyan, in an algorithm that has similarities to multiplicative weights
[14], but does not use the analysis of multiplicative weights. We will build
up to this algorithm starting with a more direct application of multiplicative
weights, which allows us to use the associated theorems in the analysis. The
goal of this approach is to simplify the analysis of the algorithm in [14] by using
Theorem 2.1.

5.1.3 Deterministic zero-sum LP solver

The largest difference between the zero-sum algorithms in this section and stan-
dard multiplicative weights algorithms, is that we keep track of two weight vec-
tors, two probability distributions and two cost vectors. These all correspond
to the two players.

Algorithm 5.2: Zero-sum multiplicative weights

1 Fix η ≤ 1
2 , θ ≤

1
2 . Initialize P

(1) = 1 ∈ Rm, Q(1) = 1 ∈ Rn.
2 for t = 1, 2, . . . , T do
3 p(t) = P (t)/

∥∥P (t)
∥∥
1
, q(t) = Q(t)/

∥∥Q(t)
∥∥
1
.

4 c(t) = −Aq(t), d(t) = A⊤p(t).

5 P (t+1) = P (t) exp(−ηc(t)), Q(t+1) = Q(t) exp(−θd(t)).

6 Output (p, q), where p := 1
T

∑T
t=1 p

(t) and q := 1
T

∑T
t=1 q

(t).

We can view this algorithm as a repeated zero-sum game where Alice and
Bob update their randomized strategies p(t) and q(t) in every iteration based on

41

the strategy of their opponent. The cost vector c(t) belongs to Alice and −c(t)i

is the expected payoff for Alice if she plays i and Bob plays randomly according

to q(t). The cost vector d(t) belongs to Bob and −d(t)j is the expected payoff for

Bob if he plays j and Alice plays randomly according to p(t). The reason for
the minus is that we want the pure strategies with higher payoff to get more
weight, which happens when the cost is negative.

Note that if we only look at Alice’s side of the algorithm, then the algorithm
is simply the multiplicative weights method. The only connection to Bob is
found in the cost function, which is based on Bob’s strategy q(t). Equivalently,
Bob’s side of the algorithm can also be seen as an instance of the multiplicative
weights method. Essentially, Algorithm 5.2 simultaneously runs two instances
of the multiplicative weights method that determine each other’s cost vectors
in every iteration. Since the multiplicative weights method allows for arbitrary
cost vectors, these are indeed valid instances. As a consequence, we can utilize
Theorem 2.1 to obtain two inequalities, one for Alice and one for Bob.

Theorem 5.2. For a given ε > 0, after T ≥ 16 ln(max{m,n})
ε2 rounds of Algo-

rithm 5.2 with parameters η =
√

lnm
T and θ =

√
lnn
T , for all i ∈ [m] and for all

j ∈ [n], we have
e⊤i Aq − ε ≤ p⊤Aq ≤ p⊤Aej + ε,

where p := 1
T

∑T
t=1 p

(t) and q := 1
T

∑T
t=1 q

(t).

Proof. As mentioned previously, we can view Algorithm 5.2 as two simultaneous
instances of the multiplicative weights method. As such, we get two guarantees
from Theorem 2.1. For all i ∈ [m] and for all j ∈ [n] respectively, we have

T∑
t=1

c(t) · p(t) ≤
T∑

t=1

c
(t)
i + η

T∑
t=1

(c(t))2 · p(t) + lnm

η
,

T∑
t=1

d(t) · q(t) ≤
T∑

t=1

d
(t)
j + θ

T∑
t=1

(d(t))2 · q(t) + lnn

θ
.

We pick η =
√

lnm
T and θ =

√
lnn
T such that each of the final two terms in both

inequalities is bounded by
√
T ln(max{m,n}). Let B ≥ 2

√
T ln(max{m,n}) be

an upper bound on the final two terms. With some further rewriting, we obtain

T∑
t=1

p(t)⊤Aq(t) ≥
T∑

t=1

e⊤i Aq
(t) −B,

T∑
t=1

p(t)⊤Aq(t) ≤
T∑

t=1

p(t)⊤Aej +B.

We can now combine the two inequalities and drop the middle expression. Di-
viding by T and substituting p := 1

T

∑T
t=1 p

(t) and q := 1
T

∑T
t=1 q

(t), we find

e⊤i Aq −
B

T
≤ p⊤Aej +

B

T
.

42

Note that the above still holds for all i ∈ [m] and for all j ∈ [n]. This means
that for all i ∈ [m], we have

e⊤i Aq −
B

T
≤ min

j∈[n]
p⊤Aej +

B

T
≤ p⊤Aq +

B

T
,

and for all j ∈ [n], we have

p⊤Aq − B

T
≤ max

i∈[m]
e⊤i Aq −

B

T
≤ p⊤Aej +

B

T
.

Combining these two inequalities, we find that for all i ∈ [m] and for all j ∈ [n],
it holds that

e⊤i Aq −
2B

T
≤ p⊤Aq ≤ p⊤Aej +

2B

T
.

We get the desired result if 2B
T ≤ ε, or equivalently, B ≤ εT

2 . Since we assumed

B ≥ 2
√
T ln(max{m,n}), we need to choose T such that 2

√
T ln(max{m,n}) ≤

εT
2 , which is true for T ≥ 16 ln(max{m,n})

ε2 .

Algorithm 5.2 obtains the desired result, but computing the costs is com-
putationally expensive due to the matrix-vector multiplication. This operation
costs O(mn) time every iteration. A significant speed-up can be achieved by
having both players sample a move from their distribution in each iteration, and
using these samples to determine the other players costs, as we will see next.

5.1.4 Zero-sum LP solvers using sampling

Algorithm 5.3: Zero-sum multiplicative weights with sampling

1 Fix η ≤ 1
2 , θ ≤

1
2 . Initialize P

(1) = 1 ∈ Rm, Q(1) = 1 ∈ Rn.
2 for t = 1, 2, . . . , T do
3 p(t) = P (t)/

∥∥P (t)
∥∥
1
, q(t) = Q(t)/

∥∥Q(t)
∥∥
1
.

4 Sample a(t) ∼ p(t), b(t) ∼ q(t).

5 c(t) = −Aeb(t) , d(t) = A⊤ea(t) .

6 P (t+1) = P (t) exp(−ηc(t)), Q(t+1) = Q(t) exp(−θd(t)).

7 Output (p, q), where p := 1
T

∑T
t=1 p

(t) and q := 1
T

∑T
t=1 q

(t).

In this new algorithm, Alice samples a(t) and Bob samples b(t). Since Alice
only has m moves and Bob has n, there are only n possible cost vectors c(t)

and only m possible cost vectors d(t). In fact, these cost vectors are simply the
columns (multiplied by −1) and rows of the matrix A. This means computing
the costs and updating the weights of an iteration can now be done in O(m+n)
time, a quadratic improvement over the O(mn) from before. In fact, since
the matrix consists of O(mn) elements, this means the time complexity is now
sublinear in the input size.

43

Unfortunately, we have not been able to prove that Algorithm 5.3 achieves
the desired result. An approach similar to the previous proof of Algorithm 5.2
appears to come very close, but not quite close enough. Due to the random
sampling done in the algorithm, we cannot expect the algorithm to get the
desired result with probability 1. Instead, we attempted to prove that it holds
with arbitrarily high probability. We have the following conjecture.

Conjecture 5.1. For given ε > 0 and δ > 0, there exists a T ′ = O
(

log(mn)
ε2

)
,

such that after T ≥ T ′ rounds of Algorithm 5.3 with parameters η =
√

lnm
T and

θ =
√

lnn
T , with probability at least 1 − δ, for every i ∈ [m] and for all j ∈ [n],

we have
e⊤i Aq − ε ≤ p⊤Aq ≤ p⊤Aej + ε,

where p := 1
T

∑T
t=1 p

(t) and q := 1
T

∑T
t=1 q

(t).

Since the sampling is just an extra step in computing the cost vectors, we can
view Algorithm 5.3 as two simultaneous instances of the multiplicative weights
method. As such, we get two guarantees from Theorem 2.1. For all i ∈ [m] and
for all j ∈ [n] respectively, we have

T∑
t=1

c(t) · p(t) ≤
T∑

t=1

c
(t)
i + η

T∑
t=1

(c(t))2 · p(t) + lnm

η
,

T∑
t=1

d(t) · q(t) ≤
T∑

t=1

d
(t)
j + θ

T∑
t=1

(d(t))2 · q(t) + lnn

θ
.

We pick η =
√

lnm
T and θ =

√
lnn
T such that each of the final two terms in both

inequalities is upper bounded by
√
T ln(max{m,n}). LetB ≥ 2

√
T ln(max{m,n})

be an upper bound of the final two terms in both of the above inequalities. With
some further rewriting, we obtain

T∑
t=1

p(t)⊤Aeb(t) ≥
T∑

t=1

e⊤i Aeb(t) −B,

T∑
t=1

e⊤a(t)Aq
(t) ≤

T∑
t=1

e⊤a(t)Aej +B.

Unlike in the previous proof, the left-hand sides are not equal here. However,
note that E[ea(t)] = p(t) and E[eb(t)] = q(t), due to how a(t) and b(t) are sampled.
We now take the expectation over the p(t), q(t), a(t), b(t), in other words the
expectation over a run of the algorithm, to combine the inequalities and obtain

E

[
T∑

t=1

e⊤i Aq
(t)

]
−B ≤ E

[
T∑

t=1

p(t)⊤Aq(t)

]
≤ E

[
T∑

t=1

p(t)⊤Aej

]
+B.

44

Dropping the middle expression, dividing by T and substituting p := 1
T

∑T
t=1 p

(t)

and q := 1
T

∑T
t=1 q

(t), we find

E
[
e⊤i Aq

]
− B

T
≤ E

[
p⊤Aej

]
+
B

T
.

Note that the above still holds for all i ∈ [m] and for all j ∈ [n]. This means
that for all i ∈ [m], we have

E
[
e⊤i Aq

]
− B

T
≤ min

j∈[n]
E
[
p⊤Aej

]
+
B

T
≤ E

[
p⊤Aq

]
+
B

T
,

and for all j ∈ [n], we have

E
[
p⊤Aq

]
− B

T
≤ max

i∈[m]
E
[
e⊤i Aq

]
− B

T
≤ E

[
p⊤Aej

]
+
B

T
,

Combining these two inequalities, we find that for all i ∈ [m] and for all j ∈ [n],
it holds that

E
[
e⊤i Aq

]
− 2B

T
≤ E

[
p⊤Aq

]
≤ E

[
p⊤Aej

]
+

2B

T
.

So far we have followed mostly the same steps as the previous proof, with the
main difference being that we are only looking at the expectation. The above
result is an approximate Nash equilibrium in expectation. In order to obtain a
result that holds with high probability, we would like to use Markov’s inequality.

Theorem 5.3 (Markov’s inequality). If X is a non-negative random variable
and a > 0, then

P(X ≥ a) ≤ E[X]

a
.

Markov’s inequality allows us to find an upper bound on a non-negative ran-
dom variable with high probability if we have an upper bound on the expectation
of the random variable. With some rewriting, we can obtain

E
[
p⊤Aq

]
− min

j∈[n]
E
[
p⊤Aej

]
≤ 2B

T
,

and

max
i∈[m]

E
[
e⊤i Aq

]
− E

[
p⊤Aq

]
≤ 2B

T
.

This is close to what we need to use Markov’s inequality. In particular, it would
be sufficient to find upper bounds for

E
[
p⊤Aq − min

j∈[n]
p⊤Aej

]
and

E
[
max
i∈[m]

e⊤i Aq − p⊤Aq

]
.

45

The two random variables within the expectations above are non-negative and
after using Markov’s inequality here, the resulting upper bounds would also hold
for all j ∈ [n], i ∈ [m] respectively, which leads to the desired approximate Nash
equilibrium. Unfortunately, we have not found any way to derive upper bounds
for these expectations, since we cannot absorb the minimum and maximum into
the expectation.

While we have no proof for Conjecture 5.1 and hence no proof that Algo-
rithm 5.3 achieves the desired result, this algorithm is now quite close to the
existing algorithm in [14]. In fact, a variant of this algorithm by van Apeldoorn
and Gilyén in [4] is even closer and is proven to work, albeit not using the
analysis of the multiplicative weights method.

Algorithm 5.4: Altered zero-sum algorithm [4]

1 Fix η ≤ 1
2 . Initialize P

(1) = 1 ∈ Rm, Q(1) = 1 ∈ Rn.
2 for t = 1, 2, . . . , T do
3 p(t) = P (t)/

∥∥P (t)
∥∥
1
, q(t) = Q(t)/

∥∥Q(t)
∥∥
1
.

4 Sample a(t) ∼ p(t), b(t) ∼ q(t).

5 c(t) = −Aeb(t) , d(t) = A⊤ea(t) .

6 P (t+1) = P (t) exp(−ηc(t)), Q(t+1) = Q(t) exp(−ηd(t)).

7 Output (x, y), where x := 1
T

∑T
t=1 ea(t) and y := 1

T

∑T
t=1 eb(t) .

Theorem 5.4 ([4, 14]). For a given ε > 0 and δ > 0, after T ≥ 16 ln(nm
δ)

ε2

rounds of Algorithm 5.4, for all i ∈ [m] and for all j ∈ [n], we have

e⊤i Ay − ε ≤ x⊤Ay ≤ x⊤Aej + ε,

where x := 1
T

∑T
t=1 ea(t) and y := 1

T

∑T
t=1 eb(t) .

In particular, this is the variant of the algorithm where η is fixed and not
decreasing. We have rewritten this algorithm to match the notation in the
previous algorithms, but it is functionally the same. The only differences with
Algorithm 5.3 are the parameters, since we now use the same parameter η for
both Alice and Bob, and the way the output is computed. The output is no
longer based on the probability distributions, but instead the samples taken
from them.

Since the outputs are only decided by the samples, each iteration can only
update one of the elements in the output probability vectors. Hence you would
expect to need many iterations before it approaches the desired Nash equilib-
rium. This seems like a big disadvantage compared to Algorithm 5.3, which
can update all elements of the vectors in one iteration. And yet, Algorithm 5.4
is proven to work, while Algorithm 5.3 is not. The proof that Algorithm 5.4
achieves the desired result, does not use the theorems that come with the mul-
tiplicative weights method.

46

Figure 5.1: Convergence of zero-sum algorithms

5.1.5 Comparison

To compare the zero-sum algorithms, we implemented them in Python (see
Appendix A) and compared the results. We set n = m = 1000 and ran T =
100000 iterations of each of the algorithms for a randomly generated matrix
A. Note that at this point, the only difference between Algorithm 5.3 and
Algorithm 5.4 is the output, so we used the same run of the algorithm.

The results can be seen in Figure 5.1. The plot depicts how the distance to
the Nash equilibrium decreases through the iterations. For a pair of strategies
(p, q), this distance is defined as

dNash(p, q) := max{max
i∈[m]

e⊤i Aq − p⊤Aq, p⊤Aq − min
j∈[m]

p⊤Aej}.

Note that dNash(p, q) ≤ ε if and only if (p, q) is an ε-Nash equilibrium. The Nash
distance is computed using the average up until iteration t. In other words, this
would be the output if the algorithm stopped at iteration T = t.

In the figure, we can see that the deterministic algorithm (Algorithm 5.2)
converges the fastest, albeit with far more costly iterations. And while Algo-
rithm 5.4 has a much slower start, it does surpass Algorithm 5.3 in the long
run. This slow start can be explained by the fact that the output strategies are
extremely sparse in early iterations.

One explanation as to why Algorithm 5.3 might not work that well, is that
the multiplicative weights method corrects its course based on the samples, even
though the probability distributions decide the output. That is, the algorithm
is repeatedly adjusting the probability distributions based on the mistakes made
by the samples thus far. While this becomes less of an issue over time, the other
two algorithms simply do not have this discrepancy. Hence it makes sense that
Algorithm 5.3 lags behind. Comparatively, the fact that the output probability
vectors are updated with only one element per iteration in Algorithm 5.4 does

47

not seem to be as much of an issue.

5.1.6 Quantum zero-sum LP solvers

In [4], van Apeldoorn and Gilyén developed a quantum version of Algorithm 5.4.
It has time complexity Õ(

√
n+m/ε3). Even in the sampling algorithms above,

we required O(m+n) time in each iteration to compute the cost vectors and to
update the weight vectors. In order to achieve this sublinear dependency on m
and n, these computations can only be done implicitly.

Note that all we need to implement is efficient sampling from p(t) and q(t),
since the output (x, y) is only decided by these samples. We can rewrite p(t)

and q(t) as

p(t) =
exp(ηAy(t))∥∥exp(ηAy(t))∥∥

1

= G(Ay(t)),

q(t) =
exp(ηA⊤x(t))∥∥exp(ηA⊤x(t))

∥∥
1

= G(A⊤x(t)),

where x(t) :=
∑t

τ=1 ea(t) , y(t) :=
∑t

τ=1 eb(t) and G(v) := exp(v)
∥exp(v)∥1

denotes the

Gibbs distribution corresponding to v. Note that x(t) and y(t) are t-sparse and
can therefore be stored and updated sublinearly in m and n.

The Gibbs distributions p(t) and q(t) can be efficiently sampled on a quan-
tum computer, using amplitude estimation, amplitude amplification and other
subroutines. We also need to assume access to an oracle that returns the queried
matrix entry. Note that the Gibbs sampling here is a simpler special case of the
general Gibbs sampler in Definition 3.1, since we have a vector in the exponent,
instead of a matrix.

A recent result [8] improves the time complexity to Õ(
√
m+ n/ε2.5 + 1/ε3)

by using different quantum data structures for dynamic Gibbs sampling.

5.2 Semidefinite programs

Semidefinite programs (SDPs) are more general than LPs, since they contain
not only linear constraints, but also the constraint that the variable matrix X
is positive semidefinite, denoted as X ⪰ 0. We write the standard form of an
SDP as follows.

max Tr (CX)

s.t. Tr (AiX) ≤ bi for all i ∈ [m],

X ⪰ 0.

Here, X ∈ Rn×n is the variable matrix. The symmetric constraint matrices
A1, . . . , Am ∈ [−1, 1]n×n, objective matrix C ∈ [−1, 1]n×n and the vector b ∈ Rn

48

are given. Note that for symmetric matrices A,B, it holds that Tr (AB) =∑
i,j∈[n]AijBij , the Frobenius product of A andB. In the event that all matrices

C,A1, . . . , Am are diagonal matrices, we simply obtain a standard-form LP.

5.2.1 Basic SDP solver

As shown in [6], SDPs can be approximately solved using matrix multiplicative
weights. Since our SDP solver in the next section has a different structure, we
will not go into too much detail here.

The SDP solver in [6] uses a primal-dual approach. The standard form of
SDP we mentioned before is known as the primal form of the SDP. The dual
form of this SDP is the following.

min b⊤y

s.t.

m∑
j=1

yjAj − C ⪰ 0,

y ≥ 0.

If we assume that for some R, r ≥ 1, it holds that Tr (X) ≤ R is the first
constraint in the primal and ∥y∥1 ≤ r holds for the dual optimizer y, then
strong duality holds, which means the primal and dual problems have the same
optimal values. The goal is to find an ε-approximation of this optimal value. As
shown in [5], the parameters R, r and ε−1 can be seen as equivalent. That is,
any two of the parameters can be made constant by increasing the third. Due to
this, the complexity is expressed in terms of the combined parameter γ := Rr

ε .

In each iteration of the algorithm, the weight matrix ρ(t) is used to create
the intermediate solution X(t) = Rρ(t) to the primal, which is fed to the oracle.
The oracle then outputs an intermediate solution ŷ to the dual, that meets
certain requirements. The cost matrix M (t) is based on how well ŷ satisfies the
constraints of the SDP, which is then used to update ρ(t+1).

The algorithm uses T = ⌈ 9R2 lnn
ε2 ⌉ iterations. While no general oracle is spec-

ified in [6], it is shown in [5] that a general time complexity of Õ
(
nmsγ4 + nsγ7

)
can be achieved, where s is the sparsity of the input matrices, which is the max-
imum number of non-zero entries in a row or column.

5.2.2 Deterministic zero-sum SDP solver

The algorithm we constructed uses a similar approach to the zero-sum algo-
rithms for solving LPs. Instead of running two simultaneous instances of the
multiplicative weights method, the following algorithm consists of one instance
of multiplicative weights and one instance of matrix multiplicative weights, run-
ning simultaneously.

When viewed as a zero-sum game, Alice has m moves to choose from as
before, but Bob can now choose any density matrix ρ ∈ Rn×n. Each of Alice’s
moves is associated with one of the matrices Ai. If Alice plays i ∈ [m] and Bob

49

Algorithm 5.5: SDP multiplicative weights algorithm

1 Fix η ≤ 1
2 , θ ≤

1
2 . Initialize P

(1) = 1 ∈ Rm, Q(1) = I ∈ Rn×n.
2 for t = 1, 2, . . . , T do
3 p(t) = P (t)/

∥∥P (t)
∥∥
1
, q(t) = Q(t)/Tr

(
Q(t)

)
.

4 c
(t)
i = −Tr

(
Aiq

(t)
)
for all i ∈ [m].

5 d(t) =
∑m

j=1 p
(t)
j Aj .

6 P (t+1) = P (t) exp(−ηc(t)) = exp
(
−η
∑t

τ=1 c
(τ)
)
.

7 Q(t+1) = exp
(
−θ
∑t

τ=1 d
(τ)
)
.

plays ρ, then Alice receives payoff Tr (Aiρ), while Bob receives −Tr (Aiρ). If
Alice uses a randomized strategy p ∈ ∆m instead, then her expected payoff is∑m

i=1 piTr (Aiρ).
Alice’s side of the algorithm is the same as Algorithm 5.2, apart from the

definition of c(t), and thus an instance of the multiplicative weights method.
Bob’s side of the algorithm, however, follows the matrix multiplicative weights
method instead. It has a weight matrix Q(t) instead of a weight vector and a
density matrix q(t) instead of a probability vector. As a consequence, we can
use Theorem 2.1 and Theorem 2.4 to analyze the algorithm.

Theorem 5.5. For a given ε > 0, after T ≥ 16 ln(max{m,n})
ε2 rounds of Algo-

rithm 5.5 with parameters η =
√

lnm
T and θ =

√
lnn
T , for all i ∈ [m] and for all

density matrices ρ, we have

Tr (Aiq)− ε ≤
m∑
j=1

pjTr (Ajq) ≤
m∑
j=1

pjTr (Ajρ) + ε.

where p := 1
T

∑T
t=1 p

(t) and q := 1
T

∑T
t=1 q

(t).

Proof. Since Algorithm 5.5 can be viewed as a simultaneous instance of the
multiplicative weights method and the matrix multiplicative weights algorithm,
we get the following guarantees from Theorem 2.1 and Theorem 2.4. For all
i ∈ [m] and for all unit vectors v ∈ Sn−1 respectively, we have

T∑
t=1

c(t) · p(t) ≤
T∑

t=1

c
(t)
i + η

T∑
t=1

(c(t))2 · p(t) + lnm

η
,

T∑
t=1

Tr
(
d(t)q(t)

)
≤

T∑
t=1

v⊤d(t)v + θ

T∑
t=1

Tr
(
(d(t))2q(t)

)
+

lnn

θ
.

We pick η =
√

lnm
T and θ =

√
lnn
T such that each of the final two terms in both

inequalities is upper bounded by
√
T ln(max{m,n}). LetB ≥ 2

√
T ln(max{m,n})

50

be an upper bound on the final two terms in both of the above inequalities. Note
that

T∑
t=1

v⊤d(t)v =

T∑
t=1

Tr
(
d(t)vv⊤

)
=

T∑
t=1

Tr

 m∑
j=1

p
(t)
j Ajvv

⊤

 =

T∑
t=1

m∑
j=1

p
(t)
j Tr

(
Ajvv

⊤) .
With some further rewriting, we obtain

T∑
t=1

T∑
j=1

p
(t)
j Tr

(
Ajq

(t)
)
≥

T∑
t=1

Tr
(
Aiq

(t)
)
−B,

T∑
t=1

T∑
j=1

p
(t)
j Tr

(
Ajq

(t)
)
≤

T∑
t=1

m∑
j=1

p
(t)
j Tr

(
Ajvv

⊤)+B.

We can now combine the two inequalities and drop the middle expression. Di-
viding by T and substituting p := 1

T

∑T
t=1 p

(t) and q := 1
T

∑T
t=1 q

(t), we find

Tr (Aiq)−
B

T
≤

m∑
j=1

pjTr
(
Ajvv

⊤)+ B

T
.

Note that the above still holds for all i ∈ [m] and for all unit vectors v ∈ Sn−1.
Any density matrix ρ ∈ Rn×n can be written as a convex combination of pure
states vv⊤ where v is a unit vector. Hence, for all i ∈ [m] and for all density
matrices ρ, we have

Tr (Aiq)−
B

T
≤

m∑
j=1

pjTr (Ajρ) +
B

T
.

This means that for all i ∈ [m], we have

Tr (Aiq)−
B

T
≤ min

ρ

m∑
j=1

pjTr (Ajρ) +
B

T
≤

m∑
j=1

pjTr (Ajq) +
B

T
,

and for all density matrices ρ, we have

m∑
j=1

pjTr (Ajq)−
B

T
≤ max

i∈[m]
Tr (Aiq)−

B

T
≤

m∑
j=1

pjTr (Ajρ) +
B

T
.

Combining these two inequalities, we find that for all i ∈ [m] and for all density
matrices ρ, it holds that

Tr (Aiq)−
2B

T
≤

m∑
j=1

pjTr (Ajq) ≤
m∑
j=1

pjTr (Ajρ) +
2B

T
.

We get the desired result if 2B
T ≤ ε, or equivalently, B ≤ εT

2 . Since we assumed

B ≥ 2
√
T ln(max{m,n}), we need to choose T such that 2

√
T ln(max{m,n}) ≤

εT
2 , which is true for T ≥ 16 ln(max{m,n})

ε2 .

51

5.2.3 Zero-sum SDP solver using sampling

As with Algorithm 5.3, we can adapt the algorithm to use sampling. However,
this time around, we will only sample on Alice’s side.

Algorithm 5.6: SDP multiplicative weights algorithm with sampling

1 Fix η ≤ 1
2 , θ ≤

1
2 . Initialize P

(1) = 1 ∈ Rm, Q(1) = I ∈ Rn×n.
2 for t = 1, 2, . . . , T do
3 p(t) = P (t)/

∥∥P (t)
∥∥
1
, q(t) = Q(t)/Tr

(
Q(t)

)
.

4 c
(t)
i = −Tr

(
Aiq

(t)
)
for all i ∈ [m].

5 Sample a(t) ∼ p(t), set d(t) = Aa(t) .

6 P (t+1) = P (t) exp(−ηc(t)) = exp
(
−η
∑t

τ=1 c
(τ)
)
.

7 Q(t+1) = exp
(
−θ
∑t

τ=1 d
(τ)
)
.

Unfortunately, we have not been able to prove that Algorithm 5.6 achieves
the desired result, as described in the conjecture below. We run into a similar
issue as we did for Algorithm 5.3. Due to the random sampling done in the
algorithm, we once again cannot expect the algorithm to get the desired result
with probability 1. Instead, we attempted to prove that it holds with arbitrarily
high probability.

Conjecture 5.2. For given ε > 0 and δ > 0, there exists a T ′ = O
(

log(mn)
ε2

)
,

such that after T ≥ T ′ rounds of Algorithm 5.6 with parameters η =
√

lnm
T and

θ =
√

lnn
T , with probability at least 1 − δ, for every i ∈ [m] and for all density

matrices ρ, we have

Tr (Aiq)− ε ≤
m∑
j=1

pjTr (Ajq) ≤
m∑
j=1

pjTr (Ajρ) + ε.

where p := 1
T

∑T
t=1 p

(t) and q := 1
T

∑T
t=1 q

(t).

Since Algorithm 5.6 can be viewed as a simultaneous instance of the multi-
plicative weights method and the matrix multiplicative weights algorithm, we
get the following guarantees from Theorem 2.1 and Theorem 2.4. For all i ∈ [m]
and for all unit vectors v ∈ Sn−1 respectively, we have

T∑
t=1

c(t) · p(t) ≤
T∑

t=1

c
(t)
i + η

T∑
t=1

(c(t))2 · p(t) + lnm

η
,

T∑
t=1

Tr
(
d(t)q(t)

)
≤

T∑
t=1

v⊤d(t)v + θ

T∑
t=1

Tr
(
(d(t))2q(t)

)
+

lnn

θ
.

52

We pick η =
√

lnm
T and θ =

√
lnn
T such that each of the final two terms in both

inequalities is upper bounded by
√
T ln(max{m,n}). LetB ≥ 2

√
T ln(max{m,n})

be an upper bound on the final two terms in both of the above inequalities. With
some further rewriting, we obtain

T∑
t=1

m∑
j=1

p
(t)
j Tr

(
Ajq

(t)
)
≥

T∑
t=1

Tr
(
Aiq

(t)
)
−B,

T∑
t=1

Tr
(
Aa(t)q(t)

)
≤

T∑
t=1

Tr
(
Aa(t)vv⊤

)
+B.

Unlike in the previous proof, the left-hand sides are not equal here. We take the
expectation over the p(t) and a(t), in other words the expectation over a run of
the algorithm, to combine the inequalities and obtain

E

[
T∑

t=1

Tr
(
Aiq

(t)
)]

−B ≤ E

 T∑
t=1

m∑
j=1

p
(t)
j Tr

(
Ajq

(t)
)

≤ E

 T∑
t=1

m∑
j=1

p
(t)
j Tr

(
Ajvv

⊤)+B.

Note that the above still holds for all i ∈ [m] and for all unit vectors v ∈ Sn−1.
Recall that any density matrix ρ ∈ Rn×n can be written as a convex combination
of pure states vv⊤ where v is a unit vector. We drop the middle expression,
substitute p := 1

T

∑T
t=1 p

(t) and q := 1
T

∑T
t=1 q

(t), and divide by T . For all
i ∈ [m] and for all density matrices ρ, we have

E [Tr (Aiq)]−
B

T
≤ E

 m∑
j=1

pjTr (Ajρ)

+
B

T
.

Now, for all i ∈ [m], we have

E [Tr (Aiq)]−
B

T
≤ min

ρ
E

 m∑
j=1

pjTr (Ajρ)

+
B

T
≤ E

 m∑
j=1

pjTr (Ajq)

+
B

T
,

and for all density matrices ρ, we have

E

 m∑
j=1

pjTr (Ajq)

− B

T
≤ max

i∈[m]
E [Tr (Aiq)]−

B

T
≤ E

 m∑
j=1

pjTr (Ajρ)

+
B

T
.

Combining these two inequalities, we find that for all i ∈ [m] and for all density
matrices ρ, it holds that

E [Tr (Aiq)]−
2B

T
≤ E

 m∑
j=1

pjTr (Ajq)

 ≤ E

 m∑
j=1

pjTr (Ajρ)

+
2B

T
.

53

So far we have followed mostly the same steps as the previous proof, with
the main difference being that we are only looking at the expectation. The
above result is an approximate Nash equilibrium in expectation. In order to
obtain a result that holds with high probability, we would like to use Markov’s
inequality (Theorem 5.3), which allows us to find an upper bound on a non-
negative random variable with high probability if we have an upper bound on
the expectation of the random variable. With some rewriting, we can obtain

E

 m∑
j=1

pjTr (Ajq)

−min
ρ

E

 m∑
j=1

pjTr (Ajρ)

 ≤ 2B

T
,

and

max
i∈[m]

E [Tr (Aiq)]− E

 m∑
j=1

pjTr (Ajq)

 ≤ 2B

T
.

This is close to what we need to use Markov’s inequality. In particular, it would
be sufficient to find upper bounds for

E

 m∑
j=1

pjTr (Ajq)−min
ρ

m∑
j=1

pjTr (Ajρ)

and

E

max
i∈[m]

Tr (Aiq)−
m∑
j=1

pjTr (Ajq)

 .
The two random variables within the expectations above are non-negative and
after using Markov’s inequality here, the resulting upper bounds would also
hold for all density matrices ρ and for all i ∈ [m] respectively, which leads to
desired approximate Nash equilibrium. Unfortunately, we have not found any
way to derive upper bounds for these expectations, since we cannot absorb the
minimum and maximum into the expectation.

5.2.4 Reduction

The last two algorithms do not solve a standard-form SDP directly, but instead
give an approximate Nash equilibrium for a certain zero-sum game. From Bob’s
perspective, we can view the game as

min
q

max
p

m∑
j=1

pjTr (Ajq) = min
q

max
i

Tr (Aiq) .

54

We can now write this zero-sum game as an SDP.

min λ

s.t. Tr (AiX) ≤ λ for all i ∈ [m],

X ⪰ 0,Tr (X) = 1,

λ ∈ R.

We will give a reduction from standard-form SDPs to this particular form of
SDP. We start with an instance of a standard-form SDP and add the constraint
Tr (X) = d for some d. We also assume without loss of generality that we start
with a minimization problem, which can be done by multiplying C by −1.

min Tr (CX)

s.t. Tr (AiX) ≤ bi for all i ∈ [m],

X ⪰ 0,Tr (X) = d.

Since we generally do not know the trace of the optimal solution, we simply
try various possibilities for d. One way to do this is to set d to values of the
form ≤ (1 − α)ℓ, where α > 0 is small, ℓ ∈ Z. To keep it finite, we also need
an upper bound and a non-trivial lower bound for d. Unfortunately, we cannot
do a binary search to speed up this process. We can also not guarantee that
we will find a feasible solution even if one exists, since it is possible that only
solutions of a specific trace are feasible.

For the next step, we set A′
i := dAi + dC − biI for all i. For the variable, we

use X ′, which must have Tr (X ′) = 1. To obtain the solution X for the original
SDP, we can simply multiply by d. We substitute λ = dTr (CX ′) = Tr (CX),
which is the value we want to minimize. Note that

Tr (A′
iX

′) = Tr

(
dAi

X

d

)
+Tr

(
dC

X

d

)
− Tr

(
biI

X

d

)
= Tr (AiX) + Tr (CX)− bi.

It follows that Tr (AiX) ≤ bi if and only if Tr (A′
iX

′) ≤ Tr (CX) = λ. Hence,
with this step, the problem becomes equivalent to the following.

min λ

s.t. Tr (A′
iX

′) ≤ λ for all i ∈ [m],

X ′ ⪰ 0,Tr (X ′) = 1,

λ ∈ R.

This problem differs from the zero-sum game only in the names of the variables,
so this completes the reduction.

5.2.5 Quantum SDP solvers

Brandão and Svore developed a quantum SDP solver [9] that builds upon the
basic matrix multiplicative weights SDP solver from Section 5.2.1. It uses a

55

Gibbs sampler to prepare the density matrix ρ(t) as a Gibbs state, which provides
a speedup in terms of n. It also uses a subroutine similar to Grover’s algorithm,
which provides a speedup in terms ofm, leading to a time complexity of Õ(

√
mn·

s2γ32), where γ = Rr
ε as before.

In [5], van Apeldoorn et al. improve upon this result by using Theorem 3.4
for the oracle, as well as various other modifications. The result is a simpler al-
gorithm with time complexity Õ(

√
mn ·s2γ8). This is a significant improvement

in the dependence on γ.
In [3], van Apeldoorn and Gilyén further improved their result by switching

to the quantum operator input model, in which the input matrices are given
as quantum states known as block-encodings. Simply put, this means that each
matrix A is contained within a unitary U . The operator input model uses a
different parameter α, but it implies results for the sparse model if we take α = s,
so we can still compare the complexities. With improved search and minimum-
finding techniques, the algorithm achieves time complexity Õ((

√
m+

√
n·γ)αγ4).

5.2.6 Quantum zero-sum SDP solver

We hoped to develop a quantization of Algorithm 5.5 of the unproven Algo-
rithm 5.6, but unfortunately, we were not able to.

The main difficulty comes from Alice’s cost vector c(t), which is defined as

c
(t)
i = −Tr

(
Aiq

(t)
)
for all i ∈ [m]. We have seen in Theorem 3.4 that such

values can be efficiently computed. However, we did not find any way to avoid
computing this value for all i ∈ [m], which means the time complexity is still
worse than all aforementioned quantum SDP solvers, which are sublinear in m.
Additionally, we need to account for the estimation error that occurs, which
complicates the proof.

Alice’s cost vector c(t) is used to compute the probability distribution p(t),
which is a Gibbs distribution. While we have seen various Gibbs samplers, none
of them fit this particular situation. Bob’s density matrix q(t) is a Gibbs state
and fits Definition 3.1 well, but it is still dependent on the more problematic p(t).

56

Chapter 6

Conclusion

We have seen the application of the multiplicative weights method on machine
learning in the form of boosting algorithms, as well as for solving LPs and SDPs.
We have also looked at how quantum computers can be used to improve the
results. While we have not made any major discoveries, we have made several
noteworthy observations.

Boosting algorithms are a well-known tool within machine learning, with
which we can create a strong learner from a weak learner. All boosting algo-
rithms use the multiplicative weights method. Although AdaBoost is the more
commonly used boosting algorithm, SmoothBoost was a better fit for quan-
tization. However, while the analysis suggests a quadratic improvement over
classical algorithms, this is misleading since much of the complexity is hidden
within the weak learner. We found a randomized classical algorithm for which
the same type of analysis suggests an exponential improvement over existing
methods, which is clearly untrue. This further shows how misleading the anal-
ysis for the quantum algorithms is.

For solving LPs, the multiplicative weights method can be used directly,
but it is outclassed by a randomized algorithm that solves LPs by solving a
zero-sum game. This algorithm is sublinear in the input size. While the sim-
ilarity to multiplicative weights is obvious, we showed that this algorithm for
zero-sum games can in fact be seen as two simultaneous instances of multiplica-
tive weights. While we were able to prove that a deterministic version of the
algorithm works using the analysis of multiplicative weights, we were not able
to do so for the existing randomized version, for which a proof exists that does
not use any theorems related to the multiplicative weights method. A quantum
version of this algorithm also exists and yields a big improvement.

For solving SDPs, existing algorithms use matrix multiplicative weights di-
rectly. Quantization of these algorithms also leads to big improvements. We
found an alternative method, inspired by the zero-sum algorithms for LPs, that
consists of an instance of multiplicative weights and an instance of the matrix
multiplicative weights. Unfortunately, we were once again unable to prove that
the randomized version works, only the deterministic one. We also did not find

57

any improvement from quantization, although this is something that could be
explored further.

Multiplicative weights is used in many other fields, but we were not able
to look into them due to lack of time. At least in the case of LPs and SDPs,
quantization of multiplicative weights algorithms has led to large improvements
in time complexity, so it seems likely that quantization will be similarly helpful in
some of the other fields where multiplicative weights is already used classically.

58

Bibliography

[1] Ilan Adler. “The equivalence of Linear Programs and Zero-sum Games”.
In: International Journal of Games Theory Volume 42:165-177 (Feb. 2013).

[2] Joran van Apeldoorn. “A quantum view on convex optimization”. PhD
thesis. University of Amsterdam, 2020.

[3] Joran van Apeldoorn and András Gilyén. “Improvements in Quantum
SDP-Solving with Applications”. In: Proceedings of the 46th International
Colloquium on Automata, Languages, and Programming. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Ger-
many, 2019.

[4] Joran van Apeldoorn and András Gilyén. Quantum algorithms for zero-
sum games. 2019. arXiv: 1904.03180 [quant-ph].

[5] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de
Wolf. “Quantum SDP-Solvers: Better upper and lower bounds”. In: Quan-
tum 4 (Feb. 2020), p. 230.

[6] Sanjeev Arora, Elad Hazan, and Satyen Kale. “The Multiplicative Weights
Update Method: a Meta-Algorithm and Applications”. In: Theory of Com-
puting 8.6 (2012), pp. 121–164.

[7] Srinivasan Arunachalam and Reevu Maity. “Quantum Boosting”. In: Pro-
ceedings of the 37th International Conference on Machine Learning. Ed.
by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine
Learning Research. PMLR, 13–18 Jul 2020, pp. 377–387.

[8] Adam Bouland, Yosheb Getachew, Yujia Jin, Aaron Sidford, and Kevin
Tian. Quantum Speedups for Zero-Sum Games via Improved Dynamic
Gibbs Sampling. 2023. arXiv: 2301.03763 [quant-ph].

[9] Fernando Brandaø and Krysta Svore. “Quantum Speed-Ups for Solving
Semidefinite Programs”. In: IEEE 58th Annual Symposium on Founda-
tions of Computer Science. Oct. 2017, pp. 415–426.

[10] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. “Quantum
amplitude amplification and estimation”. In: Quantum Computation and
Information (2002), pp. 53–74.

59

[11] Gilles Brassard, Peter Høyer, and Alain Tapp. “Quantum counting”. In:
Automata, Languages and Programming. Ed. by Kim G. Larsen, Sven
Skyum, and Glynn Winskel. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1998, pp. 820–831.

[12] Peter J. Forrester and Colin J. Thompson. “The Golden-Thompson in-
equality: Historical aspects and random matrix applications”. In: Journal
of Mathematical Physics 55.2 (Feb. 2014), p. 023503.

[13] Yoav Freund and Robert E Schapire. “A Decision-Theoretic Generaliza-
tion of On-Line Learning and an Application to Boosting”. In: Journal of
Computer and System Sciences 55.1 (1997), pp. 119–139.

[14] Michael D. Grigoriadis and Leonid G. Khachiyan. “A sublinear-time ran-
domized approximation algorithm for matrix games”. In: Operations Re-
search Letters 18.2 (1995), pp. 53–58.

[15] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database
Search”. In: Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing. STOC ’96. Philadelphia, Pennsylvania, USA:
Association for Computing Machinery, 1996, pp. 212–219.

[16] Adam Izdebski and Ronald de Wolf. Improved Quantum Boosting. 2020.
arXiv: 2009.08360 [quant-ph].

[17] Robert E. Schapire and Yoav Freund. “Boosting: Foundations and Algo-
rithms”. In: Kybernetes 42.1 (2013), pp. 164–166.

[18] Rocco A. Servedio. “Smooth Boosting and Learning with Malicious Noise”.
In: Journal of Machine Learning Research 4 (2003), pp. 633–648.

[19] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press, 2014.

[20] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer”. In: SIAM Journal on
Computing 26.5 (Oct. 1997), pp. 1484–1509.

[21] L. G. Valiant. “A theory of the learnable”. In: Commun. ACM 27 (1984),
pp. 1134–1142.

[22] Ronald de Wolf. Quantum Computing: Lecture Notes. 2022. arXiv: 1907.
09415 [quant-ph].

60

Appendix A

Code

import numpy as np
import matp lo t l i b . pyplot as p l t

#take s a random sample from a d i s t r i b u t i o n , r e turns the index
def sample (d i s t) :

r = np . random . rand ()
for i in range (d i s t . s i z e) :

i f r < d i s t [i] :
return i

else :
r == d i s t [i]

return d i s t . s i z e = 1

#the zero=sum a lgor i thm wi thout sampling
def zerosumdet (m, n , T, A) :

eta = np . sq r t (np . l og (m) / T)
theta = np . sq r t (np . l og (n) / T)

Pt = np . z e ro s ((T + 1 , m))
Pt [0] = np . ones (m)
pt = np . z e r o s ((T, m))
ct = np . z e r o s ((T, m))

Qt = np . z e ro s ((T + 1 , n))
Qt [0] = np . ones (n)
qt = np . z e ro s ((T, n))
dt = np . z e r o s ((T, n))

for t in range (T) :
i f (t + 1) % 10000 == 0 :

61

print (” i t e r a t i o n ” , t + 1)

pt [t] = Pt [t] / np . l i n a l g . norm(Pt [t] , ord=1)
qt [t] = Qt [t] / np . l i n a l g . norm(Qt [t] , ord=1)

ct [t] = =np . matmul (A, qt [t])
dt [t] = np . matmul (pt [t] , A)

Pt [t + 1] = Pt [t] * np . exp(=eta * ct [t])
Qt [t + 1] = Qt [t] * np . exp(= theta * dt [t])

return pt , qt

#the zero=sum a lgor i thm with sampling
def zerosumsamp (m, n , T, A) :

eta = np . sq r t (np . l og (m) / T)
theta = np . sq r t (np . l og (n) / T)
AT = np . t ranspose (A)

Pt = np . z e ro s ((T + 1 , m))
Pt [0] = np . ones (m)
pt = np . z e r o s ((T, m))
at = np . z e r o s (T)
eat = np . z e ro s ((T, m))
ct = np . z e r o s ((T, m))

Qt = np . z e ro s ((T + 1 , n))
Qt [0] = np . ones (n)
qt = np . z e ro s ((T, n))
bt = np . z e r o s (T)
ebt = np . z e r o s ((T, n))
dt = np . z e r o s ((T, n))

for t in range (T) :
i f (t + 1) % 10000 == 0 :

print (” i t e r a t i o n ” , t + 1)

pt [t] = Pt [t] / np . l i n a l g . norm(Pt [t] , ord=1)
qt [t] = Qt [t] / np . l i n a l g . norm(Qt [t] , ord=1)

at [t] = sample (pt [t])
eat [t , int (at [t])] = 1
bt [t] = sample (qt [t])
ebt [t , int (bt [t])] = 1

ct [t] = =AT[int (bt [t])] #a l t e r n a t i v e l y , =np . matmul (A, e b t [t])

62

dt [t] = A[int (at [t])] #a l t e r n a t i v e l y , np . matmul (ea t [t] , A)

Pt [t + 1] = Pt [t] * np . exp(=eta * ct [t])
Qt [t + 1] = Qt [t] * np . exp(= theta * dt [t])

return pt , qt , eat , ebt

m = 1000
n = 1000
T = 100000
#genera t e s random matrix wi th e lements in [=1 ,1]
A = 2 * np . random . rand (m, n) = 1

print (” running d e t e rm i n i s t i c a lgor i thm”)
pt1 , qt1 = zerosumdet (m, n , T, A)
print (” running sampling a lgor i thm”)
pt2 , qt2 , eat , ebt = zerosumsamp (m, n , T, A)

spt = np . z e ro s (m)
sqt = np . z e ro s (n)

e r r1 = np . z e ro s (T)

print (” eva lua t ing d e t e rm i n i s t i c a lgor i thm”)
for t in range (T) :

i f (t + 1) % 10000 == 0 :
print (” i t e r a t i o n ” , t + 1)

spt += pt1 [t]
sqt += qt1 [t]

p = spt / (t + 1)
q = sqt / (t + 1)

eiAq = np . matmul (A, q)
pAej = np . matmul (p , A)
pAq = np . dot (p , eiAq)

e r r1 [t] = max(max(eiAq) = pAq , pAq = min(pAej))

spt = np . z e ro s (m)
sqt = np . z e ro s (n)

s ea t = np . z e ro s (m)
sebt = np . z e r o s (n)

63

e r r2 = np . z e ro s (T)
e r r3 = np . z e ro s (T)

print (” eva lua t ing sampling a lgor i thm”)
for t in range (T) :

i f (t + 1) % 10000 == 0 :
print (” i t e r a t i o n ” , t + 1)

spt += pt2 [t]
sqt += qt2 [t]

s ea t += eat [t]
s ebt += ebt [t]

p = spt / (t + 1)
q = sqt / (t + 1)

x = sea t / (t + 1)
y = sebt / (t + 1)

eiAq = np . matmul (A, q)
pAej = np . matmul (p , A)
pAq = np . dot (p , eiAq)

e r r2 [t] = max(max(eiAq) = pAq , pAq = min(pAej))

eiAy = np . matmul (A, y)
xAej = np . matmul (x , A)
xAy = np . dot (x , eiAy)

e r r3 [t] = max(max(eiAy) = xAy , xAy = min(xAej))

t = range (1 , T + 1)
f i g , ax = p l t . subp lo t s (f i g s i z e =(5 ,3) , layout=’ cons t ra ined ’)
ax . s e t y s c a l e (’ l og ’)
ax . p l o t (t , err1 , l a b e l=’ Algorithm 5 .2 ’)
ax . p l o t (t , err2 , l a b e l=’ Algorithm 5 .3 ’)
ax . p l o t (t , err3 , l a b e l=’ Algorithm 5 .4 ’)
ax . s e t x l a b e l (’ number o f i t e r a t i o n s ’)
ax . s e t y l a b e l (’ d i s t anc e to Nash equ i l i b r i um ’)
ax . s e t t i t l e (”Comparison o f zero=sum algor i thms ”)
ax . l egend ()
p l t . s a v e f i g (” z s p l o t ”)

64

