
FACULTY OF SCIENCE

COMPUTING SCIENCE

MASTER’S THESIS

APRIL 2023

Scheduling data feed processing jobs

Supervisors:
dr. H.H. Liu
dr. W.S. Swierstra
R. Kreuzer (daily supervisor)

Student:
Maarten van den Berg

5636450

Abstract

Online advertising is an important strategy for companies that sell products on the internet to
find customers. These companies often make use of an e-commerce system, which stores data on
the products that the company sells. If a company’s inventory changes often, it may be desirable to
automate the process of creating and updating advertisements, to reduce the workload of keeping
advertisements up to date.

Channable is a company that provides a tool for automated creation of advertisements, based
on the data in a company’s e-commerce system. Channable offers a product feed processing system
which connects to a company’s e-commerce system and regularly downloads information on the
company’s inventory. Once this data has been downloaded the system can apply customer-defined
processing rules to the data and convert the data to a format suitable for submission to one or more
advertising platforms or marketplaces.

The heavy computational lifting in this system is performed by rule processing servers, which
accept inventory data and customer-defined processing rules and produce a datastream that has been
processed according to the customer-defined rules. Channable uses multiple of these rule processing
servers for redundancy and performance reasons, and so it must balance the workload between the
servers. The current method for assigning work to the servers uses a distributed scheduler. This
scheduler has some limitations which cause it to distribute the work unevenly between servers,
causing some servers to regularly become overloaded while other servers sit idle.

In this thesis we implement a better method for assigning work to the rule processing servers, by
making use of a centralised scheduler. We compare two methods for detecting overloaded servers
and one alternative algorithm for assigning work to servers to the current approach by performing
experiments using real-world data to determine which scheduling approach performs best.

We show that using our scheduler can significantly improve the performance of the rule processing
system: our best-performing scheduling algorithm speeds up the average duration of low-priority
jobs by a factor of 2.2 and reduces the average waiting time of low-priority jobs by a factor of 3.5.
We are also able to significantly reduce the variance in waiting time between the different rule
processing servers, making the product feed processing system’s performance more predictable.

1

Contents
1 Introduction 4

I Context 6

2 The product feed processing system 6
2.1 Phases . 6
2.2 Data organization . 6
2.3 System triggers and priority . 6
2.4 Components . 7

3 The rule processing system 10
3.1 Rule processing requests . 10
3.2 Prefetch requests . 11
3.3 Rule processing request handling . 11
3.4 The executor . 13
3.5 Caching . 14
3.6 Pre-emptible infrastructure . 14

4 The scheduling problem 16
4.1 Current method . 16

4.1.1 Advantages . 16
4.1.2 Disadvantages . 16

4.2 Available data . 18
4.3 Scheduling factors . 18
4.4 Scheduling characteristics . 18

5 Related work 20
5.1 Prior project . 20
5.2 Schedulers . 20
5.3 Hedged requests . 21
5.4 Load shedding . 21

II Our project 23

6 Project outline and goals 23
6.1 Approach . 23
6.2 Optimization goals . 23
6.3 Scope . 23

7 The experiment environment 24
7.1 Design . 24
7.2 Submitter . 25
7.3 Scheduler . 26
7.4 Notable differences between the production and experiment environments 26

7.4.1 Static dataset . 27
7.4.2 Slower disks . 27
7.4.3 Different timeout, retry behaviour on rule processing requests 27

2

7.4.4 Different pre-emption behaviour . 28
7.4.5 Empty caches on experiment start . 28
7.4.6 Different server selection in baseline selection method 28
7.4.7 Request dependencies not preserved . 29

8 Capture and analysis of a new workload trace 30
8.1 Capture processes . 30

8.1.1 Request data . 30
8.1.2 Item store database . 30
8.1.3 Item store objects . 31

8.2 Data correction steps . 31
8.2.1 Missing product data in item store database . 31
8.2.2 Changed generation identifiers in item store objects 31
8.2.3 Outlier jobs unable to fit in hardware . 32

9 Evaluated scheduling approaches 33
9.1 Overload detection policies . 33

9.1.1 Baseline overload detection . 33
9.1.2 Circuit breaker . 33
9.1.3 DAGOR . 34

9.2 Host selection . 34
9.2.1 Baseline host selection . 35
9.2.2 Random host selection . 35
9.2.3 Dynamic host selection . 35

9.3 Experiments . 36

10 Results 37
10.1 Server preemption oversight . 37
10.2 Job duration . 37
10.3 Waiting time . 38
10.4 Slowdown . 43
10.5 Other observations . 43

10.5.1 Bad performance in baseline experiment . 43
10.5.2 ‘Flip-flopping’ in DAGOR experiments . 46

11 Conclusion 47

12 Future work 48
12.1 Implementation in production . 48
12.2 Determine impact of using a connection timeout . 48
12.3 Alternative scheduling approaches . 48

References 49

A Job duration statistics 51

B Wait time statistics 52

C Slowdown statistics 53

3

1 Introduction
Online advertising is an important tool for companies to attract new customers, especially for companies
that sell products on the internet. Companies selling products on the internet generally use an e-
commerce platform to make their products available to customers. E-commerce platforms store data
on the products that the company sells (called product data) and present a storefront to users that
allows users to purchase the products.

Companies may also want to advertise their products on different platforms outside their own
e-commerce platform. Many platforms allow creating advertisements or product listings automatically,
by supplying the product data in a format defined by the external platform. These formats can
differ from the formats supported natively by a company’s e-commerce platform, requiring the use of
additional software to make the product data adhere to a target platform’s requirements.

Channable provides a product feed processing system that can perform this transformation automat-
ically. This system’s purpose is to take in product data as produced by a client’s e-commerce platform,
convert the product data to an intermediate format that allows platform-independent manipulation
of the product data, and then automatically convert it into a format suitable for submission to a
marketplace or advertisement provider. The system is provided as a Software-as-a-Service-tool, which
means that Channable hosts the system and processes data for many customers through the same
infrastructure.

Channable’s product feed processing system also allows customers to automatically modify the
imported product data while it is being processed, by allowing its customers to define processing
rules. These processing rules can for example be used to correct mistakes in the input data, or to
prevent certain products from being advertised. The rules are applied to the product data by a
special class of servers in the product feed processing system called rule processing servers. These
servers have more computational resources compared to the other servers in Channable’s system, and
provide a centralized computing service for the relatively less-powerful worker servers that handle
communication with external services.

The product feed processing system handles many processing requests: as of Q3 2022 the job
scheduler executes over 1.3 million jobs per day, processing product data on over two billion products.
The rule processing servers handle about 2.8 million rule processing tasks per day. In order to be able
to process this much data the product feed processing system needs to divide the workload over the
available rule processing servers.

Channable’s production system currently uses a decentralized scheduling approach, where each
worker server can decide independently on which rule processing server a rule processing task should
run. This scheduling method unfortunately has some shortcomings which cause the workload to be
distributed unevenly. The uneven workload distribution causes problems in Channable’s production
environment: at peak moments it is often the case that some servers become overloaded, while other
servers are nearly idle.

In this thesis project we seek to address these problems by implementing a better method for
assigning work to the rule processing servers. We aim to answer the following research question:

How to dynamically schedule rule processing jobs to evenly divide the workload among a
number of rule processing servers?

Outline
This thesis is divided into two parts.

In part I we further introduce the context for our thesis project. In section 2 we describe the
product feed processing system in more detail, and in section 3 we describe the rule processing service,

4

the component of the product feed processing system that our project focuses on. In section 4 we
outline the scheduling problem that we aim to solve in this thesis project, and in section 5 we describe
found literature that is relevant to this scheduling problem.

In part II we describe the steps we took to investigate how we could improve the system’s perfor-
mance. In section 6 we define our research question and optimization goals and describe the setup of
our experiments. In section 7 we describe the environment in which we run our experiments, and in
8 we describe the process of capturing the data we use from the production environment. In section 9
we describe the scheduling approaches that we evaluate in this project. In section 10 we present the
results of our experiments and compare the performance of the production environment against the
performance of our experiment environment under our scheduling policies.

In section 11 we present our conclusions and in section 12 we suggest possibilities for future work.

5

Part I

Context
2 The product feed processing system
In this section we describe the product feed processing system we introduced in section 1 and the
components of this system that are relevant for our thesis project.

2.1 Phases
The product feed processing system operates in three phases:

• The import phase:
During the import phase the system downloads product data from the customer’s e-commerce
system. The downloaded product data is converted into an intermediate format and stored in a
central database for further processing.

• The rule processing phase:
During the rule processing phase the system applies customer-defined processing rules (also
simply called rules) to the imported set of product data. Rules can either modify items in the
imported product data or remove items from the product data, excluding them from further
processing.

The rule processing phase is pure: applying the same set of rules to the same imported product
data will result in the exact same result. This property allows the result of the rule processing
phase to be cached.

The result of the rule processing phase is a filtered set of product data. This product data is still
stored in an intermediate format not directly usable by external systems.

The rule processing phase is described in more detail in section 3.

• The export phase:
During the export phase the system converts the filtered product data to the format accepted by
the third-party system that the product data is to be submitted to.

The result of the rule processing phase is either a text file that is made available for download,
or a set of calls to an export platform’s API to publish the processed product data.

2.2 Data organization
The data in the product feed processing system is organized into projects. Each project contains a
configuration of import channels, processing rules and export channels, which all operate on the same
product data.

Projects are independent from each other: any change to a project’s import channel, export channel
or processing rule only affects the product data inside that project.

2.3 System triggers and priority
The product feed processing system can be triggered either manually (in response to a user clicking a
button) or automatically (according to a customer-defined schedule).

6

Manual processing requests are prioritised over automated processing, to improve user experience
in Channable’s web application. This is done because the results of manual processing requests will
need to be shown to the user, so by prioritizing manual requests they can complete sooner.

The prioritisation is done by assigning each request a priority, which is either ‘high’ (for manual
requests) or ‘low’ (for automated requests).

The effect of marking a request as ‘high priority’ varies by component, but generally results in
processing for any low-priority requests being paused as long as there are high priority requests to
handle.

2.4 Components
The product feed processing system consists of various components which together provide the
functionality of the system. An overview of the components of the product feed processing system is
shown in figure 1.

Only the components shown in bold are relevant for this project’s scheduling problem. A description
of these components follows:

The web backend handles incoming HTTP requests from customers after they have passed through
the webserver and load-balancer services. It is implemented as a custom-built web service using
the Python programming language.

The web backend creates/updates the configuration for the product feed processing system
by storing the appropriate configuration (import channels, processing rules, export channels,
schedule) in the main database.

To answer incoming HTTP requests the web backend may issue requests to the rule processing
servers (e.g. to inspect the results of applying the processing rules) or to the job scheduler (to
trigger a high-priority job).

The worker servers execute the import jobs and export jobs submitted to the job scheduler.

The worker servers receive job specifications from the job scheduler once the scheduler deter-
mines a job can be run on a worker server. Job specifications specify which import or export
phase to run, for which project the job is to be run, and the job’s priority. The worker server will
then start a Linux process that executes the job according to the received job request, monitor
its progress, and eventually report success or failure to the job scheduler.

During the execution of an export job (i.e. a job which runs the export phase) a worker server
will offload the process of applying the configured processing rules to one of the available rule
processing servers.

The rule processing servers each host an instance of the rule processing service. The rule process-
ing service accepts HTTP requests from both the worker servers and the web backend. It is
implemented as a custom-built web service using the Haskell programming language.

The rule processing requests specify which project’s product data is being requested and contain
all rules that must be applied to the product data. The rule processing service will then retrieve
the appropriate product data from the item store, apply the configured rules, and then stream
the results back to the requesting service.

The rule processing service is the main focus of this thesis and is described in more detail in
section 3.

7

The item store stores the imported product data. During the import phase the worker servers store
the imported items in the item store, then during the rule processing phase the rule processing
servers read the items from the item store.

Channable is in the process of migrating the item store from an instance of the PostgreSQL
database system to Google Cloud Storage (GCS), an object storage system. This migration
consists of removing the item data from the PostgreSQL database and storing it in a file in GCS
instead, replacing the data in the PostgreSQL with a marker indicating how to retrieve the data
from GCS.

Due to this migration the stored product data is currently split between these systems, though
this split is largely invisible to all components except for the rule processing service. In this
thesis we will refer to the product data as a whole as the item store. Where references to a
specific storage backend are needed we will refer to the PostgreSQL database as the item store
database, and to the Google Cloud Storage environment as the item store objects.

In addition to the components listed above, there are also two support services that are not specific
to the product feed processing system.

The service discovery system is used by all components to detect on which servers the other com-
ponents are running. The service discovery system is an instance of the Consul service discovery
system and is available on every server.

Each component registers itself with the service discovery system on startup, after which the
upstream services get notified that a new instance of a service is available. Any component can
query the service discovery system to determine which servers are available to handle a request.

The service discovery system will perform periodic health checks to verify whether each compo-
nent is still able to accept processing requests. When a component is found to be unhealthy
(e.g. crashed) the service discovery system will mark it as ‘unhealthy’, which causes upstream
components to stop sending requests to the component until it recovers.

The monitoring system collects metrics on each of the components of the product feed processing
system. The monitoring system is an instance of the Prometheus monitoring system installed on
a dedicated monitoring server.

Each component in the product feed processing system exposes a HTTP API with a ‘metrics
endpoint’, which exposes time-series data on the component’s performance. The monitoring
system periodically requests this data and saves it in a central time-series database so the data
can be queried.

The monitoring system also provides an alerting function which is used to send alerts to
Channable’s operations team if a component is unhealthy for a long amount of time or under
high load.

8

Main DB

Job scheduler

Item store

Rule processing serversWorker servers

Web backend

User

Webserver

Load balancer

Project scheduler

Figure 1: An overview of the components of the product feed processing system and how they
communicate. Only the components in bold are relevant to this project’s scheduling problem.

9

3 The rule processing system
In this section we describe the rule processing system, the main focus of this thesis.

The rule processing system is responsible for applying the configured data processing rules to
the product data in the rule processing phase. It is implemented as a custom-built webserver using
the Haskell programming language and exposes a HTTP API which accepts requests to execute rule
processing jobs. During a rule processing job the rule processing engine will download the project’s
product data from the item store and apply the processing rules that were supplied to it.

The components of the product feed processing system that can submit rule processing jobs are
the web backend and the worker servers. Rule processing jobs submitted by the web backend are
always marked as high priority, for tasks submitted by the worker servers the priority depends on the
priority of the job that the worker is running. In the context of a rule processing job the component
that submitted the task is called the submitter.

3.1 Rule processing requests
The rule processing system accepts rule processing requests via HTTP. A rule processing request
contains information needed for the rule processing system to run a single rule processing job.

Rule processing requests consist of the following data:

• Which project the rule processing job belongs to. This determines which set of product data
should be loaded from the item store.

• The priority of the rule processing job. Either ‘high’ or ‘low’.

• Which processing rules to apply, and in what order.

Each rule processing request contains two groups of processing rules: the shared rules and the
channel-specific rules. The shared rules are applied before the channel-specific rules, and as their
name implies the shared-rules may be shared across multiple export channels.

The split between shared and channel-specific rules can be used to speed up concurrent process-
ing requests for projects with multiple export channels, by sharing intermediate results. This
behaviour is described in more detail in section 3.4.

• Timeout information for the rule processing task. The timeout information specifies maximum
timespans the task may remain in a certain state. If any of these timeouts is exceeded, the rule
processing task is aborted and an error is returned to the submitter.

• A session identifier. The session identifier is stored in the logs and can be used to correlate
requests from the same submitter that were retried across different rule processing servers.

• Whether the result of the rule processing job should be cached.

• Various options affecting the presentation of the requested operation’s results, such as whether
the results should be sorted or whether the results should be filtered according to a search term.

Example
To demonstrate the rule processing system we show a rule processing request for a fictional merchant
selling T-shirts. The merchant’s product feed is shown in table 1. The product feed contains five
fields for each product: the product’s identifier, title, color, stock level, and price. We assume that the

10

id title color stock price

2 Test shirt white 23
3 T-shirt “Triangle” blue 34 15.00
4 T-shirt “Triangle” red 0 15.00
5 T-shirt “Hexagon” 78 18.00

Table 1: Example product feed before processing.

id title color stock availability price

3 T-shirt “Triangle” Blue Blue 34 in stock 15.00
4 T-shirt “Triangle” Red Red 0 out of stock 15.00
5 T-shirt “Hexagon” 78 in stock 18.00

Table 2: Example product feed after processing.

target platform accepts these fields as-is and requires one extra field ‘availability’ indicating whether a
product is in stock or not, and that the target plaform requires advertised product names to be unique.

To process this product feed the merchant defines the following rules:

1. If a product has no valid price (price less than or equal to zero or missing entirely), remove it.

2. If a product has a stock level greater than zero, set its availability to ‘in stock’. Otherwise, set
the availability to ‘out of stock’.

3. If a product has a color set, capitalize the color and append the color to the product’s name.

Listing 1 shows the representation of this ruleset as a rule processing request, with some presenta-
tion and debugging-related information omitted. The resulting product feed after applying this rule
processing request to the merchant’s product feed is shown in table 2.

3.2 Prefetch requests
The rule processing system is mainly used to apply processing rules for the product feed processing
system as described above. The rule processing system also accepts various other request types, of
which one is relevant for this thesis project’s scheduling problem: the prefetch request.

A prefetch request is used to indicate to the rule processing system that it is likely that it will
receive a high priority rule processing request for a given project in the near future. Prefetch requests
are automatically submitted by the web backend when it is detected that a user of a particular project
has opened the Channable application.

When a prefetch request for a project is received, the rule processing system will download the
relevant project’s product data to its cache, so that any processing requests for that project can be
completed more quickly. This means that after executing a prefetch request for a project the rule
processing server will not yet have performed any actual work, but that subsequent requests for
processing for this project will be able to run faster on that server.

3.3 Rule processing request handling
A rule processing request goes through the following phases after being received by a rule processing
server:

11

{
"session_id": "5531f48d-74f0-4b52-8203-470d5ed8aa90",
"project_id": 12345,
"priority": "high",
"timeouts": {

"queue_seconds": 15,
"evaluate_seconds": 120,
"stream_seconds": 300

},
"shared_operators": [

{
"name": "Exclude items without valid price",
"condition": [

{
"field": "price",
"filter": "is_empty",
"children": [

{
"field": "price",
"filter": "is_less_equal",
"value": {"type": "static", "value": 0}

}
]

}
],
"actions": [{"field": "all", "action": "remove"}]

}
],
"operators": [

{
"name": "Set availability",
"condition": [

{"field": "stock", "filter": "is_greater_than", "value": {"type": "static", "value": 0}}
],
"actions": [{"field": "availability", "action": "set", "value": "in stock"}],
"else_actions": [{"field": "availability", "action": "set", "value": "out of stock"}]

},
{

"name": "Add color to product title",
"condition": [

{"field": "color", "filter": "is_not_empty"}
],
"actions": [

{"field": "color", "action": "texttransform", "value": "capitalize"},
{

"field": "title",
"action": "combine",
"value": [

{"type": "field", "value": "title"},
{"type": "static", "value": " "},
{"type": "field", "value": "color"}

]
}

]
}

]
}

Listing 1: Example rule processing request as submitted to a rule processing server.

12

1. Parsing: the rule processing request is parsed into an abstract syntax tree.

2. Compilation: the rule processing request is compiled into an intermediate representation.

During the compilation phase the rule processing job is broken up into multiple smaller joblets:
each of these joblets represent a part of the requested rule processing task. The division into
joblets is described in more detail in section 3.4.

3. Optimization: the compiled rule processing task is processed to remove steps that don’t affect
the output of the task. Examples of such steps are rules that affect the value of attributes that
the submitter requested to be omitted or rules with conditions that can be statically determined
to be unsatisfiable.

4. Queueing: the joblets of which the rule processing task consists are submitted as a group to the
executor’s job queue.

5. Evaluation: the executor becomes responsible for executing the rule processing job. The behaviour
of the executor is described in more detail in section 3.4.

The submitter will keep its connection to the rule processing server open until it receives the result
of the rule processing task. If the submitter closes its connection, the executor is told that the joblets
of the submitted rule processing task can be canceled.

3.4 The executor
The executor is the subsystem of the rule processing engine that performs the actual rule processing
tasks. The executor manages the CPU cores of the rule processing server and schedules the joblets it
receives on those cores according to its scheduling logic.

Each rule processing job is split into multiple smaller joblets before submission to the executor, as
described in the previous section. Various exceptions exist, but most rule processing jobs are split into
joblets of the following types:

• FeedSource, which fetches the product data to process from the item store,

• SharedOperators, which applies the shared processing rules,

• Operators, which applies the channel-specific processing rules, and

• OutputFeed, which converts the processed product data to the requested output format and
returns it to the submitter.

Prefetch requests only result in a FeedSource joblet.
Each of these joblets depends on the result of the previous joblets in the list. Between the execution

of each joblet the product data is stored in the rule processing server’s cache. This process is described
in more detail in section 3.5.

The executor maintains a priority queue of joblets which are to be executed: joblets are ordered
first by priority, then by submission time. When the executor determines capacity is available, it will
pop the highest-priority joblet from its queue, determine how many CPU cores the joblet can use and
begin executing the joblet with this number of cores. Once a joblet is being executed it will not be
interrupted before it is done, unless the rule processing server encounters an error or is shut down.

The division of rule processing jobs into joblets allows the executor to still pause the execution of
a job: if a low-priority rule processing job is being executed and a high-priority rule processing job

13

is received, the executor may pause the low-priority job by delaying execution of the joblets for the
low-priority job until the high-priority job has completed.

The executor logs debugging information on each executed joblet to the item store database. This
information includes information such as the joblet’s evaluation time, queue time and the amount of
memory used by the joblet. This information could theoretically be used to assess the rule processing
system’s overall performance, but this information is unfortunately slow to query, so it is unsuitable
for making scheduling decisions at runtime.

The executor also exposes metrics on the state of the executor to the monitoring system, which
can be queried efficiently at run-time. The exposed information includes aggregated statistics on
the performance of recently executed joblets and the state of the joblet queue. The most interesting
of these metrics is the ‘stalled promises’ metric: this metric indicates the amount of joblets that the
executor has determined to be available for execution, but could not yet actually execute because of a
lack of CPU resources. This metric can be used to determine a server’s load level more granularly than
the binary ‘healthy’/‘unhealthy’ information provided by the service discovery system.

3.5 Caching
The executor stores the result of each joblet it executes in the rule processing service’s cache. This
serves two purposes: it is required to pass data between the job’s joblets due to the rule processing
service’s design, but also allows the reuse of earlier computation if the preceding data did not change.
This is possible because (like the whole rule processing jobs) the joblets are also pure: given the same
input a joblet will return the same output.

The executor uses this fact to deduplicate joblets that compute the same data: if a rule processing
job is started which depends on data that is already in the cache or that is already scheduled to be
computed, the executor will reuse this result instead of scheduling a duplicate joblet to compute the
same data. This deduplication mechanism can speed up subsequent rule processing jobs for the same
project if they run on the same server.

Figure 2 shows an example of this de-duplication: in this example the result of submitting three
rule processing jobs is shown. In this example all three jobs specify the same set of product data
as their source and the second and third job specify the same set of shared rules. By the use of
deduplication the executor can avoid executing two FeedSource joblets and one SharedOperators
joblet, speeding up the rule processing jobs submitted after the first rule processing job.

The cache is ephemeral: it is cleared when a new version of the rule processing engine is deployed,
or when the server where the rule processing engine is deployed restarts. This also happens when
a rule processing server is pre-empted as described in section 3.6: this implies that any data on
pre-emptible rule processing servers remains in cache for at most 24 hours.

When new data is to be stored in the rule processing server’s cache, but the cache is full, the rule
processing server will evict the oldest entries from the cache, until the server has enough space to
store the new data.

The rule processing servers expose information on which projects are stored in the servers’ caches
via a HTTP API, which allows querying this information from another server. This information is
currently only used for debugging purposes.

3.6 Pre-emptible infrastructure
The rule processing system is partially deployed on pre-emptible servers. This means that a number
of the servers on which the rule processing system runs are backed by spare capacity of the hosting
provider, which reduces cost.

14

Shared among jobsShared among jobs

Rule processing job 1

Rule processing job 2

Rule processing job 3

SharedOperators

SharedOperators

FeedSource

Operators OutputFeed

Operators OutputFeed

Operators OutputFeed

Figure 2: Example of joblet deduplication for three rule processing jobs of the same project, with the
same set of product data and only two distinct sets of shared rules.

The trade-off of using pre-emptible servers is that the hosting provider may shut down the servers
at any moment (with 30 seconds of advance notice) if the capacity is needed for non-preemptible
servers. The hosting provider will also terminate pre-emptible servers after they have run for 24 hours,
regardless of whether the server’s capacity is needed elsewhere.

To be able to deal with servers being shut down on relatively short notice the rule processing
service has been designed to not contain any local state other than the cache. This allows the rule
processing servers to shut down at any moment, with the only downside of this shutdown being that
any rule processing tasks that are in progress are canceled.

When a rule processing server is pre-empted it is removed from the service discovery system, so
that the web backend and worker servers will no longer attempt to submit rule processing jobs to it.

A monitoring component in the product feed processing system checks every five minutes if any
servers have been pre-empted. If any pre-empted servers are found, the system issues a command to
restart the servers, after which they automatically rejoin the service discovery system and can receive
rule processing requests again.

15

4 The scheduling problem
When a submitter (either the web backend or a worker server) needs the results of a rule processing
task, it needs to select a rule processing server to execute the rule processing task. In this section we
describe the currently-implemented method for a submitter to select a server and the advantages and
shortcomings of this method. We also describe the relevant available data which could be used to
make a better scheduling decision, and the characteristics of the described scheduling problem.

4.1 Current method
The currently-implemented method to select a rule processing server is a pseudo-random selection
of servers based on the project identifier and the set of rule processing servers that are currently
available.

The selection process works as follows:

1. Query the service discovery system to retrieve the list of available rule processing servers.

2. Order this list of servers alphabetically.

3. Create a pseudo-random number generator using the project’s identifier as a seed.

4. Randomize the order of the retrieved servers using this pseudo-random number generator.

5. Attempt to submit the rule processing task to the first three servers in the shuffled list of available
servers. Fall back to the next server in the list if an earlier rule processing server fails to process
the rule processing task.

6. If any of the three candidate rule processing servers produce a result, exit successfully. Otherwise,
give up.

4.1.1 Advantages

The described host selection process has various advantages:

• The selection process is “stable”: given the same set of available rule processing servers and
project ID the system will select the same rule processing servers to submit the task to.

This is a design feature: the selection process was originally intended to divide the workload
evenly between the various rule processing servers, but still attempt to process the tasks for a
single project using the same server. Using the same server for the same project is advantageous
because this allows the server to reuse the cached product data, reducing the duration of jobs
since the input data doesn’t need to be re-downloaded from the item store.

• Because the selection process is executed on the submitter, the selection of rule processing hosts
is not subject to a ‘single point of failure’.

• The described selection process is relatively easy to implement.

4.1.2 Disadvantages

During the time the described selection process has been in use at Channable the rule processing
system was identified to not work well in practice.

Various disadvantages of the selection process were identified:

16

• The selection process does not take the rule processing servers’ current workload into account.
The selection process only checks whether rule processing servers are ‘healthy’ in the service
discovery system, i.e. online and not crashed, but not whether the servers are actually able to
accept new jobs.

It can happen that a server is selected which is already at its processing capacity, which results
in the job having to wait in the server’s queue. This can happen even if other servers are idle,
which is not ideal.

• The rule processing workload is not actually evenly distributed among the rule processing servers
because, the size of the various projects for which rule processing tasks are executed varies
massively.

The workload induced by a single project can vary because of several factors which vary between
projects:

– The size of the product data: some projects contain hundreds of items, while other projects
process millions of items.

– The schedule of the project: some projects are configured to run their jobs only once a day,
while other projects are configured to run hourly or even every 15 minutes.

– The number of export channels: some projects have only a single export channel, while
other projects have hundreds.

Because these factors exhibit ‘long-tail’ behaviour the impact of assigning a project to a rule
processing server varies massively, with most projects relatively close to each other but some
outlier projects having a disproportionate effect on the servers they’re scheduled on.

This imbalance leads to some rule processing servers often being overloaded, while other rule
processing servers are idle at the same time.

• The rule processing server selection process is not robust against changes in the set of available
servers: if the set of available servers changes, the assignment of almost all projects to rule
processing servers changes as well. The exact number of projects that get reassigned to a
different server when a new server comes online or goes offline would ideally be small, so
that the servers’ caches remain useful. In practice the currently-used server selection process
reassigns more than half of all projects to a different server each time a server is added or
removed.

Server additions and removals also happen more often than when the selection method was
designed: when the described selection process was implemented, Channable did not yet use
preemptible infrastructure (see section 3.6), so servers went on-/offline less often.

• Lastly, the server selection process was designed to ensure that projects get scheduled on servers
where the project is in cache. However, this is not actually checked: if a project is in cache on
some other server than the server selected by the selection process, the rule processing job will
still run on the server picked by the selection process, even though it might run more quickly on
the server where the project is in cache.

It is clear that a different host selection process is needed.

17

4.2 Available data
The current rule processing host selection process uses only the set of available servers and the project
identifier to select a rule processing server.

However, there is more information available which could be used to make a better scheduling
decision:

• The information in the rule processing request as detailed in section 3.1,

• Information on the size of the project’s data in the item store,

• Information on historical performance of rule processing jobs for the same project,

• Information on the load of the rule processing servers: how many rule processing jobs it is
executing and how many rule processing tasks are in the server’s backlog,

• Information on which project’s data is in cache on each rule processing server as described in
section 3.5.

4.3 Scheduling factors
A new host selection process should take the following factors into account:

• The selected server must be available and able to accept new job requests. This information is
available in the service discovery system.

• The selected server ideally has the project’s data in its cache, so it does not need to be downloaded
before the job can start. This information can be retrieved from each rule processing server.

• The selected server ideally has no backlog for the job’s priority, so the rule processing job can
start immediately. This information can be retrieved from the monitoring system.

If the server has the project’s data in cache, but the expected time the job will have to remain
queued is longer than the time it takes to download the project’s data, it may be better to select
a different server, as waiting for the server where the data is in cache won’t actually provide a
speed benefit.

• Servers should ideally not be used if they are preemptible and it is expected that the server will
shut down while the job is executing (section 3.6), to prevent having to reschedule the aborted
processing jobs on another server.

4.4 Scheduling characteristics
The described scheduling problem of assigning rule processing jobs to rule processing servers matches
several common properties in scheduling problems.

Firstly, the described problem is an online scheduling problem: rule processing tasks may arrive at
any time and a scheduling decision needs to be made immediately, though that scheduling decision
may be “retry at a later time”.

Secondly, the scheduler needs to be non-clairvoyant: it is not known how long the rule processing
tasks will take to execute. The time needed to execute rule processing jobs can still be measured,
which might allow prediction the duration of a rule processing task based on historical data. However,
currently no such prediction system is implemented.

18

Third, the scheduler cannot currently be preemptive: after a job has been assigned to a server the
scheduler cannot decide to pause or terminate the job in favor of another higher-priority job, because
the rule processing system does not currently support this.

Lastly, the scheduler needs to be fault-tolerant: rule processing jobs may fail and the rule processing
servers may become unavailable at any time. If this happens scheduling still needs to continue even
though the rule processing system may be in a degraded state.

19

5 Related work
In this section we describe found literature that is relevant for solving our scheduling problem.

5.1 Prior project
Paweł Ulita performed an earlier master’s thesis project [11] in 2020 on the same product feed
processing system described in section 2. Ulita described the system and performed experiments on a
partial replica of the rule processing system, to predict how implementing a centralised scheduler
with various scheduling policies would affect the production system’s performance.

In his experiments Ulita compared the currently-used scheduling policy (as described in section
4.1) with a scheduling policy based on a ‘caching plan’, a pre-computed static assignment of projects
to rule processing servers. To perform this comparison Ulita captured a workload trace containing the
rule processing jobs that were submitted over a 24-hour period and replayed these jobs on identical
virtual machines. Ulita noted that the method he used to create a replica of the data in the item store
resulted in an incomplete copy, which resulted in 25% of the jobs recorded in the workload trace
being unable to run.

Ulita’s project defined three optimisation objectives: increasing the system responsiveness for high
priority jobs, increasing punctuality for low priority jobs, and improving the cache hit ratio for the
rule processing servers.

For the first two optimisation goals Ulita evaluated the performance of his scheduler by reporting
on two metrics: the waiting time and slowdown experienced by the jobs. The waiting time of a job was
defined as the time between a job being received on a rule processing server and it starting execution
and the slowdown was defined as W

W+E , where W is the job’s waiting time and E is the job’s execution
time.

For the third optimisation goal Ulita reported on the number of cache evictions on each rule
processing server, because the cache hit ratio itself was not possible to record.

Ulita showed that his proposed scheduler reduced the mean waiting time and mean slowdown for
both the low priority and high priority rule processing jobs, when compared to the baseline experiment.
However, the variance in waiting times per rule processing server in the experiment was still relatively
high and the variance in slowdown per rule processing server actually increased for high priority jobs.
Ulita also showed that his proposed scheduler increased the amount of cache evictions across all rule
processing servers, suggesting a decrease in the cache hit ratio.

5.2 Schedulers
Various schedulers have been proposed which attempt to address similar scheduling problems to the
scheduling problem described in this document.

Zaharia et al. [12] describe HFS, a scheduler for the Hadoop cluster computing system in use
at Facebook. One of the design goals of HFS is data locality, i.e. ensuring that tasks are scheduled
on nodes where the input data is immediately available or more easily loaded than on other nodes.
The authors show that it is often beneficial to wait a short amount of time for nodes where data is
available to become available, instead of scheduling the tasks on other nodes (where data first has to
be loaded). This approach improved the response times of small CPU-bound jobs by 5× and doubled
the throughput for an IO-heavy workload trace.

Ananthanarayanan et al. [1] describe PACMan, a caching system that speeds up data processing
jobs by ensuring that the jobs’ input data is available in a worker-local cache. The authors show that
for their workload, which is based on processing jobs at Bing and Facebook, the input sizes and task
counts per job are heavy-tailed. This means that the workload mainly consists of jobs with relatively

20

small input sizes which run relatively infrequently, with a small number of significant outliers in input
size or run frequency. The authors evaluate their caching system by running experiments based on
workload traces from Bing and Facebook and report that their caching system significantly reduced
the completion times of jobs.

Boutin et al. [2] describe Apollo, a distributed scheduler in use at Microsoft. Among the techniques
used in Apollo is estimation-based scheduling, which uses estimates of the time it would take to
load a job’s input data to a node, as well as the expected job queue time at a node. The authors
evaluate Apollo by comparing system metrics before and after the scheduler was deployed. The
authors show that their scheduler reduces the variance in wait time across hosts even without using
estimation-based scheduling, and that enabling estimation-based scheduling further increases the
quality of the scheduling decisions.

Garefalakis, Karanasos, and Pietzuch [6] describe Neptune, a centralised preemptive scheduler
for the Apache Spark system in use at Microsoft. Neptune supports running both low-priority batch
jobs and high-priority streaming jobs on the same executors, suspending low-priority jobs in favour of
high-priority jobs if necessary. The authors evaluate Neptune’s performance by running experiments
based on workload traces from various sources and comparing the scheduler’s behaviour with the
default schedulers in Apache Spark and several alternative policies. The authors show that their
scheduler can maintain high throughput of low-priority jobs while also reducing the request latency
for the high-priority streaming jobs.

5.3 Hedged requests
Dean and Barroso [5] describe techniques which Google uses to reduce variance in request latencies
for data processing systems. Among these techniques are hedged requests, the practice of sending
requests to multiple servers concurrently and then using whichever response is delivered first.

By executing requests on multiple servers concurrently the system’s load is increased, but the
worst-case request latency can be reduced significantly, since the chance that a request takes a long
time to process is decreased. The authors also describe how delaying the second request a short
amount of time can find a trade-off between worst-case latency reduction and the extra load induced
by the duplicated requests.

Primorac, Argyraki, and Bugnion [8] describe Lædge, a hedging policy which only applies request
hedging when the system load is low to not hinder the system’s throughput when under high load.
The authors show that this hedging policy outperforms ‘naïve’ hedging if the probability of requests
experiencing hiccups is relatively low.

5.4 Load shedding
Various approaches exist to detect and mitigate overload in request-processing systems. One such
approach is load-shedding or circuit breaking, which is the practice of dropping requests when the
system is detected to be overloaded or returning errors. Traditional approaches to circuit breaking
only allow operators to drop requests based on static thresholds like a certain number of queued
requests.

Sedghpour, Klein, and Tordsson [9] describe a dynamic circuit breaker that allows the threshold
at which a circuit breaker activates to vary depending on the average response time of the system.
The authors show that this method outperforms static circuit breaking in an experiment, with more
requests being able to complete successfully at the same system load.

Zhou et al. [13] describe DAGOR, a load-shedding method for microservices in use at WeChat.
DAGOR assigns each request two priorities: a ‘business priority’ corresponding to the type of request
and a ‘user priority’ corresponding to the user for which the request is to be executed. DAGOR uses

21

the average waiting time of requests in a server’s queue to determine whether a server is overloaded.
When a server is determined to be overloaded, DAGOR first sheds load by making the server drop
less-important requests, i.e. requests with a low business priority and low user priority. This approach
ensures that more important requests have a higher chance to succeed if the system is under moderate
load. By randomizing the user priority over time the authors ensure better fairness, by ensuring that
the system varies which users’ requests get dropped first when the system is at load. The authors
evaluate DAGOR by performing experiments to compare DAGOR to other overload control systems
and show that DAGOR is able to outperform these systems, by allowing a higher amount of requests
to succeed.

Cho et al. [4] describe Breakwater, a load-shedding method for microservices targeting a µs
response time. Breakwater controls the system load by issuing ‘service credits’ to clients and requiring
clients to have a valid service credit before being allowed to submit a request. By varying the amount
of service credits issued based on the system load the incoming request rate can then be controlled.
The authors show using experiments that Breakwater is able to recover from a sudden load spike
quicker than other overload control systems like DAGOR.

22

Part II

Our project
6 Project outline and goals
In this section we describe the project’s research question and optimization goals.

6.1 Approach
Our project’s research question as defined in section 1 is: How to dynamically schedule rule processing
jobs to evenly divide the workload among a number of worker servers?.

To answer our research question we follow a similar approach to Ulita [11]. This approach consists
of running experiments on a cluster of servers, using captured rule processing jobs from the production
environment.

By repeating the experiment multiple times with different scheduling policies we can compare the
effectiveness of a certain scheduling policy.

In section 7 we describe the setup of our experiment environment in detail. In section 9 we
describe the scheduling policies we evaluate in detail.

6.2 Optimization goals
We focus on two optimization goals for our project:

1. Reducing the duration of rule processing jobs: we want to improve the performance of the
rule processing servers by having requests sent to them complete sooner.

To quantify this improvement we will compare the durations of the rule processing jobs.

2. Reducing the waiting time of rule processing jobs: we want the majority of a rule processing
job’s duration to be spent doing useful work, rather than waiting for capacity to be available on
the rule processing server.

To quantify this we will focus on reducing the absolute waiting time of the rule processing jobs
(i.e. the time a job has to wait in a rule processing server’s queue). We will also compare the
slowdown as defined by Ulita [11] (section 5.1).

6.3 Scope
The rule processing system and other components of the product feed processing system are under
active development separate from this project. To limit the scope of the project and to ensure the
results are still applicable to the production system once the project concludes we only investigate the
effect of changing the method for selecting rule processing servers on the overall system’s performance.

We realise that it might also be possible to improve the rule processing system’s performance by
optimizing the performance of the system itself, but consider this out of scope for this thesis project:
this is already being investigated by Channable’s infrastructure team.

23

7 The experiment environment
In order to run our experiments we need an experiment environment, in which we can reproducibly
run a rule processing workload and observe the outcome. In this section we describe the setup of the
experiment environment we used for our project.

7.1 Design
The design for the experiment environment used for our experiments is based on the design by Ulita
[11], with some additions to update the experiment environment to the changes that have been made
to the production environment since Ulita’s project concluded.

Our experiment environment consists of 17 virtual machines, divided in four ‘classes‘:

• Fourteen rule processing servers, with a configuration which matches the production environment
as closely as possible,

• One ‘submitter’ server, responsible for generating a workload for the rule processing servers by
replaying traffic captured in the production environment,

• One monitoring server, responsible for running the monitoring system, service discovery system
and scheduler, and

• One database server, responsible for storing a copy of the production environment’s item store
database.

Like the rule processing servers this server’s configuration must match the configuration of its
counterpart in the production environment as closely as possible, in order for the performance
in the experiment environment to be representative of the production environment.

Next to the servers our experiment environment also includes a Google Cloud Storage bucket,
which is used to store a copy of the item store objects.

An overview of the experiment environment’s design is shown in figure 3. Like in Ulita’s design
the following changes are made compared to the production environment described in section 2:

1. A submitter component is introduced, which is responsible for submitting the rule processing
jobs to the rule processing servers. The submitter replaces the web backend and worker servers.

The submitter is provided with a file containing a ‘workload trace’, which defines which requests
the submitter should send at what times.

2. A scheduler component is introduced, which is queried by the submitter to determine which
rule processing server a job should be scheduled on. Like in Ulita’s design, the scheduler does
not actually schedule the job, but only provides a recommendation to the submitter on which
server to use.

The scheduler component is described in more detail in section 7.3.

New (compared to Ulita’s design) is that:

1. Our experiment environment also includes a Google Cloud Storage bucket to store a copy of the
item store objects. This change is necessary because the production environment also started
using a Google Cloud Storage bucket after the conclusion of Ulita’s project.

2. Our scheduler component also queries the monitoring system for information needed in the
scheduling decision, where Ulita’s scheduler only relied on the service discovery system and
rule processing servers.

24

Submitter Scheduler Monitoring

Rule processing servers

Item store database Item store objects

Trace

Figure 3: An overview of the components of our experiment environment and how they communicate.

7.2 Submitter
The submitter is the component responsible for replicating the workload of the production environment
in our experiment environment. The submitter is provided with a workload trace file containing a set
of captured rule processing requests along with the ‘offset’ of the request, i.e. the time relative to the
start of the experiment when the request should be sent. The offset of a request is used to determine
the time the request should be sent, by adding the offset to the start time of the experiment. To run an
experiment the submitter iterates over the requests in the workload trace file. The submitter assigns
each request to a worker thread, which will perform the following steps:

• Wait until the request’s send time, i.e. wait until the current time is equal to the start time of
the experiment plus the request’s offset. If this time has already passed, continue immediately.

• Send a scheduling request to the scheduler to determine to which server the rule processing
request should be sent. The scheduling request only includes the request’s priority (‘low’ or
‘high’) and which project the request belongs to.

If the scheduler is unreachable or reports that no servers are available, retry later using an
exponential backoff strategy [3].

• Send the rule processing request to the rule processing server indicated by the scheduler and
wait for the rule processing server’s response.

If the rule processing job succeeded, mark the request as succeeded in the submitter’s log. If the
rule processing server reports an error or is unreachable, mark the request as failed and record
the error type in the submitter’s log, and do not retry.

25

Not retrying failed rule processing jobs is a conscious decision: the submitters in the production
environment already perform retries when a rule processing job fails unexpectedly and each
retry is already present in the workload trace file, because the workload trace file includes all
requests to the rule processing servers. Performing another round of retries in the submitter
would increase the load on the experiment environment when compared to the production
environment or cause inconsistencies between experiment runs if a particularly computationally
expensive request is retried during one experiment but succeeds right away during another.

By providing the submitter with the same workload trace file for all of our experiments we can
ensure that the workload for each of our experiments is the same.

7.3 Scheduler
The scheduler is the component responsible for assigning rule processing jobs to rule processing
servers. The scheduler accepts scheduling requests over HTTP, containing a subset of the information
contained in a rule processing request. For each received scheduling request, the scheduler determines
which rule processing server the job should be run on and returns this selection to the client.

The scheduler uses three external information sources to make its scheduling decision:

• The service discovery system, to determine which rule processing servers are able to accept
requests,

• The monitoring system, to retrieve relevant statistics on the rule processing servers that are
needed for the scheduling decision, and

• The rule processing servers themselves, to determine the state of each rule processing server’s
cache.

Because these information sources can be slow to respond or intermittently available the scheduler
queries these sources asynchronously every five seconds and caches the responses, so that when a
scheduling decision has to be made the information is available already. This approach allows the
scheduler to make faster scheduling decisions, at the cost of always operating on slightly-outdated
information.

The scheduling behaviour of the scheduler is configurable: the scheduler uses a separately-
configurable overload detection policy to determine which servers are eligible to run rule processing
jobs, as well as a host selection policy to determine which of the eligible hosts to schedule a job on. In
section 9 we describe the overload detection policies and host selection policies implemented in our
scheduler.

7.4 Notable differences between the production and experiment environments
The environment used to run the experiments for this project was set up using a setup process based
on Channable’s existing Infrastructure-as-Code (IaC) tooling, in order to create an environment that
mimics the production environment as closely as possible.

The reuse of the existing IaC tooling means that the production and experiment environments
both run the same versions of the operating system, supporting software like the service discovery
system and the same version of the rule processing engine as were in use at the time the workload
trace was captured.

In this section we describe the known differences between the production and experiment envi-
ronments, along with the expected impact of these differences on the performance of the experiment
environment as compared to the production environment.

26

7.4.1 Static dataset

As described in section 2.4 the rule processing engine operates on input data stored in the item store.
In the production environment each project’s data in the item store is updated at least once every 24
hours, with many projects being updated more often, but in the experiment environment the project
data is a snapshot and never updated.

Due to this difference we expect that in the experiment environment less fetches of the input data
might be needed: because the input data does not change while the experiment is ongoing jobs are
more likely to be able to reuse job data already cached on a rule processing server.

7.4.2 Slower disks

In Channable’s production environment all servers are equipped with SSD-backed storage drives,
which support high performance in terms of supported I/O operations per second (IOPS) and sustained
throughput.

We decided not to use SSD-backed drives in the experiment environment due to cost concerns.
Instead, the database server was set up to use ‘balanced’ drives, which offer a trade-off between the
performance of a SSD-backed drive and the lower cost of a HDD-backed drive. Balanced drives are
1.25 times slower than SSD-backed drives, supporting a similar amount of IOPS but a lower sustained
throughput level.

All other servers were set up using ‘standard’ drives, which are backed by HDDs. These drives are
about 13 times slower than SSD-backed drives. The non-persistent cache storage on the rule processing
servers was set up using the same type of drive as used in Channable’s production environment.

Because we used a slower drive type for the item store database server we expect that accessing
information in the item store database will be slower than in Channable’s production environment, as
the data cannot be read as fast from the database server’s disks. We expect this difference to only
have a slight impact on the performance of the experiment environment: the majority of the item
data is stored in Google Cloud Storage, which is not affected by this difference in drive type.

Because of the slower drive type used for the rule processing server we expect that the rule
processing servers will be slower to start, but that runtime performance will not be affected. When a
rule processing server has started, only its volatile cache storage is used for performance-sensitive
operations, and the cache storage in our experiment environment does use the same drive type as the
production environment.

7.4.3 Different timeout, retry behaviour on rule processing requests

In Channable’s production environment requests to the rule processing servers are subject to retries
and timeouts. If a request fails due to a problem that is likely to be transient, the request may be
automatically retried after waiting a short amount of time, using the exponential backoff with jitter
strategy [3].

In the production environment requests are subject to two different times of timeout: the connection
timeout and the read timeout. The connection timeout limits the time the client will wait until the rule
processing server acknowledges the request. The read timeout limits the time the client will wait for
the server to start sending the response to the client’s request. If a request fails due to the connection
timeout, the next request’s connection timeout is doubled.

The HTTP library we used to build the submitter described in section 7.2 does not support
differentiating between a connection timeout and read timeout, and only exposes a ‘total’ timeout
parameter. For this reason it was not easily possible for us to set separate connection and read timeouts
in the experiment environment like in the production environment.

27

To determine whether this would be a problem we inspected the production environment’s logs.
These logs showed that 98.15% of the requests to the rule processing servers within the capture period
were able to connect to a rule processing server on the first try, while only 0.11% of the requests failed
due to the connection timeout.

Based on this rate we decided that removing the connection timeout was acceptable and did not
implement an alternative for it in the submitter. Requests in the experiment environment are still
subject to a timeout: we set the total timeout for a request in the experiment environment to the sum
of the connection timeout and read timeout in the production environment. As described in section
7.2 we also purposefully did not implement a retry system, as the captured requests in the workload
trace are already the result of a retry process.

We expect that this change could cause our experiment environment to perform worse than the
production environment, if requests are scheduled on an overloaded server. If a server is overloaded
it becomes unable to accept new connections, which can be detected in the production environment
by the connection timeout being exceeded. Because there is no separate connection timeout in the
experiment environment the submitter will have to wait for the duration of the full request timeout,
which is considerably longer, so the submitter will spend more time waiting for the request to time out.
This increase in request handling time should not negatively affect the performance of our submitter
as requests are handled asynchronously, so the submitter should be able to perform useful work in the
meantime by sending other requests.

7.4.4 Different pre-emption behaviour

In Channable’s production environment, 10 out of the 14 rule processing servers are preemptible
servers, as described in section 3.6. Due to cost concerns we decided to set up all 14 rule processing
servers in the experiment environment as preemptible servers.

The effect of this change is that, unlike the production environment, all rule processing servers
can be shut down arbitrarily by the cloud provider if capacity is needed, which could theoretically
cause the rule processing system to become unavailable. In Channable’s production environment this
has never happened, so we expected this change to have no impact on the experiment environment’s
performance.

We unfortunately discovered that this change did have another unforeseen effect on the perfor-
mance of the experiment environment. This effect is described in section 10.1.

7.4.5 Empty caches on experiment start

When an experiment is started the database and all rule processing servers are (re)started, to ensure
that they’re in a known starting state. This is done to ensure that there is no data in the servers’ caches:
if a server would have cached data it might affect the runtime of jobs scheduled on that server by
making jobs appear to run faster than they really are.

The expected effect of this difference is that some jobs executed at the beginning of the workload
trace run slower in the experiment than they did when executed in the production environment, where
their input data or result might have been cached already. We expect the impact of this difference to
be minimal, so we did not implement any measures to resolve this difference.

7.4.6 Different server selection in baseline selection method

The baseline server selection method makes use of the pseudo-random number generator (PRNG) in
the Python standard library. Python’s default PRNG implementation is based on the Mersenne Twister
algorithm [7]. Because the scheduler is implemented in Haskell instead of Python it uses a different
PRNG algorithm, using the SplitMix algorithm [10].

28

The effect of using a different PRNG algorithm is that the baseline host selection method will
differ from the host selection method in production: given the same set of servers, the baseline host
selection in the experiment will likely select a different server for a job than would be selected in the
production environment.

As described in section 4.1.2 the number of requests that a server handles is not directly proportional
to the actual computational load imposed on that server, so we expect that this difference will have
only a small impact on the performance of the baseline experiment as compared to the production
environment.

7.4.7 Request dependencies not preserved

Around 15% the rule processing jobs generated by the web backend are dependent on the result of
an earlier job: the web backend will first submit a rule processing jobs with shared parameters and
inspect the result of the job, then submit a second rule processing job containing some of the results
from the first job as parameters. In the production environment these dependent jobs are guaranteed
to not run at the same time, because the second job can only be submitted once the first job has
finished.

The dependency between requests is not stored in the request data itself. Because of this the
separation between requests cannot be guaranteed in the experiment environment: if the first request
takes longer to execute than it did in the production environment, the second request may be sent
while the first request is still processing. The expected effect of this difference is that the second
request will take longer to execute than it did in the production environment, because it still has to
wait for the first request to complete.

Because the information on the request dependencies is not available without modifying the web
backend, no action was taken for this issue.

29

8 Capture and analysis of a new workload trace
In order to run experiments in the experiment environment described in section 7 we need a set of rule
processing jobs to execute, as well as supporting datasets to ensure that the rule processing servers
can actually execute the rule processing jobs. We refer to this combined data as ‘the workload trace’.

In this section we describe the process we used for capturing the workload trace used in this
project’s experiments, as well as the corrections we applied to the captured data to make it suitable
for use in the experiment environment.

8.1 Capture processes
The workload trace consists of three distinct datasets:

1. The request data, containing the HTTP requests sent to the rule processing servers by the web
backend and worker servers,

2. The item store database, containing a copy of the item data stored in the production environ-
ment’s PostgreSQL database, and

3. The item store objects, containing copies of the item data stored in the production environment’s
Google Cloud Storage bucket.

Each of these datasets are stored in different systems and require different approaches to be copied.

8.1.1 Request data

We captured the request data by using the ‘request dump’ configuration option implemented by Ulita
in his earlier project [11]. This option, when enabled, causes the submitters (web backend and worker
servers) to store a copy of each request sent to the rule processing servers on the submitter’s disk.

We enabled the request dump option for a capture period of around 26 hours, after which we
collected all captured requests from the various submitters on a central server. The resulting dataset
contains 3,064,002 captured requests.

Due to how Channable’s software deployments work configuration changes do not take effect right
away and some time is needed to update the configuration on each of the submitters. This meant that
the period during which requests were captured slightly varied for each submitter. To obtain a 24-hour
request log of all submitters we determined when the request dump option had taken effect on all
submitters, and filtered the captured request data to only the requests sent between this moment and
24 hours afterwards. This resulted in a dataset of 2,879,676 requests.

8.1.2 Item store database

We created a copy of the item store database by setting up a new PostgreSQL server and connecting the
server to the production item store database using PostgreSQL’s ‘streaming replication’ functionality.
The streaming replication functionality allows a PostgreSQL server to receive a full copy of the data
stored on another PostgreSQL server, along with the changes that are made to the original database
after the initial copy of the data.

Using streaming replication solved the problems experienced by Ulita in his earlier project: Ulita
used a series of ‘batched copies’ to copy subsets of the item store database, which temporarily
interrupted production traffic to the item store database. A major downside of this approach was that
the data in the item store database could (and did) change in-between copy operations, which caused
25% of the jobs in Ulita’s workload trace to fail to run in his experiment environment.

30

By using streaming replication we were able to make an internally-consistent copy of the item
store database, which allowed a higher percentage of jobs to run successfully.

8.1.3 Item store objects

The item store objects have different access characteristics than the item store database, which meant
that copying the item store objects was relatively simple. To create a copy of the item store objects,
we wrote a script that ran during the 26-hour request capture period to periodically copied all files
from the production Google Cloud Storage environment into an isolated environment.

The use of an isolated Google Cloud Storage environment was mainly needed to prevent the data
being deleted: the production environment is configured to automatically delete data from the item
store objects after it has not been updated for 30 days, which is not desirable for the experiment
environment.

8.2 Data correction steps
To determine whether the captured workload trace could be used to replay production activity in the
experiment environment, we first ran tests using only the requests that were captured during the first
ten minutes of the capture period.

During these tests we discovered several problems with the captured request data, which prevented
the rule processing jobs associated with this data from being run. This section describes the major
problems that were found and the steps we took to resolve these problems.

8.2.1 Missing product data in item store database

The product feed processing system periodically deletes old versions of the imported item data, as it
normally only operates on the newest version of the product data.

We discovered that during the capture process some of the item data required by the captured
requests had already been deleted from the item store database due to newer versions of the data
becoming available, while we had expected this data to still be available at the time the capture period
ended. This caused the jobs associated with the deleted item data to be unable to run, as they referred
to now-deleted versions of the product data. For most of the affected jobs a later version of the product
data was still available in the captured copy of the item store database.

To resolve this issue we applied a correction script to the captured requests to update references
to missing product data to a newer available revision of the same data. The effect of updating
these references was that the jobs associated with the affected requests were able to be executed
again, though they would not necessarily run on the exact same data as they had in the production
environment. The consequences of changing the input data for these jobs are further discussed in
section 7.4.1.

For most affected requests a later revision of the product data was available, only for 90 of the
captured requests no other version of the product data was available. For these requests no correction
was applied and the requests were kept in the workload trace ‘as-is’. The effect of leaving requests
as-is is that the jobs they trigger will always fail during the replay process: since this does not prevent
other jobs from running and since this applies to only 90 requests this should not negatively affect the
workload replay process.

8.2.2 Changed generation identifiers in item store objects

As described in section 2.4 the item store database contains references to the data files in the item store
objects that are required to load a project’s item data. Because these files are periodically updated

31

and deleted asynchronously, multiple versions of the same file can exist. To disambiguate between
versions of the same file each reference to a file contains the file’s unique ‘generation identifier’, which
is an arbitrary number that changes each time a new version of a file is uploaded.

We discovered that copying the item store objects also caused all generation identifiers to be reset
to a new value, which invalidated all stored references in the item store. This in turn caused all rule
processing jobs for projects that required item store objects (over 50% of all jobs) to be unable to run.

To resolve this issue we applied a correction script to the copied PostgreSQL database that updated
the stored generation identifiers. The correct generation identifiers to use in our experiment were
determined by making the script used to copy the files between GCS buckets also record the original
generation identifier and a MD5 checksum of the copied file. By matching this information against the
files in the copied GCS bucket a mapping from the original generation identifiers to new generation
identifiers could be made, which we used to update the generation identifiers in the copied PostgreSQL
database.

This change allowed all affected jobs to run in the experiment environment.

8.2.3 Outlier jobs unable to fit in hardware

We discovered that some of the jobs in the captured workload trace were so computationally intensive
that they were unable to be executed on the rule processing servers in the experimental setup. When
executed on one of these servers these jobs did not only fail to run, but also occasionally caused
unrelated jobs that were running at the same time to be terminated as well.

This behaviour was not unexpected: in Channable’s production environment these jobs were
already assigned to a dedicated server with extra computational resources compared to a normal rule
processing server.

To deal with this problem the affected jobs were removed from the captured workload trace. This
removed 38 requests from the workload trace.

32

9 Evaluated scheduling approaches
In order to compare the effectiveness of different scheduling approaches we added support for multiple
scheduling policies to the scheduler described in section 7.3.

Each scheduling policy consists of two parts: an overload detection policy and a host selection policy.
When a scheduling request is received by the scheduler, the scheduler performs the following

steps:

1. Query the service discovery system to determine which servers exist and are able to accept rule
processing jobs.

2. Apply the configured overload detection policy to exclude servers that the policy considers to be
overloaded.

3. If there are no non-overloaded servers currently available, return an error to the client indicating
it should retry later.

4. Otherwise, consult the host selection policy to determine which of the available rule processing
servers the request should be routed to.

In this section we describe the overload detection and host selection policies that we implemented
in our scheduler.

9.1 Overload detection policies
The scheduler uses an overload detection policy to determine whether a rule processing server should
receive new rule processing jobs. This approach allows the scheduler in our experiment environment
to stop scheduling rule processing jobs on servers before the server is totally overloaded, which is not
currently possible in the production environment.

All overload detection policies require a rule processing server to be marked as ‘healthy’ in the
service discovery system: if a server is unhealthy the server is either offline or so heavily overloaded
that the monitoring system is unable to retrieve the server’s metrics, so any rule processing jobs are
unlikely to be accepted.

Our scheduler implements three overload detection policies on top of this requirement, which we
describe below.

9.1.1 Baseline overload detection

The baseline overload detection policy mimics the overload detection method in use in the production
environment, which is no overload detection at all.

As described in section 4.1.2 the production environment does not perform any additional checks
beyond checking that the rule processing servers are listed as healthy in the service discovery system.
To mimic this behaviour in our scheduler the baseline overload detection policy is a no-op: all healthy
servers are considered eligible to receive new rule processing jobs.

9.1.2 Circuit breaker

The circuit breaker overload detection policy uses a static circuit breaker as described by Sedghpour,
Klein, and Tordsson [9], using the ‘stalled promises’ metric described in section 3.4 as the trigger.

Under the circuit breaker overload policy a server is immediately considered ineligible to receive
jobs if the server is unhealthy (as in the baseline policy) or if the amount of stalled promises exceeds a

33

configurable threshold. A high number of stalled promises indicates that the rule processing server is
CPU-starved and has a backlog of work it hasn’t executed yet, so stopping scheduling new jobs on the
server should allow it to process its backlog, or at least prevent the backlog from growing further.

To implement this scheduling policy, the scheduler queries the monitoring system every five seconds
to retrieve the most recent reported amount of stalled promises for each rule processing service. This
amount is cached in the scheduler’s information for each server.

When a scheduling request arrives, the scheduler compares the most recently known amount of
stalled promises against the configured threshold and excludes all servers where this amount exceeds
the configured threshold.

The effectiveness of this policy depends on what threshold of stalled promises is configured in the
scheduler: if a too-low threshold is chosen we expect that servers would be under-utilized, while a
too-high threshold would be ineffective in protecting servers from being overloaded. To determine
an appropriate threshold for the circuit breaker we performed a series of tests where we replayed
only the first 10 minutes of the captured workload trace and determined whether any rule processing
servers were overloaded. We initially started these tests with a threshold of 400 stalled promises.
This starting point was chosen because this level is currently used by Channable’s operations team to
trigger an alert for manual investigation.

We repeated the 10-minute tests with lower thresholds until no rule processing servers became
overloaded during the tests, which occurred at a threshold of 100 stalled promises. Because of this we
chose 100 stalled promises as our threshold for the circuit breaker overload detection policy.

9.1.3 DAGOR

The DAGOR overload detection policy uses the DAGOR load shedding method as described by Zhou
et al. [14] to gradually shed load from overloaded rule processing servers.

As described in section 5.4 Zhou et al. used the average waiting time of requests in a server’s queue
to determine whether or not a server is overloaded. While implementing this policy we discovered
that using the average waiting time is unfortunately not currently possible for the rule processing
service: the executor does have information on the average queuing time of its rule processing jobs,
but it only exposes the queuing time of jobs that have already completed, and not the queuing time of
jobs that have yet to be executed. Exposing the actual waiting time of the rule processing jobs in a
server’s queue should technically be possible, but is outside the scope of this project.

To work around this missing information we decided to use the number of stalled promises as the
DAGOR algorithm’s input to determine overload, instead of the queuing time. This makes the DAGOR
overload detection policy similar to the circuit breaker overload detection policy, but rather than
immediately excluding a server from receiving new requests it should gradually reduce the amount of
requests sent to the server while it is overloaded.

We configured the scheduler to use the same threshold as used by the circuit breaker policy (100
stalled promises) for the DAGOR policy’s overload threshold.

9.2 Host selection
Once the scheduler has determined the set of rule processing servers that are eligible to receive new
rule processing jobs it applies a host selection policy to determine which of the selected hosts should
receive the rule processing job.

The earlier project by Ulita [11] focused on assigning rule processing jobs to hosts using a ‘caching
plan’, a pre-computed static assignment of projects to rule processing servers. We have made the
decision not to continue with this approach.

34

Ulita’s caching plan approach assigns projects to specific rule processing servers, falling back
to selecting a random server if a selected server is unavailable. When Ulita performed his project
Channable did not yet use preemptible servers (see section 3.6) for the rule processing servers and all
rule processing servers could be assumed to only be unavailable for short periods of time, e.g. for
software upgrades. Because the production environment’s rule processing servers are now (partially)
deployed on preemptible servers, this is no longer the case: servers are regularly offline for periods of
five to ten minutes, which can occur at any time.

We expect that the use of preemptible servers makes the use of a caching plan less effective,
as the scheduler will be forced to fall back to selecting a random server more often than when
non-preemptible servers are used.

Our scheduler instead implements host selection using a new approach, in addition to two ap-
proaches already in use. These host selection policies are described in this section.

9.2.1 Baseline host selection

The baseline host selection policy mimics the host selection method used in production, as described
in section 4.1. Under the baseline host selection policy, the scheduler selects a host by:

1. Ordering the set of eligible hosts using a fixed order (lexographically by server name),

2. Initializing a pseudo-random number generator using the job’s project identifier as the seed,

3. Randomizing the order of the list of eligible hosts using this pseudo-random number generator,

4. Returning the first host in the resulting list.

Like the production environment’s host selection, this host selection policy is deterministic (even
though it uses a pseudo-random number generator): given the same set of available servers and
project ID it will always select the same server.

9.2.2 Random host selection

The random host selection policy does not use any of the data present in the scheduler, and instead
picks a random eligible host to execute the job on. Contrary to the baseline host selection policy,
which also picks a pseudo-random host, the random host selection policy is not deterministic: it may
pick a different server for each request.

This host selection policy is only used to select hosts for rule processing jobs that don’t depend on
project data: in these cases it does not matter on which host the job is executed.

9.2.3 Dynamic host selection

The dynamic host selection policy uses the cache information available in the scheduler to select which
host a rule processing job should be executed on.

Under the dynamic host selection policy, the scheduler selects a host by ordering the set of available
hosts using two metrics:

1. The ‘cache status’ of the project, i.e. whether the scheduler expects the project’s data to be in
cache on the server being considered. This can be one of three values, in descending order of
preference:

• ‘Known cached’, indicating the server reported having the project in cache,

35

• ‘Assumed cached’, indicating the server did not report the project’s data as being cached,
but the scheduler recently assigned a job for the same project to the server. In this case
the scheduler assumes that the data is either already in cache but not yet known to the
scheduler, or that the rule processing server will be able to apply de-duplication as described
in section 3.5 to only fetch the relevant project data a single time.

• ‘Not cached’, indicating the scheduler does not expect the server to have the project in
cache.

2. The number of rule processing jobs that the scheduler estimates to be in progress on the host.
This is defined as the last known amount of running rule processing jobs, plus the amount of
rule processing jobs the server assigned to the host since the amount of running jobs was last
retrieved.

This ordering makes the policy effectively prefer hosts where the project’s data is in cache or can
be assumed to be in cache, preferring servers with less rule processing jobs in progress if the project
has the same cache status on multiple servers.

9.3 Experiments
To evaluate the scheduling policies described in this section we performed an experiment for each
combination of overload detection policy and host selection policy, excluding the random host selection
policy. This resulted in a set of six experiments.

Table 3 shows the names we will use to refer to each of the experiments in later figures.

Overload detection policy Host selection policy Experiment name

Baseline Baseline Baseline, baseline
Circuit breaker Baseline Breaker, baseline
DAGOR Baseline DAGOR, baseline
Baseline Dynamic Baseline, dynamic
Circuit breaker Dynamic Breaker, dynamic
DAGOR Dynamic DAGOR, dynamic

Table 3: Overview of the experiments we performed and the names with which we refer to them.

36

10 Results
In this section we present the results of the experiments we describe in section 9.3. We compare
the performance of the rule processing jobs in each experiment to the baseline experiment and the
production environment’s performance.

10.1 Server preemption oversight
As described in section 7.4.4 we set up our experiment environment using preemptible servers for all
rule processing servers. We had expected this change to have a minimal impact to the behaviour of
our experiment environment, but due to an oversight this change did cause an error in the experiment
environment.

Before starting an experiment we restart all rule processing servers, to ensure that the rule
processing servers are in a known state. We failed to anticipate that this would also cause all rule
processing servers to shut down at the same time, as the runtime of preemptible servers is limited to
24 hours (see section 3.6).

This is highly undesirable: because the experiments last for slightly more than 24 hours this
effectively caused a period in each experiment where no rule processing servers were available. The
production environment does not suffer from this problem, because there the preemptible servers
are started at different times of the day and there are also non-preemptible servers that are not
automatically shut down.

The ideal way to deal with this issue would be to re-run the experiments while preventing the
servers from restarting all at once, which could be done by either using non-preemptible servers (at
an increased cost), or by starting each of the servers at a different time of day (e.g. with about 10
minutes of spacing between them). This should prevent all servers being restarted at the same time.

We were unable to rerun all experiments due to time constraints, as we unfortunately discovered
this issue only after all experiments had been run. Instead of rerunning all experiments we decided
to truncate the results of each experiment at the point where the shutdown occurred, to remove
the effect of the shutdown period from our data. To ensure that the results of each experiment
remained comparable we use the same cutoff point for all experiments’ data, the earliest shutdown
moment across all experiments. This shutdown occurred 22 hours and 48 minutes after the start of
the experiment. To compensate for our error we exclude any rule processing jobs which completed
after 22 hours and 48 minutes from our data.

10.2 Job duration
Figure 4 shows the mean duration of the rule processing jobs across all servers for the production
environment and each of our six experiments. Figures 5 and 6 show the distributions of these durations
in each experiment by comparing the median duration and the 90th, 95thand 99thpercentiles of the
durations. The data that these graphs visualize is shown in the appendix in table 4.

The high-priority jobs in our experiments all seem to perform comparably to the production
environment: the mean duration and percentiles do not change significantly from the duration in the
production environment.

The durations of the low-priority jobs do change significantly. In the baseline experiment the
duration of the low-priority jobs seems to degrade significantly: the mean duration of the low-priority
jobs is double the mean duration in the production environment. This seems to be mainly caused by
an increase in duration of the worst-performing jobs: the 90thand 95th percentile of the jobs’ durations
is more than triple the value in the production environment, while the median duration does not
change significantly.

37

0 2 4 6 8 10 12 14 16

Production

Baseline, baseline

Breaker, baseline

DAGOR, baseline

Baseline, dynamic

Breaker, dynamic

DAGOR, dynamic

2.65

2.06

1.90

1.74

2.01

1.88

1.95

7.63

14.13

5.27

5.39

5.34

3.32

3.41

Average job duration (s)

High priority Low priority

Figure 4: Mean durations for rule processing jobs per priority per experiment.

All other experiments perform significantly better than both the production environment and
baseline experiment: the experiments where only the overload detection policy or the host selection
policy are changed have a mean duration 2.6 times lower than the baseline experiment and 1.4 times
lower than the production environment. The experiments where both the overload detection policy
and host selection policy are changed perform even better, with a mean duration 2.2 times faster than
the production environment and 4.1 times faster than the baseline experiment. The outlier percentiles
of the jobs’ durations also improve, though the median duration of the low-priority jobs again does
not change significantly.

Over all experiments the experiment using the circuit breaker overload detection policy and
dynamic host selection policy seems to perform the best, with the experiment using DAGOR overload
detection and dynamic host selection as a close second-best.

10.3 Waiting time
Figure 7 shows the mean waiting time of the rule processing jobs across all servers for the production
environment and each of our six experiments. Figures 8 and 9 show the distributions of the waiting
time in each experiment by comparing the median waiting time and the 90th, 95thand 99thpercentiles
of the waiting time. The data that these graphs visualize is shown in the appendix in table 5.

The waiting time shows similar behaviour to the duration. For high priority jobs the mean waiting
time is roughly equal across all experiments, and the median and even 90th percentile of the waiting
time are close to zero.

We do see significant changes in the waiting time for low-priority jobs. Like with the duration the
waiting time seems to increase significantly in the baseline experiment as compared to the production
environment: the mean waiting time is more than doubled, and the outlier percentiles also all perform
significantly worse, though the median waiting time is unaffected.

We also see similar improvements in waiting time for the low-priority jobs in the non-baseline
experiments as we saw for the duration: in the experiments with only a non-baseline host selection or
overload detection policy the mean waiting time is 3.5 times lower than the baseline experiment and

38

0 10 20 30 40 50

Production

Baseline, baseline

Breaker, baseline

DAGOR, baseline

Baseline, dynamic

Breaker, dynamic

DAGOR, dynamic

0.27

0.22

0.23

0.21

0.19

0.18

0.20

3.48

2.81

2.78

2.37

2.72

2.46

2.56

12.56

8.47

8.24

7.32

9.14

8.27

8.41

46.29

38.31

33.88

31.83

37.43

34.97

35.98

Job duration (s)

Median 90th percentile 95th percentile 99th percentile

Figure 5: Percentile overview of durations for high-priority jobs per experiment.

0 50 100 150 200

Production

Baseline, baseline

Breaker, baseline

DAGOR, baseline

Baseline, dynamic

Breaker, dynamic

DAGOR, dynamic

0.26

0.27

0.25

0.24

0.22

0.21

0.22

9.77

36.17

11.02

10.35

8.94

5.16

5.59

32.51

100.47

24.73

24.19

25.97

12.74

13.91

168.13

216.22

79.26

92.22

101.51

56.61

56.54

Job duration (s)

Median 90th percentile 95th percentile 99th percentile

Figure 6: Percentile overview of durations for low-priority jobs per experiment.

39

0 2 4 6 8

Production

Baseline, baseline

Breaker, baseline

DAGOR, baseline

Baseline, dynamic

Breaker, dynamic

DAGOR, dynamic

0.08

0.08

0.07

0.06

0.06

0.05

0.06

2.88

7.13

1.88

2.02

1.98

0.82

0.89

Average waiting time (s)

High priority Low priority

Figure 7: Mean rule processing job waiting times per priority in the production environment and in
our experiments.

1.4 times lower than the production environment. The experiments with both a non-baseline overload
detection and host selection policy again perform the best, with a mean waiting time 3.2 times lower
than the production environment and 8 times lower than the baseline experiment.

The median waiting time of the low-priority jobs is unaffected and in fact almost zero in both the
production environment and all experiments, similar to the waiting time for the high-priority jobs.
We also note that the worst-case percentiles of the waiting time for low-priority jobs seems to only
decrease if the dynamic host selection policy is used: the 90th and 95th percentiles of the wait time for
the circuit breaker and DAGOR experiments with baseline host selection are similar to the production
environment’s performance.

The best-performing experiments with regards to waiting time are again the experiments that use
both a non-baseline overload detection policy and the dynamic host selection policy.

Next to the absolute waiting times we also inspected the variance in waiting time for low-priority
jobs between the various servers.

Figure 10 shows the variance in wait time for low priority jobs for the production environment
and each of the experiments. Table 6 shows the data that this graph represents.

We note that the variance in wait time varies wildly between servers in both the production
environment and the baseline experiment: we see that some servers have an abnormally high variance
in the waiting times, while other servers have a near-zero variance in waiting time. In our other
experiments we see a more evenly distributed variance, where the average variance for the servers is
both lower and more evenly distributed. The experiment using the circuit breaker overload detection
policy in combination with the dynamic host selection policy seems to perform the best: the variance
across all servers is the lowest and there are no outliers with a significantly higher or lower variance
in this experiment.

40

0 0.5 1 1.5 2

Production

Baseline, baseline

Breaker, baseline

DAGOR, baseline

Baseline, dynamic

Breaker, dynamic

DAGOR, dynamic

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.24

0.20

0.09

0.06

0.09

0.06

0.06

1.87

1.94

1.55

1.45

1.47

1.25

1.27

Wait time (s)

Median 90th percentile 95th percentile 99th percentile

Figure 8: Percentile overview of waiting time for high-priority jobs in the production environment
and our experiments.

41

0 20 40 60 80 100 120 140

Production

Baseline, baseline

Breaker, baseline

DAGOR, baseline

Baseline, dynamic

Breaker, dynamic

DAGOR, dynamic

0.00

0.00

0.00

0.00

0.00

0.00

0.00

1.93

14.84

2.74

2.34

0.88

0.10

0.16

9.76

50.12

9.66

9.42

7.84

2.45

2.98

80.99

138.50

39.78

44.99

53.49

18.02

19.67

Wait time (s)

Median 90th percentile 95th percentile 99th percentile

Figure 9: Percentile overview of waiting time for low-priority jobs in the production environment and
our experiments.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

Production

Baseline, baseline

Breaker, baseline

DAGOR, baseline

Baseline, dynamic

Breaker, dynamic

DAGOR, dynamic

Wait time variance (s2)

R
un

Figure 10: Variance in wait time for low-priority jobs per rule processing server in the production
environment and experiments. Each dot represents the variance in wait time for one server.

42

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Production

Baseline, baseline

Breaker, baseline

DAGOR, baseline

Baseline, dynamic

Breaker, dynamic

DAGOR, dynamic

0.04

0.03

0.03

0.02

0.03

0.03

0.02

0.11

0.14

0.09

0.09

0.07

0.05

0.06

Average slowdown

High priority Low priority

Figure 11: Mean slowdown for rule processing jobs per priority per experiment.

10.4 Slowdown
Figure 11 shows the mean slowdown of the rule processing jobs across all servers for the production
environment and each of our six experiments. Figures 12 and 13 show the distributions of the
slowdown by comparing the median slowdown and the 90th, 95thand 99thpercentiles of the slowdown.
The data that these graphs visualize is shown in the appendix in table 7.

As explained in section 5.1 the slowdown of a rule processing job is defined as defined as W
W+E ,

where W is the job’s waiting time and E is the job’s execution time. Because the slowdown depends on
the waiting time it is no surprise that we see a similar pattern in the mean and worst-case percentiles
of the slowdown as we saw for the waiting time statistics.

The slowdown for high-priority jobs seems to be largely unaffected by our experiments. The
mean and 99th percentile of the slowdown in our experiments are not significantly different from the
value in the production environment, and like the waiting time the median and 90th percentile of the
slowdown are close to zero. The 95th percentile of the slowdown for high-priority jobs does decrease:
it is about 4.4 times lower for the best-performing experiment (circuit breaker with dynamic host
selection) compared to the production environment’s performance.

For the low-priority jobs there does appear to be a significant decrease in slowdown, similar to the
decrease in waiting time. We note that the mean slowdown in the best-performing experiment is half
the mean slowdown in the production environment. The median slowdown is unaffected since it was
close to zero already, as the median waiting time is also close to zero. The 90th and 95th percentiles of
the slowdown also improve, but not the 99th percentile, which remains high.

10.5 Other observations
10.5.1 Bad performance in baseline experiment

In the previous sections we noted that the performance of low-priority jobs seems to be significantly
worse in our baseline experiment when compared to the production environment, as the mean waiting

43

0 0.2 0.4 0.6 0.8

Production

Baseline, baseline

Breaker, baseline

DAGOR, baseline

Baseline, dynamic

Breaker, dynamic

DAGOR, dynamic

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.31

0.19

0.10

0.06

0.10

0.07

0.07

0.87

0.82

0.79

0.79

0.83

0.83

0.79

Slowdown

Median 90th percentile 95th percentile 99th percentile

Figure 12: Slowdown percentiles for high-priority jobs, per run.

0 0.2 0.4 0.6 0.8 1

Production

Baseline, baseline

Breaker, baseline

DAGOR, baseline

Baseline, dynamic

Breaker, dynamic

DAGOR, dynamic

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.57

0.71

0.44

0.41

0.26

0.06

0.09

0.87

0.90

0.74

0.73

0.67

0.50

0.54

0.99

0.99

0.96

0.97

0.96

0.93

0.93

Slowdown

Median 90th percentile 95th percentile 99th percentile

Figure 13: Slowdown percentiles for low-priority jobs, per run.

44

Figure 14: Availability history of the rule processing servers during the baseline experiment. A green
bar indicates the rule processing server was healthy during this time, while a red bar indicates the
rule processing server was overloaded.

time and duration of the low-priority jobs are both more than doubled compared to the production
environment, and the outlier percentiles for these metrics also increase.

We also note that during the baseline experiment some of the rule processing servers behaved
significantly worse than their counterparts in the production environment. Figure 14 shows the
availability history of the servers during the baseline experiment. The figure shows that some of the
servers were overloaded for significant amounts of time, which meant these rule processing servers
were unable to accept new rule processing jobs. The worst performing server ‘rps-03’ was overloaded
for more than 12 hours, and the second-most overloaded server ‘rps-04’ was overloaded for more than
9 hours.

We only observed this behaviour during the baseline experiment: during the other experiments rule
processing servers also became overloaded, but only for short periods of time, recovering automatically.
This behaviour, which is also typical in the production environment, can also be seen for the other
servers in figure 14.

This is unexpected, as we had meant to construct the experiment environment to mimic the
production environment, so we also expected the baseline experiment to perform similarly to the
production environment.

We are not sure what causes this difference in performance, but suspect it might be caused by the
difference in timeout behaviour described in section 7.4.3. We believe that the lack of connection
timeout might be causing the servers to become overloaded sooner: when a rule processing server is
under load (but not yet completely overloaded) the time needed to accept new connections to the
rule processing server’s API increases. In the production environment this increase in connection time
causes submitters to attempt to connect to different rule processing servers, as the submitters will
trigger the connection timeout. The overloaded server’s workload decreases as submitters fall back
to different rule processing servers, since the server does not receive any new rule processing jobs
anymore. This allows the server to recover from the overload condition.

As described in section 7.4.3 the submitter in the experiment environment does not have a

45

0 5 10 15 20 25 30 35 40 45 50

0

200

400

Time (minutes)

D
A

G
O

R
th

re
sh

ol
d

Figure 15: DAGOR threshold over time for four servers over 50 minutes of the experiment using
DAGOR and baseline host selection. A high threshold means that the server is able to accept all jobs,
while a low threshold indicates the server is overloaded.

connection timeout, which causes it to wait for the connection to be accepted for a longer period than
a submitter in the production environment would wait. This means that the server’s workload does
not decrease, and that the server remains overloaded.

10.5.2 ‘Flip-flopping’ in DAGOR experiments

We observed that in most experiments the circuit breaker overload detection policy outperforms
the DAGOR overload detection policy by achieving lower request durations and wait times than the
DAGOR overload detection policy.

On closer inspection we noticed that the DAGOR algorithm does not entirely seem to be behaving
as intended: it appears that servers are sometimes rapidly switching (‘flip-flopping’) between the
completely available state and a state of full overload when the servers are just on the threshold of
being overloaded for an extended period of time. Figure 15 shows an example of this behaviour:
in this example the server indicated by the blue line behaves ‘correctly’ by only briefly reducing the
threshold, while the servers indicated by the red, black and brown lines start rejecting all load when
they become overloaded, and then rapidly switch between the available state and the overloaded
state after a short period.

This behaviour happens relatively often, which indicates that the DAGOR algorithm is not reaching
its full potential, as it was specifically designed to perform gradual load shedding instead of making a
binary overloaded/not overloaded decision.

We believe that this behaviour shows that DAGOR overload control might not be a good fit for
situations where the average queuing time of requests in a server’s queue is not available. As described
in section 9.1.3 this information was not available in the rule processing service, and we instead opted
to use the amount of stalled promises, as the DAGOR algorithm can be adjusted to use a different
overload indicator. The DAGOR overload control policy might perform better if the average request
queuing time were made available.

46

11 Conclusion
We originally set out to answer our research question:

How to dynamically schedule rule processing jobs to evenly divide the workload among a
number of rule processing servers?

To answer our research question we have implemented a centralized scheduler for the rule
processing servers and compared three methods of overload detection for the rule processing servers,
as well as two methods of host selection. We were also able to improve the process for capturing a
workload trace (as previously used by Ulita), allowing us to obtain a more consistent workload trace,
which allowed us to successfully replay a higher percentage of rule processing jobs in our experiment
environment compared to Ulita’s experiments.

Using our experiments we were able to determine that our scheduling approach using a static
circuit breaker for overload detection and our dynamic host selection policy performs the best out
of all evaluated scheduling approaches, significantly outperforming both our baseline experiment
and the production environment’s performance on the same jobs. While our baseline experiment
did perform worse than the production environment we do believe that implementing our scheduler
in the production environment will also lead to a comparable performance improvement over the
current scheduling approach.

We believe this adequately answers our research question.

47

12 Future work
In this section we identify possibilities for improvement and future work.

12.1 Implementation in production
Given the results of our experiments we believe that our scheduling policy would lead to a performance
increase in Channable’s production environment, by resolving the performance issues associated with
the current method of scheduling work on the rule processing servers. As such we recommend that
Channable implements our scheduler in its production environment.

Because our experiment environment mimics the production environment we believe that it should
be relatively straightforward to adapt our scheduler to be able to run in the production environment.
We also do not foresee any major issues in adapting the submitter systems to query the scheduler for
a rule processing server instead of making the scheduling decision themselves: since the scheduler
offers a HTTP API and many other components of the feed processing system also already use HTTP
APIs it should be easy to add support for our scheduler.

12.2 Determine impact of using a connection timeout
As noted in section 7.4.3 we discovered a difference between our experiment environment and the
production environment, in that the experiment environment did not make use of connection timeouts.
We note in section 10.5.1 that this difference might have caused our baseline experiment to behave
worse than the production environment.

We believe it might be interesting to investigate the effect of reinstating the connection timeout,
as it might be usable as an early warning for rule processing servers becoming overloaded. In order to
investigate this effect a new experiment would need to be run, though the existing workload trace
data can be reused.

If the experiment were to be repeated we also suggest addressing the problem with our use of
preemptible infrastructure described in section 10.1. As described we believe it should be possible to
address the issue by starting the rule processing servers one by one instead of all at once, so that the
rule processing servers don’t all end up being preempted at the same time.

12.3 Alternative scheduling approaches
Lastly, we suggest that more scheduling approaches could be evaluated. Because our scheduler is
configurable it is relatively easy to add more overload detection policies or host selection policies to it,
so this could provide an opportunity for future research.

As noted in section 9.1.3 we had to adjust the DAGOR overload detection policy, as the metric that
Zhou et al. [14] use was not available for the rule processing servers. If the rule processing servers
were adapted to expose the average waiting time of requests in the rule processing servers’ queues one
interesting research opportunity would be to re-implement the DAGOR algorithm using the ‘proper’
metric, which might allow for a further performance improvement.

The scheduling policies we evaluated also did not take all factors into account that we identified in
section 4.3. It might also be interesting to implement alternative host selection policies or to extend
the current host selection policy to take more factors of the rule processing servers’ states into account,
such as whether a server will be preempted soon, or the historical performance of a server.

48

References
[1] Ganesh Ananthanarayanan et al. “PACMan: Coordinated Memory Caching for Parallel Jobs”.

In: 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12).
2012, pp. 267–280. URL: https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/ananthanarayanan.

[2] Eric Boutin et al. “Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing”. In:
11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14). 2014,
pp. 285–300. ISBN: 978-1-931971-16-4. URL: https://www.usenix.org/conference/
osdi14/technical-sessions/presentation/boutin.

[3] Marc Brooker. Exponential Backoff And Jitter. AWS Architecture Blog. Section: Architecture.
Mar. 4, 2015. URL: https://aws.amazon.com/blogs/architecture/exponential-
backoff-and-jitter/ (visited on 02/10/2023).

[4] Inho Cho et al. “Overload Control for µs-scale RPCs with Breakwater”. In: 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). 2020, pp. 299–
314. ISBN: 978-1-939133-19-9. URL: https://www.usenix.org/conference/osdi20/
presentation/cho.

[5] Jeffrey Dean and Luiz André Barroso. “The tail at scale”. In: Communications of the ACM
56.2 (Feb. 1, 2013), pp. 74–80. ISSN: 0001-0782. DOI: 10.1145/2408776.2408794. URL:
https://doi.org/10.1145/2408776.2408794.

[6] Panagiotis Garefalakis, Konstantinos Karanasos, and Peter Pietzuch. “Neptune: Scheduling Sus-
pendable Tasks for Unified Stream/Batch Applications”. In: Proceedings of the ACM Symposium
on Cloud Computing. SoCC ’19. New York, NY, USA: Association for Computing Machinery,
Nov. 20, 2019, pp. 233–245. ISBN: 978-1-4503-6973-2. DOI: 10.1145/3357223.3362724.
URL: https://doi.org/10.1145/3357223.3362724.

[7] Makoto Matsumoto and Takuji Nishimura. “Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator”. In: ACM Transactions on Modeling and
Computer Simulation 8.1 (Jan. 1, 1998), pp. 3–30. ISSN: 1049-3301. DOI: 10.1145/272991.
272995. URL: https://doi.org/10.1145/272991.272995.

[8] Mia Primorac, Katerina Argyraki, and Edouard Bugnion. “When to Hedge in Interactive Ser-
vices”. In: 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI
21). 2021, pp. 373–387. ISBN: 978-1-939133-21-2. URL: https://www.usenix.org/
conference/nsdi21/presentation/primorac.

[9] Mohammad Reza Saleh Sedghpour, Cristian Klein, and Johan Tordsson. “Service mesh circuit
breaker: From panic button to performance management tool”. In: Proceedings of the 1st
Workshop on High Availability and Observability of Cloud Systems. HAOC ’21. New York, NY, USA:
Association for Computing Machinery, Apr. 26, 2021, pp. 4–10. ISBN: 978-1-4503-8336-3. DOI:
10.1145/3447851.3458740. URL: https://doi.org/10.1145/3447851.3458740.

[10] Guy L. Steele, Doug Lea, and Christine H. Flood. “Fast splittable pseudorandom number
generators”. In: Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications. OOPSLA ’14. New York, NY, USA: Association
for Computing Machinery, Oct. 15, 2014, pp. 453–472. ISBN: 978-1-4503-2585-1. DOI: 10.
1145/2660193.2660195. URL: https://doi.org/10.1145/2660193.2660195.

[11] Paweł Ulita. “Scheduling data processing tasks for product feed management”. Master’s thesis.
University of Amsterdam, May 7, 2020.

49

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/ananthanarayanan
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/ananthanarayanan
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://www.usenix.org/conference/osdi20/presentation/cho
https://www.usenix.org/conference/osdi20/presentation/cho
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/3357223.3362724
https://doi.org/10.1145/3357223.3362724
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995
https://www.usenix.org/conference/nsdi21/presentation/primorac
https://www.usenix.org/conference/nsdi21/presentation/primorac
https://doi.org/10.1145/3447851.3458740
https://doi.org/10.1145/3447851.3458740
https://doi.org/10.1145/2660193.2660195
https://doi.org/10.1145/2660193.2660195
https://doi.org/10.1145/2660193.2660195

[12] Matei Zaharia et al. “Delay scheduling: a simple technique for achieving locality and fairness in
cluster scheduling”. In: Proceedings of the 5th European conference on Computer systems. EuroSys
’10. New York, NY, USA: Association for Computing Machinery, Apr. 13, 2010, pp. 265–278.
ISBN: 978-1-60558-577-2. DOI: 10.1145/1755913.1755940. URL: https://doi.org/10.
1145/1755913.1755940.

[13] Hao Zhou et al. “Overload Control for Scaling WeChat Microservices”. In: Proceedings of the
ACM Symposium on Cloud Computing. SoCC ’18. New York, NY, USA: Association for Computing
Machinery, Oct. 11, 2018, pp. 149–161. ISBN: 978-1-4503-6011-1. DOI: 10.1145/3267809.
3267823. URL: https://doi.org/10.1145/3267809.3267823.

[14] Hao Zhou et al. “Overload Control for Scaling WeChat Microservices”. In: arXiv:1806.04075
[cs] (Dec. 23, 2018). version: 3. DOI: 10.1145/3267809.3267823. arXiv: 1806.04075.
URL: http://arxiv.org/abs/1806.04075.

50

https://doi.org/10.1145/1755913.1755940
https://doi.org/10.1145/1755913.1755940
https://doi.org/10.1145/1755913.1755940
https://doi.org/10.1145/3267809.3267823
https://doi.org/10.1145/3267809.3267823
https://doi.org/10.1145/3267809.3267823
https://doi.org/10.1145/3267809.3267823
https://arxiv.org/abs/1806.04075
http://arxiv.org/abs/1806.04075

A Job duration statistics

High priority Low priority

Run Mean Median p90 p95 p99 Max. Mean Median p90 p95 p99 Max.

Production 2.65 0.27 3.48 12.56 46.29 438.59 7.63 0.26 9.77 32.51 168.13 7,201.08
Baseline, baseline 2.06 0.22 2.81 8.47 38.31 361.64 14.13 0.27 36.17 100.47 216.22 8,721.52
Breaker, baseline 1.90 0.23 2.78 8.24 33.88 361.90 5.27 0.25 11.02 24.73 79.26 1,970.64
DAGOR, baseline 1.74 0.21 2.37 7.32 31.83 393.45 5.39 0.24 10.35 24.19 92.22 790.93
Baseline, dynamic 2.01 0.19 2.72 9.14 37.43 437.18 5.34 0.22 8.94 25.97 101.51 1,105.56
Breaker, dynamic 1.88 0.18 2.46 8.27 34.97 442.70 3.32 0.21 5.16 12.74 56.61 2,570.80
DAGOR, dynamic 1.95 0.20 2.56 8.41 35.98 433.26 3.41 0.22 5.59 13.91 56.54 930.36

Table 4: Duration statistics in seconds for the rule processing jobs executed in the production environment and each experiment. The columns labeled p90, p95, p99 represent
the 90th, 95th, 99th percentiles of the duration.

51

B Wait time statistics

High priority Low priority

Run Mean Median p90 p95 p99 Max. Mean Median p90 p95 p99 Max.

Production 0.08 5.00 · 10−5 1.20 · 10−4 0.24 1.87 38.22 2.88 4.00 · 10−5 1.93 9.76 80.99 273.30
Baseline, baseline 0.08 6.00 · 10−5 1.90 · 10−4 0.20 1.94 36.06 7.13 6.00 · 10−5 14.84 50.12 138.50 242.19
Breaker, baseline 0.07 6.00 · 10−5 1.10 · 10−4 0.09 1.55 42.00 1.88 5.00 · 10−5 2.74 9.66 39.78 240.17
DAGOR, baseline 0.06 6.00 · 10−5 1.10 · 10−4 0.06 1.45 47.41 2.02 6.00 · 10−5 2.34 9.42 44.99 239.99
Baseline, dynamic 0.06 6.00 · 10−5 1.10 · 10−4 0.09 1.47 34.05 1.98 5.00 · 10−5 0.88 7.84 53.49 239.63
Breaker, dynamic 0.05 6.00 · 10−5 1.00 · 10−4 0.06 1.25 25.57 0.82 4.00 · 10−5 0.10 2.45 18.02 240.00
DAGOR, dynamic 0.06 6.00 · 10−5 1.00 · 10−4 0.06 1.27 27.72 0.89 5.00 · 10−5 0.16 2.98 19.67 239.56

Table 5: Wait time statistics in seconds for the rule processing jobs executed in the production environment and each experiment. The columns labeled p90, p95, p99 represent
the 90th, 95th, 99th percentiles of the wait time.

Variance per server

Run All 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Production 248.13 181.27 212.45 349.68 29.13 442.37 1,028.93 243.73 3.88 103.16 38.39 146.63 53.05 42.50 684.06
Baseline, baseline 624.39 944.92 10.04 1,688.71 319.81 1,160.91 209.35 71.95 920.90 152.67 409.40 125.12 170.18 575.71 848.86
Breaker, baseline 93.96 37.39 28.48 104.93 77.22 189.85 37.85 41.42 126.80 177.23 97.36 44.66 52.40 129.28 135.51
DAGOR, baseline 123.41 132.03 13.43 254.58 53.71 214.79 12.80 46.25 179.73 33.85 142.55 63.36 53.31 243.30 219.83
Baseline, dynamic 121.34 182.75 204.85 82.75 99.27 90.13 147.86 151.06 75.79 223.03 146.11 45.11 136.48 11.48 99.35
Breaker, dynamic 40.74 43.26 28.99 45.74 40.53 43.15 31.62 38.73 39.10 45.71 68.24 52.76 40.20 15.51 43.16
DAGOR, dynamic 43.78 43.79 32.51 39.31 60.08 42.14 27.56 43.19 42.42 33.84 40.82 28.18 32.26 39.23 114.86

Table 6: Variance of wait times over all servers and per server for the low-priority rule processing jobs executed in the production environment and each experiment. The ‘All’
column shows the variance across all servers, while the numbered columns show the variance for rule processing jobs executed on a single server.

52

C Slowdown statistics

High priority Low priority

Run Mean Median p90 p95 p99 Max. Mean Median p90 p95 p99 Max.

Production 0.04 1.80 · 10−4 0.00 0.31 0.87 1.00 0.11 2.10 · 10−4 0.57 0.87 0.99 1.00
Baseline, baseline 0.03 2.70 · 10−4 0.00 0.19 0.82 0.99 0.14 3.30 · 10−4 0.71 0.90 0.99 1.00
Breaker, baseline 0.03 2.30 · 10−4 0.00 0.10 0.79 0.99 0.09 2.50 · 10−4 0.44 0.74 0.96 1.00
DAGOR, baseline 0.02 2.60 · 10−4 0.00 0.06 0.79 0.99 0.09 2.90 · 10−4 0.41 0.73 0.97 1.00
Baseline, dynamic 0.03 2.60 · 10−4 0.00 0.10 0.83 0.99 0.07 2.60 · 10−4 0.26 0.67 0.96 1.00
Breaker, dynamic 0.03 2.60 · 10−4 0.00 0.07 0.83 1.00 0.05 2.30 · 10−4 0.06 0.50 0.93 1.00
DAGOR, dynamic 0.02 2.40 · 10−4 0.00 0.07 0.79 1.00 0.06 2.20 · 10−4 0.09 0.54 0.93 1.00

Table 7: Slowdown statistics for the rule processing jobs executed in the production environment and each experiment. The columns labeled p90, p95, p99 represent the 90th,
95thand 99th percentiles of the slowdown.

53

	Introduction
	I Context
	The product feed processing system
	Phases
	Data organization
	System triggers and priority
	Components

	The rule processing system
	Rule processing requests
	Prefetch requests
	Rule processing request handling
	The executor
	Caching
	Pre-emptible infrastructure

	The scheduling problem
	Current method
	Advantages
	Disadvantages

	Available data
	Scheduling factors
	Scheduling characteristics

	Related work
	Prior project
	Schedulers
	Hedged requests
	Load shedding

	II Our project
	Project outline and goals
	Approach
	Optimization goals
	Scope

	The experiment environment
	Design
	Submitter
	Scheduler
	Notable differences between the production and experiment environments
	Static dataset
	Slower disks
	Different timeout, retry behaviour on rule processing requests
	Different pre-emption behaviour
	Empty caches on experiment start
	Different server selection in baseline selection method
	Request dependencies not preserved

	Capture and analysis of a new workload trace
	Capture processes
	Request data
	Item store database
	Item store objects

	Data correction steps
	Missing product data in item store database
	Changed generation identifiers in item store objects
	Outlier jobs unable to fit in hardware

	Evaluated scheduling approaches
	Overload detection policies
	Baseline overload detection
	Circuit breaker
	DAGOR

	Host selection
	Baseline host selection
	Random host selection
	Dynamic host selection

	Experiments

	Results
	Server preemption oversight
	Job duration
	Waiting time
	Slowdown
	Other observations
	Bad performance in baseline experiment
	`Flip-flopping' in DAGOR experiments

	Conclusion
	Future work
	Implementation in production
	Determine impact of using a connection timeout
	Alternative scheduling approaches

	References
	Job duration statistics
	Wait time statistics
	Slowdown statistics

