
TripLan2vec: Leveraging Pre-Trained Language Models

for Inductive Triple Embeddings

Adriaan Thomas Kisjes
(4279093)

April 2023

Abstract

Many organizations and data dependent applications deal with the fact that data
is often incomplete and siloed across multiple knowledge bases. The semantic web
and knowledge graphs are powerful tools that mitigate this by allowing rule-based
systems to complete and connect different knowledge bases. To enable the use of
more advanced machine-learning algorithms such as logistic regression or neural net-
works, knowledge graphs need to be transformed into some kind of numeric input.
In the field of neural language processing this has been solved with vector embed-
dings, where for each word a vector is learned that captures its semantic meaning.
There exist many knowledge graph embedding techniques inspired by natural lan-
guage processing, one of which is Triple2vec where triples (two entities and the
relation connecting them) are embedded as a whole. Triple2vec is innovative be-
cause it captures both the graph topology as well as the heterogeneity of knowledge
graphs, where other methods often focus on just one of those aspects. This thesis
proposes to build on triple embeddings by developing TripLan2vec: a triple em-
bedding technique that uses a pre-trained language model to generate embeddings
based on textual descriptions. This enriches the embeddings by both capturing
graph structure as well as natural language semantics. Moreover, it also enables the
triple embeddings to be generated inductively with just a description as input, this
means that triples that are not part of the training process can still be embedded,
unlike with Triple2vec. During evaluation it was shown that TripLan2vec performs
well at discriminating between true and false triples, and at predicting whether two
triples are neighbours. In inductive evaluation, where just part of the training data
was available, TripLan2vec outperforms most other methods.

Keywords— Knowledge Graph, Natural Language Model, Triple Embedding

1



Contents

1 Introduction 4
1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Relevance of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Core Concepts 7
2.1 Feedforward Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Practice of Training a Feedforward Neural Network . . . . . . . . . . . . . 7
2.2 Entity Embedding Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Entity Vector Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Skip Gram Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Negative Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Using BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 BERT Sentence Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Knowledge Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Overview of Knowledge Graph Embedding Techniques 13
3.1 TransE and Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 BERT Powered Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 KG-BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 BERT for Link Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Walk Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Triple Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Random Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Methodology: Training Pipeline 19
4.1 Pipeline Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Triple Description to Language Embedding . . . . . . . . . . . . . . . . . . . . . 20
4.4 Walk Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4.1 Line graph Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.2 Determining the Edge Weights . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.3 The complexity of Node2vec walk extraction . . . . . . . . . . . . . . . . 21
4.4.4 FastWalk: Extracting Walks from a Line Graph . . . . . . . . . . . . . . 22
4.4.5 Variable Speed vs Variable Accuracy . . . . . . . . . . . . . . . . . . . . . 26
4.4.6 Walk Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 Mapping from BERT Sentence Embeddings to Triple Embeddings . . . . . . . . 27
4.5.1 Software and Hardware used . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5.3 Network Hyper Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5.4 Training the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Methodology: Evaluation 33
5.1 Evaluation Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Evaluation Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Triple Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.2 Recommendation Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.3 Triple Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2



5.2.4 Link Prediction and Relation Prediction . . . . . . . . . . . . . . . . . . . 35
5.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Evaluation of FastWalk and Negative Sample Batching . . . . . . . . . . . . . . . 36
5.4 Exploratory Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.2 Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.3 Neighbour Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.4 Entity extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.5 Evaluation of Individual Pipeline Processes . . . . . . . . . . . . . . . . . 38

6 Results 39
6.1 Triple Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Exploratory Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2.1 Cosine Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.2 Neighbour Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2.3 Entity Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2.4 Evaluation of Individual Pipeline Processes . . . . . . . . . . . . . . . . . 40

6.3 FastWalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Discussion 43
7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1.2 Finetuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3.2 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.3.3 Beyond Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Conclusion 45

3



1 Introduction

1.1 General

The power of the web is partially due to its decentralization, it allows everyone with
the means, to host web-pages and publish whatever they want for the world to see. This
allows for the existence of Wikipedia, IMDb, or the online edition of The New York
Times to name a few. But the price for this abundance is that all this data is only loosely
interconnected. The New York Times might mention the film Titanic (1996) in its re-
view of Avatar 2 (2022) without any context, and although IMDb has extensive data on
the film Titanic and Wikipedia has a long article on the historic event. Combining the
information and data from these three different sources requires either manual labor or
extensive indexing and advanced artificial intelligence. To make it easier for automated
systems to make sense of the dispersed and decentralized knowledge bases on the web,
the semantic web was developed. It strives to achieve this with multiple concepts and
technologies of which two are relevant for this thesis: Firstly, universal identifiers that
make it possible to determine the ’Titanic’ mentioned in The New York Times is the
same as the ’Titanic’ page on IMDb. Secondly, a universal data structure that allows for
the automatic merging of multiple distinct knowledge bases, once common concepts are
determined [1]. This data structure is known as a knowledge graph, that as the name
suggests utilizes a graph structure. In this graph nodes represent individual concepts and
edges represent relationships between concepts [10], a more in-dept explanation is given
in Section 2.4. Another way to look at this is as a list of triples consisting of a subject,
predicate, and an object, whereby the subject and object are entities/concepts connected
by a predicate that describes the relationship between them. Given two triples from two
distinct knowledge bases (Leonardo DiCaprio, Played In, Titanic) and (Kate Winslet,
Played In, Titanic) with the knowledge that both Titanics mentioned are in fact the
same, simple rule-based logic can be used to determine that Kate Winslet and Leonardo
DiCaprio played in the same movie. These technologies are now extensively used in prac-
tice, for example by Apple to develop Siri [46], or by Google for a host of applications [10].

With the technologies available to automatically combine different knowledge bases and
extract new information from them using rule-based systems, the next logical evolution
is to enable the use of more advanced machine learning techniques such as neural net-
works or logistic regression. The big challenge with this is transforming information from
a knowledge graph into a suitable input for such systems, because they work best with
numeric data. In the field of natural language processing this has been solved with word
embeddings [24], these are numerical vector representations of individual words. The
vectors are learned in such a way that they capture the semantic meaning of the target
word. There have been multiple techniques developed to apply this to knowledge graphs,
most of which generate embeddings for individual entities and predicates [40]. This has
been shown to be effective at classifying entities [28] and knowledge graph completion
[4] among other use cases.

The embedding technique this thesis will focus on is Triple2vec [12] where an entire
triple is embedded in vector form. In the Titanic example this would mean that one
vector represents the entire triple (Kate Winslet, Played In, Titanic). This has the dis-

4



advantage that it is harder to perform operations on individual entities, but is has been
shown to outperform other embedding techniques in: triple classification [12], recom-
mendation [12], and fact checking [31]. The reason for this is that triples all relate
homogeneously with each other, they either share an entity or they do not, while entities
in a knowledge graph can have many different types of relations (Played In, Is A, or Lives
In). Homogeneity in relationship types simplifies the embedding method, and as shown
by Triple2vec [12], enables more powerful embeddings in some cases.

This thesis thrives to build on triple embeddings by developing a technique that can
generate inductive triple embeddings. In Triple2vec [12] embeddings are only available
for triples that are part of the training process, so if new triples are encountered in a
downstream application, either expensive retraining or a work around is required. With
an inductive technique some external information describing the triple is used to generate
an embedding. This means that triples not originally part of the training process can still
be embedded. In the case of this thesis, language embeddings will be used for input as
it has been shown by KG-BERT [42] that language models can effectively capture the
meaning of triples and can then be used for multiple knowledge graph related tasks.

1.2 Relevance of the Research

The relevance of this research comes from the fact that triple embeddings are a new
concept for which, to the best of my knowledge, only two methods exist of generating
them. First Triple2vec [12] that uses a method inspired by Node2vec [13], second Lognet
[32] that uses a graph neural network. Both methods are not capable of generating these
embeddings inductively. The inductiveness of TripLan2vec will enable triple embeddings
to be used in different types of downstream tasks than currently possible. Moreover, com-
bining language models with graph structure has the potential of making the embeddings
more meaningful than embeddings purely based on one aspect.

1.3 Research Questions

The research will be guided by answering the following research questions:

Main research question: How well do natural-language-enhanced triple em-
beddings perform?

The main question is decomposed into the following sub questions:

Sub question 1: What is the best strategy for evaluating TripLan2vec triple
embeddings?

To answer how well natural-language-enhanced triples perform, first an evaluation
metric needs to be determined. This is done by comparing different existing evaluation
metrics on whether they play into the strengths of the developed technique, whether the
metric can be used to compare with other methodologies, and if possible if the metric can
give an indication on the methods performance in real world tasks.

5



Sub question 2: How well do inductive natural-language-enhanced triple
embeddings perform?

Besides testing how well the triple embeddings perform with full training data, it is also
important to demonstrate the inductive capabilities. This is done by taking increasingly
smaller subsets of the full training data and performing the same evaluation method
mentioned in the first sub question.

Sub question 3: What is the best strategy to determine the optimal param-
eters and hyper parameters for the neural network that maps from language
embedding space to triple embedding space?

The mapping from language embedding space to triple embedding space will be done
with a neural network. To get an optimal mapping function, it is important to carefully
evaluate the parameters chosen. To do this an evaluation method is required that prefer-
ably does not required the entire training and evaluation pipeline to be run for every
possible combination of parameters.

6



2 Core Concepts

This chapter gives an overview of how neural networks work, how they can be used
to gain word embeddings, and finally what knowledge graphs are.

2.1 Feedforward Neural Networks

A neural network is a powerful classification tool that is inspired by the biological
structure of the brain [36]. It consists of neurons (nodes) and synapses (edges) that
connect different nodes with each other, in a feedforward neural network (FNN) these
edges all ’point in the same direction’. This means that there is a one way flow of
information from a set of input nodes through different layers of middle nodes (referred
to as hidden nodes/layers) to a set of output nodes. In Figure 1 a simple example of
a FNN is shown, this example has one layer of hidden nodes, four input nodes (I) and
two output nodes (O). As in the brain, edges have a varied signal propagation strength,
some edges give a strong signal when triggered others a weak signal, in a neural network
this variance is referred to as edge weight. In a node the sum of all incoming edge
signals is fed into an activation function, the result of which is propagated further into
the network via its outgoing edges. The activation function simulates the activation of
a neuron, this can be as simple as a threshold value, if the total input is too low the
node propagates nothing, if the total input is higher than the threshold it propagates
maximally (for example 1.0). In practise this activation function is often continuous.
A trained network can transform a set of input numbers into a set of output numbers,
or an input vector into an output vector, and ”it has been shown by numerous workers
that [multi-layer feedforward neural networks] can accurately represent the mappings of
essentially all reasonably well-behaved functions” [22]. FNNs have been applied to many
different problems, from classifying fruits based on images [43], or recognizing handwritten
text [29], to creating word embeddings [24].

2.1.1 Practice of Training a Feedforward Neural Network

To perform the process of training an FNN a number of practical considerations need
to be made: number of layers, size of the layers, training time, and using stochastic or
batch learning[19] to name a few. In practice it is hard to determine beforehand what
the best parameters will be, so it is to be expected that during the thesis, time will be
spend on finetuning the network and figuring out what works best. Some decisions can
be made beforehand, for example in theory a single layer network would suffice to map
one vector space to another as stated before[22], this also has the advantage that it limits
training time. For other parameters it would make sense to look at applications of FFNs
in similar projects and mimic their parameters as a starting point.

2.2 Entity Embedding Techniques

2.2.1 Entity Vector Embeddings

Vector representations of concrete entities are a way to encapsulate the ’meaning’ or
’semantics’ of a concrete entity in numbers. These vector representations are helpful when

7



Figure 1: An example of a single layer, feedforward neural network.

training neural networks, if a networks is supposed to predict the next word in a sequence
for example it would not make sense to use dictionary order as a numeric representation.
With dictionary order the sentence ’petting the car’ would be scored better as ’petting
the dog’ when the desired result is ’petting the cat’. With a vector embedding an entity
is represented not by one number but by a sequence of numbers (or a point in multi-
dimensional space), this allows for a much more nuanced representation. Node2vec [24]
was for a while the state of the art method of gaining word embeddings, it is based on
the assumption that the meaning of a word is defined by the company it keeps. If two
words (e.g. cat and dog) are often surrounded by the same words for example ’petting the
cat’ and ’petting the dog’, they should have a vector representation that is more similar.
Their approach was extremely effective and even enabled logical relationships to be solved
with vector math, for X = vector(′biggest′) − vector(′big′) + vector(′small′) the closest
word embedding to X is vector(′smallest′).

2.2.2 Skip Gram Architecture

To create these word embeddings based on the neighbouring words, a more compli-
cated network architecture is needed than a simple FNN. In Figure 2 the tail end of the
skip gram architecture is shown, as this will be relevant in later sections. It is a network
with two layers but both layers have multiple instances. The first layer represents the
entity embedding and has one instance per entity. The second layer is a prediction layer
that predicts the neighbouring entity, and has a different instance per neighbour (in this
case for neighbours before and after the target entity). The resulting vector is not a
vector embedding but a one-hot-encoded vector. This means that every dimension of
the vector represents an entity and is set to zero, except the target entity which is set
to one, with just three entities {’Cat’, ’Bird’, ’Koala’} the vector [1.0, 0.0, 0.0] represents

8



Figure 2: Skip Gram Architecture

’Cat’. In reality the resulting vector will likely be more fuzzy, for example the vector
[0.7, 0.3, 0.0] represents mostly ’Cat’ but also ’Bird’. To ensure that the network only re-
turns normalized vectors (sum of total values equals one and all values are between zero
and one) a Softmax layer is used [5]. After training the prediction layers are discarded
and the weighs of the embedding layers are kept as they are embeddings of the entities.
An alternative to skip gram is the continuous bag of words architecture, in this case the
two layers are switched, meaning that instead of using a target entity to predict multiple
neighbouring entities, multiple neighbouring entities are used to predict one target entity.
Both methods are introduced with Word2vec [24], but skip gram is preferred when the
data corpus is not extremely extensive.

2.2.3 Negative Sampling

To provide the normalized one-hot-encoded vector the Softmax module needs to sum
all incoming edges to all terms of the final vector for each neighbour prediction. [24] This
could result in a large number of operations if for example the final one-hot-encoded
vector has 10,000 terms and the hidden layer 100, this is already one million operations.
In the original paper this is mitigated by using Hierarchical Softmax [24], here the output
layer is structured like a tree. The tree structure means that only the nodes between the
correct neighbour and the root of the tree need to be calculated and updated, with a well
balanced tree this scales logarithmic instead of linear. But in a followup paper Mikolov et
al. proposed a more efficient approach, that is also more accurate than pure Hierarchical
Sofmax, Negative Sampling [25]. Negative Sampling works, in the case of Word2vec, by
sampling a number of false or negative neighbours for a target-neighbour word pair, and
only updating the nodes of these words. So instead of updating between 10,000 or one
million plus nodes (in the case of pure Softmax) only between 2 to 20 are updated.

9



2.3 BERT

BERT [9] stands for Bidirectional Encoder Representations from Transformers, and
like Word2vec generates word embeddings in vector space. But where Word2vec generates
one universal vector representation BERT generates word representations with sentence
context in mind, this means that the word ’bank’ for example might have a different
vector representation depending on its use. At first it might seem like this makes the
word embeddings less useful because they are no longer universal between sentences, but
it allows for the distinction between word uses. In both ’river bank’ and ’bank robber’
the word ’bank’ occurs, but they have a completely different meaning that Word2vec can
not encapsulate. Distinct word embeddings by context is not the only thing that makes
BERT special, ELMO [23] is another word embedding technique that does this. What
distinguishes BERT from ELMO is that ELMO only uses context from previous words
in the sentence while BERT uses context from the full sentence, this is also what makes
BERT bidirectional, demonstrated again with the text snippets ’river bank’ and ’bank
robber’ it is immediately clear that context can occur on both sides of the target word.
Recently BERT has been improved upon in some ways by GPT-3 [6] partially by being
trained on an astronomically larger dataset, but as GPT-3 is not open source BERT is
still preferred.

2.3.1 Using BERT

Because BERT needs context BERT takes one or two complete sentences as input,
and returns a list of word embeddings for each word in the sentence(s). These word
embeddings are then ready to be used directly for downstream tasks, but BERT also
provides a fine-tuning feature, so BERT can actually be trained (or fine-tuned) to perform
the downstream task directly. An example of this is next-sentence-prediction [9] where
BERT is fine-tuned to use the generated word embeddings to determine if two sentences
are likely to be consecutive. Two other important considerations to be made are input
length and model size. The input of BERT is limited to 512 word tokens which are
something else as words. To limit the number of possible words to embed, BERT splits
longer words into word tokens. For example ’surfboarding’ will be split into the tokens
’surf’, ’##board’, and ’##ing’, the hashtags are there to indicate that the token is part
of a previous word. As for model size, BERT has two options: base and large, BERT-Base
has 12 hidden layers and BERT-Large 24, there is a significant difference in performance
but they both outperform GPT-2 and ELMO.

2.3.2 BERT Sentence Embeddings

BERTs main purpose is to either extract word embeddings or use the finetuning feature
to perform more complicated tasks, but it is also possible to extract sentence embeddings
from BERT. There are two main approaches for this, either an average is taken from the
combined word embeddings, or the context token of the entire sentence is taken. The
context token is the same information the network uses to perform the context specific
embeddings discussed earlier. But it has been shown that these sentence embeddings
are worse than many much simpler approaches [34] for tasks like sentence similarity
using cosine similarity. This is because the vector spaces are anisotropic [11], meaning

10



that most vectors are concentrated in a small space relative to the total available vector
space. This causes the distance metric used in most embedding classification tasks to be
nonsensical because all vectors are close to each other. Most applications of BERT (e.g.
KG-BERT) solve this by using the fine-tuning feature, but this requires training time
and BERT sentence comparisons are much more time consuming than cosine similarity
(65 hours compared to 0.01 seconds [34]). It has been shown that this can be solved
by performing post processing, for example normalizing the vector space so it becomes
isotropic [21]. But because, for the goal of gaining graph embeddings, no cosine similarity
will be performed on sentence embeddings, it does not need to be a problem. BERT for
Link Prediction [7] shows that BERT sentence embeddings can be leveraged successfully
in downstream tasks (that do not require cosine-similarity).

Figure 3: Example of a small graph, consisting of three nodes and two edges, of which
one is directed and one is undirected.

2.4 Knowledge Graphs

Knowledge graphs are a concept that arose concurrent to the semantic web as a
method to structure data on the web [45]. As the name suggests it uses a graph structure
to store and represent data, in Figure 3 a graph is shown with three nodes and two
edges, one undirected and one directed. A graph thus consists of a set of nodes that
are connected to each other by edges, these nodes and edges can be labeled but the
edges can also be given a direction (as in Figure 3) or given a weight (or all of the
above). Figure 4 is a small example of a knowledge graph, the nodes can represent
entities, so people, objects, or concepts and the edges represent the relationship between
these entities. For example, ’Ada Lovelaces occupation is being a mathematician’, in this
example ’Ada Lovelace’ is the subject, ’occupation’ is the predicate, and ’mathematician’
is the object, a subject, predicate, and object together are referred to as a triple. One of
the advantages of knowledge graphs is that combined with universal identifiers it allows
for easy combination of different knowledge bases [45]. If there is another knowledge
graph about London, it could be combined with the one in Figure 4 to infer more facts
about Ada Lovelace.

11



Figure 4: Example of a knowledge graph on Ada Lovelace.

12



3 Overview of Knowledge Graph Embedding Tech-
niques

In this chapter an overview will be given on knowledge graph embedding techniques
that are relevant to this thesis. Special attention will be given to what the specific
technique is trying to solve and possible limitations of the technique.

3.1 TransE and Derivatives

An early and very effective knowledge graph embedding technique is TransE [4], it
sought to create embeddings for each entity and predicate by minimizing the following
equation: error = vector(subject) + vector(predicate)− vector(object). Each entity and
predicate is initialized by a random vector and after optimization the resulting vectors
can be used for a number of tasks, such as entity or predicate classification, or triple
completion. Triple completion works well as a consequence of the optimization function,
by definition the sum of the subject vector and predicate vector should be roughly equal
to the object vector. So when checking for what language ’Ada Lovelace’ is likely to
speak, the function vector(′AdaLovelace′) + vector(′Speaks′) = x could be solved for
the closest match. Overall this technique works very similar in practice to Word2vec
discussed in the previous chapter. Although TransE is effective in what it set out to
do, it has some limitations. Firstly, as demonstrated by the example of what language
Ada Lovelace speaks, the technique works best with one to one relations. So if multiple
people speak English or Ada Lovelace speaks multiple language the embeddings become
ambiguous [41]. This has spurred many followup research based on TransE that use
different mathematical operators to create and enhance entity embeddings [40], such
as translating hyperplanes with TransH [41], or rotation with RotatE [35]. Another
limitation is that it only uses direct relations, an embedding of an entity is only directly
influenced by the direct neighbours it has. This can be limiting because sometimes second
degree neighbours might be very important for the meaning of an entity. For example, it
might not necessarily be important for the life of Ada Lovelace that she lived in London,
but rather that she lived in a city where many other scientist lived as well, or in a city
that housed many scientific institutions. Methodologies that take this into account are
discussed in Section 3.3.

3.2 BERT Powered Approaches

3.2.1 KG-BERT

A completely different approach to perform triple completion or other classification
tasks on knowledge graphs, is to ignore the graph structure completely and just use textual
descriptions of the entities and predicates. This is what KG-BERT [42] set out to do.
Using Wikipedia to enrich knowledge graphs with semantic descriptions of entities and
predicates they finetuned a BERT model to recognize correct triples. This model could
then be used, naturaly, to recognize correct triples, but also to find the best match for
missing fields in a triple. For the triple (’London’, ’Is A’, ?), multiple possible candidate
objects could be inserted and fed to the model to see which ones match best. Although
extremely computationally intensive it outperformed RotatE in some triple completion

13



benchmarks. One interesting fact is that for their specific application of BERT the smaller
BERT-Base model outperformed BERT-Large.

3.2.2 BERT for Link Prediction

BERT for Link Prediction [7] is another approach that like KG-BERT leverages the
power of existing language models to improve knowledge graph embeddings. Instead of
using the finetuning functionality of BERT like KG-BERT, they extract the sentence
context token and use that as an entity embedding. They then use this embedding as the
input for existing entity embedding techniques like TransE. Because the entity vectors are
now fixed all that remains is to find a fitting predicate vector that satisfies the constrained
error = BERT (subject) + vector(predicate) − BERT (object) the best. This has two
advantages above pure TransE, fist it allows for inductive embeddings, and secondly it
enriches the embeddings with natural language context. The inductiveness follows from
the fact that any arbitrary text can be embedded as a context token using BERT and
thus can be used for link prediction.

3.3 Walk Based Approaches

Both TransE derived methods and the two BERT based methods either only take
direct graph neighbourhood into account or not at all. This can be limiting as like stated
before the second degree neighbourhood (so neighbours of neighbours) is sometimes very
relevant for the meaning of an entity. Node2vec [13] is an embedding technology that
creates node embeddings using a method inspired by Word2vec, and is capable of taking
into account an arbitrarily large neighbourhood of a node. It does this by using the same
Skipgram architecture as Word2vec and treating nodes as words in a sentence. Because
graphs don’t naturally lend themselves to a linear representation they extract random
walks from the target graph. This works by picking a node and then walking over the
graph, only selecting nodes that are neighboured with the previous node, until a certain
length of path is reached. All nodes that were visited are stored in a list, and many
of these lists together form the training data. Node2vec is very effective in creating
node embeddings that lend themselves well to clustering sub communities, finding nodes
with a similar structural role in a network, node classification, and link prediction. In
classification it beats the then state of the art of Spectral Clustering [38], Deep Walk
[30], and LINE [37]. Despite its effectiveness it has one major limitation when applied
to knowledge graphs, it does not take into account what type of relation two nodes have.
So in the example of Figure 4 the way Ada Lovelace and London relate to each other is
treated the same as the way London and the United Kingdom relate to each other. This
means that Node2vec only works for knowledge graphs with just one type of predicate.

3.3.1 Triple Embeddings

To enable graph algorithms like Node2vec to be applied on knowledge graphs some
kind of transformation is needed to make the graph homogeneous (have only one type
of edge). One possible transformation is using a line graph as Triple2vec does [12]. In
a line graph the entire triple, so (subject, predicate, object), is a node, and the edges

14



represent the way these triples relate to each other. This is a homogeneous relation with-
out direction or any other attributes except for a weight indicator. Triples are connected
with an edge if they have a common entity. In Figure 5 a line graph representation of the
knowledge graph from Figure 4 is shown. Weights between triples are determined by how
similar the predicate of the two triples are, in Triple2vec this is determined by comparing
how many common entities predicates have. Using this line graph representation Fionda
& Pirro have used two graph embedding algorithms to gain triple embedding, first they
used the Node2vec algorithm [12] and later a graph neural network [32]. Both approaches
beat knowledge graph embedding techniques like RotatE in classification tasks but also
(predicate agnostic) graph techniques like Deep Walk and Node2vec itself. Although the
graph neural network approach outperforms the Node2vec approach, this thesis will focus
on the Node2vec approach because it is more established and the proposed treatment of
this thesis is based on the Skipgram architecture used by Node2vec. Despite its effective-
ness one limitation of a triple embedding is that it is hard to make predictions on unseen
triples. Triples that are not part of the initial training data do not have a triple embed-
ding and thus no classification can be done on them, while for other methods (TransE
or RotatE) as long as the individual parts of the triple are known (have been embedded)
they can be combined to make predictions on the triple as a whole.

Figure 5: The knowledge graph from Figure 4 represented as a line graph.

3.3.2 Random Walks

The efficacy of Node2vec is heavily dependent on their choice of random walk gener-
ation, as it is the only thing differentiating them from Deep Walk [13]. The Node2vec
random walk generation method is designed with the goal of controlling the balance be-
tween the two extreme options, shown in Figure 6. The blue walk starts at node C
meanders through the network visiting every node just once and covering a large area

15



Figure 6: Both ends of the possibility space of generating random walks, red: breadth
first and blue: depth first.

16



of the graph, the red walk starts at node A and only visits direct neighbors of A. Both
types of walks provide a different kind of context, the red walk gives full information on
the direct neighbourhood of node A nothing more, and the blue walk gives only partial
information on the direct neighbourhood of node A but does give a broader context on the
indirect neighbourhood of A. In the paper on Node2vec [13] they discuss the advantages
of both approaches. The direct neighbourhood of a node provides a lot of information
on that node, LINE [37] uses the direct neighbourhood in two ways: Firstly they look
at what they call first-order proximity, which direct neighbours are strongly connected
to a node, as this can indicate a similarity between the nodes. Secondly they look at
second-order proximity, similarity of neighbourhoods between nodes, if two nodes are not
directly connected but share a lot of common neighbours they might still be very similar.
On the other hand RoIX [14] shows that looking at the broader context of a node, thus
neighbours of neighbours, helps with recognizing nodes that have the same structural
function in a network. For example, Ada Lovelace lives in London and speaks English,
Alexander Von Humboldt lives in Berlin and speaks German, in a knowledge graph they
would not have many common neighbours but they serve the same function in the graph,
they are both people and scientists. Just looking at the direct neighbourhood might tell
a lot on the similarity between Ada Lovelace and London but a broader context is needed
to say something on the similarity between Ada Lovelace and Alexander Von Humboldt.
Node2vec [13] balances these approaches by mixing fluently between them, it does this
by using formulas 1 and 2. When performing a random walk the formula gives the chance
of visiting a given neighbour depending on the distance to the previous node in the path.
pvx is the (relative) chance that the node will be selected given current node v and pos-
sible next node x, it is formed by a bias apq(t, x) and an edge weight wvx. The bias
takes the previously visited node t and possible next node x, and can be controlled by
parameters p and q. The bias depends on the distance between the previous node t and
explored node x, this distance is either 0 meaning node t and x are the same, 1 meaning
node t and x are direct neighbours, or 2 meaning node t and x are not connected in the
graph. p determines the chance when the distance is 0 and q determines the chance when
the distance is 2, a lower p makes the random walk more resemble the red walk from
Figure 6 while a lower q makes it resemble the blue path more. To clarify, Figure 7 shows
the bias for the neighbours of V after visiting T and V . These continues parameters
make it possible to find a perfect balance between a more local focused path and a more
meandering path. But it does mean that the effectiveness of the walks depend on the
choice of parameter values, and thus a lot of time might need to be spend to determine
these values.

pvx = apq(t, x) ∗ wvx (1)

apq(t, x) =


1

p
if dtx = 0

1 if dtx = 1

1

q
if dtx = 2

(2)

17



Figure 7: Node2vec guided walk chances, with V as current node and T as previous node.

18



4 Methodology: Training Pipeline

The methodology of the research is split in two parts, first this chapter will provide
an in depth description of the TripLan2vec pipeline, the next chapter will concern its
evaluation. This chapter will first give an overview of the entire TripLan2vec pipeline,
then a section on the parameter evaluation benchmark, after which every individual
process of the pipeline is explained.

Figure 8: An overview of the TripLan2vec pipeline.

4.1 Pipeline Overview

In Figure 8 a schematic overview of the pipeline is given. At the core of the schema are
the three main processes shown as rectangles, with the pipeline input and output shown as
circles. The processes, input, and output are connected with arrows that indicate the flow
of information, and each information flow is accompanied by a dotted line that provides
documentation on what the data type of the flow is. The rounded rectangles connected
to the final two processes provide information on the parameters and hyper parameters
of the processes. The global input of the training pipeline consists of three files: (1) A file
with all entities as a list of tuples of an entity id and a textual description of the entity.
(2) A file with all predicates as a list of tuples of a predicate id and a textual description
of the predicate. (3) Finally a file of the knowledge graph as a list of triples (head ID,
predicate ID, tail ID). In cases where the target graph is stored in a different configuration,
a prepossessing step is required to restructure the data accordingly. The three input files
are then used by the language embedding process to create a file containing the triples
plus an embedding. The walk extraction process uses this file to build a line graph and
extract the walks. The walks are stored in a file as a list of lists of triple ids. The model
training process uses both the triple plus embedding file and the walks to train a network
that can map from language embedding space to triple embedding space. The final output

19



of the pipeline is the model trained by the last process, this model is stored as a PyTorch
[47] model object.

4.2 Parameter Analysis

Parameter analysis is done by running a simplified training and evaluation pipeline.
Training is simplified mostly by reducing the number of batches to one million, and
is performed on the WordNet18 [8] dataset. With one million batches every node is
visited 10 times as a positive sample and between 100 to 400 times as a negative sample,
depending on the number of negative samples. Despite this low number of visits the
resulting triple embedding is still descriptive enough for some prediction tasks. After the
network is trained the first layer/mapping layer is taken to embed a subset of 50,000 triples
from WordNet18. These triple embeddings are then used to train a neural network that
is asked to predict the predicate of the input triple. The final score is then determined
by how high a percentage of the triples could be correctly classified to their respective
predicate. This method does not resemble a real world application, but it is a quick way
to quantify how descriptive an embedding is. For each tested combination of parameter
values the model is trained once and evaluated 20 times. Then for each parameter the
value with the highest median is taken as best performing. For numerical parameters
such as triple embedding vector size or walk guiding parameters p and q, it is not strictly
needed to test if the results are statistically relevant. This is because if the best and
second best value are not statistically distinguishable, it does no harm to pick the one
with the highest median performance. For each parameter the benchmark results are
presented in a table with for every value the first, second, and third quartile. Quartiles
are the values that separate the data when split into four equal parts. The first quartile is
the value for which 25% of the data is smaller, the second quartile splits the data exactly
in half (equal to the median), the third quartile is the value for which 75% of the values
are smaller, the zeroth quartile is the lowest value, and the fourth quartile is the highest
value. Quartiles are chosen because it is a good way to compare data without being
biased by outliers.

4.3 Triple Description to Language Embedding

Because the language embedding step is relatively straight forward and has already
been elaborated upon in Section 2.3 and Section 2.3.2 it will be described concisely.
The triple description to language embedding step of the pipeline works on any knowl-
edge graph that is accompanied by natural language descriptions of all entities and all
predicates. Once such a graph is provided, a triple description can be generated by con-
catenating the descriptions of the individual parts of the triple to form one sentence. This
sentence can then be used as input for any sentence embedding tool. In this specific im-
plementation BERT is chosen. To gain a sentence embedding from BERT the final layer
of the model is summed resulting in one vector with 768 elements. The final result of this
process is a list of triples in tuple form: head element ID, predicate ID, tail element ID,
and an embedding. The index of each triple is used as triple ID for further processes.

20



4.4 Walk Extraction

Walk extraction consists of three steps, first the knowledge graph is transformed to
a line graph, then edge weights are calculated between the triples/nodes, and finally the
walks are extracted from the line graph.

4.4.1 Line graph Transformation

In Section 3.3.1 an explanation and motivation is provided for what a line graph is
and why it is useful, the actual transformation from knowledge graph to line graph is
relatively simple. The list of triples generated by the language embedding step is used
as input, then for each triple an entry is made in a dictionary, this dictionary stores for
each triple all triples that have at least one entity in common. Initially this is just stored
as a list, but in the next step weight values are added to the triples. To speed up walk
extraction the triples are split into three distinct lists, one list for which at least one entity
matches the head entity of the key triple, one list for which at least one entity matches
the tail entity of the key triple, and a list for which each triple matches both the head
an tail entity of the key triple. The grounds for splitting the triples in this way will be
explained in Section 4.4.4.

4.4.2 Determining the Edge Weights

Weights are added to the line graph with the same method as Triple2vec [12] which is
based on predicate relatedness. The more related two predicates of neighbouring triples
are the higher the weight should be. This is achieved by constructing a matrix with a
column and a row for every predicate, for each combination of predicates pi and pj the
matrix value is described in Formula 3. Number of entities in common is shorthand for
number of triples with predicates pi and pj that have entities in common, ITF is defined in
Formula 4 with the same shorthand. Now every row of this matrix is a vector representing
a predicate, each value of the vector is a similarity indication for all available predicates.
To get the final weights for edges between predicate pi and pj the cosine similarity of the
respective rows of the matrix (row i and j) is taken, the result of which is the final weight
value wi,j . All these calculations are done once and the resulting weights are stored in a
dictionary and added to the line graph.

Matrix V alue = log(1 + number of common entities pi and pj)× ITF (3)

ITF = log
number of entities

times pi and pj have enties in common
(4)

4.4.3 The complexity of Node2vec walk extraction

Now that a line graph is constructed and weights have been added to the graph, the
walks can be extracted. The original plan was to use the approach used by Node2vec
[13]. This approach allows for guiding the walk characteristics and has been shown to
improve performance. Guiding is done by biasing the edge weights (added in the previous

21



step) depending on inter connectivity between possible next nodes and the previous node
in a walk. One major downside of the approach is that each step requires that for all
possible next nodes (neighbours of the current node in the walk) the biased weights need
to be calculated. The complexity for this is O(p×l×b), where p is the number of paths, l
is the length of the paths, and b is the average number of neighbours for each node, also
known as branch rate. Because the number of paths is often determined by the number
of nodes in a graph the complexity can also be rewritten as O(f×n×b), where f is a
factor determined by multiplying the number of paths per node and path length, n is the
number of nodes, and b is the branch rate as before. When applying the algorithm on a
larger graph the process becomes more expensive because there are more nodes, but in
many cases a larger graph also has a higher branch rate making the process even more
expensive. An intuitive example of this is a social network. A reasonable assumption
for a network mapping all acquaintance relations in a single street contains around a 100
people and around 5 connections per person. If this network is scaled up to map all
acquaintance relations in a country the number of people grows, but also the number of
connections per person, because generally not all friendships occur in the same street.
The fact that the size of the graph is multiplied by the branch rate causes that the
complexity of the algorithm can scale anywhere between linear or cubic depending on the
graph characteristics.
One way to mitigate this, could be to cache the biased weights for each neighbour, this
way the biases have to be calculated only once. Now all that needs to be done is to pick
a random neighbour based on the pre-calculated biases, this can be done with a divide
and conquer algorithm in O(log(b)) where b is the branch rate again. With a branch
rate of 500, an algorithm with a logarithmic complexity would be more then 55 times
faster (500/log2(500)). The challenge of caching is the storage size, because the pick
chance of a neighbour depends on its distance to the previous node in the walk, multiple
biased weights need to be stored per neighbour. In fact each neighbour of a node can
be a previous node in a walk, so the complexity of the storage size for the full cache
is O(n×b×b). A naive implementation with caching in Python resulted in a memory
requirement of more than 60GB when generating walks for the WordNet18 [8] dataset.
Because it scales quadratic on branch rate it is not hard to imagine a graph for which
the cache size will defy the working memory capacity of any available computer. When
developing Triple2vec, Fionda & Pirro deal with these speed and memory challenges with
a low level code implementation and executing it on video cards instead of CPU [12].

4.4.4 FastWalk: Extracting Walks from a Line Graph

Because in this case walks will be extracted from line graphs instead of more general
graphs, an alternative walk extraction algorithm can be used that leverages a property of
line graphs. This algorithm does not have the exact same behaviour as the one described
by Node2vec [13], but it is a close approximation that has the same speed complexity of
the cached variant without using any cache. This property of line graphs has not been
leveraged before to generate graph walks to the best of my knowledge. In the base case in
Figure 9 it is again demonstrated what the transformation from graph to line graph looks
like. On the left side two nodes are shown, alpha and beta, connected with a labeled edge
C. Both alpha and beta have other edges connected to them, {X0, P,X1} for alpha and

22



Figure 9: Examples for each of the discussed cases for the FastWalk algorithm. For each
example the knowledge graph representation is shown on the left, and the line graph
representation is shown on the right. The previous triple in the walk is annotated with
a P and the current triple of the walk is annotated with a C. The alpha entity is always
the entity connecting triples C and P, the beta entity is the other entity of triple C (if C
has two distinct entities).

23



{X2, X3, X4} for beta. On the right this graph has been transformed to a line graph,
edge C has become a node and is now directly connected to all edges connected to alpha
or beta. All previous edges of alpha are also themselves interconnected because they all
share a common neighbour (alpha) the same is true for beta. In a normative case every
node in a line graph is connected to two clusters that are internally highly connected but
between each other loosely connected. This is the property that can be leveraged by a
walking algorithm to improve performance. Formula 5 shows again the three options for
guiding bias a: (1) The distance between the previous node and the candidate node is
0, meaning they are the same node. (2) The distance between the previous node and
the candidate node is 1, meaning they are directly connected to each other. (3) The
distance between the previous node and the candidate node is 2, meaning the only thing
connecting the two nodes is the current node in the walk.

apq(t, x) =


1

p
if dtx = 0

1 if dtx = 1

1

q
if dtx = 2

(5)

When exploiting the properties of a line graph to speed up node selection, it is impor-
tant that no single step in the algorithm requires that all neighbouring nodes are checked
or compared, as this would make the algorithm exactly as slow as the original one. The
maximum complexity of an operation is O(log(b)) as this is the complexity of randomly
selecting a weighted element from a list. In the following section it is explained how this
is achieved for the base case as well as all relevant edge cases discovered by the author.
And for the one edge case that could not be solved within the required complexity limits
it is argued why this is not possible.

4.4.4.1 Base Case
In the base case of Figure 9 the current node (in the line graph) is annotated with C
and the previous node with P , the other candidate nodes are annotated with X and a
number. Dealing with the first option is easy, if the previous node is equal to the candidate
node the distance is zero. Checking this can be done with one simple operation of O(1).
Dealing with the last option is also easy, because the previous node and the current node
have entity alpha in common, all neighbours that have entity beta as common entities
are by definition distance 2. Checking this in constant time is possible if the line graph
is stored so that all neighbours of a node are available in two lists: alpha group and beta
group. The alpha group is the set of neighbouring triples that all contain entity alpha, by
convention this is always the entity that the current and previous node have in common.
The beta group is the set of neighbouring triples that all contain entity beta, this is the
entity that the current and previous node do not have in common. To determine the beta
group, the common entity between between the previous and current triple needs to be
determined which can be done in O(1) time complexity. For the second option (distance
of one) the same check as before can be made but this time the alpha group will be
selected, but this is not sufficient. This group not only contains all nodes with distance
one, it also contains the previous node with distance zero (P ). This can be solved by
picking two distinct random nodes from the alpha group and only picking the second

24



node if the first one happens to be equal to the previous node P , this process is twice as
slow as picking one node but is still O(log(b)). The last step is to determine from which
of the three options a node is picked. This is done by calculating the total chance of
picking a node from each option, and then picking one at random based on these chances.
For distance zero this chance is equal to the weight of the edge between the previous
node and the current node times 1/p. For distance one this is the sum of all weights of
the edges between the current node and the nodes from group alpha, minus the weight
between the previous node and the current node. For distance two this chance is equal to
the sum of all weights of the edges between the current node and the nodes from group
beta times 1/q. These biased weight sums can be calculated when constructing the graph
so they don’t add complexity. The complete process looks like this: First determine the
pick chances of each distance option, and pick one based on these chances. If option one
is chosen simply return the previous node. If option two is chosen pick a random node
from group alpha (that is not the previous node). If option three is chosen pick a random
node from group beta. This process has the exact same behaviour as the slower variant,
but it only works if the alpha and beta groups are completely distinct. Unfortunately
there are multiple edge cases where this assumption does not hold, some of these can be
dealt with in O(log(b)) time complexity, but one can not and requires O(b).

4.4.4.2 Edge Case 1
The first case is when there is a parallel edge X0 that connects the head and tail entity
of the current node together as well. This means that node X0 is both counted in the
alpha group and beta group when constructing the graph, making it count twice and thus
making the chance it gets randomly picked erroneously higher. This can be solved by
introducing a third group when constructing the graph, the parallel group. This group
contains all nodes that are formed by a parallel triple to the source/current node. Because
these parallel nodes are connected to all nodes in group alpha en beta, they should always
be counted as distance one. When calculating the pick chance of option two (distance
one) the sum of weights from group alpha and group parallel need to be combined. If
option two is selected a second weighted decision needs to be made whether to pick from
group alpha or group parallel.

4.4.4.3 Edge Case 2
The second edge case is similar to Case 1 but this time the previous node is a node from
the parallel group, now all nodes are distance one (except the previous node itself). This
is solved by treating the alpha, beta, and parallel group as all being distance one and
setting the biases accordingly.

4.4.4.4 Edge Case 3
In edge case 3 the head and tail of the triple that forms the current node are the same.
This means that there is just one group of nodes that are all neighbours of each other.
This is a problem when constructing the graph because all nodes should be part of the
alpha and beta group, making them all count twice. This is solved by only having an
alpha group, and treating the beta group as empty.

25



4.4.4.5 Edge Case 4
Edge case 4 occurs if three triples form a triangle, when in such a situation both the
previous and current node are part of that triangle the third node of the triangle will
be classified incorrectly. In Figure 9 Edge Case 4 this is illustrated, a triangle in the
knowledge graph is also a triangle in the line graph. This triangle means that there is a
connection between group alpha and beta, meaning that not all nodes from group alpha
are distance two removed from all nodes of group beta. There are multiple strategies to
deal with this and none of them are possible within O(log(b)) time complexity. In an
unlikely situation where it is possible to determine which nodes from group beta are also
neighbouring node P within the time constraint, it is still not possible to assign the correct
biases to these nodes within the time constraint. To assign the bias correctly all outliers
need to be removed from the beta group, because they are not part of the set of nodes
with distance two form the previous node. If the number of outlier nodes is constant this
could be done within O(c×log(b)) time complexity, where c is the number of outliers. But
in reality the number of outliers is not constant, in a worse case it could be proportional
to the number of nodes within group beta. This would mean that the time complexity
is O(b×log(b)) slower than the original algorithm which is O(b). If the outlier groups are
cached separately form the alpha, beta, and parallel groups, this discrimination can still
not be done within the time constraint. This is because there is not a constant number of
outlier types, there could be multiple entities that form a triangle with entities alpha and
beta, and for each entity a separate outlier group is needed. The number of groups could
again be, in a worse case, proportional to the branch rate, resulting in a time complexity
of O(b) for determining what outlier group is distance one and what outlier group is
distance two. So with or without caching, solving edge case 4 is not possible in a faster
way than the original algorithm.

4.4.5 Variable Speed vs Variable Accuracy

Edge case 4 means that it is impossible to exploit the properties of a line graph in a
way that has the exact same behaviour as the Node2vec [13] algorithm but with a lower
time complexity. But the line graph properties can still be used to make two different
types of algorithms that have advantages and disadvantages. The first type of algorithm
handles all edge cases regardless of the time complexity and is thus in behaviour exactly
the same as the Node2vec algorithm. Edge case 4 means that the time complexity is
variable depending on the number of triangles in the graph, closer to O(f×n×log(b)) if
there are fewer triangles, closer to O(f×n×b) if there are more triangles. In many cases
this could still be a great improvement over the original algorithm. The second type
of algorithm handles all edge cases that can be solved within time complexity O(log(b))
and accepts that it has a slight error compared to the Node2vec algorithm. This error is
again variable depending on the number of triangles in the graph, lower with less triangles,
higher with more triangles. Because the walk extraction is a stochastic process meant
to capture certain characteristics from a graph, a slight inaccuracy in the guiding of a
walk does not mean the final resulting walks are incorrectly capturing the graph, they
just capture it in a different way. This raises the question what the effects on the final
triple embeddings are, depending on if the walks are generated using Node2vec, or the
FastWalk algorithm.

26



4.4.6 Walk Parameters

There are four important parameters to generate walks. The walk characteristics can
be guided with p and q, the exploration rate can be determined with walk length and
walk count. For this thesis walk length and walk count are taken from Triple2vec [12],
they used a walk length of 100, and a walk count of 10. This means that per node in the
graph 10 walks are started of length 100. p And q are graph specific, so some trial and
error is required to determine the most optimal values. The results of the benchmark
are shown in Table 1 (for an explanation on how to interpret the results see Section 4.2),
based on these results the values p = 2 and q = 1 are chosen for the WordNet [8] data
set.

Table 1: Values for p and q.

Quartile
p=1
q=1

p=0.5
q=1

p=2
q=1

p=1
q=0.5

p=1
q=2

p=2
q=0.5

p=1.5
q=0.8

Q1 49.2% 48.5% 52.6% 54.2% 48.8% 45.8% 48.6%
Q2 51.4% 52.3% 55.3% 54.8% 51.3% 47.8% 51.2%
Q3 53.6% 54.3% 56.9% 56.5% 53.2% 49.7% 52.1%

4.5 Mapping from BERT Sentence Embeddings to Triple Em-
beddings

After the random walks are extracted, the walks are combined with the language
vectors generated in the first step of the training pipeline. These two datasets are used
to train a neural network that can map sentence vectors into triple vectors.

4.5.1 Software and Hardware used

The network is programmed in the Python programming language because this is
widely used in the machine-learning field, so there is a lot of high quality documentation
available. A second reason is that the PyTorch library is programmed in Python, and
PyTorch is the current go-to library for working with neural networks. One advantage of
PyTorch over competitors such as TensorFlow is that it is designed in a imperative way,
making it easy for programmers to add custom code to a network. This customizability
allows for more advanced network architectures, which is exactly what is needed for this
thesis. For the hardware the code is mostly run on an Intel i5 computer with 16GB of
RAM, longer simulations are run on Google Colab because of problems with the PyTorch
library on mac. All simulations are run on CPU instead of GPU because the extensive
swapping of the final network layer required a lot of IO between the CPU and GPU
making CPU perform slightly better.

4.5.2 Network Architecture

The network consists of two parts, first a single layer network that does the actual
transformation, then a single layer network that performs an auxiliary task based on
the output of the first layer. The auxiliary task is used to update the weights of the

27



Figure 10: A visualisation of the final layer of the neural network, it depicts the weights
connecting the triple embedding [V 0− V 4] to the individual neighbour prediction nodes.
The nodes called P are the positive examples (actual neighbours of the input triple), the
nodes called N are negative samples (false neighbours).

28



transformation layer and should thus be chosen in such a way that it best represents the
real world task the network should perform. In this case the goal is to map from language
embedding space to triple embedding space, and it has been shown by Triple2vec [12] that
predicting neighbouring nodes in a random walk is a good auxiliary task to gain triple
embeddings. As discussed before it is inefficient to make a prediction on each and every
node on whether it is a likely neighbour, so instead negative sampling is used. In Figure
10 it is shown what this looks like as a concrete neural network, note that only the layer
performing the auxiliary task is shown. The left set of neurons or input neurons is the
triple embedding gained from the mapping layer, the right side or output is a collection
of neurons that use the input triple embedding to predict whether the input triple is a
likely neighbour to it. In this example there are six neurons, three to predict the direct
neighbour of the input node, three to predict the neighbour once removed. For each set
of three there are two negative samples, and one correct sample, the desired output of
this network is thus [1, 0, 0, 1, 0, 0]. After the network did its prediction and the error rate
compared to the correct output is used to update the weights, a new set of positive and
negative samples will be used. This means that the final layer of the network needs to be
swapped with a new layer representing these positive and negative samples. This is an
expensive process that slows the overall training down. A trick to mitigate this is to take
a set of positive samples and let them be each others negative samples. Table 2 shows
an example batch for the network from Figure 10. In the left column the input node
is shown, the other columns depicts the expected output, ’A n+1’ and ’A n+2’ indicate
the first and second ’true’ neighbour of node A. Because the negative samples of each
input case are themselves positive samples of other input cases, the entire batch can be
executed without an expensive layer swap in between. If the number of negative samples
is increased this process is even more efficient.

Table 2: Training batch
In A n+1 B n+1 C n+1 A n+2 B n+2 C n+2

A 1 0 0 1 0 0
B 0 1 0 0 1 0
C 0 0 1 0 0 1

4.5.3 Network Hyper Parameters

The network has many parameters that have a big impact on performance, in an ideal
situation all combination of many possible values for each parameter is tested against
the final benchmark on a validation dataset. But this is an expensive process propor-
tional to runtime×|parameter values||parameters|, especially when taking into account
the stochastic nature of training a neural network, meaning that every test needs to be
run multiple times. Instead a dummy benchmark is used as explained in the introduc-
tion of this chapter, and the parameters are tested individually. In this section a short
explanation is provided for each parameter, as well as the considerations for choosing a
value. When needed the parameter evaluation benchmark is used to determine the opti-
mal value, but in some cases the network does not produce usable vectors so no further
testing is required.

29



4.5.3.1 Activation Function
The activation function of a layer is applied to the aggregated sum of the input nodes,
this is used to determine at what value a neuron returns a high value or a low value.
There are multiple functions available all with there own characteristic. But in this case
evaluating the different activation functions is an easy task because only the ELU (a = 1)
[20] function leads to a converged network. Every other activation function that is tested
(Sigmoid, RELU, Softsignh, Arctan, Leakyrelu) [20] results in a network that produces
triple embeddings that only consist of zeros.

4.5.3.2 Loss Function
After the network produces its prediction a function needs to be applied to compare
the difference between the prediction and the desired result. As stated before when
explaining the Softmax function, it is wasteful to train a network to exactly match the
expected output data of zeros and ones, when giving high and low values also suffices.
With desired result R : [1, 0, 0] and predictions A : [761, 23, 42] and B : [0, 0, 1] a simple
distance metric would say that B is more correct but a simple distance metric after a
Softmax layer would say A is more correct. Another approach (that in reality is very
similar) is using cross entropy loss, in this case a distance measure between two chance
distributions (the prediction and the desired result) is used to score the result. Part of
the build in cross entropy loss function in PyTorch is a Softmax layer, so in reality it
is the same as applying a Softmax layer but with a smarter loss function. In practice
this smarter loss function is also more effective, where Softmax combined with sum of
squares sometimes resulted in a non converging network, cross entropy loss always led to a
converging network. One complexity is that in this network multiple distinct predictions
are made, namely one prediction per neighbour, so the cross entropy loss function is
applied to each neighbour separately and the results are then summed.

4.5.3.3 Vector Size
The vector size is the size of the final triple embedding. The smaller the easier it is
to extract information from the vector, the larger the more data can be stored in the
vector. To choose the right vector size, multiple values are evaluated in a range from 16
to 256 doubling in size between each step. In Table 3 the results of this are shown (for
an explanation on how to interpret the results see Section 4.2), it is clear that a vector
size of 128 is optimal, this is also the size of the vectors Triple2vec uses [12].

Table 3: Vector Size of triple embedding.
Quartile 16 32 64 128 256

Q1 31.3% 35.2% 42.2% 55.2% 3.4%
Q2 32.5% 36.3% 42.9% 56.0% 18.3%
Q3 33.4% 37.1% 45.8% 57.3% 23.4%

4.5.3.4 Learning Rate
The learning rate determines the size of the step with which the weights of the network
are changed after each batch. If the learning rate is too low it takes longer to train the

30



network, if the learning rate is too high there is a risk that the optimal value is never
found because the network over-corrects overstepping the optimal value. To choose the
right learning rate the following values are evaluated [1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5].
The lower values resulted in a network that only returned zeros as triple embedding, and
values [1e − 1, 1e − 2] gave a converging network. A value of 1e − 2 is chosen because it
is the lowest functioning learning rate, and a lower learning rate means a higher chance
of finding the optimal solution.

4.5.3.5 Number of Negative Samples
The number of negative samples determines how many predictions the network needs to
make per neighbour. In Figure 10 two negative samples are used so the network needs to
make three predictions. According to the Word2vec paper [25] the number of samples
depends on the corpus size, around 5 when the corpus is really big and around 10-20
when it is smaller. Because the datasets used in this case are less big, between 10 and 20
is preferred. Normally the less negative samples the quicker the training process, because
less operations need to be performed. Because of the bulking of negative samples there
are in this case also speed advantages to having more negative samples, more negative
samples means that the expensive swapping action needs to be performed less. On the
benchmark the values [9, 19, 39] are tested, note that together with the one positive sample
they add up to a batch of [10, 20, 40] respectively. From Table 4 it is clear that the less
negative samples the better the performance. But diminishing returns in score between
9 and 19 mean that 19 is chosen as a sweet spot between performance and speed.

Table 4: Number of negative samples.
Quartile 9 19 39

Q1 32.3% 31.3% 27.0%
Q2 33.2% 32.5% 28.8%
Q3 34.3% 33.5% 30.5%

4.5.3.6 Size of the Gram
The size of the predicted gram is the number of neighbours for which predictions are
made, in Figure 9 the gram size is 2. The bigger the predicted gram the more context
is used to shape the triple embedding, but nodes that are further away from the input
node are also less predictable. When making the gram too big training energy is wasted
on trying to find structure in something unstructured. Finding the perfect gram size is
done by starting with size two and increasing it by 1 each step, until performance starts
to decrease. From Table 5 it is clear that performance increased the bigger the gram up
until size 3.

Table 5: Number of neighbours predicted.
Quartile 2 3 4

Q1 27.8% 31.3% 29.8%
Q2 27.9% 32.5% 30.7%
Q3 30.1% 33.4% 31.7%

31



4.5.4 Training the Network

Once the parameters are determined a training run of 10 million batches is done to
train the model. After the training is completed the final layer of the model is discarded,
and the first layer of the model is kept as this is the layer that performs the mapping from
language embedding space to triple embedding space. This model can then be used in
combination with the pre-trained language embedding model to generate inductive triple
embeddings.

Table 6: Overview of all chosen parameters.
Parameter Value

Walk Count 10
Walk Length 100
p 2
q 1
Activation Function ELU
Loss Function Cross-entropy loss
Embedding Vector Size 128
Number of Negative Samples 19
Number of Predicted Neighbours 3
Learning Rate 1e-2

32



5 Methodology: Evaluation

This chapter will give an overview of the selection process for an evaluation method.
It will discuss the evaluation methods from the two most important papers this thesis is
base on, Triple2vec [12], and KG-BERT [42]. It will discuss what evaluation method
will be chosen and why it suits this thesis. Besides the evaluation of the entire pipeline,
some time will be spend on the evaluation of the walking algorithm and negative sampling
batching.

5.1 Evaluation Requirements

When selecting an evaluation method it is important to focus on two questions,
namely: Can the evaluation method be used to compare different approaches? Does
the evaluation method suit the technique?
Comparability is an obvious requirement as it allows for the model to be placed in con-
text with other techniques. And gives an objective way to judge if the approach is useful.
Optimal comparability is reached if the exact same task is performed on the same dataset
with the same split between training data and test data. Here training data and test data
refers to what data is used to train the model (training data) and what data is used to
test the performance of the model (test data), this separation is done to check how well
the model performs on unseen data. The fact that some of the data is unseen during
training has some implication on whether transductive or inductive models can perform
the required task. There are two ways to achieve the parity between task, dataset, and
data split: take an existing benchmark that has been applied before, or create a new
benchmark and apply it to existing state of the art techniques. In this thesis the first
option is preferred, because it can be assumed that existing benchmarks are broadly sen-
sible as they have been used before, and it reduces the work of applying the benchmark
on competitors.
To check if a benchmark suits TripLan2vec it is first important to get an overview of
the capabilities and requirements of the model. The first obvious requirement is textual
descriptions for the triples, or at minimum textual descriptions of the individual entities
and predicates to construct triple descriptions. Without descriptions there is no input for
the language model and thus no input for the triple embeddings. Another requirement
is that the task should be performed on entire triples as it is not possible to break up a
triple embedding into entity and predicate embeddings, so no predictions can be made on
them. To show the inductive capabilities of the model, the evaluation should demonstrate
this inductiveness on triples. Meaning that the test data should contain triples that are
not part of the training data, and ideally also entities and predicates that are not part of
the training data.
As stated earlier, an existing evaluation benchmark is preferred and because this thesis
builds mostly on Triple2vec [12] and KG-BERT [42] their evaluation methods will be
explored first.

33



5.2 Evaluation Benchmarks

5.2.1 Triple Labeling

Triple2vec [12] is validated with triple labeling. They used three datasets: DBLP
[15] a graph connecting authors to papers, topics and venues. Foursquare [16] a graph
of interesting places, connected to users, points of interest, and timestamps. A subset of
YAGO [15] on movies, actors, and directors. For each graph there is a node type that
is labeled, this label is then propagated to neighbouring nodes in the knowledge graph
via relevant predicates. In the YAGO graph this is done by propagating five broad genre
labels from movies to connected actors, directors, and musicians. When the graph is
transformed to a line graph, the union of the labels from the head and tail entity of the
triple is taken to determine the triple labels. This level of indirection results in triples
that don’t contain the original movie still being associated with that movie. To test how
well the triple embeddings can be used to predict these labels, the entire graph is first
used to generate the triple embeddings, then a separate model is trained to predict the
labels. In this case the training data contains the entire graph, but not all triples are
labeled, some triple-label pairs are withheld to form the test data.
The power of this evaluation method is that it shows the extend to which the triple
embeddings are capable of encapsulating the graph structure; triples not originally asso-
ciated with labels can still be labeled based on proximity. Because triple embeddings have
not been used before they had to create a new benchmark that is not well documented
and for which the datasets (training data and test data split) are not publicly available.
This violates the first requirement as it can not be guaranteed that that fluctuations in
scores between methods are due to better performance or to differences in the training
data and test data. Another problem with this evaluation benchmark is that the datasets
are not accompanied by textual descriptions. Because most DBpedia entries contain a
YAGO-ID it is possible to source textual descriptions from DBpedia for many entities.
But ultimately it is not possible to create a satisfying dataset, because it is not known
what the exact subset from the YAGO dataset is, and a test run of a similar subset of
YAGO showed that for only 70% of the entities there is a textual description available
on DBPedia. Even if the exact dataset is available the data loss due to missing textual
descriptions is too high to get a satisfying comparison.

5.2.2 Recommendation Engine

Besides triple labeling Triple2vec [12] is also used to performed a downstream task as
evaluation. In their case the MovieLens and KKBox datasets are used to train and test a
recommendation engine [12], and they demonstrate that triple embeddings outperform
some state of the art methods. Both datasets are graphs of users interacting with either
movies or other items, interactions such as buying an item or saving an item to a wish
list. The datasets are available, and the task is well documented, the downside arrives
with the lack of natural language descriptions. The datasets originally come without
descriptions, in the case of movies descriptions could be sourced from IMBD or DBpedia,
but generating or sourcing natural language descriptions for users is near impossible.
Even if a database with natural language descriptions of individuals existed, it would be
highly confidential and/or ethically questionable. So using a recommendation engine as

34



evaluation task is not viable on the grounds that there exists no suitable datasets.

5.2.3 Triple Classification

Triple classification is the task of determining whether a given triple is true or false,
and is the main task by which KG-BERT is evaluated [42]. To perform triple classification
a graph is transformed into a list individual triples, this list is then split into training
data and test data. Then a set of false triples is generated which is again separated into
training data and test data. For the sake of consistency it is important that the set of
false triples in the test data is constant between methods. For the training data variation
is not a problem, as novel techniques for false triple generation are a valid way to improve
performance. Once training data and test data is available, a classifier can be trained on
the training data, and then be applied to the test data to determine the accuracy rate.
Because KG-BERT also requires textual descriptions for their method they have selected
existing datasets containing natural language descriptions for the entities and relations,
the WordNet11 [26] dataset and a subset of the FreeBase [3] dataset (FreeBase13).
WordNet is a graph of English words connected with semantic relations such as ’synonym’
or ’antonym’. FreeBase is a graph of human knowledge and the predecessor of Wikidata,
it contains facts in triple representation. The advantage of selecting triple classification
on WordNet and FreeBase is that textual descriptions are available, standardised training
data and test data is available, and the task is applied on entire triples. One disadvantage
is that it does not depend heavily on the graph structure of the data, every triple can
be considered as its own entity. But overall it is a good benchmark to compare the
TripLan2vec with KG-BERT and other methods that have performed this benchmark
before. An extra bonus is that for the WordNet11 dataset inductive subsets are available,
meaning training data that contain only part of full dataset. Inductive subsets of 5%,
10%, 15%, and 20% are available accompanied by triple classification results from other
methods.

5.2.4 Link Prediction and Relation Prediction

Two other evaluation methods used by KG-BERT are link prediction and relation
prediction [42]. With link prediction the task is, given an entity and a predicate what
entity is a likely match. With relation prediction the task is similar but now a predicate
should be predicted given a set of entities. Both of these tasks are a better fit with
methods that treat entities and predicates as individual units. TransE for example can
give a best matching entity embedding based on an input entity and predicate embedding
[4]. This best matching ’hypothetical’ embedding can then be used to find the closest
matching existing entity. A similar technique is possible for finding the best fitting pred-
icate. A system that considers triples as a whole, such as KG-BERT or TripLan2vec,
can still be used to perform these tasks but less efficient and possibly less successful.
KG-BERT performs relation prediction by using their model trained for triple classifi-
cation, then to select the best fitting predicate they score each possible combination of
the two input entities and all available predicates and take the best scoring triple. If a
graph contains just 10 predicates this is doable, but in the case of link prediction this
becomes inhibitively expensive. WordNet11 contains about 40.000 individual entities, to
select for the best fitting entity 40.000 classifications need to be performed that all need

35



to be scored, moreover it has been shown that applying BERT is astronomically slower
than cosine similarity vector comparisons [34]. These benchmarks can still be used but
more in a theoretical sense, because it is unlikely that such a computationally expensive
method will be used for these tasks.

5.2.5 Conclusion

If time requirements are not an issue the preferred benchmark would be use the triple
labeling benchmark from Triple2vec [12], because it plays into the strength of triple
embeddings that capture graph structure. But a lack of suitable datasets would require
the creation of custom datasets, that then require the benchmarks to be rerun on base-
line methods to create a fare comparison. So triple classification (used by KG-BERT
[42]) is chosen as the main benchmark, because the task is performed on entire triples,
the datasets are already available with text descriptions, and the evaluation has been
performed before, inductively and transductively.

5.3 Evaluation of FastWalk and Negative Sample Batching

Evaluating the efficacy of the produced triple embeddings is the most important eval-
uation requirement, but because some individual processes of the pipeline producing the
triples are novel themselves, it would be valuable to evaluate them individually as well.
The most grounded way of evaluating part of a pipeline is to perform an A/B test on
the pipeline, once with the process in question, and once without. This is the approach
that Node2vec [13] used when evaluating their guided walk algorithm. The two pro-
cesses that need to be evaluated are the fast walk algorithm, and the batching of negative
samples. Not only would this require the pipeline to be run more than three times, for
both processes an alternative needs to be developed and tested. Especially in the case
of the Node2vec [13] algorithm, it is extremely computationally expensive to run on big
graphs, or time consuming to develop a reasonably fast implementation. For this reason
it is decided that the entire pipeline shall be tested as a whole, with the caveat that the
pipeline could be less effective due to one of the novel processes.
Because the FastWalk algorithm produces a concrete intermediate result, namely walks,
it is possible to perform some analysis on the types of walks it generates compared to
Node2vec. This analysis can then be used to make an educated guess whether it is a vi-
able alternative to the Node2vec walk algorithm. The goal of the Node2vec algorithm is
to guide the walks to be more local or more global, so the analysis should try to quantify
this in some way. Two metrics are chosen on walks of length 50 with different values of p
and q: First, what is the smallest number of unique notes that make up 25% of the walk,
to give an indication of locality. Second, how many unique nodes are visited in total by
a walk, to measure the spread of the walk. For both values an average will be taken to
cancel out randomness. And a smaller graph is used for walk extraction, to mitigate the
inefficiencies of the Node2vec walking algorithm.

5.4 Exploratory Evaluation

Because inductive triple embeddings are new, it is also valuable to perform some
less rigid exploratory evaluation, where comparability is not prioritized. The findings

36



of this exploratory evaluation can give an indication of the strengths and weaknesses of
TripLan2vec, possible uses of TripLan2vec, and what future research might be valuable
in the field of inductive triple embeddings.

5.4.1 Datasets

To reduce training and finetuning time, all exploratory evaluation is first performed
on the WordNet11 [26] dataset using the same TripLan2vec models as are trained for
triple classification. To increase validity evaluation is also performed on the UMLS [8]
dataset, this dataset only contains 5,000 triples compared to the more than 100,000 triples
of WordNet11 making the training process less time consuming.

5.4.2 Cosine Similarity

Cosine similarity has been shown to be an effective operation when comparing how
similar vector embeddings are [24]. But as is mentioned in Section 2.3.2 BERT sentence
embeddings do not work well together with cosine similarity, so it is interesting to test
whether the TripLan2vec triple embeddings inherit that same property from the input
vectors. To test this the average cosine similarity of a set of neighbouring triples is com-
pared to the average cosine similarity of a set of unrelated triples, under the assumption
that neighbouring triples are more similar than unrelated triples. Triple2vec [12] does
not mention how well their triple embeddings work together with cosine similarity.

5.4.3 Neighbour Prediction

To evaluate how well TripLan2vec captures the graph topology, it is used to predict
whether two unseen triples are likely to be neighbours. Similar to triple classification,
TripLan2vec triple embeddings are used to train a Support Vector Machine that is then
evaluated on a test set. The training data for this model is generated by extracting pairs
of neighbouring triples and pairs of unrelated triples from the training data and then
classifying them as either being neighbours or not. The test data is sourced from the test
dataset in a similar way. No comparative results are available for neighbour prediction
because Triple2vec [12] is not capable of making inductive predictions, and KG-BERT
[42] can only classify individual triples.

5.4.4 Entity extraction

A core property of a line-graph is that neighbouring triples always share an entity,
together with the neighbour classifier trained in the previous section, this can be used to
extract concrete entities from a textual triple description. To do this first the knowledge
graph from the training data is reduced so that for each entity there are at least two
triples containing it. Then for an unseen triple from the test data a triple embedding is
generated using TripLan2vec, the neighbour classifier is used to score the likelihood for
each triple in the reduced knowledge graph that it neighbours the target triple. For each
entity in the knowledge graph the average neighbour score is taken and the top ten are
compared with the actual entities of the target triple. Because there are two entities in a
triple there are two success scores, number of times both entities are in the top ten, and

37



the number of times one entity is in the top ten. Both Triple2vec and KG-BERT are not
capable of performing entity extraction, Triple2vec because it can not produce inductive
triple embeddings, and KG-BERT because it is not trained to perform this task.

5.4.5 Evaluation of Individual Pipeline Processes

To evaluate to what extend the BERT language model and gram prediction add to the
expressiveness of the triple embeddings, both aspects are evaluated individually against
the entire pipeline. Special care is taken when selecting the evaluation task, because
without BERT embeddings as input the pipeline is no longer inductive, for this reason
transductive neighbour prediction is chosen. This means that for the neighbour predic-
tor the training data and test data are sourced from the Triple2vec training data, so
it operates only on known triples. Three tests are performed, on the entire pipeline,
on BERT embeddings without gram prediction, and on gram prediction without BERT
embeddings. To evaluate BERT embeddings without gram prediciton the BERT embed-
dings are treated as triple embeddings, and to evaluate gram prediction without BERT
embeddings the gram predictor is trained with random sentence embeddings as input.
For time considerations only the 10% inductive subset of WordNet11 and the full UMLS
datasets are evaluated.

38



6 Results

6.1 Triple Classification

The results of inductive and transductive triple classification are shown in Table 7. It
shows the results for TripLan2vec as well as numerous competitors on the WN11 dataset,
this data is taken from the KG-BERT paper [42]. The results on the transductive dataset
are shown in the 100% column, the inductive results are shown in the other columns along
with the extend of inductiveness as a percentage. Here 5% indicates that only 5% of the
available training data is used to train the model. The results of the methods are shown
as percentages that indicate how many of the triples in the test set are correctly classified.
Because there are just two classes (true and false) a score of 50% is as bad as random
guessing, a score of 100% means that all triples are correctly classified.
The results are achieved by feeding the triple embeddings generated with TripLan2vec as
training data to a classifier. Three classifiers are used, Logisitic Regression [27], a Support
Vector Machine [27], and a neural network. All three have similar results but a Support
Vector Machine performs slightly better than the others.

Table 7: Results triple classification on WN11.
Method 5% 10% 15% 20% 100%

KG-BERT [42] 83% 86% 87% 88% 94%
TripLan2vec 69% 71% 77% 78% 81%
TransE [41] 52% 53% 54% 57% 76%
DistMult [44] 55% 55% 56% 56% 87%
ComplEx [39] 55% 55% 55% 56% –
TransD [17] 53% 54% 55% 57% 86%

From the results it is clear that KG-BERT outperforms TripLan2vec easily in every
test, demonstrating that a finetuned BERT Model is superior to the custom network
created for TripLan2vec. But it is also clear that inductively TripLan2vec outperforms
every other method tested outside of KG-BERT, beating TransE even transductively.

6.2 Exploratory Evaluation

6.2.1 Cosine Similarity

To evaluate to what extend cosine similarity gives a meaningful indication of similarity,
the average cosine similarity is taken of a list of neighbouring triple pairs and a list
of unrelated triple pairs. For both lists the averages are 1.0, furthermore every single
comparison results in a similarity of 1.0 or a value very close to 1.0. It can thus be
concluded that as with BERT sentence embeddings the TripLan2vec embedding space is
anisotropic [11], but like BERTs sentence embeddings the vectors are still meaningful as
demonstrated with triple classification.

39



6.2.2 Neighbour Prediction

The results of neighbour prediction are shown in Table 8, the top row shows the
extend of inductiveness as a percentage where 100% is the full training data, the bottom
row shows the resulting score. As with triple classification there are just two classes
(neighbour and not neighbour) so a score of 50% is as bad as random guessing and a
score of 100% means that all triple pairs are correctly classified. Because there is no prior
research on inductive triple embeddings there are no competitors to compare with, but
with the full training data the score is significantly higher as random, and the efficacy is
very resilient against smaller datasets.

Table 8: Results neighbour classification.
Dataset 5% 10% 15% 20% 100%

WN11 55% 69% 75% 82% 90%
UMLS – – – – 93%

6.2.3 Entity Extraction

Table 9 shows the results of hits@10 entity extraction on the WN11 and UMLS
datasets, as well as the total entities in the training graph. The ’One entity’ column
indicates how many times one of the entities from a target triple is part of the top ten
best fitting entities as scored by the entity prediction model. The ’Both entities’ column
indicates how many times both entities of the target triple are part of the top ten best
fitting entities. Note that unlike the previous evaluation tasks there are more than two
classes, so even though a score of 18% on both entities for WN11 is not particularly useful,
it is still significant.

Table 9: Entity extraction using neighbour predictor hits@10.
Dataset Total entities One entity Both entities

WN11 10% 11949 79% 18%
UMLS 135 100% 71%

6.2.4 Evaluation of Individual Pipeline Processes

In Table 10 the results are shown for the evaluation of the individual processes of the
full TripLan2vec pipeline against the full pipeline. As with inductive neighbour predic-
tion and triple classification a score of 50% is as bad as random and 100% is the best
possible. First TripLan2vec is run with random vectors as input instead of BERT embed-
dings, then unprocessed BERT embeddings are used as triple embeddings, and finally the
entire pipeline is run. From the results it is clear that both processes on their own have
strong predictive power, with BERT sentence embeddings as the most predictive. But the
complete TripLan2vec pipeline has the best performance, so it can be concluded that the
language context and the graph context reinforce each other to create more meaningful
embeddings.

40



Table 10: Results on transductive neighbour classification.
Method WN11 10% UMLS

TripLan2vec on Random Input Vectors 80% 57%
Unprocessed BERT Sentence Embeddings 95% 89%
TripLan2vec on Bert Sentence Embeddings 97% 94%

6.3 FastWalk

To evaluate to what extend FastWalk can guide walks similarly to Node2vec, both
algortihms are run on the same graph with varying values for p and q. The graph used is
a subset of WordNet18 [8], to make the run time of Node2vec manageable. For each node
in the line graph 1 walk is generated of length 50, then the average number of unique
nodes visited per walk is taken (spread), and the average (minimal) number of unique
nodes making up 25% of the visited nodes by a walk is taken (locality). The results for a
varying value of p are shown in Figure 11, FastWalk is shown in red, Node2vec is shown
in blue, the spread is indicated with circles, and the locality with squares. In Figure 12
the results for a varying value for q are shown. From both plots it is clear that FastWalk
and Node2vec behave differently under different values for p and q. However it is also
clear that with FastWalk the characteristics of a walk are strongly guidable using p and q,
but effective values for p and q are not directly translatable between algorithms; separate
finetuning is required.

41



0.1 0.5 1 2 5
0

10

20

30

40

Value for p

N
u
m
b
er

o
f
u
n
iq
u
e
n
o
d
es

FastWalk Locality
FastWalk Spread
Node2vec Locality
Node2vec Spread

Figure 11: Walk locality and spread between FastWalk and Node2vec with q = 1

0.1 0.5 1 2 5
0

10

20

30

40

Value for q

N
u
m
b
er

o
f
u
n
iq
u
e
n
o
d
es

FastWalk Locality
FastWalk Spread
Node2vec Locality
Node2vec Spread

Figure 12: Walk locality and spread between FastWalk and Node2vec with p = 1

42



7 Discussion

In this section a discussion is provided of the results presented in the previous section,
and the thesis at large. First the overall limitations of the research will be discussed,
then the strengths of the TripLan2vec are discussed, and to conclude future avenues of
research are given based on the experience of the author.

7.1 Limitations

7.1.1 Evaluation

The biggest limitation of this thesis is the evaluation of TripLan2vec. The main
evaluation method chosen (triple classification) is likely not an optimal task for triple
embeddings, despite performing reasonably well, it is not unlikely that the language en-
hanced triple embeddings would have been able to beat Triple2vec [12] on triple labeling.
The reason that further evaluation was not performed is due to time limitations, it was
too time consuming to both construct a knowledge graph that contains language descrip-
tions and useful labels, and then reevaluate Triple2vec with it.
The main experiment (triple classification) is only performed on the WordNet11 [8]
dataset, making the results less generalizable over other datasets. Initially the plan was
to run the same evaluation on the FreeBase13 dataset, this is because the KG-BERT
paper [42] contained results on triple classification for this dataset as well. But during
the walk generation with FastWalk it was discovered that, likely due to either a bug or
a naive implementation, the algorithm ran out of memory. This could have been solved
but it was deemed better to spend that time on exploratory evaluation.

7.1.2 Finetuning

Extensive time was spent on finetuning the parameters and hyper parameters of the
pipeline, but two assumptions were made to speed the process up that are likely broadly
true but not fully accurate. Firstly, the best value for every parameter was evaluated
independently of other parameters, under the assumption that a good value for parameter
X under a certain set parameter values, is also a good value for parameter X under another
set of parameter values. It is known that this is not the optimal method for choosing
model parameters, and multiple better methods exist one of which is GridSearch [33],
here multiple combinations of parameter values are run multiple times to establish the
best combination. The second assumption was that parameters that perform well on
a simplified task, also perform well on the main task. This meant that evaluation was
greatly sped up, because the training time was reduced, and the evaluation task was
chosen to be quick. But there is no reason to believe that this assumption always holds.

7.2 Strengths

Despite the limited evaluation, TripLan2vec was able to generate triple embeddings
that are versatile in application, and resilient under increasing inductiveness. The triple
embeddings generated using one model could both be used to perform triple classifica-
tion, as well as neighbour prediction. Even when only 5% of the available training data

43



was used the embeddings still showed reasonable results, and out performed all other
non-inductive methods with triple classification.
Another strength of TripLan2vec is its speed, transductive triple classification on Word-
Net11 was done in a little more than 14 hours, this includes generating the walks, training
the mapping network, and training the triple classifier. This does not include parameter
optimization, but a quick pipeline speeds this process up as well.

7.3 Future Work

7.3.1 Evaluation

A limitation of this thesis is the sub optimal evaluation, especially the lack of direct
comparison between Triple2vec [12] and TripLan2vec. It would be insightful to see
how these methods compare when evaluated on the same dataset, this would show to
what extend the added language context improves the performance of triple embeddings.
Moreover a direct comparison can be used to better quantify the difference in behaviour
between FastWalk and Node2vec walk extraction, whether the time trade off is worth it.

7.3.2 Hybrid Models

One challenge of selecting a downstream tasks for TripLan2vec is that for many tasks,
such as recommendation engines, the knowledge graph contains users or customers as
entities. Because textual descriptions are required to generate triple embeddings, and
customers are hard to meaningfully describe in a unique way using one sentence, Tri-
pLan2vec could not be used for this. It would be interesting to see if it is possible to
create an embedding technique that can utilize language models when textual descriptions
are available but fall back on pure graph structure when not.

7.3.3 Beyond Language Models

In this thesis the input embeddings for TripLan2vec are BERT sentence embeddings,
but the modularity of the pipeline means that it is trivial to swap BERT with another
embedding model. This could be another language model, but also another embedding
modality altogether, such as image embeddings [18], or sound embeddings [2]. In future
work it could be evaluated if these types of models can also be used to enrich triple
embeddings or even generate them inductively.

44



8 Conclusion

Triple2vec [12] demonstrates that triple embeddings are a powerful addition to the
knowledge graph embedding family, and KG-BERT [42] shows that language models
can be utilized effectively in many knowledge graph related tasks. TripLan2vec is the
attempt to combine both these insights to create triple embeddings that are versatile in
application, and resilient against limited training data.
TripLan2vec produces embeddings that perform well at many different tasks, even when
just 5% of available training data is used. In these inductive tests TripLan2vec out-
performs all competing methods except for KG-BERT [42]. Thereby answering both
the main research question ”How well do natural-language-enhanced triple embeddings
perform?” and sub question 2 ”How well do inductive natural-language-enhanced triple
embeddings perform?”. This result is achieved with a modular pipeline that utilizes a
state of the art pre-trained language model, an innovative walk extraction algorithm that
has a lower time complexity than current state of the art, and an innovative network
architecture that can map from language embedding space to triple embedding space.
Sub research question 1: ”What is the best strategy for evaluating TripLan2vec triple
embeddings?” is answered pragmatically, by taking into account time constrains, com-
parability against other methods, and suitability against the strenghts and weaknesses
of TripLan2vec. Triple classification is chosen because the datasets for this are available
with standardized training, inductive training, and test data, as well as the performance
characteristics from other methods allowing for easy comparison. Besides triple classifi-
cation some exploratory evaluation is performed to demonstrate the versatility of triple
embeddings and as an invitation for further research. From this exploratory evaluation
it can be concluded that TripLan2vec embeddings don’t work well together with cosine
similarity, but are good at neighbour prediction.
Finally sub research question 3: ”What is the best strategy to determine the optimal pa-
rameters and hyper parameters for the neural network that maps from language embedding
space to triple embedding space?”, is answered by evaluating each parameter separately
with a simplified evaluation method. This allows for a large amount of different combi-
nations to be explored in a relatively short time, it is deemed that this is more important
then exploring fewer parameter values more thoroughly.
To conclude, this thesis shows that it is possible to create inductive and transductive
triple embeddings that can compete with the state of the art in some tasks, but also that
more research into the field is required to unlock the full potential.

45



References

[1] Antoniou, G., and Van Harmelen, F. A semantic web primer. MIT press, 2004.

[2] Aytar, Y., Vondrick, C., and Torralba, A. Soundnet: Learning sound repre-
sentations from unlabeled video. Advances in neural information processing systems
29 (2016).

[3] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor, J. Free-
base: a collaboratively created graph database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD international conference on Management of
data (2008), pp. 1247–1250.

[4] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko,
O. Translating embeddings for modeling multi-relational data. Advances in neural
information processing systems 26 (2013).

[5] Bridle, J. Training stochastic model recognition algorithms as networks can lead
to maximum mutual information estimation of parameters. Advances in neural in-
formation processing systems 2 (1989).

[6] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal,
P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. Language
models are few-shot learners. Advances in neural information processing systems 33
(2020), 1877–1901.

[7] Daza, D., Cochez, M., and Groth, P. Inductive entity representations from text
via link prediction. In Proceedings of the Web Conference 2021 (2021), pp. 798–808.

[8] Dettmers, T., Minervini, P., Stenetorp, P., and Riedel, S. Convolutional
2d knowledge graph embeddings. In Proceedings of the AAAI conference on artificial
intelligence (2018), vol. 32.

[9] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018).

[10] Ehrlinger, L., and Wöß, W. Towards a definition of knowledge graphs. SE-
MANTiCS (Posters, Demos, SuCCESS) 48, 1-4 (2016), 2.

[11] Ethayarajh, K. How contextual are contextualized word representations? com-
paring the geometry of bert, elmo, and gpt-2 embeddings. arXiv preprint
arXiv:1909.00512 (2019).

[12] Fionda, V., and Pirrò, G. Learning triple embeddings from knowledge graphs.
In Proceedings of the AAAI Conference on Artificial Intelligence (2020), vol. 34,
pp. 3874–3881.

[13] Grover, A., and Leskovec, J. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining (2016), pp. 855–864.

46



[14] Henderson, K., Gallagher, B., Eliassi-Rad, T., Tong, H., Basu, S.,
Akoglu, L., Koutra, D., Faloutsos, C., and Li, L. Rolx: structural role
extraction & mining in large graphs. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining (2012), pp. 1231–
1239.

[15] Huang, Z., and Mamoulis, N. Heterogeneous information network embedding
for meta path based proximity. arXiv preprint arXiv:1701.05291 (2017).

[16] Hussein, R., Yang, D., and Cudré-Mauroux, P. Are meta-paths necessary?
revisiting heterogeneous graph embeddings. In Proceedings of the 27th ACM inter-
national conference on information and knowledge management (2018), pp. 437–446.

[17] Ji, G., He, S., Xu, L., Liu, K., and Zhao, J. Knowledge graph embedding
via dynamic mapping matrix. In Proceedings of the 53rd annual meeting of the
association for computational linguistics and the 7th international joint conference
on natural language processing (volume 1: Long papers) (2015), pp. 687–696.

[18] Kiela, D., and Bottou, L. Learning image embeddings using convolutional neural
networks for improved multi-modal semantics. In Proceedings of the 2014 Conference
on empirical methods in natural language processing (EMNLP) (2014), pp. 36–45.

[19] LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. Efficient backprop.
In Neural networks: Tricks of the trade. Springer, 2012, pp. 9–48.

[20] Lederer, J. Activation functions in artificial neural networks: A systematic
overview. arXiv preprint arXiv:2101.09957 (2021).

[21] Li, B., Zhou, H., He, J., Wang, M., Yang, Y., and Li, L. On the sentence
embeddings from pre-trained language models. arXiv preprint arXiv:2011.05864
(2020).

[22] Maggiora, G. M., Elrod, D. W., and Trenary, R. G. Computational neu-
ral networks as model-free mapping devices. Journal of chemical information and
computer sciences 32, 6 (1992), 732–741.

[23] Matthew Peters, Mark Neumann, M. I. M. G. Deep contextualized word
representations. In Proceedings of North American Chapter of the Association for
Computational Linguistics (2018).

[24] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781 (2013).

[25] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. Dis-
tributed representations of words and phrases and their compositionality. Advances
in neural information processing systems 26 (2013).

[26] Miller, G. A. Wordnet: a lexical database for english. Communications of the
ACM 38, 11 (1995), 39–41.

47



[27] Nasteski, V. An overview of the supervised machine learning methods. Horizons.
b 4 (2017), 51–62.

[28] Nickel, M., Tresp, V., and Kriegel, H.-P. A three-way model for collective
learning on multi-relational data. In Icml (2011).

[29] Oh, I.-S., and Suen, C. Y. A class-modular feedforward neural network for hand-
writing recognition. pattern recognition 35, 1 (2002), 229–244.

[30] Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining (2014), pp. 701–710.

[31] Pirrò, G. Fact checking via path embedding and aggregation. arXiv preprint
arXiv:2011.08028 (2020).

[32] Pirrò, G. Lognet: Local and global triple embedding network. In International
Semantic Web Conference (2022), Springer, pp. 336–353.

[33] Pontes, F. J., Amorim, G., Balestrassi, P. P., Paiva, A., and Ferreira,
J. R. Design of experiments and focused grid search for neural network parameter
optimization. Neurocomputing 186 (2016), 22–34.

[34] Reimers, N., and Gurevych, I. Sentence-bert: Sentence embeddings using
siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

[35] Sun, Z., Deng, Z.-H., Nie, J.-Y., and Tang, J. Rotate: Knowledge graph
embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197
(2019).

[36] Svozil, D., Kvasnicka, V., and Pospichal, J. Introduction to multi-layer feed-
forward neural networks. Chemometrics and intelligent laboratory systems 39, 1
(1997), 43–62.

[37] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. Line: Large-
scale information network embedding. In Proceedings of the 24th international con-
ference on world wide web (2015), pp. 1067–1077.

[38] Tang, L., and Liu, H. Leveraging social media networks for classification. Data
Mining and Knowledge Discovery 23, 3 (2011), 447–478.

[39] Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., and Bouchard, G.
Complex embeddings for simple link prediction. In International conference on ma-
chine learning (2016), PMLR, pp. 2071–2080.

[40] Wang, Q., Mao, Z., Wang, B., and Guo, L. Knowledge graph embedding: A
survey of approaches and applications. IEEE Transactions on Knowledge and Data
Engineering 29, 12 (2017), 2724–2743.

[41] Wang, Z., Zhang, J., Feng, J., and Chen, Z. Knowledge graph embedding
by translating on hyperplanes. In Proceedings of the AAAI conference on artificial
intelligence (2014), vol. 28.

48



[42] Yao, L., Mao, C., and Luo, Y. Kg-bert: Bert for knowledge graph completion.
arXiv preprint arXiv:1909.03193 (2019).

[43] Zhang, Y., Wang, S., Ji, G., and Phillips, P. Fruit classification using computer
vision and feedforward neural network. Journal of Food Engineering 143 (2014),
167–177.

[44] Zhang, Z., Zhuang, F., Qu, M., Lin, F., and He, Q. Knowledge graph embed-
ding with hierarchical relation structure. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing (2018), pp. 3198–3207.

[45] Zou, X. A survey on application of knowledge graph. In Journal of Physics: Con-
ference Series (2020), vol. 1487, IOP Publishing, p. 012016.

[46] Knowledge graph job application apple. https://hired.com/job/

siri-software-engineer-knowledge-graph-testing123123. Accessed: 2023-03-
20.

[47] The pytorch library. https://pytorch.org.

49

https://hired.com/job/siri-software-engineer-knowledge-graph-testing123123
https://hired.com/job/siri-software-engineer-knowledge-graph-testing123123
https://pytorch.org

	Introduction
	General
	Relevance of the Research
	Research Questions

	Core Concepts
	Feedforward Neural Networks
	Practice of Training a Feedforward Neural Network

	Entity Embedding Techniques
	Entity Vector Embeddings
	Skip Gram Architecture
	Negative Sampling

	BERT
	Using BERT
	BERT Sentence Embeddings

	Knowledge Graphs

	Overview of Knowledge Graph Embedding Techniques
	TransE and Derivatives
	BERT Powered Approaches
	KG-BERT
	BERT for Link Prediction

	Walk Based Approaches
	Triple Embeddings
	Random Walks


	Methodology: Training Pipeline
	Pipeline Overview
	Parameter Analysis
	Triple Description to Language Embedding
	Walk Extraction
	Line graph Transformation
	Determining the Edge Weights
	The complexity of Node2vec walk extraction
	FastWalk: Extracting Walks from a Line Graph
	Variable Speed vs Variable Accuracy
	Walk Parameters

	Mapping from BERT Sentence Embeddings to Triple Embeddings
	Software and Hardware used
	Network Architecture
	Network Hyper Parameters
	Training the Network


	Methodology: Evaluation
	Evaluation Requirements
	Evaluation Benchmarks
	Triple Labeling
	Recommendation Engine
	Triple Classification
	Link Prediction and Relation Prediction
	Conclusion

	Evaluation of FastWalk and Negative Sample Batching
	Exploratory Evaluation
	Datasets
	Cosine Similarity
	Neighbour Prediction
	Entity extraction
	Evaluation of Individual Pipeline Processes


	Results
	Triple Classification
	Exploratory Evaluation
	Cosine Similarity
	Neighbour Prediction
	Entity Extraction
	Evaluation of Individual Pipeline Processes

	FastWalk

	Discussion
	Limitations
	Evaluation
	Finetuning

	Strengths
	Future Work
	Evaluation
	Hybrid Models
	Beyond Language Models


	Conclusion

