
UTRECHT UNIVERSITY

THESIS SUBMISSION

MSc Energy Science — GEO4-2510 — 30 ECT

Dynamic Stacking of Energy & Power Portfolios on the Dutch Market

An investigation into revenue potential considering Day-Ahead, FCR and Imbalance Settlement
in the Netherlands

Author

Natasha Garrood
n.c.garrood@students.uu.nl
Student ID: 4972368

Supervisor:

Dr. Elena Fumagalli
e.m.fumagalli@uu.nl

Second Reader:

Prof. dr. Madeleine Gibescu
m.gibescu@uu.nl

Company Supervisor

Milan Milinković
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Abstract

The thesis is written with Spectral, an Amsterdam-based Energy Con-
sultancy who manage assets for several clients with flexibility to trade electric-
ity products due to portfolios of energy storage and renewable energy systems
(ESS & VRES) at commercial sites such as business parks. The cost of in-
vestment for these assets is high, meanwhile, grid connections are limited and
therefore self-sufficiency is becoming increasingly necessary. As such, there
is growing interest in ways to ensure these assets profitability can be max-
imised. Recent literature suggests that trading dynamically across multiple
markets could increase profits. The aim of the thesis is therefore to build a
model whereby any client portfolio of assets can be modelled with accompany-
ing production and load data to find optimal trading strategies across various
markets. Spectral has experience trading on the day-ahead and FCR markets,
so these will be used as the model starting point, while also considering imbal-
ance settlement payments. The research finds that trading on DA with FCR
is the most profitable, with FCR being the primary revenue stream. Further-
more, parameters such as curtailment of VRES, grid import and export limits
and battery cycling can also be analysed and provide useful information for
further economic analyses such as development of the business case for grid
connection up- or down-grades. Further research will include integration of
future markets into the model, namely the intra-day, as well as reformulation
of the imbalance settlement modelling to include this in part of the optimisa-
tion.
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1 Introduction

Unlike many commodities, electricity markets are further complicated by the fact that electric
energy is a real-time product [1]. As a result, supply and demand must be constantly tempo-
rally matched. Historically, this was achieved through conventional, dispatchable, generators
on the supply side. Nowadays, increasing penetration of variable renewable energy systems
(VRES) has considerably reduced the flexibility this gave.

VRES are less flexible, i.e., less able to provide power adjustments to compensate for imbalance
between supply and demand, due to their dependence on variable primary resources[2, 3].
Furthermore, VRES have very low marginal costs and therefore reduce average electricity
prices through the merit order effect [4]. This reduces operational hours of conventional
generators. Simultaneously, social and political pressure favours VRES over traditional power
sources. In the Netherlands, a target of 95% emission reductions on 1990 levels by 2050 has
been set [5]. Therefore, the reduction of flexibility on the supply-side is two-fold, both through
increased penetration of VRES, and the threat this causes to conventional power plants.

On the demand-side, a shift is also occurring, with the development of ’prosumers’ who both
produce and consume energy and therefore can offer flexibility through demand response pro-
grams (DRP). This is achieved in large part through energy storage systems (ESS), especially
lithium-ion batteries. Prosumers can optimise their portfolios of VRES and ESS for revenue
creation in a variety of ways. For example, energy arbitrage, whereby energy is sold when
prices are high and bought when prices are low.

Use of ESS to participate on electricity markets is far from a novel concept. In more re-
cent years, increasing profitability through stacking has also been researched. Stacking is a
method by which profitability can be increased through using the ESS for multiple applica-
tions [6]. Previous literature suggests that the most profitable approach is dynamic stacking,
whereby multiple applications can be served simultaneously with variable capacity allocations
[7]. Applications could be behind the meter approaches such as increasing self-consumption
and peak-shaving as well as front of the meter such as operating simultaneously on various
electricity markets or providing ancillary services. Similarly, several studies have looked at
optimising bidding strategies on various markets for VRES [8], however, in all these studies
the focus is often in increasing potential profitability in order to overcome the high investment
costs, and focus on a single asset such as one battery or one wind park. No such study has
been found which considers a portfolio of ESS and VRES assets each with their own power
production, curtailment and storage constraints, examining the Dutch market specifically.

Increasingly, large-scale consumers in the Netherlands are facing rejections for grid connection
requests due to grid congestion and the slow and expensive process of upgrading networks
being unable to keep up with growing electricity demand [9]. This, alongside energy prices
rising in cost and volatility, exemplifies the need for at least some degree of independence
from the national grid. In order to do so while keeping aligned to carbon emissions reduction
policies, a business case for a portfolio of VRES and ESS is required. Therefore, the aim of
the research is to build a model which can take existing portfolios of VRES and ESS assets,
and optimise for revenue by trading on various electricity markets, specifically, the day-ahead
(DA), and frequency containment reserve (FCR) markets are chosen for the optimisation
problem. Imbalance settlement (IB) payments are also considered post-optimisation. Due to
the complexity of the modelling, only revenues are considered at this stage, while later work
will integrate investment and operating costs in order to calculate profits.
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1.1 Research Question

Specifically, the research will answer the following question:

What is the potential revenue for portfolios of VRES and ESS assets by trading
dynamically on the DA and FCR markets and considering IB payments in the
Netherlands?

The research is divided into various sub-questions as follows:

1. How can the operation of VRES and ESS assets be modelled as mixed integer
linear programming (MILP) problems to trade energy and power products
dynamically while considering constraints of these assets?

2. How can the functioning of DA and FCR markets as well as IB payments be
modelled as MILP problems?

3. Using various case studies, what revenue potential is there for market partic-
ipants trading on these two markets?
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2 Theoretical Background

2.1 Electricity Markets

In Europe, electricity is primarily traded through the EPEX SPOT platform, accounting
for 30% of European electricity consumption [10]. European market coupling allows trading
across borders throughout Europe, and the Netherlands benefits from interconnections both
with neighbouring countries and through the NorNed, BritNed and COBRA cables to Nor-
way, The UK and Denmark respectively [11]. Different markets have different requirements
for trading, with some variation on participation rules from country to country. The traded
product may be power or energy and time horizons vary from market to market. Further-
more, despite market coupling, prices on different markets can vary from region to region if
interconnections are congested. This paper will focus on the DA and FCR markets due to
Spectral’s prior knowledge of trading on these markets and their already proven profitability.
IB payments are considered post-optimisation to find final revenue after deviations from DA
trading schedules.

2.1.1 Day-Ahead

The DA market is traded in one hour periods for the next day. Producers and retailers
place bids for their production or consumption in the traded period, this is known as their
’e-program’. Bids are placed before noon and once products are locked in, a bid ladder is
constructed of all the production and consumption bids, as priced by the participant for spe-
cific volumes. Where supply and demand meet, the market clearing price is set. Participants
are paid or charged at this price for the accepted production or consumption volume, the
price can be negative, therefore in certain conditions participants are paid to consume. Any
supply bids above the market clearing price or demand bids below it are rejected. After clear-
ing of the DA, market participants may also trade on intra-day (ID) markets at 15 minute
intervals to account for any imbalance between their forecast e-program and forecast con-
sumption/production. This is because deviation from the e-program leads is charged at the
imbalance settlement price after delivery.

2.1.2 Frequency Containment Reserve

Reserve capacity is divided into three products, the FCR, and the automatic and manual
frequency restoration reserves (aFFR and mFRR). The FCR product is traded on a purely
capacity market, available capacity is traded and a reservation price is paid, regardless of
whether it is activated. Meanwhile, aFFR and mFRR have both reservation and activation
prices. As a result, aFFR and mFRR could be more profitable, however, there are greater
barriers to entry for these markets since, if the reserve is activated, then power must be
provided for longer time horizons than that of the FCR. The majority of clients at Spectral
have lithium-ion batteries for ESS, and it is difficult to obtain permits to provide capacity on
FRR markets with the size of battery available, since the TSO is concerned about state of
charge constraints being reached. For this reason, the model will focus on the FCR market.

The TSO is responsible for ensuring that production meets demand in real time. This is
achieved initially through the activation of reserves acquired via the FCR market, which
contain any frequency deviations, before FRR reserves are activated in order to restore it
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to the nominal level of 50 Hz. On the FCR market, participants must be able to reach
rated power within 30 seconds of activation, and capacity is traded in blocks of 4 hours.
The minimum accepted bid is 1 MW and the maximum is 25 MW. These bids must also be
symmetric, meaning that participants must be able to provide upward or downward frequency
containment. In the Netherlands, power provision for FCR is proportional to the size of the
bid, up to a maximum power provision equal to the bid when the change in frequency is +/-
0.2 Hz.

For limited energy resources (LERs), such as batteries, state of charge management is also
allowed. This is so that the battery can continue to provide FCR provision without either
depleting or reaching it’s maximum state of charge. State of charge management involves effec-
tively changing the set point from which power provision is provided, through either charging
or discharging as required. This is illustrated in figure 1 where discharging occurs around 8500
and 8700 minutes to prevent the batteries maximum state of charge being reached. Despite
this, you see that the power provision continues to match frequency deviations.

Figure 1: SoC Control for FCR Provision. Adapted from [12]

If a frequency deviation of +/- 0.2 Hz occurs for 15 minutes or more, or proportionally longer
at a lower frequency, then the ’alert state’ is activated. In the alert state, the resources must
be able to provide continuous power for 15 minutes at the bid level. After this time, they
may have up to two hours of recovery time where no FCR provision is required. During an
alert state, the FCR providing-assets must stop all other activities (such as trading on other
markets or SOC management). Alert states occur very rarely, less than 5 times per year, but
adds a great deal of computational complexity. For this reason, it is not considered in this
model.

The auction takes places every day for the following delivery day and is procured through a
common merit order list [13]. If a participants bid is accepted, they are paid the reservation
fee. The capacity may or may not be required depending on what deviation from e-programs
occurs.

2.1.3 Imbalance Settlement

In real-time, the market is considered short when the actual level of generation is lower than
consumption. The TSO balances by purchasing extra energy at the upward price. This is
usually a higher price than the DA price since it contains a premium for flexible generators
as well as the higher marginal cost for production [14]. Conversely, when the market is long
because production outweighs demand, the TSO sells back excess energy to flexible generators
at the downward price [14]. This is lower than the price paid on the DA market so in both
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cases a system cost is generated through imbalance.

The IB fee is calculated at 15 minute intervals and market participants are charged the
product of the volume of imbalance from their e-program and the imbalance fee (separate
upward and downward fees apply for short or long positions respectively). Across Europe
their are two pricing rules for IB, the single and dual pricing schemes. In the Netherlands,
the single pricing scheme is used. According to the single pricing scheme, when both the
market and the individual are long or short, they are penalised since they increase the size
of the market imbalance and the related system costs. Conversely, profits can be made when
individuals oppose the market imbalance and therefore help to reduce imbalance system costs
[15].

2.2 Stochastic Scenarios

The decision variables of the model can be broadly categorised into two phases. The first
phase is the planning or forecasting phase, this is determined in part by uncertain inputs such
as wind or solar generation and market prices. The second is the actual operation phase. The
actual operation phase is determined through the optimisation based on the planning phase
variables, and can be seen as the control strategies for the ESS and VRES assets. This will
then also be used for imbalance settlement calculations. More detail on the variables and how
they are calculated is provided in later sections.

Since we cannot perfectly forecast, for example, wind generation or market prices, we overcome
uncertainty by taking historical profiles of these inputs, and using them as the basis to create
stochastic scenarios. For example, if we have an available wind generation profile, e.g., for
the year 2019, we then apply a distribution and offset the actual profile by a given value for
a range of quantiles across the distribution. In this way, we produce a number of stochastic
scenarios from the original input. Further detail on stochastic scenario generation is provided
in the methodology section 3.1.

2.3 Literature Review

Energy arbitrage through trading in various markets has been extensively studied in recent
years, in particular with the rise of VRES penetration which is positively correlated to rising
ESS capacity [16]. The body of research investigating operation in single markets in the
Netherlands and globally is vast, but often reaching the conclusion that high investment
costs outweigh potential revenue [17, 18, 19, 20, 21]. Some exceptions do occur, however, for
example [22] found a positive business case for a wind-farm coupled to an ESS trading on the
DA markets. The case study was in Italy, so while there is some market coupling, it cannot
be assumed that the same results would be obtained in the Netherlands.

Since a significant amount of literature does conclude that single market applications are not
profitable enough to outweigh investment costs [19, 20, 21], the concept of dynamic stack-
ing (serving multiple applications simultaneously with variable capacity allocations [7]) for
increasing revenue has come more into focus [6, 7]. Despite this, there is a great deal of focus
on residential markets both for singular home energy management optimisation strategies
[23, 24], or through the use of aggregator companies [25]. However, far less literature exists
for commercial participants, who have different load profiles to residential users, and so no
conclusions for these market participants can be drawn.
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MILP has been widely used as an effective optimisation technique for modelling revenue
from various electricity markets. [26] applies it to find a positive business case for dynamic
stacking on ancillary service markets for the PJM market area in the United States. In
[27] MILP is employed to model a wind farm and ESS participating on energy and reserve
markets in Denmark, again with significant increase in profitability through simultaneous
participation in both markets. Building on this work, [28] finds that the conclusions still
hold when uncertainty is added to the model through scenario generation using the Monte
Carlo simulation and Roulette Wheel Mechanism’s. Similar results are found for the German
market area, with [7] achieving positive business cases for ESS participating in spot markets
and frequency regulation services. In the Netherlands, [29] achieved a positive business case
for trading on the Dutch DA market and steering according to IB prices, however, focusing on
Hydrogen-Bromine Flow batteries. [30] found similar results with a portfolio of one battery,
a solar PV park and load, trading on the Dutch DA market, again achieving positive business
cases. Although, the FCR market is not considered in either study.

Other approaches include dynamic programming approach, whereby the model is broken
down into various sub-models and solved recursively. This approach is employed in [31]
to optimise for revenue through peak shaving, frequency regulation services and arbitrage.
However, dynamic programming has largely been replaced by MILP in the last decade since
the problem can be modelled more efficiently resulting in lower computation time, which is
particularly important with rising time horizons [32]. For this reason, MILP will be employed
as the modelling technique for this thesis.

In conclusion, there is a growing body of literature supporting the business case for trading
on a combination of markets, in particular for the DA and FCR markets or the DA market
with steering according to IB settlement prices. However, to the authors knowledge no such
literature exists which both focuses on the Dutch market and considers both the DA and FCR
markets, and IB settlement payments.

11
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3 Methodology

As mentioned in section 2.2, the model can be thought of in two phases, the forecast-
ing/planning phase, and the operation phase. In general, the forecasting phase is determined
through generation of stochastic scenarios from historic input profiles of e.g. market prices
or wind generation in a given year. These stochastic scenarios are then used to determine
bidding strategies on the various markets, which in turn determines control strategies (charg-
ing, discharging, curtailment) for VRES and ESS assets. The actual operation of assets may
deviate from the e-program determined for the day-ahead market, since frequency changes,
and therefore power provision on the FCR market, cannot be forecast. As a result, imbalances
are determined post-optimisation to derive imbalance settlement payments. The final revenue
is therefore the combination of trading on DA and FCR along with IB payments (which could
be a revenue or a cost).

Modelling techniques are inspired by a wide range of sources as discussed in section 2.3. In
particular, [29] was useful for modelling the DA market revenue, while [33] and [34] acted as
good bases for the FCR market revenue. The methods and equations described in the following
subsections are an outcome of reviewing the literature and assessing which equations would
be suitable to use in the model. These markets and assets have all been modelled in various
ways, but it was necessary to ensure that all assets and markets could be integrated and that
all equations used would fit within constraints of the model. For example, since it is a linear
optimisation, it was necessary that all equations found in the literature were either linear or
could be made linear using mathematical techniques such as the ’big-M’ constraint, as is done
to model power flow for the ESS model in section 3.2.1.2 (see equations 10 and 11).

In the following sections, more detail is provided on 3.1; scenario generation and 3.2; the model
structure and optimisation problem. This is divided into two parts, 3.2.1; the operation
of VRES and ESS assets and how these are arranged into client portfolios, and 3.2.2; the
modelling of market revenues.

3.1 Stochastic Scenario Modelling

For a given year, the actual load profile (Lactual,t), actual available power profile
(PVRES, avail, actual,t) and actual prices (Pactual,t

DA/FCR/IB) are considered as inputs, along
with error distributions for these profiles. The available power profile is between 0 and the
rated power of the VRES, and is the maximum power that the asset can generate at each
time step if no curtailment occurs. From these profiles, stochastic profiles for the load, power
and prices are derived as outlined below.

The most basic way to offset the original profiles is with the ’Random Forecast Off-Setter’. For
this, a randomly generated offset value is applied to the input profile value at each time-step.
The forecast mean is derived as the mean value of the forecast, which has been generated
from the actual input profile as per equation 1. Scenarios are later generated by applying an
error on top of this forecast mean.

Fmean = Actual +Offset (1)

In later research, a ’Daily Forecast Off-Setter’ will be developed, whereby the random value
is only assigned to the first time-step of each day. Then, linear interpolation is applied to
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all other time steps of that day to mimic the effects of forecast drift. The random offset
is applied only to the first time step of each day so that the forecast mean differs from the
actual input mean by a given offset. Conversely, with the ’Random Forecast Off-Setter’, the
resulting forecast mean for each profile will end up being similar. This is a limitation of the
current model but provides an idea of what will be possible in future model development.

Error values are determined dependant on the type of distribution chosen. We assume a
normal distribution for all inputs as per table 1. The user will provide a list of desired
quantiles (for example, 0.1, 0.5, 0.9) from which error values can be determined. Based on
the quantile input, a standard deviation multiplier for what value that quantile occurs at
is returned. (In the case of normal distributions, for an empirical distribution, quantile 0.5
would refer to the median value in the input profile, 0.0 the min value and 1.0 the max value).
These error values are used to offset Fmean.

Table 1: Distribution and Error Types for Inputs Subject to Stochastic Scenario Generation

Input Profile Distribution Error Type
Available Wind/Solar Power Profile [MW array] Normal Relative
Load [MW Array] Normal Absolute
Market Price [€/MW or €/MWh array] Normal Absolute

Using Fmean and the quantile offsets (error values), the forecast values can be calculated. The
method is different depending on the input. For market prices and load forecasts, the absolute
error applicator is used as per 2. For generation forecasts, a relative error applicator is used
which takes into account the fact that error values increase with increasing forecast mean.
For example, for solar generation the error is largest at peak generation close to noon, while
the error is zero at night when there is no generation. This is shown in equation 3. Together,
the various generated forecasts make up a given stochastic scenario. For the case studies of
this report, we assume that each scenario has an equal probability of occurring.

F[quantile] = Fmean +QO[quantile] (2)

F[quantile] = Fmean + |Fmean| ·QO[quantile] (3)

where:

F[quantile]: Forecast Value for given quantile
Fmean: Forecast Mean
QO[quantile]: Quantile Offset for given quantile

3.2 Optimisation & Revenue Calculation

The MILP optimisation is run for the DA and FCR markets as per equation 4, whereby z
denotes the weighted average of the stochastic revenues according to the probability of each
scenario. The DA bid is determined by the optimisation, while the FCR bid is an input
parameter, therefore, stochastic scenarios are not generated for the FCR market. Further
details are provided in subsection 3.2.2.2.

Post-optimisation, imbalances are derived and imbalance settlement payments are calculated
and added to gross revenue to find the final revenue, according to passive imbalance settlement
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regulations for the Netherlands.

maximise z, z =
T∑
t=1

S∑
s=1

Rt,s
DA + Rt,actual

FCR (4)

Rt, actual = Rt, actual
DA + Rt, actual

FCR + Rt,actual
IB (5)

where:

T : Time Horizon (1 year), where t is a 15 minute interval of T
S : Scenarios, where s denotes a given scenario
R: Revenue (€)

For each level of the client portfolio, various constraints apply, from VRES and ESS assets up
to grid connection constraints at the cluster and portfolio level, as is explained in the following
sections.

3.2.1 SQ1: Modelling Portfolios

Client portfolios will consist of different assets each with different rated powers, capacities
and so on. The model must be built in such a way that different combinations of assets can
be fed into the model as input parameters.

3.2.1.1 Portfolio Topology

A client portfolio consists of a pre-defined selection of VRES and ESS assets which, along
with a load, make up a site. A cluster consists of a collection of sites with 1 grid connection,
and a portfolio consists of a selection of clusters. This topology can be seen in figure 2.

The decision to model client portfolios as per the outlined topology is based on real client
portfolios which Spectral already manage. One such example would be a residential area
with generating assets (such as solar panels) sharing a grid connection. Each house in the
area would be considered a site with an individual load profile and assets, while together the
residences make up a cluster, with one grid connection. A group of such residential areas in
close proximity and with the ability to trade electricity would make up a portfolio. These
portfolios are considered producers since asset generation outweighs load. It is beneficial to
model the individual sites as such because home-owners will want to see data specific to their
own homes, despite the fact that the operation of their assets will be influenced by the other
assets in the portfolio. Therefore, the topology needs to be maintained as such even though
it would make modelling simpler if the various asset capacities and rated powers were simply
added together and treated as single entities.

Similar such topologies are found at business parks, with each business having an individual
load but sharing a grid connection with other businesses in the park. Again, business owners
are interested in the consumption and generation profiles, as well as ESS behaviour, of their
individual ’sites’.
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Figure 2: Topology of a portfolio

3.2.1.2 Energy Storage System Model

Input parameters and decision variables for the ESS model are as follows:

Table 2: ESS Input Parameters

Input Parameters Symbol
Maximum charging power [MW] Pmax, char
Maximum discharging power [MW] Pmax, dis
Capacity [MWh] CapESS
Round trip efficiency η
State of Charge (min/max) SOCmin/max
Initial State of Charge SOC0
Weekly Cycle Limit Clim

Table 3: ESS Decision Variables

Decision Variables Symbol Lower/Upper Bounds
Actual Power [MW] PESS,actual −Pmax,dis/Pmax, char
Stochastic Power [MW] PESS,s −Pmax, dis/Pmax,char
State of Charge SOCESS,s SOCmin/max
Charging Power [MW] PESS,char 0/Pmax,char
Discharging Power [MW] PESS,dis 0/Pmax,dis
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The ESS Model is subject to the following constraints:

PESS,t,s = PESS,dis,t,s − PESS,char,t,s : ∀ t, s (6)

PESS,t,actual =

∑S
s PESS,t,s ∗ ws∑S

s ws

: ∀t (7)

SOCmin ≤ SOCt,s ≤ SOCmax, : ∀t, s (8)

SOCt,s =


SOC0 + (PESS,ch,t,s · ηch − PESS,dis,t,s

ηdis
) · ∆T

CapESS
: t = 1,∀s

SOCt−1 + (PESS,ch,t · ηch − PESS,dis,t,s
ηdis

) · ∆T
CapESS

: t = 1− T, ∀ s

(9)

PESS,t,actual is the actual operation of the ESS system and is determined as the weighted
average of PESS,t,s which is the optimal operation across the various scenarios and will be
influenced by that specific scenarios inputs (available power profiles, loads and market prices),
and the probability of that scenario occurring. It can be thought of as the determined control
strategy for the ESS as a result of the forecasting.

Power can only flow in one direction at any one time. In the case of the ESS, it will either
charge or discharge. To model for this, auxiliary variables must be introduced to allow the
following constraints to be applied.

PESS,dis,t,s <= M · ω : ∀ t, s (10)
PESS,char,t,s <= M · (1− ω) : ∀ t, s (11)

where M is the maximum allowable value of P , in this case the rated charging or discharging
power, and ω is the auxiliary binary variable. PESS,char/dis are bounded between 0 and the
maximum charging/discharging powers. The same principle applies to the power flow at the
portfolio level, since at grid connections, power should either be flowing into or out of the
grid. The decision is taken to model power discharge from the battery and power flow into the
grid as the positive elements of the overall power, since the objective is to maximise revenue
and therefore the greater the portfolio power, the greater the power which is fed into the grid
and therefore has the potential to generate revenue (making the assumption that prices are
usually positive as has historically been the more common case).

The weekly cycle limit, Clim, is used to battery degradation. One full cycle is considered a full
charge and discharge, therefore, constraint 12 is applied to ensure battery cycling per week
does not exceed the weekly limit.

(PESS,ch,τ · ηch +
PESS,dis,τ,s

ηdis
) · ∆T

CapESS
≤ Clim,τ : ∀ t, s, τ ⊇ T t (12)

where:

τ : The weekly super-set interval of the 0.25 hourly t

3.2.1.3 Variable Renewable Energy System Model

For VRES assets, the input parameters include technical specifications as well as an available
power profile, that is, the maximum possible power generation of the asset per time step if
no curtailment occurs.
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The VRES asset input parameters and decision variables are outlined in tables 4 and 5 below.

Table 4: VRES Input Parameters

Input Parameters Symbol
Available Power Profile [MW array] PVRES, avail
Rated Power [MW] PVRES, max

Table 5: VRES Decision Variables

Decision Variables Symbol Lower/Upper Bounds
Stochastic Power [MW] PVRES,s 0/PVRES, max
Expected Power [MW] PVRES,expected 0/PVRES, max
Actual Power [MW] PVRES,actual 0/PVRES, max

Similarly to with the ESS, a control strategy must be determined for the VRES asset which
may include curtailment. Therefore, the actual power of the system could be less than the
actual available power profile. Additionally, stochastic available power profiles are gener-
ated from the actual available power profile for the asset to account for forecasting errors in
generation as described in section 3.1.

PVRES,t,actual <= PVRES, avail,t,actual : ∀t, s (13)
PVRES,t,s <= PVRES, avail,t,s : ∀t, s (14)

To calculate the actual power (i.e. the control strategy including any curtailment), the ’ex-
pected’ power generation of the VRES asset is derived as the weighted average of the stochas-
tic scenarios power generation as per equation 15. The ’actual’ power generation of the asset
(PVRES,t,actual) is then the minimum between the expected power generation (PVRES,expected)
and the actual available power profile (PVRES, avail,t,actual) as per 16. This is because at some
time steps the expected power generation may overestimate the actual available power input,
therefore, the minimum between the two must be selected.

PVRES,t,expected =

∑S
s PVRES,t,s · ws∑S

s ws

(15)

PVRES,t,actual = min[PVRES,t,expected, Pavail, VRES,t,actual] (16)

In order to model this as a MILP problem, another auxiliary binary variable is required
where 1 signals that the expected power was overestimated, and so Pavail, VRESt,actual should
be used, else 0 and PVRES,t,expected is used. This is enforced via constraints 17 and 18. M
again represents the maximum allowable value for P , in this case, the rated power of the
VRES asset. Then, the remaining four constraints ensure that the minimum is selected as
per equation 16.
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PVRES,t,expected − Pavail, VRES,t,actual <= M · ω (17)
Pavail, VRES,t,actual − PVRES,t,expected <= M · (1− ω) (18)

PVRES,t,actual <= Pavail, VRES,t,actual (19)
PVRES,t,actual <= PVRES,t,expected (20)
PVRES,t,actual >= Pavail, VRES,t,actual −M · (1− ω) (21)
PVRES,t,actual >= PVRES,t,expected −M · ω (22)

3.2.1.4 Sites, Clusters & Portfolios

As per subsection 3.2.1.1, VRES and ESS assets make up a site. In turn, a collection of
sites make up a cluster, which is defined as a collection of sites sharing a grid connection. A
collection of clusters which can exchange power then make up a portfolio. This is modelled
according to the following constraints, for both power per stochastic scenario and actual
power.

Table 6: Site & Cluster Input Parameters

Input Parameters Symbol
Load [MW array] Lsite
Grid Import Limit [MW] Pcluster, import
Grid Export Limit [MW] Pcluster, export

Table 7: Cluster Decision Variables

Decision Variables Symbol Lower/Upper Bounds
Stochastic Power [MW] Pcluster,s -Pcluster, import/Pcluster, export

Psite,t,x =
T∑
t=1

PESS,t,x + PVRES,t,x − Lsite,t,x : ∀t, x (23)

Pcluster,t,x =
T∑
t=1

Psite,t,x : ∀t, x (24)

Pportfolio,t,x =
T∑
t=1

Pcluster,t,x : ∀t, x (25)

where:

x : any s of S scenarios, or actual
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3.2.2 SQ2: Modelling Market Revenues

The second research question relates to modelling the electricity markets as MILP problems.
These markets were selected because all three are already well-established in terms of market
participation and relative ease of access to market participants compared with, for example,
supply of automatic frequency restoration reserves (aFRR), which have higher technological
and administrative barriers to entry [35].

3.2.2.1 Day-Ahead Market

For the DA market, the model assumes an 100% acceptance rate on all bids. This is because
participants are price-takers and put in 0-price bids to ensure they are below the market
clearing price. The optimisation goal is to maximise the ’stochastic’ revenue, that is, the
weighted average of different scenarios according to the probability of each scenario occurring.
The only input parameter is the actual day ahead price (Pt,actual

DA), from which stochastic
prices (Pt,s

DA) are generated.

Rτ ,s
DA = Pτ ,s

DA · P̄portfolio,τ,s ·∆T : ∀ t, s, τ ⊇ T t (26)

where:

τ : The hourly super-set interval of the 0.25 hourly t
(since DA prices are €/MWh)

P̄portfolio,τ,s: The mean power across every 4, 15-minutes intervals of Pportfolio,t,s
∆T : Time period = 1 hour

The decision for the actual energy bid to be made at the day prior to delivery is calculated as
the weighted average of Pportfolio,t,s, where power (MW) is equal to energy (MWh) since the
resolution is hourly:

EDA,t =

∑S
s P̄portfolio,τ,s ·∆T · ws∑S

s ws

(27)

Then, the ’actual’ revenue can be calculated as the actual DA price multiplied by the energy
bid. This is used later and imbalance revenues or payments applied to calculate the final
revenue.

Rt,actual
DA = EDA,t · Pt,actual

DA : ∀ t (28)

3.2.2.2 Frequency Containment Reserve

Frequency containment bids are power bids made in four hour blocks. The optimal bidding
strategy for a particular asset is determined via a different model which is outside of the scope
of this research. The bid is then used as an input parameter, alongside historical data for
frequency deviations (∆f) in order to model the actual power that needs to be supplied by
the asset according to equation 29 & 30. Note that although it is rare, ∆f can exceed +/- 0.2
Hz, however, in this instance, the value is clipped with these as the minimum and maximum,
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to correspond to delivery of the full FCR bid. This is because even if the frequency deviation
is greater, the FCR providing asset is never required to deliver more power than is bid.

∆f = ft − fnominal (29)

PFCR,t =
∆f

∆fnominal
· PFCR max : ∀t (30)

where:

∆f : Change in frequency, clipped to a min/max of +/- 0.2 Hz
fnominal: Nominal frequency = 50 Hz
PFCR,t: Actual Power Provision for FCR
PFCR, max,t: Maximum Power Provision for FCR equal to the FCR bid

Additionally, SOC management is required as discussed in section 2.1.2, to ensure the ESS
does not reach SOC constraints. As the portfolio could be made up of ESS with different
rated powers, the FCR bid is divided amongst the FCR providing-ESS assets. For the rated
power, an additional parameter, PESS, rated, is used since FCR provision must be symmetric,
as per equation 31, then the bid is divided as in 32.

PESS, rated = min[Pmax, char, Pmax, dis] (31)

PESS, FCR, max,t =
PESS, rated

Pportfolio, rated
· PFCR, max,t (32)

where:

PESS, FCR, max,t: Portion of the FCR bid to be supplied by a given ESS
Pportfolio, rated: Sum of the rated powers of ESS’s in the portfolio

Adjusted SOCFCR, min/FCR, max are derived in order to ensure that some capacity is reserved
for the unpredictable delivery of FCR power provision. This is calculated as the original
minimum plus an additional change in SOC equal to 15 minutes of FCR power provision at
the bid level, as is the maximum requirement for LERs.

SOCFCR, min,t = SOCmin +
PESS, FCR, max,t ∗ γcap

CapESS
(33)

SOCFCR, max,t = SOCmax −
PESS, FCR, max,t ∗ γcap

CapESS
(34)

where:

γcap : FCR Capacity Reservation Factor = 15/60

Note then that since the FCR bid will vary along the time horizon, SOCFCR, min/max will
also vary, rather than being a simple decimal as is SOCmin/max. Similarly, the bounds for the
stochastic power of the battery (see table 3) are reduced in order to ensure that some power
delivery capability is reserved for the FCR market. Since it is rare that the full FCR bid has
to be delivered, a power delivery reservation factor is used.

As per SOC management rules for LERs, the set point from which FCR can be delivered (see
figure 1), can only be altered at an interval of 1 minute or more. Therefore, an analysis of
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frequency changes within a 1 minute interval was performed and a varaince of σ = 8.8 mHz
was derived. As such, with 95% confidence limits we find that a power reservation factor of
13.2% of the FCR bid should suffice as per equation 35. Therefore, the reduced bounds for
PESS, s are calculated as per equation 36. The input parameters for FCR are summarised in
table 8.

γpower =
3 · σ

fnominal
(35)

PESS, s, UB/LB = +/− (PESS, rated − PESS, FCR, max,t · γpower) (36)

where:

σ: Variability of ∆f in one minute = 8.8 mHz
γpower : FCR Power Delivery Reservation Factor = 13.2%

Table 8: FCR Input Parameters

Input Parameters Symbol
Frequency Deviations (Hz) ft
FCR Bid (MW) PFCR, max,t
FCR Adjusted SOC (min/max) SOCFCR, min/FCR, max

Now, in order to determine SOC management, the ESS model must be extended with ad-
ditional constraints. A theoretical SOC is determined, that is, the SOC if only PDA,t and
PFCR,t are considered. Then, if the SOC would exceed SOCFCR, min/FCR, max, the amount of
charging or discharging that would be required to ensure they are not violated is implemented
(PSOC,t). These three power components are then used to calculate the actual changes in state
of charge for the ESS. This is outlined in the decision variables table and constraints listed
below.

Table 9: FCR & SOC management Decision Variables

Decision Variables Symbol Lower/Upper Bounds
Stochastic Power [MW] PESS,s 36
SOC Management Power [MW] PSOC +/− 3 · Pmax, char/dis*
Theoretical SOC SOCtheo 37
Actual SOC SOCactual SOCmin/max
Change in SOC charging theoretical ∆SOCchar,theo 38
Change in SOC discharging theoretical ∆SOCdis,theo 39
SOC Management Charging [MW] PSOC,char 40
SOC Management Discharging [MW] PSOC,dis 41

* Since the SOC management power could be in opposing direction to the DA and FCR power,
this could be up to 3x greater than the rated power of the battery in order for the overall power
delivery of the ESS to not exceed its rated power.

The upper and lower bounds for the following decision variables are calculated as follows,
similar logic applies for SOCtheo as was outlined above:
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SOCtheo,LB = SOCmin − 2 ·
PESS, rated

CapESS
·∆T (37a)

SOCtheo,UB = SOCmax + 2 ·
PESS, rated

CapESS
·∆T (37b)

∆SOCchar,LB = min(SOCFCR, min)− SOCtheo,UB (38a)
∆SOCchar,UB = max(SOCFCR, min)− SOCtheo,LB (38b)

∆SOCdis,LB = SOCtheo,LB −max(SOCFCR, min) (39a)
∆SOCdis,UB = SOCtheo,UB −min(SOCFCR, min) (39b)

PSOC,char,LB = 0 (40a)

PSOC,char,UB = ∆SOCcharUB ∗ CapESS

ηchar ·∆T
(40b)

PSOC,dis,LB = 0 (41a)

PSOC,dis,UB = ∆SOCdisUB ∗ CapESS · ηdis
∆T

(41b)

The following constraints then extend the ESS to allow FCR market operation and state of
charge control to be modelled:

SOCFCR, min,t ≤ SOCt,s ≤ SOCFCR, max,t : ∀t, s (42)
PDA,t = EDA,t ·∆T : ∀t (43)

The theoretical SOC is determined as if no state of charge control were to be implemented.
Note that all power variables are split into charging and discharging components and efficien-
cies applied, as described in constraints 10 and 11. For simplicity, these are not written out
again here.

SOCtheo,t =

{
SOC0 +

∆T ·(PDA,t+PFCR,t)
CapESS

: t = 1,∀s
SOCtheo,t−1 +

∆T ·(PDA,t+PFCR,t)
CapESS

: t = 1− T, ∀ s
(44)

If state of charge control charging is required, it is because the theoretical state of charge falls
below the FCR adjusted state of charge minimum, and similarly for discharging if the state
of charge would go above the maximum:

∆SOCchar,theo,t = SOCFCR, min,t − SOCtheo,t (45)

∆SOCdis,theo,t = SOCtheo,t − SOCFCR, max,t (46)
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If ∆SOCchar,theo,t would be positive, then state of control management for charging would
not be required, so the actual is found as the minimum between 0 and the ∆SOCchar,theo,t.
Similarly for the maximum with discharging:

∆SOCchar,actual,t = min[0, ∆SOCchar,theo,t] (47)

∆SOCdis,actual,t = max[0, ∆SOCdis,theo,t] (48)

By knowing ∆SOCactual,t, PSOC, can be derived from:

∆SOCchar,actual,t =
PSOC,char · ηchar ·∆T

CapESS
(49)

∆SOCdis,actual,t =
PSOC,dis ·∆T

CapESS · ηchar
(50)

This allows PSOC,t to be calculated:

PSOC,t = PSOC,dis,t − PSOC,char,t, : ∀t (51)

Then, with all components of power, the actual state of charge is derived:

SOCactual,t =


SOC0 +

∆T ·(PDA,t+PFCR,t+PSOC,t)
CapESS

: t = 1, ∀s

SOCactual,t−1 +
∆T ·(PDA,t+PFCR,t+PSOC,t)

CapESS
: t = 1− T, ∀ s

(52)

Together, these ensure that no technical constraints of the ESS are violated while still acting
on both the DA and FCR markets. Finally, revenue is simply calculated as the product of
the bid and price:

RFCR =

T∑
t=1

Pt
FCR · PFCR, max,t : ∀ t (53)

3.2.2.3 Imbalance Settlement

Imbalance energy (EIB,t) is calculated post-optimisation as deviation from the DA energy bid.
The energy deviation is then multiplied by the upward or downward imbalance settlement
price depending on whether the participant produced a surplus or shortage compared with
their bid, to determine imbalance settlement payments.

Note that depending on the market position (whether the market is long or short) at a
given time interval, the imbalance upward or downward price may be positive or negative to
indicate whether payments are made from the participant to the TSO, or from the TSO to
the participant respectively.

Eportfolio,actual,t = ∆T · (PDA,t + PFCR,t + PSOC,t) : ∀ t (54)
EIB,t = EDA,t − Eportfolio,actual,t : ∀ t (55)
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RIB =
T∑
t=1


EIB,t · PIB,up : EIB,t < 0

EIB,t · PIB,down : EIB,t > 0
(56)
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4 Results

4.1 Model Performance

One key objective of the research was to produce a model with a high degree of flexibility and
a fast run-time despite highly granular input data. For a simple site consisting of a VRES
and ESS, the model is able to optimise one year’s worth of data at a 15 minute resolution
in less than 2 minutes. As the portfolio complexity increases, so does run-time. The most
complicated portfolios tested consists of 10 ESS and 9 VRES across multiple sites and clusters.
This portfolio optimisation, including DA and FCR market, ran in 19 minutes.

In terms of flexibility, specifically the model has the ability to analyse any desired combination
of VRES, ESS, sites and clusters. Furthermore, each of these things, as well as each market
revenue, is modelled as a stand-alone unit. This means that choosing which parts to consider
in the optimisation problem, as well as integrating future units, can be done quickly and
easily. An overview of the model is provided in figure 3, which also includes the units which
are currently in development and so have not been discussed in depth in this report, but give
an indication of the direction for future work.

Each unit in the figure represents a script containing a python Class. Each Class inherits
functions from it’s Base Class through the use of Abstract Classes from the ’abc’ python
package. For example, all market classes require ’revenue’ properties, the functions ’add
variables’ and ’add constraints’, and their ’configuration’. The market ’configuration’ is a
special ’data-class’ where the prices (and frequencies in the case of the FCR market) are held.
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Figure 3: Functional Design of the Model.

For example, the market base class contains the properties and functions, which are inherited
into each ’Child Class’, such as the DA and FCR markets. In these Child Classes, the specific
requirements for revenue calculations and other variables and constraints are implemented.
Due to confidentiality agreements, code snippets of these are not included, however a snippet
is provided of a ’Fixed Price Market Model’ to give an example of how this looks. The Fixed
Price Market was developed as a way of testing the model during development stages, and
consists of a single feed price and single take price. A code snippet illustrates some elements
of this Class below. The ellipses indicate further code which is in the class but not included
in the snippet.
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# The Fixed Price Market is a Child Class of the Base Market Class
class FixedPriceModel(MarketModel):

"""
When a Fixed Price Market Model is initialised, the type of solver,
time dimensions, portfolio and market configurations are called.
"""
def __init__(

self,
solver: ISolver,
parameters: ModelAxes,
portfolio_model: PortfolioModel,
config: FixedPriceMarket,

):
self._solver = solver
self._params = parameters
self._portfolio_model = portfolio_model
self._config = config
self._revenue_stochastics = None

# All market classes have a revenue property.
@property
def revenue_stochastics(self) -> npt.NDArray[TVariable]:

return self._revenue_stochastics
...

"""
All market classes have an add_variables function.
This stochastic revenues variable is unbounded (+/- 'inf') = infinity
dims = dimensions of the variable
"""
def add_variables(self):

time_horizon = len(self._params.horizon.time_steps)
number_of_scenarios = len(self._params.scenarios)

self._revenue_stochastics = self._solver.define_num_var_array(
low_bound=float("-inf"),
up_bound=float("+inf"),
name="Fixed_Market_Revenue",
dims=(time_horizon, number_of_scenarios)

)
...

"""
All market classes have the add_constraints function.
For this market, the function states that the revenue is equal to
the power sold by the portfolio * the feed price
- the power bought * the take price.
"""
def add_constraints(self):

...
self._solver.add_constraint(self._revenue_stochastics,

ConstraintType.EQUALS,
time_step *
(self._portfolio_model._power_feed_in *
self._config.energy_feed_price
-
self._portfolio_model._power_take_from *
self._config.energy_take_price))

Stochastic scenarios are generated by the generator unit in three stages, as can be seen in
figure 3. First, the ’Sampler’ class calculates the error values according to the distribution
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type as specified by the user (see Table 1). Currently, this has been implemented for normal
or empirical distributions. Secondly, the ’Off-Setter’ applies the offsets. As was discussed
in methods section 3.1, this has currently been implemented for the ’Random Forecast Off-
Setter’, while the Daily Off-Setter is still in development. Thirdly, the ’Applicator’ applies
the error values to the forecast mean according to the error type, absolute or relative. The
’Generator’ script puts these three stages together and applies it to each variable or input
which requires stochastic scenarios generation. For example, for the available power profile of
a VRES asset, the normal sampler is applied with the relative applicator.

For assets, the base class also contains the ’add variables’ and ’add constraints’ functions, as
well as ’actual electric power’ and ’stochastic electric power’ properties. The stochastic prop-
erty will have as many dimensions as there are stochastic scenarios generated. For example,
if 3 stochastic scenarios are generated, then there will be 3 possible values per time-step. As
described in the methodology, this represents the ’planning/forecasting’ phase of the model.
Then, the ’actual electric power’ can be seen as the control strategy of the asset which is
determined as a result of the weighted average of the ’forecast’ stochastic scenarios. The ESS
and VRES assets have already been implemented and described in the methods. In future
iterations of the model, the ’flexible’ ESS and VRES will also be completed. These assets
are similar except that the rated power (and capacity, for ESS) will be variables rather than
input parameters. Therefore, the optimal rated power and capacity for the asset is an output
of the optimisation.

As a tool for consultants, this is useful because outcomes for different market and portfolio
configurations can quickly be analysed, to assess which markets might be most suitable for
particular clients, while also being able to see the behaviour of individual assets, and guide
investment decisions for additional assets, or see what impacts would come from additions of
potentially new sites purchased into the portfolio.

4.2 Portfolio Configuration and Use Cases

To illustrate the results of the model, a basic use case is constructed consisting of a simple site
of 1 ESS and 1 VRES asset. The model is tested using prices and production/consumption
data from the year 2020. 4 different ESS configurations were tested with power/capacity
ratings:

• 0.5 MW/1 MWh
• 0.5 MW/2 MWh
• 1 MW/1 MWh
• 1 MW/2 MWh

The site was tested both on the DA and DA with FCR. Additionally, a ’Consumer’ use case
is considered with both VRES production and Load, and a ’Producer’ use case. in which load
is 0. In all cases, imbalance settlement is considered. The configuration details are outlined
in Table 10. Due to GDPR, actual client data cannot be used, therefore a solar profile and
commercial load profile are generated using client data which has been anonymized with the
use of the ’sklearn decomposition’ python package.
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Table 10: Portfolio Configuration.

Parameter Value
ESS
Pmax/CapESS as above
SOCmin/max 0.1/0.9
η 0.95
Clim 7
VRES
PVRES, max 1.924 MW
PVRES, avail Typical Dutch Solar Profile [MW]
Other
Lsite Typical Commercial Load Profile [MW]
Pcluster, import 1.350 MW
Pcluster, export 0.692 MW

4.3 Exploration of Stochastic Scenarios

As described in section 3.1, only the ’Random Forecast Off-Setter’ has so far been imple-
mented. An example of the stochastic scenarios compared with the actual scenario is provided
in figure 4 for a given day of the optimisation, using quantiles 0.1, 0.3, 0.5, 0.7 and 0.9 to
calculate the stochastic scenarios. In the top row are input parameters, available power profile
for the VRES asset and DA Prices. The ’actual’ line in red is the input parameter supplied by
the user, from which stochastic scenarios are generated as described in the previous section.

The bottom row shows two example variables, the portfolio power variable and the DA revenue
variable. From each stochastic scenario, there is an optimal variable value for the power or
revenue. From these stochastic values, the final ’actual’ value is calculated as the weighted
average of the stochastic values.
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Figure 4: Scenarios for ’Producer’ use case, 1/1 ESS. Top, Example Inputs: Available Power
Profile and DA Price. Bottom, Outputs: Portfolio Power and DA Revenue. Data is shown
for 8 am to 8 pm on August 19 2020. Stochastics are generated based on the quantiles: 0.1,
0.3, 0.5, 0.7 & 0.9.

This figure illustrates how the Random Forecast Off-Setter results in similar forecast means.
It also demonstrates the difference in error types as shown by the available power profile,
which has relative error, compared to market price, with absolute error. For available power
profile, a larger power rating results in a greater spread between the stochastic scenarios,
while at lower values the stochastic scenarios are all similar. Conversely, for DA prices, the
spread in scenario values is consistent regardless of the magnitude of the value.

4.4 Revenues Across Use Cases

Given the above configuration, final revenues for the 4 use cases (Consumer, Producer and
with/without inclusion of the FCR Market) are shown in figure 5.

All use cases produce positive revenue except the consumer not trading on FCR. In the con-
sumer case, consumption exceeds production and so energy must be purchased on the day
ahead to satisfy consumption constraints. The 2 MWh capacity ESS’s have lower negative
revenues since the larger capacities allows them to make greater use of energy arbitrage, charg-
ing the battery when prices are lower, and discharging to satisfy consumption requirements
when prices are higher.

In the non-FCR cases, the lower final revenue of the 1/2 ESS compared with the 0.5/2, can
be attributed to higher IB payments outweighing the slight increase in DA revenue, as shown
in figures 6 and 7.
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Figure 5: Final Revenue. Clockwise from top left are the consumer, consumer with FCR,
producer, and producer with FCR use cases. Y-axis is uniform across all figures.

Figure 6: DA Revenue. Y-axis is uniform across all figures.
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Figure 7: IB Payments. Y-axis is uniform across all figures.

The imbalance settlement is not part of the optimisation problem, but rather, is calculated
post-optimisation. It was found that the higher power rating batteries (i.e. 1/1 and 1/2)
had higher IB payments than the lower ones, and that when acting on the FCR market, IB
payments were higher than when not acting on the FCR market.

FCR Revenue is based on the power bid, regardless of actual power delivery. Since FCR
bidding must be in 1 MW blocks, the 0.5/1, 1/1 and 0.5/2 ESS configurations each bid 1
MW and therefore had the same FCR revenue of 1 MW multiplied by the FCR price for
that block. This was the maximum bid possible for these ESS assets while still achieving
an optimal solution to the optimisation. The 1/2 ESS configuration was able to bid 2 MW
and still achieve an optimal solution, therefore, the FCR revenue was doubled for this ESS
configuration.

4.5 Other Key Indicators

4.5.1 Curtailment

As well as being able to compare revenues based on different portfolio configurations and
market combinations, there are many parameters which can be examined within one use case
that could be of interest. One such example is curtailment of VRES assets within the portfolio,
as shown in figure 8.

The curtailment figures are useful for further economic calculations (not currently integrated
into the model). For example, in the Netherlands renewable generators might be eligible for
the SDE+ subsidy at around 70 to 110 €/MWh produced. As a result, figure 8 suggests that
the 0.5/2 ESS, which curtails 70 MW less than the 1/2 ESS up to 93 MW less than the 1/1
ESS, could generate somewhere between €5,100 and €10,200 in additional revenue per year.
A 0.5/2 ESS is also approximately €100,000 cheaper in terms of CAPEX than a 1/2 ESS
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Figure 8: Curtailment in the Producer FCR use case. Left: Across the four ESS configurations.
Right: Across the year for the 0.5/2 Configuration at 15 minute resolution.

(internal Spectral estimates, various sources). This information is therefore useful in guiding
ESS investment decisions.

4.5.2 Weekly Cycle Limits

In the model, Clim is set by the user as a proxy for limiting battery degradation. Inspection
of this parameter shows that this is a limiting factor in all non-FCR use cases. Examining,
as an example, the ’Producer" use case for the 1/1 ESS, we can see the effects on revenues of
changing this parameter in figure 9.

Figure 9: Effects on revenues of weekly cycle limits. Use case is ’Producer’ with ESS configu-
ration 1/1. Dotted line indicates final revenue for the original use case, where the cycle limit
is 7.

As per the original ESS configuration (see Table 10), a cycle limit of 7 is limiting in almost all
weeks of the year. For the 1/1 ESS this resulted in a final positive revenue of €44,000 (Figure
5). Reducing the weekly cycle limit down to 1 results in a reduction in final revenue of close
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to €6000, a minimal reduction in revenue compared with the benefit of extending battery life.
On the other side, if we remove the limit, we see a that the average number of weekly cycles
across the year doubles from 7 to 14, with the highest number of cycles in a week being 20.
Doubling the average weekly cycles will significantly increase degradation, but only results in
a €1000 increase in revenue.

4.5.3 Grid Import/Export Limits

An exploration into the power flow at the grid connection point revealed that while Pcluster, import
is non-limiting, Pcluster, export is consistently reached. Since revenues are made on the DA by
exporting energy, it follows that increasing Pcluster, export could result in increased revenue. It
is worth noting however, that grid capacity increases can be extremely expensive, but these
can also be time-dependant. This is an economic rather than technical constraint, a contract
is agreed with the DSO whereby the import or export capacity limit can be increased or de-
creased in certain time-windows. Breaching the agreed limit for the given window will result
in fines from the DSO.

On this basis, it is useful to be able to see how often and at which times of year a particular
use case reaches Pcluster, export, in order to assess the business case for a time-dependant grid
capacity upgrade. This is illustrated in figure 10. On the left shows the power flow across
2020 for the original use case. On the right, the grid export limit is doubled and we see that
Pcluster, export is still limiting at times, although much less so than in the original case.

Figure 10: Power flow at the grid connection point. Recall that negative power flow is for
imported power. Left: Original configuration. Right: Increased grid export limit to reduce
instances of limiting export. Use case is ’Producer’ with ESS configuration 1/1

Given the aforementioned costs of grid capacity upgrades, it is useful also to compare these
with the impact on revenue. Figure 11 shows the relationship between Pcluster, export and
revenue. The grid export scaling factor is a multiplier of Pcluster, export from the original use
case, where 1 is equivalent to 0.692 MW.
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Figure 11: Impact of Pcluster, export on revenue. The Scaling Factor is a multiplier of
Pcluster, export where 1 is equivalent to 0.692 MW. Use case is ’Producer’ with ESS config-
uration 1/1

Since the additional costs of capacity increases are not considered, we cannot determine the
optimal export limit without further economic analysis, however, it is interesting to note the
non-linearity of the relationship between revenue and export limit. It is also worth noting that
in some cases these results could reveal a potential to increase revenue through decreasing the
grid connection limit if it is being under-utilised.
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5 Discussion

One major limitation of the model is the currently very crude stochastic scenario generation
methods. Implementing the Daily Forecast Off-Setter as discussed in section 3.1 will greatly
improve the validity of the model. Secondly, it is a shortcoming of the model that IB is
considered, but the intra-day (ID) market is not. In practice, participants trading on the DA
market would likely also use ID markets to correct their positions closer to real-time and thus
reduce their imbalance. So far, this is not considered, and IB payments are calculated post-
optimisation. By adding ID trading and reformulating IB to become part of the optimisation,
it is possible that rather than IB payments, both ID and IB participation could result in
additional revenue streams. Due to the way in which the model has been built, these are
easily implementable, and once completed, will result in a model which has a significant
variety of potential uses.

To test the validity of the model, some outcomes were tested against previous research that
has been performed by Spectral. Data was only available for the FCR market. When the
same year and production profiles are used, previous research estimated a revenue of €168,000,
while the model predicted €180,000. The small difference can be almost entirely attributed
to the previous research assuming a 95% bid acceptance while the model assumes 100%.

Direct comparisons with existing literature are difficult to make due to the number of differ-
ing inputs and configurations to be considered. However, [29] examined trading of a 0.5/1
configuration Hydrogen-Bromine flow ESS on the DA market in the Netherlands for the year
2016. For a given day in May, they achieve revenues on the DA market of around €75. Using
a 0.5/1 ESS with no load or production, and price data for 2016 for the same day in May, the
model predicts a revenue of €78, remarkably similar to the literature despite quite different
modelling approaches.

[36] produced a model which studied revenue potential through trading on the DA market and
considering IB payments for 13 wind farms around the UK in the winter of 2017. The prices
and regulations differ slightly, however, are similar due to market coupling. If the revenue
calculated by [36] is scaled per MW of rated power of the wind farm, then revenues between
48,000 and 98,000 €/MW rated power are achieved. To make a comparison, the same months
were used for input prices, and the VRES asset as described in the results section, 4.2, was
used. The model achieves revenues between 25,000 and 70,000 €/MW rated power, depending
on the ESS configuration used. In the UK in 2017 the prices were on average higher than in
the Netherlands, which may account for some of the difference in final revenue. Additionally,
the details of ESS used by [36] were not provided, so while further comparisons are difficult
to make, it seems as though the model’s results are reasonable and well-aligned to literature.

Aside from the potential revenue generated by stacking across various markets, the model
also provided insights into parameters such as power flow at the grid connection point. As
was discussed in the introduction, Dutch commercial customers are increasingly being denied
grid connection requests due to grid congestion. As a result, being able to compare the
reduction in peak power flow at the grid connection across different ESS configurations, as
well as the times at which the peak is reached, is another useful outcome of the model. Other
parameters such as the curtailment across the year are useful if portfolios are eligible for the
SDE+ subsidy, and useful further research would include integrating subsidies, operating and
investment costs into the model to guide future investment decisions. Additionally, if a client
is considering acquisition of a new site, the costs and assets associated with this could then
be added into the existing client portfolio and tested to see what potential revenues could be

36



Dynamic Stacking on the Dutch Market GEO4-2510

generated as a result of the acquisition.

6 Conclusion

The aim of the research was to build a model which would allow any configuration of portfolio
to be optimised for trading across multiple markets, and to see what was the revenue potential
through dynamically stacking as compared with acting on singular markets. The model allows
a user to run an optimisation for a year or more of data at a high resolution in under 20
minutes even for the most complex portfolios. The use cases tested suggest that dynamic
stacking can result in significantly more revenue for a simple site than trading on singular
markets, although, further work is required to test overall profitability across more complex
sites and portfolios.

For a simple use case, it was found that 1/2 ESS configuration was the most profitable due
to the capability of trading an additional 1 MW on the FCR market. However, this ESS
configuration also led to higher IB payments. Additionally, many parameters within the
portfolio could be studied which form the basis for further economic analysis, such as, the
magnitude and timings of curtailment of VRES assets, grid connection limits, and battery
cycling. Furthermore, the model has been built in such a way that future market revenues
and other cost factors such as capital investment of assets can easily be integrated in future
iterations of the model. As such, there is a great deal of potential for further research.
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