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Abstract

Growing concerns about the fairness of algorithmic decision-making systems have prompted a prolifera-
tion of mathematical formulations aimed at remedying algorithmic bias. Yet, integrating mathematical
fairness alone into algorithms is insu�cient to ensure their acceptance, trust, and support by humans.
It is also essential to understand what humans perceive as fair. In this study, I therefore conduct an
empirical user study into crowdworkers’ algorithmic fairness perceptions, focusing on algorithmic hiring.
I build on perspectives from organizational justice theory, which categorizes fairness into distributive,
procedural, and interactional components. By grouping participants based on the type of information
they receive about several hypothetical recruitment algorithms, I find that algorithmic fairness per-
ceptions are higher when crowdworkers are provided not only with information about the algorithmic
outcome but also about the decision-making process. Remarkably, this e↵ect is even observed when
the decision-making process can be considered unfair, when gender, a sensitive attribute, is used as a
main feature. By showing realistic trade-o↵s between fairness criteria, I find a preference for equalizing
false negatives over equalizing selection rates amongst groups. Moreover, I discover a negative e↵ect
of selection rate di↵erences and false negative rate di↵erences on fairness perceptions. These findings
contribute to the literature on the connection between mathematical algorithmic fairness and perceived
algorithmic fairness, and highlight the importance of considering multiple components of algorithmic
fairness, rather than solely treating it as an outcome distribution problem. Importantly, this study
highlights the potential benefits of leveraging organizational justice theory to enhance the evaluation of
perceived algorithmic fairness.
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Introduction

Artificial Intelligence systems are increasingly being used to inform and make important decisions about
human lives across a wide range of high-impact domains, such as criminal law, medicine, finance, and
employment. Human decision-makers are increasingly being assisted by algorithmic systems in making
critical decisions, like whether somebody should receive a mortgage, which medical treatment a patient
should receive, or whether a defendant should be granted parole [1]. For example, a study carried out in
2018 into US banking institutions showed that 91% of the largest banks used deep-learning algorithms
to make financial decisions about their customers [2]. Moreover, by 2014, the market for algorithmic job
screening systems was already approximated at $500 million per year, with an annual growth of 15% [3].

These decision-making algorithms could o↵er numerous promising advantages to society. By automat-
ing time-consuming, mundane tasks and accelerating decision-making processes, these systems often in-
crease e�ciency, accuracy, and productivity, leading to important financial benefits [4,5]. Furthermore,
algorithms have the potential to make more neutral judgments than humans, since they are not a↵ected
by emotions or other surrounding noise inherent to human decisions [6]. Algorithmic decision-making
could therefore lead to more consistent, rational, and fair outcomes than traditional decision-making [4].

However, over the last couple of years, a considerable amount of literature has emerged that o↵ers
contradictory findings to this aspiration: algorithmic decision-making is increasingly being associated
with discriminatory or unfair outcomes. Cases like COMPAS, the criminal risk assessment algorithm
which was accused of being racially biased against black defendants [7], Amazon’s recruitment model,
which turned out to be biased against female candidates [8], and the research by Buolamwani and
Gebru [9] into facial recognition systems, showing significant misclassification of black women, are some
of the most canonical examples reporting algorithmic unfairness.

To counter harmful events such as these, ensuring algorithmic fairness has recently become a ma-
jor area of interest within the field of artificial intelligence. Diversity, fairness, and non-discrimination
have become key requirements in the EU Ethical Guidelines for Trustworthy AI [10]. Algorithmic
justice and fairness have been highlighted in over 60 ethical guidelines for artificial intelligence [11].
Academic conferences such as ACM’s FAccT (Fairness, Accountability, and Transparency) have come
up, promoting more research into algorithmic bias [12]. These developments have led to the design of a
whole landscape of fairness criteria: statistical expressions to embed fairness into algorithms. Further-
more, researchers have developed various bias mitigation algorithms, open source libraries, and auditing
toolkits to measure, visualize, and improve di↵erent algorithmic fairness aspects [13].

Nonetheless, there are still large gaps between fairness researchers and machine learning practition-
ers in industry [12]. It has been proved that it is impossible to mathematically satisfy all the proposed
statistical fairness criteria at once, since they are mutually incompatible. Therefore, a universal con-
sensus on how to ensure algorithmic fairness is lacking: a one-size-fits-all solution does simply not
exist [14]. More knowledge about what criteria to use in what context is hence needed, which exempli-
fies the fact that algorithmic fairness should not only be perceived from a technical viewpoint. We need
to understand what humans perceive as fair, to ensure that algorithmic decision-making systems are
accepted, trusted, and supported by humans. Therefore, multiple studies have started to acknowledge
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that fairness is not purely an algorithmic concept, but a human construct [1, 12, 15,16].

However, the literature on human perceptions of algorithmic fairness so far frequently o↵ers mixed
or inconsistent results [1, 17]. For example, some studies find that perceptions of algorithmic fairness
are influenced by sociodemographic factors like age and education level [18], while others find opposite
results [19]. Some studies find that people perceive human decision-makers as more fair [20], while
other studies find a preference for algorithmic decision-making systems [21]. While some studies find
a preference for straightforward fairness criteria like demographic parity, which requires equal selection
rates between di↵erent groups [22], others conclude that people perceive more complex criteria, such
as equal false positive rates between groups, as fairer [23]. Moreover, some studies find that people
perceive the use of certain input features in a model, such as gender, as unfair [24], whilst others do
not draw this conclusion [25].

To create more coherency and clarity in testing perceptions of algorithmic fairness, multiple fair-
ness researchers have started to draw insights from a branch of psychology termed organizational jus-
tice [5, 23, 26–29]. This research area is concerned with fairness perceptions of decisions made about
employees in organizational settings [30]. It divides fairness perceptions into three several di↵erent, but
correlated components: distributive fairness, procedural fairness, and interactional fairness [31]. While
distributive fairness is concerned with the fairness of outcome distributions (e.g., the amount of money
paid to female and male employees), procedural fairness is concerned with the fairness of a decision-
making process (e.g., the role of gender in resume screening), and interactional fairness is concerned
with the fairness of the information provided about a decision-making process (e.g., the explanations
provided for a layo↵ decision).

In this thesis, I will adopt this categorization in the context of the perceived fairness of algorith-
mic decision-making, focusing on algorithmic hiring. By approaching this topic through the lens of
organizational justice theory, I will systematically investigate di↵erent aspects of perceived algorithmic
fairness.

1.1 Motivation and Research Questions

Most of the research into algorithmic fairness perceptions focuses merely on one of the above-described
components of fairness (for example, on distributive fairness, by investigating people’s perceptions of
di↵erent algorithmic outcomes, or on interactional fairness, by investigating the e↵ect of explanations
about algorithmic decisions). However, in this work, I aim to investigate the e↵ect of integrating these
components on algorithmic fairness perceptions. Additionally, I will investigate the link between math-
ematical algorithmic fairness and human algorithmic fairness perceptions. I will do so by examining
whether participants have a preference for either demographic parity or equality of opportunity and by
examining whether there is a relation between fairness perceptions and, respectively, algorithmic selec-
tion rate di↵erences and false negative rate di↵erences.

I will focus on algorithmic hiring, a context that is easily comprehensible for a lay public. While
this area has seen increased interest in the integration of AI-enabled software, it has also witnessed
raising concerns about the potential of AI to perpetuate or exacerbate existing biases [32–34]. As a
result, it is classified as a high-risk area in the proposed EU AI act [35]. Moreover, there is no universal
agreement on how fairness should be formalized in algorithmic hiring: for instance, certain recruitment
algorithms proactively aim to increase diversity when ranking job candidates, while others do not [36].
As research has demonstrated that fairness perceptions during a hiring process play a critical role in job
satisfaction, performance, and the relationship between employers and employees, obtaining insights
into the perceived fairness of algorithmic hiring is of particular importance [37].

Toward that end, I will conduct an experiment using the crowdsourcing platform Prolific Academic
to examine crowdworkers’ fairness perceptions of several hypothetical recruitment algorithms. I will
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study the following three research questions:

RQ1: How do human fairness perceptions of a recruitment algorithm di↵er when only given infor-
mation about the distributive fairness of the algorithm, compared to when given information about both
the procedural fairness and the distributive fairness of the algorithm?

This research question will be answered by grouping the participants based on the type of informa-
tion they receive about the recruitment algorithms, according to the fairness components described
in organizational justice theory. By calculating the average scores that participants assign to the al-
gorithms, and comparing these scores across groups, I will investigate whether there are significant
di↵erences across the groups.

RQ2: How do human fairness perceptions of a recruitment algorithm di↵er depending on whether
it adheres to demographic parity or equality of opportunity?

I will specifically focus on these two fairness criteria, as multiple studies propose these criteria are
suitable in the context of algorithmic hiring [5, 33, 36, 38]. By showing participants graphs that report
the trade-o↵s between selection rate di↵erences and false negative rate di↵erences between two gender
groups, I will investigate whether participants have a preference for either equality of opportunity (i.e.,
equal false negative rates between both groups) or demographic parity (i.e., equal selection rates be-
tween both groups). Moreover, I will qualitatively analyze the rationales behind participants’ fairness
ratings to find out whether these a�rm the results of the quantitative analysis.

RQ3: To what extent are the selection rate di↵erences and false negative rate di↵erences between
groups of a recruitment prediction algorithm related to human fairness perceptions of it?

This research question will investigate the relationship between mathematical algorithmic fairness and
perceived algorithmic fairness. I will answer this question by calculating the selection rate di↵erences
and false negative rate di↵erences of the various recruitment algorithms shown to participants and com-
paring these to the participants’ average perceived fairness scores. Additionally, I will employ an ordinal
regression analysis, to predict fairness perceptions from selection rate di↵erences and false negative rate
di↵erences.

In Section 4, these procedures will be outlined in further detail.

1.2 Definitions

In order to combat bias and discrimination in machine learning, it is essential to define when an algo-
rithmic decision is unfair. Throughout this research, I will adopt the following frequently cited definition
by Mehrabi et al. (2018) to broadly describe fairness in the context of algorithmic decision-making:

“Fairness is the absence of any prejudice or favoritism towards an individual or a group based on
their intrinsic or acquired traits” [39]

I will define bias according to the definition of Friedman and Nissenbaum (1996):

“A computer system is biased when it systematically and unfairly discriminates against certain in-
dividuals or groups of individuals in favor of others” [40]

In this thesis, I will elaborate on several fairness criteria:

“A fairness criterion is a quantification of unwanted bias in training data or models” [41]
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Moreover, I will use the terms privileged group, unprivileged group, protected attribute, and
favorable label:

“(Un)privileged groups are groups (often defined by one or more sensitive variables) that are dispro-
portionately (less) more likely to be positively classified” [42]

“Protected attributes define the aspects of data which are socioculturally precarious for the applica-
tion of machine learning. Common examples are gender, ethnicity, and age” [42]

“The favorable label is a label whose value corresponds to an outcome that provides an advantage to
the recipient (such as receiving a loan, being hired for a job, not being arrested)” [41]

1.3 Internship at DEUS

I am writing this thesis as part of a graduation internship at DEUS. This humanity-centered Artificial
Intelligence company, consisting of interdisciplinary teams of engineers, data scientists, strategists, and
designers, is established in 2020 and is based across three locations in Amsterdam, Porto, and A Coruña.
DEUS helps organizations and companies with starting new artificial intelligence initiatives, launching
pilot projects, and scaling these initiatives. Besides, DEUS also creates its own IT and AI products [43].

This graduation internship takes place within one of these product development initiatives: the Re-
liable AI platform. In this project, DEUS is creating a tool that can enable companies to deploy and
maintain reliable AI models, by monitoring di↵erent aspects of deployed machine learning models with
not only a focus on model performance but also on business impact and human insights and feedback.
In this project, I focus on the human aspect of this monitoring tool, with a particular emphasis on
algorithmic fairness and human perceptions of it. By performing a literature study into the empirical
research into this topic and conducting experiments on human fairness perceptions, I hope to provide
DEUS with relevant insights that can be used in creating the Reliable AI platform.

1.4 Thesis Outline

This thesis consists of seven sections. Section 2 introduces the theoretical underpinnings of algorithmic
fairness. Section 3 presents an overview of related research on algorithmic fairness perceptions. Section
4 outlines the methodological framework of this study, including the details of the data (Section 4.1),
model development procedures (Section 4.2), and empirical user study (Section 4.3). Section 5 describes
the quantitative and qualitative findings of this study. In Section 6, these findings, as well as the study’s
limitations (Section 6.2) and directions for future research (Section 6.3), are further discussed. Finally,
Section 7 presents the final conclusions of the thesis.
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Theoretical Background on Algorithmic Fairness

This section will start by giving a succinct exploration of the di↵erent sources of algorithmic biases
(Section 2.1) and the di↵erent mathematical criteria for algorithmic fairness (Section 2.2). It will
proceed by explaining why it is impossible to satisfy all these criteria together at once (Section 2.3),
and by providing a short overview of the technical approaches to mitigate algorithmic unfairness (Section
2.4). Altogether, this section will provide a structured theoretical background on algorithmic fairness,
which will help in further examining the di↵erent viewpoints on this topic.

2.1 Algorithmic Bias

A first step towards preventing discriminatory and unfair algorithmic outcomes is to gain insight into
how algorithmic biases emerge and where they come from. Multiple researchers have proposed di↵erent
categorizations or frameworks to di↵erentiate between the several forms of algorithmic bias. Mehrabi
et al. [39], for example, define three di↵erent categories of algorithmic bias in the machine learning
pipeline: bias in the data, bias in the algorithm, and bias emergent from the user interacting with the
system.

First of all, when biased data is fed into a machine learning model, this might result in biased outcomes.
Data can be biased due to di↵erent reasons. For example, when collecting data from a population, spe-
cific subgroups may be missed or under-represented, resulting in a sample lacking diversity and therefore
not being representative of the population. An illustrative example of this phenomenon named rep-
resentation bias is the demographic bias present in the large ImageNet data set used for classifying
images: although this data set is intended for universal use, for example, only 1% of its images are
taken in China, resulting in a lower classification performance of persons or objects in these images [44].
A special type of biased data is historical bias. This is one of the most complicated types of bias because
it can emerge even after a perfect data sampling process [40]. It arises when the real world, as it used
to be, or currently is, leads to biased models [44]. For example, when a data set contains only a little
fraction of data points representing a certain minority group, this may result in a model that works less
well for this group. In this case, even though the data reflects the reality accurately, we can question
whether we want the model to reflect this reality [39]. Amazon’s recruitment algorithm is an illustration
of an algorithm that demonstrated historical bias. This algorithm was trained to evaluate job candi-
dates based on resumes submitted over a period of 10 years. Since most of these resumes came from
male candidates, as the tech industry was largely male-dominated, Amazon’s algorithm learned itself to
favor male candidates, by penalizing resumes containing the word ‘women’s’ [8]. Because of historical
bias, rooted human biases can be perpetuated: for example, in the case of word embeddings used for
natural language processing algorithms, it has been demonstrated that profession words like ‘doctor’ or
‘housekeeper’ show a high association, or semantic relationship, with words representing respectively
men or women. This can result in the reinforcement of human stereotypes, leading to discriminatory
outcomes [45].

Bias can also be added by the algorithm itself, without formerly being present in the input data.
In that case, the bias is caused by the inner workings of the algorithm, by specific design choices, or by
data processing steps, such as feature selection or feature engineering. For example, when a machine
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learning engineer tries to reduce the complexity of a model through hyperparameter tuning, by setting
higher regularisation parameters, this generalizes the model but may end up eliminating subtle or rare
patterns in the data. As a consequence, hyperparameter tuning can lead to a biased model that inade-
quately represents certain sub-populations. This is a form of technical bias [12].

Lastly, the third category of bias, emergent bias, or user interaction bias, emerges after deployment
of the machine learning model [40]. This form of bias usually arises due to shifts in societal knowledge,
demographics, or values over time. For example, this type of bias may arise when the population uti-
lizing the model is di↵erent from the population presumed as users during the design phase. When an
algorithm, for example, includes a large set of written instructions, a population lacking literacy skills
may not be able to utilize it e↵ectively, causing bias against nonliterate individuals [39, 40].

2.2 Mathematical criteria for fairness in algorithmic decision-
making

The fact that algorithmic fairness is a profoundly complex and many-faceted concept is reflected by
the large landscape of definitions that try to grasp its meaning: with over 21 established mathematical
formulas for fairness in binary classification problems, researchers have not yet come to a universal con-
sensus on how to mathematically define what it means for a decision to be fair [46]. These mathematical
formulas, commonly called fairness criteria, are broadly dividable into two classes: similarity-based, or
individual fairness criteria, and statistical, or group-level fairness criteria [14]. In this section, I will
discuss the most prominent criteria within these two classes. The terms protected attribute and sensitive
attribute will be used interchangeably, referring to demographic features on which discrimination is not
allowed, such as age, race, or gender.

2.2.1 Similarity-based fairness criteria

Similarity-based fairness focuses on the idea that individuals that are similar should receive similar pre-
dictions [14]. The most straightforward type of this class of fairness, and therefore the most frequently
applied fairness criterion in organizations, is a blindness approach termed fairness through unawareness.

Fairness through unawareness: a classifier satisfies fairness through unawareness if sensitive attributes
are left out from the data, and are therefore not used in comparing individuals [47].

In theory, this approach may sound promising. One could, for example, argue that by removing racial
attributes from the data set, it would be impossible to discriminate on race. However, in practice, fair-
ness through unawareness does not prevent discrimination. In fact, this approach may even contribute
to the perpetuation of biases over time [5]. The reason for this is that many features have a tendency to
be correlated with the sensitive attribute: these features serve as a proxy. For example, the feature ‘zip
code’ may be a proxy for the sensitive attribute ‘race’ and the feature ‘occupation’ may be a proxy for
the sensitive attribute ‘gender’ [42]. Therefore, even when a sensitive attribute is removed from the data
set, a classifier will likely find one or more features that are redundantly encoded, or highly correlated,
with this sensitive attribute−ending up with a classifier that essentially learns the same patterns [48].

Dwork et al. [49] argue that algorithmic fairness, rather, can best be described by treating individ-
uals that are similar in a similar way, by actually being aware of their sensitive attributes:

Fairness through awareness : a classifier satisfies fairness through awareness if individuals that are
similar with respect to a specific task receive similar predictions [49].

In this criterion, the concept of similarity is described by a similarity metric, that measures the dis-
tance between two individuals. This similarity is then compared to the distributions of their decision
outputs. In this approach, however, the important choice of which similarity metric to use is di�cult
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and requires situation-specific expert knowledge. Another di�culty with this criterion is how to test it
in practice: to test similarity between all individuals, an enormous search space would be required [14].
Taken together, these concerns make fairness through awareness a di�cult measure to operationalize
in practice.

2.2.2 Statistical fairness criteria

Rather than comparing persons at an individual level, statistical fairness criteria focus on treating per-
sons that belong to a protected group (defined by a sensitive attribute) the same as persons that belong
to any other group. To capture the di↵erent formulas belonging to this class, Boracas et al. [48] pro-
pose a taxonomy of statistical non-discrimination criteria consisting of three categories: independence,
separation, and su�ciency. If we represent the sensitive attribute as S, the predicted outcome (the
decision) as Ŷ , and the (true) outcome as Y, these three categories can be represented as follows:

Independence = Ŷ ? S

Separation = Ŷ ? S|Y

Sufficiency = Y ? S|Ŷ

Throughout the following section, the running example of a recruitment prediction machine learning
model, that hires job candidates, will be used to illustrate the di↵erent fairness criteria belonging to
these three categories. In this example, the sensitive attribute S is the sex of the candidate (female or
male), the predicted outcome Ŷ is the decision of whether the candidate will be hired for the job (Ŷ =
1) or not (Ŷ = 0), and Y is the true outcome of whether the candidate is qualified for the job (Y = 1)
or not (Y = 0). In this model, the favorable outcome is the desirable decision outcome: being hired for
the job. In this specific example, females are considered to belong to the protected group.

Independence Starting with independence, it can be seen that the true outcome Y is not consid-
ered in the equation. So, a classifier satisfies independence, when the predicted outcome is statistically
independent of the sensitive attribute, regardless of the actual outcome. Three fairness criteria falling
under the independence category are demographic parity (a.k.a. statistical parity), disparate impact
and conditional statistical parity [14, 48].

Demographic parity : a classifier satisfies demographic parity when the percentage of favorable out-
comes is equal for both the protected and unprotected groups [39].

Our example recruitment prediction machine learning model would hence satisfy demographic parity
when female candidates have an equal probability of being hired for the job as male candidates:

P (Ŷ = 1|S = female) = P (Ŷ = 1|S = male)

Table 1 shows an example of a recruitment algorithm that satisfies demographic parity.

A related variant of demographic parity, that also considers the percentage of favorable outcomes,
is disparate impact. Instead of requiring these percentages to be equal, disparate impact considers the
ratio of favorable outcomes between the protected and unprotected groups [42]:

P (Ŷ = 1|S = female)

P (Ŷ = 1|S = male)

US law refers to this criterion with the “80% rule”: according to the US Equal Employment Opportu-
nity Commission (EEOC) guidelines, it is stated that if the selection rate of the protected group is less
than 80% than that of the unprotected group, there is discrimination based on a protected attribute.
In fairness literature, demographic parity and disparate impact are often described as useful fairness
criteria in situations where it is desirable to enforce equality between two groups, for example, in the
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case of historical biases in the data set [46]. However, one may argue it is sometimes more reasonable to
also involve other factors in the decision-making process. This can be done by extending the definition
of demographic parity into conditional statistical parity [50].

Conditional statistical parity : a classifier satisfies conditional statistical parity when the percentage
of favorable outcomes is equal for both the protected and unprotected groups, controlled for a legiti-
mate factor L [50].

In our recruiting example, this means that the model would satisfy conditional statistical parity when
female candidates have an equal probability of being hired for the job as male candidates, given that
they have, for example, the same skills or work experience, denoted by L:

P (Ŷ = 1|S = female, L = l) = P (Ŷ = 1|S = male, L = l)

Table 1: Example of a recruitment algorithm adhering to demographic parity. This al-
gorithm adheres to demographic parity as the percentage of hired candidates is equal for
both men and women (p = 0.5).

Candidate Predicted outcome Ŷ

Woman 1 hired
Woman 2 hired
Woman 3 not hired
Woman 4 not hired
Man 1 hired
Man 2 hired
Man 3 not hired
Man 4 not hired

Separation Instead of conditioning on a factor L, it is also possible to condition over the true out-
come Y. If the predicted outcome is conditionally independent of the sensitive attribute, given the true
outcome, a classifier satisfies separation [48]. For separation to hold, hence, the true outcome should
be available. A scenario in which the objective true outcome, or ground truth, can be determined is,
for instance, a medical setting where algorithmic predictions are made about whether an individual has
a specific illness that can be detected through a blood test. Our algorithmic recruitment prediction
example, however, is an instance in which this objective ground truth is not available but is inferred, as
the qualification of a job candidate is likely a subjective decision [3]. When adopting fairness criteria
falling under separation, hence, it is important to properly define what is meant by the true outcome
Y, and to use data that is as objective and trustworthy as possible [46].

The three most prominent definitions falling under this category are predictive equality, equality of
opportunity, and equalized odds [46, 51, 52].

Predictive equality : a classifier satisfies predictive equality when the false positive rate is equal for
both the protected and the unprotected groups [51].

In our running example, the recruitment prediction model would satisfy predictive equality if, for
both female and male candidates, the probability that an applicant does get hired for the job but is not
actually qualified for the job (a false positive), is equal. Mathematically, this also implies that the true
negative rate is equal for both the protected and unprotected groups: meaning that the recruitment
model would correctly reject unqualified female and male candidates (true negatives) at the same rate
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as well:
P (Ŷ = 1|Y = 0, S = female) = P (Ŷ = 1|Y = 0, S = male)

P (Ŷ = 0|Y = 0, S = female) = P (Ŷ = 0|Y = 0, S = male)

Table 2 shows an example of a recruitment algorithm that satisfies predictive equality.

Table 2: Example of a recruitment algorithm adhering to predictive equality. This al-
gorithm adheres to predictive equality as the probability of being hired, given not being
qualified for the job, is equal for both men and women (p = 0.5). Note that this algorithm
does not adhere to demographic parity, as the percentage of hired female candidates is
0.75 and the percentage of hired male candidates is 0.5.

Candidte Predicted outcome Ŷ True outcome Y

Woman 1 hired qualified
Woman 2 hired qualified
Woman 3 hired not qualified
Woman 4 not hired not qualified
Man 1 hired not qualified
Man 2 hired not qualified
Man 3 not hired not qualified
Man 4 not hired not qualified

The second notion of separation, equality of opportunity, closely resembles the former criterion but
focuses on the false negative rate, rather than on the false positive rate:

Equality of opportunity : a classifier satisfies equality of opportunity when the false negative rate is
equal for both the protected and the unprotected groups [52].

This would imply that the recruitment prediction model would incorrectly reject qualified female and
male candidates (false negatives) at the same rate. Mathematically, this also implies that the true
positive rate, or recall, is also equal for both the protected and unprotected groups: meaning that the
recruitment model would correctly hire qualified female and male candidates (true positives) at the
same rate as well:

P (Ŷ = 0|Y = 1, S = female) = P (Ŷ = 0|Y = 1, S = male)

P (Ŷ = 1|Y = 1, S = female) = P (Ŷ = 1|Y = 1, S = male)

Table 3 shows an example of a recruitment algorithm that satisfies equality of opportunity.

When determining the suitability of either predictive equality or equality of opportunity in a given
situation, it is important to identify whether fairness between groups is more sensitive to false negatives
or false positives. To illustrate, the criterion of predictive equality does not take false negatives into
account. Hence, in a situation in which equal false negatives between groups are crucial for fairness,
predictive equality is not a suitable criterion. For example, in algorithmic hiring, it would be unfair to
disproportionally reject qualified candidates (false negatives). Therefore, predictive equality would not
be a suitable criterion in algorithmic hiring, as it does not ensure equal false negatives. On the other
hand, the criterion of equality of opportunity does not take false positives into account. Hence, in a
situation in which equal false positives between groups are crucial for fairness, equality of opportunity
is not a suitable criterion. An example of such a situation is algorithmic firing: here, it would be unfair
to disproportionally fire qualified employees (false positives). Hence, in algorithmic firing, equality of
opportunity would not be a suitable criterion, as it does not ensure equal false positives [3].
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Table 3: Example of a recruitment algorithm adhering to equality of opportunity. This
algorithm adheres to equality of opportunity as the probability of not being hired, given
being qualified for the job, is equal for both men and women (p = 0.5). Note that this
algorithm does not adhere to predictive equality, as the probability of being hired, given
not being qualified for the job is 0.5 for women, and 0 for men.

Candidate Predicted outcome Ŷ True outcome Y

Woman 1 hired qualified
Woman 2 not hired qualified
Woman 3 hired not qualified
Woman 4 not hired not qualified
Man 1 hired qualified
Man 2 not hired qualified
Man 3 not hired not qualified
Man 4 not hired not qualified

Lastly, the third notion of separation, equalized odds, combines the two previously described defini-
tions, and is, therefore, most suitable in situations in which fairness is both sensitive to false positives
and false negatives:

Equalized odds: a classifier satisfies equalized odds when the true positive rate and the false posi-
tive rate are equal for both the protected and the unprotected groups [52].

The recruitment prediction model would satisfy equalized odds when the probability of correctly hiring
qualified candidates and the probability of incorrectly hiring unqualified candidates are both the same
for female and male applicants:

P (Ŷ = 1|Y = 1, S = female) = P (Ŷ = 1|Y = 1, S = male)

P (Ŷ = 1|Y = 0, S = female) = P (Ŷ = 1|Y = 0, S = male)

Table 4 shows an example of a recruitment algorithm that satisfies equalized odds.

Table 4: Example of a recruitment algorithm adhering to equalized odds. This algorithm
adheres to equalized odds as both (1) the probability of being hired, given being qualified
for the job, is equal for both men and women (p = 1), and (2) the probability of being
hired, given not being qualified for the job, is equal for both men and women (p = 0.5).

Candidate Predicted outcome Ŷ True outcome Y

Woman 1 hired qualified
Woman 2 hired qualified
Woman 3 hired not qualified
Woman 4 not hired not qualified
Man 1 hired qualified
Man 2 hired qualified
Man 3 hired not qualified
Man 4 not hired not qualified

Su�ciency Lastly, a fairness criterion can also be conditioned on the predicted outcome instead of
the true outcome. In that case, the criterion belongs to the category of su�ciency. Su�ciency requires
equal true outcomes over people that are given equal predictions, regardless of the sensitive attribute.
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Hence, again, for su�ciency to hold, the true outcome should be available. The two most discussed no-
tions in this category are predictive parity (a.k.a. outcome test) and calibration (a.k.a. test fairness) [14].

Predictive parity : a classifier satisfies predictive parity when the positive predictive value (PPV, a.k.a.
precision), is equal for both the protected and unprotected groups [14].

In our running example, this means that the recruitment prediction model would satisfy predictive
parity if, for both female and male job candidates, the probability that a candidate is actually qualified
for the job, given that the model has hired the applicant, is equal:

P (Y = 1|Ŷ = 1, S = female) = P (Y = 1|Ŷ = 1, S = male)

Table 5 shows an example of a recruitment algorithm that satisfies predictive parity. Similar to predic-

Table 5: Example of a recruitment algorithm adhering to predictive parity. This algorithm
adheres to predictive parity as the probability of being qualified for the job, given being
hired, is equal for both men and women (p = 1). Note that this algorithm does not adhere
to equality of opportunity, as the probability of not being hired, given being qualified for
the job, is 0 for women and 0.5 for men.

Candidate Predicted outcome Ŷ True outcome Y

Woman 1 hired qualified
Woman 2 hired qualified
Woman 3 not hired not qualified
Woman 4 not hired not qualified
Man 1 hired qualified
Man 2 hired qualified
Man 3 not hired qualified
Man 4 not hired qualified

tive equality, the criterion of predictive parity does not take false negatives into account, and is therefore
not suitable for a context in which equal false negatives are crucial for fairness [3].

A fairness criterion closely related to predictive parity is calibration. This criterion interprets the
value of the predicted outcome Ŷ as a probability score P of receiving the favorable prediction.

Calibration: a classifier satisfies calibration when for any probability score p between 0 and 1, both
the protected and unprotected groups have the same probability of truly belonging to the favorable
class [51].

Our example recruitment prediction model would hence be calibrated when, given any probability
score p of being hired for the job, the probability of being qualified for the job would be the same, for
both female and male job candidates:

P (Y = 1|P = p, S = female) = P (Y = 1|P = p, S = male) = 8p 2 [0, 1]

Table 6 shows an example of a recruitment algorithm that satisfies calibration. Calibration is a suitable
fairness criterion in situations in which the threshold probability of receiving the favorable outcome
varies. An example of such a situation is algorithmic loan approval: depending on the economic context,
the acceptance score of granting a loan may increase or decrease [3].
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Table 6: Example of a recruitment algorithm adhering to calibration. This algorithm
adheres to calibration as for any theshold probability p of being hired, both men and
women have an equal probability of being qualified for the job: for p = 0.9, this probability
is 1, for p = 0.6, this probability is 0.5.

Candidate True outcome Y Threshold p

Woman 1 qualified 0.9
Woman 2 qualified 0.9
Woman 3 qualified 0.6
Woman 4 not qualified 0.6
Man 1 qualified 0.9
Man 2 qualified 0.9
Man 3 qualified 0.6
Man 4 not qualified 0.6

2.3 Impossibility Theory

Following the proliferation of research into mathematical criteria to define algorithmic fairness, several
researchers have started to investigate their reciprocal mathematical relationships. This has exposed an
important issue: there exist large trade-o↵s between several criteria, making them incompatible with
each other. Therefore, it is impossible to satisfy all fairness criteria at once [48,51,53].

For example, Boracas et al. [48] describe that under mild assumptions, any two out of the three afore-
mentioned categories of group fairness are mutually exclusive. For example, if the sensitive attribute
and the true outcome are not independent, meaning that belonging to the unprotected group a↵ects
the statistics of the outcome, independence and su�ciency cannot be satisfied at the same time. So,
to come back to our recruitment prediction model example, demographic parity and predictive parity
could only hold at the same time, if both women and men would be exactly equally suitable for the job.
Furthermore, Kleinberg et al. [53] prove that the criterion of equalized odds is inherently incompatible
with the criterion of calibration, with the exception of two highly special cases: first, when the classifier
achieves a perfect prediction, so one without false positives and false negatives, and second, when both
the protected and unprotected groups have equal base rates, meaning they have the same percentage
of true outcomes. These two conditions, however, are most often not the case. Lastly, Choulde-
chova [51] describes another incompatibility between two fairness criteria: she mathematically shows
that predictive parity is in conflict with equalized odds unless the di↵erent groups have equal base rates.

Conflicts between fairness criteria such as those described above require practitioners, who are not
yet always familiar with these topics, to make choices between the di↵erent criteria and their trade-o↵s.
However, which choice to make is highly context-specific and can be a di�cult task, given the subtle
di↵erences between the di↵erent criteria. Furthermore, which criterion to choose also depends on other
factors, such as the availability of sensitive features, knowledge about the actual outcome label, and
legal or organizational restrictions. More research is hence needed to understand the appropriateness of
the di↵erent criteria in specific contexts and to understand their particular benefits and downfalls [12].

2.4 Technical approaches to mitigate algorithmic unfairness

To help researchers and practitioners understand and counter the fairness issues in their models, several
toolkits have been developed. These toolkits largely focus on two main aspects: first, on measuring and
evaluating biases in the model, and second, on mitigating these biases [46]. Table 7 shows a selection
of the most prominently mentioned fairness toolkits.
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Table 7: Overview of fairness toolkits

Toolkit Main Focus Features

Google’s
What-If
toolkit [56]

Visualization
and explo-
ration

Interactive, open-source web application that o↵ers visualizations for
model probing and exploration. Allows users to compare two models,
change feature values and evaluate performance and fairness metrics,
with minimal coding. Includes a data point editor, which allows modi-
fying the data and comparing counterfactual data points.

IBM Fairness
360 [41]

Bias mitigation Python toolbox for detecting and mitigating biases in machine learning
models. O↵ers a comprehensive set of fairness metrics including expla-
nations. Provides a range of pre-processing, in-processing, and post-
processing bias-mitigation algorithms.

Aequitas [57] Fairness audit-
ing

Open source bias and fairness bias audit report toolbox that automati-
cally flags fairness issues. Includes a ‘fairness tree’ for helping users to
choose the right fairness metric. Does not provide any algorithms to
mitigate biases.

Microsoft Fair-
learn [58]

Exploration
and bias miti-
gation

Python library for assessing and improving fairness. Consists of two com-
ponents: an interactive dashboard that enables users to try out multiple
parity-based fairness metrics, and several bias mitigation algorithms to
reduce unfairness.

FairML [59] Fairness audit-
ing

Open-source, end-to-end Python toolbox for auditing prediction models.
Quantifies the e↵ect of di↵erent input attributes, which can subsequently
be used to investigate the fairness of the model.

However, despite these promising contributions for detecting biases and designing fairer models, two
important concerns have arisen in the literature. First, there seems to be a disconnect between the
practical application of these tools, and the fairness researchers constructing them. Factors such as
context-dependence, application-dependence, and practitioners being unaware of the exact workings
and possibilities of these tools, result in a lack of employment of them [12,54]. Second, all of the afore-
mentioned fairness criteria and fairness tools take a purely technical perspective on the topic of fairness
and algorithmic bias. However, multiple authors state that more emphasis on the social, human side of
fairness is needed: in order to develop fair AI, it is essential to know what humans perceive as fair and
to acknowledge that fairness is not merely a technical construct [1, 12, 55].
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Related work on human perceptions of algorithmic
fairness

In this section, the empirical literature on human perceptions of algorithmic fairness will be discussed.
First, Section 3.1 will analyze two predictors of perceived algorithmic fairness: factors influencing
perceived algorithmic fairness, and human attitudes toward algorithmic fairness. Next, in Section 3.2,
insights from a branch of psychology termed organizational justice will be drawn, to systematically
describe the components of algorithmic fairness and link these to the existing empirical literature on
fairness perceptions. Altogether, this section will aim to give a comprehensive overview of algorithmic
fairness from a human perspective.

3.1 Human predictors of perceived algorithmic fairness

A considerable amount of fairness research investigates the influence of human (socio-)demographic
factors, such as education level, age, or race, on the fairness judgment of algorithmic decision-making
systems. Often, these are online, crowdsourced, survey-based studies in which participants have to rate
the fairness of machine learning models in di↵erent contexts. A commonly used context is a criminal
risk prediction context, in which participants have to judge the fairness of algorithms that estimate
the risk of a defendant’s criminal recidivism [24, 25]. By comparing these fairness ratings and taking
into account the inter-individual di↵erences between the participants, these studies look for correlations
between certain (socio-)demographic factors and algorithmic fairness perceptions. In Table 8, some of
the most important findings of these studies are stated. It is worth mentioning that these studies often
present contradictory findings.

Furthermore, a number of empirical studies investigate di↵erent aspects of human attitudes toward the
fairness of algorithmic decision-making. For example, some studies investigate whether participants’
attitude toward the fairness of algorithmic decision-making di↵ers per context [20,21], or whether partic-
ipants’ attitudes toward the fairness of algorithmic decision-making di↵ers from their attitudes toward
the fairness of human decision-making [18]. In Table 9, some examples of these studies are shown.
Again, these studies o↵er mixed results: for example, where Araujo et al. [21] conclude that people per-
ceive automated decision-making in a criminal justice context as fair, Wang [20] finds opposite results.

In a critical paper, Dasch et al. [17] comment on some of the above-discussed papers by stating that
to successfully understand and assess human perceptions of algorithmic fairness, an interdisciplinary
approach, which incorporates insights from statistics and psychology, is needed. They stress that it is
necessary to use the proper statistical methods and to be sensitive to psychological phenomena, such as
framing, to derive reliable and generalizable results. Not only is more research needed to fully under-
stand people’s attitudes towards, and comprehension of, AI fairness, but it is also crucial to design these
experiments in a reliable, replicable way, in order to be able to draw any solid conclusions. Moreover,
Starke et al. [1] interpret the above-discussed inconsistencies in the literature on human fairness per-
ceptions by arguing that “some of the inconclusiveness of the empirical results can also be attributed to
the lack of coherent theoretical frameworks for perceived algorithmic fairness”. Therefore, the following
section will take a step toward adopting such a coherent framework by further outlining the concept of
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perceived algorithmic fairness and dividing it into several components.

Table 8: Studies into human factors influencing perceived algorithmic fairness

Factor Study Algorithmic Context Findings

Computer lit-
eracy

Wang et al.
(2020) [19]

MTurk Master qualification al-
gorithm

Positive correlation between com-
puter literacy and perceived algo-
rithmic fairness

Pierson (2017)
[24]

Recommendation algorithm,
criminal risk prediction algo-
rithm

Lecture about algorithms increases
perceived algorithmic fairness

Education level Wang et al.
(2020) [19]

MTurk Master qualification al-
gorithm

No significant e↵ect

Grǵıc-Hlaca et
al. (2020) [25]

Criminal risk prediction algo-
rithm

No significant e↵ect

van Berkel et
al. (2021) [60]

Criminal risk prediction algo-
rithm, loan prediction algo-
rithm

Negative correlation between educa-
tion level and perceived algorithmic
fairness

Helberger et al.
(2020) [18]

No specific context mentioned Positive correlation between educa-
tion level and perceived algorithmic
fairness

Gender Wang et al.
(2020) [19]

MTurk Master qualification al-
gorithm

No significant e↵ect

Grǵıc-Hlaca et
al. (2020) [25]

Criminal risk prediction algo-
rithm

No significant e↵ect

Pierson (2017)
[24]

Recommendation algorithm,
criminal risk prediction algo-
rithm

Women perceive gender inclusion in
machine learning models as less fair
than men

van Berkel et
al. (2021) [60]

Criminal risk prediction algo-
rithm, loan prediction algo-
rithm

Women associated with lower per-
ceived algorithmic fairness levels

Helberger et al.
(2020) [18]

No specific context mentioned No significant e↵ect

Age Wang et al.
(2020) [19]

MTurk Master qualification al-
gorithm

No significant e↵ect

Grǵıc-Hlaca et
al. (2020) [25]

Criminal risk prediction algo-
rithm

No significant e↵ect

Helberger et al.
(2020) [18]

No specific context mentioned Negative correlation between age
and perceived algorithmic fairness

Race Wang et al.
(2020) [19]

MTurk Master qualification al-
gorithm

No significant e↵ect

Grǵıc-Hlaca et
al. (2020) [25]

Criminal risk prediction algo-
rithm

No significant demographic e↵ect,
but men perceive using race as a fea-
ture as more fair than women

Political ideol-
ogy

Grǵıc-Hlaca et
al. (2020) [25]

Criminal risk prediction algo-
rithm

Liberals perceive gender- and race
inclusion as less fair than conserva-
tives

19



Table 9: Studies into human attitudes toward algorithmic fairness

Subject Study Findings

Algorithmic
decision-
making
v.s. human
decision-
making

Helberger et al.
(2020) [18]

54% of the respondents perceive AI decision-making as more fair
compared to 33% of the respondents choosing a human decision-
maker. The remaining 13% answers that they are both equally fair,
or that this depends on the circumstance.

Fairness of
automated
decision-
making in
di↵erent con-
texts

Araujo et al.
(2019) [21]

Respondents perceived AI decision-making as more fair in high-
impact contexts (medicine and criminal justice) compared to a
lower-impact context (media).

Fairness of
automated
decision-
making in
criminal justice
system

Wang (2018)
[20]

Respondents strongly disapprove of algorithms regarding fairness.

Comprehension
of algorithmic
fairness metrics

Saha et al.
(2020) [61]

Participants’ comprehension is lower for both equal opportunity
and equalized odds, compared to demographic parity. A higher
education level is a strong predictor for comprehending the metrics.
Participants with a higher comprehension score tend to perceive the
models as less fair.

3.2 Perceived algorithmic fairness: drawing insights from or-
ganizational justice theory

What it means for a decision to be fair, and what humans perceive as fair, have long been questions
of interest in many fields, including philosophy, law, anthropology, neuroscience, and psychology [55].
When empirically investigating fairness perceptions, therefore, it is useful to draw insights from fields
such as these. Much of the current literature on perceived algorithmic fairness takes inspiration from a
branch of psychology termed organizational justice [1, 12]. Since this research area systematically de-
scribes the di↵erent components of perceived fairness, it can provide a solid foundation for how di↵erent
aspects of mathematical algorithmic fairness can be studied, and connected to perceived algorithmic
fairness.

In a seminal paper about fairness in organizations, Greenberg [30] introduces the concept of orga-
nizational justice: a research area concerned with fairness (or justice) perceptions of decisions made
about employees in workplace settings, investigating the impact of perceived fairness on the functioning
of businesses. In organizational justice literature, it is demonstrated that increased perceived fairness
in organizations is related to beneficial outcomes, such as increased employee satisfaction and greater
organizational commitment [31]. On the other hand, the literature on organizational justice also shows
that when employees think they receive unfair treatment, they often react by decreasing their con-
tributions to the company or by resigning from their position [62]. These findings are interesting for
algorithmic fairness researchers: if insights from organizational justice can be connected to fairness
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in algorithmic decision-making, these insights could be leveraged to gain a better understanding of,
and potentially increase, perceived algorithmic fairness. Similar to algorithmic decision-making, orga-
nizational justice focuses on decisions made about others in a hierarchical setting, making this area a
suitable source of inspiration for studying perceived algorithmic fairness [16]. Considering that orga-
nizational justice mainly focuses on the perceived fairness of employees in work environments, it may
particularly be interesting to apply this theory to algorithmic hiring, the context I address in this thesis.

Within organizational justice theory, four di↵erent dimensions of perceived fairness have been vali-
dated: distributive fairness, a type of fairness concerned with the outcome of decisions, procedural
fairness, a type of fairness concerned with the process of decision-making, informational fairness, a
type of fairness concerned with the explanations and information provided for decisions, and interper-
sonal fairness, a type of fairness concerned with how decision-subjects are being treated. The last two
of these dimensions, informational and interpersonal fairness, are often referred to together as interac-
tional fairness [31].

While the di↵erent fairness dimensions in organizational justice theory are correlated and show some
overlap, in the following sections, they will first be described separately. Furthermore, per dimension,
related work will be discussed that focuses on one of these di↵erent dimensions of perceived fairness in
an algorithmic context.

3.2.1 Distributive fairness

Distributive fairness (or outcome fairness) refers to the fairness of outcome distributions. It is based
on norms for outcome allocation, such as equality (outcomes should be distributed equally amongst
everyone) and equity (opportunities should be distributed equally based on everyone’s circumstances)
[1, 5, 31]. Distributive fairness can be assessed by looking at how outcomes are distributed, or how
resources are allocated, across group members. This assessment is influenced by several factors, such
as whether the decision is in favor of the individual assessing its fairness, or which resources are being
distributed [19].

Related work on distributive algorithmic fairness

Robert et al. [62] note that in the literature on the perceived fairness of algorithmic decision-making,
distributive fairness is the most commonly discussed category of perceived algorithmic fairness. One
possible explanation for this finding could be the fact that many statistical fairness criteria focus on
outcome distributions (for example, demographic parity requires the percentage of favorable outcomes
to be equal across groups) . Dolata et al. [55] refer to this conclusion as the distributiveness assumption:
the assumption that all fairness concerns can be represented as an outcome distribution problem. How-
ever, much of the work on perceived distributive fairness in machine learning focuses on basic fairness
concepts, such as equality and equity [1]. Only a handful of studies focus on the distributive fairness of
particular mathematical fairness criteria specifically [5, 22, 23, 63]. Here, I will discuss these studies in
further detail.

First of all, Morse et al. [5] investigate the distributive fairness of several popular mathematical fairness
criteria: fairness through unawareness, demographic parity, accuracy parity, equality of opportunity,
and equalized odds. They do so, by categorizing these five criteria along the extent to which they ac-
complish the goals of distributive fairness. By reflecting on the di↵erent criteria and analyzing related
literature, they reach the following classification:

• Low level of distributive fairness: fairness through unawareness

– Morse et al. argue that fairness through unawareness cannot always ensure a fair out-
come distribution, given the possibility of variables correlating with the ignored protected
attributes.

• Moderate level of distributive fairness : demographic parity, accuracy parity
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– A moderate level of distributive fairness is given to demographic parity and accuracy par-
ity since these notions require equal acceptance or accuracy rates across subgroups: they,
therefore, do not take subgroup di↵erences into account.

• High level of distributive fairness: equalized odds, equality of opportunity

– Morse et al. assign the highest level of distributive fairness to equalized odds and equality of
opportunity, given the fact that these definitions ensure more equitable outcomes by taking
into account subgroup di↵erences.

Although this classification provides a good starting point for investigating how di↵erent fairness cri-
teria are related to distributive fairness aspects, it does not take into account how people actually
perceive the distributive fairness of these criteria. The studies by Srivastava et al. [22] and Harrison et
al. [23] address this question, by investigating how humans perceive the fairness of several group-level
mathematical fairness criteria.

By running an experiment in which crowdworkers have to choose between a succession of pairs of
machine learning model outcomes, Srivastava et al. [22] try to identify the mathematical fairness cri-
terion that best captures human perceptions of fairness in a skin cancer risk prediction context and
criminal risk prediction context. The outcomes of the models are visualized as 10 images of both Black
and White males and females, accompanied by green and red visualizations of the algorithm’s predicted
outcomes and the true outcomes (whether a person has a low or high risk of skin cancer, or whether
a criminal re-o↵ends or not). In a series of 20 comparisons, generated by an adaptive algorithm, par-
ticipants have to decide which of the two models is more discriminatory. In both contexts, Srivastava
et al. find that participants prefer demographic parity over more complicated definitions, such as error
parity and equal false positive rates. This finding suggests that humans exhibit a preference for fairness
criteria that are more simplistic in nature.

However, Harrison et al. [23] draw di↵erent conclusions. They perform a between-subjects survey-
based experiment in a bail decision-making context, in which they let participants judge two models
with pairwise trade-o↵s between accuracy, outcomes, false positive rates, and the consideration of race.
By doing so, they investigate which fairness criterion is preferred by the participants. Two interesting
preferences are identified: first, subjects favor equalizing the false positive rate over equalizing the ac-
curacy across groups. Second, subjects also favor equalizing the false positive rate over equalizing the
percentage of favorable outcomes (i.e., having demographic parity) across groups. This latter result
is contrasting with that of Srivastava et al. [22]. These findings hence raise several questions, such as
what the e↵ect of showing participants di↵erent kinds of visualizations is, and how the way questions
are asked or information is provided to participants influences the outcomes.

Lastly, the study by Saxena et al. [63] focuses on the perceived distributive fairness of individual
fairness criteria, rather than group-level fairness criteria. In a loan decision-making scenario in which
participants have to judge the fairness of dividing a loan between individuals with disparate repayment
rates, Saxena et al. assess crowdworkers’ fairness perceptions of three di↵erent criteria: treating in-
dividuals that are similar in a similar way, never favoring worse over better individuals and selecting
individuals proportional to their merit. They show a significant overall preference for the last crite-
rion, which is similar to calibration. Although this experiment concerns individual fairness instead of
group-level fairness criteria, and concerns another kind of decision-making scenario, this preference of
dividing the outcome proportionally is still somewhat contrary to the findings of Srivastava et al. [22],
who find that participants tend to prefer dividing the favorable outcome equally across groups. Both
authors conclude that more research into people’s assessment of fairness criteria is needed for a better
comprehension of human perceptions of distributive algorithmic fairness.

To conclude, the above-described studies report contrasting results with regard to which mathemati-
cal fairness criterion best captures human perceptions of distributive fairness. Therefore, this research
inconsistency will be further investigated in this thesis’ user study.
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3.2.2 Procedural fairness

The second dimension of perceived fairness, procedural fairness (or process fairness), refers to the
fairness of the procedures that are needed to arrive at a decision or to reach an outcome. Instead of
looking at the outcome itself, procedural fairness concerns the fairness of how a decision is taken. This
is a particularly interesting dimension of perceived fairness, as it is of great importance in supporting
a decision: it has been shown that people mostly rely on procedural fairness when it is uncertain
whether to trust the decision-maker [64]. Six components of procedural fairness are distinguished by
Leventhal [65]: consistency, bias suppression, correctability, ethicality, representativeness, and accuracy.
Correctability, for example, reflects the control of individuals over the decision process: for example, if
the decision subject has the possibility to correct faulty outcomes, this is likely to improve procedural
fairness [5] [62].

Related work on procedural algorithmic fairness

So far, in the context of the perceived fairness of algorithmic decision-making, procedural fairness has
received relatively little attention compared to distributive fairness [29]. This may be attributed to
the fact that algorithms are frequently referred to as a black box, as it is not always entirely clear how
an algorithm has exactly arrived at its decisions. As a result, algorithmic decision-making processes
sometimes lack transparency. Nevertheless, it is possible to examine the fairness of specific aspects of an
algorithmic decision-making process. For example, one could investigate the fairness of the features an
algorithm uses as input. In the following, I will discuss three studies that address procedural algorith-
mic fairness: one about the di↵erent components of procedural fairness [5], one about the procedural
fairness of using specific features in a model [27], and one about the e↵ect of outcome control and
transparency in the decision-making process [19].

Besides categorizing mathematical fairness criteria along their extent of distributive fairness, Morse
et al. [5] also investigate the procedural fairness of these criteria. They compare fairness through un-
awareness, demographic parity, accuracy parity, equality of opportunity, and equalized odds along the
six components of procedural fairness described by Leventhal [65]. They argue that while all of these
criteria score high on consistency (since algorithms are able to surpass human consistency, they note),
and all of them score low on correctability (they do little to correct faulty decisions), di↵erences be-
tween the criteria exist between the other four components: accuracy, ethicality, representativeness,
and bias suppression. For example, they contend that given the problem of proxy attributes, fairness
through unawareness scores lower on each of these four components compared to the other criteria,
possibly leading to negative fairness perceptions. Parity definitions score higher on representativeness
compared to other criteria, since by ensuring equal success rates between groups, they can explicitly
address concerns related to representativeness. Furthermore, they argue that equal opportunity and
equalized odds score higher on bias suppression than the other criteria, given their targeted approach
and strict rules to prevent preferential treatment. By relating these fairness criteria to the di↵erent
components of procedural fairness, Morse et al. [5] provide directions for choosing the right criterion
per situation and provide a fundament for better understanding and assessing the procedural fairness
of these criteria: they, for example, reason that equality of opportunity and equalized odds are criteria
with a high level of procedural fairness.

Grgic-Hlaca et al. [27] take a di↵erent approach to investigate procedural algorithmic fairness: they
seek to identify feature properties that influence the perceived fairness of using certain attributes as in-
put for an algorithmic decision-making model. They describe eight di↵erent latent properties of features
that influence human fairness perceptions and investigate participants’ assessments of these properties.
By letting participants judge the fairness of these properties, they reach the following order of properties
(from most fair to least fair): relevance, causes outcome, reliability, privacy, volitionality, causes vicious
cycle, causes disparity in outcomes, and lastly, caused by sensitive group membership. As some of these
feature properties, such as relevance or privacy, are unrelated to discrimination, Grgic-Hlaca et al. con-
clude that procedural unfairness concerns reach far beyond discrimination only and that therefore, other
feature properties such as privacy, should also be taken into account when assessing algorithmic fairness.
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Lastly, Wang et al. [19] investigate another aspect of procedural fairness: they hypothesize that per-
ceived procedural fairness is higher when an algorithmic decision-making process is transparent (i.e.
when public information about the workings of the model is provided), and includes human involve-
ment. They survey participants about the fairness of a hypothetical machine learning model deciding
whether Amazon Mechanical Turk workers will earn a Master’s Qualification, with di↵erent kinds of
development procedures (changing levels of transparency and human involvement). As they do not
find any strong relationships between these procedures and perceived fairness, they reject their initial
hypotheses. As a possible explanation for these findings, they contend that laypeople may not directly
understand the relationship between fairness and development procedures: they, therefore, note that
more information and explanations about algorithmic decision-making may increase perceived proce-
dural fairness, pointing out to aspects of interactional fairness.

To conclude, in the user study that will be conducted in this research, three important insights from the
above-described studies regarding procedural fairness can be taken: the finding that some mathematical
fairness criteria such as equality of opportunity score high on di↵erent aspects of procedural fairness,
the idea that feature properties play an important role in assessing perceived algorithmic fairness, and
finally, the suggestion that providing explanations about decisions may help in assessing the procedural
fairness of an algorithm.

3.2.3 Interactional fairness

The last aspect of perceived fairness, interactional fairness, can be subdivided into interpersonal fairness
and informational fairness. Since these two are closely related, they are often taken together. Inter-
personal fairness refers to the extent to which decision-makers communicate their choices with honesty,
dignity, and respect to the people a↵ected by their decisions. Informational fairness refers to providing
su�cient information and giving truthful explanations about decision procedures. It is concerned with
presenting people with adequate information about the process of how a decision is reached and is
therefore closely related to procedural fairness [16,31]. In an organizational justice setting, an example
of interactional fairness is providing employees explanations for layo↵ decisions: it has been shown that
if employees receive honest, thorough, and accurate explanations when being fired, they perceive these
decisions as significantly more fair [28].

Related work on interactional algorithmic fairness

Multiple researchers investigate the e↵ect of explanations for decisions, an important aspect of inter-
actional fairness, on the perceived fairness of algorithmic decision-making. Here, three of these studies
will be discussed.

First of all, Binns et al. [16] perform an online user study using fictional fairness scenarios and ex-
planations in an insurance context. They investigate the influence of four di↵erent explanation styles:
input-influence-based explanations (reporting the importance of di↵erent input features), demographic-
based explanations (reporting aggregate statistics of the outcomes of people in the same demographic
classes), case-based explanations (reporting similar cases, along with their outcomes) and sensitivity-
based explanations (reporting how feature values have to change to get a di↵erent outcome). When
participants are presented with multiple explanations simultaneously, case-based explanations result in
a significantly lower fairness perception compared to other explanation styles.

In a study on the e↵ect of di↵erent explanation styles on the perceived fairness of decisions made
by a criminal risk prediction algorithm, Dodge et al. [26] build on the research of Binns et al. [16]. They
use the same four explanation styles, but instead of manually creating them, they automatically gener-
ate the explanations. Besides, instead of creating a fictional scenario, they use the COMPAS data set
and implement a logistic regression model. After identifying cases with unfair treatment and sampling
di↵erent cases for a user study, they conduct an online user study in which they investigate the perceived
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fairness of the four di↵erent explanation styles. Similar to the research of Binns et al. [16], they find
that case-based explanations are generally seen as the least fair explanation type. Furthermore, they
find that input-influence and demographic-based explanations increase the participant’s comprehension
of the model, resulting in higher fairness perceptions.

A recent study by Angerschmid et al. [66] furthermore examines the e↵ect of explanations on hu-
man trust and perceived algorithmic fairness. They perform an online user study in a health-insurance
and medical decision-making context, in which di↵erent AI-informed decision-making scenarios are sim-
ulated and accompanied by either an example-based explanation (similar to a case-based explanation),
a feature importance-based explanation (similar to an input-influence explanation), or no explanation
(the control group). The results indicate that explanations in general give a significantly increased
level of both trust and perceived algorithmic fairness. Furthermore, the authors show that in unfair
scenarios, feature importance-based explanations lead to higher perceived fairness levels, compared to
example-based explanations. Regarding human trust, they do not find di↵erences between the two
explanation styles.

Although the three studies described above investigate the e↵ect of explanations on perceived fair-
ness in di↵erent contexts, two important insights can be drawn: first, both Binns et al. [16] and Dodge
et al. [26] find that case-based explanations result in a lower level of perceived fairness, compared to
other explanation styles. This is an interesting finding, as it could be argued that case-based expla-
nations align somewhat with the idea of using of individual, similarity-based fairness criteria. Second,
both Angerschmid et al. [66] and Dodge et al. [26] find a positive e↵ect of explanations that describe
the influence of the di↵erent input features used in the model. This latter insight will be used in the
user study that will be conducted in this thesis, by providing the participants with feature importance
explanations about machine learning models.

To summarize the insights from this section, Table 10 presents an overview of the di↵erent dimensions
of fairness discussed in organizational justice theory. Per dimension, it provides an example question
addressing the specific type of fairness in both a human– and algorithmic decision-making context.

Table 10: Overview of di↵erent fairness dimensions in organizational justice theory

Name Definition Human example Algorithmic example

Distributive
fairness

Fairness regarding the
distribution of outcomes

Is the amount of money
paid by a boss to male
and female workers equal?

Does an automated hiring
algorithm accept as many
female and male candi-
dates?

Procedural
fairness

Fairness regarding the
process utilized to achieve
an outcome

Are the punishments for
arriving late to work con-
sistently in all cases?

Does an algorithm that
judges cover letters take
into account race?

Interactional
fairness

Fairness regarding the in-
formation provided about
decision procedures

Does a manager provide
truthful and respectful
explanations about a lay-
o↵ decision?

Can outcomes of an au-
tomated hiring algorithm
be explained in an under-
standable manner?
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Methods

This section will provide an overview of the data and various research methods used in this thesis. The
methodology of this thesis consisted of two stages. In the first stage, machine learning models were
created and tuned to adhere to di↵erent fairness criteria, as explained in Section 4.2. The second stage
consisted of a user study that made use of the results of these models. Section 4.3 will describe the
design and procedures of this user study.

4.1 Data

For this study, I used a new, publicly available data set in the recruitment domain, that is published in
2022 on Kaggle 1. The data set is created by Sieuwert van Otterloo, a Dutch AI researcher at the Vrije
Universiteit Amsterdam and Utrecht University of Applied Sciences. The data set contains information
on the recruitment decisions of four di↵erent hypothetical consulting companies. Of each company,
data from 1000 candidates are provided, amounting to 4000 instances in total. The data set does not
contain any missing values. An overview of the thirteen attribute characteristics in this data set can be
found in Table 11. The data set is specially designed to mimic realistic recruiting data and to gain a
deeper understanding of AI fairness. This is done by including several variables that can be analyzed
for bias: age, gender, sport, and nationality. As the data description informs, including any of these
attributes as an input variable can lead to a biased model. The data set is generated in a structured
manner, by including hidden variables such as personality type. The data is fictional and not based
on the hiring decisions of real companies. No results regarding classifier performance on this data set
are published. However, the data description suggests that if all indicators are used, prediction models
such as logistic regression, decision trees or neural networks should give good results.

Because hiring is a domain in which algorithmic decision-making is often used and does likely speak
to the imagination of laypeople, I choose to focus on this domain specifically. While this area has
seen increased interest in the integration of AI-enabled software, it has also witnessed raising concerns
about the potential of AI to perpetuate or exacerbate existing biases [32–34]. The use of algorithms
in the hiring domain has already led to fairness issues in the past, with Amazon’s biased recruitment
model as a notorious example [8]. As a result, it is classified as a high-risk area in the proposed EU AI
act [35]. Moreover, there is no universal agreement on how fairness should be formalized in algorithmic
hiring: for instance, certain recruitment algorithms proactively aim to increase diversity when ranking
job candidates, while others do not [36]. As research has demonstrated that fairness perceptions dur-
ing a hiring process play a critical role in job satisfaction, performance, and the relationship between
employers and employees, obtaining insights into the perceived fairness of algorithmic hiring is of par-
ticular importance [37]. By doing research into algorithmic fairness perceptions in this specific domain,
I, therefore, hope to contribute to the field of AI Fairness.

1https://www.kaggle.com/datasets/ictinstitute/utrecht-fairness-recruitment-dataset
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Table 12: Top six most important attributes of recruitment prediction model

Attribute Importance

Languages + + +++

Highest degree + + +++

University grade percentage + + ++

Debate club + + ++

Exact study ++

Gender ++

nationality and age. In Appendix A.1, these count plots are showed. As the purpose of the model
implementation stage was to create models to illustrate fairness issues with, I chose to proceed with
the data subset with the largest visible bias. In this case, this considered a data subset with a large
di↵erence in selection rates between male and female candidates: the plots from the second company
showed that the hiring rate of male candidates was larger than the hiring rate of female candidates.
This bias was confirmed by calculating the disparate impact ratio: dividing the proportion of female
candidates receiving the favorable outcome by the proportion of male candidates receiving the favorable
outcome, led to a ratio of 0.3. In Appendix A.2, the count plots of the distribution of the target variable
amongst the di↵erent categorical features in this data set are showed. As a next pre-processing step, the
resulting data set was split up into a train set of size 750 and a test set of size 250. Lastly, the numerical
features were scaled using Sklearn’s MinMaxScaler5 and the categorical features were encoded using
Sklearn’s OneHotEncoder6.

4.2.2 Recruitment prediction model

The model implemented was a binary classifier, predicting whether a candidate in the recruitment data
set is hired by the company or not. I chose to use a simple logistic regression model, for two reasons:
first, to allow for a straightforward investigation of the model’s feature importance, and second, since
many current algorithmic decision-making systems rely on regression models [26]. The model was im-
plemented using SKlearn’s Logistic Regression 7. Using SKlearn’s default parameters, the accuracy of
this model on the training data and test data was 88.4 % and 87.6 % respectively. As these accuracies
were quite high already, and the model was solely created to demonstrate fairness issues, I decided not
to further tune any parameters.

To investigate the importance of the di↵erent features used by the model, the model coe�cients were
sorted in ascending order. Subsequently, all features were split up into 11 buckets. This was done to
rank the features in an importance order ranging from ����� to +++++, where the more +’s or
-’s means a candidate with that attribute is respectively more or less likely to be hired to the company.
The features with the most +’s, that were used in the experiments following the model development
stage, are reported in Table 12. Note that here, ‘importance’ is defined as having a positive influence
on receiving the favorable outcome, i.e, being hired by the company. Appendix A.3 shows an overview
of all features and their belonging coe�cients and importance buckets.

To investigate the fairness of the model, I used Microsoft Fairlearn [58]. This Python library includes
several functions to compute fairness metrics of a model8. Because of the disparity in selection rates
between male and female candidates in the data set, Gender was specified as the sensitive attribute to

5https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
6https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
7https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
8https://fairlearn.org/v0.5.0/api_reference/fairlearn.metrics.html
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Table 11: Utrecht Fairness Recruitment data attribute characteristics

Attribute Values Type Description

Gender Female, male, other Categorical The gender of the candidate

Age [21-32] Numerical The age of the candidate in years

Nationality German, Dutch, Belgian Categorical The candidates’ current nationality

Sport Swimming, golf, running,
cricket, chess, tennis,
football, rugby

Categorical The first/main sport the candidate
listed on their CV

University grade
percentage

[47-77] Numerical University grade (percentage) of the
candidate

Debate club True, False Binary Whether the candidate participated
in a debating / social club

Programming
experience

True, False Binary Whether the candidate has pro-
gramming experience

International
experience

True, False Binary Whether the candidate has interna-
tional experience

Entrepreneurship True, False Binary Whether the candidate has run their
own company

Languages [0-4] Numerical Number of additional languages spo-
ken fluently by candidate

Exact study True, False Binary Whether the candidate studied
physics, engineering or any other
science-oriented study

Highest degree Phd, Bachelor, Master Categorical Highest completed degree

Decision True, False Binary Whether the candidate was hired
(the target class to be predicted)

4.2 Model implementation

Prior to conducting the user study, I created machine learning models to demonstrate and test various
fairness aspects. This section describes the data pre-processing steps needed to create these models
and explains the model implementation process. Implementation was done in a Jupyter Notebook
environment2 using Python 3.8.53. The source code detailing the exact implementations can be found
on Github 4.

4.2.1 Data preprocessing

As the recruitment data set contains data about four di↵erent consulting companies, as a first pre-
processing step, the data set was split up into four separate subsets of size 1000. Each subset contained
data from one individual company. I decided to drop the sports attribute from the data, because it
seemed less relevant for analyzing fairness issues compared to the other features. Next, for all four
subsets, count plots were created to show the distribution of the target attribute (i.e., being hired to
the company or not) amongst the features that could be considered as sensitive attributes: gender,

2https://jupyter.org/
3https://www.python.org/downloads/release/python-385/
4https://github.com/GuusjeJuijn/fairness-perceptions
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compute the fairness metrics with. A large di↵erence in selection rates and a considerable di↵erence in
false negative rates between the di↵erent genders was found, as reported in Table 13. As out of the 250
candidates in the test set only 4 gender identities were classified as other, for simplicity, only the values
for the female and male candidates are reported in this table. The complete results, however, can be
found on GitHub.

Table 13: Fairness metrics by group of original recruitment prediction model,
demographic-parity mitigated recruitment prediction model and equality of opportunity-
mitigated recruitment prediction model

Model Gender Accuracy Selection rate False negative
rate

Original Female 0.92 0.12 0.33
Male 0.85 0.47 0.16
Di↵erence 0.07 0.35 0.17

Demographic parity
mitigated

Female 0.89 0.20 0.13

Male 0.74 0.25 0.51
Di↵erence 0.15 0.05 0.38

Equality of opportu-
nity mitigated

Female 0.93 0.16 0.13

Male 0.85 0.47 0.16
Di↵erence 0.08 0.31 0.03

4.2.3 Bias mitigation

As a next implementation step, I applied bias mitigation to the logistic regression model. This was done
using the ThresholdOptimizer algorithm from Microsoft FairLearn 9. This postprocessing algorithm,
introduced by Hardt et al. [67] , adjusts a learned classifier by applying group-specific thresholds, to
satisfy a specified fairness constraint, with respect to a specified sensitive feature. The ThresholdOpti-
mizer was applied twice to the raw logistic regression model: the first time to mitigate for demographic
parity and the second time to mitigate for equality of opportunity.

Postprocessing for demographic parity and equality of opportunity specifically was done for several
reasons. First of all, multiple studies suggest that both of these criteria are appropriate for algorithmic
hiring, the context I focus on in my empirical study [5, 33, 36, 38]. Mitigating for demographic parity,
moreover, allowed for further investigation of the results of Srivastava et al. [22], who found that lay
people tend to have a preference for this criterion in di↵erent contexts. Besides, as demographic parity
is often used in practice and relatively easy to understand, I considered this a suitable criterion for
this study [61]. Since, according to Morse et al. [5], equality of opportunity scores high on procedural
fairness, I considered this a second suitable criterion.

The accuracies and fairness metrics of the mitigated models are reported in Table 13. Mitigation
for demographic parity led to a considerably lower di↵erence in selection rates between the gender
groups, compared to the original model. However, it led to a larger di↵erence in false negative rates
between the groups. Mitigation for equality of opportunity led to a considerably lower di↵erence in
false negative rates between groups, compared to the original model. However, this mitigated model
still showed a large di↵erence in selection rates between the groups.

9https://fairlearn.org/v0.8/user_guide/mitigation.html
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The results of the raw logistic regression model, the classifier mitigated for demographic parity, and
the classifier mitigated for equality of opportunity were subsequently used in the empirical study, as
described in the following section.

4.3 Empirical Study

The second stage of this thesis’ methodology consisted of a between-subjects online experiment in which
participants judged the fairness of multiple hypothetical recruitment algorithms. These recruitment
algorithms were based on the outcomes of the original and mitigated versions of the logistic regression
classifier described in Section 4.2.2 and 4.2.3. Participants were asked to rate the fairness of these
algorithms. The amount of information they received about these algorithms di↵ered per group, as
further explained in Section 4.3.1. The study was conducted in two phases. First, a pilot study
amongst a group of twenty colleagues and acquaintances was performed, which led to valuable insights
and improvements in the study design. Hereafter, a larger study was performed using crowdsourcing
platform Prolific Academic10 to address the main research questions. This study was distributed at the
end of January 2023. Both studies were classified as low-risk by the Ethics and Privacy Quick Scan of
the Utrecht University Research Institute of Information and Computing 11, requiring no further ethics
or privacy assessment.

4.3.1 Study Design

The online survey was conducted using Qualtrics survey software 12. Participants’ fairness perceptions
of several hypothetical recruitment algorithms were assessed using a direct measure based on Harrison
et al. [23], asking “Do you think this algorithm is fair?”. To ensure that every participant had a similar
definition in mind, they were provided with a fairness definition by Mehrabi et al. [39]: “Fairness is
the absence of any prejudice or favoritism towards an individual or a group based on their intrinsic or
acquired traits”. Participants were asked to provide a judgment on a 7-point Likert scale, ranging from
1 (“not at all fair”) to 7 (“completely fair”). Additionally, at the end of the survey, participants were
asked to elaborate on the motivations behind their ratings through an open-ended query, asking “In the
previous questions, which factors did you consider most important in determining whether an algorithm
was fair or unfair?”. This question was asked to qualitatively investigate the rationales behind the
respondents’ fairness perceptions.

Each participant was presented with a selection of five out of nine di↵erent algorithms, of which the
selection rates and false negative rates were based on the logistic regression models described in Ta-
ble 13. Table 14 reports the selection rates and false negative rates of these nine algorithms. Every
participant received an algorithm representing the original, unmitigated model. Moreover, every par-
ticipant received two algorithms representing demographic parity – one perfectly following the criterion
of demographic parity and one representing the mitigated model– and two algorithms representing
equality of opportunity – again, one perfectly following the criterion of equality of opportunity and
one representing the mitigated model. Participants were randomly assigned to either variant A or B of
the algorithms representing demographic parity and equality of opportunity. I included two variants of
these algorithms for two reasons: first, to broaden the investigation of participants’ fairness perceptions,
and second, to better investigate RQ3, which relates the di↵erences in selection rates and false negative
rates between groups to algorithmic fairness perceptions. Hence, including multiple variants broadened
this correlational analysis.

Participants were divided into three groups. The amount of information participants received about
these algorithms di↵ered per group, based on the fairness components described in organizational justice

10https://www.prolific.co
11https://www.uu.nl/en/research/institute-of-information-and-computing-sciences/ethics-and-privacy
12https://www.qualtrics.com/nl/?rid=langMatch&prevsite=en&newsite=nl&geo=&geomatch=
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theory. I chose to consider procedural and interactional fairness together, due to the strong connection
and overlap between these two components. Next, I will describe these di↵erent groups.

Figure 1: Example outcome graph, representing distributive fairness, showed to each
participant. On the left, the selection rates are shown. On the right, the false negative
rates are shown. This algorithm adheres to demographic parity but not to equality of
opportunity.

Group 1: distributive fairness The first group only received information about the distributive
fairness of the algorithms. This information was visualized as a graph representing the algorithm
outcomes, showing a pairwise trade-o↵ between the selection rates and false negative rates between two
gender groups. Instead of only showing one aspect of algorithmic fairness, by, for example, only showing
the di↵erence in false negative rates between groups, I chose to represent a more realistic real-world
scenario by showing the trade-o↵s between di↵erent fairness criteria. By doing so, I drew inspiration
from the work of Harrison et al. [23]. Furthermore, I explicitly chose to rename the two gender groups
into Gender A and Gender B, to limit the e↵ect of implicit biases regarding gender roles. An example
of a graph representing distributive fairness is shown in Figure 1.

Group 2: distributive and procedural fairness, with sensitive attribute The second group
not only received information about the distributive fairness of the algorithms, but also about the
procedural fairness of the algorithms. Similar to Grgic-Hlaca et al. [27], I considered the features used
by the algorithm as an important aspect of procedural fairness. Therefore, I visualized procedural
fairness as a feature importance explanation. Similar to Dodge et al. [26], I presented the feature
coe�cients of the logistic regression models as strings of ‘+’s representing the relative importance of
each feature. To limit the amount of information, only the top five most influential features were shown.
For each of the algorithms, the feature importance graph stayed the same, as postprocessing does not
change the model coe�cients. Figure 2 displays the feature importance graph shown to the participants
of group 2.

Group 3: distributive and procedural fairness, without sensitive attribute The information
provided to group 3 was almost identical to that of group 2, except for a small change in the feature
importance graph. In this group, the attribute ‘gender’ was changed into a less sensitive attribute, with
a similarly high feature coe�cient: ‘exact study’. I included this group in the study to make sure that
potential di↵erences in fairness perceptions between the groups could not only be attributed to the use
of the sensitive feature gender as an attribute.
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Table 14: Di↵erent recruitment algorithms presented to participants. Each participant
received 5 algorithms in random order. The algorithms of variant B were made by making
slight adjustments to the selection rates of the algorithms of variant B. Each participant
received the original graph, as well as the graphs of either variant A or B.

Graph Selection rate False negative rate

Original graph Gender A: 0.12 Gender A: 0.33
Gender B: 0.47 Gender B: 0.16

Demographic parity-mitigated version A Gender A: 0.20 Gender A: 0.13
Gender B: 0.25 Gender B: 0.51

Demographic parity version A Gender A: 0.20 Gender A: 0.13
Gender B: 0.20 Gender B: 0.51

Equality of opportunity-mitigated version A Gender A: 0.16 Gender A: 0.13
Gender B: 0.47 Gender B: 0.16

Equality of opportunity version A Gender A: 0.16 Gender A: 0.13
Gender B: 0.47 Gender B: 0.13

Demographic parity-mitigated version B Gender A: 0.30 Gender A: 0.13
Gender B: 0.38 Gender B: 0.51

Demographic parity version B Gender A: 0.30 Gender A: 0.13
Gender B: 0.30 Gender B: 0.51

Equality of opportunity-mitigated version B Gender A: 0.26 Gender A: 0.13
Gender B: 0.47 Gender B: 0.16

Equality of opportunity version B Gender A: 0.26 Gender A: 0.13
Gender B: 0.47 Gender B: 0.13

4.3.2 Procedure

After signing a consent form, participants were shown an introductory text. This text can be found
in Appendix A.4. The purpose of this text was to introduce the topic of algorithmic fairness, clarify
the task, present the context, and demonstrate a sample graph to ensure that the participants could
properly interpret the visual representations. Each participant was then randomly assigned to one of
the three groups. Randomization was done automatically by Qualtrics. The participants were divided
evenly across the groups to ensure that each group had an equal number of participants. Within each
group, every participant was asked to rate the fairness of five di↵erent recruitment algorithms: one
representing the original, unmitigated model, two adhering to demographic parity, and two adhering to
equality of opportunity. These algorithms were presented in a randomized order to limit order e↵ects.
After these five questions, participants were asked to write down which factors they considered most
important in their fairness analysis. Next, they were presented with the following three demographic
questions: “Do you have any experience with computer science and/or artificial intelligence?”, “To
which gender do you most identify?” and “What is the highest level of education you have completed?”.
The survey ended with a message thanking the participants for their time and giving them a completion
code to register their submission in Prolific. A graphical overview of the survey flow can be seen in
Figure 3.
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Figure 2: Feature importance graph showed to group 2, representing procedural fairness.
The graph showed to group 3 was the same, except for the sensitive attribute ‘gender’
being changed for the non-sensitive attribute ‘exact study’.

Figure 3: Experimental Flow

4.3.3 Participants

Participants were recruited through Prolific to take an online survey. To make sure all participants
would understand the study properly, participants were pre-screened on age, education level, and first
language: participants were required to be at least 18 years old, to have obtained at least a high school
diploma, and to have English as a first language. Furthermore, only residents from the UK were selected,
to minimize cultural biases among participants. Participants were compensated with an amount of
£10,84 per hour, conforming to the minimum wage in the UK. On average, the survey took 4.2 minutes
to complete. Data from 225 participants were collected. Table 15 summarizes their demographics.
Participants’ gender, age, and race/ethnicity were automatically collected by Prolific. The online survey
specifically asked for their highest level of education obtained and whether participants had experience
in computer science and/or AI.
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Table 15: Participants’ demographics

Percentage (n=225)

Gender Female 50%
Male 50%
Other <1%

Age 18-30 33%
30-45 35%
45-60 22%
60+ 10%

Race/ethnicity White 92%
Asian 4%
Mixed 3%
Black 1%

Highest level of education
obtained

High school diploma 54%

Technical/community college 40%
Undergraduate degree
(BA/BSc/other)

5%

Graduate degree
(MA/MSc/Mphil/other)

<1%

Doctorate degree (PhD/other) <1%

Experience in computer
science/AI

Yes 9%

A little 13%
No 78%
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Results

This section will describe the results of the user study described in Section 4.3. First, a quantitative
analysis of the results to research questions 1, 2, and 3 will be presented in Section 5.1 Next, Section 5.2
describes a qualitative analysis of the results of the open-ended question asked at the end of the survey.
Finally, Section 5.3 presents a short demographical analysis of the impact of demographic characteristics
on participants’ fairness perceptions.

Results were analysed using Python 3.5.81, R 4.2.3 2 and Microsoft Excel [68]. The fully anonymized
survey data, as well as the source code detailing the exact analyses can be found on Github 3. Appendix
A.5 presents the survey data of three randomly selected participants, to clarify the survey format and
to o↵er additional insights regarding participants’ responses to the questions.

5.1 Quantitative Analysis

I will start with a quantitative analysis of the results of the empirical study. As all 225 participants,
divided over three groups of 75 participants, rated five di↵erent algorithms, a total of 1125 perceived
fairness scores were given. The average standard deviation of the scores given per participant was 1.1.
The lowest standard deviation of the scores given per participant was 0, indicating a situation in which
all five algorithms were rated with the same score. This was done by 17 participants. The highest stan-
dard deviation of the scores given per participant was 2.8, indicating a situation in which a participant
gave a wide range of scores to the di↵erent algorithms.

In order to compare the average fairness perceptions of the di↵erent algorithms, I first tested whether
there were any di↵erences in scores for the algorithms that fully adhered to a criterion and for those that
were mitigated for a criterion, as outlined in Table 14. Table 16 presents the result of this comparison.
Interestingly, a larger number of participants gave a higher perceived fairness score to the algorithms
mitigated for demographic parity, compared to the algorithms fully adhering to demographic parity.
However, a Wilcoxon Signed Rank test (a non-parametric variant of the paired t-test) between the aver-
age scores for both algorithms, revealed no significant di↵erences. Therefore, I decided to average their
scores per person, to simplify the subsequent analysis. Most participants gave an equal perceived fair-
ness score to the the algorithms mitigated for equality of opportunity, and the algorithms fully adhering
to equality of opportunity. Again, a Wilcoxon Signed Rank test revealed no significant di↵erences in
average scores between both algorithms. Therefore, their scores were also averaged for the subsequent
analysis.

5.1.1 RQ1

First, I investigated the e↵ect of the type of information given about the algorithms on participants’
fairness perceptions, to answer the first research question:

1https://www.python.org/downloads/release/python-385/
2https://cran.r-project.org/bin/windows/base/
3https://github.com/GuusjeJuijn/fairness-perceptions
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Table 16: Comparison between average scores for algorithms mitigated for a fairness
criterion and average scores for algorithms fully adhering to a fairness criterion. Rows
add up to 225: the total number of participants.

Algorithm Number of times
the mitigated al-
gorithm is rated
equally fair as the
algorithm fully
adhering to the
criterion

Number of times
the mitigated algo-
rithm is rated as
less fair than the
algorithm fully ad-
hering to the crite-
rion

Number of times
the mitigated algo-
rithm is rated as
more fair than the
algorithm fully ad-
hering to the crite-
rion

Demographic Parity 81 57 87

Equality of Oppor-
tunity

107 62 56

RQ1: How do human fairness perceptions of a recruitment algorithm di↵er when only given infor-
mation about the distributive fairness of the algorithm, compared to when given information about both
the procedural fairness and the distributive fairness of the algorithm?

For each of the three groups, I computed the average fairness perceptions of the original algorithm,
the algorithms adhering to demographic parity, and the algorithms adhering to equality of opportunity.

Figure 4 shows that participants who received information about both the distributive and procedural
fairness of the algorithms (groups 2 and 3) consistently perceived the algorithms as fairer compared
to participants who only received information about the distributive fairness of the algorithms (group
1). I observed this e↵ect in both groups 2 and 3, although fairness perceptions were generally higher
in group 3, in which the sensitive attribute gender was not included as a main attribute in the feature
importance graph.

Table 17 reports the results of three Kruskal-Wallis H tests (a non-parametric variant of the ANOVA
test to compare multiple groups), followed by multiple comparisons post-hoc Dunn tests, to test for
significant di↵erences between the three groups. The tests were performed separately for the di↵erent
algorithms (the original algorithm, the algorithms adhering to demographic parity, and the algorithms
adhering to equality of opportunity). Results indicated significant di↵erences between groups 1 and 2,
and groups 1 and 3, for all algorithms. Di↵erences between groups 2 and 3 were not significant.

Table 17: Results of Kruskal-Wallis H tests and post-hoc Dunn tests to test for significant
di↵erences between the three groups. P-values are in italics if results are significant at
↵=0.05. Results of the Kruskal-Wallis H tests indicate that the average scores, for all
algorithms, di↵er significantly across groups. Pairwise comparisons by Dunn’s tests show
that di↵erences between groups 1 and 2, and 1 and 3, are significant at ↵=0.05. Di↵erences
between groups 2 and 3 are not significant.

Algorithm Kruskal-Wallis H test Dunn’s Multiple Comparisons test

Groups 1-2 Groups 1-3 Groups 2-3
H p p p p

Original 10.691 0.005 0.009 0.003 0.715
Demographic Parity 8.452 0.014 0.044 0.005 0.419
Equality of Opportunity 18.127 <0.001 0.001 <0.001 0.468
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Figure 4: Average perceived fairness scores, on a 7-point Likert scale, of each of the three
groups. Error bars indicate standard deviations. Bar graphs show that the group that
only received information about the distributive fairness of the algorithms rated each
of the three algorithms lower than the groups that also received information about the
procedural fairness of the algorithms. In the group in which gender was not a main
attribute, fairness perceptions were highest.

5.1.2 RQ2

Next, I investigated whether participants preferred either the algorithms adhering to demographic par-
ity or the algorithms adhering to equality of opportunity, to answer the second research question:

RQ2: How do human fairness perceptions of a recruitment algorithm di↵er depending on whether
it adheres to demographic parity or equality of opportunity?

For each of the three groups, I computed the average fairness perceptions of the algorithms adher-
ing to demographic parity and the average fairness perceptions of the algorithms adhering to equality
of opportunity. Figure 5 shows that across all three groups, participants tended to have a preference for
the algorithms adhering to equality of opportunity. Table 18 reports the results of a Wilcoxon-Signed
Rank test for each of the three groups. Results indicated that in groups 2 and 3, the average fairness
perceptions of the algorithms adhering to equality of opportunity were significantly higher than the
average fairness perceptions of the algorithms adhering to demographic parity. However, in group 1,
these di↵erences were not statistically significant.
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Figure 5: Average perceived fairness scores, on a 7-point Likert scale, of the algorithms
adhering to demographic parity and equality of opportunity. Error bars indicate standard
deviations. Bar graphs show that across all three groups, algorithms adhering to equality
of opportunity were rated higher compared to algorithms adhering to demographic parity.

Table 18: Results of Wilxocon-Signed Rank tests to compare the mean perceived fairness
scores of the algorithms adhering to demographic parity and the algorithms adhering to
equality of opportunity, for each group. P-values are in italics if results are significant at
↵=0.05.

Group W P-value

Distributive 777.0 0.541
Distributive + Procedural (with gender) 601.5 0.013
Distributive + Procedural (without gender) 636.5 0.016

5.1.3 RQ3

Thirdly, I investigated the relationship between fairness perceptions and two mathematical fairness cri-
teria, to answer the third research question:

RQ3: To what extent are the disparate impact score and false negative rate di↵erences between groups
of a recruitment prediction algorithm related to human fairness perceptions of it?

I computed the Spearman correlation coe�cient between the averaged perceived fairness scores of each
of the nine di↵erent algorithms and, respectively, their belonging selection rate di↵erences, and false
negative rate di↵erences. Results indicated a negative, but non-significant association between fairness
perceptions and selection rate di↵erences (r = -0.17, p = 0.63). A stronger negative, but non-significant
association was found between fairness perceptions and false negative rate di↵erences (r = -0.48, p =
0.16). Figure 6 shows the correlation plots.

However, as a result of asking for fairness perceptions by presenting the trade-o↵ between two fair-
ness criteria, these plots exhibited a curvilinear relationship, as opposed to a straight line, indicating an
interplay between the two criteria. To illustrate, the algorithms adhering to demographic parity (the
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Figure 6: Relationship between fairness perceptions and mathematical fairness criteria.
The upper plot shows the relationship between the average perceived fairness scores and
the false negative rate di↵erences between gender groups (r = -0.48, p = 0.16). The
lower plot shows the relationship between the average perceived fairness scores and the
selection rate di↵erences between gender groups (r = -0.17, p = 0.63).
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algorithms with a small selection rate di↵erence), were not adhering to equality of opportunity (these
algorithms had a large false negative rate di↵erence), as reported in Table 14. This could have caused
the concave shape of the relation between the average perceived fairness scores and the di↵erences in
selection rates, as shown in Figure 6.

Therefore, subsequently, I performed a regression analysis to assess the e↵ect of the selection rate
di↵erences and false negative rate di↵erences on participants’ fairness perceptions. Since participants’
fairness perceptions, the dependent variables, were measured on a Likert scale, I opted for ordinal re-
gression.

Three distinct regression models were created using the ‘ordinal’ package in R [69]. The first model was
the simplest model: it included the perceived fairness score as the dependent variable, and the selection
rate di↵erences and false negative rate di↵erences as the independent variables. The second model was
an extension of the first model: besides the selection rate di↵erences and false negative rate di↵erences,
it also included the groups participants belong to as independent variables. The third model, a mixed-
e↵ects model, moreover included a random e↵ects term for participants, to control for the fact that each
participant was asked to evaluate five di↵erent algorithms. I subsequently conducted an ANOVA test
on the three models to find out which model performed best. This test reported that the third model
had a significantly better fit than the first and second models, as evidenced by its lower AIC and higher
log-likelihood value compared to the other two models. Table 19 reports the results of this ANOVA test.

Table 20 presents the results of the best regression model (model 3). This model showed a significant

Table 19: Results of ANOVA test to compare the three di↵erent ordinal regression models.
Model 1 only included the selection rate di↵erences and false negative rate di↵erences
as independent variables. Model 2 also included the group participants belonged to as
independent variables. In model 3, moreover, a random e↵ects term for participants was
added. Results indicate that model 3 had the best fit.

Regression
model

AIC Log-
likelihood

�2 P-value

Model 1 3943.0 -1963.5 53.714 < 0.001
Model 2 3892.4 -1936.2 54.618 < 0.001
Model 3 3687.2 -1832.6 207.128 < 0.001

negative association between the selection rate di↵erences and perceived fairness scores (B=-5.609, SE
= 0.723, p < 0.001), indicating that as the selection rate di↵erence increased, participants were more
likely to assign a lower perceived fairness score. There was a significant negative association between
false negative rate di↵erences and perceived fairness scores (B=-5.202, SE = 0.621, p <0.001), indicat-
ing that as the false negative rate di↵erence increased, participants were more likely to assign a lower
perceived fairness score.

Moreover, there was a significant positive association between groups 2 and 3, and perceived fair-
ness scores ((B=1.046, SE = 0.280, p <0.001) and (B=1.212, SE = 0.281, p <0.001), respectively).
This indicates that being part of either of these two groups, which received information about both the
distributive and procedural fairness of the algorithms, had a positive contribution to fairness percep-
tions. As shown by its highest coe�cient, this e↵ect was the biggest in group 3, in which the sensitive
feature gender was not used as a main attribute. These findings align with the results of RQ1, reported
in Figure 4, in which I find that fairness perceptions are highest when given information about both
the distributive and procedural fairness of the algorithms, especially when gender is not included as a
main feature in the algorithm.

In Appendix A.6, the full results of all three ordinal regression models are reported.
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Table 20: Ordinal mixed e↵ects regression model with a random e↵ects term for partic-
ipants. The model allows the prediction of the perceived fairness scores (on a 7-point
Likert scale) from selection rate di↵erences and false negative rate di↵erences between
groups. Standard errors are reported in parentheses.

Coe�cients Estimate (S.E.) P-value

Selection rate di↵erence -5.609 (0.723) <0.001
False negative rate di↵erence -5.202 (0.621) <0.001
Group 2 1.046 (0.280) <0.001
Group 3 1.212 (0.281) <0.001

Random e↵ects Variance (S.E.)

Participant 2.21 (1.487)

5.2 Qualitative Analysis

To gain additional insights into the findings of my quantitative analysis, I qualitatively analyzed par-
ticipants’ rationales behind their fairness ratings. This was done by openly coding their responses to
the open-ended question of which factors they considered most important in determining the fairness of
the algorithms. Although each participant provided an explanation, I encountered a variety of response
lengths: responses varied in length between 1 word and 59 words, with a mean of 12 words and a
median of 9 words. By first identifying first-order codes out of these responses, grouping these into
second-order codes, and finally dividing these into two third-order concepts, I systematically classified
the responses. Figure 7 gives an overview of these categories and provides, per category, an indicative
quote. I will now discuss some of the responses falling under the two third-order concepts I identified:
distributive fairness and procedural fairness.

5.2.1 Distributive fairness

While I encountered a variety of answers, the biggest proportion of explanations (n=173, 77%) could
be attributed to the outcome of the algorithms, relating to the concept of distributive fairness. This
was as expected, as only two out of three groups received a feature importance graph, and all three
groups received information about distributive fairness. However, interestingly, I observed that across
all three groups, the majority of participants focused on distributive fairness rather than procedural
fairness (89% of all answers in group 1, 63% of all answers in group 2, and 79% of all answers in group 3).

More specifically, across all three groups, most participants (n=88) emphasized the importance of
considering the trade-o↵s between the di↵erent fairness criteria shown in the graphs. For example, P45
(group 1), stated: “I mainly looked at the proportions between genders of those qualified but not hired
in comparison to the genders when hired”.

The second most frequently mentioned category pertained to the concept of equal opportunity: a
notable proportion of participants (n=51) mainly focused on false negative rates and the qualifications
of candidates. This finding suggests a preference for fairness criteria that consider both the predicted
and true outcome, rather than only the predicted outcome. For example, P18 (group 1) answered: “The
percentage that was qualified but not hired was the most important factor for me”.

Nevertheless, there was also a substantial number of participants (n=34) that primarily considered
the selection rates of both groups, e.g.: “Whether the hired % of candidates were as equal as possible”
(P38, group 2). However, across all three groups, this category, associated with demographic parity,
was mentioned less frequently than the category relating to equal opportunity.
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5.2.2 Procedural fairness

The remaining 13% of answers (n=52) could be attributed to the decision-making process, and there-
fore, to the concept of procedural fairness (11% of all answers in group 1, 37% of all answers in group
2, and 21% of all answers in group 3).

The majority of these responses (n=45) were related to the features used by the algorithms. For
example, in group 2, in which gender was included as a main attribute in the feature importance graph,
I encountered 16 answers that explicitly criticized its usage, e.g.: “I marked them all low as I don’t see
why gender would be an important factor ” (P68, group 2). Other participants mainly focused on the
importance or combination of the di↵erent attributes, e.g., “The 5 main attributes were the main thing
I considered” (P52, group 2).

Apart from the procedural fairness of using certain features, some participants did not provide rea-
sons specific to the information shown in the graphs but criticized the use of algorithms for hiring in
general (n=7). For example, P70 (group 3), wrote: “I don’t believe this kind of selection is fair in any
circumstances”, and P31 (group 1) stated: “I don’t find the process fair as I believe the candidate should
have a formal interview rather than just basing the hire on grades and qualifications”.
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Figure 7: Indicative quotes, first-order quotes, second-order quotes and third-order codes
for the open-ended question: “Which factors did you consider most important in deter-
mining whether a model was fair or unfair?”
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5.3 Demographical Analysis

Additionally, I investigated whether participants’ demographic characteristics had any impact on their
mean perceived fairness scores. As demonstrated in the following sections, no strong e↵ects of gender,
age, education level, or experience in AI, were identified.

5.3.1 Gender

To examine the potential di↵erences in average scores among genders, I compared the average scores
for each algorithm between men and women, using a Mann-Whitney U-test (a non-parametric variant
of the independent t-test). Although women gave slightly higher scores to each algorithm compared to
men, the results of these tests did not reveal any significant di↵erences, as reported in Table 21.

Table 21: Results of Mann-Whitney U-tests to compare the mean perceived fairness scores
of the di↵erent algorithms among genders. Results indicate that the di↵erences in scores
between men and women are not significant at ↵ = 0.05.

Algorithm Mean perceived fairness score U P-value

Original Men: 2.821 5860.5 0.224
Women: 2.946

Demographic Parity Men: 3.415 5747.0 0.164
Women: 3.559

Equality of Opportunity Men: 3.862 6109.0 0.412
Women: 3.869

5.3.2 Age

To examine for potential di↵erences in average scores among participants of di↵erent ages, I examined
whether the scores between the di↵erent age groups as reported in Table 15 di↵ered significantly. By,
for each algorithm, performing a Kruskal-Wallis H test (a non-parametric variant of the ANOVA test to
compare multiple groups) between the scores in these di↵erent groups, however, no significant results
were found, as reported in Table 22.

Table 22: Results of Kruskal-Wallis H tests to compare the mean perceived fairness scores
of the di↵erent algorithms among age groups. Results indicate that the di↵erences in
scores between age groups are not significant at ↵ = 0.05.

Algorithm Mean perceived fairness score H P-value

Original 18-30: 2.787 1.914 0.384
30-45: 3.050
45-60: 2.720
>60: 2.900

Demographic Parity 18-30: 3.620 1.712 0.425
30-45: 3.575
45-60: 3.360
>60: 3.050

Equality of Opportunity 18-30: 3.987 0.732 0.694
30-45: 3.775
45-60: 3.830
>60: 3.825
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5.3.3 Education level

To examine for potential di↵erences in average scores among the di↵erent levels of education attained
by participants, I analyzed whether there was a significant di↵erence in scores between those who
completed high school and those who obtained a degree beyond high school. A Mann-Whitney U-test
revealed that for the algorithms adhering to demographic parity, participants who had obtained a degree
beyond high school rated the algorithms as significantly fairer compared to participants who had solely
completed high school. However, the observed result was not highly significant, as the p-value was only
slightly lower than the significance level of ↵ = 0.05. No significant results were found for the other
algorithms, as reported in Table 23.

Table 23: Results of Mann-Whitney U-tests to compare the mean perceived fairness scores
of the di↵erent algorithms among education levels. Results in italics indicate that for the
algorithms adhering to demographic parity, the di↵erences in scores are significant at ↵
= 0.05.

Algorithm Mean perceived fairness score U P-value

Original High school: 2.875 6040.5 0.484
Above high school: 2.871

Demographic Parity High school: 3.350 5252.5 0.043
Above high school: 3.683

Equality of Oppor-
tunity

High school: 3.929 5603.0 0.166

Above high school: 3.762

5.3.4 AI experience

Lastly, I investigated whether experience in computer science or Artificial Intelligence had an e↵ect
on participants’ fairness perceptions. A Mann-Whitney U test between participants that either had
experience or not, however, revealed that participants without experience rated the algorithms adhering
to demographic parity as significantly fairer than participants with experience. For the other two
algorithms, no significant di↵erences were found, as reported in Table 24.

Table 24: Results of Mann-Whitney U-tests to compare the mean perceived fairness
scores of participants with and without experience in computer science/AI. Results in
italics indicate that for the algorithms adhering to demographic parity, the di↵erences in
scores are significant at ↵ = 0.05.

Algorithm Mean perceived fairness score U P-value

Original Experience: 2.750 4337.0 0.221
No experience: 2.898

Demographic Parity Experience: 3.839 3737.5 0.014
No experience: 3.389

Equality of Opportunity Experience: 3.946 4435.5 0.304
No experience: 3.834
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Discussion

This section will start with a further discussion of the findings of the empirical study. Furthermore,
Section 6.2, will outline the limitations of this thesis, and Section 6.3 will o↵er recommendations for
future research.

6.1 Discussion of results

Previous studies on algorithmic fairness perceptions have primarily focused on distributive fairness,
procedural fairness, or interactional fairness in isolation. However, the results of this study highlight
the need to consider the interplay between these di↵erent fairness components in research into fair AI.

By considering the importance of di↵erent features used by a model as a key aspect of procedural
fairness, the main finding of this study is that participants who receive information about both the
distributive and procedural fairness of an algorithm, perceive it as fairer, than participants who only
receive information about the distributive fairness of an algorithm (Section 5.1.1). Surprisingly, even
when gender, a sensitive attribute, is included as a primary attribute in the algorithms, this e↵ect is
still observed, despite a substantial number of participants citing it as unfair in the open-ended question
(Section 5.2.2).

These findings underscore the potential consequences of adopting the distributiveness assumption as
described by Dolata et al. [55], as I show that solely representing algorithmic fairness as an outcome
distribution issue can lead to lower perceptions of fairness. The results of this study suggest that pro-
viding more information about the workings of an algorithm can enhance fairness perceptions. This
is consistent with the results of Dodge et al. [26] and Angerschmid et al. [66], who find that feature
importance-based explanations have a positive impact on algorithmic fairness perceptions.

Furthermore, this work provides empirical insights into how mathematical fairness criteria are related to
human algorithmic fairness perceptions. This is done by measuring and comparing participants’ fairness
perceptions of recruitment algorithms adhering to either demographic parity or equality of opportunity,
and by measuring the correlation between participants’ fairness perceptions and algorithmic selection
rate di↵erences and false negative rate di↵erences, respectively.

Interestingly, a significant preference for equality of opportunity over demographic parity is found when
given information about both the distributive and procedural fairness of the algorithms (Section 5.1.2).
These findings are a�rmed in the qualitative analysis, in which it is noted that a larger proportion of
participants assigns greater importance to false negative rates when forming their fairness judgments,
as opposed to (equal) selection rates among genders (Section 5.2.1).

These results are in contrast with the preference for demographic parity found by Srivastava et al. [22].
As they focus on a medical risk prediction and criminal risk prediction setting, rather than hiring, these
varying contexts could be the reason behind these contrasting findings. It is, however, also plausible that
these disparate results can be explained by the varying methods of visualizing fairness issues. Where
Srivastava et al. [22] represent their algorithms by showing the individual outcomes of ten decision sub-
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jects, this study reports the trade-o↵s between two fairness criteria. Moreover, while all participants in
the study of Srivastava et al. [22] are solely provided with information about the algorithmic outcomes,
relating to the concept of distributive fairness, two-thirds of the participants in this study also receive
information about the procedural fairness of the algorithms.

In a study into lay people’s understanding of mathematical fairness criteria, interestingly, Saha et
al. [61] find that participants’ comprehension of equality of opportunity is lower compared to their
comprehension of demographic parity. Additionally, they observe that participants who score higher on
comprehension tend to have lower fairness perceptions. In line with this reasoning, a possible explana-
tion for the findings of this thesis is that the participants had a better understanding of the algorithms
adhering to demographic parity compared to the algorithms adhering to equality of opportunity. This
could have resulted in assigning a lower score to the algorithms adhering to demographic parity. Future
studies could further investigate the relationship between comprehension of certain fairness criteria and
algorithmic fairness perceptions.

Furthermore, by measuring the relation between fairness perceptions and the selection rate di↵erences
and false negative rate di↵erences, no significant correlations are found (Section 5.1.3). However, it is
important to acknowledge that the visualization of algorithmic outcomes as trade-o↵s between selection
rates and false negative rates may have led to a flawed investigation of these correlations. For example,
some algorithms exhibited a small di↵erence in selection rate di↵erences across groups (an indicator of
fairness), but also a high di↵erence in false negative rates across groups (an indicator of unfairness).
However, by conducting an ordinal regression analysis, a negative e↵ect of both selection rate di↵erences
and false negative rate di↵erences on perceived fairness scores is found. These findings suggest that
algorithms with greater disparities in selection rates or false negative rates are perceived as less fair by
participants.

Lastly, this study presents a brief examination of how demographic characteristics influence percep-
tions of fairness (Section 5.3). In line with the results of Wang et al. [19] and Grgic-Hlaca et al. [25],
I do not find any significant e↵ects of age and gender on participants’ fairness perceptions. However,
this analysis reveals a positive e↵ect of education level on fairness perceptions of algorithms adhering
to demographic parity. This result is in contrast with that of Van Berkel et al. [60], who find a negative
correlation between education level and perceived algorithmic fairness. Moreover, this analysis reveals
a negative e↵ect of experience in computer science or AI on fairness perceptions of algorithms adhering
to demographic parity. This finding is in contrast with the results of Wang et al. [19] and Pierson [24],
who both conclude that computer literacy increases perceived algorithmic fairness. Since this thesis
only identifies demographic e↵ects in algorithms that adhere to demographic parity, and not in other
algorithms, I however refrain from making any final conclusions based on these findings.

6.2 Limitations

This study has several limitations. First, I conducted the study with crowdworkers. Although they
were pre-selected on having obtained at least a high-school diploma, the possibility of some participants
not understanding or being able to correctly interpret the trade-o↵s being shown can not completely
be ruled out. I tried to keep the visualizations as straightforward as possible by showing bar graphs
but acknowledge the possible di�culty of the task. As the results were consistent amongst groups, I
however believe the results correctly reflect the intuitions of the participants.

A second limitation of this study relates to the features used by the models. As the data set did
not indicate what kind of companies it considered, some participants mentioned they did not fully
understand the particular selection of the top five most important attributes. Moreover, since I used
postprocessing bias mitigation, the feature importance graph stayed the same across all algorithms,
which could possibly have caused some confusion. I did this, however, to ensure the validity of studying
the di↵erences between groups. Future research could investigate the e↵ect of di↵erent levels of feature
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importance on participants’ fairness perceptions.

The study has a third important limitation, regarding the examination of the correlations between
fairness perceptions and mathematical fairness criteria. Firstly, there was a limited amount of selection
rate di↵erences and false negative rate di↵erences available to correlate with participants’ perceptions
of fairness. Additionally, the presentation of the graphs as a trade-o↵ led to an interaction between
both criteria. In retrospect, these factors should have been taken into account while designing the
experimental setup.

A final limitation relates to the participants’ demographics. While the study had an even distribu-
tion of male and female participants, the vast majority of participants were White. Future research
should aim to expand the representation of racial groups, to mitigate the risk of developing a one-sided
and potentially biased understanding of perceived algorithmic fairness.

6.3 Future Work

This study provides important directions for further research. In particular, the results emphasize that
understanding algorithmic fairness perceptions requires careful consideration of both visualization and
contextual factors. Suggestions for future work, therefore, include:

• Exploring the e↵ect of presenting various visualizations, and o↵ering additional context about the
decision-making process, on participants’ algorithmic fairness evaluations. Van Berkel et al. [60],
for example, take a useful start in this direction, by evaluating the e↵ect of scatterplot and text-
based visualizations of algorithmic outcomes on fairness perceptions.

• Investigating participants’ preferred mathematical fairness criteria in multiple contexts, besides
algorithmic hiring. For instance, a future study could categorize various contexts based on the
risk-oriented approach of the AI act, which categorizes AI systems into 4 levels: unacceptable,
high, minimal, or low risk [35]. Such a study could then examine whether participants’ preferences
for certain fairness criteria in di↵erent contexts vary based on these di↵erent levels of risk.

• Performing a broader investigation of participants’ preferred mathematical fairness criteria, by
considering more fairness criteria, besides the two I chose to include in this study. For example,
a next study could, like Harrison et al. [23], also incorporate false positive rates. Another option
could be to adopt a human-in-the-loop approach, where participants are presented with several
algorithmic outcomes and are given the opportunity to manually adjust these outcomes. The next
step would then be to evaluate whether they preferentially adjust outcomes that conform to one
particular fairness criterion over outcomes that conform to another criterion.

• Studying whether participants’ fairness perceptions are a↵ected by receiving additional informa-
tion about an algorithm, by conducting a within-subjects study, as opposed to a between-subjects
study. For example, one approach could involve presenting participants with information about
the distributive fairness of an algorithm, followed by information about its procedural fairness. By
asking for their fairness perceptions at these two points in time, it could be investigated whether
providing information about procedural fairness alters fairness perceptions.

• Enhancing the correlational analysis between mathematical fairness criteria and human fairness
perceptions performed in this study, by increasing the number of data points to correlate with
fairness perceptions. A possible approach to achieve this could be to o↵er participants a wider
range of algorithms, or to present di↵erent algorithms to di↵erent groups of participants.
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Conclusion

In this study, I approach the topic of perceived algorithmic fairness through the lens of organizational
justice theory, focusing specifically on algorithmic hiring as a case study. This section will succinctly
present the final answers to the main research questions asked in this study.

RQ1: How do human fairness perceptions of a recruitment algorithm di↵er when only given infor-
mation about the distributive fairness of the algorithm, compared to when given information about both
the procedural fairness and the distributive fairness of the algorithm?

By grouping participants according to the type of information they receive about the recruitment algo-
rithms, I find that participants who are only informed about the distributive fairness of the algorithms
perceive them as less fair than those who are informed about both the distributive and procedural
fairness of the algorithms. Interestingly, this both holds true when the sensitive attribute gender is
included as a primary feature in the algorithms, and when it is not. Therefore, I conclude that provid-
ing information about procedural fairness enhances perceptions of algorithmic fairness, even when the
process of decision-making can be considered unfair.

RQ2: How do human fairness perceptions of a recruitment algorithm di↵er depending on whether
it adheres to demographic parity or equality of opportunity?

Across all participant groups, I observe that algorithms that adhere to equality of opportunity re-
ceive a higher average perceived fairness score than algorithms that adhere to demographic parity. This
di↵erence is significant in the groups that are provided with information on both the distributive and
procedural fairness of the algorithms. In my qualitative analysis, I further notice that a larger pro-
portion of participants is concerned with false negative rates rather than selection rates. Based on
these findings, I conclude that in the context of algorithmic hiring, the fairness criterion of equality of
opportunity is preferred over the criterion of demographic parity.

RQ3: To what extent are the disparate impact score and false negative rate di↵erences between groups
of a recruitment prediction algorithm related to human fairness perceptions of it?

By examining the correlation between the fairness perceptions of participants and, respectively, the
selection rate di↵erences and false negative rates of various recruitment algorithms, I find a negative,
but non-significant association between fairness perceptions and selection rate di↵erences, and a neg-
ative, but non-significant association between fairness perceptions and false negative rate di↵erences.
By conducting an ordinal regression analysis, I confirm these negative e↵ects of both selection rate dif-
ferences and false negative rate di↵erences on perceived fairness scores. However, to further investigate
these correlations in a more isolated manner, I suggest conducting future research that does not present
algorithmic outcomes as a trade-o↵ between two fairness criteria.

In conclusion, the results of this study highlight the interplay between the di↵erent components of
algorithmic fairness, and provide an insight into the relationship between mathematical algorithmic
fairness and perceived algorithmic fairness. By performing an empirical study among crowdworkers, I
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add to the growing body of literature on public perceptions of algorithmic fairness and provide important
directions for future research.
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[29] N. Grgić-Hlača, M. B. Zafar, K. P. Gummadi, and A. Weller, “Beyond distributive fairness in
algorithmic decision making: Feature selection for procedurally fair learning,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[30] J. Greenberg, “A taxonomy of organizational justice theories,” Academy of Management review,
vol. 12, no. 1, pp. 9–22, 1987.

[31] J. A. Colquitt, “On the dimensionality of organizational justice: a construct validation of a mea-
sure.” Journal of applied psychology, vol. 86, no. 3, p. 386, 2001.

52



[32] L. Li, T. Lassiter, J. Oh, and M. K. Lee, “Algorithmic hiring in practice: Recruiter and hr profes-
sional’s perspectives on ai use in hiring,” in Proceedings of the 2021 AAAI/ACM Conference on
AI, Ethics, and Society, 2021, pp. 166–176.

[33] M. Raghavan, S. Barocas, J. Kleinberg, and K. Levy, “Mitigating bias in algorithmic hiring: Eval-
uating claims and practices,” in Proceedings of the 2020 conference on fairness, accountability, and
transparency, 2020, pp. 469–481.

[34] C. Schumann, J. Foster, N. Mattei, and J. Dickerson, “We need fairness and explainability in
algorithmic hiring,” in International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), 2020.

[35] E. Commission. (2023, Mar.) Regulatory framework proposal on artificial intelligence. [Online].
Available: https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai

[36] S. C. Geyik, S. Ambler, and K. Kenthapadi, “Fairness-aware ranking in search & recommenda-
tion systems with application to linkedin talent search,” in Proceedings of the 25th acm sigkdd
international conference on knowledge discovery & data mining, 2019, pp. 2221–2231.
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Appendix

A.1 Count plots of 4 data subsets

Figure 8: Count plots showing the distribution of the target attribute (being hired to
the company or not) for each of the four di↵erent companies. Each row represents one
company. Note that the gender bias is largest in the company represented in the second
row: here, the proportion of hired male candidates is visibly larger compared to the
proportion of hired female candidates.
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A.2 Count plots of final data

Figure 9: Count plots of final data subset showing the distribution of the target attribute
(being hired to the company or not) among the di↵erent categorical features.
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A.3 Feature importance of all features used in recruitment pre-
diction model

Figure 10: Feature importance of all features used in the recruitment prediction model.
On the left side of the table, the importance buckets of the features are reported. The six
features with the biggest positive influence on receiving the favorable outcome, i.e., the six
features with the highest coe�cients, were used in the user experiment. This concerned
the six features belonging to the three highest feature importance buckets.
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A.4 Introductory text Qualtrics survey

The following text was shown to the participants:

In this survey, you will be asked to answer questions about a hypothetical recruitment algorithm. Please
start by carefully reading the following scenario:

A consulting company uses a computer algorithm to assist in its recruitment process. Based on dif-
ferent attributes of new job candidates, such as university grades, this algorithm automatically decides
whether the company should hire or reject a candidate. The algorithm makes these decisions based on
data about earlier job applicants that the company has collected over time.

In this survey, you will see several computer algorithms. These algorithms will be visualized as graphs
showing the hiring outcomes for 2 groups: gender A and gender B. [You will also get to see an overview
of the 5 attributes that the algorithm considers most important in making its decisions. Note that these
attributes are the same in all di↵erent algorithms.]1 Below is an example of how the graphs showing
the hiring outcomes will look.

On the left side of the graph, you can see the total percentage of candidates that are hired: this al-

gorithm hires 30% of all candidates of gender A and 40% of all candidates of gender B. On the right
side of the graph, you can see the percentage of qualified candidates that are not hired: this algorithm
rejects 15% of all qualified candidates of gender A and 35% of all qualified candidates of gender B. Note
that these percentages do not have to add up to 100%!

In this survey, you will be asked to rate the fairness of these algorithms, focusing on how the algo-
rithm treats the two groups di↵erently. Fairness is broadly defined as: “the absence of any prejudice or
favoritism towards an individual or a group based on their intrinsic or acquired traits”.

1These two sentences were only shown in groups 2 and 3, which also received information about the procedural fairness
of the algorithms
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A.5 Full survey data of 3 randomly selected participants

Table 25: Full survey data of 3 randomly selected participants. Participant 1’s emphasis in
making fairness judgments was on demographic parity rather than equality of opportunity,
as indicated by both his perceived fairness scores and his response to the open-ended
question. In contrast, Participant 2 prioritized equality of opportunity, while Participant
3’s primary concern was the use of the sensitive feature gender.

Question Participant 1 Participant 2 Participant 3

Original algorithm 2 2 1

Demographic parity - mitigated 5 2 1

Demographic parity 6 3 1

Equality of opportunity - mitigated 3 6 1

Equality of opportunity 3 6 1

In the previous questions, which fac-
tors did you consider most impor-
tant in determining whether a model
was fair or unfair?

“ How equal
the hiring rate
was”

“The percent-
age of genders
that were qual-
ified but not
hired”

“Gender, why
is that even
a considera-
tion?”

Do you have any experience with
computer science and/or artificial
intelligence?

No No No

To which gender do you most iden-
tify?

Male Female Male

What is the highest level of educa-
tion you have obtained?

Community
college

High school
diploma

Community
college
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A.6 Ordinal regression models

Below, the full ordinal regression models created for RQ3 are reported.

Figure 11: First ordinal regression model. The dependent variable is the perceived fairness
score (PS). The independent variables are the selection rate di↵erences (SR) and false
negative rate di↵erences (FNR).
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Figure 12: Second ordinal regression model. The dependent variable is the perceived
fairness score (PS). The independent variables are the selection rate di↵erences (SR),
false negative rate di↵erences (FNR) and groups participants belonged to.
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Figure 13: Third ordinal regression model. The dependent variable is the perceived
fairness score (PS). The independent variables are the selection rate di↵erences (SR),
false negative rate di↵erences (FNR) and groups participants belonged to. This model
also includes a random e↵ects term for each participant.
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