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Abstract

The Himalaya are amongst the world’s most important water towers, supplying water to hundreds of

millions of people. They are also vulnerable to climate change, stimulating research on their hydrological

behaviour. One important aspect of the hydrological system that is often overlooked in these studies is

the eolian redistribution of snow. This study aims to identify eolian snow redistribution patterns using

an unprecedented combination of optical remote sensing, downscaled wind fields, a Temperature Index

(TI)-based hydrological model (SPHY) and a novel Snow Redistribution mechanism Classification Model

(SRCM). This method was applied to Din-Gad Catchment in the Central Himalaya for the period 2017-

2020. The results show that eolian snow redistribution patterns are strongly related to the prevailing

wind directions and topographic exposure. The most frequent wind-induced snow removal typically

occurs in concentrated areas that are exposed in the wind direction, whereas areas of frequent wind-

supplied snow deposition are more widespread and located in sheltered areas like valleys and the lee

sides of ridges. The wind speed threshold for snow transport is low during the winter months and

increases in the monsoon season, due to the increasing age and wetness of the snowpack in that

period. SRCM classified 21.6% of snow cover changes as wind-driven and 14.1% as gravity-driven. The

classified snow redistribution mechanisms were evaluated using satellite images, finding that SPHY had

difficulty classifying observed snow cover changes with the chosen model parameters. This indicates

that modelling snow cover change using only temperature and precipitation data is an oversimplification

and that wind-induced snow dynamics play a significant role in the spatiotemporal distribution of snow

cover in Din-Gad Catchment. This also suggests that TI-based hydrological models like SPHY would

benefit from the incorporation of snow redistribution processes. Recommendations for improving these

methods include using radar imagery, incorporating field observations and performing sensitivity analyses

and error propagation tests. This study contributes to understanding the role of snow redistribution in

high-mountain areas, which is critical for designing accurate models that can make reliable predictions

of hydrological behaviour.
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1 Introduction

1.1 The Himalayan water towers and climate change

Mountains supply large parts of the world’s water demands, both natural and anthropogenic (Immerzeel

et al., 2010; Viviroli et al., 2007). This makes them the world’s water towers. According to their water

supply and downstream dependence, the world’s most important water towers are also the most vulner-

able to climatic and socio-economic changes (Immerzeel et al., 2020). Amongst the most important are

the Himalaya. This mountain range is the source of several major river systems that provide hundreds

of millions of people with a freshwater supply that is used for consumption, irrigation and hydroelectric

power generation (Biemans et al., 2019; Immerzeel et al., 2020; Immerzeel et al., 2010; Viviroli et al.,

2007). Their downstream regions are densely populated and intensively irrigated (Immerzeel & Bierkens,

2012; Lutz et al., 2014a).

Climate change imposes significant changes in the hydrological system of the Himalayas, implying

severe consequences for the water availability in this region (Khanal et al., 2021). An assessment of

the current-century climate change impact on the hydrology of high-mountain Asia has shown that the

responses vary depending on the hydrological regime and time scale, but show a general pattern. At

the seasonal scale, melting and its associated water availability will shift to earlier in the year (Khanal

et al., 2021). At the decadal scale, the magnitude of melting and water availability will increase and at

the century scale, it will decrease.

The impact of climate change on glaciers in high-mountain Asia has been extensively studied because

of their contribution to water supply (Biemans et al., 2019; Immerzeel et al., 2010; Nie et al., 2021)

and the predicted future changes therein (Huss & Hock, 2018; Kraaijenbrink et al., 2017; Rounce et

al., 2020). The role of snow has also been researched at the regional scale (Armstrong et al., 2019;

Biemans et al., 2019; Immerzeel et al., 2010; Kapnick et al., 2014; Kraaijenbrink et al., 2021). Snowmelt

contributes more to runoff than glacier melt does and future snowmelt runoff may decrease considerably

(Kraaijenbrink et al., 2021). The contribution of snowmelt to runoff will continue to decrease under

every future climate scenario, but the magnitude of the decrease depends on the degree of warming,

drying or wetting. Despite the difficulties in quantifying Snow Water Equivalent (SWE) using remote

sensing (Bormann et al., 2018; Dozier et al., 2016; Smith & Bookhagen, 2018, 2020), understanding

the role of snow in the region’s hydrological system is essential to unravel the environmental processes

that occur in high-mountain Asia (Huss et al., 2017; Livneh & Badger, 2020; Qin et al., 2020).

1.2 The role of snow in the hydrological system

A study on snow resource potential for human water demand in the present and future found that

77-105% of the unmet water demand in large Himalayan basins is supplied by snowmelt runoff (Mankin

et al., 2015). Under future climate scenarios, snow resource potential has a 33-63% risk of decreasing in
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these snow-sensitive basins, leading to a decline in the buffering capacity of snow for water availability.

This will affect over 966 million people living in the Indus and Ganges river basins. Also, snowmelt

and snowpack duration influence the volumetric and temporal characteristics of water availability within

catchments (Barnett et al., 2005; Beniston & Stoffel, 2014). This illustrates the importance of snow

cover in the hydrological system.

Due to constraints on data availability, snow is often modelled using a Temperature Index (TI) approach

(Armstrong et al., 2019; Hock, 2003; Khanal et al., 2021; Khanal et al., In Review; Kraaijenbrink et

al., 2021). Such an approach omits potentially important snow dynamics that contribute to SWE

changes, such as sublimation and redistribution, and thus lacks an accurate representation of snow

ablation processes. This is important because climate change will affect the prevailing wind patterns

(Lobeto et al., 2022), resulting in changing snow redistribution and associated water storage. A thorough

understanding of snow dynamics is required to make reliable water availability predictions and to support

effective future water resource management.

Snow redistribution may take place due to wind or gravity. Wind-induced (eolian) snow transport can

alter the existing snow cover significantly (Balk & Elder, 2000; Bernhardt et al., 2009; Bowling et al.,

2004; Mott & Lehning, 2010; Pomeroy et al., 1998). Snow is generally transported from windward to

leeward sides of obstacles such as mountain faces or vegetation (Dadic et al., 2010; Hiemstra et al.,

2002; Liston & Sturm, 1998; Mott & Lehning, 2010; Pomeroy et al., 1998). This changes the energy

balance, spatial SWE patterns, the timing and magnitude of runoff, avalanche risk and sublimation

rates (Brauchli et al., 2017; Dadic et al., 2010; Lehning et al., 2006; Liston, 1995; Liston & Sturm,

1998; Strasser et al., 2008; Zhang et al., 2022).

1.3 Studying the redistribution of snow

Numerous models exist that aim to predict the lateral redistribution of snow for hydrological or climate

research purposes (Déry & Yau, 1999; Essery et al., 1999; Lehning et al., 2006; Liston, 2004; Liston

& Sturm, 1998; Winstral et al., 2002). However, the accuracy of these (mostly physically-based,

numerical) models is heavily dependent on the quality of the meteorological input data. Concerning

wind-driven snow transport processes, the models are particularly sensitive to wind speed and wind

direction parameters (Bernhardt et al., 2009; Dadic et al., 2010; Eidsvik et al., 2004; Essery, 2001;

Liston & Sturm, 1998). Over the years, progress has been made in increasing the spatiotemporal

resolution of modelling snow dynamics in mountainous areas (Bernhardt et al., 2010a; Bernhardt et al.,

2009; Freudiger et al., 2017; Liston & Elder, 2006; Mott & Lehning, 2010).

More recently, the effects of gravitational and eolian snow redistribution on snowmelt and sublimation

were studied using a spatially distributed snow-evolution model (Bernhardt et al., 2012). This study

was performed in a study area of ca. 200 km2 with an elevation span of ca. 2000 m in the Northern

Alps. The study found reduced melt rates on crests and steep walls and increased snowmelt in glaciated

areas and at foothills, due to snow being moved from exposed to sheltered locations. Additionally, the
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effects on snowmelt were largest when small scales were considered (i.e. 60 m) and (almost) negligible

at scales over 2000 m. However, this study was conducted in an much more topographically gentle area

than the Himalaya.

Similar analyses with other models and in other areas could lead to improved understanding of the effects

of snow redistribution on the accuracy of hydrological model output variables such as melt (Bernhardt

et al., 2012; Freudiger et al., 2017). This is valuable to the future development of hydrological models,

which enable projections of future runoff behaviour. Improving the reliability of these projections is

paramount to increasing water security, as local authorities depend on these forecasts to design and

implement water resource management strategies.

1.4 Research gap and questions

Snow has an important role in the hydrological system of high-mountain Asia. Climate change affects

this in multiple ways. In the future, snowmelt contribution to runoff will decrease and the prevailing

wind patterns will change, resulting in changing snow behaviour patterns. Snow dynamics have been

extensively studied, often using TI-based hydrological models, which do not consider snow redistribution.

Previous studies have addressed this by modelling the lateral redistribution of snow and thus providing

a more complete representation of snow ablation processes. However, the accuracy of these studies is

limited by several factors, including spatiotemporal resolution, quality of meteorological input data and

application to similar topographies.

The patterns of eolian snow redistribution in the Himalaya remain to be studied. This research gap

can be addressed using a combination of high-resolution satellite imagery, climate reanalysis data and

a TI-based hydrological model. The latter has recently been used to model temperature-driven snow

processes in the Himalaya (Khanal et al., In Review), providing a reference for snowmelt and snowfall

without requiring additional computation.

The main research question of this study is: “What are the patterns of eolian snow redistribution in the

Himalaya as can be identified using remote sensing, modelling, climate reanalysis data and reference

data from a TI-based hydrological model?” To answer this question, the following sub-questions are

defined:

1. To what extent is optical satellite imagery suitable for SC change mapping over complex terrain?

2. How does the snow cover evolve in response to ablation, accumulation and redistribution?

3. To what extent are wind fields from downscaled climate reanalysis data suitable for evaluating

eolian snow redistribution patterns?

4. How much snow cover change is overlooked by using a TI-based hydrological model without

considering eolian snow redistribution?

Section 2 describes the study area for this research. Section 3 details the methods and techniques used
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to conduct this study. The results are presented in Section 4. Interpretations of the results, a discussion

of the applications, limitations and implications of this study and recommendations for future research

are provided in Section 5. Finally, the conclusions are given in Section 6.

2 Study area

Recently, a study was conducted on the hydrological changes in the Bhagirathi Basin using a TI-based

hydrological model (Khanal et al., In Review). This basin is located in the state of Uttarakhand in

Northern India. Located within the basin is Din-Gad Catchment, which extends from latitude 30◦48’

to 30◦54’ N and longitude 78◦39’ to 78◦52’ E. The catchment covers an area of 77.8 km2 and has

strong relief gradients (Figure 1), making it a suitable area for this study. Additionally, the results of

the recent study provide reference data for snowfall and snowmelt, which are relevant for identifying

temperature-driven snow cover changes (Khanal et al., 2021).

Figure 1: Overview of Din-Gad Catchment. The red line delineates the catchment boundary, the blue triangles indicate
noteworthy mountain peaks and the red star indicates the location of an Automatic Weather Station (AWS).

Din-Gad Catchment is home to Dokriani Glacier, which originates between the two highest peaks in the

catchment: Mount Jaonli (6578 m a.s.l.) in the east and Mount Draupadi Ka Danda (5716 m a.s.l.)
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in the southeast. The glacier flows northwards for 2 km, then turns westwards and flows for another 3

km before reaching its end at 3965 m a.s.l. (Pratap et al., 2015). Dokriani Glacier feeds the Din-Gad

tributary, which flows westwards into the Bhagirathi River, an important tributary of the Ganges, at the

westernmost point of the catchment (1740 m a.s.l.).

In terms of land cover, there is a gradient from east to west, determined by elevation and thus temper-

ature differences. The easternmost, highest part of the study area is permanently covered with snow

and ice. Towards the west and with decreasing elevation, this transitions into barren land, grasslands

and evergreen forests. More specifically, herbaceous annuals and evergreen shrubs cover approximately

31% of the catchment and broadleaf and conifer trees can be found with increasing vegetation cover

towards the west, covering 54% of the catchment (Buchhorn et al., 2020; Friedl & Sulla-Menashe,

2022; Thayyen et al., 2007).

The climate in the study area is temperate and strongly influenced by topography. Summer temperatures

range between freezing and 20◦C, averaging around 8◦C. In winter, temperatures can drop to -30◦C,

with an average of around -10◦C. From May to October, average precipitation in Din-Gad Catchment

amounts to 1000-1600 mm (Thayyen et al., 2007). The monsoon season, which generally lasts from

mid-June to mid-September, accounts for 40-50% of this precipitation. Despite the monsoon, yearly

precipitation in Din-Gad Catchment is relatively low compared to the Uttarkashi district average, due

to its location in the rain shadow of the surrounding Himalaya (Chauhan, 2010).

Many aspects of Din-Gad Catchment have been studied in the past, including glacier mass balance,

hydrology and meteorology (Pratap et al., 2015; Thayyen et al., 2007; Yadav et al., 2021). The

Bhagirathi basin has also been intensively studied regarding snow cover, meteorology, flood hazards,

ecological vulnerability, climatology and hydrology (Dimri et al., 2022; Gourav et al., 2020; Joshi et al.,

2015; Rehman et al., 2022a; Rehman et al., 2022b; Rehman et al., 2021; M. K. Singh et al., 2021).

Due to its location and elevation, relatively sparse vegetation cover and contribution to the downstream

water supply, Din-Gad Catchment is a suitable study area for this research.

3 Methods

High-resolution satellite imagery, climate reanalysis data and a TI-based hydrological model, amongst

other resources, provide means for studying eolian snow redistribution patterns. This is yet to be

researched in the Himalaya and is relevant to improving hydrological models. The methodology of

this study consisted of five main steps: (1) remote sensing of snow cover, (2) obtaining downscaled

wind fields and topographic exposure maps, (3) obtaining modelled SC reference data from a TI-

based hydrological model, (4) avalanche susceptibility mapping and (5) developing and using a snow

redistribution mechanism classification model. Ultimately, the results of the classification model were

aggregated to identify eolian snow redistribution patterns and compared to the output of the hydrological

model, which does not incorporate snow redistribution processes.
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3.1 Remote sensing of snow cover

Snow cover (hereafter ‘SC’) can be derived from multispectral satellite imagery using remote sensing

techniques. For this study, optical imagery was used from three satellite platforms: Sentinel-2, Landsat

8 and PlanetScope. This combination has been shown to perform well for land cover change mapping

(Acharki, 2022; Roy et al., 2019). For each platform, the surface reflectance dataset was used so that

no atmospheric correction was required. The processing of the imagery was done using Google Earth

Engine, a scalable geospatial analysis platform that provides powerful cloud computing capabilities and

public access to a large catalog of planetary data sets (Gorelick et al., 2017). The chosen period of

interest was January 1, 2017, to December 31, 2020, for two reasons. Firstly, significantly more scenes

with a cloud cover <40% were available for the study area from 2017 onwards. Secondly, the snowfall

and snowmelt reference data (Khanal et al., In Review) were only available until the end of 2020.

The pre-processing of images consisted of filtering for scenes within the study area and period of interest,

removing scenes with a cloud cover ≥40%, resampling the Sentinel-2 and PlanetScope imagery to match

the resolution of Landsat 8 (30 m), masking remaining clouds, filtering for a maximum of one image per

day and clipping to the study domain. The cloud masking was done using the ‘cloud high probability’

class of the built-in quality assessment bands, which indicate clouds with a probability of >65%. When

multiple images were available for a given day, the mean composite was used for that day, giving

preference to Sentinel-2 and Landsat 8 images over PlanetScope images. This preference is explained

below. After pre-processing, a total of 647 images remained for the 1461 days of interest, resulting in

an average of almost one image per two days (Figure 2).
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Figure 2: Availability of satellite images per platform and per month. The line shows the mean available area as a
percentage of the study domain. The stacked bars show the number of available images. Note that although scenes
with ≥40% cloud cover were excluded, multiple points show an available area of <60%. This is because the cloud cover
for the portion of the scene that intersects the study domain can be lower than the cloud cover for the entire scene.
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Snow and clouds are both highly reflective in the visible wavelengths of the electromagnetic spectrum.

However, snow absorbs light in the short-wave infrared part of the spectrum, whereas clouds do not.

Hence, a short-wave infrared (SWIR) band can be used to distinguish between snow and clouds (Hall &

Riggs, 2010). To obtain binary SC maps from optical imagery, the Normalized Difference Snow Index

(NDSI) was computed according to Equation 1:

NDSIS2 =
GreenB3 − SWIRB11

GreenB3 + SWIRB11
or NDSIL8 =

GreenB3 − SWIRB6

GreenB3 + SWIRB6
(1)

where S2 refers to Sentinel-2, L8 refers to Landsat 8 and B refers to the band number. Histograms of

NDSI values for both platforms indicated a bimodal distribution with a minimum at NDSI=0.2 for all

seasons. Therefore, a constant NDSI threshold of 0.2 was applied to distinguish between snow-covered

(NDSI>0.2) and snow-free (NDSI<0.2) pixels, resulting in binary SC maps.

PlanetScope satellites are not equipped with a SWIR sensor, making computation of the NDSI im-

possible. This gives reason to prefer Sentinel-2 and Landsat 8 images over PlanetScope images when

multiple images are available for a given day. However, PlanetScope imagery contains Usable Data

Mask 2 (UDM2) bands, in which certain types of surface or atmosphere interference classes are pre-

classified based on supervised machine learning techniques (“UDM 2”, 2022). The classification model

used for this is trained using truth scenes sourced from different satellites, scene contents, seasonalities,

geographies and cloud types. UDM2 band 2 provided the binary SC maps for the PlanetScope imagery.

3.2 Wind fields and topographic exposure

High-resolution wind fields are required to study eolian snow redistribution because snow transport

occurs above certain wind speeds and its direction is dependent on the wind direction. Additionally,

a topographic exposure parameter can be a significant predictor of observed snow distribution when

included in spatial snow distribution models (Winstral et al., 2002). Therefore, downscaled wind fields

and topographic exposure maps were used for this study.

3.2.1 Downscaling of wind fields using WindNinja

Wind data from Numerical Weather Prediction (NWP) models were considered too coarse-resolution

for this study. Therefore, climate reanalysis data were downscaled to obtain high-resolution wind

fields. This was done using the WindNinja-3.8.0 application developed by the Missoula Fire Sciences

Laboratory of the US Forest Service (Wagenbrenner et al., 2016) and wind speed and direction data

from the ERA5-Land product of the European Centre for Medium-Range Weather Forecasts (ECMWF)

(Muñoz-Sabater et al., 2021).

The theoretical background of WindNinja is detailed by Forthofer et al. (2014). Here, a brief overview

of the model framework is given. WindNinja is a mass-consistent diagnostic wind model used for

downscaling wind fields from NWP models. The application employs variational calculus techniques

10



to obtain numerical solutions, conserving mass both locally and globally, i.e. within each cell and

over the entire domain. The model provides two solving algorithms: (1) conservation of mass and (2)

conservation of mass and momentum. The mass conservation solver uses the finite element method

to minimize change from the initial wind field. The mass-momentum conservation solver uses the

finite volume method to account for incompressible turbulent flow. The latter is more computationally

intensive but gives more accurate results in regions where momentum effects are important (e.g., on

the leeward side of terrain features).

WindNinja requires three main inputs. Firstly, a Digital Elevation Model (DEM) is required, upon

which a terrain-following mesh is constructed, consisting of layers of hexahedral cells with variable

height, representing the air. Secondly, an initial wind field is required, for which three options are

available. The model can be initialized with (1) a user-defined domain-averaged wind field (height,

speed and direction), (2) wind measurements from one or more Automatic Weather Stations (AWS)

or (3) wind data from an NWP model. Option 2 is currently not available for the mass-momentum

conservation solver and option 3 is limited to a list of NWP models that only provide data for North

America. Lastly, WindNinja assumes a homogeneous vegetation cover of either grass, brush or trees

over the entire domain. This determines the surface roughness and associated drag.

Additional options in WindNinja include diurnal slope winds and non-neutral atmospheric stability. The

diurnal slope wind model is designed to compute small-scale slope winds, but not large-scale valley

winds or other buoyancy-driven flows such as sea or land breezes. The non-neutral atmospheric stability

option accounts for the resistance of the atmosphere to vertical motion by computing surface heat

flux and the vertical air density profile. At present, this option can simulate simplified non-neutral

flows (i.e. flow around a terrain feature in a stable atmosphere versus flow over a terrain feature in an

unstable atmosphere), but not complex phenomena such as wave and breaking-wave structures, severe

down-slope winds or thunderstorms. Also, the non-neutral atmospheric stability option is currently

unavailable for the mass-momentum conservation solver. However, this is no problem for simulating

wind over snow-covered terrain, as this is generally dominated by near-neutral conditions (Cullen et al.,

2007).

WindNinja assumes the air to be incompressible and does not account for latent heat effects or conser-

vation of energy. Due to computational limitations, the developers recommend that the model domain

is smaller than 50x50 km and that the resolution of the model output is set no finer than 100 m. Larger

domains (>2500 km2) and finer resolutions (<100 m) can lead to unrealistic results. The terrain pro-

vided by the DEM is approximated by a finite number of points, leading to the smoothing of terrain

features.

To obtain high-resolution wind fields, WindNinja was run for daily time steps (from January 1, 2017, to

December 31, 2020) with the mass conservation solver and for a resolution of 100 m. As input DEM,

NASA’s Shuttle Radar Topography Mission (SRTM) V3, with a spatial resolution of 30 m, was used

(Farr et al., 2007). Each time step was initialized with the domain-averaged maximum wind speed and
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corresponding wind direction of that day, as derived from ERA5-Land. Diurnal slope winds were not

included, as the availability of satellite imagery was insufficient to facilitate analysis at the sub-daily

time scale. Atmospheric stability was set to neutral because near-neutral atmospheric conditions usually

persist over snow-covered terrain (Cullen et al., 2007). ‘Brush’ was set as the prevailing vegetation type

to provide a balanced estimate for the entire study domain.

The output consisted of one GIS vector layer per day, containing one wind speed (m/s) and direction

(degrees) value per 100 m grid cell. To ensure that the wind fields were in the same data format as

the SC maps, the output was converted to two-band raster layers and resampled to a 30 m resolution

using the nearest neighbour technique.

3.2.2 Topographic exposure

Topographic exposure was computed for all cells in the study domain and for each (inter)cardinal wind

direction using a method proposed by Winstral et al. (2002). This method computes topographic

exposure of a cell based on the height and distance of the surrounding horizon, in this case, derived

from the 30 m SRTM V3 DEM. These two measures determine the angle of inflection from the horizon,

which was computed at a cell-by-cell interval (30 m) from a distance of 30 m up to 5000 m for 8 wind

directions (N, NE, E, SE, S, SW, W and NW). For each direction, the maximum angle determined the

exposure in that direction and the domain mean value indicated the threshold between sheltered and

exposed locations. The resulting 8-band topographic exposure image was used in conjunction with the

downscaled wind fields to identify locations that are most susceptible to eolian snow redistribution, as

explained in Section 3.5.

3.3 Hydrological model: SPHY

To identify snow melt and accumulation, reference data generated by the hydrological model ‘SPHY’

were used. SPHY (Spatial Processes in HYdrology, Terink et al. (2015)) is a spatially distributed model

that simulates hydrological processes on a cell-by-cell basis. The model code is written in Python and

based on the PCRaster dynamic modelling framework (Karssenberg et al., 2010). The main processes

that are simulated by SPHY include those related to rainfall-runoff, cryosphere, evapotranspiration,

dynamic evolution of vegetation cover, lake and reservoir outflow and root-zone moisture contents.

The existing snow module of SPHY does not include snow redistribution processes, as it simulates snow

cover using temperature and precipitation data only.

The input data used for modelling snow cover evolution with SPHY was sourced from ECMWF’s ERA5

product (Hersbach et al., 2020). This has a native spatial resolution of 30 km, which was inadequate

for this study. To increase the resolution, the data was downscaled to 50 m using the topography-

based downscaling scheme TopoSCALE v.1.0 (Fiddes & Gruber, 2014). TopoSCALE accounts for

temporally varying lapse rates by performing a 3D interpolation of atmospheric fields available on the

pressure levels of the ERA5 product. Also, TopoSCALE accounts for the main topographic effects on
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atmospheric forcing by performing a topographic correction of radiative fluxes based on a high-resolution

DEM.

The SPHY model was run for the period 1991-2020 using daily time steps and a spatial resolution of

50 m (Khanal et al., In Review). The relevant input parameters were: a temperature threshold below

which precipitation falls as snow (Tcrit) of 0.7
◦C, a degree-day factor for snow (DDFs) of 6.1 mm ◦C−1

day−1 and a threshold indicating the minimum snow storage for the ground cover to be considered snow

of 5.0 mm. The model was calibrated to better represent observations in the study area by modifying

the downscaled ERA5 input data. The precipitation values were multiplied by a factor of 1.52 and the

temperature values were increased by 2.5◦C to match the observed mass balance and river discharge.

The SPHY output data of interest were daily snow storage maps (in mm) from January 1, 2017, until

December 31, 2020. These raster maps were converted to binary SC maps by applying the threshold

value of 5.0 mm. The maps were then resampled to a 30 m resolution using the nearest neighbour

technique to obtain the same resolution as the satellite-derived SC maps and the wind fields.

3.4 Avalanche susceptibility mapping

Avalanches are an abundant phenomenon in the Himalaya. They are considered to be one of the

deadliest natural hazards in the region (A. Singh & Ganju, 2002). Extensive research has been done

on the formation of avalanches. Controlling factors include terrain (slope, aspect, curvature, elevation,

terrain roughness, ground cover), snow (holding depth, wetness, density, texture), wind and temperature

(Schweizer et al., 2003).

A widely used GIS-based decision support system, that can be used as a method for mapping avalanche

susceptibility, is a Multi-Criteria Decision Analysis - Analytical Hierarchy Process (MCDA-AHP) model

(Jiang & Eastman, 2000; Saaty, 1990). The theoretical background of the AHP model is provided

by Nefeslioglu et al. (2013). In short, the MCDA-AHP model solves decision-making problems by

hierarchically arranging the problems and assigning an importance or preference rating (on a scale of

1-9) and a relative weight to each decision criterion. The application of this method for avalanche

susceptibility mapping in Northwestern India has been demonstrated with an accuracy of 91% (Kumar

et al., 2017). The advantage of this method is that avalanche susceptibility can be mapped without

snow depth data.

For this purpose, the decision criteria are the factors that control avalanche susceptibility. These are

discretized into classes, which each receive a preference rating, where 1 is the lowest preference (i.e.

least susceptible to avalanching) and 9 is the highest preference (i.e. most susceptible to avalanching).

Relative weights are then assigned to each controlling factor, where the factor that exerts most control

receives the highest weight.

Using this method, a previous study was conducted on the Gangotri glacier, which is situated just
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outside of Din-Gad Catchment, to the northeast (Snehmani et al., 2014). Through verification of the

ASI calculations with ground observations, this study found that avalanches had occurred in 85.82% of

the modelled high-susceptibility area. Conversely, 86.39% of the avalanche-affected areas were covered

by the high-susceptibility class. As the topography surrounding the Gangotri glacier is very similar

to that of Din-Gad Catchment, the results of Snehmani et al. (2014) were considered representative

of Din-Gad Catchment. The selected decision criteria, their relative weights and the ratings of the

criterion’s classes are displayed in Table 1.

Decision criterion Weight Class Preference rating

Aspect 0.1110

N 9

NE 9

E 3

SE 7

S 3

SW 1

W 1

NW 4

Flat 1

Curvature 0.1157

< 0 (convex) 9

0 4

> 0 (concave) 1

Elevation 0.2428

1700-3800 m 1

3800-4200 m 2

4200-4600 m 4

4600-5000 m 7

5000-5400 m 9

5400-5800 m 9

5800-6200 m 7

6200-6600 m 3

Ground cover 0.0570
Snow 9

No snow 1

Slope 0.4735

< 12◦ 1

12-25◦ 4

25-45◦ 9

> 45◦ 3

Table 1: Decision criteria and their relative weights, classes and preference ratings for use in an MCDA-AHP model to
map avalanche susceptibility (Snehmani et al., 2014). These values were obtained for the Gangotri glacier and used in
Equation 2 to compute ASI values for Din-Gad Catchment.
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Using the values from Table 1, the SRTM V3 DEM and the satellite-derived SC maps, the dimensionless

Avalanche Susceptibility Index (ASI) was calculated for each 30 m grid cell of all 647 images as follows:

ASI = 0.4735S + 0.2428E + 0.1157C + 0.111A+ 0.057G (2)

where S,E,C,A and G are the preference ratings of slope, elevation, curvature, aspect and ground

cover, respectively.

After computing the ASI, the results were categorized into four classes: minimal, low, moderate and

high susceptibility. This was done using the Jenks natural breaks optimization method. This method

identifies data clusters by iteratively comparing the sum of the squared difference between within-class

values and class means (Jenks, 1967). The ability of this classification method to accurately discretize

ASI classes has been demonstrated in a study area with similar topography to Din-Gad Catchment

(Kumar et al., 2017).

3.5 Snow Redistribution Classification Model (SRCM)

Comparison of SC maps from consecutive images enables the identification of snow redistribution pat-

terns. However, these patterns include all transport mechanisms, whereas mainly the eolian redistribu-

tion was of interest for this study. Therefore, a distinction was made between transport mechanisms.

Firstly, snowmelt in one location and snowfall in another can be misinterpreted as redistribution. Sec-

ondly, snow redistribution can occur due to gravity (avalanching). Lastly, snow redistribution can be

driven by wind.

The satellite-derived SC maps were exported from Google Earth Engine to be further analysed using

Python 3.7.3. (van Rossum, 2023). The new Snow Redistribution Classification Model (SRCM) was

developed to analyse the temporal evolution of snow cover. The model performs an image-by-image

comparison of SC maps, identifying areas of snow removal and deposition and classifying the mechanisms

responsible for these dynamics. The required input data and the decision criteria used to classify the

mechanisms are detailed below and visualized in Figure 3.

3.5.1 SRCM input

SRCM requires multiple datasets as input, both static (i.e. time-independent) and multitemporal.

The static inputs include the SRTM V3 DEM, the 8-band topographic exposure image, a rasterized

delineation of watersheds and a raster map of the distance of each cell to its watershed outlet. The

multitemporal inputs include the downscaled wind fields for all 1461 days of interest, the ASI and SC

maps for all 647 satellite images and the SPHY SC maps for the corresponding 647 days.

The watersheds raster was derived from the DEM and used to compute the Euclidean distance of each

cell to its watershed outlet. All the required input datasets were georeferenced raster files (coordinate

reference system EPSG:32644) consisting of a 638x361 grid of 30x30 m cells covering the study domain.
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Figure 3: Flowchart of SRCM’s classification scheme. Ovals and rectangles depict rasters of 30x30 m cells on a
638x361 cell grid. Diamonds depict actions that are performed cell-by-cell. Arrows indicate the direction of data flow.
This scheme is repeated for each pair of subsequent dates.
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This enabled cell-by-cell evaluation of snow redistribution mechanisms, as described in the following

paragraphs. Additionally, SRCM requires the user to set several parameters. These include the ASI

threshold, the maximum travel distance for avalanches and the wind speed threshold for snow transport.

The values used for this study are explained below.

3.5.2 Classification of snowfall and snowmelt

SRCM’s classification scheme iterated over all 647 dates corresponding to the satellite images. For

each pair of subsequent dates, two SC change maps were computed: one from the satellite-derived SC

maps and one from the SPHY SC maps. These indicated whether snow cover appeared, disappeared or

remained unchanged between the two subsequent dates, according to the satellite images or SPHY. Note

that SPHY is a TI-based model, where the only snow deposition and removal mechanisms simulated

are snowfall and snowmelt.

To classify cells where snowfall or snowmelt had taken place between subsequent dates, SRCM compared

the satellite-derived SC change maps to the SPHY SC change maps. Cells that were of equal value

in both change maps indicated that the satellite-observed SC change was also simulated by SPHY.

Hence, in cells where SC had appeared on the satellite imagery and snowfall was simulated by SPHY,

the snow deposition mechanism in that cell was classified as snowfall. Conversely, in cells where SC

had disappeared from the satellite imagery and snowmelt was simulated by SPHY, the snow removal

mechanism in that cell was classified as snowmelt. This way, SRCM used the SPHY results as reference

data to classify areas of snowfall and snowmelt on the satellite-observed SC changes.

3.5.3 Classification of avalanching

The ASI threshold between the moderate and high susceptibility classes was used as the input parameter

(Section 3.4). For each pair of subsequent dates, SRCM evaluated the criteria for gravitational snow

removal and deposition separately for each cell.

In cells where SC had disappeared from the satellite imagery and the ASI value was above the threshold,

the snow removal mechanism was classified as avalanching. The classification of snow deposition by

avalanching requires consideration of multiple factors. Ideally, these factors include flow directions, flow

accumulations and snow depths to accurately represent avalanche flow paths, much like the existing

SnowSlide model (Bernhardt & Schulz, 2010b). However, this is computationally intensive as each

factor must be evaluated per cell and date. For computational efficiency, SRCM approximated potential

avalanche deposits based on the watershed, elevation and travel distance.

Four criteria were evaluated to classify whether the snow deposition mechanism was avalanching. If,

(1) in a single time step, SC had appeared on the satellite imagery in a cell that is (2) within the same

watershed, (3) at a lower elevation and (4) within a maximum travel distance of 1500 m of an avalanche

source area, the snow deposition mechanism in that cell was classified as avalanching. The avalanche

source area is the lowest cell where avalanche removal has been classified in the same watershed as the
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evaluated cell. The travel distance was calculated by subtracting the distance to the watershed outlet

of the evaluated cell from that of the avalanche source area.

3.5.4 Classification of eolian snow redistribution

Entrainment of snow particles by wind occurs above a threshold wind speed, which depends on the age

and wetness of the snowpack (He & Ohara, 2017; Li & Pomeroy, 1997). A threshold of 4 m/s was used

as the minimum wind speed for snow entrainment, based on the lower limit of 95% confidence found

by Li and Pomeroy (1997). To identify locations of wind-driven snow deposition and removal, SRCM

evaluated each cell against three criteria based on the wind fields and the topographic exposure maps.

In cells where (1) SC had disappeared from the satellite imagery, (2) the wind speed was above the

threshold and (3) the topographic exposure in the corresponding wind direction was above average (i.e.

exposed), the snow removal mechanism was classified as wind-driven snow removal. Conversely, in cells

where (1) SC had appeared on the satellite imagery, (2) the wind speed was below the threshold and

(3) the topographic exposure in the corresponding wind direction was below average (i.e. sheltered),

the snow deposition mechanism was classified as wind-driven snow deposition.

As only 647 images were available for the 1461 days of interest, subsequent images were often separated

by more than one day. In these cases, SRCM not only considered the wind speeds and directions of

the subsequent dates but also of the intermediate dates. The maximum wind speed of these dates and

the corresponding wind direction were then used to evaluate criteria 2 and 3. This is because eolian

snow removal often occurs in relatively short-lived, local gusts (Ágústsson & Ólafsson, 2004). Thus,

the maximum wind speed is a better predictor of eolian snow removal than, for example, the mean wind

speed.

3.5.5 Classification of multiple or unexplained snow redistribution mechanisms

SRCM’s classification scheme included the possibility that a single cell satisfied the criteria of multiple

redistribution mechanisms. In this case, SRCM could not determine which mechanism had actually

taken place and assumed that the probability of each of the mechanisms having occurred was equal.

This assumption is related to the binary nature of SRCM’s classifications: each mechanism is assigned a

probability of either 1 (possible) or 0 (not possible), based on the criteria described above. Determining

fractional probabilities for individual or multiple mechanisms would require more advanced classification

criteria. The simplicity of a binary probability was preferred for this study due to time constraints.

In cells where SC had appeared on the satellite imagery, but the criteria for snow deposition were not

satisfied, the snow deposition mechanism was classified as unknown. Contrarily, in cells where SC had

disappeared from the satellite imagery, but the criteria for snow removal were not satisfied, the snow

removal mechanism was classified as unknown.
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3.5.6 SRCM output

By iterating over all 646 pairs of subsequent images and evaluating each cell against the criteria for

the snow redistribution mechanisms, SRCM generated 646 8-band rasters of the study domain. The

bands contained the binary classification maps for each snow redistribution mechanism: (1) snowmelt,

(2) removal by avalanching, (3) removal by wind, (4) unexplained removal, (5) snowfall, (6) deposition

by avalanching, (7) deposition by wind and (8) unexplained deposition. These results were exported as

multiband georeferenced raster files.

The 646 snow redistribution maps were aggregated per month and for the entire study period (2017-

2020). This was done by counting the number of occurrences of eolian snow redistribution per cell.

Aggregation of band 3 resulted in 13 frequency maps of eolian snow removal: one for each month and

one for the 2017-2020 period. Likewise, aggregation of band 7 resulted in 13 frequency maps of eolian

snow deposition.

4 Results

4.1 Wind fields and topographic exposure

The daily domain-averaged maximum wind speed and corresponding wind direction, as derived from

ERA5-Land for 2017-2020 and used as input for WindNinja, are shown in Figure 4. From January until

April, northwesterly winds are dominant and relatively strong. In May and June, the wind speeds decrease

and the wind direction becomes more variable, turning towards the southeast and the southwest. During

the monsoon season (July until September), southwesterly winds prevail and the wind speeds are lowest.

The transition to winter is characterized by increasing wind speeds and a variable wind direction, with

winds coming from all intercardinal directions, but mainly southwest and northeast. From November

to December, northeasterly winds dominate and wind speeds reach their annual maxima.

The downscaled wind fields from WindNinja show considerably higher local wind speeds than the

domain-averaged input values, indicating topographical flow acceleration (Figure 5). Wind speeds are

high (12-20 m/s) on ridges and exposed locations and low (0-4 m/s) in valleys and sheltered locations

(Figure 5; Figure 6). Also, the extreme relief of the study area causes flow reversal effects on the

leeward sides of mountains. Overall, the downscaled wind fields resemble the domain-averaged input

data. Across the study domain, the downscaled wind speeds are highest in April-May and November-

December and lowest during the monsoon season, much like the domain-averaged input wind speeds.
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Figure 4: Wind roses of domain-averaged daily maximum wind speeds per month of the year for 2017-2020. Note that
the frequency of occurrence, displayed on the concentric circles, is not constant.
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Figure 5: Downscaled wind field for January 9, 2017. Wind vectors are shown as arrows, pointing in the direction the
wind is blowing towards. Vector colors indicate wind speed. This wind field was produced by WindNinja using the mass
conservation solver and domain-averaged wind speed and direction input values of 1.9 m/s and 47.7 degrees (where 0◦

is north), respectively. These initial conditions represent the year-round dominant wind conditions.

Figure 6: Topographic exposure for each (inter)cardinal wind direction and as the sum of all directions. High values
indicate exposed locations, low values indicate sheltered locations.
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4.2 Avalanche susceptibility maps

Over the 2017-2020 period, almost all cells in Din-Gad Catchment have encountered snow cover at least

once. The per-cell mean ASI of all dates thus covers the entire study domain, representing the ASI

map of the study area if all cells were snow-covered (Figure 7). The positive relation between ASI and

elevation is apparent, with the majority of the high-susceptibility class occurring in the higher-altitude

eastern part of the catchment. The hillshade overlay and contour lines in Figure 7 illustrate the texture

of the terrain and the positive relation between slope and ASI. The steep slopes in the high-relief eastern

areas are most susceptible to avalanching, whereas the valley bottoms show minimal susceptibility. The

ASI threshold between moderate and high susceptibility was found to be 6.69.

Figure 7: Map of mean Avalanche Susceptibility Index in Din-Gad Catchment.

4.3 SRCM results

In the study period, 4,541,962 cells with SC change were identified from the satellite imagery. Of these

cells, 2.6% were classified by SPHY using the model parameters described in Section 3.3. 35.8% of

SC changes were classified by SRCM and 61.6% were not classified at all (Figure 8). This means that

in 61.6% of the cells, the snow cover, wind conditions and topographical parameters did not satisfy

SRCM’s criteria for any of the redistribution mechanisms. Of all SC changes, 2,212,793 cases were

classified as snow removal and 2,329,169 as snow deposition. A simple two-tailed test with a significance

level of 0.05 shows that this difference is significant.

In terms of snow removal, 14.4% of SC changes were attributed to wind-induced removal, 22.7%

to avalanching, 2.5% to melting and 60.4% were unexplained by SRCM. Regarding snow deposition,
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28.5% of changes were attributed to wind-supplied deposition, 6.1% to avalanching, 2.7% to snowfall

and 62.7% were unexplained. Notably, almost 1.6 times as much snow removal was attributed to

avalanching than to wind-driven removal. In contrast, wind-supplied snow deposition was classified

almost 4.7 times as frequently as deposition by avalanching. Trial and error inspection of several satellite

images of days where SRCM classified abundant avalanching revealed no evidence of avalanches. Most

SC changes generally occurred during October, November and December, except for in 2019, when

most changes occurred in January, March and April (Figure 8).

Figure 8: Bar chart displaying the number of cells where SC change took place (both snow removal and deposition),
per month for 2017-2020. Each month displays two bars: the left bar denotes the number of cells that were classified
by a model (the cell count for SRCM is stacked upon the SPHY cell count); and the right bar denotes the number of
cells that were not classified by any model.

On average, the SRCM classification maps depict the SC changes that occurred during roughly two

days. The maps show distinguished patterns between the snow redistribution mechanisms. Time steps

where either snow removal or deposition persists are abundant and cases where both occur on the same

day are rare. Locations where SRCM identified multiple possible mechanisms in the same cells are

also rare. These cases mostly represent a shared probability between snowfall and wind-supplied snow

deposition or between snowmelt and wind-driven snow removal.

4.3.1 Examples of SRCM output maps

Evaluation of the SRCM results using PlanetScope imagery reveals that SRCM can classify larger

areas of SC change than SPHY, although the redistribution mechanisms are often incorrectly classified.

For example, a considerable portion of the study domain received snow on April 15, 2019, of which

29.4% were classified by SRCM, whereas only 11.6% were classified by SPHY using the chosen model

parameters. 59.0% of the observed SC change was not classified by SRCM on this date (Figure 9).

Examination of the southwestern ridge reveals that the cells where snow deposition by avalanching is

classified, are likely incorrect due to the absence of lobes or recognisable avalanche deposits (Figure 9).

Furthermore, there are no cells on the upper part of the ridge that were classified as possible avalanching

sites on April 15, 2019.
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Figure 9: SRCM results for April 15, 2019. Cells are colored according to the snow deposition mechanism. Snow
removal is not shown, as it was negligible on this date. The lower part of the figure shows a PlanetScope image (3 m
resolution) covering the extent of the orange rectangle.

Between October 27 and 28, 2020, large areas of snow cover disappeared from the high, eastern part

of Din-Gad Catchment (Figure 10). SRCM classified 53.9% of this SC change, whereas the other

46.1% remained unclassified. Notably, SPHY did not simulate any SC removal during this day. It

is important to note that SPHY may have simulated snowmelt of less than 5.0 mm but this is not

considered as SC removal using the chosen model parameters. Whereas SRCM attributed most snow

removal to avalanching, the satellite images do not display any evident scarps, break lines or other

avalanche-related features.
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Figure 10: SRCM results for October 28, 2020. Cells are colored according to the snow removal mechanism. Snow
deposition did not occur on this date and the mechanisms shown in the legend are the only ones that were classified on
this date. The lower part of the figure shows PlanetScope images of the before and after situation in the left and right
panel, respectively. These images cover the extent of the orange rectangle.

4.3.2 Relation between wind speed and frequency of eolian snow redistribution

Figure 11 illustrates the relation between wind speed and the frequency of wind-induced snow removal.

From January until April and in June, the correlation is generally negative and significant, meaning that

the frequency of occurrence decreases with increasing wind speed. In May, the negative correlation is

only significant for 2020. July, August and September generally show insignificant or variable correlations

and in October, a significant positive correlation appears. Thus, in October, the frequency of occurrence

increases with increasing wind speed. In November, the correlation is significant but variable over the

years. In December, the significant negative correlation returns.
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2020 is the year where most months show a significant correlation, resulting in a pronounced pattern

(Figure 11). From December until May, the correlation is negative and significant. A subtle trend is

visible during the first five months of 2020. From December until March, wind speeds of 5-7 m/s show

snow removal frequencies of at least 0.9. In April and May, these frequencies are found at slightly higher

wind speeds (6-8 m/s). This trend continues in June and July, although the correlation in these months

is insignificant. During the late monsoon season and fall (September until November), frequency of

eolian snow removal increases with increasing wind speed. Also, the highest frequencies (>0.9) in these

months are found at wind speeds above 12 m/s. This indicates that the threshold wind speed for

blowing snow is seasonally variable.

Figure 11: Binned scatterplot of maximum wind speeds and frequency of eolian snow removal per month for
2017-2020. Each column represents 230,318 maximum wind speed values: one per cell in the study domain of 638x361
cells. The wind speeds are grouped into bins of 1 m/s and the color represents the mean normalized frequency of eolian
snow removal per bin. Above each column, the regression coefficient of a linear regression of frequency on wind speed
is displayed. Asterisks indicate a significant correlation, assuming a significance level of 0.05. Note that January and
August of 2017 show no values due to the absence of suitable images for these months.

Figure 12 shows that the frequency of eolian snow deposition generally decreases with decreasing wind

speed, as 35 of the 48 months show a significant positive correlation. Of the 28 months that show

deposition frequencies of at least 0.9 at any wind speed, 18 months show these frequencies at wind

speeds above 2.5 m/s, of which 11 months show these frequencies at speeds over 3.0 m/s. In other

words, high frequencies of deposition (>0.9) occurs over 1.5 times as often at wind speeds of 2.5-4.0

m/s than at speeds of 0.0-2.5 m/s. Notably, there are no months that show a significant negative

correlation.

4.3.3 Patterns of eolian snow redistribution

The general patterns of eolian snow redistribution (Figure 13) reflect the northeast topographic exposure

(Figure 6), which corresponds to the year-round prevailing wind direction (Figure 4). The highest snow

removal frequencies are concentrated on exposed, northeast-facing ridges (Figure 13). The highest

snow deposition frequencies occur in sheltered areas downwind of these ridges. The frequency of wind-

supplied snow deposition generally decreases from east to west, with decreasing elevation.
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Figure 12: Binned scatterplot of maximum wind speeds and frequency of eolian snow deposition per month for
2017-2020. Each column represents 230,318 maximum wind speed values: one per cell in the study domain of 638x361
cells. The wind speeds are grouped into bins of 0.25 m/s and the color represents the mean normalized frequency of
eolian snow deposition per bin. Below each column, the regression coefficient of a linear regression of frequency on
wind speed is displayed. Asterisks indicate a significant correlation, assuming a significance level of 0.05. In July, 2017,
no eolian snow deposition was classified. January and August of 2017 show no values due to the absence of suitable
images for in these months.

Figure 13: Maps showing the year-round frequency of occurrence of eolian snow removal (left) and deposition (right)
in the study domain. Din-Gad Catchment is outlined in white.

The monthly maps of wind-driven snow removal (Figure 14) and snow deposition (Figure 15) also

show a clear relation with topographic exposure (Figure 6). Exposed areas experience more frequent

wind-induced snow removal, whereas sheltered areas experience more snow deposition. These patterns

are consistent with the dominant wind directions per month (Figure 4).

Wind-induced snow removal patterns

From January until April, wind-driven snow removal is concentrated in mostly the same locations in

the study domain (Figure 14). These are northeast-facing slopes close to the ridges that demarcate

the catchment boundary in the southwest and northwest of the study area. These faces are exposed

in the prevailing wind direction during these months (Figure 4; Figure 6). Along the more elevated

northeastern boundary of Din-Gad Catchment, patches of frequent eolian snow removal can also be

identified.
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May and June show relatively little wind-blown snow removal due to decreased wind speeds (Figure

14, supported by Figure 4). Also, areas of activity are less distinguished due to the more variable wind

direction. July and August display large areas of NoData values (Figure 14; Figure 15). This is related

to the extensive cloud cover during the monsoon season, resulting in limited availability and coverage

of satellite images for these months (Figure 2). Therefore, the highest frequencies for July and August

are less reliable than for the other months.

During the end of the monsoon season in September, the gentle southwesterly winds limit the eolian

removal of snow to the most exposed southwest-facing slopes (Figure 14, supported by Figure 4;

Figure 6). The variable wind direction in October results in a more erratic pattern of wind-induced

snow removal activity. From November to December, the strong northeasterly winds result in areas of

frequent wind-driven snow removal that are concentrated on exposed, northeast-facing slopes.

Figure 14: Maps showing the frequency of occurrence of eolian snow removal per month in the study domain.
Din-Gad Catchment is outlined in white. Black pixels indicate NoData.
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Wind-supplied snow deposition patterns

In general, the eolian deposition of snow occurs over more widespread areas than removal does (Figure

15). When supported by Figure 4 and Figure 14, Figure 15 shows another pattern. In the western half

of the catchment, eolian snow deposition occurs in the valleys and on the lee sides of the mountains,

downwind of areas of frequent snow removal. This pattern is most pronounced in January and March

and to a lesser extent in February. In the eastern half of the catchment, the frequency of deposition

decreases from January to March (Figure 15). In January, local concentrations of frequent deposition

are observed on the exposed, northeast-facing slopes just southwest of the Dokriani glacier (Figure 15,

supported by Figure 6). In February, deposition is concentrated towards the valley center.

Despite the similarity of wind conditions between March and April (Figure 4), the deposition of snow is

more erratic and towards the higher elevations in the east during April (Figure 15). In May and June,

limited snow is available for deposition, resulting in relatively low frequencies of eolian snow deposition.

Figure 15: Maps showing the frequency of occurrence of eolian snow deposition per month in the study domain.
Din-Gad Catchment is outlined in white. Black pixels indicate NoData.
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During the late monsoon season, deposition is concentrated in topographically sheltered areas that

face away from the prevailing wind direction (Figure 15, supported by Figure 4; Figure 6). Snow that

is eroded from southwest-facing slopes is deposited on opposite-facing slopes, just southwest of the

Dokriani glacier and just outside of Din-Gad Catchment, in the northeastern corner of the study area

(Figure 15). In October, the variable wind conditions again result in an erratic pattern of deposition.

As is the case for the snow removal patterns, the deposition patterns in October are restricted to the

more topographically extreme parts of the catchment, where topographic exposure gradients and wind

speed gradients are the greatest.

November and December experience the highest frequencies of wind-supplied snow deposition of the

year (Figure 15). Contrary to the patterns of wind-induced snow removal in these months, the deposition

patterns are widespread and located in the valleys and sheltered areas downwind of the snow removal

areas (Figure 15, supported by Figure 4; Figure 6; Figure 14). Remarkably, the most concentrated

areas of high wind-driven snow removal frequency in December are contrasted by the diffuse patterns of

high wind-supplied snow deposition frequency. Also, the frequency of deposition in December decreases

downwind (towards the southwest), with increasing distance from the potential source areas.

5 Discussion

5.1 Accomplishments of this study

This study has demonstrated a novel method of mapping eolian snow redistribution patterns in complex

topography. An unprecedented combination of optical satellite imagery, downscaled wind fields and

an empirical classification model was used. The processing of Sentinel-2, Landsat 8 and PlanetScope

images on the flexible and scalable Earth Engine platform provided a solid base for mapping near-daily

SC change at 30 m resolution. Although the spatial coverage was inherently limited by cloud cover,

the studied period (2017-2020) was long enough to provide almost full coverage of the study area by

monthly averaging the data.

This is the first time that WindNinja, an application originally developed for wildland fire modelling, was

used for modelling snow redistribution. With the ERA5-Land input data, it provided precise downscaled

wind fields, even for the extreme Himalayan topography. Few researchers outside of the WindNinja

development team have used the application for scientific purposes (Keenan et al., 2022; Mallare et al.,

2022; Reynolds & Lundquist, 2019). The application was an essential component of this study that

provided valuable information on the dynamics of wind and wind-blown snow over complex terrain.

The newly developed Snow Redistribution Classification Model (SRCM) demonstrated the ability to

identify SC changes from satellite imagery and classify three possible snow removal or deposition mech-

anisms responsible for these changes. The model explored the feasibility of empirical snow redistribution

modelling with a modest to low computational demand. Given sufficient data availability and compu-
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tational resources, SRCM itself is scalable to study domains and time steps of any size. The scalability

limits of this study are not determined by SRCM, but rather by the satellite image availability and Wind-

Ninja. Although SRCM has its limitations, which are discussed in Section 5.5, it provides a new concept

for studying eolian snow redistribution over complex topography at high spatiotemporal resolution.

5.2 Comparison of WindNinja algorithms

The ERA5-Land wind data was downscaled using the mass conservation solver in WindNinja, resulting

in wind fields that resemble the initial domain-averaged wind field (Section 3.2.1). Nevertheless, the

mass-momentum conservation solver is theoretically more suitable for Din-Gad Catchment, because it

accounts for incompressible turbulent flow and momentum effects. This is especially important in study

areas with extreme topography. However, this study was limited to the mass-momentum solver due

to constraints on time and computational resources. Moreover, ERA5-Land climate reanalysis data is

designed to provide an accurate approximation at scales much larger than Din-Gad Catchment. For

reference, only six cells of the ERA5-Land grid intersect with the study domain. Arguably, more realistic

results could be generated by initializing WindNinja using AWS wind measurements, although multiple

AWS would be necessary. Despite the presence of an AWS in Din-Gad Catchment, its data was not

accessible at the time of this study.

A comparison was made between the mass and mass-momentum conservation solvers. Figure 16 shows

the downscaled wind field for January 9, 2017 (as does Figure 5), but generated using the mass-

momentum solver. The differences are prominent: the mass-momentum solver (Figure 16) yields less

variable wind speeds, but more variable wind directions compared to the mass solver (Figure 5). For

example, the maximum factor of topographical flow acceleration (the maximum downscaled wind speed

divided by the initial domain-averaged wind speed) is lower for the mass-momentum solver (ca. 4.9)

than for the mass solver (ca. 8.6). The domain-averaged downscaled wind speeds are 4.0 m/s for

the mass solver and 2.1 m/s for the mass-momentum solver, resulting in mean topographical flow

acceleration factors of 2.1 and 1.1, respectively. This is in line with the mean factors of 1.7-2.1 found

by other studies, albeit for less extreme topography (Bowen & Lindley, 1974; Ngo & Letchford, 2009).

Differences in downscaled wind direction are also abundant, reaching up to 90◦ on the northeast-facing

slopes in the southwest of the catchment and even up to 180◦ in the central valley of the catchment

(Figure 5; Figure 16). Finally, the downscaled wind field from the mass-momentum solver shows more

pronounced turbulent effects on the lee side of topographical obstacles, that often take the shape of

eddies, whereas this is generally not the case for the mass conservation solver.

The large differences in downscaled wind speed and direction imply that if the mass-momentum solver

was used in this study, the resulting snow redistribution patterns would be quite different. Firstly, the

lower topographical flow acceleration factors indicate that the wind speed threshold for snow transport

would be exceeded less often. Hence, eolian snow removal would be more restricted to areas with high

acceleration factors, such as the steep ridges along the northeastern boundary of Din-Gad Catchment.
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Figure 16: Downscaled wind field for January 9, 2017. Wind vectors are shown as arrows, pointing in the direction the
wind is blowing towards. Vector colors indicate wind speed. This wind field was produced by WindNinja using the
mass-momentum conservation solver and domain-averaged wind speed and direction input values of 1.9 m/s and 47.7
degrees (where 0◦ is north), respectively. These initial conditions represent the year-round dominant wind conditions.

Secondly, the more variable downscaled wind directions are more poorly described by the domain-

averaged wind direction. As the latter determines the topographic exposure, the relation between the

eolian snow redistribution patterns and the topographic exposure in the prevailing wind direction would

be weaker. Finally, the more pronounced turbulent effects would lead to stronger wind speed gradients

on the lee sides of obstacles, leading to more wind deceleration and faster snow deposition in these

areas. This would restrict eolian snow deposition to more sheltered areas and limit the potential travel

distance of airborne snow.

These implications emphasize that care should be taken when using downscaled wind fields for modelling

snow transport, as snow redistribution models are highly sensitive to wind speed and direction (Bernhardt

et al., 2009; Dadic et al., 2010; Eidsvik et al., 2004; Essery, 2001; Liston & Sturm, 1998). However,

the uncertainty of the model results can only be quantified with a sensitivity analysis, which is further

discussed in Section 5.5.

5.3 Interpretation of snow redistribution mechanisms

5.3.1 Snowfall and snowmelt

The overall SC change classification ratio of 2.6% for SPHY is remarkably low. This is indicative of the

limitations of a TI-based snow cover model. Whereas this study only focuses on snow cover, SPHY can
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also simulate snow depth. SPHY may perform adequately for large snow depths, but its performance is

inadequate for thin snowpacks, as SC change occurs at modest snow depths. In regions where SPHY

had difficulty classifying SC change, such as the lower ridge area in the southwest corner of Din-Gad

Catchment (Figure 9), SPHY possibly simulated snow deposition up to a depth of 5.0 mm. Below this

threshold, cells are modelled as snow-free. Lowering this threshold could increase SPHY’s SC change

classification ratio, as snowfall and snowmelt of snowpacks less than 5.0 mm would also be classified.

However, more extensive research is necessary to quantify exactly how much snow cover change is

overlooked by SPHY. This could be done by running the model with different parameter settings and

performing sensitivity analyses.

Regarding the low classification ratio, another explanation involves SPHY’s temperature input data,

which is downscaled from ERA5 data using TopoSCALE (Fiddes & Gruber, 2014). TopoSCALE’s

simple parameterization of temperature lapse rate is likely too general for the actual temperatures in

the study area. This parameterization is especially sensitive to errors around freezing temperature. If

the simulated temperature deviates only 1◦C from the actual temperature, the simulated snow line will

deviate 192 m in elevation from the actual snow line. This is assuming a temperature lapse rate of

-5.2◦C/km, which represents annual mean conditions in the Central Himalaya (Kattel et al., 2013). If a

1◦C error makes the difference between above or below-zero temperatures, areas just below or above the

snow line, within a distance proportional to the lapse rate, will be erroneously simulated as snowmelt or

snowfall areas. In short, a simple parameterization of temperature lapse rate is insufficient for modelling

the full extent of snowfall and snowmelt in complex topography.

Yet another potential cause of SPHY’s low classification ratio is the propagation of errors from the

downscaled ERA5 input data. ERA5 is designed to provide large-scale (30 km) estimates of climatic

variables at an hourly interval. Although vast amounts of historical observations have been assimilated

into ERA5’s climatic models, the reanalysis data contains uncertainties regarding the magnitude and

timing of precipitation events (Hersbach et al., 2020). This is especially relevant for study areas at

subgrid scales (i.e. scales smaller than the native 30 km resolution), like Din-Gad Catchment. After

downscaling the ERA5 data with TopoSCALE and using it to run SPHY, an uncertainty of a few hours

in the timing of a precipitation event (in ERA5) may result in a one-day delay of a snowfall event

(in SPHY). Comparison of the SPHY-simulated SC change and the satellite-observed SC change (by

SRCM) would then result in an overlooked (non-simulated) SC change on one day (type II error) and

a falsely simulated SC change on the next day (type I error).

5.3.2 Avalanching

Figure 9 shows that on April 15, 2019, large areas of snow cover appeared on the southwestern flanks

of Din-Gad Catchment. Of the observed SC change, only the upper part of the ridge was identified

by SPHY. This demonstrates the shortcomings of the TI-based approach. SRCM neither successfully

classified the snow deposition mechanism on the slopes below the ridge. Figure 9 demonstrates that
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SRCM can classify unnaturally large areas as potential avalanche deposits without considering the

number or size of avalanche source areas on the same day. SRCM’s criteria are a crude approximation

of potential avalanche deposit areas based on the watershed, elevation and travel distance. These

oversimplifications hypothetically allow modelled avalanches to travel obliquely down a uniform slope

or grow into disproportional sizes, which is both untrue to reality.

A possible solution would be to limit the number of potential avalanche deposit cells to the number

of classified avalanche source cells. However, this would not account for differences in snow depth. In

reality, avalanching is highly unlikely to completely remove the snow cover, as the snow slides across a

smooth fault surface, which is usually the underlying snow that smoothes out most terrain roughness

(Schweizer et al., 2003). Ideally, SRCM’s criteria should include flow paths, flow accumulations and

snow depths, much like the SnowSlide model of Bernhardt and Schulz (2010b). This would drastically

improve the accuracy of the avalanche deposit classifications, although the high computational demand

would be disadvantageous for studies over large areas and long periods. The SnowSlide model was

not used in this study due to computational limitations. Additionally, the maximum travel distance for

implicitly modelled avalanches is 1500 m, which is generous when compared to the findings of Butler

and Malanson (1992), D. K. Singh et al. (2020), and Teich et al. (2012). A more conservative maximum

travel distance would dampen the occurrence of unnaturally large areas of classified avalanche deposits.

More snow removal was attributed to avalanching than to wind in terms of SCA. However, a trial

inspection of satellite images (e.g., October 27-28, 2020, Figure 10) revealed no scarps, break lines,

lobes or other evidence of avalanches. This indicates that SRCM’s ASI threshold of 6.69 was too low,

implying that the Jenks classification method resulted in unnaturally large high-susceptibility areas.

Alternative classification methods could result in differently distributed ASI classes and a higher ASI

threshold. For example, an equal interval classification or setting the threshold to 2 standard deviations

above the mean would have yielded ASI thresholds of 7.11 or 7.75, respectively. Alternatively, the

ASI could be categorized into more than four classes, also increasing the threshold for the highest-

susceptibility class. These solutions would exercise less weight on SRCM’s avalanching classification

scheme, resulting in more balanced classification mechanisms.

Moreover, the overclassification of snow removal by avalanching is partly caused by the MCDA-AHP

method used to compute the ASI. As Equation 2 does not include snow depth, but only snow cover,

it implies that avalanches can form in very thin snowpacks. This leads to unrealistically large areas of

classified avalanche source areas. Thus, consideration of snow depths is important for improving the

accuracy of avalanche classifications.

5.3.3 Sublimation

The PlanetScope scenes of October 27 and 28, 2020, in Figure 10 are mostly cloud-free, meaning that

solar radiation could have contributed to the snow ablation process by causing sublimation. As radiative

transfer processes like sensible and latent heat fluxes are not implemented in SPHY, the sublimation of
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snow is not accounted for. This is problematic, as sublimation can account for up to 21% of annual

snowfall in the Himalaya and possibly more at wind-exposed locations (Stigter et al., 2018).

Sublimation is neither explicitly accounted for in SRCM, although one could argue that it is implicitly.

Whereas snow sublimation can take place from the ground or from vegetation canopies, the majority

(4-10 times as much in terms of SWE) of sublimation takes place from turbulent suspension (Strasser

et al., 2008). This means that the snow sublimates after entrainment by the wind. As this study focused

primarily on wind-driven removal of snow cover from the ground, which occurs before sublimation, the

effects of the process were considered negligible for this study. Furthermore, sublimation may account

for a fraction of SWE loss, but it is unlikely to completely remove the snow cover. If the snow cover

depletes, the albedo decreases and more solar radiation is transferred to sensible heat at the expense of

latent heat, which then stimulates melting instead of sublimation.

5.3.4 Eolian snow redistribution

The seasonal variability of the threshold wind speed for blowing snow, visible in the 2020 panel of Figure

11, is most likely related to the age and wetness of the snowpack. Fresh or dry snow requires lower

wind speeds to be blown away than aged or wet snow (Li & Pomeroy, 1997). This is because wet snow

has larger intergranular cohesive forces, that require larger opposing forces (i.e. higher wind speeds)

to break the cohesive bonds and allow for the entrainment of snow particles (Schmidt, 1980). Aged

snow also requires a higher threshold wind speed, because increasing snowpack age allows for more

compaction, crystal restructuring and metamorphosis to occur, thereby increasing the force required to

release snow particles from the snowpack.

From December until March, average temperatures are below freezing and precipitation falls as snow,

resulting in fresh and dry snowpacks. From April until July, temperatures increase, leading to reduced

snowfall and increased rainfall and snowmelt, resulting in the aging and wetting of the remaining snow.

This trend continues throughout the monsoon season, thereby increasing the wind speed required for

snow transport. Threshold wind speed ranges for the transport of wet and dry snow have been previously

established in the literature (Li & Pomeroy, 1997). Specifically, these are 7-14 m/s for wet snow and

4-11 m/s for dry snow. Figure 11 shows that in 2020, the wind speed ranges at which the snow removal

frequencies are highest (>0.9, where points are most red) agree with the established threshold range

for dry snow from December until April and with the range for wet snow from May until November.

For the deposition of wind-supplied snow, the frequency decreases with decreasing wind speed below the

threshold (Figure 12). Snow particles only remain suspended in the wind for as long as the wind speed

is above the threshold. If the required wind speed is not sustained, the particles will be deposited. As

the threshold in SRCM is set to 4 m/s (after Li and Pomeroy (1997)), any wind speeds just below this

result in the immediate deposition of snow. This is apparent in Figure 12, as high deposition frequencies

(>0.9) occur over 1.5 times as often at wind speeds of 2.5-4.0 m/s than at speeds of 0.0-2.5 m/s.

35



A distinction can be made between static and dynamic thresholds (Bagnold, 1941). The former describes

the wind speed necessary to initiate particle motion and the latter describes the lowest wind speed

at which particle motion can be sustained. For wind-driven transport of non-cohesive particles, the

dynamic threshold is generally 0.8 times the static threshold (Greeley & Iversen, 1987). This is because

once they drop out of suspension, the kinetic energy of saltating particles provides impact forces that

dislodge stationary particles (Schmidt, 1980). Based on this distinction, one could argue that the

(dynamic) threshold for the deposition of snow is lower than the (static) threshold for the removal of

snow. However, snow particles are cohesive, to such an extent that shear forces exerted by wind are

insufficient to initiate particle transport (Schmidt, 1980). Thus, snow particles require impact forces to

be ejected from the surface, rendering the static threshold unsuitable for snow. Hence, snow transport

requires a dynamic threshold that applies to both removal and deposition. Recently, a new formula

was established for calculating this threshold wind speed using snow temperature, particle size and

deposition time (He & Ohara, 2017), but these data were not available for the study area.

5.4 Interpretation of snow redistribution patterns

5.4.1 Spatial heterogeneity and subgrid variability

The wind-driven snow removal and deposition patterns displayed in Figure 14 and Figure 15 correspond

well to the prevailing wind directions (Figure 4) and the topographic exposure in those directions (Figure

6). The contrast between the concentrated wind-driven snow removal areas and the widespread wind-

supplied snow deposition areas illustrates the dispersivity of the snow redistribution process. Eolian

snow removal is very spatially heterogeneous because high wind speeds often occur in very short-lived,

local gusts (Ágústsson & Ólafsson, 2004). Snow that is entrained by these gusts disperses in turbulent

suspension before being deposited over a larger area at lower wind speeds. Likewise, the short lifespan of

wind gusts (several seconds) allows entrained snow to only travel a limited distance, often depositing it

in a more sheltered area. Thus, the amount of deposition of wind-supplied snow is inversely proportional

to the distance from the source area. This pattern is especially well-established in the December panel

of Figure 15. These findings support those of Bernhardt et al. (2012), Dadic et al. (2010), Hiemstra

et al. (2002), Liston and Sturm (1998), Mott and Lehning (2010), and Pomeroy et al. (1998).

The effect of trees on snow redistribution is limited to scales of ca. 5 m and superimposed onto the

topographical effects on snow redistribution (Hiemstra et al., 2002). Despite forests covering roughly

half of Din-Gad Catchment, these effects are not considered in this study. WindNinja does require

vegetation type as input but assumes it to be homogeneous across the entire domain. Hence, the

downscaled wind fields and modelled snow redistribution patterns are probably more accurate in the

non-vegetated parts of the study domain. Furthermore, this study does not consider eolian snow

redistribution patterns at scales below 30 m. This means that small-scale snow deposition patterns

such as dunes and cornices cannot be identified. These require wind and snow transport models at

resolutions below 10 m to be identified (Mott & Lehning, 2010).
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5.4.2 Implications for hydrological modelling

Eolian snow redistribution has been shown to increase snow cover heterogeneity compared to TI-based

snow cover simulations (Bernhardt et al., 2010a; Liston, 2004; Mott & Lehning, 2010). At which scales

this affects the hydrological behaviour of snowmelt runoff depends on whether there is a net influx or

outflux of snow from the catchment. The significantly higher number of snow deposition cells versus

snow removal cells indicates a net increase in SCA over the 2017-2020 period. However, this does not

necessarily mean that the amount of snow in Din-Gad Catchment has increased, as snow depths remain

unknown. It is more likely that snow from thick snowpacks (e.g., accumulated snow on ridges) was

dispersed and spread over larger, snow-free areas, increasing the SCA in the catchment.

As discussed briefly in Section 5.3.1, SC change occurs at modest snow depths. The scope of this study

is restricted to snow cover due to the absence of snow depth data. The incorporation of snow depths into

the methodology would greatly benefit the accuracy of the snow redistribution classifications. The extra

dimension would facilitate the modelling of changes in snow storage, as apposed to snow cover. This

would enable quantification of snow redistribution volumes, which are valuable hydrological insights.

The spatial distribution of snow determines that of snowmelt runoff (Brauchli et al., 2017). Thin

snowpacks result in fast melting and runoff generation, as they require relatively little energy to melt

and the generated meltwater must only travel a limited distance. Contrarily, large snow accumulations

require more energy to melt, resulting in slower melting and delayed runoff generation, as the meltwater

must travel a greater distance. Thus, the snow redistribution not only alters the spatial component

of hydrologic behaviour, but also the timing and duration of snowmelt runoff. This emphasizes the

importance of including snow redistribution processes in hydrological models, especially in high-mountain

areas (Brauchli et al., 2017).

5.5 Limitations of this study

The method used in this study has three main limitations, which are all inherent to the use of optical

satellite imagery. Firstly, the spatiotemporal availability of data is limited by satellite specifications and

cloud cover. Few Earth observation platforms provide daily, high-resolution, global coverage and even

fewer are publicly accessible. Clouds create an unavoidable issue when working with passive optical

sensors, often severely limiting the spatial coverage of the study domain. Secondly, optical imagery

can only be used for studying binary snow cover, but not for snow depth or snow storage. This is

fundamentally restrictive for studying snow redistribution volumes. Lastly, validation of the results is

impossible without ground truth data, whether they are field observations or AWS measurements. The

highest degree of evaluation in this study is achieved by comparing the SRCM results to the satellite

images of the same day.

The data used in this study also bear limitations. For example, the majority of the satellite imagery was

sourced from the PlanetScope platform (Figure 2), which is not equipped with a SWIR sensor. Instead

of deriving snow cover from the NDSI, which is computed using the SWIR band, SC from PlanetScope
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imagery was derived using the pre-classified UDM2 band, which is less accurate. To circumvent this

issue, preference was given to Sentinel-2 and Landsat 8 imagery where possible. For these platforms,

a constant NDSI value of 0.2 was used to distinguish between snow-covered and snow-free ground.

The effectiveness of this threshold depends on the brightness of a scene (which is related to the solar

zenith angle and atmospheric conditions) and whether a pixel is located in a shadow (terrain shadow or

cloud shadow) and thus performs differently per pixel (Kour et al., 2016). A spatiotemporally variable

NDSI threshold is likely to produce more accurate SC maps, but proper calibration of the appropriate

threshold ranges requires seasonal in situ measurements like ground-based photographs (Härer et al.,

2016; Härer et al., 2018). The empirically-derived NDSI threshold of 0.2 was based on the year-round

characteristic bimodal distribution of the NDSI values for both satellite platforms. Whilst this makes

the threshold quite temporally robust, the spatial errors caused by shadows are not considered. SCA

is often underestimated in shadow areas (Jasrotia et al., 2022), highlighting a probable cause of the

61.6% of unexplained SC changes by SRCM. A spatially variable NDSI threshold, that accounts for the

effects of shadows, would lead to a higher overall classification ratio for SRCM.

Regarding the interpretation of snow redistribution patterns, care must be taken when inferring the

source areas of snow deposits. When snow is removed by wind, the travel direction can be inferred

from the wind direction. However, the wind direction in a snow deposition cell does not necessarily

provide accurate information on the direction of origin of the snow. Essentially, the wind may follow

a non-straight flow path and continue for an unknown duration. Ultimately, approximating the source

area of a wind-supplied snow deposit is only possible using wind duration data. Long, strong winds may

cause more frequent wind-induced snow removal and more distal snow deposits, potentially resulting

in a net influx or outflux of snow from the catchment. ERA5-Land provides hourly wind data, which

could be used to create downscaled hourly wind fields. Even so, the computational demand would be

unreasonably high and no existing satellite platform provides hourly imagery with global coverage, so

any modelled snow redistribution at a sub-daily time scale could not be evaluated. In fact, pinpointing

the exact source area of eolian snow deposits and evaluating sub-daily wind and snow dynamics requires

a fully distributed dynamic atmospheric model with advanced particle backtracking.

5.6 Implications and recommendations

The study of Bernhardt et al. (2012) provided valuable insights into the effects of gravitational and

eolian snow redistribution on snow melt and sublimation. In an attempt to deepen this knowledge,

these effects have been studied in a more topographically extreme area. Although this study takes

a more empirical approach, rather than the physically-based modelling approach of Bernhardt et al.

(2012), the general findings regarding the snow redistribution patterns agree. However, their findings

on hydrological effects, like reduced snowmelt on crests and increased snowmelt at foothills, due to

redistribution of snow from exposed to sheltered locations, cannot be supported by this study due to

the absence of snow depth data.
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An alternative approach to studying snow redistribution is by using a Snow Persistence (SP) index as

a proxy indicator. SP is a simple metric of snow cover duration that describes the normalized snow

cover duration, i.e. the number of snow-covered days over the total number of days in a certain period.

SP has been proven to be an appropriate metric for tracking SC changes (Nolin et al., 2021) and a

potential descriptor and predictor of hydrological behaviour (Le et al., 2022). Its advantages are that no

meteorological data are required and it can be easily derived using satellite imagery (Hammond et al.,

2018).

Wayand et al. (2018) have studied large-scale snow redistribution in the Canadian Rocky Mountains.

They identified 7979 ridges in a study area of 21,118 km2, over which they analysed trends of SP,

shortwave irradiance and elevation perpendicular to the ridges. Their statistical approach reasoned

that when the SP and shortwave irradiance profiles showed a strong negative correlation, the snow

distribution patterns were largely determined by melting. When the correlation was different, the

patterns were attributed to the redistribution of snow by wind or gravity, making no distinction between

the two. This approach is limited to indirectly quantifying one-dimensional snow redistribution over

different ridge types and is only suitable for mapping large-scale redistribution patterns on monthly to

yearly time scales. One month’s worth of daily imagery is just enough to compute a reliable SP index,

making sub-monthly analysis difficult. Also, only large study areas (ca. >1000 km2) will provide enough

ridges and topographic features from which to derive reliable statistics.

As the current study domain is only 207 km2 and the main interest was identifying two-dimensional snow

redistribution patterns, a different approach was used for this study. Most importantly, this included

an attempt to distinctly classify avalanches and wind-driven snow redistribution and the evaluation of

patterns using downscaled wind fields, all on a near-daily basis. For study areas up to 2500 km2 (based

on the computational limitations of WindNinja), a combination of methods from both studies could

yield better insights into snow redistribution and bridge the gap between small-scale and large-scale

analysis in both the spatial and temporal domains.

Based on this study, a few recommendations can be made for future research. Firstly, the use of radar

imagery provides numerous advantages over optical imagery. These include (1) better spatial coverage,

as clouds do not obstruct the view of active Synthetic Aperture Radar (SAR) sensors, (2) the support of

snow depth measurements and (3) the possibility of distinguishing between wet and dry snow (Buchelt

et al., 2022; Marin et al., 2020; Nagler et al., 2016). This would enable the quantification of snow

redistribution volumes and evaluation of variable threshold wind speeds for the transport of wet and

dry snow. The Sentinel-1 platform is exceptionally suitable for this application and is also accessible

through the Google Earth Engine data catalog (Gorelick et al., 2017).

Secondly, it is appropriate to conduct sensitivity analysis and error propagation tests when working with

an empirical classification model like SRCM. This way, the effects of thresholds like the NDSI, ASI or

wind speed for snow transport can be investigated. Also, the extent to which any assumptions affect

the final results can be quantified. Ultimately, this will increase the SC change classification ratio.
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Lastly, it is recommended to include field observations where possible. The incorporation of ground

truth data, whether it is field data or AWS measurements, enables the calibration of the models that

constitute the methodology. This allows the results to be validated, fundamentally increasing the

accuracy of simulations and classifications.

6 Conclusion

This study aims to identify eolian snow redistribution patterns in Din-Gad Catchment, Central Himalaya.

This was done using an unprecedented combination of optical satellite imagery (Sentinel-2, Landsat 8

and PlanetScope), climate reanalysis data (ERA5, ERA5-Land), downscaled wind fields (WindNinja),

a TI-based hydrological model (SPHY) and a newly developed empirical classification model for snow

redistribution mechanisms (SRCM). Snow cover changes from January 1, 2017, to December 31, 2020,

were identified and attributed to three different snow removal and deposition mechanisms on a near-daily

basis. The results were aggregated per month to assess the eolian snow redistribution patterns.

The results show that of all snow cover changes, SRCM classified 21.6% as wind-driven and 14.1%

as gravity-driven. Remarkably, almost 1.6 times as much snow removal was attributed to avalanching

than to wind-driven removal, whereas wind-supplied snow deposition was classified almost 4.7 times as

frequently as deposition by avalanching. Evaluation of SRCM’s performance by inspection of satellite

images revealed that large areas were misinterpreted as avalanche source areas or deposits. Also, large

areas of snow cover change on either side of the snow line were incompletely simulated by SPHY using

the model parameters specific to this study.

The eolian snow redistribution patterns corresponded well with the topographic exposure and prevailing

wind directions. Wind-induced snow removal was most frequent in areas that are topographically

exposed in the wind direction and wind-supplied snow deposition was most frequent in topographically

sheltered areas. Low domain-averaged maximum wind speeds resulted in concentrated snow ablation

zones, whereas eolian snow deposition was generally widespread across the valleys and lee sides of

topographic obstacles. The threshold wind speed for snow transport seems seasonally variable, starting

low in winter and increasing during the monsoon months. This temporal shift is likely caused by the

changing age and wetness of the snowpack, as wind speeds drop, temperatures rise and precipitation

increases during the onset of the monsoon season. The monthly wind-driven snow redistribution patterns

reflect the changes in prevailing wind speed and direction and illustrate the dispersive nature of turbulent

snow transport.

Regarding avalanches, the approximation of source and deposition areas using assumptions about wa-

tershed, elevation and maximum travel distance yields insufficient results. More accurate classification

of avalanche areas requires consideration of snow depth, flow direction and flow accumulation data.

Likewise, the simple parameterization of temperature lapse rate in SPHY is inadequate for modelling

snow cover evolution in the complex terrain of Din-Gad Catchment. With the chosen model parameters,

40



SPHY showed difficulty observing snow cover changes based on temperature and precipitation alone,

suggesting that it would greatly benefit from the development of an additional module that accounts

for snow redistribution processes. However, exact quantification of how much snow cover change is

overlooked requires more extensive research using different model parameters.

Optical satellite imagery and wind fields from downscaled climate reanalysis data are suitable for deriving

eolian snow redistribution patterns in extreme topography up to a spatiotemporal resolution of 30 m

near-daily. The accuracy of the results is limited by cloud cover, the absence of a SWIR band and field

observations and the robustness of model assumptions. These limitations can be overcome by including

radar imagery and AWS data, incorporating a spatiotemporally variable NDSI threshold and performing

sensitivity analyses on model threshold parameters. Combining this with a snow persistence index, data

on solar radiation and the methods and findings of this study could provide a promising basis for future

research on eolian snow redistribution. This research is relevant to understanding the snow dynamics in

high-mountain areas and provides insights that contribute to the improvement of hydrological models.
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Ágústsson, H., & Ólafsson, H. (2004). Mean gust factors in complex terrain.Meteorologische Zeitschrift,

13, 149–155. https://doi.org/10.1127/0941-2948/2004/0013-0149

Armstrong, R. L., Rittger, K., Brodzik, M. J., Racoviteanu, A., Barrett, A. P., Khalsa, S. J. S., Raup,

B., Hill, A. F., Khan, A. L., Wilson, A. M., Kayastha, R. B., Fetterer, F., & Armstrong, B.

(2019). Runoff from glacier ice and seasonal snow in High Asia: separating melt water sources

in river flow. Regional Environmental Change, 19, 1249–1261. https://doi.org/10.1007/s10113-

018-1429-0

Bagnold, R. A. (1941). The Physics of Blown Sand and Desert Dunes. Chapman & Hall.

Balk, B., & Elder, K. (2000). Combining binary decision tree and geostatistical methods to estimate

snow distribution in a mountain watershed. Water Resources Research, 36, 13–26. https://doi.

org/10.1029/1999WR900251

Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on

water availability in snow-dominated regions. Nature, 438, 303–309. https://doi.org/10.1038/

nature04141

Beniston, M., & Stoffel, M. (2014). Assessing the impacts of climatic change on mountain water

resources. Science of the Total Environment, 493, 1129–1137. https ://doi .org/10.1016/j .

scitotenv.2013.11.122

Bernhardt, M., Liston, G. E., Strasser, U., Zängl, G., & Schulz, K. (2010a). High resolution modelling

of snow transport in complex terrain using downscaled MM5 wind fields. The Cryosphere, 4,

99–113. www.the-cryosphere.net/4/99/2010/

Bernhardt, M., & Schulz, K. (2010b). SnowSlide: A simple routine for calculating gravitational snow

transport. Geophysical Research Letters, 37. https://doi.org/10.1029/2010GL043086

Bernhardt, M., Schulz, K., Liston, G. E., & Zängl, G. (2012). The influence of lateral snow redistribution

processes on snow melt and sublimation in alpine regions. Journal of Hydrology, 424-425, 196–

206. https://doi.org/10.1016/j.jhydrol.2012.01.001

Bernhardt, M., Zängl, G., Liston, G. E., Strasser, U., & Mauser, W. (2009). Using wind fields from

a high-resolution atmospheric model for simulating snow dynamics in mountainous terrain. Hy-

drological Processes, 23, 1064–1075. https://doi.org/10.1002/hyp.7208

Biemans, H., Siderius, C., Lutz, A. F., Nepal, S., Ahmad, B., Hassan, T., von Bloh, W., Wijngaard,

R. R., Wester, P., Shrestha, A. B., & Immerzeel, W. W. (2019). Importance of snow and

glacier meltwater for agriculture on the Indo-Gangetic Plain. Nature Sustainability, 2, 594–601.

https://doi.org/10.1038/s41893-019-0305-3

Bormann, K. J., Brown, R. D., Derksen, C., & Painter, T. H. (2018). Estimating snow-cover trends

from space. Nature Climate Change, 8, 924–928. https://doi.org/10.1038/s41558-018-0318-3

42

https://doi.org/10.1016/j.rsase.2022.100774
https://doi.org/10.1016/j.rsase.2022.100774
https://doi.org/10.1127/0941-2948/2004/0013-0149
https://doi.org/10.1007/s10113-018-1429-0
https://doi.org/10.1007/s10113-018-1429-0
https://doi.org/10.1029/1999WR900251
https://doi.org/10.1029/1999WR900251
https://doi.org/10.1038/nature04141
https://doi.org/10.1038/nature04141
https://doi.org/10.1016/j.scitotenv.2013.11.122
https://doi.org/10.1016/j.scitotenv.2013.11.122
www.the-cryosphere.net/4/99/2010/
https://doi.org/10.1029/2010GL043086
https://doi.org/10.1016/j.jhydrol.2012.01.001
https://doi.org/10.1002/hyp.7208
https://doi.org/10.1038/s41893-019-0305-3
https://doi.org/10.1038/s41558-018-0318-3


Bowen, A. J., & Lindley, D. (1974). Measurements of the mean wind flow over various escarpment

shapes. Proceedings of the Fifth Australasian Conference on Hydraulics and Fluid Mechanics,

211–219.

Bowling, L. C., Pomeroy, J. W., & Lettenmaier, D. P. (2004). Parameterization of blowing-snow subli-

mation in a macroscale hydrology model. Journal of Hydrometeorology, 5, 745–762.

Brauchli, T., Trujillo, E., Huwald, H., & Lehning, M. (2017). Influence of slope-scale snowmelt on

catchment response simulated with the Alpine3D model. Water Resources Research, 53, 10723–

10739. https://doi.org/10.1002/2017WR021278

Buchelt, S., Skov, K., Rasmussen, K. K., & Ullmann, T. (2022). Sentinel-1 time series for mapping

snow cover depletion and timing of snowmelt in Arctic periglacial environments: Case study from

Zackenberg and Kobbefjord, Greenland. Cryosphere, 16, 625–646. https://doi.org/10.5194/tc-

16-625-2022

Buchhorn, M., Lesiv, M., Tsendbazar, N. E., Herold, M., Bertels, L., & Smets, B. (2020). Copernicus

global land cover layers - collection 2. Remote Sensing, 12. https://doi.org/10.3390/rs12061044

Butler, D. R., & Malanson, G. P. (1992). Effects of terrain on excessive travel distance by snow

avalanches. Northwest Science, 66(2).

Chauhan, M. (2010). A perspective on watershed development in the Central Himalayan state of Ut-

tarakhand, India. International Journal of Ecology and Environmental Sciences, 36, 253–269.

Cullen, N. J., Steffen, K., & Blanken, P. D. (2007). Nonstationarity of turbulent heat fluxes at Summit,

Greenland. Boundary-Layer Meteorology, 122, 439–455. https://doi.org/10.1007/s10546-006-

9112-2

Dadic, R., Mott, R., Lehning, M., & Burlando, P. (2010). Wind influence on snow depth distribution

and accumulation over glaciers. Journal of Geophysical Research: Earth Surface, 115. https :

//doi.org/10.1029/2009JF001261
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Muñoz-Sabater, J., Dutra, E., Agust́ı-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta,

S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodŕıguez-
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