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Abstract
This thesis addresses the problem of scheduling with explorable uncertainty on a single machine. We
consider the scenario where n jobs have a uniform upper limit on the processing time ū, a uniform
testing time of 1 and a true processing time pj (0 ≤ pj ≤ ū), which is only revealed after testing.
Moreover, each job j has a weight wj ∈ N. The machine can either test a job or execute a job.
The duration of executing any job j is either ū or pj , depending on whether the job was tested
or not. Since decisions, regarding testing and execution, are irrevocable and the true processing
time is initially hidden, this problem can be viewed as an online problem. The objective is to
schedule all jobs to minimise the total weighted completion time. We present two deterministic
algorithms, Delay-All (DA) and L-Delay-All (L-DA), and analyse their competitive ratios. For
the special case with two weights (1 and α), DA achieves a competitive ratio of 3 + 1

2 × α, while
L-DA achieves a ratio of 3 + 1

2 × ū. For the more general case with multiple weights, DA and L-DA
achieve a competitive ratios of 1 + 2 × wmax and 3 + 5

3 × ū, respectively. We also introduce an
algorithm called Unified-Delay-All (U-DA) which combines DA and L-DA. For the case with two
weights U-DA is 3-competitive when α ≥ ū. Moreover, we present a modified version of L-DA, called
Postpone-L-Delay-All (PL-DA), which achieves a 3-competitive ratio for the case with two weights
when the number of α-weighted jobs is at least n

ū
. Furthermore, we show that for DA and L-DA

there exists an instance where the competitive ratio is at least 2.4-competitive and 3.4-competitive,
respectively.

Keywords and phrases Scheduling with testing, Online, Explorable uncertainty, Minimising the
total weighted completion time
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1 Introduction

Real-world problems often involve incomplete information, such as uncertain job durations
or unknown costs. For instance, a programmer tasked with testing different functions of a
computer program receives every day a batch of code files where each code file represents
a function. The testing duration of each file depends on its size, but the programmer can
potentially reduce the file size by optimising the code using ChatGPT. However, ChatGPT
cannot guarantee a reduction in file size, as the code may already be fully optimized. The
challenge is to efficiently test all functions while balancing the cost and benefit of optimising
each file. The strategy may depend on previous actions and findings. In other words, the
programmer must decide whether to invest time in optimising a file and what the order of
operations should be.

Whenever there is the possibility of acquiring more explicit information by performing
some preliminary action, we can model this problem as scheduling with explorable uncertainty.
Mathematically, we consider m machines, where n jobs have to be scheduled on a machine.
For each job j the true processing time pj (0 ≤ pj) is initially hidden. However, the upper
limit on the processing time uj (pj ≤ uj) is already revealed to the decision-maker, as well
as the testing time tj ≥ 0. Executing any job j untested takes a total time of uj , while
testing and executing any job j takes a total time of pj + tj . The decision-maker can decide
whether a job is executed in the tested or untested condition. Any decision, whether testing
or executing, is irrevocable. Therefore, in combination with the fact that the true processing
time of a job is initially hidden, we can consider this as an online problem. The goal is to
schedule all jobs such that we minimise or maximise the objective function.
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Dürr et al. [8] have studied this problem setting for cases where all jobs have a testing
time of 1 and have proven upper and lower bounds for the objective function of minimising
the total completion time and makespan on a single machine. We review these findings
in the literature review. In this thesis, we extend the problem by introducing weights. In
the weighted problem variant, each job j has a weight wj and we consider the objective
function of minimising the total weighted completion time, which presents a greater challenge
compared to the unweighted case. The non-trivial decisions, in the unweighted case, are
whether we should test a job and the order of operations (test and execute). In the weighted
case, we need to determine the order of operations more carefully since any delay in the
completion time of a job will be multiplied by the weight.

The purpose of the research is to analyse and develop an algorithm, such that the schedule
is within a provably good factor of the optimal schedule. By introducing weights, we prove
that the approach described in paper[8] cannot be generalised. Therefore, we propose a
novel approach that addresses the weighted problem. We focus on a variant of the problem
where all jobs have a testing time of one and a uniform upper limit, which makes them
initially indistinguishable to the algorithm. We present two main algorithms, Delay-All and
L-Delay-All, and prove the upper bound on their competitive ratio, considering the special
case where we have only 2 weights and a more general case with multiple weights. We show
and prove the competitive ratio of a greedy algorithm to compare the performance of our
algorithms in both cases. We also rigorously analyse the case with two weights and present
two more algorithms. The first one, Unified-Delay-All, is a combination of the two main
algorithms, which, under certain circumstances, is constant-competitive. The second one,
Postpone-L-Delay-All, is a variant of an L-Delay-All with an adjusted execution strategy
and is constant-competitive for a specific type of instances. See Table 1 for the upper bound
results. We also consider the lower bound on the two main algorithms. Dürr et al. [8]
provided a lower bound of 1.8546 for the unweighted case. We refer to Table 2 for the lower
bound results.

Upper bound
Algorithm Two weight(1 and

α ∈ N)
Multiple weight

Greedy 1 + ū 1 + ū

Delay-All 3 + 1
2 × α 1 + 2 ×wmax

L-Delay-All 3 + 1
2 × ū 3 + 5

3 × ū

Unified-Delay-All 3 when α ≥ ū, other-
wise 3 + 1

2 × α

-

Postpone-L-Delay-
All

3 when number of α-
weighted jobs ≥ n

ū

-

Table 1 Upper bound results for the case with two weights and the more general case where we
have multiple weights. wmax is the maximum weight in a given instance

1.1 Thesis structure
In Section 2, we provide real-world examples that motivate our research, along with a review
of the existing literature on scheduling and explorable uncertainty. In Section 3, we provide a
formal definition of the scheduling problem with explorable uncertainty on a single machine
and introduce the notation and properties that we use throughout the thesis. Section 4 is a

on l ine schedu l ing
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Lower bound
Problem 1.8546 [8]
Delay-All 2.4
L-Delay-all 3.4

Table 2 Lower bound results on the algorithm and the problem.

pivotal part of our thesis, where we present our analysis approach and provide a lower bound
of the optimal solution and insights into the optimal solution. In Section 5, we present a
greedy execution strategy that serves as a benchmark for the more sophisticated algorithms
presented later. In Section 6, we introduce our first sophisticated algorithm, Delay-All (DA),
and prove its competitive ratio for the special case with two weights and the more general
case with multiple weights. In Section 7, we propose another algorithm, L-Delay-All (L-DA),
and prove its competitive ratio for the same cases described in Section 6. This chapter also
includes an analysis of instance parameters, showing that an algorithm Unified-Delay-All
(U-DA) is, under certain conditions, constant-competitive. In Section 8, we show that by
adjusting the execution strategy of L-DA, we can achieve a constant-competitive ratio of 3
for specific instances with two weights. In Section 9, we observe the competitive ratio for
different types of instances. Finally, we conclude with a summary of the main contributions
and findings of our research, along with recommendations for future research directions.

2 Literature Review

2.1 Motivation

Scheduling with testing has many applications in real-world areas, such as data and resource
management, manufacturing, construction and maintenance work and medical diagnosis. We
will highlight several areas and give some explicit examples.

For the first example, consider a server which is responsible for uploading videos. The
server can upload any video, regardless of its size; however, the upload time depends on the
video size. The server has a function to potentially reduce upload time by compressing the
video size. However, it may be the case that even with compression, the upload time cannot
be reduced. Furthermore, the server has only enough computing power to either upload or
compress a video. Videos that are not on the server are missing opportunities to gain views
and some videos will attract more views, such as cat-related videos. In this example, there
are three important decisions: Whether we should compress a video or not, which video we
should upload first and what is the order of actions (compress and upload)

Another example is car maintenance. Let’s assume that the engine of a car does not
start anymore as a consequence of a defective battery. The simplest solution is to bring the
car to the repair shop and swap the battery with a new one. The cost would be the new
battery and the service cost of the repair shop. However, we can ask the repair shop to run
a diagnosis instead of swapping the battery. If it turns out the battery has only a small
malfunction, which is repairable, then we can simply repair the battery instead of swapping
it with a new one. Naturally, repairing the battery is much cheaper than swapping it. The
worst-case scenario is that the battery cannot be fixed. In that case, we paid some additional
costs for running the diagnosis. This situation illustrates a basic instance of our problem
with one job, where we have a simple trade-off for a single task that might become cheaper
by running a diagnosis.
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Medical diagnoses provide another example of the trade-off between investing time to
reduce processing time and executing a task with the given processing time. Consider a
doctor who routinely receives a general diagnosis report from patients who visit their clinic.
While the doctor has their own diagnostic method that yields results as accurate as the
general report, it requires additional working time. In order to begin treatment, the doctor
needs to identify the specific disease, which requires analysing the diagnosis report. Using
the general report would entail a longer analysis time, while the doctor’s method may not
always produce a better report. Moreover, while conducting their own diagnosis, the doctor
cannot attend to other patients, and delaying treatment may have serious consequences for
the patient.

2.2 Scheduling problems: state-of-the-arts
In 1910, Gantt published [13], [7]. the first edition of his book, in which he introduced a
graphical representation of a project schedule known as the Gantt chart or diagram. Arguably,
the area of scheduling traces back to the problems that Gantt encountered and was trying to
solve. Scheduling theory is part of operation research that has been studied extensively since
its inception around the 1950s [26]. Some of the earliest work on scheduling was done by
Johnson [27]. and Smith [27]. Johnson considered a production model, which we call now
the flow-shop, with two machines where each job must be processed by the two machines
separately. He showed an algorithm, called Johnson’s rule, which is optimal for the objective
of minimising the makespan (the time when all jobs are finished). Smith addresses a simpler
problem where we only have a single machine and showed that for the objective of minimising
the total completion time (the time that a job is finished), an optimal algorithm which always
executes the job with the shortest processing time. The algorithm of Smith is also called the
SPT rule.

In the last few decades, scheduling has been studied thoroughly in the literature [21] and
[25]. Graham et al. [16] introduced a three-field scheme notation, which has proven useful in
indicating all possible machine scheduling problems. The notation takes the form (α|β|γ),
where α denotes the machine environment, such as the number of machines that may be
identical (each with the same speed) or different (with varying speeds). The β field indicates
constraints, which might include specific processing times or release times for each job. The
γ field represents the objective function.

J.K Lenstra et al. [22] used the terms "easy" and "hard" in their research to describe
the complexity of scheduling problems. For "easy" problems, there is a polynomial-bounded
algorithm available, while "hard" problems are NP-complete. They presented an overview
of scheduling problems, identifying which ones are "hard" or "easy," and provided NP-
completeness proofs for some problems. With these proofs, they offered insight into the
boundary between "easy" and "hard" scheduling problems. They also listed some open
problems that have yet to be proven NP-complete, such as the scheduling problem 1||

∑
Ti

for n jobs. Despite extensive investigations, there is currently no polynomial-bounded
algorithm or reduction proving its NP-completeness.

Scheduling problems, such as minimising the total completion time and the weighted
variant (1||

∑
j cj and 1||

∑
j wj × cj), are considered to be "easy". Both problems can be

solved in polynomial time by applying the SPT rule and the Weighted Shortest Processing
Time (WSPT) rule, respectively. However, by adding only the constraint of release dates rj ,
both problems become "hard". Even for the unweighted case, the problem is strongly NP-hard
[22]. For the unweighted variant (1|rj |

∑
j cj), Phillips, Stein, and Wein [24] presented the

first constant-factor approximation algorithm with an approximation ratio of 2, which also

on l ine schedu l ing
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works for the online case (job j revealed at time rj). Hoogeveen and Vestjens [18] presented
a deterministic 2-approximation algorithm for the same scheduling problem described in
the paper by Phillips et al. Furthermore, they showed that there is no online algorithm
with a performance guarantee better than 2-competitive. Goemans et al. [14] provided
a comprehensive review of online algorithms for the weighted case, including the cases of
preemption (where the machine can cancel the current job without losing progress and
continue with another job) and non-preemption settings.

Another classical scheduling problem is the objective of minimising the makespan. Graham
[15] considered the case where we have multiple machines and proved that an algorithm, also
called the List Scheduling, is at most 2 − 1

m times the optimal makespan. The algorithm
follows a greedy approach where we assign each job to the smallest loaded machine, breaking
ties arbitrarily.

2.3 Explorable uncertainty
Explorable uncertainty, also known as query-able uncertainty, is a specific model for handling
uncertainty. Kahan introduced this model in 1991 in his paper [19], which focused on selection
problems, such as finding the minimum value given a set of intervals where the values within
the intervals are only revealed after a query. The objective is to minimise the number of
queries required to find the optimal solution. Since then, several other problems have been
studied with this uncertainty model, including computing the average and the k-th smallest
value in a set of uncertainty intervals, as done by Kahanna and Tan in [20]. Another example
of explicit exploration cost in this model is the Pandora’s Box Problem [29], where a set of
random variables is explored to maximise the highest revealed value while minimising the
costs of revealing a value.

In 2008, Hoffmann et al. considered the Minimum Spanning Tree (MST ) problem under
the explorable uncertainty model [17], referred to as MST-EDGE-UNCERTAINTY. They
defined the problem as follows: Find an MST for a connected, undirected, weighted graph
G = (V, E), where the edge weights ωe are uncertain and represented as an interval Ae of
possible values. The objective is to find the MST of G with the least number of updates,
where an update reveals the weight of an edge e. They presented a 2-competitive algorithm
when all intervals Ae are either open or trivial. In 2015, Erlebach and Hoffmann published
a survey [12] on query-competitive algorithms in the computing with uncertainty model,
summarising known results and techniques for designing these algorithms and suggesting
future directions.

In 2021, Albers et al. studied the online makespan minimisation problem with uncertain
job processing times [5]. They presented a (3- 2

m )-competitive algorithm for the Graham’s
Greedy Strategy and a deterministic algorithm with a competitive ratio of 2.9052. The
problem involves assigning jobs with regular processing times and additional processing times
to m identical machines. Each machine can accommodate up to ρ job failures, where a failure
requires additional processing time to complete the specific job.

Recently, in 2022, Erlebach et al. [11] proposed an interesting approach to the explorable
uncertainty model. They considered the MST problem, where the algorithm can query the
weight of an edge, and introduced untrusted predictions for the weights of each edge. They
developed a set of algorithms parameterized by a confidence parameter γ that reflects the
user’s confidence in the accuracy of the predictor. For any integer γ ≥ 2, they presented
a (1+ 1

γ )-consistent and γ-robust algorithm, where an algorithm is α-consistent if it is α-
competitive when the predictions are correct, and it is β-robust if it is β-competitive no
matter how wrong the predictions are. They showed that their algorithm achieved the best
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possible trade-off between consistency and robustness.

2.4 Scheduling with testing

In 2018, Dürr et al. [8] proposed a novel model for single-machine scheduling problems
with explorable uncertainty, where some preliminary tests can be conducted on jobs before
execution, potentially reducing the processing time. The authors considered the following
scenario; Given n number of jobs where each job j has a processing time uj and a true
processing time pj , which is revealed after testing. The algorithm can decide, at any time,
to either execute a job or test a job. The objective is to schedule all jobs to minimise the
total completion time. They also considered the problem variant where all jobs have a
uniform upper limit on the processing time of a job. In other words, all jobs appear to
have the same processing time. However, the true processing time may differ. The authors
presented a deterministic THRESHOLD algorithm that is 2-competitive. They also provided
a deterministic lower bound of 1.8546. Their study was technically inspired by [28, 20], and
they also developed a model for modifying instances in an adversarial manner. For any
algorithm, they can obtain the worst-case instance by reducing the instance properties such
that the competitive ratio is non-decreasing.

In 2020, Albers et al. [2] extended the problem of Dürr et al. [8] by considering non-
uniform testing times. They presented a deterministic 4-competitive SORT algorithm.
The SORT algorithm always chooses between the shortest testing action and the shortest
execution action. They also consider the case where preemption is allowed, that is to cancel
the current operation, while preserving the progress, (this is either testing or executing) of a
job at any time and start working on a new job. Then they can improve the deterministic
case to be 2φ-competitive, where φ ≈ 1.6180 is the golden ratio.

In 2021, the aforementioned authors extended their work by considering multiple identical
machines in their paper [3]. The objective function of this paper was to minimise the makespan.
They presented a deterministic algorithm named SBS which achieved a competitive ratio of
3.1016 for the non-preemptive case as the number of machines approaches infinity. Moreover,
in the case where preemption is allowed, they presented another deterministic algorithm that
achieved a competitive ratio of 2. In the scenario where testing times are uniformly equal,
they proved that SBS is 3-competitive.

In 2022, Chen et al. [23] considered the scheduling problem with multiple identical
parallel machines, aiming to minimise the total completion time. They proposed several
approximation algorithms with constant competitive ratios for various special cases, including
a 2φ-competitive algorithm for the case of non-uniform testing times. They demonstrated
that their 2φ-competitive algorithm outperforms the previous best 4-competitive algorithm
SORT [2].

2.5 Semi-online scheduling

In semi-online scheduling, the decision-maker has access to additional information about the
input, such as the order of jobs, the sum of all processing times, or the largest processing
time. In contrast, the fully online model only reveals information as it becomes available.
Albers and Hellwig (2012) studied the semi-online scheduling problem [4] in which the
scheduler knows the sum of the jobs’ processing time at any given time. They showed
an improved lower bound for the objective of makespan minimisation and proved that no
deterministic semi-online algorithm can achieve a competitive ratio smaller than 1.585. This

on l ine schedu l ing
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work significantly reduced the gap between the previous lower bound of the competitive ratio,
which was 1.565, and the upper bound of 1.6.

In 2022, Dwibedy and Mohanty conducted an extensive survey on semi-online scheduling
[9]. They noted that only two insightful survey articles exist in the literature. The first
one, by Albers in 2013 [1], discussed the concept of non-preemptive semi-online scheduling
for identical machines with a makespan minimisation objective. Albers highlighted three
primitive additional pieces of information: total processing time, job reassignment, and buffer
reordering. The second survey, by Epstein in 2018 [10], focused on non-preemptive semi-online
scheduling variants on uniformly related machines and non-trivial cases of identical machines
with a makespan minimization objective. Epstein explored several well-known additional
pieces of information. Dwibedy and Mohanty introduced a specific terminology, Extra Piece
of Information (EPI), to indicate the concept of having additional pieces of information.
The uniqueness of their survey lies in their attempt to classify the literature on semi-online
scheduling based on EPI, facilitating identification of related works for various setups.

3 Preliminaries

3.1 Problem definition
The problem of scheduling with explorable uncertainty is defined as follows; We are given an
instance I with n jobs and a weight set W where W ⊂ N. Each job j has a uniform upper
limit on the processing time ū ∈ Q+, denoted as the predicted processing time. Besides
the predicted processing time, each job has also a true processing time pj ∈ Q+, which is
only revealed after testing. The true processing time is upper-bounded by the predicted
processing time (0 ≤ pj ≤ ū). Furthermore, each job j has a weight wj ∈ W which is not
affected by the testing. The testing time for every job j is exactly one unit of time (tj = 1).
With all the given properties, we describe a job j as a tuple (uj , pj , tj , wj). We can decide
for each job whether to test it or not. Given that we do not test a job, the time that the
machine spends on the untested job is always the predicted processing time. In case we do
test the job, spending 1 unit of time, then after its test, we can decide to either execute the
job immediately or defer it. We consider the non-preemptive case. That is, while executing
or testing, the machine cannot premature stop. The cost for any job j is the completion
time Cj times the weight wj . The goal is to schedule all jobs on a single machine such
that we minimise the objective function of the total weighted completion time (

∑n
j=1 Cj×wj).

We consider two cases of the scheduling problem. The first one is the special case where we
only have two weights: 1|semi-online, tj = 1, uj = ū, wj ∈ {1, w1}|

∑
j Cjwj , and in the

second, a more generalised, case we have multiple weights: 1|semi-online, tj = 1, uj = ū, wj

∈ N|
∑

j Cjwj .

3.2 Notations and properties
The optimal (offline) solution. If the true processing time pj is known beforehand, then
it is easy to construct an optimal schedule. Testing and executing a job j takes pj + 1 units
of time, therefore it is beneficial to test if pj + 1 < ū. Since the Weighted Shortest Processing
Times (WSPT rule) is optimal for the objective function of minimising the total weighted
completion time, jobs in the optimal solution are executed by their weighted processing time
p∗

j

wj
, where p∗

j = min{ū, pj + 1}, in a non-decreasing order.
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Instance variations. Given any instance I, we create special instance variations. These
instance variations consider the same set of jobs as I, with modified tuple values. In other
words, for every job j ∈ I, its corresponding job in Î has a tuple (ū, pj , wj , tj = 0). Similarly,
for every job j ∈ I, the corresponding job ∈ Ī has a tuple (ū, pj = 0, wj , tj).

Schedule and algorithmic cost. Given any instance I and any deterministic algorithm
ALG, let ALG(I) denote the cost of applying algorithm ALG to instance I. We denote
SALG(I) as the schedule produced by ALG(I). If the context is clear or when we specifically
specify it then, we denote the schedule as ALG(I).

Furthermore, we denote that a solution produces a schedule with a specific order of
execution. Given any instance I, let ALGI be a solution with the testing strategy of ALG
and the jobs are executed w.r.t the execution order in SALG(I). Note that ALGI(I ′) only
works if and only if I ′ ⊂ I. In other words, for any job j ∈ I ′ there is a corresponding job
j ∈ I that may have a different tuple value. Observe that all the notations are also applicable
to the optimal solution OPT since we replace ALG with OPT .

Heavy and unit jobs. All jobs j with a weight wj = 1 are also considered to be weighted
jobs. To differentiate these weighted jobs from the other ones, we denote the jobs with a
weight wj > 1 as heavy jobs and jobs with wj = 1 as unit jobs.

Trivial and non-trivial jobs. One of the non-trivial decisions is whether we test a
job or not. The only case where this decision is trivial is when the testing time of a job j is
at least the upper limit (tj > uj). Therefore, a job j is non-trivial if uj ≥ 1. Throughout
the paper, we only consider non-trivial jobs.

▶ Proposition 1. For all non-trivial jobs j, p∗
j ≥ pj.

Proof. Consider two cases. Case 1: the optimal schedule test job j, p∗
j = pj + 1. Therefore,

p∗
j ≥ pj . Case 2: the optimal schedule does not test job j, p∗

j = uj . Since 0 ≤ pj ≤ uj the
proposition holds. ■

Performance analysis. To compare the performance of an algorithm ALG to the optimal
solution we use competitive analysis. An algorithm ALG is ρ-competitive (or has competitive
ratio at most ρ), if ALG(I)

OPT(I) ≤ ρ for all instances I of the problem [6].

3.3 Schedule structure
When analysing an algorithm or the optimal solution, we argue that the schedule has a certain
structure with different blocks of operations such as testing or executing jobs. We calculate
the cost of the different blocks separately and then sum the costs to obtain the total cost of
the schedule. For example, we have an algorithm ALG that first tests all jobs, starting with
the largest weighted job, and only executes a job j immediately if pj = 0, otherwise, the job
will be postponed. If there are no more untested jobs, then ALG executes all postponed jobs
by the WSPT rule. Consider the following instance, let M and D be two disjoint sets of jobs
such that I = M ∪D. For every job j ∈M the values are (uj = ū, pj = ū, tj = 1, wj = α).
Similarly, for every job j ∈ D the values are (uj = ū, pj = 0, tj = 1, wj = β), where α > β.
The cost of SALG(I) is as follows

ALG(I) = m(d× β + m× α) + d(d + 1)
2 × β + d(m× α) + m(m + 1)

2 × α× ū

on l ine schedu l ing
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The first term, m(d× β + m× α), describes that there are m tests, that delay d β-weighted
jobs and m α-weighted jobs. Recall that for every unit of delay the cost of completing a job
is increased by its weight. The second term, d(d+1)

2 × β, describes the testing and execution
of β-weighted jobs. The third term, d(m× α), describes the delay cost of α-weighted jobs
incurred by the testing and execution of β-weighted jobs. The last term, m(m+1)

2 × α× ū,
describes the execution of the postponed jobs. We refer to Figure 1, for SALG(I).

Figure 1 An illustration of a schedule produced by ALG where the circle represents a test, the
rectangles represent the execution time and the black bar represents the completion of a job. We
first test m jobs, this delays the execution of all jobs by m. Then we test and execute the β-weighted
jobs, this will delay the execution of α-weighted jobs by d. At last, we execute the last m jobs by
the WSPT rule.

4 Analysis Approach

In this section, we show that the approach in paper[8] cannot be generalised to the weighted
case. Therefore, we provide a novel approach to analyse the algorithms. We also briefly
mention another non-trivial approach from paper[2]. Furthermore, we provide structural
properties of the optimal schedule and develop a series of lower bounds of the optimal cost
which will be used in the later sections.

4.1 Schedule separation

Small upper limit. An important insight by Durr et al. was Lemma 1, regarding jobs
with a small upper limit. For completeness, we attach its proof. The approach in the
proofs of the competitive ratios in paper[8] was to describe the worst case ratio. Durr et al.
relied on Lemma 1 to reduce worst case instances to a simple structure where the ratio is
non-decreasing.

▶ Lemma 1. [8] Without loss of generality, any algorithm ALG (deterministic or randomised)
claiming competitive ratio ρ starts by scheduling all jobs j, untested, with uj < ρ in a non-
decreasing order of uj. Moreover, worst case instances for ALG consist solely of jobs j with
uj ≥ ρ.

Proof. Consider any algorithm ALG and any instance I where all testing times are equal
to 1. Let J ⊂ I be the set of jobs j which satisfy the condition uj < ρ and let I ′ = I\J .
Suppose we create a new algorithm ALG’ from ALG by slightly changing the behaviour
of ALG, such that ALG’ first executes, without any test, all jobs j ∈ I which satisfy the
condition uj < ρ in non-decreasing order of the predicted processing time. Afterwards, ALG’
schedules all remaining jobs j ∈ I ′ according to the strategy of ALG. In the worst case, all
jobs j ∈ J have a true processing time of 0. We claim that the competitive ratio of ALG’ is
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at most ρ for scheduling jobs j ∈ J . First, observe that the claim holds for any job j ∈ J .

ALG′(j)
OPT (j) = uj

p∗
j

= uj

1 ≤ ρ uj < ρ

Recall that p∗
j = min{pj + 1, uj}. Now, for the set J

ALG′(J)
OPT (J) =

∑|J|
j=1(

∑j
i=1 uj)∑|J|

j=1(
∑j

i=1 p∗
i )

<

∑|J|
j=1 j × ρ∑|J|

j=1 j
≤ ρ

Let len(A(I)) be the makespan of a schedule produced by algorithm A on an instance I,
then by the same argument we have

len(ALG′(J))
len(OPT (J)) =

∑|J|
j=1 uj∑|J|
j=1 p∗

j

<
|J | × ρ

|J |
≤ ρ

Let k = |I ′|, since I ′ only contains jobs j with an upper limit larger or equal to ρ we have
that ALG′(I ′) = ALG(I ′). Therefore,

ALG′(I) = ALG′(J) + k × len(ALG′(J)) + ALG(I ′)
OPT (I) = OPT (J) + k × len(OPT (J)) + OPT (I ′)

where k × len(ALG′(J)) is the execution delay of jobs j ∈ I ′. Note that the scheduling
order is first executing all jobs j ∈ J , without any test, in non-decreasing order of weighted
processing time. Afterwards, jobs j ∈ I ′ are scheduled according to the strategy of ALG.

Observe that when adding the cost of scheduling jobs j ∈ I ′ to both solutions in
Equation (1), such that we have ALG′(I)

OP T (I) , the ratio is non-decreasing if

ALG′(I ′)
OPT (I ′) ≥

ALG′(J) + k × len(ALG′(J))
OPT (J) + k × len(OPT (J))

Suppose that for all instances I, the ratio of ALG(I)
OP T (I) ≤ ρ. Then we conclude the following:

Adding the cost of scheduling jobs j ∈ I ′ to both solutions in Equation (1), then by our
assumption the ratio of ALG′(I)

OP T (I) is at most ρ. Hence, if ALG(I) is ρ-competitive so is ALG’(I).

ALG′(J) + k × len(ALG′(J))
OPT (J) + k × len(OPT (J)) ≤ ρ (1)

Now, suppose that for all instances I, the ratio of ALG(I)
OP T (I) ≥ ρ. Then we conclude the

following: Just like in the previous scenario, we add the cost of scheduling jobs j ∈ I ′ to
Equation (1). Observe that the ratio of ALG′(I)

OP T (I) is non-decreasing. However, if ALG(I)
OP T (I) > ρ

then the ratio of ALG′(I)
OP T (I) is always strictly smaller than ALG(I)

OP T (I) . Therefore, the worst case
for ALG’ is instances consisting only of jobs with uj ≥ ρ.

■

on l ine schedu l ing



12

Intuitively, to extend the approach of Dürr et al. for the weighted case, we consider the
weighted processing time uj

wj
as a threshold. However, Albers et al. [2] already proved

that the approach does not generalise for the with non-uniform testing times. By using
similar reasoning and arguments as in paper[2], we show through a counter-example that the
approach of scheduling all jobs j untested with uj

wj
< ρ first leads to a bad schedule.

▶ Lemma 2. Any deterministic algorithm ALG that starts by scheduling all untested jobs j

with uj

wj
< ρ, where ρ ≥ 0, in non-decreasing order of uj

wj
the competitive ratio is unbounded.

Proof. Given an integer m and a small real number ϵ > 0, we consider m number of
jobs, where the values of each job j are (uj = ρ2, pj = 0, wj = ρ, tj = 1). These jobs
are not going to be scheduled untested at the beginning of the schedule, since they do
not satisfy the condition ( uj

wj
< ρ). Now consider that we have one extra job l, with

(ul = m2, pl = 0, wl = m2

ρ + ϵ, tl = 1). Any algorithm which obeys the small upper-limit rule
schedules job l untested, since the weighted processing time is smaller than ρ:

ul

wl
= m2

m2

ρ + ϵ

= m2

m2+ρ×ϵ
ρ

= m2 × ρ

m2 + ρ× ϵ
< ρ

Afterwards, assume that the remaining jobs will be scheduled optimally. The completion
time of job l is Cl = m2 and for the other jobs, we have Cj = m2 + j. The total cost of the
algorithm is:

ALG = Cl × wl +
m∑

j=1
Cj × wj

= Cl × wl +
m∑

j=1
(m2 + j)× ρ

= Cl × wl + m3 × ρ + m× (m + 1)
2 × ρ

= Cl × wl + m3 × ρ + m× ρ

2 + m2 × ρ

2

= m2 × (m2

ρ
+ ϵ) + m3 × ρ + m× ρ

2 + m2 × ρ

2

= m4 × 1
ρ

+ m3 × ρ + m2 × (ρ

2 + ϵ) + m× ρ

2

On the contrary, the optimal solution starts with testing and executing job l. After
scheduling job l, it will test and execute the remaining jobs in any order. Since all m jobs
have the same true processing time, the scheduling order within m jobs is irrelevant. The
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total cost of the optimum solution is:

OPT = Cl × wl +
m∑

j=1
Cj × ωj

= 1× (m2

ρ
+ ϵ) +

m∑
j=1

Cj × ωj

= 1× (m2

ρ
+ ϵ) +

m∑
j=1

(1 + j)× ρ

= (m2

ρ
+ ϵ) + m× ρ + (m2

2 + m

2 )× ρ

= m2 × (1
ρ

+ ρ

2) + m× (ρ + ρ

2) + ϵ

Now, if we let m −→∞ and ϵ −→ 0 then the competitive ratio is

ALG(I)
OPT (I) −→∞

■

Lower bound approach. By Lemma 2, we have shown that Lemma 1 cannot be
generalised to the weighted case. Our approach, Schedule separation, exploits the structural
behaviour of any algorithm such that, we use the lower bound of the optimal solution to
bound the algorithmic cost from above. More specifically, we split the structure of a schedule
into three main parts: the delay cost of completing a job incurred by testing (TD), the delay
cost of completing a job incurred by some execution of another job (ED) and the cost of
executing the jobs (E). Within a main part, there may exist several smaller components.
We upper bound all the different parts and sum them all up such that we have an upper
bound on the algorithm.

Framework Schedule separation

Any deterministic algorithm ALG is (β + δ + θ)-competitive if ALGT D ≤ β ×OPT ,
ALGED× ≤ δ ×OPT and ALGE ≤ ω ×OPT where β, δ and θ ≥ 0.

An advantage of such an approach is detecting the parts that are difficult to upper bound
or increase the overall algorithmic cost the most. Such information tells us which part of the
algorithm we should analyse more in-depth. The disadvantage is you need to find the lower
bound on the optimal solution, which is already difficult to find, and upper bounding only a
specific part can lead to an overestimation of the competitive ratio.

Cross-examining. Albers et al. [2] presented a non-trivial approach called cross-
examining for minimising the total completion time with non-uniform testing times. This
approach shows great potential, as the authors have proven that an algorithm, called SORT,
is 4-competitive. We observed that the algorithm SORT is at most (2×wmax

wmin
+ 2)-competitive.

However, we were unable to generalise this approach, and therefore, we adopted the Schedule
separation framework as an alternative.

on l ine schedu l ing
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4.2 Optimal solution behaviour
An interesting behaviour of the optimal solution, which is easily overlooked, is that if there
is a test for any job j, then the execution of job j occurs immediately after its test

▶ Theorem 3. If the optimal solution decides to test any job j, then the execution of job j

occurs immediately after its test.

Proof. Assume on the contrary, that there is an optimal solution S that does not always
execute the jobs after its test. Let job k be the first job in the schedule of S where its test
and execution are not adjacent. Then, there must be at least one operation (either a test
or an execution of another job l) between the test and the execution of k. By performing
swaps on the operations of job k and l, we show that the schedule S, compared to the new
schedule S′, cannot be optimal.

Case 1: There is a test of job l right before the execution of job k. Suppose that we swap
the test of job l with the execution of job k. Observe that all the other jobs remain in their
original position. The completion time of job k is, in S′, C

′

k = T + tk + pk < T + tk + tl + pk

= Ck, where T is the time before testing job k, see Figure 2. Hence, S is not optimal.

Figure 2 Two schedules, where in schedule s there is a test tl between the test (tl) and execution
(pk) of job k. After the swap of tl and pk, we have the newly obtained schedule S′. T is denoted as
the time before we start operation tk.

Case 2: There is an execution of job l right before the execution of job k. Since in this
problem set the execution of a job j can be either uj or pj + tj , therefore let the execution of
job l be p∗

l = min(ul, pl + tl). We only swap the execution of job l with the execution of job
k, if and only if pk+tk

wk
≤ p∗

l

wl
. Assume in schedule S we swapped p∗

l with tk. Now, consider a
schedule S’ where we swapped p∗

l with pk, we refer to Figure 3. Under schedule S, the cost
for jobs k and l, respectively, is

(T + p∗
l + tk + pk)× wk + (T + p∗

l )× wl (2)

Similarly under schedule S’

(T + tk + pk)× wk + (T + tk + pk + p∗
l )× wl (3)

We subtract Equation (2) from Equation (3) to obtain

(T + p∗
l + tk + pk)× wk + (T + p∗

l )× wl − (T + tk + pk)× wk − (T + tk + pk + p∗
l )× wl
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By simplifying this equation, the majority of the terms cancel each other out. We obtain

wk × p∗
l − wl × (tk + pk)

As pk+tk

wk
≤ p∗

l

wl
, observe that S’ is either equal to S or strictly smaller. Hence, either schedule

S cannot be optimal or we can change schedule S to S’ such that the execution of job k

occurs immediately after its test. By the same arguments, we can prove that schedule S is
optimal when pk+tk

wk
>

p∗
l

wl
.

Figure 3 Two schedules, where in schedule S we swapped the execution of job l with the test of
job k and in schedule S′ we swapped the execution of job k with the execution of job l. T is the
time before the operations of job l in S and k in S’, and p∗

l = min(ul, pl + tl).

To show that S′ is a feasible schedule in all cases, we can first assume that S is already
a feasible schedule. At all times we swap two adjacent operations of two distinct jobs.
Therefore, the operation order of any job j remains the same. ■

4.3 Lower bound of optimal cost

In this subsection, we provide several lower bounds of the optimal solution cost. In the
proofs, we use the instance variations Ī and Î extensively. Recall that for every job j ∈ I,
its corresponding job in Î has a tuple (ū, pj , wj , tj = 0). Similarly, for every job j ∈ I, the
corresponding job ∈ I has a tuple (ū, pj = 0, wj , tj). Furthermore, we also use the notation
OPTI which describes a solution following the testing strategy of OPT and executes the
jobs w.r.t the execution order in SOP T (I). Note that OPTI(I ′) only works if and only if
I ′ ⊂ I. In other words, for any job j ∈ I ′ there is a corresponding job j ∈ I that may have a
different tuple value.

▶ Lemma 4. Given any instance I, OPT (I) ≥ OPTI(Î).

Proof. We prove Lemma 4 by showing the following claim: ∀j, C∗
j ≥ C

OP TI (Î)
j , where

C
OP TI (Î)
j is the completion time of job j ∈ Î w.r.t the execution order of OPT(I).

Observe that for any job j ∈ I there is a corresponding job j ∈ Î. Therefore, the number
of jobs in both sets is equal. Furthermore, OPTI(Î) executes the jobs in the same order as
OPT (I). Hence, by Proposition 1 we have for any job j that C∗

j =
∑j

i=1 p∗
i ≥

∑j
i=1 pi =

C
OP TI (Î)
j . ■

on l ine schedu l ing
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▶ Lemma 5. Given any weighted instance I with n jobs and l heavy weights (w(1) > w(2) >

... > w(l)). Furthermore, let ki be the number of jobs j with a weight wj equal to w(i) where
i = 1...l. Then, OPT is at least

l∑
j=1

k2
j + kj

2 × w(j) + (n− k)(n− k + 1)
2 +

l∑
j=1

((
j−1∑
i=1

ki)× kj × w(j)) + k(n− k) (4)

where k is the number of heavy jobs.

Proof. We prove Lemma 5 by showing that the following claims hold:

OPT (I) ≥ OPTI(Ī) (1)
OPT (Ī) = Equation (4) (2)

Proof of claim (1). We derive from Proposition 1 that for all jobs j, p∗
j ≥ 1. By the

execution order of OPTI(Ī) and the values for each job j ∈ Ī,

C∗
j =

j∑
i=1

p∗
i ≥

j∑
i=1

1 = C
OP TI (Ī)
j

Hence, OPT (I) ≥ OPTI(Ī). Moreover, we have OPT (Ī) ≤ OPTI(Ī) ≤ OPT (I).

Proof of claim (2). We show that the second claim holds, by observing the behaviour
of OPT on the instance Ī. Since each job j has a true processing time of 0, each job j

contributes exactly one unit of time and has a weighted processing time of 1
wj

. Then by the
WSPT rule, we schedule the jobs in non-increasing order by their weights. So, the execution
cost of heavy jobs is

l∑
j=1

k2
j + kj

2 × w(j) execution of heavy jobs

Similarly, the execution cost of unit jobs is

(n− k)(n− k + 1)
2 execution of unit jobs

Each set of jobs with the same weight w(j) will be delayed by other sets of jobs with a
weight w(i), where i < j, illustrated in Figure 4. Therefore, the execution delay for any set
of jobs with a weight w(j) is

l∑
j=1

(
j−1∑
i=1

ki)× kj × w(j) execution delay for any kj

Executing all heavy jobs takes exactly k units of time. Therefore, the execution delay cost of
the unit jobs is k(n− k).

■
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Figure 4 An illustration of jobs that are scheduled by their weights. The delay cost for every job
j ∈ ki is the amount of delay multiplied by their weight.

▶ Lemma 6. Suppose in any instance I, there are m disjoint sets J such that J1∪J2∪ ...∪Jm

= I. For each set Ji, let the set Hi be {(uj , pj , wj , tj = 0|∀j ∈ Ji)}. OPT (I) is at least∑m
i=1 OPT (Hi), where i = 1...m.

Proof. We prove Lemma 6 by showing that the following claims hold:

OPT (I) ≥ OPTI(
m⋃

i=1
Hi) (1)

OPT (
m⋃

i=1
Hi) ≥

m∑
i=1

OPT (Hi) (2)

Proof of claim (1). For the first claim, observe that for any set Hi the value structure for
every job j ∈ Hi is the same as the jobs j ∈ Î since both instances consider a testing time
of 0. Furthermore, for any job j ∈ I there is corresponding job j ∈ (

⋃m
i=1 Hi). Therefore,

(
⋃m

i=1 Hi) is equivalent to Î. So, by Lemma 4 we have that OPT (I) ≥ OPTI(Î).

Proof of claim (2). For the second claim, we show that for any set Hi the inequal-
ity OPTÎ(Hi) ≥ OPT (Hi) holds. Consider a schedule produced by OPT on the instance Î

and any set Hi, then there may be some jobs d /∈ Hi that are scheduled in between or before
the jobs j ∈ Hi. Let g be the index of the last executed job j ∈ Hi in the schedule OPT (Î).
The cost of executing the jobs j ∈ Hi in the schedule of OPT (Î) is

OPTÎ(Hi) =
g∑

j=1
pj × (

g∑
i=j|i∈Hi

wi)

The cost of executing the jobs j ∈ Hi independent of the other jobs d ∈ Î \Hi is

OPT (Hi) =
|Hi|∑
j=1

wj × (
j∑

i=1
pj)

By definition of OPT , the execution order of jobs j ∈ Hi in the schedule OPTÎ(Hi) is the
same as in the schedule OPT (Hi). Hence, if there are no jobs d /∈ Hi with pd

wd
> 0 in between

on l ine schedu l ing
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or before the jobs j ∈ Hi then OPTÎ(Hi) = OPT (Hi). W.l.o.g if there are at least two jobs
a ∈ Hi and b ∈ Hm with 0 < pb

wb
< pa

wa
, where i ̸= m. Then, OPTÎ(Hi) > OPT (Hi). ■

▶ Lemma 7. Given any two-weight instance I with n jobs, OPT (I) is at least

k2 + k

2 × α + (n− k)(n− k + 1)
2 + k(n− k)

where k is the number of heavy jobs, l = 1 and α = w(l).

Proof. Since we only have 1 type of heavy jobs, then we simplify the following terms of
Lemma 5

l∑
j=1

k2
j + kj

2 × w(j) = k2 + k

2 × α cost for executing heavy jobs

l∑
j=1

((
j−1∑
i=1

ki)× kj × w(j)) = 0 execution delay of heavy jobs

Hence, we have our desired lower bound. ■

▶ Lemma 8. Given any unit-weight instance I with n jobs, OPT (I) is at least

(n)(n + 1)
2

Proof. Since we only have unit jobs, we ignore the terms related to the heavy jobs of
Lemma 5. Hence, we have the desired lower bound. ■

5 Greedy Algorithm

In this section, we present an algorithm which follows a greedy strategy. The competitive
ratio of the Greedy algorithm will be used as a performance measure for the other algorithms
introduced in the later sections.

5.1 Test and execute strategy
Algorithm Greedy: Apply the following procedure to each job j in non-increasing order of
wj . Test job j and execute immediately. The cost of Greedy is

ALGT (I) =
k∑

j=1
w(j) ×

j∑
i=1

pi + 1 execution of heavy jobs

+
n−k∑
j=1

j∑
i=1

pi + 1 execution of unit jobs

+ (
k∑

j=1
pj + 1)× (n− k) execution delay of unit jobs
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The most interesting aspect of Greedy is the similarity with the strategy of the optimal
solution, we refer to Theorem 3. In both solutions, jobs are executed immediately after
their test. We prove that Greedy is (ū + 1)-competitive for the cases with two- and multiple
weights. For simplicity, we prove it only for the case with two weights. The same reasoning
and arguments can be used to prove the multiple-weight case.

▶ Theorem 9. Algorithm Greedy is (1 + ū)-competitive, where ū is the uniform upper limit.

Proof. Observe that we can separate the cost of the schedule into two parts: one for only
testing and one for executing. Since we always execute the job after its test, the cost of
delaying the execution of other jobs is already included. Now, if we separate the two parts
we have

ALGT =
k∑

j=1
α×

j∑
i=1

pi

+
n−k∑
j=1

j∑
i=1

pi

+ (
k∑

j=1
pj)× (n− k)

+ k2 + k

2 × α + (n− k)(n− k + 1)
2 + k(n− k) testing

where α is the only heavy weight. By Lemma 7, the testing part (last row) is at most OPT .
For the three remaining lines observe that all of them have a (pj) term. By definition, we
have for all jobs j, pj ≤ ū. By upper bounding the three lines with ū we have

ALGT = ū×
k∑

j=1
α×

j∑
i=1

j

+ ū×
n−k∑
j=1

j∑
i=1

j

+ ū× (
k∑

j=1
1)× (n− k)

If we simplify the terms, it is clear that the remaining terms are together at most OPT × ū.
Hence, Greedy is (ū + 1)-competitive. ■

6 Delay-All Algorithm

In this section, we present our first algorithm where we prove the upper bound of the com-
petitive ratio for the case with two weights and the case with multiple weights. Furthermore,
we provided several inequalities that upper bounds a specific proportion of the schedule cost.

6.1 Unit-weighted case
There exists an algorithm that performs reasonably well for the unit-weighted case (where
all jobs j have weight wj = 1). Algorithm Delay-All, denoted as DA: First, test all jobs
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in any order. If there are no more untested jobs, execute the tested jobs in non-decreasing
order of their weighted processing time.

Algorithm 1 DA
δj = ∅,
T ← ∅
foreach j ∈ [n] do

test j;
add j to T ;
δj = pj

wj
;

end
EXE-WSPT(δ, T);

Algorithm 2 EXE-WSPT(δ, E)

while E ̸= ∅ do
choose jmin ∈ arg minj∈E δj ;
execute jmin;
remove jmin from E ;

end

The cost of DA is

DA(I) =
n∑

j=1
pj execution DAE

+ n2 testing delay DAT D (5)

▶ Lemma 10. Given any unit-weight instance I with n jobs, n2 ≤ 2×OPT .

Proof. By Lemma 8 we have the following inequalities

OPT ≥ n(n + 1)
2

2×OPT ≥ n2 + n

n2 ≤ 2×OPT − n

n2 ≤ 2×OPT

■

▶ Theorem 11. Algorithm DA is 3-competitive.

Proof. By the framework Schedule separation, we split the cost of DA into an execution
(DAE) and a testing delay (DAT D) part, we refer to Equation (5). By Lemma 6, DAE is at
most OPT . Furthermore, by Lemma 10, DAT D is at most 2×OPT . Hence, we have our
desired competitive ratio of 3. ■

A peculiar observation is that the upper limit does not affect the competitive ratio. So, even
if the upper limit is arbitrarily large DA is still 3-competitive.
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6.2 Two weights
To prove the competitive ratio for the two cases, we provide several structural properties that
upper bound a specific proportion of the schedule. For some specific proportions, the upper
bound proves to be an overestimation. We show that the overestimation is being utilised in
the later sections. The cost of DA is

DA :
n∑

j=1
wj × (

j∑
i−1

pi) + n×
k∑

j=1
α + n(n−K) (6)

where we denote the only heavy jobs as α-weighted jobs.

▶ Lemma 12. Given any two-weight instance I with n jobs, n(n-k) ≤ 2×OPT , where k is
the number of heavy jobs.

Proof. By Lemma 7 we have the following inequalities

OPT ≥ k2 + k

2 × α + (n− k)(n− k + 1)
2 + k(n− k)

2×OPT ≥ (k2 + k)× α + (n− k)(n− k + 1) + 2× k(n− k)
≥ (k2 + k)× α + (n− k)× n + (n− k)(1− k) + 2× k(n− k)

n(n− k) ≤ 2×OPT − (k2 + k)× α− (n− k)(1− k)− 2× k(n− k)
≤ 2×OPT − (k2 + k)× α− n− k2 − 2× nk + nk + k + 2k2

≤ 2×OPT − k2 × α− n− nk + k2 α > 1
≤ 2×OPT − k2 × α− n k ≤ n

≤ 2×OPT

■

▶ Corollary 13. Given any two-weight instance I with n jobs, OPT (I) ≥ n2+n
2 .

Proof. Observe that there exist several lower bounds of the optimal cost for a given instance,
although some lower bounds are weaker in the sense that the gap between the lower bound
and the actual optimal cost is large. By Lemma 7 we have the following inequalities

OPT ≥ k2 + k

2 × α + (n− k)(n− k + 1)
2 + k(n− k)

OPT ≥ k2 + k

2 × α + n2 + n + k2

2 − nk − k

2 + nk − k2

OPT ≥ k2 + k

2 × α + n2 + n

2 − k2

2 −
k

2

OPT ≥ n2 + n

2 α > 1

■

In some cases, it is difficult or not so evident how to upper bound a specific part. Therefore,
we present a framework Optimal bounding for such cases.
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Framework Optimal bounding

Given any instance I and an algorithm ALG. Let A express a proportion of ALG(I),
D be a lower bound of OPT and r be a positive constant. If we can show that
r ×D −A ≥ 0, then the following inequality holds

0 ≤ r ×OPT −D × r

A ≤ r ×OPT −D × r + A

A ≤ OPT × r

▶ Lemma 14. Given any two-weight instance I with n jobs, k(n-k) ≤ 1
2 ×OPT , where k is

the number of heavy jobs.

Proof. By the framework Optimal bounding, we prove Lemma 14 by showing that r is at
least 1

2 where A = k(n− k) and Corollary 13 be the lower bound D.

r ×D −A

= n2 + n

2 × r − k(n− k)

= n2 + n

2 × r + k2 − nk

Consider a case distinction on the number of α-weighted jobs. Let k = n±c
2 , 0 ≤ c ≤ n where

0 ≤ c ≤ n. Note that 0 ≤ k ≤ n

n2 + n

2 × r + n2 ± 2nc + c2

4 − n2 ± nc

2

= n2 × (r

2 + 1
4 −

1
2) + n× (r

2 + (± c

2)− (± c

2)) + c2

4

Case k = n+c
2

n2 × (r

2 + 1
4 −

1
2) + n× (r

2 + c

2 −
c

2) + c2

4

= n2 × (r

2 + 1
4 −

1
2) + n× (r

2) + c2

4
≥ n2 × (r

2 + 1
4 −

1
2)

r ≥ 1
2

Case k = n−c
2

n2 × (r

2 + 1
4 −

1
2) + n× (r

2 −
c

2 + c

2) + c2

4

= n2 × (r

2 + 1
4 −

1
2) + n× (r

2) + c2

4
≥ n2 × (r

2 + 1
4 −

1
2)

r ≥ 1
2

■
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▶ Theorem 15. Algorithm DA is (3 + 1
2 × α)-competitive, where α > 1.

Proof. By the framework Schedule Separation, the total schedule cost of DA, Equation (6),
is divided into the following parts.

n∑
j=1

wj × (
j∑

i=1
pi) execution (DAE)

n(n− k) + n×
k∑

j=1
α test delay (DAT D)

By Lemma 6, DAE is at most OPT . Observe that by Lemma 12 and Lemma 14, DAT D is
at most (2 + 1

2 × α)×OPT .

DAT D = n(n− k) + n×
k∑

j=1
α

≤ 2×OPT − k2 × α + n×
k∑

j=1
α Lemma 12

≤ 2×OPT − k2 × α + nk × α

≤ 2×OPT + k(n− k)× α

≤ 2×OPT + 1
2 ×OPT × α Lemma 14

Hence, we have the desired competitive ratio of 3 + 1
2 × α. ■

Overestimation. An interesting observation from the competitive ratio analysis is when
we consider an instance with only unit jobs. By Theorem 11, the competitive ratio is
3-competitive while according to Theorem 15 it is (3 + 1

2 )-competitive. The gap between the
competitive ratio is caused by the usage of several different upper bounds in the analysis of
Theorem 15, which all have some form of overestimation.

6.3 Multiple weights

In this case, the weight of a job j can be any value of the set of natural numbers (wj ∈ N).
The cost of DA is

DA(I) =
n∑

j=1
wj × (

j∑
i=1

pi) + n×
k∑

j=1
wj + n(n− k) (7)

Notice that the lower bound of the optimal cost in the multiple-weight case contains a
complicated summation term, we refer to Lemma 5. In Corollary 16 and Observation 17, we
show another possible lower bound of the optimal cost and a way to simplify and utilise the
summation term.

on l ine schedu l ing
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▶ Corollary 16. Given any multiple-weight instance I with n jobs, OPT (I) is at least

l∑
j=1

kj + (n− k)(n− k + 1)
2 + k(n− k) + (

l∑
j=1

(
j∑

i=1
ki)× kj) + (

l∑
j=1

(
j−1∑
i=1

ki)× kj)

where k is the number of heavy jobs and l is the number of heavy weights.

Proof. By Lemma 5, we have the following inequalities

OPT (I) ≥
l∑

j=1

k2
j + kj

2 × w(j) + (n− k)(n− k + 1)
2 +

l∑
j=1

((
j−1∑
i=1

ki)× kj × w(j)) + k(n− k)

≥
l∑

j=1
k2

j + kj + (n− k)(n− k + 1)
2 + 2(

l∑
j=1

(
j−1∑
i=1

ki)× kj) + k(n− k) wj ≥ 2

Observe the term
∑l

j=1(
∑j−1

i=1 ki)× kj , for every summation of j we miss exactly k2
j . Hence,

OPT ≥
l∑

j=1
kj + (n− k)(n− k + 1)

2 + (
l∑

j=1
(

j∑
i=1

ki)× kj) + (
l∑

j=1
(

j−1∑
i=1

ki)× kj) + k(n− k)

■

The most important aspect of Corollary 16 is that we can create the summation
(
∑l

j=1(
∑j

i=1 ki)× kj). Notice, that the weights of heavy jobs are at least two since for any
weight wj ∈ N and excluding the unit weight. Furthermore, observe that the lower bound
Corollary 16 is weaker than Lemma 5. However, we can preserve the weights by multiplying
the optimal cost twice.

▶ Observation 17. By combining and simplifying the two summations in Corollary 16 we
have,

(
l∑

j=1
(

j∑
i=1

ki)× kj) + (
l∑

j=1
(

j−1∑
i=1

ki)× kj) = k2

where k is the number of heavy jobs and l is the number of heavy weights.

Proof. We prove the equality by showing a visualisation of k2. Mathematically, k2 = (k1+k2+
k3 + ...+kl−1 +kl)(k1 +k2 +k3 + ...+kl−1 +kl). Consider the summation

∑l
j=1(

∑j
i=1 ki)×kj ,

to complete the summation, such that we have k2, we need at
∑l

j=1(
∑l

i=j ki) × kj ,s see
Figure 5. Now, consider the summation

∑l
j=1(

∑j−1
i=1 ki)× kj . The occurrence of any value

kj is l − j. Therefore, we can rewrite the summation to
∑l

j=1(
∑l

i=j ki)× kj which covers
exactly the missing parts of the summation

∑l
j=1(

∑j
i=1 ki)× kj , we refer to Figure 6. ■
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Figure 5 Visual representation of k2, where the green squares represent
∑l

j=1(
∑j

i=1 ki) × kj

and the red ones are the missing values (
∑l

j=1(
∑l

i=j ki)× kj).

Figure 6 Visual representation of k2, where the blue squares represent
∑l

j=1(
∑j−1

i=1 ki) × kj and
the red ones are (

∑l

j=1(
∑l

i=j
ki) × kj)

.

on l ine schedu l ing
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▶ Lemma 18. Given any multiple-weight instance I with n jobs, n(n− k) ≤ 2×OPT , where
k is the number of heavy jobs.

Proof. By Corollary 16 and Observation 17 we have

OPT ≥
l∑

j=1
kj + (n− k)(n− k + 1)

2 + k2 + k(n− k)

2×OPT ≥ 2(
l∑

j=1
kj) + (n− k)(n− k + 1) + 2k2 + 2k(n− k)

= 2(
l∑

j=1
kj) + n2 + n + k2 − k − 2nk + 2k2 + 2nk − 2k2

= 2(
l∑

j=1
kj) + n2 − nk + n + k2 − k + nk

= 2(
l∑

j=1
kj) + n2 − nk + n + k2 − k + nk

≥ 2(
l∑

j=1
kj) + n2 − nk + k2 + nk k ≤ n

n2 − nk ≤ 2×OPT − 2(
l∑

j=1
kj)− k2 − nk

n(n− k) ≤ 2×OPT

■

▶ Theorem 19. Algorithm DA is (1 + 2 × wmax)-competitive, where wmax is the largest
heavy weight.

Proof. By the framework Schedule separation, the total schedule cost of DA, Equation (7),
is divided into the following parts.

n∑
j=1

wj × (
j∑

i=1
pi) execution (DAE)

+ n×
k∑

j=1
wj + n(n− k) testing delay (DAT D)

By Lemma 6, we have that DAE is at most OPT . Additionally, we can use Lemma 18 to
upper bound the testing delay, DAT D, of the unit jobs. To upper bound the testing delay of
the heavy jobs, we can substitute all the weights with the largest weight (wmax) in the set.
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Therefore, DAT D is at most 2× wmax.

DAT D = n(n− k) + n×
k∑

j=1
wj

≤ 2×OPT − nk + n×
k∑

j=1
wj Lemma 18

≤ 2×OPT − nk + nk × wmax ∀j, wj ≤ wmax

≤ (2×OPT − nk)× wmax + nk × wmax

Hence, we have the desired competitive ratio of 1 + 2× wmax. ■

Using the largest weight. Suppose we have a multiple-weight instance I with l = 2,
where w(1) is relatively small and w(2) is enormous. Furthermore, let the number of heavy
jobs j with wj = w(2) be exactly one and the number of heavy jobs j with wj = w1 is
relatively large. Then according to the competitive ratio analysis, this results in an enormous
overestimation. Therefore, using the largest weight is considered to be too pessimistic.

6.4 Lower bound
We show that there exists an instance, such that DA is at least 2.4-competitive. Observe, that
DA will not stop testing even if, after a test, the true processing time of a job is equal to zero.
Consider an instance I with nδ jobs having a tuple value (uj = ū, pj = ϵ, tj = 1, wj = w1)
and n(1 − δ) jobs having a tuple value (uj = ū, pj = β, tj = 1, wj = 1), where w(1) ≥ 2,
0 < ϵ < ū− 1 and 0 < β < ū− 1. The algorithmic value of DA is

DA(I) =
∑
j=1

wj × (
j∑

i=1
pi) execution

+ n(nδ)× w1 + n(1− δ)n testing delay

Comparatively, the optimal solution will test all jobs before their execution. However,
we do not know the order of the optimal schedule. This leads to a cost of OPT (I) =∑n

j=1 wj × (
∑j

i=1 pi + 1). Therefore, the ratio is

DA(I)
OPT (I) =

n(nδ)w1 + n(1− δ)n +
∑

j=1 wj × (
∑j

i=1 pi)∑n
j=1 wj × (

∑j
i=1 pi + 1)

Now, we let ϵ and β approach 0 and n approach ∞. We take the term to WolframAlpha,
where we minimise the ratio

DA(I)
OPT (I) −−−−→n→∞

ϵ,β→0


2 δ = 1 ∨ δ = 0, w(1) = 3
2(δ+1)
δ2+1 0 < δ < 1, w(1) = 2
∞ (otherwise).

When we have either only heavy jobs, with a weight value of 3, or only unit jobs, the
competitive ratio is at least 2. For different values of δ and with a weight value of 2, we can
observe, see Figure 7, that the largest increase in the competitive ratio (≈ 2.4) is when the
fraction of heavy jobs is approximately 0.41.

on l ine schedu l ing
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Figure 7 The function f(δ) = 2(δ+1)
δ2+1 over values of δ, where δ is the number of heavy jobs

.

7 L-Delay-All Algorithm

In this section, we design a new algorithm based on the results of the algorithm DA. We
prove the upper bound of the competitive ratio and show for a certain types of instances the
new algorithm is constant-competitive.

7.1 Early execution strategy

By the framework Schedule separation, we can observe that the largest increase in cost of
DA is the testing delay. In both cases, the two- and multiple-weight, the competitive ratio is
dependent on the largest weight. A solution to reduce the testing delay cost is by executing
some jobs earlier. So, we design a new algorithm L-DA that first tests all jobs of a specific
weight and then executes the tested jobs by the WSPT rule. The algorithm prioritises the
largest weighted jobs first since delaying these jobs can significantly increase the cost. One of
the advantages of the structural properties provided in Section 6 is that they are dependent
on the instance type. Therefore, most of the properties are applicable for L-DA.

Algorithm 3 L-DA
K ← [int : ∅], δj = ∅
foreach j ∈ [n] do

add j to K[wj ];
end
keysSorted← sort(K.keys, non− increasing)

foreach key ∈ keysSorted do
T = ∅;
foreach j ∈ K[key] do

test j;
add j to T ;
δj = pj

wj
;

end
EXE-WSPT(δ, T);
i = i +1;

end



X.O Zhang 29

The algorithm L-DA is divided into two phases. In the first phase, it sorts all jobs into
sets K based on their weights. In the second phase, we apply the following procedure to
each set K in non-increasing order of weight. Start testing all jobs and if there are no more
untested jobs, execute the tested jobs by the WSPT rule.

7.2 Two weights
The cost of L-DA is as follows

L-DA :
k∑

j=1
α× (

j∑
i−1

pi) +
n−k∑
j=1

(
j∑

i=1
pi) + k ×

k∑
j=1

α + (n +
k∑

j=1
pj)× (n− k) (8)

where we denote the only heavy jobs as α-weighted jobs.

▶ Corollary 20. Given any two-weight instance I with n jobs,

(n− k)×
k∑

j=1
pj ≤

1
2 × ū×OPT

where k is the number of heavy jobs and ū is the uniform upper limit.

Proof. By simplifying the term ((n − k) ×
∑k

j=1 pj) from Equation (6) and by the upper
bound of the processing time (0 ≤ pj ≤ ū), we have the following inequalities

(n− k)×
k∑

j=1
pj ≤ (n− k)k × ū pj ≤ ū

(n− k)k × ū ≤ (1
2 ×OPT )× ū Lemma 14

■

▶ Theorem 21. Algorithm L-DA is (3 + 1
2 × ū)-competitive, where ū is the uniform upper

limit.

Proof. By the framework Schedule separation, the total schedule cost of L-DA, Equation (8),
is divided into the following components.

k∑
j=1

α× (
j∑

i=1
pi) +

n−k∑
j=1

j∑
i=1

pi execution (L-DAE)

k ×
k∑

j=1
α + n(n− k) testing delay (L-DAT D)

(n− k)×
k∑

j=1
pj execution delay (L-DAED)

on l ine schedu l ing
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By Lemma 6, L-DAE is at most OPT . Observe that by simplifying L-DAT D, then according
to Lemma 12 we have

L-DAT D = k2 × α + n(n− k) ≤ 2×OPT − k2 × α

Therefore, L-DAT D is at most 2×OPT . By definition of the processing time, the makespan
of executing all α-weighted jobs is at most k × ū. Therefore, by Corollary 20, L-DAED is at
most 1

2 ×OPT × ū. Hence, we have the desired competitive ratio of 3 + 1
2 × ū. ■

7.3 Multiple weights

The cost of L-DA is defined as follows

L-DA(I) =
l∑

j=1
w(j) × (

kj∑
i−1

pi) +
n−k∑
j=1

(
j∑

i=1
pi)

+
l∑

j=1
(

j∑
i=1

ki)× kj × w(j) +
l∑

j=1
(

j−1∑
i=1

mi)× kj × w(j)

+ (n +
k∑

j=1
pj)× (n− k)

(9)

where i = 1...l and mi is the total time that we spend on executing jobs j with a weight
wj = w(i).

Notice that in the multiple-weight case, the heavy jobs are now delayed by the execu-
tion and testing of other heavy jobs, we refer to Equation (9). The execution delay of heavy
jobs, incurred by executing other heavy jobs, is upper-bounded by ū.

▶ Observation 22. The execution cost of heavy jobs is upper-bounded by ū,

l∑
j=1

(
j−1∑
i=1

mi)× kj × w(j) ≤ (
l∑

j=1
(

j−1∑
i=1

ki)× kj × w(j))× ū

where k is the number of heavy jobs, mi is the makespan of executing all jobs with a weight
wj = w(i) and ū is the upper limit.

Proof. From Equation (9), observe that the number of jobs j with a weight wj = w(i) is ki

and the true processing time is at most ū. Therefore, mi is at most ki × ū.
■

▶ Lemma 23. Given any multiple-weight instance I with n jobs,

l∑
j=1

(
j∑

i=1
ki)× kj × w(j) + n(n− k) ≤ 2×OPT

where k is the number of heavy jobs and l is the number of heavy weights.
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Proof. By Lemma 5 and Corollary 16, we have the following inequalities

OPT ≥
l∑

j=1

k2
j + kj

2 × w(j) + (n− k)(n− k + 1)
2 +

l∑
j=1

((
j−1∑
i=1

ki)× kj × w(j)) + k(n− k)

2×OPT ≥
l∑

j=1
(

j∑
i=1

ki)× kj × w(j) +
l∑

j=1
(

j−1∑
i=1

ki)× kj × w(j) +
l∑

j=1
kj × w(j)

+ (n− k)(n− k + 1) + 2k × (n− k)

Observe that if we add the term −n(n−k)+n(n−k), to the right-hand side of the inequality
and show that (n− k)(n− k + 1) + 2k × (n− k)− n(n− k) ≥ 0. Then, Lemma 23 holds.

(n− k)(n− k + 1) + 2k × (n− k)− n(n− k)
= n(n− k)− nk + n + k2 − k + 2nk − 2k2 − n(n− k)
= −nk + n + k2 − k + 2nk − 2k2

= n− k + nk − k2

≥ 0 k ≤ n

Therefore,

2×OPT ≥
l∑

j=1
(

j∑
i=1

ki)× kj × w(j) +
l∑

j=1
(

j−1∑
i=1

ki)× kj × w(j) +
l∑

j=1
kj × w(j)

+ (n− k)(n− k + 1) + 2k × (n− k)

≥
l∑

j=1
(

j∑
i=1

ki)× kj × w(j) +
l∑

j=1
(

j−1∑
i=1

ki)× kj × w(j) +
l∑

j=1
kj × w(j)

+ (n− k)(n− k + 1) + 2k × (n− k) + n(n− k)− n(n− k)

n(n− k) +
l∑

j=1
(

j∑
i=1

ki)× kj × w(j) ≤ 2×OPT −
l∑

j=1
(

j−1∑
i=1

ki)× kj × w(j) −
l∑

j=1
kj × w(j)

− ((n− k)(n− k + 1) + 2k × (n− k)− n(n− k))

■

From Equation (9), we observe that L-DA has a cost term of (
∑k

j=1 pj) × (n − k). In
the two-weight case, we upper-bounded the same cost term by Corollary 20. We have not
proven this for the multiple-weight case.

▶ Lemma 24. Given any multiple-weight instance I with n jobs, k(n − k) ≤ 8
12 × OPT ,

where k is the number of heavy jobs.
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Proof. By the framework Optimal bounding, we prove Lemma 14 by showing that r is at
least 8

12 where A = k(n − k) and by Corollary 16 and Observation 17 we have our lower
bound D

OPT ≥
l∑

j=1
kj + (n− k)(n− k + 1)

2 + k(n− k) + k2

OPT ≥ k + (n− k)(n− k + 1)
2 + k(n− k) + k2

OPT ≥ k + n2 + n + k2 − k

2 − nk + nk − k2 + k2

OPT ≥ n2 + n + k2 − k

2

Consider a case distinction on the number of heavy jobs.

r × n2 + n + k + k2

2 − (k(n− k))

= r × n2 + n + k2 + k

2 + k2 − nk

r × (n2 + n

2 + n2 ± 2nc + c2

8 + n± c

4 ) + n2 ± 2nc + c2

4 − n2 ± nc

2

Let k = n±c
2 , 0 ≤ c ≤ n where 0 ≤ c ≤ n. Note that 0 ≤ k ≤ n

n2 × (r

2 + r

8 + 1
4 −

1
2) + n× (r

2 ± r × c

4 + r

4 ±
c

2 − (± c

2)) + c× (r × c

8 + c

4 ±
1
4)

Case k = n+c
2

n2 × (r

2 + r

8 + 1
4 −

1
2) + n× (r

2 + r × c

4 + r

4 + c

2 − (+ c

2)) + c× (r × c

8 + c

4 + 1
4)

= n2 × (r

2 + r

8 −
1
4) + n× (r

2 + r × c

4 + r

4) + c× (r × c

8 + c

4 + 1
4)

≥ n2 × (r

2 + r

8 −
1
4)

r ≥ 8
20

Case k = n−c
2

n2 × (r

2 + r

8 + 1
4 −

1
2) + n× (r

2 − r × c

4 + r

4 −
c

2 − (− c

2)) + c× (r × c

8 + c

4 −
1
4)

= n2 × (r

2 + r

8 + 1
4 −

1
2) + n× (r

2 − r × c

4 + r

4) + c× (r × c

8)

Observe that bounding the term (n× (−r× c
4 )) is difficult with only (n) terms. By definition

of c, we treat the term (n× (−r× c
4 )) as a (n2). Therefore, we have n2× (r× 5

8 −
1
4 − r× 1

4 ).
Hence, r ≥ 8

12 . ■
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▶ Theorem 25. Algorithm L-DA is (3 + 5
3 × ū)-competitive, where ū is the uniform upper

limit.

Proof. By the framework Schedule separation, the total schedule cost of L-DA, Equation (9),
is divided into the following components.

l∑
j=1

w(j) × (
kj∑

i=1
pi) +

n−k∑
j=1

(
j∑

i=1
pi) execution (L-DAE)

+
l∑

j=1
(

j∑
i=1

ki)× kj × w(j) + n(n− k) testing delay (L-DAT D)

+
l∑

j=1
(

j−1∑
i=1

mi)× kj × w(j) + (n− k)× (
k∑

j=1
pj) execution delay (L-DAED)

By applying Lemma 6 and Lemma 23, we can see that L-DAE is at most OPT and L-DAT D

is at most 2×OPT , respectively. Furthermore, according to Lemma 24, the execution delay
of the unit jobs is at most 8

12 ×OPT × ū. As for the execution delay of the heavy jobs, we
simplified the summation term using Observation 22 and by Lemma 5 the upper bound is at
most OPT × ū. Therefore, L-DAED is at most 5

3 ×OPT × ū.

L-DAED =
l∑

j=1
(

j−1∑
i=1

mi)× kj × w(j) + (n− k)× (
k∑

j=1
pj)

≤
l∑

j=1
(

j−1∑
i=1

mi)× kj × w(j) + (n− k)k × ū pj ≤ ū

≤
l∑

j=1
(

j−1∑
i=1

mi)× kj × w(j) + 8
12 ×OPT × ū Lemma 24

≤ (
l∑

j=1
(

j−1∑
i=1

ki)× kj × w(j))× ū + 8
12 ×OPT × ū Observation 22

≤ (OPT )× ū + 8
12 ×OPT × ū Lemma 5

≤ 5
3 ×OPT × ū

Hence, we have the desired competitive ratio of 3 + ( 5
3 × ū). ■

Greedy algorithm better. For the case with multiple weights, we can observe that both
algorithms DA and L-DA increases in ratio. Although, the increase of DA is much more
than L-DA. However, the competitive ratio of L-DA is still worse compared to the Greedy.

7.4 Lower bound
We show that L-DA is at least 3.4-competitive. Intuitively, the worst-case instance for L-DA
is when all heavy jobs have a true processing time equal to the upper limit. While the unit
jobs have a true processing time equal to zero. In essence, the order of execution and the
decision to test the heavy jobs are sub-optimal.

on l ine schedu l ing
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Consider an instance I with n(1 − δ) jobs have a tuple value of (uj = ū, pj = ϵ, tj =
1, wj = 1) and nδ jobs have a tuple value of (uj = ū, pj = uj , tj = 1, wj = w1), where w1 ≥ 2,
ū > w1 and ϵ + 1 < ū. The algorithmic cost is

L-DA(I) = (n2δ2)w1 + nδ(nδ + 1)
2 × ū× w1 testing delay and execution of heavy jobs

+ (nδ)× ū× (1− δ)n execution delay of unit jobs

+ n(1− δ)n + (1− δ)n((1− δ)n + 1)
2 testing delay and execution of unit jobs

The optimal schedule will only test the unit jobs and execute the heavy jobs directly. Now,
let ϵ approach 0 such that the optimal schedule will execute the unit jobs first.

OPT (I) = (1− δ)n((1− δ)n + 1)
2 unit jobs testing and execution

+ (1− δ)n(δ)n× w1 + δn(δn + 1)
2 × ū× w1 heavy jobs delay and execution

We let n approach ∞ and take the term to WolframAlpha where we minimise the ratio

L-DA(I)
OPT (I) −−−−→n→∞

ϵ→0

2δ2w1 + δ2ūw1 + 2δ(1− δ)ū + 2(1− δ)
(1− δ)2 + 2δ(1− δ)w1 + δ2ūw1

2 + 2δ2w1 + δ2ūw1 + 2δw1 − 2δ2ū− 2δ

1 + δ2 + δ2ūw1 − 2δ2w1 − 2δ

2 + 2δ2w1 + δ2ūw1 + 2δw1 − 2δ2ū− 2δ

1 + δ2 + δ2ūw1 − 2δ2w1 − 2δ
adding the terms

+ (δ2)− (δ2) + (−2δ2w1)− (−2δ2w1)
1 + δ2 + δ2ūw1 − 2δ2w1 − 2δ

(δ2)− (δ2) + (−2δ2w1)− (−2δ2w1)

1 + 1 + 4δ2w1 + 2δū− 2δ2ū− δ2

1 + δ2 + δ2ūw1 − 2δ2w1 − δ2

1 + 1 δ = 0, ū = 4, w1 = 3

By setting δ = 0, we have that L-DA is at least 2-competitive. We find a stronger lower
bound by filling in the values ū and w1 and minimise the new term

1 + 4δ2w1 + 2δū− 2δ2ū− δ2

1 + δ2 + δ2ūw1 − 2δ2w1 − δ2 −−−→ū=4
w1=3

δ(3δ + 8) + 1
6δ2 + 1

From Figure 8, we can observe that the largest increase in the competitive ratio (≈ 2.4) is
when δ ≈ 0.35. Hence, L-DA is at least 3.4-competitive.

7.5 Analysis of α and ū

In this subsection, we investigate the relationship between the parameters α and ū in the
context of the two-weight case. Specifically, we show that the adversary will never construct
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Figure 8 The function f(δ) = δ(3δ+8)+1
6δ2+1 over values of δ, where δ is the number of heavy jobs

.

an instance with α ≥ ū. Additionally, we present a novel algorithm called U-DA and establish
its competitiveness as 3 when α ≥ ū, otherwise a competitive ratio of 3 + 1

2 × α.

▶ Proposition 2. Given any two-weight instance I with l = 1 and α > ū, the optimal solution
always schedules the α-weighted jobs first, where α = wl.

Proof. Assume on the contrary, that the optimal solution executes the unit jobs first. Observe
that the weighted processing time for the unit jobs j is at least p∗

j

1 = 1
1 . While for the

α-weighted jobs k, the weighted ratio is at most p∗
k

α = ū
α < ū

ū . By the WSPT rule, the
optimal solution would not execute the unit jobs first. Hence, a contradiction. ■

Note that if α = ū, then the weighted processing time of the α-weighted jobs is at most 1.
Furthermore, if all jobs j have the same weighted processing time of 1

1 = ū
α , then by the

WSPT rule, the order of their execution is irrelevant. Therefore, when α = ū, we assume
that the optimal solution follows the execution order of L-DA. For different values of ū

α we
observe which algorithm (L-DA or DA) results in a better competitive ratio, we refer to
Figure 9. When ū

α ≥ 1, the competitive ratio becomes constant-competitive.

Algorithm Unified-Delay-All, denoted as U-DA: If α < ū: use DA. Otherwise, use
L-DA.

▶ Theorem 26. Algorithm U-DA is 3-competitive, when α ≥ ū.

Proof. By Proposition 2, we can deduce that in the optimal schedule, the execution of any
unit job must be delayed by the execution of all α-weighted jobs. Hence, we can infer that
the optimal schedule incurs an additional cost of (n−k)×

∑k
j=1 p∗

j , in addition to the cost of
executing the jobs. Combining this with Lemma 6, we can establish the following inequality:

k∑
j=1

α×
j∑

i=1
pi +

n−k∑
j=1

j∑
i=1

pi + (n− k)×
k∑

j=1
pj ≤ OPT

The testing delay of the α-weighted and unit jobs is by Lemma 12 at most 2×OPT . Hence,
we have the desired competitive ratio of 3. ■

on l ine schedu l ing
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Figure 9 The competitive ratio of the two algorithms depends on the ratio α
ū

, where the blue
line represents the algorithm DA and the orange line represents the algorithm L-DA. ū denotes the
uniform upper limit and α the only heavy weight.

8 Postpone-L-Delay-All Algorithm

In this section, we design a new algorithm which is a variant of L-DA with an adjusted
execution strategy. We prove that the new algorithm is constant-competitive for the special
case with two weights.

8.1 Postpone strategy

By Theorem 21, we can observe that the largest increase in cost is the execution delay of the
unit jobs, incurred by the execution of the α-weighted jobs. The execution delay is at most
nk × ū, see Figure 10. A possible solution is to postpone the execution of some α-weighted

Figure 10 A representation of a schedule produced by K-DA where the circle represents a test,
the rectangles represent the execution time and the black bar represents the completion of a job.
The execution of α-weighted jobs will push the unit jobs by at most k × ū.

jobs such that the time spend on executing these jobs will be reduced.

Algorithm Postpone-L-DA, also denoted as PL-DA, follows mostly the strategy of
L-DA, except after the test phase of α-weighted jobs it has only a budget of m units of time
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to executing α-weighted jobs. The cost is defined as follows

PL-DA =
x∑

j=1
α× (

j∑
i=1

pi) +
n−x∑
j=1

wj × (
j∑

i=1
pi) execution (PL-DAE)

+ n(n− k) + k(x)× α + n(np)× α test delay (PL-DAT D)
+ m(n− k) + m(np)× α execution delay (PL-DAED)

(10)

where x is the number of executed α-weighted jobs that are not postponed and np is the
number of postponed α-weighted jobs. Since all jobs have a uniform upper limit, x is at
least m

ū and np is at most k − m
ū . The critical part is defining what m should be. If m is

too large, then we end up in the same situation as L-DA. When m is too small, then the
execution delay of the postponed jobs will increase by α for every unit of time.

▶ Lemma 27. Given any two-weight instance I with n jobs,

PL-DAE + PL-DAT D ≤ 3×OPT + n(np)× α

where α = w(1).

Proof. By the framework Schedule separation, we split the schedule such that we have
Equation (10). Consider only the execution (PL-DAE) and the testing delay (PL-DAT D).
Observe that the number of executed jobs α-weighted jobs, that are not postponed, is at
most k. Then by Lemma 6 and Lemma 12, we have the the following

PL-DAE + PL-DAT D =
x∑

j=1
α× (

j∑
i=1

pi) +
n−x∑
j=1

wj × (
j∑

i=1
pi)

+ n(n− k) + k(x)× α + n(np)× α

≤OPT + n(n− k) + k(x)× α + n(np)× α Lemma 6
≤OPT + 2×OPT + n(np)× α x ≤ k and Lemma 12

Hence, we have the desired competitive ratio of 3 + n(np)× α. ■

▶ Lemma 28. Given any two-weight instances I,

PL-DAED ≤ 0×OPT − n(np)× α

where np is the number of postponed jobs and α the only heavy weight.

Proof. We prove Lemma 28 by setting m as follows

m = n(1 + ū

α
− 1

α
) k ≥ n

ū

First, observe the following

PL-DAED ≤ 0×OPT − n(np)× α

PL-DAED + n(np)× α ≤ 0×OPT

PL-DAED + n(np)× α = n(np)× α + m(n− k) + m(np)× α

≤ m(n− k + k × α)− α

ū
×m2 + nk × α− α

ū
×mn np ≤ k − m

ū

≤ mk(ū + α− 1) + k2 × α× ū− α

ū
×m2 − α

ū
×mn n ≤ k × ū

on l ine schedu l ing



38

Now, we show that m ≥ n + n( ū
α −

1
α )

α

ū
×m2 ≥ mk(α + ū− 1)

α

ū
×m ≥ k(α + ū− 1)

m ≥ ū

α
× k(α + ū− 1)

m ≥ ū

α
× (n

ū
)(α + ū− 1) k ≥ n

ū

m ≥ n(1 + ū

α
− 1

α
)

By setting m to n(1 + ū
α −

1
α ), we have that mk(α + ū − 1) − α

ū ×m2 = 0. Now, for the
remaining terms we have

k2 × α× ū− α

ū
× n(n + n( ū

α
− 1

α
))

= k2 × α× ū + 1
ū
× n2 − n2 − α

ū
× n2

≤ k2 × α× ū + k2 × ū− k2 × α× ū− k2 × ū2 n ≤ k × ū

≤ k2 × ū− k2 × ū2 ≤ 0

If k ≥ n
ū and

∑k
j=1 pj = m ≥ n(1 + ū

α −
1
α ) holds, then PL-DAED + n(np)× α ≤ 0×OPT .

■

▶ Theorem 29. Algorithm PL-DA is 3-competitive, where k ≥ n
ū and

∑k
j=1 pj ≥ n(1+ ū

α−
1
α ).

Proof. The total schedule cost of PL-DA and the schedule separation is given by Equation (10).
Observe by Lemma 27 and Lemma 28, we have

PL-DA ≤ 3×OPT + PL-DAED + n(np)× α Lemma 27
≤ 3×OPT Lemma 28

Hence, we have the desired competitive ratio of 3. ■

9 Further Observations

We observed that certain types of instances are more favourable to specific algorithms, such as
those outlined in Theorem 26 for L-DA and Theorem 29 for PL-DA. Despite both algorithms
being 3-competitive, their analyses differ from each other. Examining the performance of
these algorithms on various types of instances can provide new insights. In this subsection,
we present several different instance types for the case with two weights.

9.1 Heavy instances
Using the Schedule Separation framework, we observe that the terms related to heavy jobs
(α-weighted jobs) contribute the most to the total cost. As a result, we perform a case
distinction on the number of heavy jobs.
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Case k ≤
√

n. If we assume that ū ≤
√

n
2 . Then we conclude that L-DAED is at most

OPT , making L-DA 4-competitive:

L-DAED = (n− k)×
k∑

j=1
pj

≤ (n− k)k × ū

≤ n(
√

n)×
√

n

2
≤ OPT Corollary 20

Case k ≤ n
ū . Assume that k >

√
(n) and the parameters (α and ū) are constant relative

to the number of jobs (n and k), we consider the case where k ≤ n
ū and ū can be any value.

Then, L-DAED is at most 2×OPT , making L-DA 5-competitive:

L-DAED = (n− k)×
k∑

j=1
pj

≤ (n− k)k × ū

≤ n(k

ū
)× ū

≤ 2×OPT Corollary 20

Case k ≥ n
ū . If k ≥ n

ū and the makespan on executing the tested heavy jobs (
∑k

j=1 pj)
is at least or equal to n(1 + ū

α −
1
α ), then PL-DA is 3-competitive, we refer to Theorem 29.

10 Conclusion

Dürr et al. [8] introduced the problem of scheduling with testing on a single machine,
for the objective of minimising the total completion time. In this thesis, we extended the
problem by considering the objective of minimising the total weighted completion time. Our
main focus was on the problem variant where all jobs have a uniform upper limit ū, which
makes the decisions of the algorithm independent of the predicted processing time. We
showed that the approach used in paper[8] could not be generalised for the weighted case.
Therefore, we approached the analysis from a different direction. We observed that the
schedule produced by any algorithm can be divided into different parts or components, each
of which is individually upper bounded by the lower bound of the optimal solution.

We presented Algorithm DA, where we proved a competitive ratio of 3 + 1
2 × α and

1 + 2× wmax for the special case with two weights (1 and α) ∈ N and the more generalised
case with multiple weights, respectively. For the lower bound, we showed that there exists
an instance where the competitive ratio is at least 2.4. Building on the findings of DA,
we introduced a more sophisticated Algorithm L-DA. We proved a competitive ratio of
3 + 1

2 × ū and 3 + 5
3 × ū for the special case with only two weights and the multiple weight

case, respectively. By combining the two algorithms, we showed that for the case with two
weights, Algorithm U-DA is at most 3-competitive when α ≥ ū; otherwise, it is 3 + 1

2 × α.
For the lower bound, we showed for DA there exists where exists an instance where the
competitive ratio is at least 2.4. Similarly, we showed for L-DA a competitive ratio of at least
3.4. The most significant result is Algorithm PL-DA, which is mostly based on L-DA, but
has an adjusted execution strategy. We observed that when m is large enough, we achieve a

on l ine schedu l ing
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competitive ratio of 3 for the case with two weights.

Smaller m. The results on PL-DA open many questions. Currently, PL-DA is 3-competitive
if:

∑k
j=1 pj = m ≥ n(1+ ū

α −
1
α ). It would be interesting to investigate whether the algorithm

is still constant-competitive when m is smaller, or whether a different competitive ratio
emerges. If a different ratio does emerge, it would be valuable to understand the factors that
influence it. Another interesting question is whether m should be static or dynamic for the
case with multiple weights.

Test strategy. In the thesis, all the algorithms have a static testing strategy. Namely, we
always test a non-trivial job. This is based on the fact that the rule smaller upper limit leads
to a bad solution. Intuitively, when the upper limit of a job is enormous it is always better
to test since the testing time (uniformly equal to 1) is compared to the upper limit relatively
small. Developing a rule that takes into account multiple conditions rather than just one is a
promising direction for future work.

Analysis approach. Another questionable aspect is the analysis approach. Using the
lower bound of the optimal cost to upper bound the cost of any algorithm leads to an
overestimation of the competitive ratio. Furthermore, in many inequality proofs, we did not
fully utilise the weights. Especially in the multiple-weight case where Greedy is performing
better than L-DA. The approach cross-examining used in paper[2] is an alternative to the
framework schedule separation.

Density ratio. Another possible generalisation of the problem is to relax the restric-
tion on the upper limit. We considered the special case where we have two upper limits
(ū and ū × d) and two weights (β and β × d) where β ∈ N and d ∈ N. The weighted
processing time uj

wj
of a job j can be any combination between the values of the upper

limit and the weights. Therefore, we have four possible combinations where two have the
same density ratio. We observed the performance of L-DA on such an instance and no-
ticed that upper bounding the different parts tends to be difficult. Although, we observed
that L-DA is at most (3+2× ū+ ū×d)-competitive but the observation is still too pessimistic.

Extensions. Further interesting directions for future work are the extensions of the problem.
For example, non-uniform testing times, multiple machines or the preemptive case.
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