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Lay Summary

Inclusive fitness theory is an extremely influential idea in the field of evolutionary
biology which changed the way we perceive evolutionary success. It examines
the evolution of social behaviours such as altruism, whose evolution seemingly
challenges Darwin’s “survival of the fittest”: by evolving altruism, an organism
develops behaviours that negatively impact their own reproductive prospects to
improve the reproduction of organisms around them, making themselves ‘less
fit’. A classic, extreme example of this is found in eusocial insects such as
honey bees, where female workers do not reproduce at all despite possessing
fully functional reproductive organs, and instead invest all their resources into
improving the survival of offspring of the colony’s queen.

In order to understand how seemingly selfless behaviours can evolve through
natural selection, W.D. Hamilton developed inclusive fitness theory, which math-
ematically demonstrates that behaviours can spread if the genes that cause them
are more likely to be passed on to future generations, regardless of the impact
on the individual who carries those genes. Inclusive fitness theory explains that
behaviours detrimental to an individual’s reproductive success can still evolve
if they increase ‘inclusive fitness’, a measure that accounts for the reproductive
effects of a trait not only on the individual but also on other organisms with
the same trait.

Hamilton used the framework of inclusive fitness theory to develop Hamil-
ton’s rule, which outlines the conditions necessary for an altruistic trait to
evolve. It defines a relationship between the negative effect of a trait on an
individual’s reproduction (cost cc), the positive effect a trait gives to others



(benefit b), and how related interacting individuals are to each other (related-
ness R):
Rb > c,

or that the cost of possessing a behaviour should be less than the benefit it
provides, weighted by a measure of the degree of relatedness between actor
and recipient. The attraction to this rule, as to many scientific equations, lies
in its elegance, but its simple exterior belies hidden complexity. Hamilton’s
original definitions of R, b and ¢ require a restrictive set of assumptions, but
efforts to expand definitions of the parameters to more general alternatives
result calculations for the three parameters depending on each other, causing
difficulties interpreting what they truly represent.

Debate over Hamilton’s rule has been an ongoing topic since its inception,
but has increased in intensity over the past decade due to a series of critical,
high-profile articles that claim the insights it provides are limited. In response,
supporters of Hamilton’s rule have pointed out the wealth of experimental evi-
dence that demonstrates organisms do evolve to increase their inclusive fitness.
However, due to the difficulties applying Hamilton’s rule empirically, the meth-
ods used to define inclusive fitness and the parameters of Hamilton’s rule in
these experiments differ from case to case. As a result, critics remain vocally
unconvinced, and there is still no current consensus reached for the usefulness
of Hamilton’s rule.

The goal of this project was to assess whether modern formulations of Hamil-
ton’s rule avoid the original’s limiting assumptions, and to what extent general-
ity comes at a cost to its descriptive power. We begin by reviewing the parame-
ters of Hamilton’s original formulation, the limiting assumptions these require,
and how extensions to their definitions can avoid these assumptions. While
explaining these extensions, we assess whether the adjustments necessary to
improve parameter generality impact the rule’s descriptive power. Afterwards,
we consider why there are few empirical results that explicitly test Hamilton’s
rule, both by hypothesising how it could be applied to simple theoretical mod-
els, and giving an assessment of previous experimental results looking to apply
Hamilton’s rule, what previous studies have in common, and where inconsisten-
cies between studies lie.

As a final goal, we aimed to find a new formulation that avoids all assump-
tions while retaining descriptive power, but this was unsuccessful. However, we
provide a novel demonstration of how practical applications that aim to retain
causal description while applying Hamilton’s rule cannot avoid a set of limiting
assumptions. In addition, we show that the conditions for these assumptions
are typically not met by experimental applications of Hamilton’s rule and that
in general the rule’s practical applications may be difficult to interpret. We then
give some recommendations for directions of further study to be taken.



Abstract

Since its introduction in the 1960s, inclusive fitness theory and its results, es-
pecially Hamilton’s rule, have been the topic of unresolved and ongoing debate.
Over the past decade, arguments have increased in intensity following an outspo-
ken critique by Nowak et al. in 2010. Opponents claim that general applications
of the theory result in complex relationships between the quantities it describes,
giving no real insights into how social behaviours may be positively selected; but
specific applications are limited in scope, making it difficult to compare between
cases.

This project looks to assess to what extent generality of Hamilton’s rule
comes at a detriment to its causal descriptive power. To assess this, I first de-
scribe the various forms that the parameters of cost, benefit and relatedness in
Hamilton’s rule may take, and assess their theoretical limitations in each case. I
then consider how Hamilton’s rule may be applied to a computational simulation
model where all details of the system may be known, provide rigorous defini-
tions of parameters that may be applied to an empirical study, and demonstrate
what restrictions apply. Finally, I analyse previous results that utilised Hamil-
ton’s rule to interpret experimental data, examining to what extent predictions
between experiments using inclusive fitness theory may be unified.

It is shown that while there is a wealth of empirical data indicating that
altruism can evolve if it increases an individual’s ‘inclusive fitness’, how this
fitness is defined subtly differs from case to case, with no clear path to link these
results to each other. Despite the value in these experimental results, further
work must be taken in order to unify predictions made by Hamilton’s rule before
it can be considered a fully general method usable to interpret the conditions
for the evolution of altruism. Nevertheless, it remains the most general method
known for understanding the evolution of altruism thus far.
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1 Introduction

If the survival of the fittest is an inalienable truth, why would an individual
ever pay a cost to help others? This question of how altruism could evolve led
to W.D. Hamilton’s proposal of inclusive fitness theory, which studies the effect
of a trait/gene on fitness while including the effects of social interactions [13,
14]. Since the turn of the last decade, inclusive fitness’ value has been called
into question by outspoken critics who claim the approach is inherently flawed
[26], sparking an intense and ongoing debate [2]. Opponents claim the theory’s
application is limited by a specific set of assumptions, that the quantities it
describes are impractical /impossible to describe empirically, and that it lacks
predictive power [1, 27]. However, supporters argue that, with some extensions,
inclusive fitness can be fully general, and with adjustments to specific scenarios
can also be used to interpret and/or predict selection events [7, 22]. While some
experimental studies seemingly indicate positive selection coincides with an in-
crease to inclusive fitness [38, 20], none have yet devised a consistent method
for inclusive fitness to be applied in practice without caveats [27].

Issues applying inclusive fitness to empirical data (or indeed, applying any
theory in practice) can be divided into two classes. The first is epistemological
issues coming from practical limitations of gathering information on the system
to be studied. The second are conceptual issues arising from inconsistencies
or limitations of the theory itself. Epistemological problems are common when
trying to use inclusive fitness theory to analyse evolution of behaviours in real
systems, due in part to the complex nature of social networks within populations
of interacting organisms. This can make it difficult to investigate conceptual
limitations, but problems gathering data can largely be circumvented when us-
ing simulation modelling (such as individual based models). As such, for this
report problems of the first class are largely ignored, save for some considera-
tion in Section 4 where previous attempts to apply inclusive fitness theory to
experimental data found are analysed.

The aim of this project is to investigate the limits of Hamilton’s rule as a
descriptive tool when applied more generally. To achieve this, we will consider
three key questions: How can we define cost, benefit and relatedness in a way
that avoids limiting assumptions? Can a general form of Hamilton’s rule, with
parameters defined in this manner, still give causal descriptions? Why are there
seemingly few empirical results that explicitly test Hamilton’s rule? By address-
ing these questions, we hoped to gain insight into the scope and limitations of
inclusive fitness theory when applied to individual-based models. However, our
search for formulations that can be generally applied proved unsuccessful, due
in part to known limitations. Furthermore, we identify other issues that are
less commonly discussed in the literature; in the discussion we will analyse to
what extent these limitations may restrict the potential scope of inclusive fitness
theory, and suggest potential avenues for future research.



2 Formulations of Inclusive Fitness

Hamilton introduced inclusive fitness theory through two perspectives, “inclu-
sive fitness” and “neighbour-modulated fitness” [14]. Both perspectives assume
a baseline level of fitness that is not influenced by the social trait being studied,
but differ in their focus on the fitness contributions of the trait from the per-
spective of either the actor or the recipient. To illustrate with a classic example:
consider a population of organisms, some of which are altruists. The neighbour-
modulated fitness of an altruist in our example population is a sum of the cost
it pays for possessing altruism plus the benefits of all altruism it received from
social interactions. Its inclusive fitness is instead the cost of possessing altruism
(as before) plus the total benefit it has given to other altruists (indirect fitness).
Note that within this classic description is the implicit assumption that costs
and benefits may be separated and considered separately.

To begin, let us write a mathematical definition of the most basic form of
neighbour-modulated fitness - it can be argued that the perspective of inclu-
sive fitness gives more valuable insight into the nature of social behaviours [42],
but neighbour-modulated fitness is more convenient for later derivations. Start-
ing at this basic form requires a set of assumptions. First, defining fitness as
expected fecundity of an individual, we accept the assumption that this indi-
vidual’s reproductive outcome may be decomposed into a linear sum of fitness
effects it experiences, including a baseline fitness independent of the trait be-
ing investigated. Second, consider a binary phenotype: altruist or non-altruist.
Furthermore, phenotype and genotype are one-to-one related: there is a binary
genotype G which may take values of {0,1} which directly corresponds to the
phenotype of {non-altruist,altruist}. Each of these assumptions will later be
addressed, in Section 3.

With the above assumptions, the neighbour-modulated fitness W of individ-
ual may be written as

Wi:WO—CG—f—bGI, (1)

where C' is the fitness cost on an individual for possessing the trait, b is the
fitness benefit an individual possessing it gives to others, G and G’ are the
genotypes of oneself and one’s interaction partners respectively, and Wy is a
baseline fitness unrelated to the trait. Studying altruism implies the trait is
costly to self, hence why the sign before C' is negative. One important thing
to note is G is the genotype for one individual, but if there are interactions
with multiple partners, G’ should be the sum of all their genetic/trait values,
such b is the benefit received per interaction with an altruist, while C is the
overall cost paid (indicated by capitalising). Though equation 1 is built on
the example of an altruistic trait that is costly to the bearer and beneficial to
interaction partners, it should be clear that by changing the sign of C' and b it
can be used to investigate the fitness effects of a range of social traits from spite
to cooperation.



2.1 Early forms of Hamilton’s rule

We will focus on altruism, since that is what inclusive fitness was originally
derived to study, as well as where it has arguably garnered the most attention
and important results. The most famous of these results is Hamilton’s rule,
which states the conditions necessary for altruism to evolve.

Its original (non-general) form [14, 13] is derived using the set of assump-
tions given for equation 1. It also makes an assumption of pairwise interaction,
meaning it only considers the interactions between two individuals at a time.
This assumption is necessary because it simplifies the calculations required to
determine the relatedness coefficient, r, a critical component of the rule that
describes the level of genetic similarity between interacting individuals (more
on this shortly). Assuming interactions are split into pairs requires considering
the cost per-interaction, instead of the overall cost of possessing a trait in equa-
tion 1, hence why c in this section is lower-case. With the above assumptions,
a single interaction can be written as a payoff matrix, where columns represent
genotype of the actor ¢’, while rows represent genotype of the recipient, g:

[\ O] 1]
0 0] b
1 -¢ | b-c

Note this notation is biased towards the neighbour-modulated perspective, since
it considers contributions from the perspective of the receiver. For altruism to
be positively selected, the neighbour-modulated fitness of altruists should be
higher than the neighbour-modulated fitness of non-altruists (such that future
generations contain an increased proportion of altruists). Since we assume a
baseline fitness independent of genotype, this corresponds to altruists receiving
a higher payoff than non-altruists. We write the payoff received per interaction
for a receiving altruist as ®,, and for a receiving non-altruist as ®q:

If interactions are random, altruists cannot receive more payoff than non-
altruists, and thus altruism cannot evolve. To demonstrate this, let us write the
proportion of altruists in the population as «. If interactions are random, the
probability of being the recipient of an altruistic interaction is also «, indepen-
dent of recipient genotype. Putting this interaction probability into the average
payoffs seen above and solving for ®; > ®g results in ¢ < 0, i.e. that the cost
of interaction should be negative, which is no longer altruism.

It is clear, then, that for altruism to evolve altruists must preferentially
interact with other altruists, while avoiding non-altruists. This preference may
be written as the difference in probability of interacting with an individual of
the same own altruism status, compared to interacting with one of different
status [3]:

r=P(g =1lg=1)-P(g' = 1]g =0), (2)



where we have defined a new parameter, ‘relatedness’ r, to describes this prob-
ability difference. Using this new parameter, we can rewrite the probability of
being the recipient of an altruistic interaction as follows:

Pl =1g=1)=01-r)a+r
P(g =1lg=0)= (1 -7 (3)

As a probability, r can take values between 0 and 1; » = 0 represents random
interactions as before, and r = 1 represents altruists exclusively interact with
other altruists. The overall probability of an interaction having an altruistic
actor is still @ (P(¢’ = 1) = « is trivially provable using the law of total
probability), only now depending on r value, altruists preferentially interact
with other altruists. Using these interaction probabilities to solve the inequality
®; > @) gives:

rb> ¢ (4)

Equation 4 is Hamilton’s rule. In essence, it states that altruism is positively se-
lected if the neighbour-modulated fitness of altruists is higher than non-altruists,
which can only be true if the fitness costs paid by altruists are less than the
fitness benefits they expect to receive.

2.1.1 Hamilton’s original derivations require altruism to be rare

While r defined in the probabilistic manner of equation 2 gives an approach to
understand how altruism could be favourable, calculating this probability for
an empirical setup requires knowledge of all interactions that have happened.
Hamilton wished gain more predictive insight into why an individual would
preferentially interact with another from the perspective of favouring kin. To
do so, he heuristically redefined relatedness in the case of diploid organisms
that reproduce sexually, taking the perspective that an altruistic interaction
represents a trade-off between one’s own reproduction and the reproduction of
others (given how likely they are to be altruistic):

“(relatedness is) the fractional weighting which A (an actor) gives
to one unit of B (a recipient)’s fitness compared to one unit of his
own.” [12]

For an allele to be positively selected, its replicas must form an increasing pro-
portion of the next generation’s gene pool. Hamilton reasoned that the related-
ness of a single interaction for a focal allele - which A definitely possesses, but
B may not - should be the likelihood that recipient B’s reproduction produces
offspring possessing that allele, compared to the likelihood A’s own offspring
possess the allele. Hamilton thus considers the ‘weighting of one unit of an
individual’s fitness’ as the probability that a gamete of that individual will pos-
sess this allele (for sexually reproducing organisms). The relatedness of a single
interaction, r, is then the probability a gamete of B possesses the allele, divided
by the probability a gamete of A possesses the allele.



However, note that Hamilton himself recognised that his definition had limi-
tations and that a more precise definition was needed in order to make accurate
predictions. Alleles for social traits such as altruism can also directly influence
the fitness of individuals not possessing that allele, and positive selection of an
allele requires that it increases not by frequency in a population, but by propor-
tion [29]. Hamilton’s reasoning that the ‘fractional weighing’ is the probability
of B producing altruistic offspring divided by A producing altruistic offspring
corresponds to a frequency increase, not a proportion increase, as the altruistic
allele will also increase the frequency of non-altruistic alleles. It neglects the
fact that contributions to non-altruist alleles should be included in the calcu-
lation and negatively weighted, since increasing their frequency decreases the
proportion of altruistic alleles within the population.

While this shows some flaws in Hamilton’s 1972 definition of relatedness,
it is still a good approximation if altruism is a rare trait [23]. If altruism is
rare, contributions to the frequency of non-altruists have a negligible impact on
population proportions, and any increase to altruist frequency can be considered
as an increase to its population proportion also. From an alternate perspective,
if a trait is sufficiently rare then the probability of randomly interacting with an
individual carrying that trait is negligible, and relatedness defined for equation
3 covers all interactions involving an altruist (under this simple set up the payoff
for non-altruists interacting among each other is zero, so their interactions are
ignored).

For now, we will continue with the assumption that altruism is a rare trait
(though this will be addressed later in this section). Assume that there is an
allele responsible for altruism, and possessing one copy is enough to influence a
binary phenotype (i.e. the phenotype of homozygous and heterozygous altru-
ists is identical). Assume also that gametes are produced by a random choice
between alleles, i.e. that meiotic drive and other mechanisms that may bias
the gametes are negligible (this assumption is made slightly more explicit dur-
ing derivation involving the Price equation later). For diploid organisms, the
probability a gamete of A also possesses altruism, given that A is an altruist, is
%(1 — fa) + fa, where f4 is the probability A is homozygous at the altruistic
locus. Writing the probability a gamete of B possesses the altruistic allele as
fap, Hamilton denotes the relatedness for a single interaction between a given
actor A and recipient B, rapg, as:

_ 2faB
1—|—fA’

an expression found by applying the heuristic definition expressed above to this
simple diploid scenario [12]. Averaging over all interactions then gives the re-
latedness for the population, r. To provide a practical method to calculate this
relatedness per interaction, Hamilton interprets probabilities f4 and fap via
Wright’s coefficients, which calculate the probability of individuals having the
same alleles by descent through analysing their lineage [44]. f4 is interpreted as
Wright’s coefficient of inbreeding for an altruistic actor A at the locus of altru-
ism, the probability that two alleles at that locus are identical by descent. fap

()
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is interpreted as Wright’s coefficient of kinship, the probability that a randomly
selected allele at the altruistic locus from A is identical by descent to a randomly
selected allele from the altruistic locus of B. If we assume negligible inbreeding,
fa — 0, and equation 5 becomes 2f4p5 [17]. The numerator of equation 5 is
Wright’s coefficient of relationship, which is often used to describe Hamilton’s
relatedness by experimental studies that assume negligible inbreeding [25, 16].

At this point, it seems important to note the distinction between ’relat-
edness’ and ’'relationship’ [6]. Relatedness refers to genetic similarity between
individuals, while relationship is calculated from pedigree, and thus requires
genes to be identical by descent. It can be seen that Hamilton’s relatedness
of equation 5 given by r4p is only generally equal to relationship under two
conditions:

1. fa<<l1.
2. fap is well-approximated by Wright’s coefficient of kinship .

The first of these requires the assumption of negligible inbreeding. The as-
sumptions required for the second are more complex, but can be split into two
key considerations: when is genetic similarity approximated by kinship, and
how is this kinship approximation affected by selection? Genetic similarity is
approximated by kinship if a trait is rare, which implies that alleles are iden-
tical by descent. Hence, Hamilton’s relatedness can only be approximated by
relationship under the assumption of rare trait, but this is required for Hamil-
ton’s original relatedness regardless. Key work in the field also claims that weak
selection is a necessary assumption [11, 23, 36], claiming that strong selection
can cause genetic similarity to deviate from kinship estimates whose accuracy
relies on an allele having a 50% likelihood to be passed on to a successful ga-
mete (for diploid organisms). However, the extent this is skewed by selection
is not clear, models have indicated that assuming weak selection is robust for
approximations of relatedness with linear fitness functions and a simple island
structure [24], but the impact of selection on the link between relatedness and
relationship for more complex systems is not yet understood.

2.1.2 Relatedness can be adjusted to describe non-rare traits

Issues using relationship to approximate relatedness are hard to avoid, but the
mistake in Hamilton’s derivation that requires an increase in frequency to be
equal to an increase in proportion can easily be corrected. By doing this heuris-
tically, we arrive at a simplified form of the statistical description of relatedness
that will later be derived using the Price equation in the next section, which is
said to be fully general.

Since this is purely a demonstration that the rare-trait assumption can be
avoided, for simplicity let us consider a haploid organism with an allele that
determines altruism, with the values 1 or 0. Let us denote the proportion of
altruists in the population at an initial time with «. Imagine a probability H
that that an altruistic actor interacts with another altruist, H. The probability
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an altruistic actor will interact with a non-altruist is then 1 — H:
Plg=1lg'=1)=H Plg=0]¢g'=1)=1-H.

Since we have assumed interactions are between pairs (this assumption is dis-
cussed in section 2.3.2, we can adjust these probabilities to be conditional on
the recipient instead of the actor:

ey P 0P e
Pl —1lg—0) = L9= 0;’(;1)01;’(9’ =1) _ (11—711)‘%_

Let us denote the expected fitness of altruists W4 and expected fitness of al-
truists Wp. For altruism to be positively selected, the proportion of altruists
should be increasing, or:

@ < aWa
a+(l—a) aWa+(1—a)Wp

Rearranging the above gives W4 > Wp, or that altruists should have higher
fitness than non-altruists. Using the assumption of a linear cost function with
a baseline fitness, this corresponds to:

W5 —c+bP(g =1lg=1) > W5+ bP(g' = 1|g = 0)

Substituting our calculated probabilities into this equation and rearranging to

the form of Hamilton’s rule gives ﬁl_’Sb > ¢, showing the relatedness:
H—-«a
R= . 6
T (6)

This is an example of a relatedness coefficient that doesn’t require the assump-
tion of rare altruism, which can also be directly obtained from equation 3 by
substituting H. Note that if we do take the assumption of rare altruism, then
a — 0 and equation 6 becomes H, which is the relatedness that Hamilton’s
heuristic reasoning for equation 5 would lead to: for this simple model all hap-
loid individuals have the same probability of giving altruism to their offspring,
so from the perspective of the gene the reproduction of all altruistic individuals
has the same value. The ‘weighing’ that A gives to B only needs to consider the
probability they are interacting with an altruist. The form of equation 6 will
reappear in the next section 2.2, where we realise that relatedness rewritten in
terms of a covariance relationship between actors and recipients.

2.2 Hamilton’s rule derived using the Price equation

Inspired by Hamilton’s results on altruism, George R. Price developed Price’s
equation [32], a general description of how the average proportion of individuals

11



in a population possessing a trait/genotype value changes over time. Indeed,
the equation is derived so generally that the value investigated need not be
trait/genotype, the population can be things other than biological organisms,
and changes over dimensions other than time may be considered, resulting in a
broad range of applications in fields ranging from economics [19] to cosmology
[9], but for our purposes we will be strictly considering its original biological
context.

To simplify how to initially consider genetic differences between parent and
offspring generations, I will introduce the Price equation from the perspective of
haploid organisms reproducing asexually. Note however that this can be easily
extended to diploid organisms reproducing sexually by considering offspring as
the products of successful gametes and weighing organism genotype values by
their ploidy (a derivation of the Price equation for any ploidy can be found in
Grafen’s A geometric view of relatedness, page 33 [11] but no derivation will be
given here). Consider a population of reproducing organisms of two generations,
parents and offspring, with a trait/genotype value of interest G (difficulties
splitting a population over time into discrete generations will be discussed in
section 2.4). W represents fitness; in the current context of a population split
into parents and offspring it makes most sense to measure this by fecundity.
The discrete Price equation describes the change in trait frequency between
generations of parents and offspring (E(W)AE(G)):

E(W)AE(G) = Cov(W, G) + E(WAG). (7)

On the left hand side, the change in frequency is split into E(W) and AE(G),
where E(W) is the average fitness of the parent population (i.e. the change in
population size) and AE(G) is the difference between average trait values of
parents and offspring. On the right hand side Cov(W,@G) is the covariance
between parental fitness and trait/genotype value, and E(WAG) is the average
difference between each parent and their offspring, weighted by parent fitness.

Price’s equation doesn’t aim to predict selection through mechanistic inter-
pretations of biological processes, but rather gives a statistical interpretation of
the components of evolutionary change, referred to as selection and transmission
[7]. Within the square brackets, Cov(W, G) represents change due to selection
(how much fitness varies with the trait) and E(WAG) represents change due
to imperfect transmission (which can account for factors such as mutational
bias, meiotic drive or other non-Mendelian effects). The generality of equation
7 allows for a derivation of Hamilton’s rule that does not require assumptions
of weak selection or rare mutations [8], considering genetic similarity instead
of pedigree relationship. We begin, as before, by showing this derivation in a
simplest form, assuming a linear fitness function as seen in equation 1 (and its
assumptions).

We will now show that using the Price equation, we can arrive at the simple
result shown in equation 6, first by using it to derive Hamilton’s rule [33, 22]:
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0 < Cov(G,W)
Cov(G, Wy — CG + bG')

Cov(G-5) — Cov(G, CQ) + Cov(G, bG")
— CVar(G) + bCov(G,G")
o Cov(G,G") (8)
Var(G)

For the average trait value to increase between generations, AE(G) in equa-
tion 7 must be positive (and as an expected fecundity, E(W) is also positive).
Since we are concerned about the conditions necessary for altruism to be se-
lected, assume an unbiased transmission, E(WAG) = 0. As a result, the selec-
tion term must be positive, Cov(G, W) > 0. Substituting equation 1 into the
fitness of Cov(G, W) > 0, one arrives back at Hamilton’s rule (equation 8). W
is assumed constant, hence Cov(G,Wy) = 0. In the same way, if C' and b are
constants that represent the cost of being an altruist and the benefit received
from altruists, and so can be taken out of covariances they are involved in. Note
that C' is an overall cost, and not cost per interaction. For it to be constant,
we thus require considering either single interactions, an expected number of
interactions, or a cost unrelated to the number of interactions.

Equation 8 is Hamilton’s rule, derived from the Price equation, which pro-
vides a new definition of relatedness:

Cov(G,G")
R=——-——+ 9
Var(G) )

Notice that this can be linked back to the heuristic relatedness we defined

earlier to avoid the assumption of altruism as a rare trait: with the probability
of altruist-altruist interaction H and proportion of altruists «, equation 9 gives:

_ Cov(G,G')  a(H —a)
 Var(G) el —-a)’

where we used the covariance identity Cov(G,G’) = E(GG’) — E(G?). As such,
under the assumptions of negligible inbreeding/weak selection and rare mutants,
this definition of relatedness is equal to the pedigree definition given by equation
5 (a more formal proof of this is given by Orlove et al. [29]), but without these
assumptions they are not equivalent. This statistical form of relatedness allows
b and C to be interpreted as regression coefficients which describe the slope of
best fit between fitness and trait value [34] (between W and G for C or W and
G’ for b), an idea which will be expanded upon in the next section.
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2.3 Hamilton’s rule’s parameters as regression coefficients

2.3.1 Early simple regression techniques are superseded by partial
regression

We have, until now, assumed that fitness is linear, with the genotype of self G
and interaction partners G’ as independent variables and cost and benefit as
coefficients, but applying the Price equation to redefine relatedness shows the
potential for writing parameters as linear regression coefficients, since equation
9 shows relatedness as the regression coefficient given by regressing interaction
partner genotype G’ on genotype G. By using linear regression to fit a linear
model to data, linearity is not assumed but instead approximately fit, with costs
and benefits written as coeflicients of a regression of fitness on genotypes. Using
a linear model for the fitness substituted into the price equation, residuals are
distributed around 0 and so drop out of Hamilton’s rule [22], leaving the three
parameters of cost, benefit and relatedness as usual.

The possibility of representing cost and benefit as regression slopes was first
found found using simple linear regressions: the cost C' as the slope of a sim-
ple regression of fitness on genotype of self (W on G), and benefit b as the
slope when simply regressing fitness on genotype of interaction partners (W on
G') [22]. However, simple regression techniques are inaccurate fitting multiple
independent variables with correlations between them. As we have seen, for
altruism to evolve there must be some form of preferential structure for altru-
ists to interact with other altruists, hence G and G’ should be correlated. In
the multiple regression of W on G and G’, both are predictor variables; if they
are correlated, a simple regression method (which assumes independence of pre-
dictors) is unsuitable, and partial regression should be used. Queller [33] uses
the notation By qer to denote the partial regression coefficient of a regression
of fitness W on G, while holding G’ constant; as an alternative perspective, it
predicts variation in W with the variation in G that isn’t predicted by G’ (A
proof of this, as well as the formula of partial regression derived from residual
sum of squares, is given in appendix 5.1). Note if G and G’ are independent
from each other then partial regression gives the same coefficients as simple re-
gression (but otherwise not). Writing 8¢ ¢ as the simple regression of G’ on G
for relatedness, and using Queller’s notation for the partial regressions of cost
and benefit, we can rewrite equation 8 in the form:

Bwaiar + BaraBwara > 0, (10)

where Swgjar = —C, Bwaig = b and ferg = R.

Taking partial regression coefficients attempts to isolate the effects of G and
G’ on fitness, such that C' and b can be interpreted as ‘cost paid for possessing
a trait’ and ‘benefit received from others’. However, fitting a linear fitness
function of the form seen in equation 1 has a problem: fitness effects of social
interactions are often non-additive. Taking a linear regression is still always
possible, no matter how poor the fit, with differences between observed and
predicted values absorbed by the regression’s residuals, and it will still be able to
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correctly describe the overall direction of selection. That being said, imposing
a linear approximation onto a non-linear fitness function can cause complex
underlying relationships between the parameters involved, such that Sy g g
and Sy g|gr no longer solely represent the fecundity payoffs from an interaction,
but also contain information about interaction structure (which we would prefer
to fully contained in R). A demonstration of this property is shown in the next
section discussing non-linear fitness functions.

2.3.2 Partial regression can describe non-linear fitness, but makes
interpreting parameters confusing

We aim to illustrate that non-linear fitness functions can introduce complex
relationships into cost and benefit, by using the example of Queller’s synergis-
tic extension, which describes a simple non-additive, pairwise interaction where
interacting altruists receive additional benefits for interacting with other altru-
ists [35]. Consider a payoff matrix as in section 2.1 (with the same starting
assumptions), but now with a synergistic effect d, a fecundity benefit that is
only received if both actor and recipient are altruists:

[e\g O] 1 ]
0 0 b
1 -¢ | b-c+d

The expected fecundity payoff per interaction for altruists, ®;, and non-altruists,
®(, now take the following form:

By = Py =1)g = 1)(b+d) —c
(I)() = P(gl = ].|g = O)b

As in section 2.1, we call the proportion of altruists in the population «, and
then use probabilities of interacting with an altruist given by equation 3. Solving
for ®; > ®( gives a condition for altruism to evolve:

rb—c+d((1—-r)a+r)>0. (11)

Equation 11 looks different from the original form of Hamilton’s rule given
in equation 4. However, if we now approach this with linear regression, we see
the original form return. Imagine that as defined for equation 3, r gives a hy-
pothetical perfect value of the preferential probability that individuals will pair
with partners of the same altruism status, as opposed to random interactions,
and « is the proportion of altruists in the population. With r» and «, we can
write the relative frequencies of interaction pairs, such as:

P(G=1NnG =1)=P(G=1)P(G'=1G=1)
=a((l=r)a+r)

=ao® +ra(l —a)
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Recipient genetic value | Actor genetic value Relative frequency
G G’ P(GNG"
0 0 (1—-a)+ra(l—a)
0 1 (1I-r)a(l-«a)
1 0 1-7ra(l-aw
1 1 o +ra(l —a)

All relative frequencies of interaction pairs are given by the following table:

Performing partial linear regressions on these interactions using the relative
frequencies of interaction and their expected fecundity payoffs (an example of
the partial derivative formula is seen in equation 19) we obtain:

BWGlG/ = —c+ (7" + (]. — T)Ck)d

1+r
(r+(1—-r)a)d

Bwariag =b+ T

These partial regression coefficients can be used to describe Queller’s syn-
ergistic extension in the familiar form of Hamilton’s rule given by equation 10.
The partial regression coefficients above also give the same predictions as the
explicit solution of equation 11, since substituting these regressions into equa-
tion 10 simplifies to the same solution. That being said, our regression terms for
cost and benefit now include descriptions of interaction structure: they are no
longer independent of the relatedness, making them harder to interpret when
the underlying fitness function is unknown.

2.3.3 Non-linear extensions only provide additional value for specific
cases

Using partial regression to fit an assumed linear fitness function gives a relatively
general method to predict the direction of selection. When the underlying fit-
ness is non-linear then regression coefficients for cost and benefit stray from their
initial interpretations as fecundity payoffs since they also include information
about interaction structure. Non-linear fitness functions can instead be consid-
ered in an attempt to minimise the inclusion of interaction structure within the
b and ¢ parameters and make them more mechanistically interpretable. Chang-
ing the assumed fitness function also changes the form of Hamilton’s rule, such
as Queller’s synergistic extension, which may also be written in the form [35,
22):

Bwa + BaraBwa + Baana > 0. (12)

This equation is based on fitting a model for fitness that includes a synergis-
tic extension term; if the real fitness function of an experiment is approximated
more accurately by including this term then regressing against it could describe
the components responsible for changing fitness more accurately, or make it eas-
ier to interpret individual parameters by avoiding the absorbtion of interaction
structure into cost and benefit terms (as seem with equation 11). However,

16



this difficulty of interpretation can persist within these new regression param-
eters: in the case of this simple synergistic extension, a regression approach
gives Bgae = d((1 — r)a + ), now including information about interaction
structure within the synergy term.

Van Veelen et al. [40] claim that Hamilton’s rule fails for synergy in the
case of more than two participants, claiming that Hamilton’s rule contains an
insufficient number of parameters. They provide a hypothetical example of a
three-player game in order to illustrate this. However, Gardner et al. [7] pro-
vide a rebuttal: they expand the interaction matrix to include 2 interaction
partners, perform a linear regression and show that similarly to the synergistic
example given above, complexities are absorbed into the regression terms of
cost and benefit (note this is still done for single interactions, a point that will
be expanded upon in Section 2.4). In doing so, Gardner generates the same
predictions of positive selections using Hamilton’s rule that were generated by
Van Veelen’s explicit solution, despite the initial claim that an approach using
Hamilton’s rule would be insufficient. To say Hamilton’s rule contains insuf-
ficient parameters to model social interactions of a dimension higher than 2
is thus incorrect; it ignores functions of complex interactions within the pa-
rameters of cost and benefit. While this shows potential to extend to higher
dimensional interactions, it also shows that difficulties interpreting parameters
continue to increase when considering this: formulae for cost and benefit in
Gardner’s solution for 3 dimensional interactions are significantly more com-
plex than in the 2 dimensional case. Gardner’s method could even be extended
to cases of N-dimensional interactions, where the effect of every possible com-
bination of cooperators and non-cooperators as social partners is considered.
However, implementing this approach in practice can be challenging due to the
complexity of interaction structure. Some researchers have proposed strategies
for simplifying these structures, but such tricks are only applicable to specific
systems (see experimental example 5 of section 4 [37]).

2.3.4 Phenotype describes costs and benefits more causally than
genotype, but mapping is complex

Considerations of fitness functions with non-linear interactions have been shown
to still be generally approachable using partial regression, but with the penalty
of cost and benefit parameters straying from their causal interpretations. In
a similar way, regression calculations for the relatedness seen until now also
neglect one causal aspect of interactions: it describes interaction structure using
correlations between genotypes, but costs and benefits of altruistic interaction
are determined by phenotype. Until now, ‘genes’ and ‘trait values’ have been
used somewhat synonymously, but the mapping between a discrete genotype
and continuous phenotype is often complex and non-linear [22].

Forms of Hamilton’s rule that consider impact of phenotype on fitness aim
to bring b and c close to their causal interpretation by using performing a linear
regression to fit fitness to a function that depends on phenotype, instead of
genotype [33, 22]. Consider a fitness function resembling the simple linear form
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given in equation 1, where genotype is replaced by phenotype:
W; =W, —CpP +bpP'.

Here, P and P’ represent the phenotype of self and interaction partners, re-
spectively, and C'p, bp are the partial regression coefficients found by regressing
fitness against phenotype instead of genotype; because fecundity changes should
be directly caused by phenotype, it is hoped the coefficients of this regression
may be more causally interpretable as cost and benefit.

Using the Price equation, the condition for positive selection remains as
Cov(W,G) > 0. Substituting the phenotypic fitness function into this condition
gives the phenotypic extension to Hamilton’s rule [33]:

0 < COV(G, Wy —CpP + pr/)
— CpCov(G, P) + bpCov(G, P)
Cov(G, P')

Dividing by Cov(G, P), we see this extension gives a new form of the relatedness:
R= % 35, 22]. Could Hamilton’s rule in this form describe altruism in
the same way as forms we have already covered?

Attempting to construct a demonstration of this is difficult. Simplifications
until now have required Hamilton’s rule to consider genotype and phenotype
as binary, since there has been the goal of describing individuals participating
in multiple interactions, and without binary altruism it is difficult to perform
regressions describing where contributions come from. However, in order to give
a speculative demonstration that under certain conditions, phenotypic related-
ness could resemble Hamilton’s rule, consider a system where pairwise interac-
tion partners only interact with one partner for their entire life, to allow for a
non-binary genotype/phenotype where fecundity contributions can be known.
Assuming phenotype is exclusively dependent on genotype (or that any other
variables involved can be written in terms of genotype), we write function f that
maps genotype onto phenotype: P = f(G). If f is differentiable at the genotype
means {G, G’} and well approximated by the first order Taylor expansion (i.e.
sufficiently linear) then linking regressions on phenotype to those on genotype
is relatively trivial:

Cov|G, P']  Cov|[G, f(G')]
Cov[G,P]  Cov|G, f(G)
_ Cov[G, f(G") + f(G) (G = G")]
Cov[G, f(G) + [1(G)(G = G)]
F(G)CV(G. G _ f1(@)
= / li R
F(@G)VarlG] — f(G)
If cost and benefits are simple regressions then this set of assumptions imposed
on f can then be used to transform equation 13 into equation 8. An example

Rp =
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using the cost parameter:

This is, however, a very simple case that cannot be scaled up to multiple
interactions, as we have needed to include non-binary genotype/phenotype for
f to be differentiable. By assuming f is well approximated by its first order
Taylor expansion we have implied a relatively linear relationship between geno-
type and phenotype, as well as a function determining phenotype that only
depends on genotype without other factors such as environmental influence. In
addition, this equivalence has been shown for simple regressions, the accuracy of
which decreases with correlation between independent variables. For altruism
to evolve, P and P’ should be correlated, since G and G’ must be correlated
for altruism to be positively selected, and regardless of environmental factors
one can still typically expect some correlation between {G, P}, and {G’, P'}.
However, attempting to prove (or disprove) that these considerations of pheno-
type can be generally absorbed into a partial regression form of equation 10 is
non-trivial, with potential functions for cost and benefit quickly expanding to
become intractable.

2.4 The discrete Price equation struggles describing changes
over non-discrete generations

Arguments that partial regressions can always absorb non-linearity into costs
and benefits have led to the conclusion that Hamilton’s rule is as general as
Price’s equation itself, holding true whenever Price’s equation holds [4, 7, 22].
While Price’s equation is very general, it can still be difficult to apply depending
on properties of the system it attempts to describe, which can lead to incon-
sistent predictions [28]. Derivations shown until now have used single pairwise
interactions, where fitness effects of a social trait can be decomposed into direct
and indirect effects more easily, but the time scales these interactions occur at
has been ambiguous. Hamilton’s rule uses the discrete Price equation (equation
7), which describes the difference in a character of interest between two discrete
‘assemblages’, whereas social interactions of biological systems take place over
continuous time. Such overlapping generations and the concomitant continuous
change in a population interaction structure complicates the application of in-
clusive fitness in ways that, to our best knowledge, have largely been overlooked.

We have previously used the common analogy of parent and offspring gen-
erations with the implication that interactions between the parent generation
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influence their reproductive ability to affect the offspring generation, but in
practise these generations may not be clearly separable, allowing different gen-
erations to interact with each other. Current processes of applying inclusive
fitness theory typically look to consider the parent generation as the generation
at some starting point in time ¢1, with an offspring generation as the population
at some ending time to; fitness is considered as fecundity, i.e. the number of
individuals at time to that are direct offspring of time ¢; and a fitness function
is made that projects the impact of trait values (be they genotype or pheno-
type) of individuals and their interaction partners at time ¢; (i.e. a description
of the interaction structure at t;, or the relatedness) onto their reproductive
success calculated from the number of offspring they have generated by time
to. This leads to some inconsistencies: interactions are continuously happening
at all times between t; and 5, not only with individuals present at time ¢; in
a different interaction neighbourhood but also potentially with offspring given
birth to before time t5; yet these interactions are not considered by a related-
ness that only takes a snapshot of interactions at t;. Despite this, the benefit
and cost measure fecundity contributions that may have values dependent on
length of timestep, and as such may incorrectly attribute fecundity payoffs to
an interaction structure not responsible for the observed change. A relatedness
derived from a snapshot at t; could potentially be a fair representation of all
interactions between t; and t,, such as in a system where interaction structure
is mediated by physical distance and distance moved between timesteps is small
relative to the distance interactions are given, or if the act of interacting binds
you to a partner for a non-negligible duration. However, increasing the timestep
between ¢; and ¢9 still reduces the correlation between the interaction structure
at t; and that between ¢; and t5. As such, applications of inclusive fitness to
non-discrete generations that look to use the Price equation perform better with
smaller timesteps.

Assessing who is giving and receiving fitness contributions between ¢; and
to also becomes more difficult for longer timesteps. For example, consider two
altruistic individuals A; and A, that do not interact with each other, but As
gives a fitness benefit to the offspring of A;. In this case, no interaction has taken
place between A1, but their lineage is fitter as a result of interactions with A;. To
assess fitness contributions over a timestep long enough for interactions between
individuals not present at the beginning of the timestep to occur, contributions
can be considered at the level of lineage rather than individuals. At level of
lineage, altruistic interactions between individuals of the same family represent
a lowered cost for lineage carry the trait of altruism.
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3 Practical Applications

Difficulties interpreting the results may be why the number of studies that
attempt to fully describe an empirical system using Hamilton’s rule is limited
[5]. Extensions of Hamilton’s rule testing its generality can be demonstrated
on theoretical models such as the derivations we have seen, but setting up
theoretical models to demonstrate the evolution of altruism requires crafting
initial conditions such that altruists preferentially interact with other altruists
(i.e. an altruist is more likely to receive altruism than a random individual in
the population), resulting in hypothetical set ups that, though interesting, can
feel somewhat removed from biological context [41].

Beginning this project, we aimed to consider how one would apply Hamil-
ton’s rule to a computational model of altruism that can evolve population
structure on its own, without needing to be pre-sorted into groups. An example
of such a model would be the individual-based model of Hermsen et al. [15],
which describes a population of competing actors which can reproduce (asexu-
ally), express varying levels of altruism, inherit altruism from their parent (with
mutation), and move through random diffusion. Both competition and altruism
given by an individual are modelled by a Gaussian distribution with its mean
at their position, and a variance that determines the scales at which altruism
and competition are experienced. If the scale of competition is larger than that
of altruism and motility is limited, colonies of altruists emerge [15], thus self-
organising into an interaction structure where altruists preferentially interact
with other altruists.

However, applying Hamilton’s rule to the model proved difficult. In addition
to the problem of how to consider non-discrete generations, the fitness function
is also dependent on a competition term that scales with density. Altruists
form colonies with greater density than non-altruists, meaning the expected
competition experienced by altruists and non-altruists is different. This could
potentially be absorbed into regression coefficients as an increased cost, but
competition is non-linear and non-altruists also experience it; it was not possible
to calculate to what degree cost terms found by partial regression include this
competition from the fitness function alone. In addition, generations are non-
discrete, and we have discussed no solution to this problem was found. As a
result, we tried to focus on even simpler problems, to see where the boundary
of difficulty of application lies.

3.1 Applications to simple theoretical models are difficult
to extend generally

D.S. Wilson used a simple theoretical model in an attempt to outline the con-
ditions necessary for social traits to evolve, and though he himself did not ex-
plicitly state it, it demonstrates Hamilton’s rule [43]. Assumptions in its setup
allow for a simple description of interactions and non-discrete generations. It
begins with mixed, isolated groups of individuals that differ in one trait; con-
sider the simplest case with two groups and a binary trait, type A or type B
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Figure 1: The original image of Wilson’s group set-up used to demonstrate the
evolution of a social trait [43]. Groups are identical in size (N=20), the group
on the left has 5 A, 15 B (o = 0.25) while the group on the right has 15 A, 5 B
(o =0.75).

(Figure 1). The trait affects the fitness of an individual, but also that of an in-
dividual in the same group. In between generation steps, the groups are mixed
and re-separated, and a new generation begins. Wilson intended to use this
contrived setup to demonstrate a form of group selection, but gives it biological
justification by comparing the theoretical scenario to eggs laid on a leaf, where
caterpillar may travel a small distance and interact with local environment be-
fore dispersing.

Individuals carrying trait A affect everyone around them except for them-
selves. Wilson begins with a linear effect of interactions, giving the per capita
fitness change for individuals of type A and B in terms of an expected effect of
the trait on self —c and effect given to others b:

Average fitness change in A = —c+ N(a —1/N)b
Average fitness change in B = N(a)b

where N is number of individuals in a group (groups are of equal size), and « is
the proportion of A individuals in a group (5 is the percentage of B individuals
present). For trait A to be positively selected, altruists must receive more
benefits on average than non-altruists. The population is split into equal groups
indexed by ¢. For A individuals to be positively selected overall their fitness
change per individual averaged over the groups should be greater than that of
B. Rearranging this statement, using the equal sizes of groups to remove a factor
of N and pulling out cost term returns us to something resembling Hamilton’s

: : . _ TiaiBi >, 0‘?)
rule once again, with a relatedness of R = N ( S5 S )

> Naj[—c+ N(a; —1/N)b] N > NBi[Noyb]
Zi Na; Zz‘Nﬂi
Zi NO[iC > ZZNOéZﬁZ _ ZZ NO[Z'(O(Z' — ]./N)b
> Nai > Bi >

(-8
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However, if we try to substitute an arbitrary fitness function that considers
one’s own genotype G and the proportion of type A individuals in their group
such as W = f(G, «), we obtain:

>iNai[f(G=1,a; —1/N)] < 2 NBf(G=0,04]
ZiNai EzNﬁz

Further simplification requires the assumption that cost and benefit terms in the
function can be separated, even with equal group sizes and discrete generations.

3.2 Counterfactual cost and benefit are causally inter-
pretable, but require similar assumptions

Ideally, Hamilton’s rule wishes to describe a causal relationship between geno-
type and fitness, which regression models based on correlation do not always
imply. In order to try to provide causal interpretations, costs and benefits can
be described counterfactually [39], and use of counterfactual logic is typically
how biologists like to think of these costs and benefits : for example, to under-
stand the cost of carrying a gene, one might ask ‘what would my fecundity be
if I didn’t hold this gene?’.

In this novel work, our goal was to find whether Hamilton’s rule can be
formally defined using purely causal definitions. We will see this is only possible
if we are willing to make specific assumptions (assumptions that have also been
necessary for some previously demonstrated forms of Hamilton’s rule). We begin
by writing formal definitions of how to use counterfactual logic to describe cost
and benefit using Judea Pearl’s ‘do calculus’ [30] (as well as a new notation,
described in Table 1):

c1 = EQl[Wl‘dO(Gl = 0)] - Eﬂl[W’L} = F1++ - F1_+ (14)
b = Eqi[Wi] — Eqi[WilVj # i,do(G; = 0)] = Fizy — Frz—, ke {0,1}
(15)

‘Do calculus’ aims to show causal relationships by comparing the real world
to a counterfactual one where the ‘Do’ operation has been performed. For
example, equation 14 shows the fitness cost an altruist pays over a unit of time
as the difference between its actual fitness, and the fitness that it would have
if it wasn’t an altruist, but still received all the benefits it currently receives .
In the same way, equation 15 describes the fitness benefit an altruist (or non-
altruist) receives as the difference between its actual fitness, and the fitness that
it would have if all its interaction partners were non-altruists .

Equations 14 and 15 describe a general method to mechanistically derive
the cost and benefit experienced for a simulation, without requiring knowledge
of social interaction structure. Do notation allows us to write all possible com-
binations of experienced cost and benefit for both altruists and non-altruists,
which we can simplify to the form Fj+4 (Table 1). Note that we have chosen to
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H F notation ‘ Do notation ‘ Cost  Benefit H

Froq Eq:1[Wildo(Gi = 0)] 1no yes
F_4 Eq1[Wi] yes yes
Fiy_ Eq1[W;|V7, do(G; = 0)] no no
Fi__ Eo1[WilVj #i,do(G; = 0)] | yes no
Foxst Eqo[Ws] n/a yes
Foz— Eqo[W;|Vj # i,do(G; = 0)] | n/a no

Table 1: F notation, its corresponding Do notation, and the experienced costs
and benefits they represent

invert the signs of cost and benefit, as they have opposite fitness effects, and the
‘do fitness’ of non-altruists is written in the form Fy,4+ as we are not interested
in the potential costs experienced by turning non-altruists into altruists.

Figure 2 shows an illustration of how counterfactual costs and benefits are
calculated through differences between the fecundities found from different coun-
terfactual scenarios and the corresponding F notation and cost/benefit labels
involved. Importantly, under this construction Fjy_ # Fy,—, i.e. the fitness of
an altruist after switching all altruists to non-altruists is not necessarily equiv-
alent to the fitness of a non-altruist after switching all altruists to non-altruists
(shown in Figure 2 as ‘x?’). This can be described as the assumption of equiv-
alent environments. Non-equivalence is reasonable: in viscous populations, for
example, altruism may provide a means to alleviate competition between kin and
attain higher population density [18], and the removal of altruism in such a sce-
nario would have a greater impact on denser colonies, resulting in a lower fitness
for altruists than non-altruists. In addition, Fiy —Fy_ | =¢1 #Z Fiy - —F1__
(shown as ‘c1?” in Figure 2). Assuming these to be equal is the assumption of
weak additivity, that costs and benefits may be separately applied without loss
of generality [4].

We now look to re-examine Hamilton’s rule using these counterfactual costs
and benefits. Starting from the most general statement possible: for altruism
to be positively selected, the expected fitness of altruists should be higher than
the expected fitness of non-altruists:

F1_+ > F0x+ s or F1_+ — Fox_t,_ > 0.
Using equation 15, we can always separate benefits from both terms:
(Fl__ + bl) — (Fox_ + bo) > 0.

However, to separate our counterfactual cost, ¢, we must assume weak addi-
tivity, soc; = Fi4— — Fi__ :

—c1 + by +F1+_ — Fyp — by > 0.

Finally, assuming equal environments between altruists and non-altruists gives
Fy_ = Fy,—, resulting in:
bi —bo > 1 (16)

24



Fitness

F1+

cl

F1-+ -

F O x + |- —
b0 bl

FOX- [ ot by

F1+-

F1--

Altruism

Figure 2: A graph of fitness against genotype for counterfactual cases to illus-
trate counterfactual costs and benefits.
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Equation 16 states the difference between benefit experienced by altruists and
benefit experienced by non-altruists must be greater than the fitness cost paid.
This somewhat resembles Hamilton’s rule, describing a benefit, some interaction
structure, and a limiting cost. If benefits received are a constant moderated by
some interaction structure f(G,G’) and relatedness is the difference in inter-
action structure between altruists and non-altruists, R = f(1,G}) — f(0, G}),
then equation 16 becomes Hamilton’s rule, but a method to define R in terms
of counterfactuals to allow moving from b; — by to Rb was not found.
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4 Analysis of Experimental Results

Difficulties in application to natural systems result in limited explicit tests of
Hamilton’s rule [5]. Nevertheless, there are still some experimental studies that
indicate traits/behaviours are selected for to increase inclusive fitness; these
studies do so by applying Hamilton’s rule with assumptions that each argues
can be relevantly made for the specific system they study. In this section,
we look to analyse some of these experiments to consider the difficulties they
experience in attempting to apply Hamilton’s rule, and whether these limit
their conclusions. Bourke et al. [5] performed a literature survey to find a non-
exhaustive list of 12 studies that explicitly estimate all parameters of Hamilton’s
rule, with search criteria to only include single species systems that commonly
exhibit ‘altruism’. Several of these studies look at similar systems, for example
3 articles on the list observe carpenter bees; difficulties applying Hamilton’s
rule experienced in studies of similar systems are typically the same, as well as
the studied behaviours, so we have considered a shortened list (table 2). One
addition not present in Bourke’s survey has also been given (5.).

’ Species Social Behaviour ‘ Source ‘

1. Allodapine bee Usurped females remain to guard nest [16]
X.pubescens
Lace bug

2. G solani Females dump eggs to be guarded [21]
Tiger salamander - .

3. C Young cannibalise non-kin [31]
A.tigrinum
Wild turkey - . .

4. M.galloparvo Males participate in group mating dances [20]

5.* Myxobacteria Cells aggregate to form fruiting bodies [37]

’ M.zanthus EETCE g

Table 2: A list of the experimental studies of Hamilton’s rule discussed in this
section. Study 5 was not present in Bourke’s original list.

Model systems are chosen as examples to attempt to demonstrate Hamil-
ton’s rule usually because of perceived properties that make them easier to be
described. However, for each of these, different definitions of relatedness, cost
and benefit are used, with seemingly little protocol of how to be able to compare
between experiments. For example, several [16, 20, 31] use pedigree relatedness,
but only one [20] provides evidence that genetic similarity is reasonably approxi-
mated by pedigree kinship, and even in this case available data was limited, and
while the approximation is shown empirically, it is not demonstrated whether
this accuracy is because they can reasonably assume altruism is a rare trait;
in fact for all cases the altruistic behaviour described is relatively common. In
addition to inconsistent descriptions of relatedness, cost and benefit are also de-
fined in different ways. Some studies [31, 16] attempt to use causal methods to
approximate the cost or benefit of actions, but do not demonstrate that fitness
effects can be separated, or that fitness is approximately linear. On the other
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hand, for studies that use correlation to make a linear model for fitness [37, 20,
21] discuss their parameters in a causal manner, but do not address the effects
of whether behaviour is rare on the statistical properties of fecundity differences
between altruists and non-altruists.

Studies argue the specific adjustments they make to Hamilton’s rule can be
justified for their use cases, and that Hamilton’s rule is being upheld, but the
lack of consistency applying it limits how much information this gives. Fur-
thermore, biological complexities of any real social behaviour allow for several
counterarguments on why assumptions made for specific systems may neglect
describing important behaviour.

1: The first study by Hogendoorn et al. [16] looks to describe the observed
behaviour of nest-guarding for carpenter bees. X.pubescens forms primitive
social nests with dominant reproducing females and non-reproductive guards.
Subordinate guards are mostly composed of young pre-reproductive females,
which stay in the nest for up to two weeks before leaving to start their own/attempt
to dominate another nest. Dominance is maintained not through any chemical
repression, but by the dominant female physically wrestling competitors from
the egg laying chambers; if a new dominant female takes over, they destroy most
of the previous brood. Interestingly, formerly reproductive females that lose a
battle of dominance sometimes also stay to guard the new brood, despite a high
likelihood that none of their own offspring are within it.

As a model system, it exhibits some traits that allow for a relatively smooth
application of Hamilton’s rule. Social interaction typically only happens be-
tween two interacting individuals at a time, the new dominant female and the
former dominant female, and this interaction marks the start of a new genera-
tion, since upon taking over the nest the new female destroys current brood. In
addition, broods take around 45 days to incubate, a significant length of time
with respect to the expected remaining lifespan of a recently deposed dominant
female. As such, effects of interactions between individuals of different gener-
ations are minimised, since takeovers are typically done by daughters of the
former dominant female, and even if not will likely be of that generation. Num-
ber of guards in a colony is low, typically around 1-8 at one time, so individual
contributions to expected brood survival can be calculated as a non-negligible
amount. Since females that lost hierarchy battles always have the chance to
leave to start/usurp a new nest, cost can be calculated as the expected loss
of reproductive function between these two cases. Relatedness is calculated as
pedigree, which is easy to follow since most interaction happen between daugh-
ters or sisters, and outsiders are considered to have a relatedness of 0. The
study finds this form of social interaction is seemingly selected through indirect
fitness, and that formerly dominant females preferentially stay as guards if their
relatives take over.

Even in this excellent use case, there are still potential points of contention.
There are important details regarding how dominance is behaviour is selected
the authors exclude: while formerly dominant females did preferentially stay
as guards depending on relatedness to new females, the biggest deciding factor
in whether a queen stayed behind or left was their age at the time of takeover.
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Young females have higher chances of successfully establishing a new nest, mean-
ing the potential cost to pay for staying as a guard is much higher than that
for old females. Dominance hierarchy is established by fighting, so physical
status may also have a role to play in deciding whether to stay/leave. Bees
were also shown to prioritise staying as a guard if their young offspring are
currently present, which will not always be successfully removed from the nest
and can instead win the struggle for dominance, representing a reduced cost to
the guard, meaning the cost term likely has several relationships within it. In
addition, dominant females are also primary foragers of the nest, meaning they
are the only ones that leave, how this interacts with expected lifespan was a
topic of discussion in the article with speculative conclusions. Aside from any of
this, the choice of leaving or staying is not only taken by the former dominant
female, but also the new dominant female, who decides whether or not to allow
the previous dominant female to stay in the nest, which may be mediated by
the threat they still represent.

2: Lace bugs of the species G.solani exhibit maternal care, with females
guarding and caring for clusters of their eggs [21]. They also participate in egg
dumping, where some females will lay their eggs on clusters of eggs already
present, in order for them to also receive the guarding and maternal care from
other females. Unlike in the case of parasitism, however, Loeb et al. observe
that lace bugs preferentially dump eggs with those of kin. They find experimen-
tally that by dumping eggs, lace bugs improve the survival percentage of the
original brood, since when they hatch juveniles will experience less predation.
They calculate relatedness using genetic markers and cost and benefit through
expected survival probabilities to argue that this example of egg dumping is
kin-selected.

The argument that egg dumping is altruistic requires the dumpers to pay a
cost. On the contrary, dumpers are more likely to survive to produce a second
generation of eggs, since they do not participate in maternal care and so do
not need to guard. Experimental evidence did indicate that differences between
the two behaviours give negligible fitness benefits for the dumpers long-term,
but there were also no observed genotypic differences in fertility, which would
imply that opportunity to survive should at least represent a slightly positive
effect. A negligible cost imposes minimal restrictions on relatedness, as benefits
can be given randomly and still have positive effect on the population over-
all. Furthermore, the positive relationship between number of individuals in a
herd and experienced predation estimated as a benefit is extremely environmen-
tally dependent, as under conditions limited by resource availability instead of
predation, a smaller brood benefits survival.

3: Pfennig et al. [31] argue that tiger salamanders avoid cannibalistic inter-
actions because it increases inclusive fitness. Tiger salamanders will travel long
distances to return to the place of their birth to spawn, meaning populations of
young with high average relatedness are formed . The larvae are cannibalistic,
but have been shown to preferentially consume non-related individuals. Pfennig
et al. argue that this is through kin recognition by showing that Hamilton’s rule
is met as a condition for such behaviour to evolve. After running through and
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refuting a list of other potential alternative hypotheses such as disease avoid-
ance, they come to the conclusion of kin selection by deductive reasoning. It
is then stated that for kin selection to evolve, Hamilton’s rule will be satisfied
if ¢/b < 1/2, i.e. if for an interaction between siblings, the survival cost of
not eating an available food source is outweighed by the benefit experienced
by the sibling not being eaten multiplied by the relationship between the two
siblings. However, when applied to a system of salamanders interacting, this
again becomes more difficult. The cost of not cannibalising is dependent on
the availability of prey including the density of salamander populations them-
selves, potential cannibalistic interactions are also dependent on size differences
between larvae that may represent other fitness advantages. A kin-recognising
salamander surrounded by non-kin will have fitness benefits if they are smaller
than it, due to more available food, but risks being cannibalised itself if they are
larger, making it difficult to break down cost and benefit without additional vari-
ables such as size or aggressiveness in feeding. In addition, average relationship
between individuals will only maximally be 1/2 (if interactions only take place
with siblings); since salamanders meet with kin that are not siblings, or may
also seek non-kin to eat, the genetic similarity between interacting salamanders
should be lower, but the study does not make this number clear. We see again
that when trying to apply causal modelling, population structure and difficulties
interpreting cost parameters can limit conclusions given by Hamilton’s rule.

4: Krakauer et al. [20] describe ‘lekking’ observed in wild turkeys, a be-
haviour in which groups of males will participate in mating dances together.
The males in the group are divided into a dominant male which is allowed to
mate with the female, and a group of subordinates who cooperate in the lek
without chance to reproduce. Males also have the option to dance alone, hence
becoming a subordinate removes the chance of mating for the season, corre-
sponding to a fitness cost. Dominant males in a cooperative lek are far more
sexually successful than solitary males, representing a fitness benefit. While
multiple males can sometimes be present in a cooperative lek, they are typically
in pairs, so interactions are relatively simple and can be separated into discrete
generations. In addition to this, the groups can be formed while males are still
young, and Krakauer et al. observed that males can leave a cooperative rela-
tionship, but appear to never join new cooperative relationships, i.e. males are
only subordinate to one individual throughout their lifetime. In other observed
cooperative lekking systems, choices that appear to be costs for a single mating
season give reproductive benefits over one’s lifespan: subordinates of a previous
mating season receive help in subsequent mating seasons from the new genera-
tion of young males. In wild turkeys this appears to not be the case; Krakauer
et al. observe that for subordinate males that left coalitions to attempt soli-
tary mating, none were successful. If these observed properties of the system
are accurate, this appears to be an excellent system for applying Hamilton’s
rule. Krakauer et al. combine pedigree relationship with genetic relatedness
by using sequencing for genealogical comparisons between individuals on repre-
sentative loci to show consistency between relationship and genetic relatedness,
and demonstrate that males in cooperative leks are significantly more related
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than background relatedness.

However, dominance in such cooperative mating rituals are usually deter-
mined by some phenotypic difference between individuals. Since Krakauer et al.
observe no subordinate males leaving a coalition were successful in mating, it is
difficult to know what the expected cost of becoming a subordinate actually is.
It is estimated using the expected fitness of all subordinate males, but this may
be an overestimate. In addition, statistical tests are taken for a relatively small
number of turkeys (7 dominant, 8 subordinate and 14 solitary), meaning some
of the observed conclusions about the system may be inaccurate, especially since
they do not seem to resemble properties of other cooperative lekking behaviour.
Lekking appears to also take place in groups of multiple subordinates, which by
the article’s own admission would require further assumptions to incorporate,
but were not investigated due to limited sample size. Still, this is this may
be the best example of Hamilton’s rule demonstrated in this list, though small
sample size limit the strength of its conclusions.

5: Smith et al. [37] provide a methodology for considering interactions with
many partners for the purpose of investigating microbes. M.zanthus form fruit-
ing bodies under stress conditions, a small percentage of the individuals in this
fruiting body disperse spores and the rest die. Strains of cheaters exist that have
a highly increased chance sporulating when among cooperators, but a system of
only cheaters sporulates less than cooperators. Since interactions between mi-
crobes are often strong and non-linear, Smith et al. look to develop a generalised
methodology to model microbial systems.

Colonies of M.zanthus formed of cooperator and cheater strains are grown
in a lab and put under stress to form fruiting bodies. These fruiting bodies are
harvested, and spores analysed. Fitness is measured as sporulation efficiency.
Smith et al. reason that any smooth fitness function involving G and G’ can
be expanded around the point of a non-cooperator in a non-cooperative envi-
ronment (G = 0,G = 0) and use the assumption genotype of self takes binary
values to reduce this expansion to the form:

w=> b;G"+Y dpGG’ (17)
j=1 k=0

where by is the baseline fitness and dy is the cost of cooperation with all inter-
action partners as non-cooperators.

Smith et al. use ancova to estimate a fitness function for their dataset
that also included non-linear terms GG’ and G2, and then performed a Taylor
expansion to represent this fitness function with a 30th order polynomial of the
form given by equation 17, which provided accurate predictions of selection on
altruistic behaviour. However, though authors claim this is a generalized model,
the assumption required for this system to work is that the interaction partners
of one’s interaction partners are the same as one’s own. In M.zanthus this is
reasonable, since bacteria that form a fruiting body all participate in the act
of clustering and may receive similar benefits, but cannot be said of systems in
general.
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The assumption that the interaction partners of one’s interaction partners
are the same as the interaction partners of oneself could hypothetically be ex-
tended to systems where altruists preferentially interact with other altruists by
spatial structure instead of more deterministic mechanism such as kin selection
(with the implication that social interactions are strongly constrained by dis-
tance and time) and populations are sufficiently dense that the contributions of
individuals to the total fitness benefits are negligible. Here it is reasonable to
suggest that the benefits received from altruism for two individuals that interact
with each other is the same, as they sit in the same interaction neighbourhood
and thus should have roughly the same interaction partners G’. In such a sys-
tem, coefficients of fitness function equation 17 might be interpretable as payoffs
of interactions with j individuals. However, for interactions that do not allow
for (G') = G’, how to approach the relatedness is less clear.

Smith et al. claim that their extension provides better estimates of empirical
results than Hamilton’s rule of the form rb > ¢. However, it can be argued that
the coefficients of Smith’s model that represent higher dimensions of interaction
can be absorbed into cost and benefit when changing their interpretation, as
seen for interactions with 2 individuals in the additive case seen earlier, and
thus again that perceived differences in predictive quality are due to incorrect
application. The described system is also additive: M.zanthus cheaters have
lower fitness than altruists when reproducing normally, so participating in a
fruiting event gives an additive effect. In addition, since fruiting only occurs
in times of stress, the cost parameter within Smith et al.’s regression model
may be higher than the actual experienced cost; if one is likely to die anyway,
the cost of forming a fruiting body with the chance to sporulate becomes more
attractive for both direct and indirect fitness.
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5 Discussion

In summary, attempts to formally apply inclusive fitness to empirical data in an
clearly explicable manner remain elusive. We have shown that when working
from causal interpretations of cost and benefit, assumptions of weak additivity
and equal environments allow approaching something resembling Hamilton’s
rule. Regression approaches allow for greater generality, but writing ¢ and b as
regression coefficients limits the ability to interpret them as benefits and costs
or even being able to interpret them as distinct from each other dependant on
the system studied. While equation 16 requires some assumptions that may
be avoided by regression approaches, it does not require knowledge of all social
interactions in order to be applied, whereas regression approaches do; gather-
ing such data may only be possible for simulation models, where one has the
opportunity to calculate costs and benefits in a counterfactual way by repeat-
ing scenarios while removing altruism with various permutations of altruists
and observing fitness differences. Looking at differences between regression and
causal interpretations of Hamilton’s rule requires further discussion, Okasha
and Martens [28] suggest Fisher’s ‘average effect of a gene substitution’ gives
potential for causal interpretation, but also conclude this is limited by how
Fisher defines ‘environmental constancy’; what systems this can be done for is
a potential line of inquiry.

In its most general form, Hamilton’s rule is true for any system the Price
equation holds for. However, attempting to harness this generality to build
an approach allowing for clear interpretation of any system of social fitness is
proved difficult, even in the case of simulation models. Parameters b, ¢ and R
may have complicated relationships between each other, meaning that observing
changes to one or two of the three quantities may not be enough to predict the
behaviour of the system as a whole [27]. Nevertheless, proponents of Hamilton’s
rule believe this to be a worthy price to pay for generality [10], and furthermore
that extensions can always be made to attempt to mitigate relationships between
¢, b and R. However, these extensions often entail breaking down the interaction
structure into a more realistic interpretation of what may be happening, and
experimental examples indicate such extensions should be performed on a case
by case basis; under application, generality is lost. Differences in perspective
can result in different rules even for simple theoretical models: an extension by
Grafen [11] considers phenotype similarly to Queller’s derivation (equation 13),
but takes events from the perspective of actor rather than recipient (i.e. inclusive
rather than neighbour-modulated), resulting in subtle differences to Queller’s
rule that are equivalent only under assumptions of symmetric interactions [36].

Experimental examples indicate that in many systems, individuals act altru-
istically with preference towards their own kin, but general methods attempting
to quantify fecundity payoffs and interaction structure of these systems in a
causal way are still not fully satisfactory. Note that all experimental examples
attempt to describe relatively ‘ideal’ systems where altruism takes the value of 1
or 0 (altruistic or non-altruistic) instead of discrete values or even a continuous
scale, and the impact of time or environment are not considered on phenotype.
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It may always be possible for the partial regression coefficients of cost and ben-
efit to absorb additional independent variables, such as environmental factors,
through correlations to genotype. However, if costs and benefits are represented
with functions that include intricate descriptions of interaction structure and
experienced environment, how does Hamilton’s rule provide more information
about a system than Robertson’s rule (Bwg > 0)? Birch et al. [4] argue that
the parameters of Hamilton’s rule are “causally interpretable in a wide range
of cases”, while Robertson’s are not. However, as we have repeatedly seen
through derivations, the causal interpretations of Hamilton’s rule are still lim-
ited by how effectively the relatedness parameter describes interactions taking
place. If the regression parameter Sy g g has negligibly more causal interpreta-
tion than By ¢, Hamilton’s rule seemingly provides little additional information
to Robertson’s rule: investigating causality for complex cases requires a deeper
understanding of interaction strength and structure.
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Appendix

5.1 Forms of Partial Regression

For regressions of a dependent variable y on multiple predictor variables z;, the
sum of squares takes the form:

2

S = Z yi — E(y) — ij(%‘j — E(z;))

where x;; is the ith value of the predictor variable z;, and m; are the jth partial
regression coefficients of y on z; with other z, # x; fixed. Finding the regression
coefficients my, that minimise this sum of squares is done by differentiating with
respect to my, giving solutions for the partial regression coeflicients in the form:

~ Cov(y, zx) Cov(z;, zx)
= Var(zy) ij Var(zp) (18)
Ji#k
For the field of inclusive fitness, partial regressions are typically done as re-
gressions of fitness on two predictor variables, genotype of self G and inter-
action partners G’. To consider regressions with two predictor variables, we
rewrite the two regression coefficients using Queller’s notation, m1 = B, |4,
and mg = By, - Simultaneously solving equation 18 for m; and mg, we can
write the partial regression 3, ., of y on 21 while holding z2 constant:

_ ﬁywl - 6yl2ﬁ1211

Byzi|zs = : (19)
var ez 1*/’%2

where p15 is the ‘correlation coefficient’ for xq, 25 [7, 22], and B4 is the simple
regression of a on b (proof of this can trivially be seen from equation 18 with
only one predictor variable):

_ Cov(xy,m2) Boy = Cov(a,b)
P2 = /Var(z;)Var(z3) @7 Var()

Least squares regression calculates the partial regression coefficient for one
predictor variable while holding all others constant. However, as mentioned in
section 2.3.1, another perspective of partial regression coefficient 3, ., is that
it predicts y using the parts of x; that are not predicted by zo. We here show
the equivalence of these two perspectives.

Consider a regression of x1 on zo with residuals €, and a new variable &
which represents x1 predicted by xo:

Ty =a+ BwlngZ +e€

i‘l =a + 5121:1223:2'
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We write 1.2 = x1 — &1 as 1 not predicted by x5. Our alternative perspective
of the partial regression coefficient 3,,, ., suggests that it should take the form
of a simple regression between y and our new variable x; 5:

3 _ Cov(y,x1.2) (20)
vl Var(z1.2)
We now look to demonstrate this is equivalent to the form shown in equation
19. First, we use definition of x1 5, and properties of variance and covariance:

5 _ Cov(y,m1 —21) Cov(y,x1) — Cov(y,Z1)
verle2 = Nar(zy — 41)  Var(zy) + Var(dy) — 2Cov(a, 21

Next, we substitute 1 = a + B4, ,, and use the fact ¢ and S,,,, are constants
to simplify:

W Cov(y. r1) ~ Covly,a + foyzy)
yrilez = Var(z1) + Var(a + Bz,4,72) — 2Cov(z1,a + Bz, 2,T2)
_ COV(y, Il) B /Brl-"fQ COV(y, ‘TQ)
~ Var(zy) + 82, Var(za) — 2B4,2,Cov(zy, x2)

T1T2

Finally, we substitute the function for a simple regression: B;,z, = %

and rearrange:

Cov(zy,z2)

COV(y, £C1) — WCOV(Z}, (EQ)

2
Var(z1) + (%) Var(zs) — 2%;’52)00\/(331, T2)

ﬁyzl\zg =

Cov(y,z1) — %COVCK% 1)

Var(z1) — Covizy,zy)?

Var(zz)
Cov(y,z1) _ Cov(y,z2) Cov(za,>1)
_ Var(xz1) Var(z2)  Var(zi)
1_ Cov(zy,z2)?
Var(x1)Var(zz)

Substituting back the function for a simple regression gives the same form as
equation 19, showing the equivalence between perspectives of the partial regres-
sion.
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