
Faculteit Bètawetenschappen

Irregular LDPC Code Design using Large Girth
Tanner Graphs

Master Thesis

Hannah Onverwagt

Mathematical Sciences

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

c1

c2

c3

c4

c5

Supervisors:

Dr. Ivan Kryven
Mathematical Institute, Utrecht University

Prof. Dr. Willemien Kets
Mathematical Institute, Utrecht University

April 15, 2023

Abstract

Low-density parity-check (LDPC) codes are error-correcting codes that have been shown to have good
performance approaching Shannon’s limit. Although initially developed in the early 1960’s, LDPC codes
have experienced a remarkable comeback in recent years. As a result, numerous modern communication
standards have embraced LDPC codes. To achieve high processing speed and energy efficiency, both the
encoding and decoding processes must have a low level of complexity.

LDPC codes can be represented graphically by Tanner graphs. Tanner graphs with a large girth are often
used because of their excellent performance in terms of error correction and transmission efficiency. The
primary objective of this thesis is to explore the encoding and decoding processes to answer the question
why a large girth in the Tanner graph is beneficial. Moreover, this thesis presents methods to construct
these large girth Tanner graphs for irregular LDPC codes.

1

2

Acknowledgement

I would like to express my sincere gratitude to all those who have supported me throughout this process.
First and foremost, I would like to thank my supervisor Ivan Kryven for his guidance, insightful feedback
and support throughout the research process. I would also like to thank Mark Snelders for providing helpful
feedback and motivation when it was needed. I want to thank Joris van der Hijden and Leon Goertz for their
support and the many insightful conversations we had about the topic, during which I was able to share the
challenging aspects of writing a thesis.

Lastly, I want to thank my family and friends for their unwavering love, support, and encouragement,
especially during times of difficulty. Their belief in me has been a constant source of strength and motivation.

CONTENTS 3

Contents

1 Introduction 4

2 Coding theory 6
2.1 Preliminaries . 6
2.2 Noisy channels . 8
2.3 Overview of different codes . 9
2.4 Encoding and Decoding of codes . 11

3 Encoding LDPC codes 14
3.1 Encoding via backward substitution . 14
3.2 Encoding via approximate lower triangular parity-check matrices 15

4 Decoding LDPC codes 18
4.1 Message Passing Algorithms . 18
4.2 Belief propagation . 20
4.3 Log-likelihood ratio . 23
4.4 Belief Propagation on the BEC . 27
4.5 Codes with cycles . 31

5 Construction of Tanner graphs for LDPC codes 33
5.1 Regular LDPC codes with a large girth . 33
5.2 Irregular LDPC codes . 35
5.3 Degree sequences . 36
5.4 The bipartite degree realization problem . 39
5.5 Forbidden connections . 41
5.6 Constructing Tanner graphs with a large girth . 43

6 Conclusion 45

References 47

1 INTRODUCTION 4

1 Introduction

In a communication system, information is transmitted from a sender to a receiver over a channel. In real-
world scenarios, this channel is often affected by various sources of noise and interference that can corrupt
the transmitted signal. The effect of noise on the transmitted signal can result in errors, or even complete
loss of data, at the receiver end, which can severely degrade the performance of the system. To overcome
these effects, various techniques are used, including error-correcting codes. These codes are used to add
redundancy to the transmitted signal, allowing the receiver to detect and correct errors caused by noise.

We all face this problem during ordinary voice communication, when a word is misheard in a conversation.
In practice, to recover from this corruption, we simply repeat ourselves. This is called the repetition code
and it is one of the simplest error correction codes. However, it fails whenever the same word is misheard in
the repetition. This unfortunately happens quite often and therefore this strategy leaves us very vulnerable
to failure. What we could do, is repeat ourselves even more often. But this means we have to send a lot more
data than only the message. The rate of a code represents the ratio between the number of information bits
and the number of sent data bits. Repeating many times lowers the probability of an error, but also lowers
the efficiency. We need to find a balance between the error probability and the code rate.

Message
source

Encoder Channel Decoder Destination

Noise

m c c m

m1, . . . ,mk c1, . . . , cn c1, . . . , cn m1, . . . ,mk

Figure 1: A message source sends a message m containing of k ∈ N bits m1, . . . ,mk, whereafter the encoder
encodes the message with a so called ‘codeword’ c which consist of n ∈ N bits, where n ≥ k. The noise in the
channel changes the codeword c into c by e.g. flipping or corrupting bits. The decoder then tries to restore
the original codeword m from the received value c, we call this restored message m. The goal is to find an
encoder and decoder function such that m = m with high probability for every message.

Shannon’s Noisy Channel Theorem [1] is a fundamental result in information theory that states that for any
given communication channel, there is a limit to the amount of information that can be reliably transmitted
over the channel with a given level of reliability. In other words, it is possible to transmit information over
a given channel reliably if and only if the code rate is smaller than the channel capacity. Shannon proves
that for every rate and error probability ϵ there exists a code with this rate which has an error probability of
at most ϵ. Unfortunately, the proof is non-constructive, so Shannon does not tell us how we can find these
codes. After Shannon presented this theorem in 1948 a lot of research has been done to construct codes that
perform close to this capacity.

Low-density parity-check (LDPC) codes are a type of linear error-correcting codes that have become a popular
choice in communication systems. These codes are advantageous because of their low decoding complexity,
flexibility and close to channel capacity performance. LDPC codes were presented by Robert Gallager [2]
in 1962, but did not receive much attention at that moment, mostly because of the lack of implementation.
Computers at that time were not powerful enough to verify that LDPC could approach the channel capacity.
Only after Turbo codes, another type of error-correcting codes with low decoding complexity and reliable
performance, were introduced in 1993, LDPC codes were reintroduced by MacKay and Neal [3]. The name
‘low-density parity-check’ codes refers to the structure of the code, which is represented by a sparse parity-
check matrix. This property makes LDPC codes efficient in terms of both storage and computational power.

A separate goal in code construction is having an easy hardware implementation, meaning that to make
efficient use of LDPC codes we need effective encoder and decoder functions. Encoding of linear codes can be
done efficiently via their generator matrix. However, LDPC codes are defined by their parity-check matrix

1 INTRODUCTION 5

and forming the generator matrix from this parity-check matrix can be complex. It is preferred to accom-
plish encoding directly via the parity-check matrix. Richardson and Urbanke designed an algorithm that
uses the approximate upper triangular form of a matrix [4] to improve the encoding complexity. Finding
an optimal decoder for LDPC codes is an NP-complete problem [5]. However, using message passing al-
gorithms we can find a polynomial algorithm that performs close to the channel capacity [6]. This Belief
Propagation (BP) algorithm uses the Tanner graph as representation of a graph. Messages containing a
belief about the state of the variable nodes is send over the edges. These believes are revised and updated
via so-called update rules. Under the assumption that the Tanner graph is a tree we can show that this BP
decoder is an optimal decoder. Nonetheless, this assumption is not so relevant, since codes whose Tanner
graph does not have cycles are inconvenient as their minimum distance is low. It has been shown that small
cycles and small stopping sets influence the decoder and reduce the error capability of a code [7][8]. We are
thus looking for codes that avoid these. We will focus our attention on avoiding small cycles by looking at
Tanner graphs with a large girth, where the girth of a Tanner graph is defined as the size of the smallest cycle.

The next challenge lies in constructing codes whose Tanner graph has a large girth. Luby suggested in 1998
to use irregular LDPC codes instead of regular LDPC codes [9]. These codes have a performance even closer
to the channel capacity than the regular codes Gallager proposed. The interest in research therefore moved
to irregular codes and since then we examine the constructing of irregular codes with a large girth. The goal
of this thesis is first to understand why Tanner graphs with large girth are needed and, second, to construct
Tanner graphs with large girth to generate codes with a good performance.

Organization

We start with covering the background materials in Chapter 2. We examine the basics of coding theory;
definition of codes, examples, LDPC codes and their different representations, including the Tanner graph.
We define noisy channels in Section 2.2 and lastly, in Section 2.4 we give some essential information for
encoding and decoding functions.

Chapter 3 discusses the encoding problem of LDPC codes, presenting a new efficient algorithm as presented
by Richardson and Urbanke [4]. In Chapter 4 we cover the Belief Propagation (BP) algorithm, which is
a decoding algorithm for decoding LDPC codes. This message passing algorithm uses Tanner graphs as
graphical representation of LDPC codes. We work on optimizing the algorithm and discuss the influence of
stopping sets and cycles. We introduce the girth and show why codes with a large girth are favored.

Lastly, in Chapter 5 we engage in the challenge of constructing codes with a Tanner representation without
small cycles. Irregular codes with their corresponding degree sequences are introduced in Sections 5.2 and
5.3. Existing constructions of Tanner graphs with a large girth are presented and using some of these ideas
we propose a method for constructing Tanner graphs with a large girth realizing a given degree sequence in
Section 5.6.

2 CODING THEORY 6

2 Coding theory

This chapter introduces the fundamental concepts and terminology related to error-correcting codes. In
Section 2.1 we cover the basics of error-correcting codes in general, and Section 2.2 describes two types of
noisy channels. In Section 2.3, we delve into some specific codes and we introduce LDPC codes. Lastly, in
Section 2.4 we discuss some basic encoding and decoding methods.

2.1 Preliminaries

There are two main types of codes: block codes and convolutional codes. Block codes operate on fixed-length
blocks of data, while convolutional codes process data streams without dividing them into blocks. Block
codes encode each block of data into a longer block, and each block is independent of each other. The output
of convolutional codes depends not only on the present input bits, but also on previous input bits that are
stored in memory. We will focus on the second type, since low-density parity-check (LDPC) codes are block
codes, and they work with finite blocks of data. In this thesis we will refer to block codes simply as codes.
The notation and terminology used to describe codes in this thesis are largely based on Richardson and
Urbanke’s book [5].

Definition 2.1 (Block code). A block code C of length n and cardinality M over a field Fq is a non-empty
collection of M elements from Fn

q , i.e.,

C = {x1, . . . , xM}, xi ∈ Fn
q , 1 ≤ i ≤ M.

Its elements are called codewords.

Definition 2.2 (Linear code). We call a (block) code linear if its codewords are closed under addition and
scalar multiplication, this means that for every codewords c1, c2 the sum c1 + c2 and αc1,∀α ∈ F are also
codewords. A linear code of length n and dimension k is also called an [n, k] code.

A block code is defined by the set of its codewords. For linear block codes only a basis of the code is needed
to define all its codewords and thus the code. It is easy to see that each linear block code contains the all-zero
codeword.

In this thesis we will focus on binary codes and so we will work over the field F2, therefore we often omit the
notation of Fq and simply write F.

A code consists of message bits, which contain the information you want to send, and auxiliary bits, to
protect the data. The rate of a code is defined as the ratio of message bits in a codeword to the total number
of bits in a codeword.

Definition 2.3 (Code rate). The rate of a code C of length n and cardinality M is r = 1
n log2 M. The rate

of a [n, k]-code is r = k
n .

Repeating the message more often in the aforementioned mentioned repetition code increases the probability
that the receiver obtains the right message, but it reduces the efficiency. This efficiency is expressed as the
code rate. The rate of the 3-repetition code is r = 1

3 log2 2 = 1
3 , where M = 2, since F = F2. A high code

rate means that the number of message bits is close to the number of transmitted bits, this however gives us
a high probability of failure. A lower code rate gives us more protection, since we send more auxiliary bits,
but it is also more expensive, we can send less messages in the same time frame. Therefore, we need to find
a balance between the code rate and the probability of failure.

The following concepts of the Hamming weight and the Hamming distance will help to analyze error-correcting
codes in relation to the code’s minimum distance.

2 CODING THEORY 7

Definition 2.4 (Hamming distance). The Hamming weight w(x) of a string x is equal to the number of
non-zero elements in x. The Hamming distance d(x, y) is the number of positions in which x differs from y,
i.e.,

d(x, y) :=

n∑
i=1

|xi − yi|.

Note that there is a relation between the Hamming distance and Hamming weight, namely d(x, y) = d(x −
y, 0) = w(x−y). Moreover, note that the Hamming distance is non-negative d(x, y) ≥ 0, symmetric d(x, y) =
d(y, x) and d(·, ·) satisfies the triangle inequality, i.e., d(x, z) ≥ d(x, y) + d(y, z).

Definition 2.5 (Minimum distance). The minimum distance dmin of a code C is defined as

dmin := min{d(x, y) | x, y ∈ C, x ̸= y}.

The following propositions tells us that instead of computing the minimum distance of a code we can also
compute the minimum weight of all the non-zero codewords, which is preferred because of the lower com-
plexity.

Proposition 2.6. For a linear code C, the minimum distance is equal to the minimum weight of the non-zero
codewords.

Proof. By utilizing the properties of the minimum distance, we obtain

dmin = min
x,y∈C,x ̸=y

d(x, y) = min
x,y∈C,x ̸=y

d(x− y, 0) = min
z∈C,z ̸=0

d(z, 0) = min
z∈C,z ̸=0

w(z).

What can we tell about the recovery of a codeword from the minimum distance? A code with minimal
distance d can detect up to d− 1 bit flips errors and perfectly correct up to ⌊(d− 1)/2⌋ bit flip errors. This
is because flipping up to d − 1 bits can never result in another codeword, otherwise the distance between
these codewords is smaller than d, hence we can detect such an error if the corrupted codeword is not in the
code anymore. Detecting errors is not as powerful as correcting errors but it can nevertheless be valuable.
Furthermore, if all codewords are guaranteed to be different for at least d positions, then the set of strings
that differ at most (d − 1)/2 bits are unique for every codeword. Thus from a received string with up to
(d− 1)/2 errors we can fully restore the original message. Under certain circumstances the error correcting
capability of a code can exceed this bound [10].

From the definition, we have seen that a code can be described by the set of its codewords. For linear codes
however is it more convenient to give a basis of the codewords, such that all the other codewords can be
constructed from this set. We implement this by giving a generator matrix for a code, where the rows contain
the codewords of a basis for this code.

Definition 2.7 (Generator matrix). A matrix G of dimension k×n, with entries in F, is a generator matrix
for a linear code C of length n and dimension k if it has full rank and its rows generate C over F, i.e.,

C = {xG | x ∈ Fk}.

We say that the rows of a generator matrix ‘generate’ the code, all rows and all linear combinations of the
rows of G are codewords. Note that G uniquely determines the code C. However, a code can have multiple
generator matrices. We say a generator matrix is in systematic form if

G =
[
Ik | A

]
, (2.1)

where Ik is the k × k identity matrix and A is a k × (n − k) matrix. With elementary row operations and
column permutations every generator matrix can be transformed in its equivalent systematic form.
We define the dual code C⊥ for every linear code C as

C⊥ = {x ∈ F | GxT = 0T }.

2 CODING THEORY 8

Any (n− k)× k generator matrix of the code CT is called a parity-check matrix of the original code C and is
denoted by H. From the rank-nullity theorem it follows that GHT = 0. This means that for all codewords
c in the code, and only for these, HcT = 0 must hold.

If the generator matrix G of a code C is in systematic form, then the parity-check matrix H of this code can
be computed easily from it

H =
[
AT | In−k

]
. (2.2)

To find a parity-check matrix for any linear code we first put the generator matrix in the systematic form by
performing elementary row operations and swapping columns if necessary. Then we can use (2.2) to find a
parity-check matrix. On the other hand, if we have the parity-check matrix and we want to find a generator
matrix we can bring the parity-check matrix in its systematic form as in (2.2) and use (2.1) to find a generator
matrix.

2.2 Noisy channels

Noisy communication channels are the reason that error-correcting codes are used. In the real world, each
communication channel is noisy. The following definition of [11] gives a formal notation of a noisy channel.

Definition 2.8. A (discrete) channel is a tuple (X,PY |X , Y) such that X and Y are finite sets, and for any
x ∈ X, the function PY |X is a probability distribution.

The set X represents the possible inputs of the channel. In our case, this is the set of all possible codewords
C. Y represents that possible outputs of the channel, let us call the output c, that is received after the
corruption of the channel.
For example, one could think about a channel where bits are flipped. When transmitting messages over this
channel, the channel will flip bits with a certain probability. The simplest form of such a channel is the
binary symmetric channel.

Definition 2.9. We define the binary symmetric channel (BSC) with parameter p by X = Y = {0, 1} and

PY |X(0 | 0) = PY |X(1 | 1) = 1− p

PY |X(0 | 1) = PY |X(1 | 0) = p.

So with a probability of p the input will be flipped and with probability 1 − p it remains unaffected. This
channel be visualized by Figure 2.

1

0

1

0
1− p

p

p

1− p

Figure 2: Binary Symmetric Channel

This channel is an example of a memory less channel. The probability distribution of the output solely relies
on the current input. When the channel is used repeatedly, the channel distribution remains unaffected by
prior inputs and outputs.

Another example of a memory less channel is the binary erasure channel (BEC). This is an erasure channel,
it models situations where information may be lost, but is never corrupted. The BEC captures these erasure
in the simplest form: when transmitted, individual bits are either received correctly, or known to be lost.

2 CODING THEORY 9

Definition 2.10. We define the binary erasure channel (BEC) with parameter ϵ by X = {0, 1}, Y = {0, 1, ?},
where ‘?’ is the erasure symbol and ϵ is the erasure probability.

PY |X(0 | 0) = PY |X(1 | 1) = 1− ϵ

PY |X(? | 1) = PY |X(? | 0) = ϵ.

The input is erased with probability ϵ and with probability 1 − ϵ it remains unaffected, the channel is
illustrated in Figure 3.

1

0

1

?

0
1− ϵ

ϵ

ϵ

1− ϵ

Figure 3: Binary Erasure Channel

Even though the BEC might appear to be an excessively basic and impractical model of a communication
channel, there are real-world instances of it. We will study how error-correcting codes behave on these
channels, since these channel simplify a lot of the ideas. For example, analysis of LDPC codes is possible on
the BEC, whereas for other channels this is more difficult to achieve. Despite its simplicity, the BEC can
provide valuable insights into what occurs in more general scenarios. This is because a lot of the concepts
that we face during the study of BEC hold also in more general cases [5].

2.3 Overview of different codes

Before giving the definition of LDPC codes, we will take a look at some examples of other codes. The
repetition code is one we have already seen.

Example 2.11 (Repetition code). The code C = {(α, . . . , α) | α ∈ Fn} is called the n-times repetition
code. The generator matrix of this code is the 1× n matrix G =

[
1 1 · · · 1

]
. △

The efficiency of this code is not very high, as it has a rate of 1/n. The next code, the parity-check code,
uses a smart technique and only needs one auxiliary bit, so the rate is (n− 1)/n. This last bit is equal to the
sum of the first n − 1. Therefore, if one bit flips, the decoder can see that there was a bit flipped and even
though it does not know where, it can detect a failure and ask the sender to send the message again.

Example 2.12 (Parity-check code). The code C = {(x1, . . . , xn) ∈ Fn | xn =
∑n−1

i=1 xi)} is called the
parity-check code of length n. The generator matrix of this code is G =

[
In−1|1

]
, i.e.,

G =

1 0 · · · 0 1
0 1 · · · 0 1
...

...
. . . 0 1

0 0 . . . 1 1

 .

△

Example 2.13 (Hamming code). A more sophisticated code is the [n, k] Hamming code. It encodes a
message of k bits into a message of n bits, the rate is thus k/n. For the [7, 4]-Hamming code the encoding
function is defined as

enc(m1m2m3m4) = m1m2m3m4t1t2t3,

2 CODING THEORY 10

with the so called parity bits

t1 = m1 ⊕m2 ⊕m3

t2 = m2 ⊕m3 ⊕m4

t3 = m1 ⊕m3 ⊕m4.

We can check that the minimal distance of this code is 3 and thus it can detect up to two errors and can
solve one error. So if a codeword is corrupted in one bit, the [7, 4]-Hamming code can correctly decode it, we
will see a decoding function for this code later. The parity-check matrix of this code is

H =

1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1

 . (2.3)

△

Low-density parity-check (LDPC) codes, founded by Gallager in 1962 [2], are the main topic of this thesis.
By referring to LDPC codes we actually refer to codes with a low-density representation.

Definition 2.14 (LDPC code). A low-density parity-check (LDPC) code is a linear binary block code for
which the parity-check matrix of interest has a low density of 1’s.

The term ‘low density’ may be imprecise, but it means that the n− k× n matrix H only has O(n) non-zero
elements. Since a code can have multiple parity-check codes, we call it an LDPC code if there is at least one
sparse representation. Gallager introduced regular LDPC codes in his work [2]. A (l, r)-regular LDPC code
is defined by a parity-check matrix H where each column of H has weight l and each row has weight r. The
class of irregular LDPC codes is more general, the rows and columns do not have to be of a constant weight
and it includes regular codes. In Chapter 5 we will delve further into regular and irregular codes and their
construction.

We have seen different representations of codes. We can represent a code by the set of its codewords, a
generator matrix or a parity-check matrix. Recall that these last two are not unique. Another convenient
way is to use a graphical representation. A Tanner graph is the graph representation of a parity-check matrix
[12].

Definition 2.15 (Bipartite graph). A graph G(V,E) is bipartite if the set of nodes V can be partitioned
into two classes, such that no edge connects two nodes from the same class.

Definition 2.16 (Tanner graph). A Tanner graph for a code with a n − k × n parity-check matrix H is a
bipartite graph G(V1 ∪ V2, E), such that:

• There are n so called variable nodes v1, . . . , vn in V1

• There are n− k so called check nodes c1, . . . , cn−k in V2

• An edge connects a variable node vi to a check node cj if and only if Hji = 1.

We often represent the variable nodes of a Tanner graph by circles and the check nodes by squares.

We have seen that the [7, 4]-Hamming code in Example 2.13 can be represented by the parity-check matrix
given in (2.3). The Tanner graph for this [7, 4]-Hamming code based on this parity-check code can be found
in Figure 4.

Recall that the encoding function of this code is

enc(m1m2m3m4) = m1m2m3m4t1t2t3.

We can look at the variable nodes v1, . . . , v7 of the Tanner graph as the message bits m1,m2,m3,m4, t1, t2, t3
and the check nodes, as the nodes that check if the requirements are met. In the Tanner graph, we see that
first check node c1 is connected to variable nodes v1, v2, v3, v5, which means that c1 checks if

v1 ⊕ v2 ⊕ v3 ⊕ v5 = 0,

2 CODING THEORY 11

which is equivalent to
t1 = m1 ⊕m2 ⊕m3.

The variable nodes of the Tanner graph consist of the message bits and any auxiliary bits that are used to
protect the data. The check nodes tell us which equations must hold for these variable nodes. When a check
node is connected to three variable nodes, it checks if the sum of these bits is even (and thus 0, because
F = F2).

v1

v2

v3

v4

v5

v6

v7

c3

c2

c1

Figure 4: Tanner graph for the [7, 4]-Hamming code

Definition 2.17 (Cycle). A cycle in a graph G(V,E) is a sequence of distinct nodes that starts and ends in
the same node.

Definition 2.18 (Girth). The girth of a graph G(V,E) is the length of the shortest cycle in the graph.

In the next chapters we will study these Tanner graphs more closely. In Chapter 3 we will see that this
graphical representation plays a vital role in the decoding algorithm. Moreover, we will see what the part of
cycles is in the decoding algorithm and that it is important that the girth is as big as possible. Obviously,
the girth can only be an even number, since the Tanner graph is bipartite. It is also evident that the shortest
possible cycle in any Tanner graph is four. The girth of the Tanner graph given in Figure 4 is four, since
(v2, c1, v3, c2, v2) gives a cycle of length four. Observe that a code can have multiple representations and thus
multiple Tanner graphs. Different representations can lead to different girths.

2.4 Encoding and Decoding of codes

Encoding

The encoding function is dependent of the code that is used. For linear codes there is a simple procedure for
encoding. The encoding of non-linear however, can more be complex, although non-linear codes are usually
defined by their encoding function. Encoding of a linear code can be done with the generator matrix G. We
simply multiply our message m from the left side with G to obtain the corresponding codeword c = mG. In
the case that the generator matrix is unknown, for instance for LDPC codes, we need to find this matrix to
encode. If however, a parity-check matrix of the code is given, we can derive the corresponding generator
matrix of this code. The problem is that the complexity of this procedure is rather high, the time to generate
the generator matrix in a brute-force approach is O(n3), where n is the block size. There are alternative
methods to encode, using properties of the code. As an example, the complexity of encoding of LDPC codes
can be reduced due to their sparseness. In Chapter 3 we will discuss an algorithm, the belief propagation
algorithm, to do this.

2 CODING THEORY 12

Decoding

Decoding is a relatively more complex issue. For decoding, we want to minimize the error probability. This
is the probability that our decoding algorithm, with as input the received codeword c returns a message that
is different than the original message m:

P[dec(c) ̸= m].

Again, the decoding procedure of non-linear codes is more complicated than that of linear codes. For non-
linear codes we need the definition of the code and since there is no structure we cannot really say anything
about a decoding algorithm. For linear codes there are multiple methods known for decoding. One of the
simplest is syndrome decoding, which uses the concept of the syndrome of a corrupted codeword.

Definition 2.19. Let C be a code with parity-check matrix H. The syndrome of a received codeword c is
HcT .

The syndrome gives valuable information about if and where an error occurred. If the syndrome is 0, the
output c is a codeword and thus with a high probability we can say that no error has occurred.
Assume now that the codeword c is send over a channel and only the ith bit is flipped. Then the output of
the channel is c = c+ ei (where ei is the ith unit vector). The syndrome of this output is

HcT = H(c+ ei)
T = HcT +HeTi = HeTi ,

using that HcT = 0 for every codeword c ∈ C.
HeTi is equal to the ith column of H, meaning that if we receive the output c, we can compute its syndrome
and compare it to the parity-check matrix to find out which bit is most likely being flipped.

Example 2.20. Let C be a linear binary code with n = 6, k = 3 and let a generator matrix G and a
parity-check matrix H given by

G =

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

 , H =

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

 .

Say we receive the vector c =
[
1 1 1 1 0 1

]
from the channel, we first conclude thatHcT =

[
1 0 1

]T ̸=
0 and thus we are sure that an error has been made. We see He2 =

[
1 0 1

]T
= Hc, so this means that

most likely the second bit is flipped and the sent messages is c =
[
1 0 1 1 0 1

]
. However, it could also

have been the case that two bits have been flipped, e.g. bit 4 and bit 6. These columns add up to the same
syndrome. If that would be the case, then the original codeword is not restored and our decoder algorithm
failed. But, since it is generally less likely that two bits are flipped, the decoder selects the codeword assuming
there was only one bit flip.

Now suppose we received c =
[
1 1 0 0 0 1

]
, the syndrome would be Hc =

[
1 1 1

]T
and we have

multiple options for bits that have been flipped. Since there is no column in H with these values, at least
two bits are flipped, but this can be either the first one and the fourth one, the second one and the fifth one
or the third one and the sixth one. All with the same probability. So in this example, syndrome decoding
does not help us with recovering the original message. △

We see that the syndrome decoding algorithm does not perform well in most cases, for this [6, 3] code only
in the case of a single bit flip. The question is if we can find another way to successfully decode a code? To
try to answer this question, we define the maximum a posteriori (MAP) decoder.

Assume we use a channel with input space X = C, output space Y and transition probability PY |X(y|x). The
transmitter chooses a codeword x ∈ C with probability PX(x) and transmits this codeword over the channel.
Let y be the output of the channel. Our goal is to decide to which codeword y should be decoded. If we
decode y to x̂(y), then the probability that this is not the originally codeword is 1− PX|Y (x̂(y)|y). We want
to minimize this error probability and thus find the x̂(y) such that PX|Y (x̂(y)|y) is maximized.

2 CODING THEORY 13

This decoder x̂(y) is called the maximum a posteriori (MAP) decoder:

x̂MAP (y) = argmax
x∈C

PX|Y (x|y).

This MAP decoder minimizes the probability of (block) error, which we define as Pe = P{x̂MAP (y) ̸= x}.

An alternative way of decoding is with the maximum likelihood (ML) decoder. This decoder finds the x ∈ C
for a given output y ∈ Y that maximizes PY |X(y|x), i.e.,

x̂ML(y) = argmax
x∈C

PY |X(y|x).

This decoder can be more convenient, since a channel is often defined by the PY |X , but it does not always
minimize the probability of error. The next proposition from Richardson and Urbanke [5] shows the relation
between the MAP decoder and the ML decoder.

Proposition 2.21. When all codewords are equally likely to be send, i.e., if PX is uniform, then the MAP
decoder and the ML decoder are equal.

Proof. We write out the definition of the MAP decoder and use Bayes’ theorem to see

x̂MAP (y) = argmax
x∈C

PX|Y (x|y)

= argmax
x∈C

PY |X(y|x)PX(x)

PY (y)
(Bayes’ theorem)

= argmax
x∈C

PY |X(y|x)PX(x) (PY (y) can be seen as a constant)

= argmax
x∈C

PY |X(y|x) (PX is uniform)

= x̂ML(y).

We can find the optimal decoder by searching through all codewords to look for the one that maximizes
PX|Y (x|y), but this takes exponential time, since there are |C| = 2k codewords. Berlekamp, McElice and van
Tilburg show that optimal decoding of linear block codes is generally an NP-complete problem [13]. However,
this doesn’t mean that there are no suitable decoding algorithms. There exist efficient algorithms for certain
subclasses of codes. MAP decoding on the BEC can be for example solved in polynomial time in the length
of the code [14]. For the repetition code on the BSC we can use the majority logic decoding algorithm below.
In Chapter 4 we deal with MAP decoding for LDPC codes.

Majority logic decoding is a method to decode repetition codes. It decodes a received codeword by taking
the majority vote of multiple candidate codewords to determine the most likely correct bit values. Suppose
we are using the k-repetition code to send information over the BSC with parameter p < 1/2. Assume for
simplicity that k is odd. If we want to transmit the message x then the input of the channel is the k-tuple
x, . . . , x. Let y1, . . . , yk be the output. It is easy to see that the MAP decoder then is defined by the majority
rule

x̂MAP (y1, . . . , yk) = majority of {y1, . . . , yk}.
This gives the following probability of error

Pb = P{x̂MAP (y) ̸= x} = P{at least ⌈k/2⌉ errors occur} =
∑

i>k/2

(
k

i

)
pi(1− p)k−i.

The MAP decoder depends strongly on the code and thus we should design an algorithm based on the
specific code we want to use. As for general codes, the MAP decoding of an LDPC code on the BSC is
an NP-complete problem [5]. In Chapter 4 of this thesis, we will discuss a decoding algorithm that has a
performance close to the MAP decoder, but can be executed in polynomial time.

3 ENCODING LDPC CODES 14

3 Encoding LDPC codes

In this chapter, we delve into the encoding of LDPC codes, a crucial process in the transmission of digital
data over communication channels. Encoding is the process of converting a message into codewords, making
it suitable for transmission over a noisy channel. While research on LDPC codes has primarily focused on
decoding, encoding is equally, if not more, important when time complexity is considered. Unfortunately,
for most LDPC codes, linear time encoding remains an unsolved problem to this day. The most significant
contribution is that of Richardson and Urbanke [4] from 2001. They show that LDPC codes can be encoded
in almost linear time, meaning that the constant of the quadratic term can be made quite small, so that
for large block lengths encoding is still quite practical. For codes which allow transmission at rates close to
capacity, linear time encoding is even possible [4].

There is a simple approach for encoding LDPC codes. A generator matrix can be obtained via the systemic
form of the parity-check matrixH, as indicated in Section 2.1. This approach requires an encoding complexity
of O(n2), since the generator matrix G obtained through Gaussian elimination will be in general not a sparse
matrix, and thus multiplying with this matrix has complexity O(n2). We will present another method, where
the codeword is generated directly from the parity-check matrix. Additionally, we discuss an algorithm
suggested by Richardson and Urbanke [4], where the approximate upper triangular form of the parity-check
matrix H is used, and we show that this reduces the complexity significantly.

3.1 Encoding via backward substitution

Considering that LDPC codes are usually defined by their parity-check matrix, a method that is using solely
the parity-check matrix could be beneficial. By definition, all codewords satisfy

HcT = 0. (3.1)

A straightforward way would be to bring H into an equivalent upper triangular form. We can split our
codeword c of length n into a message part m of length k and a parity part p of length n − k, such that
c = (p,m). Matrix H can be similarly split into a square n − k × n − k upper triangular matrix Hp and a
n − k × k matrix Hm. To encode a message m we fill the message part of the codeword with the desired
information symbols m and determine the other n − k symbols of the parity part p by using backward
substitution. Since we work with the binary field, Equation 3.1 becomes[

Hp Hm

] [pT
mT

]
= 0

Hpp
T +HmmT = 0

Hpp
T = HmmT

pT = H−1
p HmmT

Calculating the inverse of a square matrix is generally O(n3), but since H is in upper triangular form, we
can use backward to solve this last equation. More exact, we can compute each pi for all i, 1 ≤ i ≤ n − k,
with the following equation

pi =

n−k∑
j=i+1

Hi,jpj +

k∑
j=1

Hi,j+n−kmj .

To analyse the complexity of this algorithm we can distinguish two parts of the encoding algorithm. First,
we have the preprocessing step, where we can do all calculations that are not dependent of the message m we
want to encode. In this construction the preprocessing step consists of bringing H into its equivalent upper
triangular form. The complexity of this part is O(n3) since Gaussian elimination is used. The second part is
the actual encoding of the message. This can be done with backward substitution and thus has a complexity
of O(n2).

The preprocessing step is used only once, whereas the encoding step is used repeatedly for every message.
Since H is no longer sparse after putting it is its equivalent upper triangular form, efficiency is lost and we

3 ENCODING LDPC CODES 15

wonder if encoding can be accomplished in linear time. The algorithm of Richardson and Urbanke [4] does
not use Gaussian elimination, but solely relies on row and column permutations to put H into an approximate
triangular form. This preserves the sparseness of H and thus makes the encoding step more efficient.

3.2 Encoding via approximate lower triangular parity-check matrices

The method of Richardson and Urbanke [4] to encode LDPC codes consists of two steps. A preprocessing
step and an encoding step. In the first step the parity-check matrix H is brought into an approximate upper
triangular form using only row and column permutations. The second step is the actual encoding step, where
we use the matrix of the previous step to encode a message.

In the first step row and column permutations are used to get H in the following form

where T is a square upper triangular matrix. The dimensions of the submatrices are as indicated. We call
this form the approximate upper triangular form. Observe that H is still sparse, since we used only row and
column permutations. The aim is to get T to get as large as possible, because if T has dimension n−k×n−k
we have succeeded in finding an encoding algorithm with complexity O(n), since we can use back substitution
with a sparse matrix. However, in general this is not the case, and we need to proceed with the following
steps. The height of the matrices E,C,D is called the gap g. This parameter measures the ‘distance’ of H
from an upper triangular decomposition. We want to minimize the gap to get the dimensions of T as close
as possible to n − k. An efficient algorithm to bring H in this form with a minimized gap can be found in
[4]. If the gap is of size O(

√
n) then encoding can still be done in linear time [4].

Assuming that we have brought our H into this approximate upper triangular form, we can continue with
the second part of this preprocessing step by multiplying H from the left side with the matrix[

I 0
−ET−1 I

]
which yields [

T A B
0 C − ET−1A D − ET−1B

]
.

As in the first step of Gaussian elimination, we have successfully eliminated the matrix E by this premulti-
plication step. The codeword c = (p,m) is further broken down into c = (p1, p2,m), where p1 is of length
n− k − g and p2 of length g. Now the equation HxT = 0T can be split in two equations, namely

TpT1 +ApT2 +BmT = 0, (3.2)

(C − ET−1A)pT2 + (D − ET−1B)mT = 0. (3.3)

3 ENCODING LDPC CODES 16

We define ϕ = C −ET−1A and assume that ϕ is invertible. If not, we have to permutate columns of H such
that ϕ becomes invertible, as explained by Richardson and Urbanke [4]. Equation 3.3 can then be turned
into

pT2 = ϕ−1(D − ET−1B)mT .

Hence, if we precompute the g×g matrix ϕ−1, we can determine p2 by solving this equation directly, following
the steps as in Table 1. Most steps have complexity O(n), because the matrices B,D,E, T are sparse and
T is upper triangular. The last step has a complexity of O(g2), since ϕ is a g × g matrix and in general not
sparse. The overall complexity for computing p2 is thus O(n+ g2).

We can find p1 using the operations in Table 2. Each step has complexity O(n), the matrices A and B are
sparse (having O(n) non-zero elements) so we can multiply with these matrices in linear time O(n). More-
over, because T is sparse and upper triangular, we can use back substitution, also having a complexity of
O(n). Thus, with these steps we can compute p1 with a total complexity of O(n).

We conclude that the overall complexity of this algorithm is O(n + g2). In general, the coefficient of the
quadratic term is typically small, which implies that encoding can still be manageable for large block lengths,
even if it is not linear, as long as the value of g is sufficiently small. A summary of the two steps of the
algorithm, both the preprocessing part and the encoding part can be found respectively in Algorithm 1 and
Algorithm 2.

Operation Comment Complexity
BmT Multiplication by sparse matrix O(n)
T−1[BmT] T−1[BmT] = yT ⇐⇒ [BmT] = TyT O(n)
−E[T−1BmT] Multiplication by sparse matrix O(n)
DmT Multiplication by sparse matrix O(n)
[DmT]− [ET−1BmT] Subtraction O(n)
−ϕ−1[DsT − ET−1BmT] Multiplication by dense g × g matrix O(g2)

Table 1: Efficient computation of pT2 = −ϕ−1(DsT − ET−1BmT) [4].

Operation Comment Complexity
ApT2 Multiplication by sparse matrix O(n)
BmT Multiplication by sparse matrix O(n)
[ApT2] + [BmT] Addition O(n)
−T−1[ApT2 +BmT] −T−1[ApT2 +BmT] = yT ⇐⇒ −[ApT2 +BmT] = TyT O(n)

Table 2: Efficient computation of pT1 = −T−1(ApT2 +BmT) [4].

3 ENCODING LDPC CODES 17

Algorithm 1 Preprocessing step for encoding LDPC codes

Input: A non-singular parity-check matrix H

Output: An equivalent parity-check matrix of the form

[
T A B
E C D

]
such that ϕ = C − ET−1A is non-

singular and the matrix ϕ−1.
1: Perform row and column permutations to bring the parity-check matrix H into approximate upper

triangular form

H =

[
T A B
E C D

]
,

with as small a gap g as possible.
2: Use Gaussian elimination to perform the premultiplication[

I 0
−ET−1 I

] [
T A B
E C D

]
=

[
T A B
0 C − ET−1A D − ET−1B

]
.

Check that ϕ = C−ET−1A is non-singular - perform further column permutations if necessary to ensure
this property.

Algorithm 2 Encoding step for encoding LDPC codes

Input: Parity-check matrix of the form

[
T A B
E C D

]
such that ϕ = C − ET−1A is non-singular, ϕ−1 and a

vector m ∈ Fk.
Output: The vector c = (p1, p2,m), p1 ∈ Fn−k−g and p2 ∈ Fg, such that HxT = 0T .
1: Determine p1 as shown in Table 2.
2: Determine p2 as shown in Table 1.

4 DECODING LDPC CODES 18

4 Decoding LDPC codes

When Gallager introduced LDPC codes in his work [2], he also suggested a decoding algorithm. Decoding
LDPC codes is a critical process in the reliable and efficient transmission of digital data over communication
channels. A decoder attempts to recover the original message from a corrupted codeword. Gallager’s decod-
ing algorithm is known under different names, depending on the context: the belief propagation algorithm,
the sum-product algorithm, the message passing algorithm and many more. This last name is not really
precise, since the algorithm is actually an instance of a message passing algorithm. We will refer to the
algorithm as the belief propagation (BP) algorithm. This is an iterative algorithm that is used to compute
approximate marginal probabilities for variables in a graphical model. When decoding LDPC codes, this
graphical model is the Tanner graph of the code. The algorithm operates by passing messages between nodes
of the graph, which represent the variables in the model. These messages contain a belief about what the
values of the variable bits are, in the form of a probability.

Despite the fact that there are many decoding algorithms, the BP algorithm is often preferred [15]. It
is relatively simple and in linear time it comes closest to an optimal decoder in terms of error correcting
performance [16]. For that reason we stick solely to the BP algorithm in this chapter. We will start with
presenting the main idea of messages passing algorithms on the basis of a simple counting problem. We then
introduce the BP algorithm and try to optimize it.

4.1 Message Passing Algorithms

We will illustrate the main idea of message passing algorithms with an example. One of the simplest examples
where a message passing algorithm can be used, is the soldier counting problem, where the goal is to count
the number of soldiers in a group [17]. This is done by sending messages between themselves. Suppose the
soldiers are standing on a line in dense fog, and they can only communicate with the persons directly next
to them.

The following rules cause each soldier to know the total number of soldier in the row.

1. Firstly, if you are a soldier standing at one of the ends of the line, you say the number 1 to the soldier
next to you.

2. Then, if a soldier next to you tells you a number, you add 1 to it and tell the soldier on the other side
the new number.

With these rules, all soldiers end up knowing how many soldiers there are, as they can compute this number
by adding 1 to the sum of the messages they received from their direct neighbours.

1 2 3 4 5

5 4 3 2 1

Now, suppose that the soldiers are not standing in a line, but in a structure as in the graph in Figure 5.
The algorithm works similar, but we have to slightly adjust the rules, since now a soldier can have more than
two neighbours.

1. The process starts at the leaves of the graph, these are the nodes with exactly one connected edge, where
the soldiers with only one neighbour stand. These soldiers tell the number 1 to their only neighbour.

4 DECODING LDPC CODES 19

2. All soldiers count the number of neighbours N .

3. The soldiers keep track of the number of messages they have received from their neighbours. They
denote the message they receive from neighbour i by vi.

4. When they have received N−1 messages, they identify the neighbour who has not sent them a message
yet and tell this neighbour the number which they get by adding 1 to the sum of the messages they got
from the other neighbours.

5. If a soldier has received N messages, he knows that the total number of soldiers is 1 + V , where
V :=

∑N
i=1 vi. He sends neighbour n the number V +1−vn, if this is not done yet. After all, neighbour

n already knows vn, so you subtract it from the total number of soldiers before you send it.

Figure 5: A graph that represents the structure of a group of soldiers

Figure 6 shows the different steps of this algorithm on the graph from Figure 5. The leaves are the only
nodes that can send a message without receiving one, so the flow starts at the leaves and moves inward. The
center node is the first to receive messages from all its neighbours. In the next iteration it sends messages
to all its neighbours, reversing the flow of messages from the center towards the leaves. At the end of the
process, every node has received messages from all its neighbours.

11

1

1 1 1

(a) Step 1

2

4
2

(b) Step 2

7 3

(c) Step 3

5 9

11

(d) Step 4

10

8

10

(e) Step 5

1111

11

11 11 11

(f) Step 6

Figure 6: An example of a message passing algorithm for the soldier counting problem on a tree. After the
last iterations all soldiers know there are, including themselves, 12 soldiers.

4 DECODING LDPC CODES 20

This algorithm sends two messages along each edge, so the total number of messages is twice the number
of edges. Note that the graph in Figure 6 is a tree, since it does not contain any cycles. Recall that a tree
with n nodes has n − 1 edges, so in this case we need to send 2(n − 1) messages when we want to count n
soldiers. Furthermore, it is easy to see that the number of steps is equal to the diameter of the graph, which
is defined as the length of the shortest path between the most distanced nodes.

Now for the last case, suppose that the soldiers are standing in the structure as indicated in Figure 7, where
the graph contains a cycle. If we want to apply our algorithm on this graph we do not get the same required
result. According to the rules as stated above, soldiers 3, 4, 6, 7, 8 and 9 will never receive enough messages
to send any messages. This is because they are in a cycle together. As soon as a message reaches the cycle,
it cannot continue. Hence this algorithm fails on this graph and we conclude that is can only be successful
on a tree. In the remainder of this chapter we will consider a specific message passing algorithm and explore
the significance of cycles in graphs.

1
2

3

4
5

6

7
89

10 11 12

Figure 7: Graph with a cycle

4.2 Belief propagation

Belief propagation (BP) is an iterative decoding algorithm that uses the structure of the Tanner graph. In
each iteration, messages are passed along the edges of the Tanner graph. First, variable nodes send a mes-
sage to all the check nodes they are connected to, followed by the check nodes that send a message to their
adjacent variable nodes. After receiving all messages, variable and check nodes undergo an updating process
where they compute their new messages. Generally, these messages are different for every neighbour.

Each variable node in the Tanner graph represents one bit of the channel input x. We say that a variable
node vi ‘is in state’ 0 if xi, the ith bit of x, equals 0. The decoding algorithm has as input the received
corrupted codeword y and tries to recover all bits of x, i.e., tries to identify the states of the variable nodes.
The messages in the BP algorithm contain a ‘belief’ about what states of the variable nodes are. It often
takes the form of a probability. Suppose that there are n possible states, then a message is a n-dimensional
vector, where each entry contains the probability of being in that specific state. We need the entries to sum
up to 1. Since we primarily look at binary fields in this thesis, we will for now assume that a message is a
2-dimensional vector. We denote the message that is send from variable node vi to check node cj by ui→j

and the message from check node cj to variable node vi by wj→i.

Instead of viewing the input in its binary representation 0 and 1, it can be more convenient to consider
the two field elements as either 1 or −1. The field F2 is a commutative group under addition, and the set
{−1,+1} is a commutative group under multiplication. We use the standard mapping of 0 to 1 and 1 to −1.
This notation is often more convenient, but we may switch between the two notations. The messages send
over the edges are as following in this new notation

ui→j = [ui→j(+1), ui→j(−1)]

wj→i = [wj→i(+1), wj→i(−1)],

4 DECODING LDPC CODES 21

where ui→j(x) represents the probability that xi = x, given the channel output y and the information passed
to vi from all adjacent check nodes except cj . We call this extrinsic information because the message from
check node cj to variable node vi is excluded and is not used to calculate ui→j , as in the soldier counting
problem. Similarly, wj→i(x) denotes the probability of check node cj being satisfied, given xi = x and the
probability distributions of the other variable nodes connected to cj as indicated by the messages they have
sent to cj .

The algorithm consist of four steps. First we initialize the algorithm, where the channel output is used. Next,
we proceed in iterations, which contains two steps: a variable node update step and a check node update step.
In each iteration all the check nodes process their incoming messages and compute their outgoing messages
and, subsequently, the variable nodes process their incoming messages and compute their outgoing messages.
Lastly, there is the termination step where we check if we have successfully completed the algorithm, and if
not, we return to the second step, the variable node update step.

1. Initialization
To initialize the algorithm, the channel output y is used to compute the messages from the variable
nodes to the check nodes, since we have no other information to base it on. The input bits, and thus
the output bits, are all independent and to compute ui→j we only need yi

ui→j = [PX|Y (+1|yi),PX|Y (−1|yi)].

Observe that these messages are independent of j. We set li equal to the channel information,
[PX|Y (+1|yi),PX|Y (−1|yi)] for every i. To conclude the initialization, the variable nodes broadcast
their messages.

To determine the rules for the update steps, we will use the bit-wise maximum a posteriori (MAP) decoder

x̂i
MAP (y) = argmax

xi∈{±1}
P(xi|y).

This decoder similar to the one we have seen in Section 2.4, but now we check which bit maximizes the
probability. Under the assumption that the codewords are equiprobable, the rule reads

x̂i
MAP (y) = argmax

xi∈{±1}
P(xi|y)

= argmax
xi∈{±1}

∑
z∈Fn
zi=xi

P(z|y)

= argmax
xi∈{±1}

∑
z∈Fn
zi=xi

P(y|z)P(z)

= argmax
xi∈{±1}

∑
z∈Fn
zi=xi

∏
j

P(yj |zj)1x∈C . (4.1)

We often write
∑

∼xi
when taking the summation over all variables except xi. A brute force approach can

again be used for the optimal decoder, but this requires O(2n) operations, making calculations for big n
impossible. So another, polynomial, method is used, where we assume the independence of the received
messages.

2. Check node update rule
A check node receives messages from the adjacent variable nodes, each containing probabilities about
the state the variable nodes think they are in. The message sent from a check node cj to a variable
node vi indicates the probability that this check node is satisfied. The message wj→i(x) contains this
probability that check node cj is fulfilled given that vj is in state x. Hence using the independence
assumption and (4.1) we see that this message is the product of all feasible options of the incoming
messages, except the message from the variable node it is sending a message to.

4 DECODING LDPC CODES 22

Recall that N(v) represents the neighbourhood of a node v in a graph, i.e., it contains all nodes which
are connected to v by an edge. Let d be the degree the check node. The rule states

wj→i(x) =
∑
∼x

fi(x, x1, . . . , xd)
∏

vh∈N(cj)

h̸=i

uh→j(xh),

where

fi(x, x1, . . . , xd) =

{
1 if x1 · · ·xi−1xi+1 · · ·xd = x

0 otherwise,

tells us which options are feasible. These options ensure that the parity check constraint is not violated.

We want the probabilities in each message to add up to 1 to keep the probabilities normalized. Since∑
∼x fi(−1, x1, . . . , xd) +

∑
∼x fi(+1, x1, . . . , xd) = 1 this property will be retained. An example of this rule

is illustrated in Figure 8.

cj

u
1→

j
w

j→
1

u2→j

u3→j

u 4
→
j

Figure 8: Check node cj receives messages from its adjacent variable nodes. Message wj→1 is sent from cj
to v1. The message u1→j from variable node v1 is not used in the calculation of message wj→1.

In Figure 8 we see that check node cj is connected to variable nodes v1, v2, v3 and v4. The message wj→1

from cj to v1 can be computed as

wj→1(+1) = u2→j(+1)u3→j(+1)u4→j(+1) + u2→j(+1)u3→j(−1)u4→j(−1)

+ u2→j(−1)u3→j(+1)u4→j(−1) + u2→j(−1)u3→j(−1)u4→j(+1)

wj→1(−1) = u2→j(−1)u3→j(−1)u4→j(−1) + u2→j(−1)u3→j(+1)u4→j(+1)

+ u2→j(+1)u3→j(−1)u4→j(+1) + u2→j(+1)u3→j(+1)u4→j(−1).

3. Variable node update rule
The messages sent by variable nodes contain a belief of the state the variable nodes are in. Assuming
that the messages the variable node receives from its adjacent check nodes are independent, we can
simply multiply the probabilities of the incoming messages

PX|Y (x|y1, . . . , yn) = PX|Y (x|y1) · · ·PX|Y (x|yn).

The message sent from a variable node vi on an edge to a check node cj is the product of probabilities
of the incoming messages, including the channel output and without the message received from the
check node cj , i.e.,

ui→j(x) ∝ li
∏

ck∈N(vi),
k ̸=j

wk→i(x).

We use the proportion symbol ∝ to show that we still need to scale this probability to make sure that
ui→j(+1) + ui→j(−1) = 1. Figure 9 displays an example of this rule.

4 DECODING LDPC CODES 23

vi

w 1→
i

w2→i

ui→3w
3→i

w
4→

i

li

Figure 9: Suppose a variable node vi is connected to check nodes c1, c2, c3 and c4. The message ui→3

from variable node vi to check node c3 is computed by ui→3(+1) = li(+1)w1→i(+1)w2→i(+1)w4→i(+1) and
ui→3(−1) = li(−1)w1→i(−1)w2→i(−1)w4→i(−1).

4. Termination
After each iteration, containing two update steps, we check if the stopping criteria has been met, i.e.,
if we restored the codeword. To achieve this, we look at the current ‘belief’ of the codeword x. The
belief bi of a variable node vi is a two dimensional vector which contains the probabilities bi(+1) and
bi(−1), where

bi(x) ∝ li
∏

cj∈N(vi)

wj→i(x),

such that the entries of bi add up to 1. We terminate the algorithm if we have found a codeword, that
is when the codeword x satisfies HxT = 0, or if we have reached a maximum number of iterations. As
long as this maximum is not reached, we check after each iteration if our current guess x̂ is a codeword.
Let x̂i be our guess for xi, defined by the state with the highest probability, i.e.,

x̂i =

{
+1 if bi(+1) ≥ 0.5,

−1 otherwise.

We can check if x̂ = [x̂1, . . . , x̂n] is a codeword by testing if the equation Hx̂T = 0 holds. If x̂ satisfies
this condition we have found our codeword and our decoding algorithm is terminated. If not, the
algorithm continues with another iteration.

4.3 Log-likelihood ratio

In the BP algorithm above, messages are vectors of length two. However, since we require that the en-
tries sum up to 1, it would be enough to send only one entry. So instead of the whole message ui→j =
[ui→j(+1), ui→j(−1)] we could just send ui→j(+1), ui→j(−1), the difference between the two or simply the
ratio. Gallager used the last option, or to be more specific, the logarithm of the ratio, to further simplify the
BP algorithm [2].

Definition 4.1. We define the log-likelihood ratio (LLR) of a binary random variable X as

L(X) := ln

(
PX(+1)

PX(−1)

)
.

Similar, the channel-transition LLR, where X is the binary channel input and Y the channel output is defined
as

L(Y |X) := ln

(PY |X(y|+ 1)

PY |X(y| − 1)

)
.

We have observed that in the BP algorithm, the messages need to be normalized after each updating step to
keep it a normalized probability distribution. The LLR can optimize the algorithm because it makes this step

4 DECODING LDPC CODES 24

unnecessary. Furthermore, because of the properties of the logarithm, multiplications turn into additions and
thus the complexity is reduced. Hence, using LLRs is a convenient way of sending messages.

Observe that when the probability distribution of X is uniform, i.e., when PX(+1) = PX(−1) = 1
2 , the LLR

of X will be 0. Moreover, we see that if PX(+1) > PX(−1), then L(X) > 0 and if PX(+1) < PX(−1), then
L(X) < 0. Hence, we see that the sign of a LLR indicates the most probable binary value

sign(L(X)) = argmax
b∈{−1,+1}

PX(b).

The magnitude of the LLR of X, |L(X)|, indicates how reliable the decision on the binary value based on
the sign is.

To recover probabilities from a LLR L(X), an inversion function is needed. It is simple to verify that the
following functions accomplish this.

PX(+1) =
eL(X)

1 + eL(X)

PX(−1) =
1

1 + eL(X)
.

(4.2)

With the concept of the LLR we can update the algorithm to make it more efficient. For the variable nodes
we use the following computation to see that the update rule simply consist of taking the sum of the received
messages, excluding the check node we are sending the message to.

L(xi|y) = ln

(
PX(+1|y1, . . . , yn)
PX(−1|y1 · · · yn)

)
= ln

(
PX(+1|y1) · · ·PX(+1|yn)
PX(−1|y1) · · ·PX(−1|yn)

)
= ln

(
PX(+1|y1)
PX(−1|y1)

· · · PX(+1|yn)
PX(−1|yn)

)
= ln

(
PX(+1|y1)
PX(−1|y1)

)
+ · · ·+ ln

(
PX(+1|yn)
PX(−1|yn)

)
The new rules for the initialization step and the terminal step are very straightforward. However, the changes
in the update rule of the check nodes are less self-evident, but later on we will give a justification how this
is originated. The optimized algorithm consists of the following steps:

1. Initialization step

L(ui→j) = L̃i,

L̃i : = ln

(
PX(+1|yi)
PX(−1|yi)

)
.

2. Variable node update rule

L(ui→j) = L̃i +
∑

ck∈N(vi),
k ̸=j

L(wk→i).

3. Check node update rule

L(wj→i) = 2 tanh−1

 ∏
ck∈N(cj)

k ̸=j

tanh

(
L(uh→j)

2

)
4. Termination After each iteration we compute the LLR of the total belief by

L(bi) = L̃i +
∑

cj∈N(vi)

L(wj→i).

4 DECODING LDPC CODES 25

Then, we let the guess xi for the ith bit of x be

x̂i =

{
+1 if L(bi) ≥ 0,

−1 otherwise.

Now we need to check if Hx̂T = 0. If so, we have found a codeword and we can terminate the algorithm.
Otherwise we continue with iterations, consisting of steps 2 and 3, until we have found a codeword or
the maximum number of iterations is reached.

The following lemma from Gallager [2] will help use clarify the check node update rule.

Lemma 4.2. Consider a sequence of m independent binary digits in which the lth digit is a 1 with probability
Pl. The the probability that an even number of digits are 1 is

1 +
∏m

l=1(1− 2Pl)

2
.

Proof. Consider the function

f(t) =

m∏
l=1

(1− Pl + Plt).

Expanding this function into a polynomial gives

f(t) = (1− P1) · · · (1− Pm)

+ [P1(1− P2) · · · (1− Pm) + (1− P1)P2(1− P3) · · · (1− Pm) + · · ·+ (1− P1)(1− P2) · · · (1− Pm−1)Pm] t

+ [P1P2(1− P3) · · · (1− Pm) + . . .]t2 +

Observe that the coefficient of ti is the probability of having i 1’s. The function

g(t) =

m∏
l=1

(1− Pl − Plt)

is identical to f(t) except for the odd powers of t as those are negative. Therefore, adding f(t) and g(t) will
cancel the odd powers out and double the even terms. Hence 1

2 (f(1)+ g(1)) equals the probability of having
an even number of 1’s. And because

1

2
(f(1) + g(1)) =

∏m
l=1(1− Pl + Pl) +

∏m
l=1(1− Pl − Pl)

2
=

1 +
∏m

l=1(1− 2Pl)

2

we got the required result.

This lemma uses binary digits, i.e., bits, so the results are in F2. When we translate this to the field where
we use {−1,+1} the lemma gives us the probability of an even number of −1’s in a sequence. Furthermore,
it tells us the probability that the product of the elements in the sequence equals 1.

We can translate the requirement for the check nodes to the field {−1,+1} to see that the following equations
are equivalent

x1 ⊕ · · · ⊕ xn = 0

x1 · · ·xn = 1

x1 = x2 · · ·xn.

4 DECODING LDPC CODES 26

Thus, if we want to find the probability that xi equals −1, we can look at the probability that the product
of the others equals −1. Therefore

PX(xi = −1) = PX

∏
j ̸=i

xj = −1

= 1− PX

∏
j ̸=i

xj = 1

= 1− P(There are an even number of xj ’s equal to -1)

= 1−
1 +

∏
j ̸=i(1− 2PX(xj = 1))

2
(Gallager’s lemma)

=
1−

∏
j ̸=i(1− 2PX(xj = 1))

2
.

Rewriting this statement gives us

1− 2PX(xi = −1) =
∏
j ̸=i

1− 2PX(xj = 1). (4.3)

Now, using the inversion function of (4.2) we can express the this probability using the following notion

1− 2PX(−1) = 1− 1

1 + eL(X)
=

eL(X) − 1

eL(X) + 1
= tanh

(
L(X)

2

)
. (4.4)

To conclude, combining (4.3) and (4.4) gives

tanh

(
L(xi)

2

)
=

∏
j ̸=i

tanh
(xj

2

)

L(xi) = 2 tanh−1

∏
j ̸=i

tanh
(xj

2

) ,

explaining the rule.

4 DECODING LDPC CODES 27

4.4 Belief Propagation on the BEC

In this section we will explore the Belief Propagation (BP) algorithm on the Binary Erasure Channel (BEC).
Recall that the BEC is an erasure channel, it models situations where information may be lost, but is never
corrupted. We can use the BP algorithm of Section 4.3 to decode codes that are send over the BEC. Since
this channel is excessively simplified, the algorithm can be described with some simple rules. We can use the
LLRs as messages, but since the LLR can only be equal to −∞,∞ or 0, it can be done more efficient. Instead
messages simply contain a 0, a 1 or the erasure symbol ‘?’. We furthermore investigate in this section when
this decoding algorithm is exact and which problems can occur.

We simplify the rules from Section 4.2 for the BEC and obtain the following rules

1. Initialise
Initialize all n variable nodes with the received value yi.
Each variable node broadcast their value over all connected edges to the check nodes.

2. Check nodes updates
Check nodes compute the messages for each of their neighbours. If all incoming edges from the other
nodes are not erased, the check node computes the outgoing message on this edge as the sum of all
other incoming messages. Otherwise the check node declares the message as an erasure and sends the
erasure symbol.

3. Variable nodes updates
The variable nodes compute their messages for each neighbour. If all incoming edges from the other
neighbours are erased, output erasure. Otherwise broadcast the received non-erased value to this edge.

4. Termination
If all variable nodes are recovered, stop the algorithm. Otherwise go to step 3.

It is clear that if this algorithm returns a codeword, it is the correct one. We will illustrate the algorithm
using the [7, 4]-Hamming code from Example 2.13.

Example 4.3. Let C be the [7, 4]-Hamming code and assume we use the BEC. The Tanner graph associ-
ated with this code can be found below. Suppose we receive the message y =

[
0 ? 0 ? 1 ? 1

]
from

the channel. We want to decode this message and find the codeword x̂ such that PY |X(y|x̂) is maximized.
Following the steps from the algorithm above, Figure 10 shows how the algorithm operates on this decod-
ing problem. To simplify matters, we denote the messages over the edges containing a 0 by a green line,
containing a 1 by a blue line and the erasure messages are red. We see that the algorithm terminates with
x̂ =

[
0 1 0 1 1 0 1

]
. It turns out that PY |X(y|x̂) = 1 for this x̂ so we know we restored the original

message.

v1

v2

v3

v4

v5

v6

v7

c3

c2

c1

△

4 DECODING LDPC CODES 28

y

0

?

0

?

1

?

1

x̂

0

?

0

?

1

?

1

(a) Step 1: Initialize all variable
nodes with the received value.
Each variable node broadcast
their value

y

0

?

0

?

1

?

1

x̂

0

?

0

?

1

?

1

(b) Step 2: Process check
nodes. We see that the only
non-erasure messages can be
send from c1 to v2 and from c3
to v4. These equal the sum of
the other incoming messages of
the check node.

y

0

?

0

?

1

?

1

x̂

0

1

0

1

1

?

1

(c) Step 3: Process variable
nodes. Variable nodes v2 and
v4 now know there value and
can send it to their other neigh-
bours. Not all variable nodes
are recovered, so we go back to
step 2.

y

0

?

0

?

1

?

1

x̂

0

1

0

1

1

0

1

(d) Step 2: Check nodes com-
pute their messages and send
them back.

y

0

?

0

?

1

?

1

x̂

0

1

0

1

1

0

1

(e) Step 3: Now all variable
nodes are recovered.

y

0

?

0

?

1

?

1

x̂

0

1

0

1

1

0

1

(f) Step 4: All variable nodes
are recovered and we check
that indeed Hx̂T = 0.

Figure 10: Step by step Belief Propagation decoding algorithm of the [7, 4]-Hamming code on the BEC.

4 DECODING LDPC CODES 29

Example 4.4. Let C be the [7, 4]-Hamming code used over the BEC again. Now, suppose that some other
values are erased and we receive y =

[
? 1 ? ? 0 0 1

]
. We follow the same steps as described in the

algorithm, as shown in Figure 11. However, in step 2, when the check nodes compute their messages, we see
that the only messages that are sent from the check nodes are erasure messages. This is because after the
first step each check node has at least two incoming error messages. The algorithm does not fail to find a
solution because there is none. There is an unique solution for this decoding problem and it can be found by
solving the following equations

v1 ⊕ v3 = 1

v1 ⊕ v3 ⊕ v4 = 1

v3 ⊕ v4 = 1.

From this set of equations we can see that v1 = 0, v3 = 1, v4 = 0 is an unique solution. This indicates that
the massage passing decoding algorithm cannot always find the optimal solution. △

y

?

1

?

?

0

0

1

x̂

?

1

?

?

0

0

1

(a) Step 1: Initialization.
Variable nodes broadcast their
value.

y

?

1

?

?

0

0

1

x̂

?

1

?

?

0

0

1

(b) Step 2: Check nodes com-
pute their messages, here all
messages are erasure messages.

Figure 11: An example of an erasure decoding problem where the algorithm is ineffective.

The reason why the algorithm cannot continue is because each check node is connected to at least two
variable nodes whose value is erased. To have a better understanding when the algorithm succeeds, we
introduce stopping sets.

Definition 4.5 (Stopping set). Let G(H) be a Tanner graph and V be the set of variable nodes in G(H).
A stopping set S is a subset of V , such that all neighbours of S are connected to S at least twice.

In Figure 11 we see that S = {v1, v2, v4} is a stopping set. Observe that from the definition we can conclude
that the empty set and the support set (the indices of the non-zero elements) of any codeword are stopping
sets. However, a stopping set need not be the support of a codeword. For example, {v2, v3, v4} is a stopping
set, but [0, 1, 1, 1, 0, 0, 0] which has as support {v2, v3, v4} is not a codeword. It is not hard to see that if S1

and S2 are both stopping sets, then so is S1 ∪ S2. This means that each subset of V contains an unique
maximum stopping set, which might be the empty set. The significance of stopping sets in the iterative
decoding of LDPC codes over the BEC is highlighted in the following lemma [7], with an adjusted proof.

4 DECODING LDPC CODES 30

Lemma 4.6. Let G be a generator matrix for an LDPC code over the BEC and let E denote the initial
subset of V which is erased by the channel after the transmission of a message. Then the set of erasures
which remain when the decoder stops is equal to the maximum stopping set contained in E.

Proof. Let S be the set of erasures which remain when the decoder stops. First, we need to show that S is
actually a stopping set, which can be achieved by assuming the exact opposite. In that case, there is a check
node, a neighbour of the set S, which is connected to S exactly once. But this means that we can use this
check node to recover the variable node it is connected to and this contradicts the fact that the decoder stops
with this set. Therefore S is a stopping set.
To show that it is the maximum stopping set, we first note that there is no difference between a maximal
stopping set and a maximum stopping set, since we have seen that the union of two stopping sets is again
a stopping set. Let us assume that there is a superset T ⊇ S in the set of erasures that is the maximum
stopping set. Since there is no way for the decoder to determine the variable nodes contained in T , each
neighbor of T has at least two connections to T according to the definition, and hence the decoder stops at
T . Therefore, this means that S = T and the set of erasures which remain when the decoder stops is equal
to the maximum stopping set contained in E .

Stopping sets are called like this because the decoder must stop the algorithm when having to restore these
sets. The presence of stopping sets determines the performance of a code over the BEC. Especially small
stopping sets influence the performance of LDPC codes [18], since it is more likely that all bits in the stopping
set are erased. Stopping sets illustrate the suboptimality of the BP decoder. A MAP decoder will fail if
and only if the set of erasures include the support set of a codeword, whereas the BP decoder is obstructed
by a bigger class, namely stopping sets. Every decoder will be unsuccessfully if the support of a codeword
is erased. However, since the minimal size of the support set of codewords is the minimum weight of all
non-zero codewords, it equals the minimum distance of the code. We can thus assume that for good codes
these stopping sets are quite large and thus do not have a large probability of being completely erased.
However, stopping sets can be in general very small and have high probability of full erasure. Thus, in order
to generate a good code, small stopping sets should be avoided to reduce the change of a decoding failure.

There exist several procedures for constructing codes without small stopping sets. This can either be done
during the construction of the code by avoiding small stopping sets, or by optimizing the code after it is
generated by removing small stopping sets. One attempt of removing stopping sets is adding redundant
rows to the parity-check matrix [19]. This is equivalent with adding check nodes to the Tanner graph and
connecting them with variable nodes. These redundant rows can for example be low weight redundant rows
that eliminate a large number of small-sized stopping sets. The addition of these redundant rows are com-
putationally inexpensive, but the code rate of the resulting LDPC codes will be reduced, since the number
of rows in the parity-check matrix increases. However, it cannot guarantee that stopping sets will be disrupted.

Other approaches include using constructing techniques that prevent the formation of stopping sets, such as
progressive edge growth (PEG) [20]. Moreover, graph covers can be used to remove stopping sets from existing
constructions [21]. In 2007, Rosnes and Ytrehus [22] introduced an exhaustive tree search algorithm to find
low weight stopping sets of LDPC codes. This algorithm can be used to remove stopping sets in existing codes.

While it is important to avoid stopping sets, it is not reasonable, and more importantly, necessary, to avoid
or remove every stopping set in a code [19]. Optimizing codes by removing all stopping sets can lead to
impractical and complex code designs. The previously discussed methods to avoid stopping sets come at cost
of the other properties of the code, such as the code length, the density of the code and even the capability of
correcting errors [23]. Milenkovic, Soljanin and Whiting found that many stopping sets include small cycles.
Hence, the probability of stopping sets is small in graphs without small cycles [24].

4 DECODING LDPC CODES 31

4.5 Codes with cycles

The Belief Propagation (BP) decoder is a MAP decoder for codes whose Tanner graph does not contain
cycles. This means that this decoder is exact on trees, i.e., graphs without cycles. This follows from the
independence assumption that was made during the construction of the algorithm, where we assumed the
independence of the neighbours of a node in the Tanner graph. Therefore, the probabilities could be separated

P(x|y1, . . . , yn) = P(x|y1) · · ·P(x|yn).

Since the neighbours of a node v in a tree are only connected via a path through v, this node v can assume
that the information it gets from its different neighbours is independent. This exactness of the BP decoder
can also be proved using factor graphs, as is done in [5].

From this point of view, it would be advantageous to construct codes without cycles. For these codes we have a
simple decoding algorithm that always finds the unique solution, if it exists. However, Etzion, Trachtenberg
and Vardy [25] show that binary codes with cycle-free Tanner graphs necessarily have a small minimum
distance. The next proposition, adjusted from [5], shows that for codes with a rate above a half, there are
a significant number of codewords of weight 2. This means that the minimum distance of this code is 2 and
hence these codes will have a higher error probability.

Proposition 4.7. Let C be a binary linear code of length n, dimension k and rate r > 1
2 that admits a

binary Tanner graph that is a forest. Then C contains at least (2r − 1)n codewords of weight 2.

Proof. The Tanner graph has n variable nodes and n−k = n− rn = (1− r)n check nodes. The total number
of nodes in V is thus n+ (1− r)n = (2− r)n. We know that a tree has exactly |V | − 1 nodes and thus this
Tanner graph has strictly less than |V | = (2− r)n edges. Since each edge is connected to exactly one variable
node, we have that the average degree dav of the variable node is less than 2− r. We call a node an internal
node when it is not a leaf node, so each internal variable node has degree ≥ 2. Suppose we have x variable
leaf nodes, then there are n− x internal variable nodes and we can use the average degree to see that

(2− r)n > ndav ≥ 2 · (n− x) + 1 · x = 2n− x,

and thus x > nr, which means that there are at least nr variable nodes that are leaf nodes.

We now ask ourselves how many pairs of nr leaf variable nodes can be made such that they are connected
to the same check node. These pairs can generate a codeword of weight 2 by setting these variable nodes
to 1 and the others to 0. We claim there are (2r − 1)n such pairs of variable leaf nodes. We consider two
cases. First we assume that every check node is connected to at least one leaf variable node. Since r > 1/2
we have more leaf variable nodes than check nodes. The remaining nr − (1 − r)n = (2r − 1)n leaf nodes
must be connected to a check node that is already connected to a leaf node, so for every of these remaining
leaf variable nodes we can make a pair with another leaf variable node. Therefore there are (2r−1)n such pairs.

In the second case we assume there are a ≥ 1 check nodes that are not connected to a leaf variable
node. We use the same argument as in the first case, now saying that there are (1 − r)n − a check nodes
connected to leaf variable nodes. Thus, after counting one variable node per check node, we still have
nr− ((1−r)n−a) = (2r−1)n+a leaf variable nodes. These are all connected to a check node that is already
connected to a leaf variable node so we can make at least (2r − 1)n+ a pairs.

In both cases C contains at least (2r − 1) codewords of weight 2.

This proposition only covered the case of codes with r > 1/2. For r > 2/3 Kozlik [26] shows that the bound

for the number of codewords of weight 2 can be extended to rn(2r−1)
2(1−r) . For the more complicated case where

r ≤ 1/2, Etzion, Trachtenberg, and Vardy show that the minimum distance is upper bounded by 2/r [25].

4 DECODING LDPC CODES 32

Despite the fact that the BP decoding algorithm works optimal on codes with cycle-free Tanner graphs, the
class of binary codes that satisfy this property is not powerful enough to perform well. This implies that
we need at least some cycles in the Tanner graph of our code. For smaller cycles, the dependence of the
neighbours is bigger than for larger cycles, since the nodes are connected with a shorter path. Codes whose
Tanner graph has no small cycles generally have a better performance [8]. The bigger the dependence, the
more problems can arise. When the girth is large, the estimates for the values of the variable node are
less dependent on the node’s contribution. Since creating Tanner graphs with a large girth also reduces the
number of stopping sets, we will analyse codes with large girth. We can adjust our BP decoder so that we
can also us it on Tanner graphs with cycles.

Applying the BP algorithm, as it is, on general graphs with loops, leads to several problems. However, we
can slightly adjust the algorithm and still use the, now called loopy, BP algorithm (LBP). The first problem
that we encounter is that the initial messages as defined before are not enough to start the whole process.
As seen in Section 4.1 the nodes in the cycle need extra information to send messages. LBP solves this by
starting the process with random initial messages and iterate according to the regular BP updating rules.
The aim is to reach a fixed point where the beliefs of the variable node lead to a codeword. The second
problem is that we assumed earlier in the algorithm that neighbours of a node are independent. However,
for nodes in a cycle we can no longer assume this. This problem is simply ignored in the LBP problem and
we pretend as if the messages of the neighbours are independent. This could lead to invalid results, but in
practice this is often not the case for graphs with a large girth. These graphs locally look like a tree and
thus the problem of dependency is limited [27]. In the next chapter we consider the construction of Tanner
graphs with a large girth.

5 CONSTRUCTION OF TANNER GRAPHS FOR LDPC CODES 33

5 Construction of Tanner graphs for LDPC codes

The focus of this chapter will be on constructing LDPC codes. There is not ‘one’ method of constructing
these codes as they can be created using various methods. The primary goals in code constructions are to
achieve high decoding performance and to have an easy hardware implementation, meaning that it is essen-
tial that the encoding and decoding must be simple to implement. To construct a code we need to know its
parameters, such as row and column weights, rate, girth and code length. The designing process of the code
determines these parameters.

One way of constructing LDPC codes is via a graph-based construction. In this constructing is first the
Tanner graph specified, and the the parity-check matrix is constructed based on this graph. Another method
uses a matrix-based construction, where the code is directly constructed via the parity-check matrix. The
choice of the construction method depends on the specific requirements and design criteria of the application.
In this chapter we will also focus on the problem of deciding the existence of a graph for some given parameters
as it is unknown whether there exist graphs with a specific set of parameters. This problem is exploded using
graphicality tests.

5.1 Regular LDPC codes with a large girth

Chapter 4 discusses why graphs with a high girth are favorable. In this chapter we look into constructing
these graphs without small cycles. We begin with addressing the construction of regular LDPC codes. Recall
that regular LDPC codes have a fixed column and row weight in their parity-check matrix. Constructing
regular LDPC codes can be done randomly, with unstructured connections between nodes in the Tanner
graph or rows and columns in the parity-check matrix. LDPC codes can also be constructed using a more
structured method, where there is a predefined way of connecting. Random constructions offer flexibility in
design and construction and often have a good performance, but are harder to optimize and decoding can
be difficult. On the other hand, structured constructions have a simple decoding algorithm and improved
performance, but are less flexible because of their complex design. For both constructions we will delve into
some of the methods for constructing graphs with a large girth.

Many algorithms for random construction are known. Note that the randomness in these algorithms is often
simulated by a computer. Therefore, the connections are actually pseudo-random. With the introduction
of LDPC codes, Gallager [2] also provided a construction of regular LDPC codes which is now called the
‘Gallager construction’. He constructed a (l, r)-regular LDPC code of length n and dimension k by creating
the n − k × n parity-check matrix H that consists of l smaller n−k

l × n submatrices H1, . . . ,Hl. Each row
of the submatrices contains l 1’s and each column a single 1. The matrix H1 contains in the ith row 1’s in
columns (i−1)l+1 to il, for 1 ≤ i ≤ (n−k)/l. The rest of the matrix consist of 0’s. H2, . . . ,Hl are generated
by taking pseudo-random column permutations of H1.

H =

H1

H2

...
Hl

There are no known methods yet to ensure that the code does not contain cycles of length 4, but computer
simulations can find good permutations to construct codes with a reliable performance.

Another popular type of randomized construction is the so-called ‘Mackay construction’ [28]. MacKay devel-
oped random construction methods to produce sparse regular (l, r)-LDPC codes. Some of these algorithms
are listed below.

• Matrix H is generated by starting from an all-zero matrix and randomly flipping bits, not necessarily
distinct.

• Matrix H is generated by randomly creating weight l columns.

5 CONSTRUCTION OF TANNER GRAPHS FOR LDPC CODES 34

• Matrix H is generated with weight l per column and uniform weight per row, and no two columns
having overlap greater than 1.

• Matrix H is further constrained so that its bipartite graph has large girth.

These algorithms were used to find codes of different length and rates with a desirable performance. They
are also used as a basis for other constructing algorithms.

An example where the code is constructed via the Tanner graph is the bit-filling algorithm, first mentioned
in [29]. This algorithm consist of different iterations, where in each iteration a variable node is added to a
Tanner graph and connected to check nodes by adding new edges to the Tanner graph. These edges must
not create any cycles of length g − 2 or smaller. A test to enforce this constraint is given in [29]. While the
algorithm is capable of generating codes with a high rate and a high girth, the resulting code may be not
be easily implementable in hardware due to the inconsistent structure of row-column connections. More ad-
vanced algorithms, like the progressive edge-growth algorithm (PEG) [20] and quasi-cyclic construction [30]
are also regularly used for constructing graphs with a large girth and are often a combination of randomized
and structured constructions.

Sequential constructions are more structured, and often preferred over randomized constructions, since the
performance of randomized constructions may vary depending on the chosen parameters and constraints,
and the resulting codes may be harder to optimize for specific applications. Many methods for constructing
structured LDPC codes can be found in the literature.

Bayati gives a method for randomly generating simple graphs without small cycles [31]. This was the first
polynomial algorithm for this problem. Given any constants k, α ≤ 1/2k(k + 3) and m = O(n1+α), the
algorithm generates an asymptotically uniform random graph with n nodes, m edges and girth larger than
k. It does this by starting with an empty graph of n nodes and adding edges between the nodes one by one.
It samples from the set of all edges according to a probability distribution described in the article and it
checks if adding this edges leads to a small cycle. If this happens, the algorithm samples another edge and
tries this one. If there is no edge that satisfies this constraint, the algorithm stops and returns a failure. This
challenge lies in designing the probability distribution such that a graph is chosen uniformly at random.

Also other topics within mathematics can be used for constructing LDPC code. A construction via finite
geometry is presented in [32]. A finite geometry is defined by n points and J lines with the following prop-
erties: (1) Every line consists of ρ points; (2) Every point is intersected by γ lines; (3) two lines are either
parallel (i.e., they have no point in common) or they intersect at one and only one point. A J × n matrix
can be formed where the rows represent the J lines and the columns the n points of the finite geometry. A
1 in the matrix represents the intersection of a line and a point. If ρ and γ are small compared to n and J ,
the matrix can be regarded as a LDPC matrix. The parameters γ, ρ are then the column and row weights
of the regular LDPC code. Property (3) ensures that there are no cycles of length 4, since this would mean
that two different lines intersect two points. An example:

l1

l2

l3 l4

l5

l6

p1 p2

p3 p4

(a) Finite geometry with J = 6,
n = 4, ρ = 2 and γ = 3.

p1 p2 p3 p4

l1 1 1 0 0
l2 0 0 1 1
l3 1 0 1 0
l4 0 1 0 1
l5 0 1 1 0
l6 1 0 0 1

(b) Corresponding parity-check matrix

5 CONSTRUCTION OF TANNER GRAPHS FOR LDPC CODES 35

Unfortunately, it turns out that these codes always have girth 6 which is a limitation, since cycles of length
six are still considered as small cycles.

These methods are only a small fraction of the attempts that are known for the construction of graphs with
a large girth. For the remainder of the thesis we will focus on constructing LDPC codes via their Tanner
graphs.
The constructions above are all constructions for regular LDPC codes. The Tanner graph of a regular LDPC
code is a biregular graph. This is a bipartite graph G = (V1 ∪ V2, E) for which every two nodes on the
same side of the given partition have the same degree as each other. The parity-check matrix of a regular
(l, r)-LDPC code has l 1’s in each column and r 1’s in each row. This means that the Tanner graph is
biregular and all the variable nodes have degree l and the check nodes degree r.

5.2 Irregular LDPC codes

After Gallager shared his work about LDPC codes, many efforts have been made to improve the performance
of these LDPC codes. One remarkable contribution is the introduction of the irregular LDPC codes by
Luby et al. in 1998 [9]. These codes allow irregular variable and check node degrees in their Tanner graph.
Additionally, they show in their article that the performance of irregular codes are typically better than of
regular LDPC codes. Irregular LDPC codes perform close to the Shannon capacity [33].

The following terminology and notation of irregular LDPC codes and their irregular degree distribution is
adopted from [9]. For convenience, we represent the degrees of the nodes in the Tanner graph of an irregular
code in the following compact way. We display the degree distributions of both the variable and the check
nodes. Let Λi be the number of variable nodes of degree i and Pi the number of check nodes of degree i. The
degree distributions of a code then is

Λ(x) =

lmax∑
i=1

Λix
i, P (x) =

rmax∑
i=1

Pix
i.

We call this code a (Λ(x), P (X))-irregular LDPC code.

Example 5.1. The degree distributions of the [7, 4, 3]-Hamming code from Example 2.13 are

Λ(x) = x3 + 3x2 + 3x, P (x) = 3x4

△

Note that Λ(1) is the number of variable nodes in the Tanner graph and thus the length of the code. P (1)
denotes the number of check nodes. The code rate can thus be expressed as

r = 1− Λ(1)

P (1)
.

The number of edges can easily be expressed, since there are iΛi edges attached to all variable nodes of degree
i. The number of edges equals∑

i

iΛi = Λ′(1), or equivalent
∑
i

iPi = P ′(1).

For some applications it can be more convenient to use the normalized degree distribution. This gives the
fraction of nodes that have a certain degree, instead of the exact number of nodes with this degree.

L(x) =
Λ(x)

Λ(1)
, R(x) =

P (x)

P (1)
.

Example 5.2. The normalized degree distributions of the [7, 4, 3] Hamming code from Example 2.13 are

L(x) =
1

7
x3 +

3

7
x2 +

3

7
x, R(x) = x4

△

5 CONSTRUCTION OF TANNER GRAPHS FOR LDPC CODES 36

The ensemble of LDPC codes with degree distributions Λ(x) and P (x) is often depicted as LDPC(Λ(x), P (X)).

Good degree distributions are non-trivial to find. These distributions will be determined during the design
of the code and depend on the application. In 2001, a powerful code design, which is based on the degree
distribution in a Tanner graph, was represented by Richardson, Shokrollahi and Urbanke [34]. Various
techniques have been proposed to design good degree distribution. Richardson et al. [34] used density
evolution to optimize the degree distribution. These concepts are beyond the scope of this thesis. Instead,
we will turn to the problem of constructing Tanner graphs for codes with given degree distributions.

5.3 Degree sequences

In the last section we have shown that the performance of LDPC codes can be improved by using irregular
codes. Irregular codes have degree distributions which regulate the degrees of the variable and check nodes
in the Tanner graph of the code. In the following sections we discuss how we construct Tanner graphs for
irregular codes, given their degree distributions. We try to construct Tanner graphs which have a large girth.
We start with generalizing this problem. We look at degree sequences and try to find conditions on the
existence of a graph with this degree sequence.

Definition 5.3 (Degree sequence). A sequence d = (d1, . . . , dn) of non-negative integers is called a degree
sequences of a graph G if the nodes can be labeled v1, . . . , vn such that deg(vi) = di for each i with 1 ≤ i ≤ n.

For convenience, we always order a degree sequences and write (d1, . . . , dn) such that d1 ≤ · · · ≤ dn. We may
also assume that in general all degrees are non-zero, since nodes with degree 0 are isolated so they can be
ignored.

Definition 5.4 (Graphical degree sequence). A degree sequence d = (d1, . . . , dn) of non-negative integers
is called graphical if it is the degree sequence for some graph. We say that a graph G realizes d if d is the
degree sequence of G.

If d is a graphical degree sequence, it clearly holds that all degrees are smaller than n, i.e., di ≤ n − 1.
Moreover, the sum of the degrees

∑n
i=1 di must be even. The question is if these conditions are enough. It

turns out that for each degree sequence that satisfies these two conditions, there exists a graph that realizes
this sequence. However, this graph can have loops or multiple edges between two nodes. Since we want to
construct Tanner graphs without self-loops and double edges, we restrict ourselves to simple graphs. These
are unweighted, undirected graphs containing no loops and no multiple edges. The question now becomes
more difficult. For example, the sequence d = (3, 3, 1, 1) can be realized by the following graph, but there
exists no simple graphs that realizes this sequence.

1

3 13

The question if there exists a simple graph G for a given degree sequence is more complicated. Therefore,
from now on, the term graphical degree sequences is used for sequences that can be realized by a simple graph,
but not by any graph. Fortunately, there are theorems that tells us necessary and sufficient conditions. The
first one is a result independently found by both Havel [35] and Hakimi [36]. This theorem is later used by
Erdős and Gallai to come up with a set of inequalities that have to be checked to see if a degree sequence is
graphical or not [37].

Theorem 5.5 (Havel-Hakimi). A sequence of non-negative integers (d1, . . . , dn) with d1 ≥ d2 ≥ · · · ≥ dn
and n ≥ 3 is graphical if and only if the sequence

(d2 − 1, d3 − 1, . . . , dd1
− 1, dd1+1 − 1, dd1+2 . . . , dn),

i.e., the sequence we get when we delete the first element and then subtract 1 from the first d1 elements, is
graphical.

5 CONSTRUCTION OF TANNER GRAPHS FOR LDPC CODES 37

Theorem 5.6 (Erdős-Gallai). A sequence of positive integers (d1, . . . , dn) with d1 ≥ d2 ≥ · · · ≥ dn is
graphical if and only if

∑n
i=1 di is even and for each integer k with 1 ≤ k ≤ n the following inequalities hold

k∑
i=1

di ≤ k(k − 1) +

n∑
i=k+1

min(k, di).

This last theorem gives us a method where we have to check n inequalities. Tripathi and Vijay [38] show
that this number of inequalities can be even further reduced. Let s be the largest integer such that ds ≥ s.
Then it is enough to check the inequalities for every k with 1 ≤ k ≤ s. Furthermore, they prove that in case
of multiple occurrences of numbers in the degree sequence, it suffices to check the inequality in Theorem 5.6
only at the end of each segment of duplicate values.

In some cases, there are more ways to see that a sequence is not graphical. We can for example directly see that
the sequence d = (6, 6, 5, 4, 3, 3, 1) is not graphical, since n = 7, d1 = 6 and d2 = 6. This means that v1 and
v2 must be connected to all other nodes, which contradicts with d7 = 1. In general the Erdős-Gallai theorem
and the Havel-Hakimi theorem are the most common, and easiest, ways to test the validity of the graphicality.

The next problem we encounter is the construction of graphs that realize graphical degree sequences. Theo-
rem 5.5 can be used to design an algorithm to construct such a graph. This algorithm can be described with
the following steps.

1. Pick the node with the highest degree ∆.

2. Connect this node to the next ∆ nodes having highest degree. This node now has been exhausted. We
now look at the truncated, residual sequence which we get after removing the first element and subtract
1 from all nodes it is attached to.

3. From this truncated sequence we again pick the node with the highest degree and connect it to the
next the nodes with the highest residual degree. Repeat these steps until all nodes are exhausted.

Theorem 5.5 directly proves the correctness of this algorithm. If the algorithm fails in a step and cannot
connect a node to the required other nodes, it means that the current truncated degree sequence is not
graphical. Using several rounds of the Havel-Hakimi theorem, this would mean that the original sequence is
not graphical, which gives a contradiction.

Example 5.7. We can use the algorithm to check if the degree sequence d = (4, 4, 3, 3, 2, 2) is graphical.
And if so, the algorithm can find a graph G that realizes d. We start with an empty graph G with 6 nodes.
The first step is to connect the node of degree 4 with the four nodes with the highest degree, in this case
degrees 4, 3, 3 and 2.

3

44

3

2 2

2

30

2

1 2

The residual degree sequence is now, after reordering, (3, 2, 2, 2, 1). This means that in the next step we
connect the node with residual degree 3 to the three nodes with residual degree 2. This results in the graph
on the left. The residual degree sequence after this step is (1, 1, 1, 1), hence in the last two steps we connect
two nodes of residual degree 1 to each other. This can for example lead to the final graph on the right which
has d as degree sequence. △

5 CONSTRUCTION OF TANNER GRAPHS FOR LDPC CODES 38

3

44

3

2 2

1

00

1

1 1

3

44

3

2 2

0

00

0

0 0

There are typically many different realizations for one graphical degree sequences. The sequence (3, 3, 2, 2, 2, 2, 2, 2)
is graphical. The following graphs are examples of graphs, found using the Havel-Hakimi algorithm, that
realize this sequence.

3

22

3

2

2 2

2

3

22

3

2

2 2

2

3

22

3

2

2 2

2

The algorithm can return multiple graphs that are not equivalent. Unfortunately, the algorithm is unable to
return every graph, as it will never give the next graph as output, because there is no edge between the two
nodes of highest degree 3.

3

22

3

2

2 2

2

The question that arises now is how we can make all graphs realizing a graphical degree sequence d. This
can be done by swapping edges in a graph. Using this method we can turn a graph that can be constructed
by the Havel-Hakimi algorithm to one that does not. For this edge swapping step we pick two distinct edges
(u, v) and (u′, v′) and we swap these edges with the edges (u, u′) and (v, v′) or (u, v′) and (v, u′). Note that
the degree sequence of the graph remains unchanged.

3

22

3

2

2 2

2

3

22

3

2

2 2

2

This idea of edge swapping is also used in the proof of the Havel-Hakimi theorem. An important study by
Petersen shows that if we have two graphs G1 and G2 with the same degree sequence, there exist a sequence
of edge swaps to turn the one in the other [39]. He also showed that the number of swaps is O(

∑
i di). This

theorem helps us to study properties of graphs realizing a certain degree sequence. Starting at a realization

5 CONSTRUCTION OF TANNER GRAPHS FOR LDPC CODES 39

of a degree sequence and randomly swapping edges will generate a random graph with the same degree se-
quence. By generating numerous random graphs and performing statistical analysis on the outcomes we can
answer questions like ‘What is the average diameter of a graph with this degree sequence?’ or ‘What is the
average chromatic number of a graph with this degree sequences’. Despite the fact that it does not sample a
graph uniformly at random (it samples a graph with probability proportional to the number of possible edge
swaps), we can use the known bias to make the sampling more uniform.

For graphical degree sequences with an unique realization it would be senseless to do this edge swapping
process, since there is only one graph that realizes the sequence. Hence, it is interesting to study the charac-
teristics of the sequences which have an unique realization. Koren [40] found that sequences that lie on the
convex polytope formed by the inequalities of Theorem 5.6 are exactly the sequences that have an unique
realization. Moreover, Li proves in [41] that if G realizes a sequence d, G is an unique realization if and
only if for all nodes v ∈ V any node adjacent to v has a higher degree than any node that is not adjacent to v.

5.4 The bipartite degree realization problem

In order to construct LDPC codes, it is necessary to obtain Tanner graphs. These graphs need to have a
bipartite structure. The bipartite realization problem asks whether there exist a bipartite graph that has a
specific degree sequence, and if so, how to construct it. The general problem, where both the partition and
the realizing graph need to be determined, is still not resolved [42]. However, for the purpose of constructing
Tanner graphs for LDPC codes, we focus on the the simpler variant of the problem. This variant, where
the partition is given, has been answered over 60 years ago by Gale and Ryser [43] [44]. The Gale-Ryser
theorem can be used to solve the bipartite degree realization problem in polynomial time. Let a and b be
non-negative integer sequences, then the sequence pair (a, b) is said to be bigraphic if there exist some simple
bipartite graph G = (V1 ∪ V2, E) so that a represents the degrees of the nodes in V1 and b the degree of
nodes in V2. We again say that this simple bipartite graph G realizes the pair (a, b). Gale and Ryser gave
the following necessary and sufficient conditions for a sequence pair to be bigraphic.

Theorem 5.8 (Gale-Ryser). A pair of sequences of non-negative integers (a1, . . . , ap) and (b1, . . . , bq) with
a1 ≥ · · · ≥ ap is bigraphic if and only if

∑p
i ai =

∑q
i bi and the following inequality holds for k with 1 ≤ k ≤ p:

k∑
i=1

ai ≤
q∑

i=1

min(bi, k).

Note that only sequence a is ordered, it is not necessary to order b as well.

For the construction of bipartite graphs realizing a given bigraphic sequence pair, we propose an algorithm
that is based on the Havel-Hakimi algorithm. We will give a justification of the algorithm as well by proving
the following algorithm. Note that the roles of a and b can be reversed.

Theorem 5.9. The pair of sequences (a, b) is bigraphic if and only if (a′, b′) is bigraphic, where (a′, b′) is
obtained from (a, b) by deleting the largest element ∆ from b and subtracting 1 from each of the ∆ largest
elements of a.
In other words, when a pair of sequences of non-negative integers (a1, . . . , ap) and (b1, . . . , bq) is ordered, so
that a1 ≥ · · · ≥ ap and b1 ≥ · · · ≥ bq, then (a, b) is bigraphic if and only if the sequence pair (a′, b′) with

a′ = (a1 − 1, . . . , a∆ − 1, a∆+1, . . . , ap) b′ = (b2, . . . , bq),

is bigraphic.

Proof. We start with the sufficiency condition. Given a bigraphic pair of sequences (a′, b′), let G′ =
(V1 ∪ V2, E) be a simple bipartite graph, such that a contains the degrees of V1 and b the degrees of V2. We
construct the bipartite G the realizes (a, b) by adding a node to V2 that is adjacent to the nodes in V1 that
have degree a1 − 1, . . . , a∆ − 1, as these are the ∆ largest numbers in a′. This bipartite graph G has a, b as

5 CONSTRUCTION OF TANNER GRAPHS FOR LDPC CODES 40

degree sequences. Hence, the pair (a, b) is bigraphic.

To prove necessity, we start with a simple bipartite graph G = (V1 ∪ V2, E) that realizes the pair (a, b) and
we produce a simple bipartite graph G′ = (V ′

1 ∪ V ′
2 , E) realizing the pair (a′, b′). We may assume that both

a and b have been arranged in non-increasing order. Let v be a node of degree ∆ in V2 and let X ⊆ V1 be
a set of ∆ nodes in V1 having the desired degrees a1, . . . , a∆. If the neighbours of v are exactly the nodes
in X, i.e., if N(v) = X, then we can delete v to obtain G′. Otherwise, there is a node in X that is not in
N(v). Our approach is to adjust G to increase |N(v) ∩X|, and this is achieved without changing any node
degrees. By swapping edges we try to obtain N(v) = X. We choose u ∈ X and w /∈ X so that u /∈ N(v)
and w ∈ N(v). Since d(u) ≥ d(w), there must be a node x adjacent to u, but not to w. After swapping the
edges (v, w) and (u, x) with the edges (u, v) and (w, x) node w is now in both N(v) and x and thus this step
leads to an increase of |N(v) ∩X|. The size of N(v) and X is both equal to ∆, so this step is repeated until
N(v) = X.

u

w

v

x

u

w

v

x

Figure 13: A part of a simple bipartite graph is showed to illustrate the edge swap procedure in the proof.
The nodes in X are indicated in red. We find nodes u and w, so that u is a neighbour of v but not in X and
w in X but not a neighbour of v. We detect node x as the neighbour in V2 that is adjacent to w but not to
u. We now swap the edges as indicated. Node u is replaced by w in N(v) and thus |N(v) ∩X| is increased.
We continue until N(v) = X.

Example 5.10. Let (a, b) be a pair of sequences, with a = (2, 2, 1, 1, 1) and b = (3, 2, 2). The theorem states
that the pair (a, b) is bigraphic if and only if (a′, b′) is graphical, where a′ = (1, 1, 1, 1, 0) and b′ = (2, 2).
The pair (a, b) is bigraphic. Let G = (V1 ∪ V2, E) be a bipartite graph that realizes this sequence pair, with
V1 = {v1, v2, v3, v4, v5}, V2 = {c1, c2, c3} and E = {(v1, c3), (v2, c1), (v2, c2), (v3, c3), (v4, c1), (v4, c2), (v5, c3)}
as in the first graph of Figure 14. This bipartite graph realizes (a, b). To show that (a′, b′) is also bigraphic,
a bipartite graph G′ is constructed as in the proof of Theorem 5.9.

Node c3 is the only check node of degree ∆ = 3 and X = {v2, v3, v4} is the set of variable nodes with degrees
2, 2, 1, the ∆ largest numbers in V1. These nodes are indicated by red circles. It can be directly seen that
X ̸= N(v), so some edge swaps need to be executed. We see that v2 ∈ X is not a neighbour of c3, while
v1 /∈ X is. Thus we are going to swap edges attached to these nodes. Because d(v2) = 2 ≥ 1 = d(v1) we find
check node c1 which is adjacent to v2, but not to v1. Now we swap the edges (v1, c3) and (v2, c1) with (v1, c1)
and (v2, c3) and this increases |N(c3) ∩ X| from one to two. We can continue this process, now swapping
edges (v4, c2) and (v5, c3) with (v4, c3) and (v5, c2). After this step |N(c3)∩X| = 3 and thus N(c3) = X. We
can now obtain the simple bipartite G′ that realizes (a′, b′) by deleting check node c3 and its adjacent edges.

△

The algorithm for constructing a simple bipartite graph that realizes a given bigraphic sequence pair follows
immediately from Theorem 5.9. Observe that the roles of a and b can be reversed in the theorem. We
can thus start with either connect one check node to its variable nodes, or conversely, with a variable node
connecting it to check nodes. The algorithm is a greedy algorithm where the node with highest residual
degree ∆ is picked as either a variable node or a check node, and it is connected to the nodes on the other
side with the highest ∆ residual degrees. Theorem 5.9 proves the correctness of this algorithm.

5 CONSTRUCTION OF TANNER GRAPHS FOR LDPC CODES 41

v1

v2

v3

v4

v5

c1

c2

c3

v1

v2

v3

v4

v5

c1

c2

c3

v1

v2

v3

v4

v5

c1

c2

c3

Figure 14: Three simple bipartite graphs, all realizing the sequence pair ((2, 2, 1, 1, 1), (3, 2, 2)). Using edge
swaps we can modify the graph until c3, the check node with the highest degree, is connected to the d(c3) = 3
variable nodes with the highest degree. We can use this final graph to show that also the sequence pair we get
via Theorem 5.9, ((1, 1, 1, 1, 0), (2, 2)), is graphical. We do this by deleting check node c3 with its attached
edges, after which we have found the desired graph.

5.5 Forbidden connections

In this section we prove a slightly more generalized Hakimi-Havel theorem, which is largely formed from the
work of [45], where they use this theorem to provide an algorithm to construct all simple graphs realizing
a given graphical degree sequence d. The theorem tells us how to check if a degree sequence is graphical
if there are some ‘forbidden edges’ which are edges that are not allowed to exist in the graph. We will use
this theorem to generate bipartite graphs with a large girth. Before presenting our main theorem, several
definitions and observations are needed.

Definition 5.11. Let A(i) be an increasingly ordered set of di distinct nodes associated with node i:

A(i) = {ak | ak ∈ V, ak ̸= i, ∀k, 1 ≤ k ≤ di}.

This set A(i) is called the adjacency set of i.

Definition 5.12. If for two adjacency sets A(i) = {. . . , ak, . . . } and B(i) = {. . . , bk, . . . } we have ak ≤ bk
for all 1 ≤ k ≤ di , we say that A(i) ≤ B(i).

Definition 5.13. Let d1 ≥ d2 ≥ · · · ≥ dn ≥ 1 be a graphical degree sequence, and let A(i) be an adjacency
set of node i. The degree sequence reduced by A(i) is defined as

d′k|A(i) =

dk − 1 if k ∈ A(i)

dk if k ∈ [1, n]\(A(i) ∪ {i})
0 if k = i.

In other words, the reduced degree sequence d′|A(i) is obtained after removing node i together with all its
edges from G.

It is not hard to see that if d is a non-increasing graphical sequence with dj > dk, j, k ∈ {1, . . . , n}, we can
move an edge that is attached to dj from dj to dk and thus the sequence {d1, . . . , dj −1, . . . , dk+1, . . . , dn} is
also graphical but not necessarily in non-increasing order. This observation can be used to prove the following
lemma.

Lemma 5.14. Let d = (d1, d2, . . . , dn), be a non-increasing graphical sequence, and let A(i), B(i) be two
adjacency sets for fixed node i ∈ V , such that B(i) ≤ A(i). If the degree sequence d′|A(i) reduced by A(i) is
graphical, then the degree sequence d′|B(i) reduced by B(i) is also graphical.

Let Bm(i) = {b1, . . . , bm, am+1, . . . , adi}, with induction on m we can prove that the degree sequence reduced
by Bm(i) is graphical for every 1 ≤ m ≤ di. This is based on the fact that if bj < aj , then the degree of node
bj is larger than the degree of aj , and thus we can move an edge from bj to aj . This means that if the degree
sequence reduced by Bj−1(i) is graphical, then so is Bj(i).

5 CONSTRUCTION OF TANNER GRAPHS FOR LDPC CODES 42

Definition 5.15. Let d = (d1, d2, . . . , dn) be a non-increasing graphical sequence and let F (i) be a subset
of V for every 1 ≤ i ≤ di. We define the leftmost adjacency set LF (i) of a node i as the set containing the
di nodes with the largest degrees, that are not in a forbidden set F (i).

Since d is non-increasing, the nodes in the leftmost adjacency set L(i) are the first di nodes in the sequence
that are not in the forbidden set F (i). The set L(i) is called the leftmost adjacency set, because it follows
from the definition that for every Y (i) = {y1, . . . , ydi} disjoint from F (i) ∪ {i} we have that L(i) ≤ Y (i).

We can now give the main theorem.

Theorem 5.16. Let d = (d1, . . . , dn) be a non-increasing graphical sequence. Let i ∈ V be a fixed node,
let F (i) be a subset of V and let LF (i) be the leftmost adjacency set of i. Then the degree sequence d =
(d1, . . . , dn) can be realized by a simple graph G(V,E) in which (i, j) /∈ E, for all j ∈ F (i), if and only if the
degree sequence reduced by LF (i) is graphical.

Proof. One direction of this proof is straightforward. If the degree sequence reduced by LF (i) is graphical,
we can add node i and connect it with all nodes in LF (i). Since LF (i) and F (i) are disjoint, this realizes a
graphical realization of d in which there are no connections between node i and any node in F (i).

For the other side we assume that d is graphical with a graphical realization where there are no edges between
i and F (i). We need to show that the sequence obtained from d by reduction via L(i) is also graphical. Since
d has a graphical representation G without edges between i and F (i), the set A(i), containing all nodes
that are connected to node i in G, is disjoint from F (i). With our previous observation this means that
L(i) ≤ A(i) and thus Lemma 5.14 states that the degree sequence reduced by L(i) is graphical.

This is a generalized version of the Havel-Hakimi theorem, since we can take F (i) = ∅ for every i ∈ V ,
so that Theorem 5.16 is indentical to Theorem 5.5. The theorem can also be easily adjusted to bipartite
graphs. To do so, some definitions have to be adjusted. The adjacency set A(i) of a check node vi consist of
variable nodes, and vice versa. Moreover, the leftmost adjacency set of a check node i is the set containing
the bi variable nodes with the highest degree, such that the variable nodes are not in F (i) which is the set of
forbidden connections. Furthermore, if (a, b) is a bigraphic sequence pair, and A(i) a set of variable nodes,
adjacent to a check node, the sequence pair reduced by A(i) is now defined as (a′

A(i), b
′
A(i)), with

a′k|A(i) =

{
ak − 1 if k ∈ A(i)

ak if k /∈ A(i),
b′k|A(i) =

{
bk if k ̸= i

0 if k = i.

The theorem for bipartite graphs can now be stated as following.

Theorem 5.17. Let (a, b) be a pair of degree sequences, with a = (a1, . . . , ap) and b = (b1, . . . , bq), both
in non-increasing order. Let i ∈ V2 be a fixed check node, let F (i) be a subset of V1 and let LF (i) be the
leftmost adjacency set of i. Then the degree sequence pair (a, b) can be realized by a simple bipartite graph
G(V1 ∪ V2, E) in which (i, j) /∈ E, for all j ∈ F (i), if and only if the degree sequence pair reduced by LF (i) is
bigraphic.

Theorem 5.16 and Theorem 5.17 can be used to detect if certain edges are ‘allowed’ in a graph G. As-
sume that we have a graphical degree sequence d. Instead of generating a graph that realizes d via the
Havel-Hakimi algorithm, we can add a random edge and check with Theorem 5.16 or Theorem 5.17 if the
resulting degree sequence still can be realized by a simple graph avoiding the forbidden connections. The set
of forbidden connections consists of all the connections that are already made since there cannot be multiple
edges between two nodes.

Instead of picking edges at random, we can use a more clever way of choosing these edges, such that small
cycles are avoided. Section 5.6 will explore this idea. First, we clarify this concept with an example. To keep
the idea as simple as possible we start with an example for a single graphical degree sequence. The concept
for a sequence pair of bipartite graphs is similar, albeit less trivial.

5 CONSTRUCTION OF TANNER GRAPHS FOR LDPC CODES 43

Example 5.18. Consider the graphical sequence d = (2, 2, 1, 1). This sequence can be realized by the
following graph:

1

2 2

1
v1

v2

v3

v4

We will use Theorem 5.16 to see which edges are allowed in the construction. After the addition of each edge
we need to check if the degree sequence is still graphical, taking into account that previous edges are forbidden
connections. Assume we first add the edge (v2, v4), we can check that the residual sequence (1, 1, 1, 1) is still
graphical, even when the edge (v2, v4) is a forbidden connection. We can thus safely keep this edge since it
does not break the graphicality of d. Next, we can add the edge between v1 and v3. Now, we check if the
residual sequence (1, 1) is still graphical, considering the forbidden connections. Although the sequence itself
is graphical, it cannot be realized, since an edge between v2 and v4 is needed. This means that adding the
edge (v1, v3) breaks the graphicality and thus we need to continue with another connection. If v1 is connected
to v2 or v3, we can finish the graph by connecting the other two nodes.

△

The theorem to check if the residual degree sequences are still graphical without the forbidden connections,
can detect failure in an early stage. A naive approach would be to add random edges until either every
node got the desired result or until loops or double edges arise. The problem with this approach is that
complications appear only at the end of the process. With this theorem we are capable of catching these
obstacles earlier. In Example 5.18 we see that the algorithm detects the problem in the second last step.
However, when a graph is much larger, this procedure can save a lot of time by detecting the problem at the
earliest time possible.

5.6 Constructing Tanner graphs with a large girth

Using the idea of forbidden edges of Section 5.5, we introduce an algorithm in this section which can be
considered to be used for the construction of Tanner graphs with a large girth. We do not give a formal proof
about the results of the algorithm, but instead give an intuition on why this algorithm is valuable.

Our algorithm is motivated by the following notion. The Havel-Hakimi algorithm for constructing bipartite
graphs is a greedy algorithm, which leads to many connections between nodes with high degrees. This pro-
cedure can quickly lead to small cycles. Let G = (V1 ∪ V2, E) be a Tanner graph, and suppose v1, v2 are the
two variable nodes with the highest degrees in V1 and c1, c2 are the two check nodes with the highest degree
in V2. It is not odd to assume that the degrees of v1, v2 and c1, c2 are strictly larger than other nodes in their
vertex set. Assuming that v1 ≥ 2, the Havel-Hakimi algorithm connects v1 with the d(v1) nodes with the
highest degree, which includes c1 and c2. Since the degrees of c1 and c2 were strictly bigger than the other
nodes, they are still on top of the list with their residual degree. This means that if we need to connect v2 to
the d(v2) nodes with the highest degree it is again connected to c1 and c2 and this leads to a cycles of length
four.

Instead of connecting high degree nodes to other high degree nodes, we suggest to distribute the edges better
among the nodes. We could try to do this by studying the complement graph. The complement graph Gc of a
graph G = (V,E) is defined on the same nodes, but with the complement of the edges, Gc = (V, (V ×V)\E).
If there is a connection between two nodes u, v in G, there is no connection is Gc and vice versa. The idea is
that if G has small cycles, Gc avoids these small cycles. Unfortunately, if high degree nodes are connected to
other high degree nodes, this means that low degree nodes are also more likely to be connected to low degree
nodes. These nodes have a high degree in the complement graph so we get a similar problem.

5 CONSTRUCTION OF TANNER GRAPHS FOR LDPC CODES 44

A more effective way would be to connect high degree nodes as much as possible to low degree nodes. This is
how our algorithms operates. It starts with connecting high degree nodes in V1 to low degree nodes V2. We
need to make sure that after every connection, the remaining degree sequences are still graphical, considering
the forbidden connections. This is where we use Theorem 5.16 of Section 5.5. Algorithm 3 summarizes our
proposed algorithm.

Algorithm 3 Constructing large girth Tanner graphs for irregular LDPC codes

Input: A bigraphic pair (a, b) of degree sequences a = (a1, . . . , ap) and b = (b1, . . . , bq).
Output: A simple bipartite graph G = (V1 ∪ V2, E) that realizes the pair (a, b).

1: Let G = (V1 ∪ V2, E) be a graph with p nodes in V1, q nodes in V2 and E = ∅.

2: while ∃i ∈ {1, . . . , p} so that ai ̸= 0 do
3: Bring a and b in non-increasing order.
4: Connect in G the variable node vi with the highest degree in V1 to the check node cj which is not

checked yet for vi, with the lowest, non-zero, degree in V2.
5: Let A(i) be the set containing the a1 − 1 check nodes with the highest degrees, such that there are

no forbidden connections, together with check node cj .
6: Let (a′, b′) be the degree sequence pair reduced by A(i). Check with Theorem 5.8 if this sequence

pair (a′, b′) is bigraphic, and thus if the connection between vi and cj is permitted.

7: if (a′, b′) is bigraphic then
8: Set ai = ai − 1 and bj = bj − 1. This is the residual degree sequence after connecting ai to bj .
9: Make (vi, cj) a forbidden connection.

10: else
11: Remove the connection between vi and cj .
12: Add check node cj to the nodes that has been checked for variable node vi.
13: end if
14: end while

In this algorithm we connect the highest degree variable node to check nodes. We could have also reversed
the sequences in the pair (a, b) such that the highest degree check node is connected to variable nodes. A
combination of both is also possible. The question if the choice of picking either check nodes or variable nodes
is important requires further investigation. Another opportunity to optimize this algorithm is to question
if we need to check if every inequality of the Gale-Ryser theorem is needed or if some inequalities can be
reduced, since similar inequalities could have been checked before. The optimizations of the inequalities as
described in the note of Tripathi and Vijay [38] can help with this. For example, in this note, it is stated
that we only need to check the first s inequalities, where s is the largest integer such that ds ≥ s. We observe
that, after adding an edge, s decreases and thus less inequalities need to be checked.

6 CONCLUSION 45

6 Conclusion

To conclude, this thesis has focused on exploring the benefits of large girth Tanner graphs in generating
irregular low-density parity-check (LDPC) codes with excellent performance, approaching Shannon’s limit.
The initial part of the thesis reviewed the theoretical background of LDPC codes. We have studied the
encoding and decoding processes of LDPC codes, together with their optimizations. The goals of the thesis
was first of all to explore the reasoning behind the usage of Tanner graphs with a large girth. The answer lies
in the Belief Propagation (BP) decoding algorithm. We have seen that the BP decoder is optimal on Tanner
graphs that are a tree, but since codes whose Tanner graph is a tree have a small minimum distance, these
codes are not used. The BP decoder is near-optimal for Tanner graphs with a large girth, since they locally
look like a tree. Therefore, the BP decoder is in practice very functional on large girth Tanner graphs.

The second goal of the thesis included the construction of large girth Tanner graphs. Luby showed that
irregular LDPC codes have an even better performance than regular LDPC codes [9]. We therefore focused
on generating large girth Tanner graphs for irregular graphs. The degree distributions of a code serve as a
compact way to view the degrees of the nodes in the Tanner graph. To be able to construct a code with a
given degree distribution we first of all need to know if there exists graphs that could represent this code.
And if there exist multiple representations, we need to find a Tanner graph representation with a large girth.
The first question is answered in Section 5.3 via the Erdős-Gallai theorem and the Havel-Hakimi theorem.
The Gale-Ryser theorem is used to check if the degree sequences of a bipartite graph are graphical. For
the second question we proposed an algorithm in Section 5.6 that uses forbidden connections as used in
another context by Kim [45]. We do not know how effective the algorithm is, because it is not tested yet.
In further work it would be important to see how the algorithm performs in real-world applications. Ad-
ditionally, the algorithm can be possibly improved via multiple questions, as they are discussed in Section 5.6.

I hope this thesis will inspire further research in this exciting and rapidly growing field.

REFERENCES 46

References

[1] Claude E Shannon. “A mathematical theory of communication”. In: The Bell system technical journal 27.3
(1948), pp. 379–423.

[2] Robert Gallager. “Low-density parity-check codes”. In: IRE Transactions on information theory 8.1 (1962),
pp. 21–28.

[3] David JC MacKay and Radford M Neal. “Near Shannon limit performance of low density parity check codes”.
In: Electronics letters 33.6 (1997), pp. 457–458.

[4] Tom Richardson and Rüdiger Urbanke. “Efficient Encoding of Low-Density Parity-Check Codes”. In: Informa-
tion Theory, IEEE Transactions on 47 (Mar. 2001), pp. 638–656. doi: 10.1109/18.910579.

[5] Tom Richardson and Rüdiger Urbanke. Modern Coding Theory. Cambridge University Press, 2008. doi: 10.
1017/CBO9780511791338.

[6] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann,
1988, pp. 143–194.

[7] Changyan Di et al. “Finite-length analysis of low-density parity-check codes on the binary erasure channel”.
In: IEEE Transactions on Information theory 48.6 (2002), pp. 1570–1579.

[8] Michael E O’Sullivan. “Algebraic construction of sparse matrices with large girth”. In: IEEE Transactions on
Information Theory 52.2 (2006), pp. 718–727.

[9] Michael Luby et al. “Analysis of low density codes and improved designs using irregular graphs”. In: Proceedings
of the thirtieth annual ACM symposium on Theory of computing. 1998, pp. 249–258.

[10] Shu Lin. Costello. DJ Error control coding. 2004.

[11] Yfke Dulek and Christian Schaffner. Lecture notes Information Theory. University of Amsterdam, Master of
Logic, 2017.

[12] R. Tanner. “A recursive approach to low complexity codes”. In: IEEE Transactions on Information Theory
27.5 (1981), pp. 533–547. doi: 10.1109/TIT.1981.1056404.

[13] E. Berlekamp, R. McEliece, and H. van Tilborg. “On the inherent intractability of certain coding problems
(Corresp.)” In: IEEE Transactions on Information Theory 24.3 (1978), pp. 384–386. doi: 10.1109/TIT.1978.
1055873.

[14] Luis Salamanca et al. “MAP decoding for LDPC codes over the binary erasure channel”. In: 2011 IEEE
Information Theory Workshop. 2011, pp. 145–149. doi: 10.1109/ITW.2011.6089364.

[15] Jonathan S Yedidia, William T Freeman, Yair Weiss, et al. “Understanding belief propagation and its general-
izations”. In: Exploring artificial intelligence in the new millennium 8.236-239 (2003), pp. 0018–9448.

[16] M.P.C. Fossorier, M. Mihaljevic, and H. Imai. “Reduced complexity iterative decoding of low-density parity
check codes based on belief propagation”. In: IEEE Transactions on Communications 47.5 (1999), pp. 673–680.
doi: 10.1109/26.768759.

[17] David JC MacKay. Information theory, inference and learning algorithms. Cambridge university press, 2003,
pp. 241–243.

[18] Tom Richardson. “Error floors of LDPC codes”. In: Proceedings of the annual Allerton conference on commu-
nication control and computing. Vol. 41. 3. The University; 1998. 2003, pp. 1426–1435.

[19] Aiden Price and Joanne L. Hall. “A Survey on Trapping Sets and Stopping Sets”. In: CoRR abs/1705.05996
(2017). arXiv: 1705.05996. url: http://arxiv.org/abs/1705.05996.

[20] Hua Xiao and Amir H Banihashemi. “Improved progressive-edge-growth (PEG) construction of irregular LDPC
codes”. In: IEEE Communications Letters 8.12 (2004), pp. 715–717.

[21] Milos Ivkovic, Shashi Kiran Chilappagari, and Bane Vasic. “Eliminating trapping sets in low-density parity-
check codes by using Tanner graph covers”. In: IEEE transactions on information theory 54.8 (2008), pp. 3763–
3768.

[22] Eirik Rosnes and Oyvind Ytrehus. “An algorithm to find all small-size stopping sets of low-density parity-check
matrices”. In: 2007 IEEE International Symposium on Information Theory. IEEE. 2007, pp. 2936–2940.

[23] Sarah J Johnson and Steven R Weller. “Codes for iterative decoding from partial geometries”. In: IEEE Trans-
actions on Communications 52.2 (2004), pp. 236–243.

https://doi.org/10.1109/18.910579
https://doi.org/10.1017/CBO9780511791338
https://doi.org/10.1017/CBO9780511791338
https://doi.org/10.1109/TIT.1981.1056404
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/ITW.2011.6089364
https://doi.org/10.1109/26.768759
https://arxiv.org/abs/1705.05996
http://arxiv.org/abs/1705.05996

REFERENCES 47

[24] Olgica Milenkovic, Emina Soljanin, and Philip Whiting. “Asymptotic spectra of trapping sets in regular and
irregular LDPC code ensembles”. In: IEEE Transactions on Information Theory 53.1 (2006), pp. 39–55.

[25] Tuvi Etzion, Ari Trachtenberg, and Alexander Vardy. “Which codes have cycle-free Tanner graphs?” In: IEEE
Transactions on Information Theory 45.6 (1999), pp. 2173–2181.

[26] Andrew Kozĺık. “Kódováńı a efektivita LDPC kód̊u”. In: (2011).

[27] Alexander T Ihler et al. “Loopy belief propagation: convergence and effects of message errors.” In: Journal of
Machine Learning Research 6.5 (2005).

[28] D.J.C. MacKay. “Good error-correcting codes based on very sparse matrices”. In: IEEE Transactions on In-
formation Theory 45.2 (1999), pp. 399–431. doi: 10.1109/18.748992.

[29] J. Campello, D.S. Modha, and S. Rajagopalan. “Designing LDPC codes using bit-filling”. In: ICC 2001. IEEE
International Conference on Communications. Conference Record (Cat. No.01CH37240). Vol. 1. 2001, pp. 55–
59. doi: 10.1109/ICC.2001.936272.

[30] Jingyu Kang et al. “Quasi-cyclic LDPC codes: an algebraic construction”. In: IEEE Transactions on Commu-
nications 58.5 (2010), pp. 1383–1396. doi: 10.1109/TCOMM.2010.05.090211.

[31] Mohsen Bayati, Andrea Montanari, and Amin Saberi. “Generating random graphs with large girth”. In: Pro-
ceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2009, pp. 566–575.

[32] Yu Kou, Shu Lin, and Marc PC Fossorier. “Low density parity check codes: Construction based on finite geome-
tries”. In:Globecom’00-IEEE. Global Telecommunications Conference. Conference Record (Cat. No. 00CH37137).
Vol. 2. IEEE. 2000, pp. 825–829.

[33] Sae-Young Chung et al. “On the design of low-density parity-check codes within 0.0045 dB of the Shannon
limit”. In: IEEE Communications letters 5.2 (2001), pp. 58–60.

[34] T.J. Richardson, M.A. Shokrollahi, and R.L. Urbanke. “Design of capacity-approaching irregular low-density
parity-check codes”. In: IEEE Transactions on Information Theory 47.2 (2001), pp. 619–637. doi: 10.1109/
18.910578.

[35] Václav Havel. “A remark on the existence of finite graph (Hungarian)”. In: Casopis Pest., Mat. 80 (1955),
pp. 477–480.

[36] S Louis Hakimi. “On realizability of a set of integers as degrees of the vertices of a linear graph. I”. In: Journal
of the Society for Industrial and Applied Mathematics 10.3 (1962), pp. 496–506.

[37] T. Gallai P.Erdős. “Graphs with prescribed degree of vertices (Hungarian)”. In: Matematikai Lapok 11 (1960),
pp. 264–274.

[38] Amitabha Tripathi and Sujith Vijay. “A note on a theorem of Erdős & Gallai”. In: Discrete Mathematics
265.1 (2003), pp. 417–420. issn: 0012-365X. doi: https://doi.org/10.1016/S0012-365X(02)00886-5. url:
https://www.sciencedirect.com/science/article/pii/S0012365X02008865.

[39] Julius Petersen. “Die Theorie der regulären graphs”. In: (1891).

[40] Michael Koren. “Extreme degree sequences of simple graphs”. In: Journal of Combinatorial Theory, Series B
15.3 (1973), pp. 213–224. issn: 0095-8956. doi: https://doi.org/10.1016/0095-8956(73)90037-3. url:
https://www.sciencedirect.com/science/article/pii/0095895673900373.

[41] Shuo-Yen R Li. “Graphic sequences with unique realization”. In: Journal of Combinatorial Theory, Series B
19.1 (1975), pp. 42–68.

[42] Amotz Bar-Noy et al. “On Realizing a Single Degree Sequence by a Bipartite Graph”. In: 18th Scandina-
vian Symposium and Workshops on Algorithm Theory (SWAT 2022). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik. 2022.

[43] David Gale et al. “A theorem on flows in networks”. In: Pacific J. Math 7.2 (1957), pp. 1073–1082.

[44] Herbert J Ryser. “Combinatorial properties of matrices of zeros and ones”. In: Canad. J. Math. (1957), pp. 371–
377.

[45] Hyunju Kim et al. “On realizing all simple graphs with a given degree sequence”. In: Discrete Mathematics
(2008).

https://doi.org/10.1109/18.748992
https://doi.org/10.1109/ICC.2001.936272
https://doi.org/10.1109/TCOMM.2010.05.090211
https://doi.org/10.1109/18.910578
https://doi.org/10.1109/18.910578
https://doi.org/https://doi.org/10.1016/S0012-365X(02)00886-5
https://www.sciencedirect.com/science/article/pii/S0012365X02008865
https://doi.org/https://doi.org/10.1016/0095-8956(73)90037-3
https://www.sciencedirect.com/science/article/pii/0095895673900373

	Introduction
	Coding theory
	Preliminaries
	Noisy channels
	Overview of different codes
	Encoding and Decoding of codes

	Encoding LDPC codes
	Encoding via backward substitution
	Encoding via approximate lower triangular parity-check matrices

	Decoding LDPC codes
	Message Passing Algorithms
	Belief propagation
	Log-likelihood ratio
	Belief Propagation on the BEC
	Codes with cycles

	Construction of Tanner graphs for LDPC codes
	Regular LDPC codes with a large girth
	Irregular LDPC codes
	Degree sequences
	The bipartite degree realization problem
	Forbidden connections
	Constructing Tanner graphs with a large girth

	Conclusion
	References

